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Abstract 

In the present work two kinds of hybrid polymeric-inorganic coatings containing TiO2 or SiO2 

particles and prepared starting from two commercial resins (Alpha®SI30 and Bluesil®BP9710), 

were developed and applied to two kinds of mortars (an Air hardening calcic Lime Mortar, ALM 

and a natural Hydraulic Lime Mortar, HLM) to achieve better performances in terms of water 

repellence and consequently damage resistance. The two pure commercial resins were also applied 

for comparison purposes. Properties of the coated materials and their performance were studied 

using different techniques such as contact angle measurements, capillary absorption test, mercury 

intrusion porosimetry, surface free energy, colorimetric measurements and water vapor permeability 
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tests. Tests were also performed to determine the weathering effects on both the commercial and the 

hybrid coatings, in order to study their durability. Thus, exposures to UV radiation, to UV 

radiation/condensed water cycles and to a real polluted atmospheric environment have been 

performed. The effectiveness of the hybrid SiO2 based coating was demonstrated, especially in the 

case of the HLM mortar. 

Keywords 

Mortars; hybrid coatings; cultural heritage; surface modification; ageing; exposure. 

1. Introduction  

The environmental conditions (i.e. temperature, humidity and air pollution) can seriously 

affect the monumental stones and for this reason conservation of historical buildings is nowadays an 

important issue. Among the main agents responsible for stones deterioration, atmospheric pollution 

seriously affects buildings materials (Doehne and Price 2010; Toniolo et al. 2015). Carbon, sulphur 

and nitrogen oxides together with aerosol particulate matter, such as smoke, provoke surface soiling 

(Zielecka and Bujnowska 2006; Quagliarini et al. 2012; Goffredo 2013). Actually, the main 

degradation product is calcium sulphate from the transformation of CaCO3, induced by the reaction 

with the acids, i.e. sulphuric acid and nitric acid, contained in rain. 

The presence of moisture can enhance the damaging activity primarily in the case of interior 

with a high intrinsic porosity. Polymeric materials have been widely studied as protective coatings 

to limit the process of deterioration of building materials exposed to the environment, due to 

condensed water, pollution and salts formation. Thus, the protection of the cultural heritage 

buildings and monuments by surface treatment with polymers is a convenient practice to reduce 

maintenance problems. Their ability to form a protective layer on the monument surface limits the 

transport of different fluids from the surface to interior. However the simultaneous fulfillment of 

protection efficiency, transparency, stability and durability both to climate alteration and 

chemical/mechanical attacks is nowadays a challenge (Toniolo et al. 2015). Traditionally acrylic 
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and vinyl polymers, organosilicone compounds and fluorinated film forming agents have been 

applied to stone monuments as protective hydrophobic coatings against deterioration (Zielecka and 

Bujnowska 2006). 

Moreover, in the last few years, oxide-based nanomaterials have been frequently applied for 

restoration and conservation of works of art. In this way transparent and self-cleaning treatments, 

that ensure a better preservation of stone elements, may be obtained. Recently transparent-

hydrophobic mixed PDMS (polydimethylsiloxane)–TiO2–SiO2 coatings have been proposed and no 

color modification of marble surface have been observed (Cappelletti and Fermo). 

In our previous study (Cappelletti et al. 2015b) an Air hardening calcic Lime Mortar (ALM) 

and a natural Hydraulic Lime Mortar (HLM) were used as representative substrates for historical 

mortars, and commercially available Si-based resins (Alpha®SI30 and Silres®BS16) were adopted 

as protective agents to give hydrophobicity features to the artificial stones. In particular the 

effectiveness of the two commercial resins in reducing salt formation (sulphate and nitrate), induced 

by the interaction of the mortars with the atmospheric pollutants, was demonstrated in the case of 

the HLM mortar.  

Here, the same mortars were used as substrates and two inorganic/organic hybrid coatings 

(SiO2 nanoparticles + alkylpolysiloxanes emulsion (Bluesil®BP9710) and nano-TiO2 nanoparticles 

+ Alpha®SI30) were applied to increase the hydrophobicity features with respect to that of the pure 

resins. The surface properties of the coatings and their performance as protective agents were 

studied using different techniques such as contact angle measurements, test, colorimetric 

measurements, capillary absorption and water vapor permeability tests and salt crystallization 

resistance. Finally, the durability and the effect of aging caused by the prolonged exposure to 

controlled and real environmental conditions will be discussed in details. 
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2. Materials and methods 

2.1 Mortars preparation 

Samples of an Air hardening calcic Lime Mortar (ALM) and a natural Hydraulic Lime 

Mortar (HLM) were produced following the detailed procedure described in our previous work 

(Cappelletti et al. 2015b). Before any test, the substrates were previously seasoned for at least three 

months and then cut in the desired shape. ALM samples are white and brittle, whereas HLM 

samples are hard and brownish blocks. 

2.2 Hydrophobic commercial resins 

Two commercially available resins were used both to protect the substrates and to modify 

the wettability features of the pristine mortars. Alpha®SI30 (purchased by Sikkens) is a silicon 

based solvent-borne resin already characterized in our previous works (Fermo et al. 2014). It was 

found to be composed by a mixture of a trimethoxy silane, with a quite long chain (i.e. iso-octyl) 

and a PDMS (poly-dimethylsiloxane). The present resin was applied as it is without any further 

dilution. Instead, Bluesil®BP9710 (by Bluestar Silicones) is a concentrated of O/W emulsion 

(phase volume,  = 0.44) with an alkylpolysiloxane oligomer base, designed to protect surfaces 

against moisture. It is stabilized by exploiting a nonionic emulsifier at alkaline pH (around 10). It 

was applied after a 1:11 dilution in water. 

2.3 Hybrid coatings 

 The hybrid coatings were produced by addition of inorganic nanoparticles to the resins in 

order to obtain a modification on the surface roughness of the mortars. Only two combinations 

between resins and inorganic nanoparticles were achieved to ensure the compatibility among the 

different raw materials of the formulation.  

 SI30 TiO2 hybrid was prepared by adding home-made TiO2 nanoparticles to Alpha®SI30 

resin. the titania synthesis was carried out by simple hydrolysis and poly-condensation of a titanium 

alkoxide, to obtain a stable and transparent sol (Cappelletti et al. 2015a), stable for several weeks at 
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room temperature and without any control of atmospheric humidity. The mixture of the obtained 

titania sol and the siloxane polymeric agent (1 : 1) was stirred vigorously to obtain a homogeneous 

dispersion. 

 Instead, BP9710 SiO2 hybrid was obtained by mixing Bluesil®BP9710 with a transparent 

suspension of SiO2 nanoparticles (LUDOX®LS, from Sigma Aldrich,  = 0.30). The latter 

powders, electrostatically stabilized at pH 8, have an average particle size of 12 nm with a specific 

surface area of 220 m2 g-1. The final concentration of the silica nanoparticles in the hybrid 

formulation was around 1%.  

 The application of coatings on mortars surfaces was carried out by using a brush in a 

homogeneous manner, in order to reproduce everyday working conditions. All the clad mortars 

were dried for 24 hours in an oven at constant temperature (50°C). 

2.4 Sample characterizations 

Water Static Contact Angle (SCA) measurements of water on bare and coated mortars were 

performed on a Krüss Easy instrument. A drop of 3 μL was gently placed on the surface; the drop 

profile was extrapolated using appropriate fitting functions depending on the drop shapes. 

Measurements were repeated several times (> 20) to obtain a statistical population especially for 

bare mortars, which were really variables even in near spots. 

SFE (Surface Free Energy) and the relative polar and disperse components were evaluated 

by using the Owens–Wendt–Rabel–Kaelble (OWRK) method (Owens DK 1969; Cappelletti et al. 

2013), by using different high purity solvents (i.e. diiodomethane, glycerol, ethylene glycol, 

diethylene glycol). 

Colorimetric measurements were performed to verify the color modification of the 

protective films after both the deposition of the protective coatings and the various aging tests (see 

in the following). The chromatic coordinates were calculated according to the Commission 

Internationale d'Eclairage (CIELab method) (Cappelletti et al. 2015b), starting from diffuse 
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reflectance spectra acquired in the UV/vis spectral range from 800 to 350 nm with a 

JASCO/UV/vis/NIR spectrophotometer model V-570 instrument. According to the literature, no 

significant variation occurs when ΔE* < 3 (La Russa et al. 2012; Esposito Corcione et al. 2014). 

The Water Vapor Permeability (WVP) of bare and coated mortars was evaluated by means 

of the methodology described in the European Standard Norma EN 15803 (Manoudis et al. 2009; 

UNI EN 2009). 

Capillary water absorption measurements were performed on bare and coated materials by 

the gravimetric sorption technique, as described in the Italian protocol Norma UNI 10859 “Cultural 

Heritage – Natural and artificial stones – determination of water absorption by capillarity” 

(NORMA UNI 2000; Cappelletti et al. 2015b).  

Porosity and pore size distributions were determined by MIP (Mercury Intrusion 

Porosimetry), through a Micromeritics Autopore IV with a maximum pressure of 400 MPa, 

according to the procedure reported in a previous work of some of the co-authors of this paper 

(Ruffolo et al. 2014). Measurements were performed on samples with the same weight (1.5 g) to 

standardize testing and minimize errors. This technique allowed to determine pore sizes ranging 

from 0.003 to 40 μm. 

2.5 Controlled aging tests and exposure  

Various aging tests were performed to evaluate the stability of the protective coatings: i) 

under UV irradiation (500W halide lamp, 215-365 nm, for 50 h) and ii) by using a QUV/basic 

accelerated weathering tester, equipped with UVA-340 lamps (optimal sunlight conditions in the 

critical short wavelength region in the range 295  365 nm) for a period of about 1000 h. This kind 

of test was used to simulate the critical conditions through cycles of moisture condensation and UV 

irradiation. 

Finally, the samples were exposed in a typical urban environment in Milan. The exposure 

site was in the Milan University Campus, an area quite far from the city centre, which is considered 
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representative of a typical urban background. The exposure tests were carried out for 7 months 

during winter (15 November 2014 - 15 May 2015). Ion Chromatography (IC) was employed for the 

analysis of soluble salts (Cl-, NO3
- and SO4

2-) in the exposed mortars. The samples were prepared 

according to a procedure reported elsewhere (Cappelletti et al. 2015b). 

3. Results and discussion 

3.1 Properties of bare and coated mortars 

ALM and HLM substrates show a hydrophilic character ( < 90°) leading to the complete 

and almost immediate absorption of water drops. For this reason the evaluation of the water static 

contact angles (Table 1, 2nd column) has been performed by using the first frames taken by the 

video registration of deposition procedure. Both the substrates were produced with the same coarse 

aggregate (0.5 mm < d < 4mm) demonstrating an intrinsic variability, which is reflected in high 

standard deviations (Table 1). Moreover, SFE determination through the OWKR method leads to 

consistent values determining high polar surfaces for both the bare substrates (Table 1, 3rd and 4th 

columns). 

After the treatment with all the pure water-repellent agents (Alpha®SI30 and 

Bluesil®BP9710), a successful hydrophobization of the substrates occurs ( < 140°, Table 1, 2nd 

column), as already pointed out in our previous work (Cappelletti et al. 2015b). Particularly, both 

the hybrid coatings increase the surface hydrophobicity reaching the superhydrophobic properties 

only in the case of HLM substrate (Table 1, 2nd column), hence highlighting, once again, the pivotal 

role also played by the intrinsic variability of AL and HL mortars themselves. 

Furthermore, SFE evaluation, carried out for the samples treated with the commercial resins 

SI30 and BP9710, shows a drastic decrease in the polar component of the total surface free energy 

(Table 1, 2nd column), as it was expected. On the contrary, for hybrid systems, it has not been 

possible to calculate the SFE, since contact angles with water and highly polar solvents could not be 

determined (θ > 150°). 
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Thus, by comparing the performances of the two commercial resins, Alpha®SI30, as 

reported in our previous work, gave the best results especially when applied onto the hydraulic lime 

mortar, probably due either to the presence of an adequate micro-porosity (Cappelletti et al. 2015b) 

or to the different interaction with the resin in the presence of silicates (Fermo et al. 2014). 

Moreover, as concern the hybrid coatings performance, the combination of the intrinsic porosity of 

HLM with the nano- and micro-scale surface roughness (induced by the introduction of 

nanoparticles) has probably led to the super-hydrophobicity features (θ > 150°). This is an 

interesting result, especially for water-based system, since the environmental issues arising from the 

use of a solvent-borne system are a well known drawback (Zeno W. Wicks et al. 2007). 

Furthermore, all the protective coatings are invisible to naked eye (E* < 3).  

Moreover, since the water vapor transmission rate through the mortars must not be reduced 

after the coating treatments (Zielecka and Bujnowska 2006), a little change in the samples pore 

structure is an important result. In Figure 1, as result of the WVP test, the cumulative mass change 

is shown (m= mi - m0, where mi and m0 is the mass of the test assembly respectively at time ti 

and t0, in kg) for each set of successive weighing of the specimens versus time. Surprisingly, both 

the hybrid systems showed a better behavior than the two commercial resins. Among the applied 

coatings, the smallest reduction in WVP was given by the hybrid SI30 TiO2, which reaches a vapor 

flow comparable with that of the reference. The commercial silicon aqueous emulsion BP9710, 

applied on both mortars, showed a sensible reduction with respect to water vapor permeability, thus 

leading to a decrease that can be still considered acceptable in materials transpiration. Furthermore, 

this is fully in accordance with what is already reported in the literature for highly hydrophobic 

silane- and silicone-derived coatings, which are known to be able to maintain a high degree of water 

vapor permeability (Zielecka and Bujnowska 2006). Indeed, these resins allow stones to breathe 

and, at the same time, they prevent deterioration phenomena caused by external agents, such as 

atmospheric pollution (see the following). 
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As commonly reported in the literature (Bortolotti et al. 2006; De Ferri et al. 2011), the 

prevention of water rising by capillary absorption plays a pivotal role in the conservation of 

historical buildings. This phenomenon is one of the main responsible of mortars degradation, since 

water freeze-thaw cycles can cause cracks, and the transport of salts inside the materials can lead to 

crusts formation. Figure 2 shows the amount of water absorbed per unit area over time (Qi) for all 

the adopted mortars. Typical parameters of the present analyses, including the capillary absorption 

coefficient (CA) and the capillarity index (IC, which gives information about the resistance to 

capillary rise when prolonged contact with water occurs) were calculated and reported in Table 2. 

For the untreated mortars the rise quickly arrives to a plateau that corresponds to the water 

saturation equilibrium of the sample. On the contrary, when the pure resins are applied on the 

mortars surface, a dramatic decrease in the capillary rise parameters (Table 2 and Figure 2) occurs 

for all of the treated substrates: the final Qi collapses, CA reduces of about two orders of magnitude 

and IC is halved, confirming the hydrophobic performances of both the resins. Comparing the two 

commercial resins, Alpha®SI30 shows the best behavior with both the types of mortars and the 

water absorption is further reduce in the corresponding hybrid systems. Commercial BP9710 

shows, by contrast, an opposite behaviour: higher CA and Qi values are obtained with pure resin, 

whereas the addition of silica nanoparticles strongly improve its performances, making it 

competitive with the solvent-based system. Overall, all the samples showed promising protective 

properties. 

3.2 Controlled aging tests and exposure 

In order to evaluate the coatings stability, all the samples were treated both under direct UV 

lamp irradiations and in a QUV/basic machine for 1000 h accelerated aging test (Figures S1 and 

S2). The latter is equipped with UVA lamps, alternating 8 h of light with 8 h of water vapor 

condensation (in the dark). These conditions can reproduce well the aging due to external physical 

agents, excluding the contribution of chemical reactions occurring in a polluted environment 
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(TECHNICAL BULLETIN LU-8052; TECHNICAL BULLETIN LU-8010 1987; TECHNICAL 

BULLETIN 1993; Fedor and Brennan 1996). 

As shown in Figure 3, all the samples show no-significant ΔE* variations after the aging, 

and only a slight loss of hydrophobicity has been observed, with exception of the SI30 TiO2 hybrid 

coating, for which a significant decrease in the SCA values has been noticed for both the mortars. 

This fact could be easily explained considering the TiO2 photoactivity, which could have promoted 

the degradation of the organic resin (Morikawa et al. 2006; Fujishima et al. 2008; Irie et al. 2009; 

Ohtani 2010; Kaur and Singh 2012). On the contrary, BP9710 SiO2 has seemed to be well 

performing, since it shows both small ΔE* and SCA variations. 

Furthermore, the comparison between this kind of test and the UV aging has shown that the 

main reason for coating deterioration is the UV light, whereas high humidity and condensation 

cycles seem not to affect the stability of the commercial and the hybrid coatings. Taking into 

account the lower power of the QUV lamp than the used halide lamp, the faster decrease in the SCA 

values of the UV irradiated samples can be easily explained (Figure 3).  

Another issue of interest in historical building is related to salt crystallisation occurring into 

porous structure of the material, which exerts the so-called crystallization pressure on the pore walls 

leading to the degradation of the material. In this study salt crystallization tests were performed, in 

order to assess the effect of the treatment on the resistance against salt weathering (Flatt 2002; Zeno 

W. Wicks et al. 2007; Yu and Oguchi 2010; La Russa et al. 2012; Caruso et al. 2014). In Figure 4, it 

has been reported the mass variation of samples after each weathering cycle. All specimens, after 3-

5 cycles, showed an increase in weight related to the salt precipitation inside the pore structure. 

After the fifth-seventh cycle all samples start to loose material. Treated specimens, show a better 

behaviour, since after fifteen cycles they suffer less variation of mass (ranging from 8 to 10%). An 

exception is represented by HLM BP9710 sample; in this case, the behaviour against salt 

crystallization is quite similar to the untreated sample. In order to better understand the resistance of 

samples toward salt weathering, a calculation of the crystallization pressure has been performed 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

from MIP measurement and applying a thermodynamic model proposed by Wellman and Wilson 

(1968). The model predicts that porous material with larger capillaries connected to smaller ones 

are the most susceptible to damage (Arnold and Zehnder 1989). The pressure that builds up between 

two such connected pores, once crystallization takes place, is given by following the equation 

proposed assuming a spherical geometry (Everett 1961): P = 2 (1/r − 1/R), where P = 

crystallization pressure (dyne/cm2);  = crystal-solution surface tension (dyne/cm); r = smaller pore 

radius (cm); R = larger pore radius. The calculation has been done following the method employed 

by (Rossi-Manaresi and Tucci 1991). In Table 3, it has been reported the porosity values calculated 

from MIP measurements, it can be noticed that only small variations of porosity have been detected 

after the treatment of the samples. In Figure 5, it has been reported the pore size distribution of the 

ALM and the HLM series, which show a quite different distribution. The treatments are able to 

change slightly the pore distribution of the materials, this changing can influence significantly the 

crystallization pressure. In Table 3, it has been reported the values of the crystallization pressure, 

calculated from the pore size distributions. The treatments scarcely influence the ALM in term of 

crystallization pressure. On the contrary, the HLM series seem to suffer the presence of SiO2, since 

treatments induce an increase in crystallization pressure (61.5 MPa), while in bare samples the 

pressure is 17.0 MPa. This increase in pressure is partially compensated by the hydrophobicity 

induced by the treatment that reduce the amount of water absorbed by the treated sample and this 

lead to a lower amount of salt introduced into the stone porous structure. This two effects, higher 

crystallization pressure and lower amount of salt into the stone, make the bare HLM and the SiO2 

hybrid coating similar against salt weathering.  

The interaction with atmospheric gases and aerosol deposition is one of the main processes 

of environmental degradation, occurring on the exposed surfaces of monuments and historic 

buildings. For this reason, both bare and treated samples have been exposed in a typical urban 

polluted environment at the Milan University Campus and the concentration of the main anions 

(Figure S3), typically found in degraded stones, has been monitored as in our previous work (Watt 
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et al. 2014; Cappelletti et al. 2015b). In particular, sulphate is the main product of carbonate 

degradation due to pollution, whereas nitrate and chloride are mainly due to atmospheric 

depositions (Fuente et al. 2011; De et al. 2013). As shown in Figure 6a, in HLM coated samples the 

overall absorption of anions was strongly reduced. Nitrates and chlorides were found in much lower 

concentrations than sulphates, but it is well known that sulphatation process is the main degradation 

reaction of calcium carbonate. Either nitrates or chlorides concentrations were reduced with the 

application of both resins, with a slight further decrease for the hybrid coatings. It is also worth 

noting the drastic decrease in the sulphate concentrations, in particular for the hybrid BP9710 SiO2. 

As previously demonstrated (Cappelletti et al. 2015b), the two resins BS16 and SI30 were not 

effective in the protection of ALM mortar and the same thing has been observed for the resin 

BP9710. Moreover, SI30 TiO2 coated samples were not exposed since they did not show good UV 

resistance in the controlled aging tests, which does not make them feasible candidates for 

environmental protection. Colorimetric measurements (CIELab) were carried out to verify the color 

alteration of the protective films. The results, shown in Figure 6b, highlight how both the BP9710 

the hybrid coating containing SiO2 coated mortars showed no significant variations in the color, 

even after 7 months of exposure (only a slightly decrease of brightness has been determined). The 

SCA measurement showed a similar trend (see Figure 6c): the BP9710 coated materials retained the 

hydrophobic behavior better than the SI30 ones, indicating better resistance of the water-based 

system, and the high performing BP9710 SiO2 coating remained stable maintaining a high surface 

hydrophobicity. 

In conclusion, with respect to the results previously reported in the literature for mixed 

coatings, the present hybrid films are clearly more stable (Manoudis et al. 2009).  

4. Conclusions 

In the present work, two already characterized artificial stones (Cappelletti et al. 2015b), an 

air hardening calcic lime mortar (ALM) and a natural hydraulic lime mortar (HLM), were used.  
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Alpha®SI30 and Bluesil®BP9710 resins were applied to the bare mortars to give 

hydrophobic features; these Si-based polymers were used as base to prepare hybrid organic-

inorganic coatings, through the addition of oxide nanoparticles. Comparing the commercial 

polymers with the modified ones, the latters show better features in hydrophobicity, transpirability 

and capillarity rinse. Although, SI30 TiO2 shows lower chemical stability after UV and QUV aging 

(higher ΔE* values and appreciable contact angle lowering) with respect to the relative commercial 

resin. On the contrary, the hybrid coating BP9710 SiO2 shows promising aging resistance, 

comparable with BP9710, retaining its superior characteristic in terms of water protection. Salts 

crystallization resistance tests were carried out and the final performances of the coatings in terms 

of reduction of salts formation (i.e. sulphate and nitrate formation) were studied after a prolonged 

exposure to a polluted environment (Unimi campus in Milan). All of the treated samples show a 

reduction in terms of both nitrates and sulphates formation. The combined effect of these factors 

indicates that BP9710 modified with the addition of SiO2 nanoparticles seems to be a novel 

promising protective coating agent in the field of historical building reconstruction. The results 

obtained have shown that HLM samples coated with the hybrid systems achieved super-

hydrophobicity. In particular, the water-based system shows promising results, being ecofriendly, 

invisible to naked eye, superhydrophobic and aging resistant. 
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Sample θ / deg  / mN m-1 P / mN m-1 

ALM 70  ± 10 37 ± 7 13 ± 3 

ALM SI30 116  ± 8 15 ± 6 < 1 

ALM SI30 TiO2 129 ± 4 * * 

ALM BP9710 114 ± 7 12 ± 3 < 1 

ALM BP9710 SiO2 126 ± 9 * * 

HLM 65 ± 10 33 ± 10 15 ± 5 

HLM SI30 137 ± 7 < 10 < 1 

HLM SI30 TiO2 > 150 * * 

HLM BP9710 130 ± 7 < 10 < 1 

HLM BP9710 SiO2 > 150 * * 

 

Table 1. Static contact angles (θ) and Surface Free Energy (SFE, γ) values (with relative standard 

deviations) by Owens, Wendt, Rabel and Kaelble (OWRK) method with its polar component (γP). * 

= for hybrid coatings the OWRK method was not applicable since θ > 120° 
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Sample IC CA / mg/cm2 s-1/2 Qtf / s1/2 

ALM 0.97 17.24 747.4 

ALM SI30 0.43 0.12 81.0 

ALM SI30 TiO2 0.51 0.08 77.0 

ALM BP9710 0.46 0.21 314.2 

ALM BP9710 SiO2 0.51 0.10 119.1 

HLM 0.96 11.45 725.0 

HLM SI30 0.53 0.12 138.8 

HLM SI30 TiO2 0.49 0.09 144.3 

HLM BP9710 0.46 0.37 292.2 

HLM BP9710 SiO2 0.53 0.13 144.6 

 

Table 2. Water Capillary Index (IC), Absorption Coefficient (CA) and amount of water absorbed at 

the final time (around 8 days, Qtf) 
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Parameters 
 

HLM 
HLM 

BP9710 

HLM 

BP9710 SiO2 
ALM 

ALM 

BP9710 

ALM 

BP9710 SiO2 

Porosity % 23.3 23 22.8 28 27.7 27.6 

Crystalization 

Pressure 
MPa 17.0 34.0 61.5 2.6 4.9 2.2 

 

Table 3. Mercury Intrusion Porosimetry parameters 
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Figure captions 

 

Figure 1. Water Vapour Permeability curves showing the variation of cumulative mass for all the 

samples (both a) air hardening calcic lime (AL) and b) hydraulic lime (HL) mortars). 

 

Figure 2. Capillary absorption for a) air hardening calcic lime (AL) and b) hydraulic lime (HL) 

mortars. 

 

Figure 3. ΔE* (above) and Static contact angle (below) variations after controlled accelerated aging 

tests. 

 

Figure 4. Mass loss vs cycles number showing the resistance of the hydraulic lime mortar towards 

salts crystallization. 

 

Figure 5. Pore size distribution measured by means of mercury porosimetry (MIP) for a) AL and b) 

HL mortars. 

 

Figure 6. a) Anions concentration determined by Ion Chromatography (IC) in HLM exposed 

samples; b) ΔE* and c) static contact angles variations and after HLM samples exposure. 
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FIGURE 3  
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FIGURE 4 
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      FIGURE 5 
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FIGURE 6 
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