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Abstract 

 

Recent epidemiological and clinical data underlined the critical role of obesity in breast 

cancer (BC) progression. Among several white adipose tissue (WAT) cells, which may 

promote a permissive tumor microenvironment, a population with progenitor-like 

phenotype (CD45
-
CD34

+
) was reported to support local and metastatic BC. This 

population is composed by distinct WAT progenitors: adipose-derived stem cells (ASCs) 

and endothelial progenitor cells (EPCs), displaying complementary role in BC progression 

in preclinical models. However, molecular mechanisms involved in this interaction have 

been so far elusive and need to be clarified. 

An extensive screening of candidate molecules revealed two proteins being significantly 

up-regulated in WAT-derived progenitors after being co-cultured with several BC cells: 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) and Matrix 

metallopeptidase 9 (MMP9). Both factors were detected over-expressed in orthotopic 

xenograft models, when co-injected with BC and human WAT progenitors. ASC and EPCs 

displayed similar ability to induce GM-CSF/MMP9, suggesting a complementary role in 

their release. GM-CSF neutralization in WAT progenitors inhibited MMP9 secretion, 

which was also reduced by IL-1β neutralization. GM-CSF displayed an additional positive 

feedback regulation on its own release. 

The inhibition of GM-CSF in diet-induced obese (DIO) syngeneic mice led to reduced 

intratumor vascularization and strong impairment of immunosuppressive 

microenvironment, targeting mainly tumor-associated macrophages (TAMs), myeloid 

derived suppressor cells (MDSCs) and T-regulatory (T-regs) cells. This resulted in a 

significant impairment of local BC growth and a slower metastatic progression. 

Conversely, MMP9 inhibition reduced neoplastic angiogenesis and significantly decreased 

local and metastatic tumor growth. The combined GM-CSF/MMP9 inhibition synergically 

impaired tumor angiogenesis, local and metastatic BC growth. 
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Metformin was reported to significantly affect tumor progression and neoplastic 

angiogenesis, targeting both BC and WAT cells. In the present study, Metformin inhibited 

GM-CSF and MMP9 release from WAT progenitors in vitro and in xenograft models. 

Metformin had similar effects of GM-CSF/MMP9 specific inhibitions in DIO syngeneic 

mice, but was more effective in reducing tumor angiogenesis and targeted different 

immune cells.  

Collectively, these results indicate GM-CSF and MMP9 as new potential targets to prevent 

the pro-tumorigenic effect of WAT progenitors on BC. 

Furthermore, Metformin ability to reduce GM-CSF and MMP9 supports Metformin 

administration in clinical studies on BC, especially in a setting of obesity and/or insulin 

resistance. 
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1. Introduction 

 

1.1 Breast cancer 

 

Mammary carcinoma is one of the world-wide leading causes in women. It is characterized 

by high heterogeneity with different histo-pathological features, treatment sensitivity 

profiling and clinical outcomes. 

 

1.1.1 Epidemiology and risk factors 

Breast cancer (BC) is the most diffuse tumor in women, approximately 29% of newly 

diagnosed cancers in United States (American Cancer Society, 2015). The mortality has 

been decreased in recent years, but still 40.000 women die every year for BC, which is the 

second leading cause of cancer death in United States. According to the AIOM (Italian 

Association for Medical Oncology), 48.000 new cases are diagnosed every year in Italy 

and 12.000 people died of BC last year (AIOM, 2015). 

Breast cancer incidence rates increase with age, especially in premenopausal years, 

reaching a plateau at 50-55 years old and increasing again after 60 years old (American 

Cancer Society, 2015). The age correlation could be explained by the progressive exposure 

of mammary endothelium to endocrine signaling and/or to the accumulated DNA and 

epigenetic alterations. 

From a geographical point of view, the incidence of BC in western countries is ten-fold 

higher in United States and Europe, directly correlating that to the modern western lifestyle 

(AIOM, 2015). Indeed, the consumption of alcohol and fatty acids-enriched food is 

associated with an increase risk. In particular, obesity is a recognized risk factor 

predisposing to post-menopausal BC (van den  Brandt et al., 2000). The alterations 

occurring in the adipose tissue surrounding the mammary gland and the increased estrogen 

synthesis, which actively hyper-stimulates mammary epithelium, might predispose to BC 
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(Cleary P and Grossmann, 2009). Obesity has also been associated with a higher tumor 

size at diagnosis, higher tumor grade and, in general, to a poorer prognosis and increased 

mortality in both pre- and post-menopausal women (Cleary and Grossmann, 2009). 

Triple negative breast cancers (TNBC) were significantly associated with overweight in 

pre-menopausal women, whereas Luminal B (HER2
-
) tumors were significantly more 

frequent in post-menopausal overweight women (Agresti et al., 2016, Table 1). 

 

  

Breast cancer subtype 
 

BMI 

(Kg/m
2
) 

Total 
Luminal 

A 

Luminal B 

(HER2-) 

Luminal B 

HER2+ 

Triple 

negative 

HER2+ (not 

luminal) 

  

% % % % % 

Pre-menopausal women 

    < 25 465 25.4 51.2 11.2 6.7 5.6 

≥ 25 131 19.8 47.3 13.0 13.0 6.9 

       Post-menopausal women 

    < 25 512 31.3 48.4 9.0 6.6 4.7 

≥ 25 588 24.3 57.0 8.2 5.6 4.2 

 

Table 1. Epidemiological data correlating obesity/overweight to BC incidence. Principal subtypes are 

included (adapted from Agresti et al., Breast Cancer Res. Treat. 2016). 

 

1.1.2 Histopathological classification 

The current histological classification was proposed by the World Health Organization 

(WHO) in their guidelines (Lakhani et al., 2012). BC could arise from different breast 

anatomical structures, affecting milk ducts (ductal carcinoma or not otherwise specified) or 

mammary glands (lobular carcinoma). These two types may display invasive properties 

(invasive carcinoma) or not (in situ carcinoma). Invasive carcinomas are composed by 

malignant epithelial tumors, characterized by infiltration in surrounding tissues with 

irregular borders and metastatic spread. Noninvasive tumors display aberrant proliferation, 

without crossing basal membrane or invading surrounding tissues. 
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Invasive carcinomas are routinely graded based on the assessment of tubule/gland 

formation, nuclear pleomorphism and mitotic counts. The histology of the tumor is 

associated with the clinical outcome and prognosis: grade 1 is associated with a well 

differentiated tumor with a good prognosis, grade 2 with a moderately differentiated tumor 

and grade 3 with a poorly differentiated carcinoma with a worse prognosis. 

According to the American Cancer Society (2015), the most diffuse (80%) invasive 

carcinoma is the invasive ductal carcinoma (IDC), which is characterized by an initial 

hyperplasia of ductal epithelium, followed by the formation of aggregates of malignant 

cells invading the surrounding stroma, constituted by adipose tissue. Atypical tumor cells 

originate ribbons, tubules or nest and frequently are associated with necrotic areas. In the 

stroma, IDC induces desmoplastic reaction with abundant fibrosis and collagen deposit. 

Invasive lobular carcinoma (ILC) constitutes approximately 10% of all invasive carcinoma 

(American Cancer Society, 2015). ILC typically grows as single cells, single lines or 

sheets. ILC is usually larger than IDC, but better differentiated and with a later metastatic 

spread. ILC might be characterized by bilateral and multifocal growth. 

However, this histological classification was unable to reflect the high heterogeneity of 

BC, because, within each group, tumors displayed different biological and clinical features. 

Therefore, the histological classification showed poor prognostic and predictive impact.  

 

1.1.3 Molecular Classification 

Due to the limited prognostic and predictive power of the histological classification, the 

molecular profiling of different breast carcinoma has been done to better characterize 

tumor heterogeneity (Sorlie et al., 2001). The presence or absence of estrogen receptor 

(ER), progesteron receptor (PR) and human epidermal growth factor receptor 2 

(HER2/neu) protein over-expression is commonly used for this classification (Fig.1). It 

seems to display more prognostic value and to better predict the response to chemotherapy 

(Viale, 2012). Different molecular signatures correspond to distinct tumor severity and 
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prognosis, together with clinic-pathological parameters, such as tumor grade, size and 

lymph nodes involvement. 

Luminal tumors are the most diffuse type of breast carcinoma, displaying hormone 

receptors expression (ER
+
PR

+
) and several genes normally expressed by luminal 

epithelium, including cytokeratines. Two distinct subtypes are differentially characterized: 

Luminal A, which is negative for HER2 expression, and Luminal B, which may express or 

not HER2. Luminal B tumors usually have a higher grade compared to Luminal A, with a 

poorer prognosis. 

Tumors, characterized by over-expression of HER2, are considered as specific group and 

lack of other hormone receptors. These tumors are associated with a poor prognosis and 

are usually characterized by deep genomic alterations: the over-expression of several genes 

in HER2 amplicon and p53 mutations. 

Basal tumors are mainly composed by TNBC, which are characterized by the absence of 

expression of all hormone receptors and HER2. Higher expression of proliferation-related 

genes and basal markers, such as keratins or EGF (Epidermal growth factor) receptor, 

completes the tumor profile, which is very aggressive with a poor prognosis. TNBCs are 

clinically relevant due to their lack of responsiveness to standard chemotherapies. 

Another BC subtype was recently identified and defined as claudin-low (CL) subtype 

(Sabatier et al., 2014). These tumors are characterized by the absence of luminal markers, 

high genomic instability, expression of epithelial to mesenchymal transition (EMT)-related 

genes and stem cell-like characteristics. Claudin-low tumors displayed a poor disease-free 

survival similar to luminal B or TNBC tumors (Sabatier et al., 2014). 

Tumor proliferation is another important prognostic parameter to be evaluated in molecular 

classification. In clinical practice, the evaluation is done by Ki67 staining. However, its use 

as a prognostic marker is still debatable, due to the lacking in standardization and 

reproducibility (Viale, 2012). 
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A certain grade of heterogeneity can be also found within a single tumor, with differential 

expression of hormone receptors and HER2 in different tumor areas. This discordance has 

also been reported between primary tumors and the matched metastatic lesions. 

 

Ductal carcinoma - Luminal A Ductal carcinoma - Luminal B

Triple negativeHER2-overexpressing

ER+ ER+

ER-ER-

PR+ PR+

PR-PR- HER2+

HER2-

HER2-

HER2+

 

 

Fig.1 Representative images of BC subtypes according to histological and molecular classifications. 

Tumors are classified according to their anatomical localization in the mammary glands, in ducts or lobules 

(left). From a molecular classification, staining of ER, PR and HER2 identifies different subtypes (right) 

(adapted from Thorat et al., Oncol. Lett. 2013). 

 

1.1.4 Preclinical models of breast cancer 

Animal models are useful in studying BC development and progression, and in testing 

novel therapeutic approaches. These models ideally possess genetic and abnormalities 

similar to human counterparts. The most suitable available model is the xenograft, in 

which human cells or tissue are implanted either heterotopically (subcutaneously) or 

orthotopically (into mammary fad pad). Many models are also available to analyze the role 

of immune system on tumor progression, like the syngeneic models or genetically 

engineered mouse (GEM) models. Each preclinical model presents advantages and 

limitations, which need to be carefully considered in the choice of the appropriate one. 
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1.1.4.1 Syngeneic models 

Syngeneic models are immunocompetent mice bearing tumors derived from the strain of 

origin. These models are extensively used to analyze the impact of a functional immune 

system on tumor biology. Recently, they are widely used to develop immunotherapy 

protocols, able to stimulate immune system against tumor cells. 

The principal limitations of these models include the intrinsic differences between the 

biology of tumors in rodents and humans (Kim et al., 2004): i) in the mammary gland of 

rodents, unlike humans, a full glandular maturation is contingent on pregnancy, generating 

important differences regarding multipotent stem cells and their role in carcinogenesis; ii) 

the shorter lifespan of rodents leads to a rapid tumor progression, which may develop very 

aggressive tumors with multiple genetic alterations; iii) many human BC are hormone 

responsive, while the vast majority of mouse tumors are hormone independent; iv) BC in 

humans usually spreads through lymphatic system and the principal sites of  distant 

metastasis are bones, brain, adrenal gland, liver and lungs. In contrast, murine BC 

metastasizes almost exclusively to lungs through blood vessels; v) profound differences in 

metabolism between rodents and humans affect tumor behavior and microenvironment. 

 

1.1.4.2 Genetically engineered mouse (GEM) models 

These models are characterized by genetic profile alterations in one or several genes, likely 

involved in transformation or malignancy of tumor cells. These genes could be deleted, 

over-expressed or defective, leading to spontaneous tumor development. GEM models are 

useful to study the impact of specific alterations in tumor biology and to evaluate in vivo 

novel therapeutic responses to these tumors. The molecular events triggering human BC 

can be reproduced in GEM models. For example, mouse mammary tumor virus 

(MMTV)/c-neu transgenic mice express an activated rat c-neu oncogene (Erbb2). This 

alteration mimics the aberrant activation of ErbB2 receptors in human tumors, leading to 
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multifocal mammary tumors development with metastatic spread to lungs in mice, starting 

from 5-10 months of age (Muller WJ et al., 1988). However, many oncogene-bearing or 

tumor suppressor-knock out (KO) transgenic mice have a whole-body phenotype, in which 

all tissues and cells are affected. Thus, these tumors do not mimic sporadic forms arising 

from a single cell transformation in a normal microenvironment. To overcome this 

limitation, tissue-specific promoters are commonly used to generate the alteration only in 

targeted tissues. Hormone-sensitive promoters are usually used in BC preclinical models, 

such as the MMTV long terminal repeat, which are not the natural promoters of human 

BC, leading to inappropriate tumorigenesis. 

 

1.1.4.3 Xenograft models 

The ability of human tumors to grow in immunodeficient mice characterizes xenograft 

models, able to recapitulate the growth of human tumors in a whole organism.  

Several genetically induced immunodeficient mice are available (Kim et al., 2004): nude 

mice, characterized by T-deficiency induced by chromosomic autosomal recessive 

mutation; severe combined immunodeficiency (SCID) mice, with a single mutation that 

inactivates a DNA protein kinase, leading to a defective T- and B-cells mediated immune 

response. Many human xenograft models are available for BC research, principally derived 

from established human BC cell lines or genetically engineered immortalized breast 

epithelial cells (Kim et al., 2004). However, the use of established cancer lines is 

questioned as source for xenograft models, due to alterations arising in cancer cells during 

the in vitro culture passages. Primary BC cells would be the optimal choice for xenograft, 

reflecting tumor original phenotype. However, the difficulty in obtaining reproducible 

xenografts and the purity of primary samples from stromal cells might limit the use of 

these models. The principal limitation of xenograft mice is the absence of a functional 

immune system, which exclude their use in immunological studies. 
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1.2 White Adipose Tissue (WAT) 

 

White adipose tissue (WAT) is found subcutaneously, mostly in abdomen and in the lower 

body (gluteal-femoral), and in visceral regions of mammals (Fig.2). 

Main functions of WAT involve the regulation of metabolic body homeostasis, including 

triglycerides storage, in presence of energy consumption, and fatty acid release, when 

energy expenditure exceeds energy intake. This regulation affects endocrine, paracrine and 

autocrine signaling pathways and is important for the functionality of organs, such as 

brain, liver, muscles and pancreas. Additional functions include the mechanical protection 

and support of organs and the prevention of heat loss through the skin. 

Accordingly to its anatomical depots, WAT displays unique features: visceral adipose 

tissue (VAT), located in the abdominal cavity and mediastinum, significantly differs in 

metabolic and hormonal profiles from the subcutaneous adipose tissue (SAT), mainly 

located in hypodermis. 

Metabolic differences between VAT and SAT are due to different storage and mobilization 

capacities (Muller C et al., 2013). SAT has a role in thermo insulation and displays lower 

metabolic activity than VAT, with higher short- and long-term storage capability of 

triglycerides. Insulin and cathecolamines, the principal hormones regulating lipids storage 

and mobilization, exert different effects on the adipose depots, leading to higher lipolysis 

rate in VAT compared to SAT. 

SAT and VAT display also a distinct secretion profile, with differential expression of 

adipokines, inflammatory mediators and angiogenesis-related factors. VAT is 

characterized by higher pro-inflammatory activity compared to SAT, higher vascular 

endothelial growth factor (VEGF) release and higher accumulation of macrophages and 

immune cells (Muller C et al., 2013). Regional heterogeneity characterized both VAT and 

SAT, showing different histological and metabolic characteristics, according their specific 
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location. For instance, SAT in mammary gland displays physiological specialization and 

special biochemical properties. 

WAT is morphologically and physiologically different from its neonatal counterpart, the 

brown adipose tissue (BAT), which is mainly located in the supraclavicular area and 

almost lost with aging. WAT is characterized by adipocytes with a single lipid droplet, 

whereas BAT contains adipocytes with multiple lipid droplets. BAT presents a larger 

number of mitochondria and is specialized in heat production during thermogenesis. The 

typical brown color of BAT reflects the increased mitochondria content and the density of 

vasculature. 

 

BAT

WAT

A

B

 

 

Fig.2 Differential distribution of body fat depots. WAT and BAT localization in humans (A) and mice (B), 

with their principal functions (adapted from Choe et al., Front. Endocrinol. 2016). 
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1.2.1 Cellular composition of WAT 

WAT composition varies among different individuals according to age, metabolic status 

and presence of pathological conditions, such as obesity, diabetes mellitus and cancer. In 

physiological conditions, approximately one third of the tissue is constituted by mature 

adipocytes, whereas the remaining part is a combination of blood vessels, nerve tissue, 

fibroblasts and pre-adipocytes at various stages of development (Armani et al., 2010). 

Beside adipocytes, the fraction of WAT that contains several cell populations, namely the 

stromal vascular fraction (SVF), can be easily isolated after digestion with collagenase and 

centrifugation (Martin-Padura et al., 2012). 

 

1.2.1.1 Adipocytes 

Adipocytes are characterized by large cellular size (30-70µm diameter), due to the 

presence of a massive lipid droplet, which usually occupies 90% of the cytoplasm. These 

cells are characterized by narrowed nucleus, displayed on one side. The histological 

appearance of WAT shows spherical or oval cells with irregular profile, due to lipid 

extraction during tissue processing (Fig.3). Adipocytes are organized in lobules surrounded 

by a connective stroma, which supports the network of cells and neurovascular elements. 

Mature adipocytes derive from pre-adipocytes, originated from a specific line of 

connective tissue. Pre-adipocytes are characterized by a spindle shape, a fully developed 

endothelium reticulum and an active Golgi. The production and accumulation of lipid 

droplets start in pre-adipocytes during pre-natal period. The number and size of lipid 

droplets increase with time and the shape of the adipocyte changes from a spindle to a 

sphere, characterizing the mature differentiated form. 

Adipocytes have a primary role in WAT energetic metabolism, being the principal source 

of fatty acids. Adipocytes uptake fatty acids, glucose and amino acids, storing them under 

the form of triglycerides. These molecules are mostly accumulated in intracellular lipid 
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droplets. Specific signals are able to stimulate the hydrolysis and release of free fatty acids 

into circulation. All these processes are under the control of the neuroendocrine system 

(Muller C et al., 2013). 

 

 
 

 

Fig.3 Representative image of WAT histology. Hematoxylin & Eosin (H&E) staining (adapted from 

Ledoux et al., Diabetes 2008). 

 

1.2.1.2 Adipose stem cells and progenitors 

Bone marrow (BM)-derived progenitors appear to be less responsive to stimuli with age, 

displaying a decreased capacity to face injury repairs in peripheral tissues. Therefore, other 

organs are likely to be the source of mobilized progenitor cells. 

The plasticity of WAT throughout life is often associated with the presence of a resident 

population of stem/progenitor-like cells, which was detected in the CD45
-
CD34

+
 fraction,  

contained in the SVF (Martin-Padura et al., 2012). This population of progenitors is 

composed by two distinct cell sub-populations: adipose-derived stem cells (ASCs) and 

endothelial progenitor cells (EPCs) (Orecchioni et al., 2013). 

 

ASCs represent the major cell population of the SVF (CD45
-
CD34

+
 fraction) and display 

proliferative potential similar to BM-derived mesenchymal progenitors, but with unique 
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features (Martin-Padura et al., 2012): freshly isolated ASCs from lipotransfer material 

display higher expression of perivascular genes, such as Endosialin, Adam12, Platelet-

derived growth factor (PDGF) receptors and Transforming growth factor (TGF)-β. ASCs 

immunophenotype is characterized by brilliant expression of CD34 progenitor marker, 

CD13, CD90 and CD44 expression and the absence of CD45 and CD31 markers (Fig.4). 

ASCs were reported to be involved in adipogenesis, osteogenesis, myogenesis, 

cardiomyogenesis and neurogenesis, if exposed to appropriate stimuli ex vivo (Freese et 

al., 2015). In their work, Rodeheffer and colleagues (2008) demonstrated that ASCs, 

transplanted into fat pads of A-Zyp lipodystrophic mice, were able to regenerate functional 

WAT depots, confirming the multipotency of these cells. Of note, ASCs isolated from 

VAT showed higher self-renewal ability than progenitors isolated from SAT (Zhang Y et 

al., 2010). ASCs contributed also to endothelial cells proliferation and new blood vessels 

formation, through the release of VEGF, Hepatocytes growth factor (HGF) and other pro-

angiogenic mediators (Rodeheffer et al., 2008). Therefore, these WAT-derived cells might 

be a powerful tool in regenerative medicine approaches. 

 

In addition to ASCs, EPCs can be isolated from the CD45
-
CD34

+
 fraction. These cells are 

able to generate in vitro and in vivo mature endothelial cells (Fig.4) (Orecchioni et al., 

2013). EPCs are usually identified as BM-derived progenitors, being released into 

circulation after certain stimuli, such as the increase of tissue hypoxia or mediators 

involved in wound healing. The recruitment of EPCs into new blood vessels 

(vasculogenesis) occurs also in adult subjects. However, EPCs are found to be resident not 

only in BM, but also in extramedullary organs, as in WAT. EPCs detected in WAT are 

small and undifferentiated cells, over-expressing endothelial-related genes, such as VE-

Cadherin, Claudin 5 and Tie-2 (Martin-Padura et al., 2012). Resident WAT-derived EPCs 

are positive for CD34, CD31 and CD105 markers, whereas are negative for CD45 

expression (Fig.4). WAT-EPCs share with BM-EPCs similar levels of stemness- and 
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pluripotency- related genes, such as NANOG, SOX2 and Lin28 (Martin-Padura et al., 

2012). However, WAT-derived EPCs displayed significantly higher expression of 

angiogenesis-related genes compared to BM-derived EPCs, including CD144, VEGFR2 

and ALK-1 (Martin-Padura et al., 2012). EPCs were also detected to be about 263-fold 

more abundant in WAT than in BM (Martin-Padura et al., 2012). 

 

CD31+ Endothelial cells

CD31+ Endothelial cells

CD31+ Endothelial cells

 

 

 

Fig.4 Multiparametric flow cytometry analysis of SVF isolated from WAT and depleted for CD45
+
 

hematopoietic cells. A-B) Gating strategy. C) Differential expression of CD34 and CD31 markers on ASCs, 

EPCs and other stromal cells. D) EPCs immunophenotype; these cells can differentiate into CD31
+
 mature 

endothelial cells (green) in vitro. E) ASCs immunophenotype; ASCs were unable to generate in vitro 

endothelial cells. F) Pericytes/fibroblasts immunophenotype; these cells were not able to differentiate into 

endothelial cells in vitro (adapted from Orecchioni et al., Cancer Res. 2013).  
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1.2.1.3 Resident immune cells 

CD45 expressing cells are included in the SVF of WAT and represent the hematopoietic 

derived population. These cells are mainly involved in the regulation of immunity and 

inflammation. They are expanded from a WAT resident pool or, alternatively, a rapid 

turnover of immune cells occurs with a constant recruitment from circulation. 

The principal population is constituted by resident macrophages, which display a specific 

polarization accordingly WAT physiological or pathological status (Lumeng et al., 2007). 

Signals from microenvironment drive macrophages toward a classic (M1) or alternative 

(M2) activation state (Lumeng et al., 2007). M1 macrophages display higher expression of 

pro-inflammatory cytokines and MHC (Major Histocompatibility complex) class II 

molecules. Conversely, M2 macrophages show increased expression of different genes, 

involved in wound healing and in inflammation balance, such as pro-angiogenic mediators 

and immunosuppressive factors. Lymphocytes also enrich the SVF, mainly with T 

lymphocytes and T-regulatory (T-reg) cells. 

 

1.2.2 Obesity 

The increased average weight of human population, due to the modern lifestyle, has been 

associated with a dramatic raise of the pathological condition defined obesity. Overweight, 

with body mass index (BMI) between 25 and 30 kg/m
2
, and obesity, with BMI higher than 

30 kg/m
2
, are rising worldwide to epidemic proportions. The WHO estimated that more 

than 1.9 billion adults were affected in 2014 (WHO, 2016).  

The abnormal and excessive amount of body fat is commonly linked to an increased risk of 

cardiovascular diseases, diabetes mellitus, metabolic syndromes and the incidence of 

different types of cancers, with a decreased overall survival (OS) and increased relapse 

(Renehan et al., 2008).  
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The first relevant epidemiological study, investigating the correlation between adiposity 

and cancer incidence, has been published in 1979 (Lew and Garfinkel, 1979). The cancer 

mortality was increased by a third among men, due to colorectal cancers, and by 55% 

among women, due to gallbladder, breast, cervical, endometrial and ovarian cancers. 

A meta-analysis, published in 2001, suggested that the majority of new cases of cancers in 

Europe were related to obesity and overweight (Bergstrom et al., 2001). Cancers most 

significantly associated with obesity were tumors affecting endometrium, kidney, 

gallbladder, colon and breast (Bergstrom et al., 2001). 

The cellular composition and functionality of WAT are completely altered in obese 

subjects (Santander et al., 2015): adipocytes display hypertrophy (increased number of 

adipocytes) and hyperplasia (increased size and intracellular lipids storage) (Fig.5). The 

excessive and rapid adipocytes expansion leads to un-appropriated ECM remodeling and 

angiogenesis, with a consequent cellular hypoxia, oxidative stress and low-grade 

inflammation. 

The establishment of a chronic inflammation is widely detected in obese individuals and 

might play a central role in the WAT pro-tumorigenic effects, acting both locally and 

systemically (Iyengar et al., 2016). The inflammation is usually characterized by the 

presence of crown-like structures (CLS), which are formed by apoptotic adipocytes 

surrounded by a crown of activated macrophages (Santander et al., 2015). In turn, recruited 

macrophages secreted C-X-C Motif Chemokine Ligand (CXCL)-12, which further 

promoted angiogenesis and chronic inflammation (Arendt et al., 2013). 

Macrophages are enhanced in obese subjects with a positive correlation with BMI and 

adipocyte size, reaching up to 40-50% of cells found in WAT, compared to the 

physiological level of 10% (Weisberg et al., 2003). Resident WAT macrophages displayed 

a preferential M1-polarization in obesity, whereas in lean mice the M2-phenotype was 

detected to be predominant (Lumeng et al., 2007). 
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The adipose concentration of myofibroblasts was also increased, changing the stiffness of 

ECM: the fibrosis, generated by excessive ECM deposition, is commonly found in WAT 

from obese subjects (Seo et al., 2015). 

 

OBESITY

WAT

 

 

Fig.5 Two mechanisms mediating WAT expansion in obesity: hyperplasia and hypertrophy. Both 

mechanisms are regulated by environmental and genetic factors (adapted from Choe et al., Front. Endocrinol. 

2016). 

 

Metabolic and secretory differences between SAT and VAT are exacerbated in obesity, 

leading to deregulation in adipokines, pro-inflammatory mediators and angiogenic factors. 

Adipokines are molecules produced by both adipocytes and SVF cells, composed by a 

heterogeneous class of more than 50 soluble factors involved in metabolism, inflammation, 

immune system, angiogenesis and ECM regulation (Paz-Filho et al., 2013). 
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Leptin is the main adipocyte-derived hormone, able to regulate food intake and body 

energy homeostasis. Leptin levels are associated with BMI, with a tremendous increase in 

obese individuals (Al-Hamodi et al., 2014). Leptin controls different pathways, regulating 

cell proliferation and survival, such as JAK/STAT (Janus Kinase/Signal Transducer and 

Activator of Transcription), PI3K/AKT (phoshatidylinositol 3-kinase/protein-kinase B) and 

AMPK (5’ AMP-activated protein kinase). Therefore, leptin may act as mitogen, pro-

inflammatory mediator, pro-angiogenic and anti-apoptotic factor. 

In contrast, adiponectin levels are markedly reduced in obesity, with a negative correlation 

with BMI (Al-Hamodi et al., 2014), deeply affecting the physiology of glucose and lipid 

metabolism. Adiponectin acts as insulin sensitizer, anti-inflammatory and anti-angiogenic 

factor able to regulate the balance of vasculature and inflammation in WAT. 

The obesity-related low-grade inflammation is associated with high release of pro-

inflammatory mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α 

and monocytes chemoattractant protein-1 (MCP-1 or CCL2) produced by adipocytes and 

activated immune cells. These factors deeply alter the activities of other WAT cells, 

influencing cellular proliferation, ECM properties and angiogenesis. 

Circulating levels of VEGF are higher in obese subjects, both humans and animals, being 

associated with a poor prognosis in many obesity-related cancers (Liu Y et al., 2011). 

VEGF can be produced by adipocytes to stimulate endothelial cells proliferation, 

promoting new blood vessels formation. 

Visfatin is also up-regulated in obesity, since it is mainly produced by VAT macrophages, 

rather than adipocytes. This adipokine has a role in regulating vascular inflammation and 

angiogenesis, up-regulating the expression of different metalloproteinases (MMPs), 

including MMP2 and MMP9, able to remodel ECM. Similarly, the plasminogen activator 

inhibitor-1 (PAI-1) is higher released by VAT (in particular by endothelial cells and 

adipocytes) in obesity, mainly affecting ECM properties. 
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Resistin is a specific adipose tissue secreted factor, which is highly produced by 

macrophages and increased in obese subjects. Resistin highly release is frequently 

associated with insulin resistance through AMPK inhibition. Insulin resistance is 

frequently associated with obesity and the raising of metabolic disorders. Several other 

mechanisms might be responsible, including the reduction of insulin sensitizers levels 

(such as adiponectin) or the increased inflammation (pro-inflammatory mediators promote 

insulin resistance, such as IL-6, TNF-α). 

 

1.2.3 Preclinical models of human obesity 

The choice of the appropriate model for obesity studies is essential to unveil its 

complexity. Among rodent preclinical models, different types can be distinguished 

(Nilsson et al., 2012): monogenic or polygenic, which are usually diet-induced obesity 

(DIO) models. Although these models are useful, they display many limitations: animals 

suffer of immune deficiency, hormones imbalances and dysfunctional bone homeostasis, 

altering the effects of obesity over concomitant pathologies, such as cardiovascular 

disorders or neoplastic disease (Khandekar et al., 2011). 

 

1.2.3.1 Monogenic models 

Monogenic models are characterized by a distinct phenotype, usually obtained altering a 

single gene expression. 

Since leptin has been extensively analyzed as the principal cytokine linked to obesity, 

monogenic mice with genetic deficiency of leptin (ob/ob) or leptin receptor (db/db) are 

very common models in obesity studies. In ob/ob mice the excessive body weight is early 

displayed, whereas insulin resistance and hyperglycemia arise later. Leptin deficiency is 

associated with an increased food intake, defects in thermogenesis and enhanced liver 

lipogenesis. The C57 background strain of ob/ob mice is essential to define the severity of 
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the observed phenotype and variations were still observed according to the type of ob 

mutation (Nilsson et al., 2012). Treatment of ob/ob mice with recombinant leptin was able 

to reverse the pathological phenotype, restoring glucose turnover and improving insulin 

sensitivity (Burcelin et al., 1999). Db/db mice display a more severe phenotype with 

hyperglycemia and diabetes, compared to ob/ob mice (Nilsson et al., 2012). However, in 

humans most of obese individuals display leptin resistance, rather than deficiency. 

Therefore monogenic models do not fully reflect the actual complexity detected in obesity 

and could be not the best option to evaluate pharmaceutical treatments or concomitant 

pathologies. 

 

1.2.3.2 Polygenic models – DIO models 

Polygenic mice models are usually preferred compared to monogenic, due to the more 

achievable complexity and because they better recapitulate human-like condition. Human 

obesity is caused by the interplay of several genes and the environment, making the 

polygenic dietary-induced models the most suitable. DIO models are characterized by 

excess of calories intake through the diet. Interestingly, not all mice strains are susceptible 

to DIO, indicating that the genetic background is essential in defining body weight 

response (West et al., 1992).  

Commercially available research diets, able to induce obesity in rodent preclinical models, 

are within a range of 30-78% of total energy intake. The fat sources prevalently derive 

from soybean oil and lard, which are in different amounts according to the percentage of 

energy intake. Conversely, the use of high-carbohydrate-low-fat diets is not efficient in 

inducing obesity in preclinical models. Mice administered with high-fat diet (HFD) 

displayed similar effects on body weight, adiposity and hyperglycemia compared to obese 

humans with a diet rich of lipids and carbohydrates (Nilsson et al., 2012). C57BL/6J mice 

administered with HFD or low-fat diet (LFD) starting from 8 weeks of age, significantly 
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increased body weight according to the type of diet and sex, already 4 weeks after starting 

the diet (Yang et al., 2014). BALB/c mice appeared to be more resistant to a significant 

body weight increase under HFD regimen, but displayed increased adiposity, hepatic 

oxidative stress and high WAT inflammation compared to LFD mice, similarly to other 

strains analyzed, including C57BL/6J and FVB/N mice (Montgomery et al., 2013).  
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1.3 Molecular mechanisms of breast cancer progression in obesity 

 
 

Epidemiological studies suggested an association between BC and obesity. Furthermore, 

preclinical GEM models (MMTV-TGFα) administered with HFD developed mammary 

tumors at earlier age compared to their lean counterparts (Cleary MP et al., 2004). 

Different mechanisms were reported to cause the increased incidence and severity of BC in 

obese individuals, including the involvement of soluble and cellular players (Bertolini et 

al., 2014; Orecchioni et al., 2015). Multiple signals and pathways are involved in the 

cross-talk among different WAT microenvironment components, revealing a complex 

regulatory network. WAT produces a large number of fatty acids, growth factors, 

cytokines and hormones, many of which are reported to stimulate tumor growth and 

progression, through paracrine or endocrine signaling.  

Inflammation is probably one of the principal mechanisms involved in the pro-tumorigenic 

effect mediated by WAT-derived cells. The higher release of pro-inflammatory mediators 

by dysfunctional adipocytes and infiltrated macrophages, such as MCP-1, TNF-α, IL-6, 

was found significantly increased in patients with BC (Iyengar et al., 2016). This might be 

due to the higher activation of nuclear factor-kappa B (NF-κB) pathways (Morris et al., 

2011). All hallmarks of inflammation were associated with a worse prognosis in BC 

patients. 

 

1.3.1 Soluble factors 

Different pathways have been considered when analyzing soluble factors involved in the 

pro-tumorigenic effect of WAT (Paz-Filho et al., 2013) (Fig.6): i) Insulin-like growth 

factor 1 (IGF-1), which is systemically enhanced in obesity and associated with increased 

activation of mammalian target of rapamycin (mTOR) pathway; ii) Aromatase activity, 

with alterations of estrogen metabolism or estrogen receptor signaling and the consequent 
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increased estradiol production; iii) Increased leptin and/or reduced adiponectin; iv) Pro-

inflammatory mediators altered release. 

Adipocytes

Resident immune cells

WAT progenitors

WAT

Alterations in obesity

↑ Leptin, ↓ Adiponectin, ↑ IL-6, 

↑ TNFα, ↑PAI-1

↑ Leptin, ↓ Adiponectin ↑ TNFα ↓ IL-6 ↑ Insulin, ↑ IGF-1 

JAK, STAT3, AKT, GSK3 

singnaling pathway

↑ Cell proliferation

↑ Cell migration

↑ Cell invasion

↓ Apoptosis

NF-κB  signaling pathway IRS, ERK, MYC pathway

↑ Cell proliferation

↑ Cell migration

↑ Metastasis

↑ Cell proliferation

↑ Cell migration

↑ Angiogenesis

↓ Apoptosis

CANCER:

Increased incidence, 

poor prognosis
 

 

Fig.6 Schematic view of adipokines and soluble factors altered in obesity. Potential mechanisms involved 

in promoting BC onset and progression (adapted from Paz-Filho et al., Springer Ed. 2013). 

 

A recent work from Subbaramaiah and colleagues (2011) proposed the higher release of 

pro-inflammatory mediators as the key mechanism. In details, TNF-α, IL-1β and 

cyclooxygenase-2 (COX-2) were found tremendously up-regulated in WAT of both DIO 

and ob/ob mice. Of interest, the increase of these pro-inflammatory mediators was detected 
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in the SVF after the exposure to saturated fatty acids, released from adipocytes, and 

directly linked to the up-regulation of aromatase expression. Other adipokines, including 

leptin, failed to be effective in contributing to this regulatory axis, suggesting a primary 

role of pro-inflammatory mediators in triggering BC premalignant lesions. 

However, leptin release by adipocytes in obesity was reported to promote BC progression, 

acting as growth factor and activator of several downstream signaling pathways, such as 

ERK, STAT3 or MAPK in tumor cells. This promoted BC migration and invasion, trans-

activating ErbB2 and EGF receptor (Paz-Filho et al., 2013). In addition, leptin stimulated 

aromatase expression, with consequent increased estrogens synthesis and stimulation of 

ER
+
 BC cells (Paz-Filho et al., 2013). Leptin could also mediate angiogenesis through 

VEGF release (Rene Gonzalez et al., 2009). Of note, ob/ob leptin deficient mice did not 

develop transgene-induced mammary tumors compared to wild type mice (Cleary MP et 

al., 2003), suggesting an important role in BC growth. 

In contrast, a prospective analysis revealed that adiponectin was inversely correlated to BC 

incidence in post-menopausal women, but not in pre-menopausal women (Tworoger et al., 

2007). The mechanism by which adiponectin might inhibit BC progression is still under 

investigation. Possible molecular targets might be TNF-α and the consequent NF-κB 

pathway, which is involved in tissue inflammation and angiogenesis, or AMPK and 

PI3K/AKT signaling, which are involved in BC invasion and proliferation (Paz-Filho et 

al., 2013). 

The increased IGF levels are still controversial in obesity: some studies reported higher 

IGF serum levels in obese diabetic patients and in rodent models (Khandekar et al., 2011). 

However, the regulation of IGF secretion usually depends on hormones which are reduced 

in obesity, leading to a more complex network of regulations (Khandekar et al., 2011). 

Obesity-induced insulin resistance might lead to a prolonged hyper-insulinemia, enhancing 

the expression of the active form of IGF1, which act as mitogen, pro-angiogenic mediator 
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and promoter of tumor migration (Paz-Filho et al., 2013). IGF interacts with its receptor, 

triggering the activation of oncogenic pathways such as RAS-MAPK and PI3K-AKT. IGF 

activity seemed essential in BC development, as suggested by transgenic mice over-

expressing Igf1 or its receptor (Carboni et al., 2005). 

 

1.3.2 Cellular players 

Different cells in WAT contribute to BC progression, revealing a bidirectional dynamic 

cross-talk between cellular microenvironment and tumor cells. BC induces a permissive 

microenvironment and, in turn, stroma cells support tumor progression, mainly through the 

release of growth factors, chemokines and ECM-modifying enzymes. Both resident WAT 

cells and systemically mobilized cells are recruited in tumor microenvironment, 

contributing to tumor inflammation, ECM remodeling, angiogenesis, immune suppression 

and energy supply (Fig.7).  

 

 

 

Fig.7 Tumor microenvironment alterations. A permissive microenvironment is detected in obesity-related 

tumors, with increased angiogenesis, immune suppression and stimulation of BC growth and invasion 

(adapted from Quail and Joyce, Nat. Med. 2013). 
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1.3.2.1 Cancer-associated adipocytes (CAAs) 

In the work of Dirat and colleagues (2011) cancerassociated adipocytes (CAAs) were 

morphologically and functionally compared to normal adipocytes. CAAs were detected at 

the tumor invasive front in BC patients and displayed delipidation, smaller size and a 

fibroblastlike phenotype. Loss of expression of adipogenesis-related markers and 

increased secretion of pro-inflammatory cytokines, MMPs and ECM components were 

associated with this aberrant phenotype. The consequent permissive microenvironment 

increased BC invasiveness and metastasis in vitro and in vivo. Of note, adipocytes 

surrounding diffuse BC, with lymph nodes involvement, displayed the highest IL-6 

expression (Dirat et al., 2011). CAAs and dysfunctional obesity-related adipocytes share 

common features, such as the altered secretion profile of pro-inflammatory mediators and 

ECM-related enzymes. This suggests that the deleterious cross-talk between adipocytes 

and BC cells might be amplified in obesity, partially justifying the associated poor 

prognosis. 

 

1.3.2.2 Tumor associated macrophages (TAMs) 

Increased macrophages accumulation in obesity might be essential to BC onset and 

metastatic progression. As previously described, in obese subjects WAT is enriched by 

M1-polarized macrophages, mainly involved in the establishment of a low-grade chronic 

inflammation and, likely, contributing to cancerogenesis (Iyengar et al., 2016). 

Macrophages infiltration in BC was strongly associated with a reduced relapse-free 

survival and a general worse OS (Zhang Y et al., 2013). Direct interactions with tumor 

cells induce macrophages to acquire a particular phenotype, which characterizes tumor-

associated macrophages (TAMs). 

Frequently, TAMs are characterized by M2-associated genes expression, important for 

physiological wound healing and balance of inflammation: TAMs are able to promote 
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angiogenesis, ECM remodeling and suppress adaptive immunity. The presence of TAMs 

actively contributes to a permissive microenvironment, enhancing tumor growth, 

angiogenesis, metastasis and invasion into surrounding tissues (Arendt et al., 2013; Su et 

al., 2014). However, different subsets of TAMs were detected in tumor microenvironment: 

Movahedi and collaborators (2010) analyzed macrophages isolated from mouse mammary 

tumors and suggested that TAMs were composed by a mixed population of M1 and M2 

polarized macrophages. Tumor hypoxic regions were associated with a prevalence of M2-

like TAMs. Hypoxia is a well known inducer of M2 polarization and frequently associated 

with cancer growth and progression. M2-like TAMs rapidly increased in number during 

tumor growth, becoming the prevalent form of macrophages detectable in tumor 

microenvironment. 

TAMs were recruited mainly by MCP-1 (CCL2), which was found highly released by 

dysfunctional adipocytes in obesity (Arendt et al., 2013) and its expression was associated 

with a poor prognosis in BC patients (Ueno et al., 2000). TAMs almost exclusively 

originated from circulating inflammatory monocytes being chemoattracted by MCP-1 

(Movahedi et al., 2010). 

 

1.3.2.3 Myeloid derived suppressor cells (MDSCs) 

In addition to macrophage accumulation and dysfunctional activation, other immune cells 

were altered in obesity, with a potential role in promoting BC. Accumulation of myeloid 

derived suppressor cells (MDSCs) in WAT inhibits T-specific cells response and induces 

M2 polarized macrophages, further triggering an immunosuppressive microenvironment, 

essential to BC progression and immune escape. The MDSCs population is 

heterogeneously composed by different myeloid precursor cells, displaying several stages 

of differentiation and being able to generate macrophages, granulocytes and dendritic cells. 

Two main sub-populations were described: Monocytic (Mo)-MDSCs and Granulocytic 

(G)-MDSCs, differing for surface markers expression and reactive oxygen species (ROS) 
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and nitric oxide (NO) production, but displaying similar immunosuppressive activity 

(Youn et al., 2008). MDSCs are characterized by a rapid turnover and expansion in tissues 

and in circulation. In several preclinical models of cancer, MDSCs rapidly increased with a 

prevalent expansion of the G-MDSCs population (Youn et al., 2008). 

 

1.3.3 WAT-derived progenitor cells 

The CD45
-
CD34

+
 fraction, isolated from the SVF of WAT, contains two populations of 

resident progenitor-like cells, ASCs and EPCs (Orecchioni et al., 2013). To investigate the 

potential role of these progenitors in BC onset and metastatic progression, the whole 

fraction or purified sub-populations were co-injected with human BC cells in 

immunodeficient mice (Fig.8). WAT-derived progenitors significantly enhanced tumor 

growth and metastatic progression in a complementary manner, suggesting an important 

pro-tumorigenic activity mediated by these cells (Martin-Padura et al., 2012; Orecchioni et 

al., 2013). 

 

1.3.3.1 Adipose derived stem cells (ASCs) 

Xenograft models of human BC were obtained through the co-injection with human ASCs: 

the presence of ASCs in BC tumors was associated with an increased local growth, 

metastatic spread to lungs and axillary lymph nodes (Zhang Y et al., 2009; Orecchioni et 

al., 2013). ASCs, resident in endogenous WAT, were systemically mobilized and recruited 

by tumors, engrafting into microenvironment and contributing to tumor progression 

(Zhang Y et al., 2009; Zhang Y et al., 2012; Orecchioni et al., 2013). Recruited ASCs 

were able to differentiate into CAAs and pericytes, actively contributing to tumor 

vasculature in tumor microenvironment (Zhang Y et al., 2012; Orecchioni et al., 2013). In 

their recent study, Zhang T and collaborators (2016) demonstrated that ASCs migration 

was driven by a gradient of CXCL1 and CXCL8 chemokines, produced by pancreatic 
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tumor. The release of these chemokines was indeed obesity-dependent. In another study, 

using murine models of BC, ASCs migrated towards PDGF, which was produced by tumor 

cells (Gehmert et al., 2010). 

ASCs proliferation was associated with WAT expansion in obesity: the number of 

progenitors per gram of tissue was significantly increased in obese subjects, both in 

patients and preclinical models (Martin-Padura et al., 2012; Zhang Y et al., 2012; 

Dallaglio et al., 2014). Accordingly, the level of ASCs was found significantly enhanced in 

systemic circulation of obese patients (Zhang T et al., 2016) and circulating ASCs were 6-

fold increased in tumor-bearing obese mice (Zhang Y et al., 2012). Moreover, ASCs 

isolated from lean subjects contributed less significantly to BC growth (Strong et al., 

2013). Recruitment of endogenous ASCs in obesity was associated with increased 

vascularization, adipogenesis and enhanced proliferation of neighboring malignant cells 

(Zhang Y et al., 2012).  

Culture experiments revealed the ability of tumor conditioned media to differentiate ASCs 

progenitors into cancer-associated fibroblasts (CAFs), expressing α-SMA and fibronectin 

(Chandler et al., 2012). Of note, ASCs isolated from ob/ob mice displayed enhanced pro-

fibrotic phenotype compared to ASCs isolated from lean mice (Seo et al., 2015). 

Therefore, these cells might contribute to fibrosis and desmoplastic reactions, frequently 

associated with BC and obesity. These results were confirmed by the observation that 

ASCs, collected from obese mice, enhanced tissue stiffness and fibrosis, altering the 

mechanical properties of the stroma and promoting tumor growth (Seo et al., 2015). 

 

1.3.3.2 Endothelial progenitor cells (EPCs) resident in WAT 

The role of WAT-derived EPCs was investigated in xenograft models of BC (Orecchioni et 

al., 2013): EPCs were able to differentiate into mature endothelial cells in vitro and to be 

recruited to tumor blood vessels in vivo. EPCs promoted tumor migration and metastatic 

spread to lungs and axillary lymph nodes in these preclinical models. Of note, ASCs were 
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more effective in promoting local tumor growth, whereas EPCs increased more efficiently 

tumor invasion and metastasis (Fig.8). Complementary to ASCs, EPCs promoted EMT in 

ductal carcinoma, inducing the over-expression of EMT-related genes, such as ZEB1 and 

SNAIL2 (Orecchioni et al., 2013). 

 

 

 

Fig.8 Effects on BC progression in orthotopic models of WAT CD34
+
CD45

-
 progenitors, EPCs and 

ASCs. A-B) Tumor growth was enhanced in NSG mice injected with BC and CD34
+
 WAT progenitors 

compared to other fractions in the SVF; C) Effects of purified ASCs and EPCs on tumor growth; D-E) Lungs 

metastasis detection; F) Contribution to vascular endothelial cells generation of EPCs; G) Relative 

contribution of ASCs differentiating into perivascular pericytes (adapted from Martin-Padura et al., Cancer 

Res. 2012 and Orecchioni et al., Cancer Res. 2013). 
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1.4 Interaction between BC cells and WAT-derived progenitors 

 

The molecular interaction between BC and resident WAT progenitors has not been 

elucidated yet. The aim of the present work was to identify some factors possibly involved 

in this bidirectional interaction. 

Several works suggested that distinct factors might be relevant in this interplay, such as IL-

6, IL-10, TGFβ and MMPs. Two factors were investigated for the first time in the present 

work as possible key interactors: Granulocyte-macrophage colony-stimulating factor (GM-

CSF) and MMP9. 

 

1.4.1 Background 

Several paracrine and cell-to-cell mechanisms were investigated to clarify the interaction 

between ASCs and BC cells. ASCs conditioned medium was reported to be able alone to 

increase in vitro BC cells proliferation, due to the release of IL-6, IL-8, IL-10 and MCP-1 

(Kucerova et al., 2013). Conditioned medium was reported to be more efficient than direct 

co-culture in promoting BC proliferation, EMT and motility. This suggested a prevalent 

paracrine interaction. However, some authors claimed that an exosome-mediated cell-to-

cell contact was necessary for the increased tumor cell proliferation induced by ASCs, 

followed by the activation of Wnt pathway (Lin et al., 2013). 

ASCs isolated from VAT of obese subjects displayed altered gene expression profile, 

including leptin and aromatase higher production, probably due to excessive estrogens 

exposure (Strong et al., 2013). ASCs were found able to secrete high levels of CCL5 in co-

cultures with BC cells, with a consequent increased migratory potential of tumor cells, due 

to elevated MMPs secretion by BC cells (Pinilla et al., 2009). In another study, IL-6 

produced by ASCs was instead reported to promote migration and invasiveness of BC cells 

in xenograft models (Walter et al., 2009).  
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Stromal cell-derived factor 1 (SDF-1) was also identified to be important in BC spread, 

suggesting that ASCs promoted human (MDA-MB-231) and murine (4T1) BC migration 

through its release (Muehlberg et al., 2009). The production of several MMPs by ASCs 

suggested that interplay of MMPs, rather than a single type, promoted ECM remodeling, 

facilitating tumor invasion and promoting angiogenesis (Hattori and Ishihara, 2015). 

ASCs ability to establish a permissive tumor microenvironment included the enhancement 

of angiogenesis, through the production of VEGF and HGF, which directly stimulated 

endothelial cells proliferation (Rodeheffer et al., 2008). Immunomodulatory effects of 

ASCs were investigated in the work of Razmkhah and colleagues (2011): IL-4, IL-10 and 

TGFβ were highly released by ASCs, with consequent T-regs expansion and anti-

inflammatory response, leading to induce immune suppression. 

To date, fewer efforts were addressed to identify specific factors involved in WAT-derived 

EPCs/BC interaction. Nevertheless, several studies investigated possible factors involved 

in BM-derived EPCs and BC cells. EPCs were mobilized from BM and recruited to 

hypoxic tumor site, where contributed to tumor neo-angiogenesis in a paracrine manner, by 

release of pro-angiogenic mediators (VEGF, basic fibroblast growth factor (bFGF), 

Arginine1, Arginine2) and MMPs (MMP2, MMP9) (Suriano et al., 2008). 

 

1.4.2 Granulocyte-macrophage colony-stimulating factor (GM-CSF) 

GM-CSF is a cytokine able to induce myeloid cells differentiation and expansion of 

hematopoietic BM-derived progenitor cells (Fig.9). The factor is produced by several cells, 

including immune cells (monocytes, macrophages, granulocytes, and T lymphocytes), 

endothelial cells and fibroblasts. GM-CSF expression is finely regulated in a cellular-

specific manner, by the presence of a specific enhancer detected only in the promoter of 

expressing cells. 
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GM-CSF has a pleiotropic activity, acting as growth factor for myeloid cells (mainly 

monocytes/macrophages, neutrophils and dendritic cells), pro-angiogenic mediator able to 

stimulate the proliferation and migration of endothelial cells, and inducer of wound healing 

processes. GM-CSF is a potent chemotactic factor for immune cells, which are recruited to 

inflammation sites, including both myeloid and lymphoid populations. It is also associated 

with increased expression of pro-inflammatory mediators, such as IL-1β and TNF-α, 

which, in turn, up-regulated GM-CSF itself (Kim et al., 2008). GM-CSF was deeply 

involved in the low-grade chronic inflammation detected in WAT from DIO mice and in 

the observed macrophages accumulation (Kim et al., 2008). The involvement of the factor 

in immune-modulation, tolerance and autoimmune diseases was also investigated 

(Bhattacharya et al., 2015). GM-CSF seemed to be more involved in myeloid regulation in 

presence of inflammation than in the steady state: the factor was a potent inducer of 

tolerogenic dendritic cells, which, in turn, promoted T-regs expansion (Bhattacharya et al., 

2015). 

GM-CSF acts on target cells through the binding of its receptor GM-CSFR (GM-CSF 

receptor), activating four distinct signaling pathways: PI3K-Akt, ERK1/2, JAK2/STAT5 

and NF-κB (Bhattacharya et al., 2015). GM-CSF promotes cell survival and differentiation 

through PI3K and JAK/STAT5 signaling, whereas cell proliferation and inflammatory 

response are induced through activation of ERK1/2 and NF-κB pathways.  

GM-CSF receptor is expressed on myeloid lineage cells (including monocytes, 

macrophages, neutrophils, granulocytes, basophiles, and dendritic cells), CD34
+
 

progenitors, fibroblasts and vascular endothelial cells. It is not detected on the majority of 

lymphoid cells. GM-CSF production is enhanced by pro-inflammatory mediators such as 

IL-1 and TNF-α, microbial products and the lipopolysaccharide protein. 
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Fig.9 Pleiotropic effects of GM-CSF on myeloid and other immune cells. (adapted from Kaufman et al., 

J. Immunother. Cancer 2014). 

 

The role of the factor in tumor biology remains controversial.  

On one hand, it is used to mobilize hematopoietic progenitors for autologous or allogeneic 

transplantation and to ameliorate chemotherapy-induced neutropenia (Arellano et al., 

2008). Recently, GM-CSF administration as adjuvant in immunotherapy protocols was 

addressed to achieve a proficient anti-tumor immune response: GM-CSF may enhance 

tumor-specific antigens presentation by dendritic cells (Arellano et al., 2008). However, 

the lymphocytic and inflammatory infiltrate at the site of cytokine injection not always 

correlated with improved clinical outcomes, calling into question the real efficacy of the 

treatment. 

On the other hand, GM-CSF has been described as tumor promoting factor in different 

types of cancer (Gutschalk et al., 2013; Su et al., 2014; Wang et al., 2014; Ghirelli et al., 

2015). GM-CSF was able to enhance tumor cells proliferation and migration in vitro and in 

vivo in squamous cell carcinoma (Gutschalk et al., 2013). GM-CSF targeted not only 
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tumor cells, but also the stromal cells in tumor microenvironment. GM-CSF was shown to 

induce the release of VEGF and to enhance tumor angiogenesis in colorectal carcinoma 

(Wang et al., 2014). Furthermore, high levels of the factor, produced by BC, were 

associated with suppression of immune response and a poor prognosis (Ghirelli et al., 

2015). 

 

1.4.3 Matrix metallopeptidase 9 (MMP9) 

MMPs are heterogeneous class of 25 enzymes able to remodel ECM and involved in the 

pathogenesis of several diseases. Physiologically, MMPs play a role in tissue remodeling 

in embryonic development, angiogenesis, ovulation, mammary gland involution and 

wound healing. These proteases can be divided into sub-groups, according to the domain 

structure and substrate specificity: interstitial collagenases, gelatinases, stromelysins and 

membrane MMPs. The substrate specificity of MMPs is not limited to ECM components, 

but includes different target molecules, such as growth factors, receptors and other MMPs. 

The consequent effect is a tight regulation of microenvironment, not only limited to ECM 

plasticity. A family of tissue inhibitors of MMPs (TIMPs) is physiologically present to 

balance the activity of MMPs, binding them with 1:1 ratio and repressing their activity. 

MMP9 is a 92kDa zinc-dependent endopeptidase belonging to the class of gelatinases, 

together with MMP2. The two gelatinases degrade gelatin (denatured collagen) and 

different types of collagen, sharing mostly substrate specificity, differing only for some 

growth factor receptors. Many MMPs, including MMP9 and MMP2, are secreted as 

inactive pro-forms (pro-MMP9; pro-MMP2), which are extracellular activated by cleavage 

mediated by other proteases. MMP9 interacts with its specific inhibitor TIMP1. Altered 

secretion or regulation of MMPs leads to dysfunctional ECM, basal membrane degradation 

and increased angiogenesis, which were frequently detected in invasive and metastatic BC 

(Duffy et al., 2000).  
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MMP9 higher expression was investigated in invasive carcinoma and involved in tumor 

initiation, regulating the expression of several oncogenes and tumor-suppressor genes 

(Duffy et al., 2000). MMP9 was detected to be produced both by BC and other cells in 

tumor microenvironment, including vascular endothelial cells, TAMs, neutrophils and 

fibroblasts (Pellikainen et al., 2004).  

La Rocca and colleagues (2004) demonstrated for the first time that MMP9 levels were 

significantly higher in sera collected from BC patients compared to healthy subjects, with a 

positive correlation with ErbB2 over-expression. This suggested a regulatory axis involved 

in the establishment of metastasis and invasion mediated by tumor cells. MMP9 was 

included in the list of genes of Rosetta signature for poor prognosis in BC (van’t Veer et 

al., 2002) and was found highly expressed by several human BC. TNBC were reported to 

express higher levels of MMP9, compared to other BC subtypes (Mehner et al., 2014). 

In the GEM model, MMTV-PyMT, MMP9 release by neutrophils was associated with 

increase lungs metastasis (Martin et al., 2008). In xenograft model of TNBC the injection 

of human cell line (MDA-MB-231), silenced for MMP9 expression, was characterized by 

the absence of lung metastasis compared to scramble controls (Mehner et al., 2014). 

Furthermore, the presence of CD31
+
 endothelial cells was significantly reduced in MMP9 

KO mice compared to scramble, confirming the active role of MMP9 in promoting 

angiogenesis. MMP9 silencing in TNBC cells resulted in dramatic transcriptional 

alterations, with impairment of the invasive phenotype (Mehner et al., 2014).  

MMP9 was also proposed to bind CD44, a hyaluronan receptor expressed on BC cells or 

WAT-derived progenitors, actively participating to invadopodia formation, invasion and 

angiogenesis through its proteolytic activity or other mechanisms (Yu and Stamenkovich, 

2000). 
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1.5 Therapeutic strategies targeting BC-WAT interplay 

 

Targeting factors involved in the cross-talk between BC and stroma cells in tumor 

microenvironment, represents a promising strategy for pharmacologic intervention, to 

prevent or control cancer in obese patients. 

The clinical implication of the deleterious cross-talk between BC and WAT cells might 

also have impact on the oncological safety of lipotransfer procedures. In plastic and 

reconstructive surgery, autologous fat grating (lipofilling) allows soft tissue augmentation 

and is increasingly used for breast reconstruction after mastectomy. Injected adipose tissue 

might promote relapse of BC, due to several mechanisms: activation of tumor cells during 

the procedure (for hypoxia or mechanical stress) or release of paracrine factors interacting 

with quiescent tumor cells. Recently, Petit and colleagues (2013) found increased local BC 

recurrence in a case-control study: a specific subgroup of patients undergoing surgery for 

in situ carcinoma and lipofilling for breast reconstruction, displayed higher incidence of 

relapsed tumors within 5 years of the follow-up. 

 Lipotransfer material may also be enriched by autologous ASCs or freshly isolated SVF 

cells, to promote the retention of graft volume. This procedure should be considered even 

more carefully, considering the reported pro-tumorigenic activity of cells isolated in the 

SVF. 

 

1.5.1 Targeted molecular therapy 

As alternative to overall weight reduction, which may be not beneficial in oncological 

patients, targeting individual pathways or cells involved in the tumor promoting role of 

WAT might be the right strategy. 

Since obesity is associated with an altered level of hormones, the use of estrogen 

antagonists, such as tamoxifen, has been one of the main strategies for the treatment of 

hormone-dependent BC (Dignam et al., 2003). Tamoxifen binds in a competitive manner 
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ERs, inhibiting estrogens-associated signaling, which stimulates BC growth. Alternatively, 

aromatase inhibitors were used to impair aromatase activity and reduce estrogens 

synthesis, which are dramatically enhanced in obesity (Morris et al., 2011). However, third 

generation aromatase inhibitors were less effective in obese compared to lean post-

menopausal women (Sestak et al., 2010). These inhibitors failed to completely block 

estrogens production, or even enhanced leptin levels, which, in turn, might activate 

AMPK-dependent ER pathway. 

Leptin has been suggested as suitable target for therapeutic intervention. Pegylated leptin 

peptide receptor antagonist (PEG-LPrA2) was used in several preclinical models, both 

syngeneic and xenograft (Rene Gonzalez et al., 2009). The inhibitor significantly reduced 

the growth of both ER
+
 and ER

-
 BC.  

A recent approach suggested that the leptin:adiponectin ratio was more influent over BC 

progression than the single adipokines absolute quantitation, since the ratio was 

particularly altered in obesity and needed to be balanced (Al-Hamodi et al., 2014). 

Inhibition of angiogenesis was another possible strategy to reduce BC progression in 

obesity. Bevacizumab was the main targeted anti-angiogenic therapy, approved by the 

Food and Drug administration (FDA) in 2008 for metastatic BC, to be used in combination 

with chemotherapy (paclitaxel). This monoclonal antibody (MoAb) targets VEGF, but 

displayed disappointing results in clinical trials, with poor benefits in patients OS and an 

high rate of cases of resistance (Montero et al., 2012). For these reasons, FDA withdraws 

the approval for BC treatment in 2011. The failure of bevacizumab in obtaining clinical 

benefits might be explained by the ability of BC and microenvironment to bypass VEGF-

dependent pathways, stimulating angiogenesis through alternative ways, such as a novel 

CCL2/IL-1β/CXCL12 axis promoted by WAT macrophages (Arendt et al., 2013). This 

effect was exacerbated in obesity and, accordingly, the efficacy of bevacizumab was found 

impaired in obese colorectal cancer patients, compared to lean patients (Faruk Aykan et al., 

2013). 
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1.5.2 Antidiabetic drugs - Metformin 

Metformin (dimethylbiguanide) is a widely used oral drug for diabetes type II treatment. It 

is characterized by the absence of toxicity, with limited and transient side effects, even 

after prolonged administration. The drug has been recently investigated due to some 

epidemiological observations in diabetic patients treated with Metformin: the incidence of 

several types of cancer was significantly reduced, including colorectal, liver, pancreatic 

and breast tumors (Zhang P et al., 2013). Of note, subjects who received the highest doses 

or the longest administration of the therapy displayed the lower cancer rates. 

The drug is active on both BC cells and tumor microenvironment, including endothelial 

cells and WAT-derived progenitors (Dallaglio et al., 2014; Orecchioni et al., 2015). 

Metformin has been reported to inhibit the growth of several BC subtypes, regardless their 

ER expression or p53 status (Goodwin et al., 2011). 

Metformin lowers liver gluconeogenesis and reduces the overall levels of insulin, 

contributing to improve insulin resistance, very common in obese patients. Metformin 

effect is mainly mediated by activation of AMPK pathway, through two distinct 

mechanisms: the inhibition of complex I of the mitochondria respiratory chain and the 

activation of an up-stream regulator, liver kinase B1 (LKB1). AMPK activation leads to 

down-stream mTOR inhibition, which reduces protein synthesis and cell proliferation 

(Fig.10). mTOR is frequently altered both in BC and obesity. Other mechanisms may not 

be mediated by AMPK, as the regulation of cell cycle: in TNBC the levels of cyclins D1 

and E were reduced, with a consequent impaired tumor proliferation and cell cycle arrest 

(Liu B et al., 2009). In these cells, Metformin was also able to increase apoptosis, through 

activation of both intrinsic and extrinsic signaling pathways. Additional studies revealed 

that Metformin was able to balance aromatase activity in adipose breast stromal cells, 

reducing the overall levels of estrogens synthesis in obese subjects (Brown et al., 2010). 

The anti-tumor activity of the drug was associated with its anti-proliferative and pro-

apoptotic effects on both BC and WAT progenitors (Orecchioni et al., 2015). In vivo 
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preclinical models, Metformin administration significantly reduced BC growth and 

metastatic spread in syngeneic, GEM and xenograft models, including both ER
+
 BC and 

TNBC (Orecchioni et al., 2015). 

Metformin affected also angiogenesis, mainly through the suppression of VEGF-dependent 

activation of ERK1/2, leading to a decreased microvessel density in matrigel assay in vitro 

and in vivo (Dallaglio et al., 2014) and reducing blood vessels formation in syngeneic 

models of BC (Orecchioni et al., 2015). Moreover, Metformin reduced resident EPCs in 

WAT from obese mice, further impairing their angiogenic potential (Dallaglio et al., 

2014). Metformin targeted more efficiently WAT EPCs than ASCs, justifying the observed 

imbalanced pericytes/endothelial cells ratio (Orecchioni et al., 2015). This imbalance was 

possibly one of the causes of branching and dysplastic cancer vessels phenotype observed 

in Metformin-treated tumors. 

Therefore, Metformin might be an ideal supplemental antitumor drug able to neutralize 

obesity-induced effects and targeting both tumor and microenvironment cells, including 

WAT-derived progenitors. 
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Fig.10 Metformin’s mechanisms of action. The drug impairs liver gluconeogenesis and circulating insulin. 

In BC and microenvironment cells, Metformin activates AMPK through LKB1 or by complex I inhibition in 

mitochondria. Activated AMPK inhibits mTOR signaling with reduction of protein synthesis and cell 

proliferation (adapted from Thomson, Clin. Cancer Res. 2014). 
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1.5.3 Anti-inflammatory drugs - NSAIDs 

Anti-inflammatory drugs, such as Aspirin and other nonsteroidal anti-inflammatory drugs 

(NSAIDs), were a promising strategy to reduce obesity- and tumor- associated low-grade 

chronic inflammation. Low-dose aspirin administration reduced incidence of several 

tumors, including BC in obese and overweight women (Bowers et al., 2014).  The 

mechanism was associated with COX2 inhibition and the consequent block of 

prostaglandins release, which affected aromatase and pro-inflammatory mediators release 

by adipocytes and macrophages. Additional studies suggested that aspirin might induce 

apoptosis in tumor cells in a COX2-independent mechanism, which involved Bcl-2 (B-cell 

lymphoma 2) nuclear translocation and phosphorylation in BC cells (Choi et al., 2013). 

In preclinical models of both ER
+
 BC and TNBC, low-dose aspirin was not effective alone 

in reducing tumor growth or metastases, whereas in combination with Metformin displayed 

a synergistic effect over BC inhibition (Talarico et al., 2016).  

Aspirin might have a protective role over BC development, through reduction of WAT 

inflammation and angiogenesis, or might be used as adjuvant to other therapies. 
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2. Materials and Methods 

 

 
2.1 WAT cells collection and processing 

Lipotransfer material was collected from women undergoing breast reconstruction at the 

European Institute of Oncology (IEO, Milan), after the signature of an informed consent. 

Patients sample included women from 40 to 65 years-old, that were previously operated for 

primary BC at IEO and did not show a tumor recurrence before lipofilling intervention. 

Adipose tissue was collected through Lipokit technique by the breast surgery unit and 

syringes transported in aseptic conditions. The received material was transferred to sterile 

falcon tubes and stored at 4°C. All the procedures were performed under laminal flow 

hood to avoid contamination and to protect operators from biological risks. Adipose tissue 

was centrifuged 3500rpm (rotation per minute) for 5 minutes at room temperature (RT) to 

separate the tissue from water, blood and lipocaine, which may contaminate the material. 

The oil accumulated at the top of the gradient and should be removed. The adipose tissue 

phase was then collected with sterile pipettes and transfer to sterile bottles. 50 ml of 

collagenase solution must be used for each 10ml of tissue, to maximize digestion 

efficiency. The collagenase solution was composed by 1mg/ml collagenase type IV (Sigma 

Aldrich, Italy), 3.5% bovine serum albumin (BSA) dissolved in PBS (Phosphate-buffered 

saline, Euroclone, Italy). Digestion occurred under agitation at 37°C for at least 1 hour, 

until the complete digestion of the tissue. The chosen temperature is optimal for 

collagenase enzymatic activation. After digestion, the material was collected in falcon 

tubes and centrifuged at 2000rpm for 5 minutes at RT. The undigested tissue and residual 

oil were then separated from the pellet, constituting the SVF, which was further re-

suspended in a Buffer composed by PBS added with 2mM EDTA (ethylenediamine tetra 

acetic acid, Sigma-Aldrich) and 0.5% BSA. Cells were counted in Trypan Blue (Sigma-

Aldrich) with a Burker chamber, to count only viable cells. Cells were then magnetically 

labeled with anti-human CD45 micro-beads (Miltenyi Biotec, Germany): 20µl of 
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microbeads should be used every 10x10
6
 of cells, accordingly manufacturer’s instructions. 

After 15 minutes of incubation at 4°C, cell suspension was washed with PBS to remove 

unbounded beads. After a centrifugation at 1300rpm for 5 minutes at 4°C, cell pellet was 

re-suspended in 1ml of Buffer and loaded into a magnetic column (LD columns, Miltenyi 

Biotec). Labelled cells, which are CD45
+
, were captured by the column, whereas the 

CD45
-
 fraction was collected as unbounded fraction. Columns were washed twice with 1ml 

Buffer, before being discarded. Cell suspension was again centrifuged (1300rpm for 5 

minutes) in order to concentrate collected cells. Cells were counted in Trypan Blue and 

purity/viability assessed by flow cytometry, as described below. Only populations with 

purity higher than 95% and with a good viability (higher than 80%) were further used for 

subsequent experiments. 

In some experiments the CD45
-
CD34

+ 
fraction was further separated into two sub-

populations, which differ for CD31 expression: ASCs (CD31
-
) and EPCs (CD31

+
). Cells 

were labeled with anti-human CD31 micro-beads (Miltenyi Biotec): 20µl of FcR Blocking 

Reagent and 20µl of microbeads were added to 10x10
6
 cells, following manufacturer’s 

instructions. After an incubation of 15 minutes at 4°C, cells were washed with Buffer to 

remove unbound beads. WAT progenitors were magnetically separated through LS column 

(Miltenyi Biotec). The column was washed three times with 3ml Buffer: CD31
-
 fraction 

(ASCs) was collected as unbounded population, whereas the labeled CD31
+
 fraction 

(EPCs) was kept into the column. To recover the positive fraction, the column was 

removed from the separator, placed into a new collection tube and flushed with 5ml Buffer. 

Purity and cell viability was checked with flow cytometry, as described below.  

Murine adipose tissue was obtained from 8-12 weeks old female mice (FVB/Hsd) housed 

in our animal facilities at the IEO campus (Milan). Subcutaneous and intra-peritoneal 

WAT was collected in aseptic conditions, transported in PBS and finely cut in small 

pieces. The tissue was then processed as human samples, using instead anti-mouse CD45 
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micro-beads (Miltenyi Biotec). All murine studies were approved, as requested, by the 

Italian Ministry of Health. 

 

2.2 Cell line culture 

Human cell lines (MDA-MB-436, MDA-MB-231, HCC1937, ZR-75-1) and a murine cell 

line (4T1) were bought from American Type Culture Collection (ATCC, Manassas, VA), 

amplified and stored accordingly manufacturer’s instructions. MDA-MB-436 and MDA-

MB-231 were cultured in 1:1 DMEM (Dulbecco’s modified Eagle medium, 

Euroclone)/Ham’s F12 (Euroclone) medium, added with 10% FBS (Fetal bovine serum, 

Euroclone), antibiotics (100U/ml penicillin/streptomycin, Euroclone) and 2mM L-

Glutamine (Euroclone); HCC1937 in RPMI (Roswell Park Memorial Institute) 1640 

medium (Euroclone) added with 15% FBS, antibiotics and L-Glutamine; ZR-75-1 in RPMI 

1640 added with 10% FBS, antibiotics, L-Glutamine and 1mM Sodium Pyruvate (Sigma 

Aldrich); 4T1 cells in RPMI 1640 added with 10% FBS, antibiotics and L-Glutamine. 

Glutamine is usually present in commercial mediums, but due to its instability at 4°C, was 

freshly added. All these cell lines grow in adhesion without a feeding layer. Cultures were 

kept in incubators at 37°C and 5% CO2. All manipulations were done under laminal flow 

hood to avoid cell contaminations. When reached confluence, cells were detached with 

2.5% Trypsin (Euroclone), centrifuged (1300rpm for 5 minutes) and seeded 1:3 into new 

culture flasks. For long term storage, cells (preferably with lower passage) were frozen in 

FBS added with 10% DMSO (dimethyl sulfoxide, Alchimia, Italy) in frozen nitrogen 

tanks. Cells were periodically tested and authenticated by Stem cell Elite ID (Promega, 

Fitchburg, WI). 

 

2.3 Primary breast tumor cells isolation from GEM 

Murine HER2 MMTV-ErbB2
+
 BC cells were obtained from genetically engineered mouse 

(GEM) FVB-NK1Mul/J (Envigo, UK) as previously described (Cicalese et al., 2009). 
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These models develop spontaneous breast tumors and lymph nodes swelling, starting from 

6-8 weeks of age. Mice were euthanized with CO2 and all the masses were collected in 

aseptic conditions and transported in sterile PBS. Tumors were dissected and added to a 

solution composed by 300U/ml collagenase, 100U/ml hyaluronydase (Sigma-Alidrich) 

dissolved in 1:1 DMEM/Ham’s F12 medium. To maximize the digestion process, the 

solution was transferred to MACs tubes (Miltenyi Biotec) dissected into MACs dissociator 

(Miltenyi Biotec), followed by a 2.5 hours digestion at 37°C. The solution was collected 

and centrifuged (600rpm for 5 minutes). Tumor pellet was washed with Buffer EL 

(Qiagen, Germany) to remove erythrocytes contamination. A second digestion was 

performed with 2.5% Trypsin at RT for 3 minutes. After neutralizing Trypsin by adding 

FBS and by centrifugation, the pellet was incubated with a DNAse (100µg/ml, 

Qiagen)/Dispase (5mg/ml, Stemcell, Canada) solution for 3 minutes at RT to complete the 

digestion. After washing with PBS, the solution was filtered (100µm) to remove 

undigested material and viable cells were counted in Trypan Blue through Burker chamber. 

Cells were frozen in FBS+10% DMSO in liquid nitrogen tanks. 

Cells were cultured in 1:1 DMEM/Ham’s F12 medium, added with 10% FBS, antibiotics, 

L-Glutamine, human insulin (5µg/ml, Sigma-Aldrich), hydrocortisone (0.5µg/ml, 

Euroclone) and 25mM HEPES (Euroclone) to adjust pH. EGF (Epidermal growth factor, 

10ng/ml, Sigma-Aldrich) and cholera toxin (50ng/ml, Euroclone) were freshly added to, 

respectively, stimulate tumor cell proliferation and inhibiting fibroblasts growth. 

 

2.4 In vitro co-cultures 

In vitro co-cultures were performed in 6-wells plates using BC cells and primary WAT 

CD45
-
CD34

+
 cells. WAT-derived cells requested collagen coating (Corning, NY) and 

Endothelial Basal Medium (EBM)-2 medium (Lonza, Switzerland) to properly grow in 

vitro (Martin-Padura et al., 2012). Medium was supplemented with 0.5% Gentamycin 

(Thermo Fisher Scientific) to avoid contamination: no growth factors, cytokines or serum 
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were added to avoid interference within cellular interaction. Two types of co-cultures were 

obtained: a) Transwell co-cultures using 0.4µm transwell permeable inserts (Corning), 

with BC cells seeded on the top of the insert and WAT cells on the bottom collagen. The 

two cell populations can interact only through soluble factors. b) Cells seeded together on 

collagen coating, to evaluate adhesion molecules involvement.  

Single cell cultures were used as controls. In all conditions, cells were plated (0.8x10
6
 each 

cell type) in 4.2ml medium and incubated for 72 hours in humidified conditions (37°C, 5% 

CO2), without changing the medium. This timing was chosen to be suitable to analyze 

soluble factors release into culture media. Moreover, cells retained a good viability after 72 

hours (60-70% of viable cells). Media were collected, briefly centrifuged to remove cell 

debris and stored at -20°C. Cells were detached with Accutase (Sigma-Aldrich), used 

instead of Trypsin due to the higher sensibility of the primary adipose cells. Cells were re-

suspended in RLT Buffer (Qiagen) to preserve the RNA.  

Some drugs or specific inhibitors were tested in the co-culture system, to assess their 

ability to interfere within the analyzed cell interaction. Preliminary experiments were done 

to assess the suitable concentrations unaffecting cell viability. Drugs or monoclonal 

antibodies (MoAb) were directly added to the medium and, in details, Metformin 

Hydrochloride (Sigma-Aldrich) was used from 2mM to 10mM; Bortezomib (Sigma-

Aldrich) from 3nM to 50nM; Anti-human IL-1β MoAb (#MAB201, R&D systems, MN) 

from 0.2µg/ml to 0.5µg/ml; Anti-human GM-CSF MoAb (#sc-377039, Santa Cruz 

Biotechnology, TX) from 0.5µg/ml to 1µg/ml; SB-3CT (#S1326, Sigma-Aldrich) from 

0.5µM to 1µM. 

 

2.5 In vivo experiments 

All experiments were carried out in accordance with the Italian laws (D.L.vo 26/14 and 

following additions) and the institutional guidelines. All in vivo studies were approved by 
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the Italian Ministry of Health. Mice were bred and housed under pathogen-free conditions 

in IEO animal facility. 

 

2.5.1 Xenograft models of human BC 

Six- to eight-week old females NOD SCID IL2RƔ null (NSG) were injected into 

mammary fat pad with 1x10
6
 human BC cells (MDA-MB-436, MDA-MB-231, HCC1937) 

alone or in combination with 0.2x10
6
 human WAT (hWAT) CD45

-
CD34

+
 cells (n=12 per 

study arm). Some mice were injected with hWAT CD45
-
 cells alone as negative controls 

(n=5). All surgical procedures were performed in aseptic conditions, under laminar flow 

hood. The generation and optimization of this xenograft model has already been described 

(Martin-Padura et al., 2012). Briefly, mice were anesthetized with 25mg/Kg of Avertin (2-

2-2-Tribromoethanol and 2-methylbutanol-2, Sigma-Aldrich), the injection was performed 

in the right fourth mammary gland through the nipple, using a Hamilton syringe 

(Hamilton, NV). Cells to be injected were re-suspended in a sterile PBS solution 

(20µl/mouse) added with 25% Matrigel™ (BD, NJ) and 10% Trypan Blue. Matrigel™ is a 

solubilized matrix, enriched of several growth factors and ECM proteins, providing an 

anchorage for the effective attachment and differentiation of cells. A minimum amount of 

Trypan Blue was used to track the site of injection. 

In a separate setting of experiments, half of mice were administered with Metformin 

(2mg/ml in drinking water) starting 3 days post injection until sacrifice (n=12 per study 

arm). The chosen dose was already used in preclinical models of BC (Liu B et al., 2009; 

Orecchioni et al., 2013) and was associated with a reduced tumor growth, without 

impairing mice health, such as weight changes or hypoglycemia. Tumor growth was 

weekly monitored with digital caliper and tumor volume was calculated according to the 

formula: L x W
2
/2 = mm

3
, where W represents the width and L the length of the tumor 

mass. Every two weeks, peripheral blood (PB) was collected from tail vein or, 

alternatively, serum or plasma were obtained. For plasma, PB was mixed with EDTA to 
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avoid coagulation (30µl EDTA for 1ml of whole blood) and, within 30 minutes, 

centrifuged at 2000rpm for 20 minutes at RT. After centrifugation, the upper yellow phase 

was carefully collected and stored at -80°C. For serum collection, PB was centrifuged 

twice at 4000rpm for 15 minutes to separate the clot. The quantitation of seric levels of 

glucose, cholesterol and triglycerides was performed with Architect c8000 (Abbott, IL). 

When the volume of the tumor reached the maximum diameter of 1.2cm, in at least one 

mouse, all mice were sacrificed through CO2 inhalation. Tumors were collected and 

processed, as described below. 

 

2.5.2 DIO orthotopic models 

Six-week old FVB/Hsd female mice (Envigo) or BALB/cOlaHsd (Envigo) were 

administered with ad libitum High Fat Diet (HFD) (60% kcal from fat, D12492, 

Brogaarden, Sweden). This research diet is commonly used to generate DIO preclinical 

models (Yang et al., 2014; Nilsson et al., 2012). Mice weight was weekly monitored. The 

difference in weight with chow-diet mice became evident one month after the beginning of 

the diet. A that timing, mice were orthotopically injected into mammary fat pad with either 

0.5x10
6
 MMTV-ErbB2

+
 primary tumor cells (FVB/Hsd) or 0.03x10

6
 4T1 cells (BALB/c) 

(n=10 per study arm). The amount of injected cells was chosen within each model, to be 

suitable with a gradual tumor growth and progression, with a relatively short latency. 

Three days (FVB/Hsd) or one day (BALB/c) after injection, inhibition therapy was started 

every other day until the end of experiments. 

For GM-CSF inhibition intraperitoneal (ip) administration of 50µg neutralizing anti-mouse 

GM-CSF MoAb (clone 22E9, #BE0259, BioXcells, NH) was performed, accordingly the 

schedule applied by Kowanetz et al. (2010) in preclinical model of BC. 

For anti-MMP9 inhibition, 25mg/Kg SB-3CT (#S1326, Sigma-Aldrich) was ip 

administered. SB-3CT was dissolved in a vehicle constituted by PBS-0.1% Tween20 

(Sigma-Aldrich)-10% DMSO. SB-3CT is hydrophobic, liposoluble compound which 
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requires, to avoid precipitation, a vehicle with DMSO concentration higher than 20mg/ml. 

The used vehicle has already been tested in mice, without showing any signs of toxicity. 

The chosen administration dose of SB-3CT was already used in preclinical metastatic 

tumor models (Kruger et al., 2005) and in several ischemia models (Cui et al., 2012; 

Hadass et al., 2013). The repeated ip administration of SB-3CT did not alter physiological 

parameters, such as blood pressure or glucose levels, being well tolerated by mice (Cui et 

al., 2012). The selected dose was able to significantly inhibit tissue MMP9 levels, both 

active and pro-forms, already 7 days after treatment (Hadass et al., 2013). 

As controls, respectively 50µg Rat IgG2a MoAb (#BE0089, BioXcell) and/or vehicle were 

administered to mice.  

Some mice (n=5) were administered with Metformin in drinking water (2mg/ml). 

Tumor growth was monitored weekly, as previously described. Every 30 days for 

FVB/Hsd or every 15 days for BALB/c mice, PB was collected from tail vein, mixed with 

EDTA and analyzed for circulating immune cells through a multiparametric flow 

cytometry analysis, as described below. When the volume of the tumor reached 1.2cm 

diameter, mice were sacrificed through CO2 inhalation or, alternatively, tumor resection 

(mastectomy) was performed, as already described (Martin-Padura et al., 2012). Briefly, 

mice were anesthetized with 25mg/Kg Avertin and immobilized on their back. In 

correspondence of the tumor, the skin was carefully cut with aseptic instruments and tumor 

removed, cauterizing surrounding blood vessels to minimize bleeding. Mammary gland 

around the tumor was also removed, to prevent the incomplete removal of tumor cells. 

Skin was stitched with surgical clips and 2-iodiopovidone (Farmec, Italy) was applied to 

disinfect the wound. 

In case of mastectomy, mice were sacrificed 30 days later, to evaluate the metastatic spread 

to lungs and axillary lymph nodes. Tumor tissue, subcutaneous WAT surrounding tumor 

and lungs/axillary lymph nodes were collected from all mice to be further analyzed. 
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2.5.3 Tissue collection and storage 

All collected tissues were overnight fixed in 4% phosphate-buffered formalin (Bio-Optica, 

Italy), followed by paraffin embedding. Five-micron sections of paraffin embedded-lungs 

and lymph nodes were cut by microtome and stained with standard Hematoxylin and Eosin 

(H&E, Bio-Optica) for metastases evaluation. Images were acquired with Scan Scope XT 

device (Leica, Germany) and analyzed with Aperio Digital pathology system software. 

Additional samples of tumors and WAT were collected and stored at -20°C for RNA 

extraction (small pieces in 1ml of RNA later, Qiagen) or at -80°C for protein analysis 

(small pieces frozen in liquid nitrogen). 

 

2.6 Protein analysis 

2.6.1 Screening with Proteomic Array 

In vitro co-cultures supernatant was screened for 55 soluble factors involved in human 

angiogenesis, through the Proteome Profiler antibody array (#ARY007, R&D, MN) 

following manufacturer’s instructions. The use of a multiplex antibody array, based on a 

membrane-sandwich immunoassay, allowed the detection of different proteins in a single 

sample, minimizing the sample amount needed. Analyzed analytes included growth and 

differentiation factors, ECM components, proteases, membrane-bound receptors and 

intracellular signaling molecules. The screening allowed a preliminary selection of soluble 

factors possibly involved in the interaction between BC and WAT progenitor cells, 

comparing co-cultures with single cell cultures media. 

 

2.6.2 ELISA 

Selected factors were further validated with Quantikine enzyme-linked immunosorbent 

assay (ELISA, #DGM00 and #DMP900, R&D), following manufacturer’s instructions. 

ELISA provided higher level of specificity, accuracy and sensitivity in analyte 
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quantification, compared to proteomic array. Each sample of cultures supernatant was 

tested in duplicate. The absolute quantitation was obtained. 

Plasmatic levels of human GM-CSF (CSF-2) in xenograft NSG mice were measured with 

Quantikine High Sensitive (HS) ELISA (#HSGM0, R&D), following manufacturer’s 

instructions. The assay does not cross-react with GM-CSF from different species, 

including murine GM-CSF, according to manufacturer’s indications. Quantikine HS 

ELISA kits were suitable for quantitation of low levels proteins, providing an amplification 

of the signal, which detected femtogram levels of target protein. 

The optical density was measured with Epoch Microplate Spectrophotometer (BioTek, 

VT) set at 450nm, with wavelength correction at 540nm, to correct optical imperfections in 

the plates. 

 

2.6.3 Western Blotting 

Western Blot (WB) analysis was used to compare different samples for MMP9 expression 

in a semi-quantitative way. Cellular media were already suitable for WB, whereas cells 

collected from frozen tissues needed to be digested to obtain whole tumor lysates. Briefly, 

samples were digested for 30 minutes under constant rotation at 4°C in RIPA (Radio 

Immunoprecipitation Assay) Buffer (150mM Sodium Chloride (NaCl, Sigma-Aldrich), 1% 

Triton X-100 (Sigma-Aldrich), 0.5% Sodium deoxycholate (Sigma-Aldrich), 0.1% SDS 

(Sodium Dodecyl Sulphate, Sigma-Aldrich), 50mM Tris pH 8 (Thermo Scientific, MA), 

Proteases Inhibitor Cocktail Set III (1:200, Calbiochem, Germany), 1mM PMSF 

(Phenylmethylsulfonyl Fluoride, Sigma-Aldrich), 7.5mM Sodium Fluoride (Sigma-

Aldrich), 5mM EDTA). Samples were additionally sonified, to further break cell 

membranes and share DNA, for 2-3 minutes (cycles of 10 seconds impulse/10 seconds 

rest, power of 180W) with Sonifier® Ultrasonic cell disruptor (Branson, CT). Samples 

were then centrifuged 10000g for 20 minutes at 4°C, to separate cellular debris. 
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Supernatants were collected and separately stored at -80°C, to avoid repeated freeze-thaw 

cycles that might affect protein loss and degradation. 

Before gel loading, protein concentrations were always measured with the bicinchoninic 

acid (BCA) assay (Thermo Scientific) and normalized to 1mg/ml. 

Samples (10-15µg) were added with ¼ NuPage® LDS (Lithium Dodecyl Sulfate) Sample 

Buffer (Thermo Scientific) and 5% of beta-mercaptoethanol (Sigma-Aldrich). This passage 

is necessary to the following polyacrylamide gel electrophoresis, which requires 

denaturating condition and protein disulfide bonds reduction. Samples were boiled for 5 

minutes at 97°C, for complete proteins denaturation.  

Proteins were resolved on 7.5% Mini Protean® precast gels (Bio-Rad, CA). This 

percentage was suitable for the optimum resolution of MMP9 proteins. Precision Plus 

Protein™ Prestained Standards Dual color (Bio-Rad) was used as marker for molecular 

weight. The running was performed in denaturing conditions with Tris/Glycine/SDS 

Running Buffer 1x (Bio-Rad) at low voltage, 100V constant for 1.5 hours, in Mini-Protean 

Tetra cells (Bio-Rad). The low voltage was convenient for large proteins and to prevent 

excessive heating.  

Proteins were transferred through a Semi-dry blotting to a nitrocellulose membrane 

(Amersham, GE Healthcare, Italy) with Trans-Blot Turbo™ Transfer System (Bio-Rad) at 

standard conditions (25V for 25 minutes). Transfer Buffer contained 20% Methanol 

(Applichem, Germany) and NuPage® Transfer Buffer 1x (Thermo Scientific). Staining 

with Ponceau S (Sigma-Aldrich) was used to confirm the efficiency of transfer. 

Membranes were destained with 0.1M NaOH and rinsed in distilled water.  

Membranes were blocked with 5% skimmed milk in PBS-0.1% Tween20 for 1 hour at RT. 

The immunostaining was performed overnight at 4°C with rabbit anti-human MMP9 

(1:2000 #ab76003, Abcam, UK or 1:200 #10375-2-AP, Proteintech, IL) and anti-human 

beta actin 1:5000 (#A5441, Sigma-Aldrich) to normalize protein concentration. After the 

incubation, washing steps were required to remove excess or unspecific bonds of primary 
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antibodies and, in general, to minimize signal background (Tris Buffered Saline (TBS)-

0.5% Tween20 for 5 times, 10 minutes each). An incubation of 1 hour at RT was done with 

secondary antibodies horseradish peroxidase (HRP)-conjugated (1:5000, Donkey anti-

Rabbit IgG and Goat anti-Mouse IgG, Thermo Scientific). The detection was accomplished 

with SuperSignal West Dura substrate (Thermo Scientific). This substrate was chosen to be 

suitable in case of relatively low expressed proteins, due to its enhanced sensitivity and 

providing detection of mid-femtogram levels of target proteins. The generated signals were 

detected with CCD (Charge-coupled device) imaging system, ChemiDOC MP System 

(Bio-Rad). Bands quantitation was obtained with the aid of ImageJ software. 

 

2.6.4 Zymography 

Zymogram was used to detect proteases activity within a gel, composed by the substrate of 

the target enzyme, as gelatin for MMP9/MMP2 (Hu and Breeton, 2010). Proteins were 

separated according specific molecular weight under nonreducing conditions, but in a 

denaturating SDS gel electrophoresis. After the running, a renaturation step was necessary 

to reactivate enzymatic activity. 

To assess MMP9 proteolytic activity, co-culture supernatants or whole tumor lysates (15-

20µg) were added 1:2 to Zymogram sample Buffer (Bio-Rad). No heating step was 

required. Proteins were resolved on a 10% Ready Zymogram precast gel (Bio-Rad). The 

running was performed in denaturing conditions with Tris/Glycine/SDS Running Buffer 1x 

(Bio-Rad) at 100V constant for 1 hour in Mini-Protean Tetra cells (Bio-Rad). Precision 

Plus Protein™ Prestained Standards Dual color was used as control for molecular weight.  

Gels were then incubated 0.5 hours in Zymogram Renaturation Buffer 1x (Bio-Rad), which 

removes SDS from the gel, allowing proteins renaturation. A second incubation was 

required with Zymogram Development Buffer 1x (Bio-Rad), which contained the divalent 

metal cation (calcium), necessary for enzymatic activity. The incubation was done 

overnight at 37°C. Gels were then stained with PageBlue
TM

 (Thermo Scientific) for 4-5 
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hours at RT and images were acquired with ChemiDOC MP System. The gelatin in the gel 

appeared stained (blue), whereas areas around active proteases were lighter due to the 

proteolytic activity. 

 

2.7 Real-time PCR 

RNA extraction from cells or tissues was performed with Qiamp Mini Blood kit (Qiagen), 

following manufacturer’s instructions. RNA amount and quality was checked with 

NanoDrop 2000 (Thermo Scientific). RNA (0.5-1µg) was retro-transcribed with Ipsogen 

RT kit (Qiagen), following manufacturer’s instructions.  

Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was carried out 

with ABI Prism 7000 platform (Applied Biosytems, Thermo Scientific), using primers and 

probes from TaqMan® Gene Expression Assays (Thermo Scientific) listed in Table 2. The 

housekeeping human gene ABL1 was used as internal control, with primers, probe and 

plasmids from Ipsogen BCR-ABL1 kit (#670013, Qiagen). Each reaction was performed in 

duplicate using TaqMan® Universal Master Mix (Thermo Scientific). 

The threshold of the reaction was set to 0.1 and the results were calculated as: 

∆Ct = Ct of the target gene – Ct housekeeping gene 

∆∆Ct = ∆Ct – number of cycles (50) 

Final value = 2^ (-∆∆Ct) 

The up- or down-regulation of target genes among different samples was expressed as 

times-fold expression compared to controls. 

RT
2
 Profiler PCR array for mouse inflammation and immunity cross-talk (#PAMM-181Z, 

Qiagen) was performed according manufacturer’s instruction on ABI 7000 platform. The 

analysis of collected data was done with web-based software RT
2
 Profiler PCR Array Data 

Analysis (SABiosciences, Qiagen). The array allowed the simultaneous analysis of the 

expression of 84 genes, including the principal mediators and effectors in the cross-talk 

between tumor cells and immune system. A set of controls were inside each array, enabling 
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data analysis through the ΔΔCT method of relative quantification, the evaluation of RT and 

PCR performances, and the presence of genomic DNA contamination. 

 

2.8 Flow cytometry  

Cells were counted through Burker chamber in Trypan Blue or, in case of blood samples, 

in Turk’s solution (Bio Optica, Italy) to remove red blood cells. Cells (1x10
6
) were seeded 

in tubes containing a mix of different fluorochrome-conjugated antibodies, listed in Table 

3. To allow antibodies binding, an incubation of 20 minutes at 4°C was performed in a 

Buffer composed by PBS added with 2mM EDTA (to avoid cell aggregation) and 0.5% 

BSA (to preserve cell viability). Cells were washed to remove unbound antibodies and re-

suspended in the same Buffer. An additional step was required to remove red blood cells 

contamination from blood samples, which may interfere with the acquisition, by incubating 

cells in Buffer EL (Qiagen) at 4°C for 15 minutes. For intracellular markers (Annexin V) 

the incubation was performed in Annexin V Buffer 1x (BD Biosciences, CA). 

At least 500.000 total cells per sample were acquired on a flow cytometer equipped with 3 

lasers (Navios, Beckman Coulter, Italy). Analysis was performed with KALUZA software 

(Beckman Coulter), after selection of DNA-containing (Syto16
+
, Invitrogen) and viable (7-

aminoactinomycin; 7-AAD
-
, Beckman Coulter) cells. Analysis gates were set with the aid 

of “fluorescence minus outcomes” isotype controls. Cells were labeled with a panel of 

antibodies (Beckman Coulter; BD Biosciences; eBioscience, UK; Bio-Legend, CA; Bio-

Rad) to analyze immune cell populations and WAT-derived progenitors, as illustrated in 

Table 4.  

The characterization of lymphocytes, macrophages, granulocytes and dendritic cells was 

done accordingly standard markers expression (Lai et al., 1998), whereas a specific 

marker, CD335, was used to identify Natural Killer (NK) cells (Walzer et al., 2007). 

MDSCs were analyzed accordingly a recent classification, including main subtypes Mo-

MDSCs and G-MDSCs (Gabrilovich et al., 2012); TAMs accordingly the findings of Su et 
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al. (2014). A complete surface markers characterization was previously described for 

WAT-derived progenitors, including both ASCs and EPCs (Martin-Padura et al., 2012; 

Orecchioni et al., 2013). 

 

2.9 Immunofluorescence (IF) and confocal microscopy 

Formalin-fixed paraffin-embedded samples were sectioned 5µm thick on poli-L-lysine 

slides (Thermo Scientific). After deparaffination and hydratation, antigen retrieval was 

heat-mediated (95°C for 30 minutes) in 10mM Sodium Citrate Buffer added with 0.05% 

Tween20 (Sigma-Aldrich; pH adjusted to 6.06). Samples were then permeabilized with 

0.1% Triton X-100 in PBS for 30 minutes at RT. Before staining, slides were incubated for 

1 hour in a 10% BSA solution, to avoid unspecific signals and reduce background. All 

washing steps between incubations were performed in PBS 1x (3 times, 5 minutes each). 

Overnight incubation at 4°C was performed with primary antibodies diluted in 10% BSA 

solution: rabbit polyclonal antibody anti-mouse CD31 (1:20, #ab28364, Abcam) and 

mouse monoclonal antibody anti-Alpha Smooth Muscle Actin (αSMA) (1:3000, #A2547, 

Sigma-Aldrich). Secondary antibodies were incubated for 1 hour at RT: Alexa Fluor 555 

Goat anti-mouse IgG2A (1:200, Thermo Scientific) and Alexa Fluor 488 Donkey anti-

rabbit IgG (1:200, Thermo Scientific). Slides were stained with 4′,6-diamino-

2phenylindole (DAPI, Sigma-Aldrich) and mounted with Vectashield (Vector 

Laboratories, CA) to preserve fluorescence. Negative controls, without primary antibodies, 

were conducted for each staining to exclude unspecific signals. 

For confocal imaging, all the z-stacks were collected on a Lieca SP5 II confocal 

microscope (Leica) using a 20x oil immersion objective with a numerical aperture of 1.3 at 

zoom 1.7. Fluorochromes were excited using a 405nm diode laser for DAPI, an argon 488 

laser for Alexa Fluor 488 and a 561 diode laser for Alexa Fluor 555. Detector slits were 

configured to minimize the cross-talk between channels and to maximize the signal arising 

from the sample: PMT1, 407 to 485 nm (DAPI); PMT2, 492 to 556 nm (Alexa Fluor 488); 
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PMT3, 579 to 684 nm (Alexa Fluor 555). The cross-talk was also limited by the fact that 

the stacks were collected in “between frame mode”: the blue and red fluorescence 

(spectrally well separated) were collected simultaneously, while the green one by itself. 

Every single image of the collected z-stacks was 1.024×1.024 pixel
2
 (about 228×228 μm

2
), 

whereas the z-step between 2 images within a stack was 0.8μm, resulting in a voxel size of 

0.223×0.223×0.8 μm
3
. The acquisition parameters, the microscope, and all the detectors 

were controlled by means of the software LAS-AF (Leica). 

 

2.10 Immunohistochemistry (IHC) 

Formalin-fixed paraffin-embedded tumors were sectioned 5µm thick on poli-L-lysine 

slides, deparaffinized and hydrated. Heat-mediated antigen retrieval through Sodium 

Citrate Buffer, permeabilization and blocking steps were done, as previously described for 

IF staining. Immunostaining was performed with rabbit anti-human MMP9 MoAb (1:100, 

#ab76003, Abcam) and donkey anti-rabbit IgG-HRP (1:1000, Thermo Scientific). The 

incubation with primary antibody was done overnight at 4°C, whereas slides were 

incubated with the secondary antibody for 1 hour at RT. Gill’s Hematoxylin (Bio-Optica, 

Italy) was used as counterstain. Slides were mounted with Eukitt® mounting medium 

(Bio-Optica). Images were acquired with Scan Scope XT device (Leica). 

 

2.11 Statistical analysis 

The Shapiro-Wilk test was used to assess normality. The very large majority of data were 

not normally distributed. Therefore, statistical comparisons were carried out using the 

nonparametric U test of Mann–Whitney. All reported p values were two sided 

(significance from p<0.05). All displayed values are mean ± standard error of the mean 

(SEM). 
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Table 2 

List of primers and probes TaqMan® Gene Expression Assay (Thermo Scientific). 

Cat.n. Target gene Species 

Hs00929873_m1 CSF-2 (GM-CSF) Human 

Hs00234579_m1 MMP9 Human  

Hs00174097_m1 IL1β Human 

Mm01290062_m1 CSF-2 (GM-CSF) Mouse 

Mm00442991_m1 MMP9 Mouse 

Mm00437762_m1 B2m (β2 microglobuline) Mouse 

 

 

Table 3 

List of antibodies used for multiparametric flow cytometry analysis. 

Anti-human CD13 PE-Cy7 (#A46528, Beckman Coulter) 

Anti-human CD31 PE-Cy7 (#IM995128, Beckman Coulter) 

Anti-human CD34 APC (#IM2472, Beckman Coulter) 

Anti-human CD45 Alexa Fluor 750(#A79392, Beckman Coulter) 

Anti-human Ki67 PE (#51-36525X,  BD) 

Anti-mouse CD3 FITC (#555274, BD) 

Anti-mouse CD4 PE (#553730, BD) 

Anti-mouse Ly6C PE-Cy7 (#560593, BD) 

Anti-mouse Ly6G FITC (#551460, BD) 

Anti-mouse CD8a APC (#553035, BD) 

Anti-mouse CD11b Alexa Fluor 700 (#101222, BioLegend) 

Anti-mouse CD11c FITC (#557400, BD) 

Anti-mouse CD19 PE-Cy7 (#552854, BD) 

Anti-mouse CD25 APC (#557192, BD) 

Anti-mouse CD31 PE-Cy7 (#25-0311-82, eBioscience) 
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Anti-mouse CD34 PE (#551387, BD) 

Anti-mouse CD45 APC-Cy7 (#557659, BD) 

Anti-mouse CD127 PE-Cy7 (#560733, BD) 

Anti-mouse CD206 Brilliant Violet 421 (#141717, BioLegend) 

Anti-mouse CD335 Alexa Fluor 700 (#561169, BD) 

Anti-mouse F4/80 APC (#MCA497APC, Bio-Rad) 

Anti-mouse Gr1 PE-Cy7 (#25-5931-81, eBioscience) 

Anti-mouse MHC-II PE-Cy7 (#107630, BioLegend) 

APC Annexin V (#550474, BD) 

APC-conjugated anti-rat IgG2b isotype (#553991, BD) 

APC-conjugated anti-mouse IgG1 isotype (#IM2475, Beckman Coulter) 

Alexa Fluor 750-conjugated IgG1 isotype (#A79393, Beckman Coulter) 

FITC-conjugated anti-rat IgG isotype (#11-4811-85, eBioscience) 

PE-conjugated anti-mouse IgG1 isotype (#550083, BD) 

PE-conjugated anti-rat IgG1 isotype (#12-4301-73, eBioscience) 

PE-Cy7-conjugated anti-mouse IgG1 isotype (#737662, Beckman Coulter) 
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Table 4 

Flow cytometry markers for the analysis of human and murine samples. 

 

Lymphocytes T-helper T-cytotoxic B-cells NK T-regs

CD45+

low SSC

CD3+

CD4+

CD3+

CD8+

CD19+ CD335+ CD4+

CD25++

CD127 low

Myeloid

cells

Macrophages Monocytes TAMs Inflammatory

monocytes

Granulocytes Dendritic

cells

CD45+

high SSC

F4/80+ Gr1-

CD11b+

F4/80+

Gr1-

CD11b-

F4/80+

Gr1-

CD11b+

CD206+

MHC-II low

F4/80+ bright

GR1+ bright

CD11b+

F4/80-

GR1+

CD11c+

WAT

progenitors

EPCs ASCs

CD45-

CD34+

CD31+ CD31-

CD13+

Murine cells

Human and murine cells

MDSCs Mo-MDSCs G-MDSCs

CD45+

high SSC

CD11b+

Gr1 mid

Ly6G-

Ly6C+

F4/80 +/-

CD11b+

Gr1 bright

Ly6G+

Ly6C low

F4/80 +/-
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3. Results 

 

3.1 Identification of factors involved in BC-WAT progenitors interplay 

3.1.1 Screening of soluble factors with proteomic array 

BC (MDA-MB-436) cells were cultured with WAT-derived progenitors (CD45
-
CD34

+
), 

which were isolated from the SVF of a lipofilling sample. Co-cultures were performed for 

72 hours through two distinct systems: in one case only paracrine interaction among cells 

was allowed (transwell co-culture), in the other, also the physical interaction was permitted 

(direct co-culture). The presence of soluble factors involved in human angiogenesis, 

inflammation and ECM remodeling was investigated in cellular media with a proteomic 

antibody array (Fig.11). The expression of proteins in co-cultures was compared to 

baseline expression in single cell cultures (WAT or BC cells seeded alone). All values 

were normalized for internal standard controls included in the array. 

Notably, WAT cells produced a limited number of soluble factors, whereas BC cells 

expressed several molecules involved in angiogenesis and inflammation, according to the 

aggressive and high tumorigenic potential of this TNBC cell line. 

The highest released molecules by BC cells were SerpineE1, IL-8, urokinase plasminogen 

activator (uPA), TIMP-1, VEGF, Pentraxin3 and Angiogenin. However, the overall level 

of these molecules did not change when BC cells were cultured alone or in presence of 

WAT progenitors (Fig.11). Molecules mainly expressed by WAT progenitors were IL-8 

and SerpinE1. 

The quantitation of dots intensity identified two molecules, which were differentially 

expressed between co-cultures and single cultures: GM-CSF and MMP9 (Fig.11B).  

GM-CSF release was doubled in transwell and direct co-cultures compared to BC cells 

alone, whereas it was almost not expressed by WAT progenitors, when seeded alone. , 
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MMP9 was up-regulated about 4-fold higher than BC alone in direct co-cultures, only 2.5-

fold more in transwell system. 
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Fig.11 Screening with antibody array on cellular supernatant. Human angiogenesis Proteome Profiler 

(#ARY007, R&D) screened soluble factors in BC-WAT progenitors co-cultures. A) Representative images 

acquired with ChemiDoc MP System: dots represent released factors (each in duplicate); B) Quantitation of 

mean dot intensity using ImageJ software. GM-CSF and MMP9 were the most up-regulated factors in co-

cultures compared to single cell cultures. 

 

 

 



77 

 

3.1.2 Validation of GM-CSF highly release in vitro 

The up-regulation of human GM-CSF (hGM-CSF) in co-culture supernatant was 

confirmed with ELISA. WAT-derived progenitors were isolated from lipofilling samples, 

collected from 20 different subjects. Several human TNBC cell lines were used, including 

MDA-MB-436, MDA-MB-231 and HCC1937. ZR-75-1 ductal carcinoma ER
+
 cell line 

was also analyzed. 

WAT cells alone did not express any detectable GM-CSF, whereas BC cells displayed 

variable baseline expression, cell line-dependent: MDA-MB-231 and MDA-MB-436 

secreted high levels of GM-CSF; HCC1937 produced minimal amount of the protein; ZR-

75-1 production was below the sensitivity of the assay (7.8pg/ml) (Fig.12A).  

Culture conditions affected GM-CSF production as well, since BC cells seeded on collagen 

coating released more protein compared to the amount released by cells seeded on 

transwell insert. Therefore, for each cell line, two distinct controls for BC cells were used. 

The release of GM-CSF was significantly enhanced in co-cultures with all TNBC cell lines 

(Fig.12B). In particular, the release of the cytokine was enhanced, independently from the 

type of co-culture (transwell or direct), suggesting the evidence of a paracrine interaction 

between BC and WAT progenitors. 

The observed up-regulation was significant for MDA-MB-436 and HCC1937, whereas the 

higher release was less detectable in MDA-MB-231 co-cultures. 

In co-cultures between ZR-75-1 and WAT progenitors, GM-CSF levels remained under the 

detection limit of the assay.  

These results suggested that the up-regulation occurred mostly in co-cultures with TNBC 

cells, characterizing a more aggressive tumor phenotype. 
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Fig.12 GM-CSF absolute quantitation through ELISA. Human GM-CSF was quantified in media of 

cultures with Quantikine ELISA kit (#DGM00, R&D). A) BC cell lines displayed differential release of the 

factor, according to cell line and culture conditions (n=5, ***p<0.001, ns: not significant, transwell vs. 

collagen); B) Absolute quantitation in cellular supernatants of co-cultures, direct or transwell, and single 

cultures used as controls (n = 5, * p<0.05, ** p<0.01, *** p<0.001, vs. BC control). 
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3.1.3 Validation of MMP9 highly release in vitro  

Cellular supernatants were analyzed for human MMP9 (hMMP9) through ELISA. 

However, the target protein was below the detection limit of the assay in all samples (data 

not shown).  

WB was used for a semi-quantitative evaluation of MMP9 protein. MMP9 appeared as a 

single band at 92kDa, corresponding to the secreted inactive form, called pro-MMP9 

(Fig.13).  

A dramatic increase of MMP9 release was detected in direct co-cultures, whereas only a 

slight up-regulation was displayed in transwell system. A certain variability was observed 

among replicated co-cultures, using WAT-derived progenitors isolated from different 

subjects (Fig.13A). 

MMP9 release in vitro was minimal in WAT-derived progenitors cultured alone. MMP9 

baseline secretion was detected in all TNBC cell lines (Fig.13B), but was poorly expressed 

by ZR-75-1 (data not shown). 

Band intensity quantitation allowed the comparison of different samples (Fig.13C). MMP9 

was released about 6-fold more in direct co-cultures compared to WAT control: an average 

of 6.2 (± 1.2) times increased for MDA-MB-436, 7.0 (± 2.8) times for MDA-MB-231 and 

6.5 (± 1.3) times for HCC1937. 

Zymography detected MMP9 enzymatic activity in cellular supernatants: lighter bands 

were proportional to gelatin digestion, catalyzed by the enzyme (Fig.14). Gelatin digestion 

was significantly increased in co-cultures compared to single cell cultures, in particular 

with MDA-MB-436 and HCC1937. According to WB results, supernatant collected from 

direct co-cultures showed higher MMP9 activity compared to supernatant collected from 

transwell system.  

All together, these data suggested that MMP9 was enhanced mostly in direct co-cultures, 

rather than transwell system. That might depend on adhesion-related mechanisms or, 

alternatively, might require higher concentration or stability of paracrine inducer(s). 
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Fig.13 WB for MMP9 evaluation in co-cultures. Cellular media of co-cultures and single cultures analyzed 

for MMP9, using 1:2000 rabbit monoclonal anti-human MMP9 (#ab76003, Abcam). A) Representative 

images of secreted pro-MMP9 (92kDa) using MDA-MB-436 (BC) and WAT CD45
-
CD34

+
 progenitors (W) 

isolated from different patients. Images were acquired with ChemiDOC MP System; B) Comparison of 

several TNBC cell lines ability to highly release MMP9, using WAT-progenitors from a single patient; C) 

Average bands quantitation using ImageJ software. Values are expressed as times-fold compared to WAT 

cells seeded alone (n=5, * p<0.01, *** p<0.001, ns: not significant, vs. BC control). 
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Fig.14 Zymography on cellular supernatants from co-cultures. Representative images acquired with 

ChemiDOC MP System. Samples analyzed were TNBC cell lines (BC) alone or in co-cultures with WAT-

derived progenitors CD45
-
CD34

+
 (W). The activity of the pro-form MMP9 (92kDa) was detected to be 

increased in direct co-cultures, only slightly in transwell system. The effect was minimal for MDA-MB-231, 

more significant in MDA-MB-436 and HCC1937. 

 

3.1.4 qRT-PCR 

To assess which population up-regulated GM-CSF and MMP9 in co-cultures, qRT-PCR 

was performed in WAT and BC cell (MDA-MB-436) co-cultured in transwell system, 

separately collected and analyzed. The expression level of each factor was normalized for 

housekeeping gene expression and compared to BC baseline expression (Fig.15A). 

BC cells after transwell co-cultures with WAT progenitors did not change the expression, 

compared to BC cells cultured alone. Conversely, WAT progenitors dramatically up-

regulated transcripts for GM-CSF and MMP9 in co-cultures, compared to WAT single 

cultures: about 250-fold increase for GM-CSF and 75-fold for MMP9. 

To confirm that WAT-derived progenitors were the only source of GM-CSF and MMP9 

transcriptional up-regulation, co-cultures between murine WAT CD45
-
CD34

+
 progenitors 

and human BC (MDA-MB-436) were analyzed. qRT-PCR revealed that murine transcripts 

were up-regulated in both transwell and direct co-cultures, whereas human transcripts did 

not change their levels (Fig.15B). 
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The up-regulation occurring in WAT progenitors was detected after being co-cultured with 

all TNBC analyzed (Fig.16). Notably, WAT progenitors co-cultured with ZR-75-1 

displayed a weak up-regulation, not significant as in TNBC (Fig.16). 
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Fig.15 qRT-PCR analysis on cells from co-cultures. MDA-MB-436 (BC) were cultured alone or in co-

cultures with human or murine WAT CD45
-
CD34

+
 cells. Expression of GM-CSF (CSF-2) and MMP9 

transcripts were normalized for housekeeping genes (ABL for human transcripts, β2-microglobulin for 

murine ones). Values are expressed as times-fold to respective controls (BC control for humans, mWAT 

control for murines). A) hWAT progenitors up-regulated both transcripts in co-cultures with hBC compared 

to single cultures, whereas hBC did not change the expression (n=10, *** p<0.001, ns: not significant, vs. 

single culture); B) hBC were cultured with mWAT progenitors and analyzed for human and murine 

transcripts. Only murine transcripts were detected up-regulated in transwell and direct co-cultures (n=3, *** 

p<0.001, vs. mWAT control). 
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Fig.16 Analysis of GM-CSF and MMP9 transcripts from co-cultures using different BC cell lines. 

Primary WAT-derived progenitors CD45
-
CD34

+
 were co-cultured in transwell with TNBC (MDA-MB-426, 

MDA-MB-231, and HCC1937) and ductal carcinoma ER
+
 (ZR-75-1) cell lines. Single cells cultures were 

used as controls. All values were normalized for ABL housekeeping gene expression and displayed as times-

fold to WAT control (n=3 for each BC cell line using WAT progenitors from different subjects, *** p<0.001, 

ns: not significant). GM-CSF (top panel) and MMP9 (bottom panel) were up-regulated in WAT progenitors 

after being co-cultured with TNBC cells. 
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3.2 GM-CSF and MMP9 up-regulation in xenograft models 

Xenograft BC models were generated injecting human TNBC cells alone or in combination 

with primary hWAT CD45
-
CD34

+
 progenitors, isolated from different subjects. As 

negative controls, mice were injected with hWAT progenitors alone, which did not develop 

tumors. 

Tumor growth was weekly monitored and confirmed the previously reported pro-

tumorigenic effect of WAT progenitors on BC local growth (Fig.17).  

Mice were periodically checked to assess circulating levels of hGM-CSF and hMMP9.  

Plasmatic hGM-CSF was quantified through HS ELISA. Results confirmed the existence 

of an in vivo up-regulation of the human cytokine, when hWAT progenitors were co-

injected with MDA-MB-436 (Fig.18A) or MDA-MB231 (Fig.18B). Mice injected with 

hWAT cells alone did not have any detectable circulating hGM-CSF. This suggested that 

GM-CSF release in WAT progenitors was tumor-dependent. In mice injected with 

HCC1937, the level of circulating hGM-CSF was lower than other TNBC cell lines, 

mostly under the detection limit of the assay (data not shown). 

No circulating hMMP9 was detected in PB through WB (data not shown). Tumor 

microenvironment was then investigated for the expression of hMMP9: the protein was 

higher detected in tumors co-injected with hWAT cells, compared to tumor injected alone 

(Fig.19). 

Distinct forms of MMP9 were detected through WB in whole tumor lysate: full-length 

precursor (pro-MMP9, 92kDa) and cleaved MMP9 active forms, 82kDa or the prevalent 

67kDa (Fig.20). All MMP9 proteins were found up-regulated in MDA-MB-436/WAT co-

injected mice, with a predominant expression of the 67kDa biologically active form 

(Fig.20A). In HCC1937 xenograft model, the over-expression of the 67kDa cleaved active 

form was confirmed in co-injected mice (Fig.20B). Conversely, hMMP9 was poorly 

expressed in MDA-MB-231 xenograft model, with no evident bands detected through WB 

(data not shown). 
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Accordingly, MMP9 displayed increased enzymatic activity in tumors co-injected with 

hWAT compared to controls, as detected by zymography (Fig.21).  

According to the in vitro results, the qRT-PCR analysis on BC did not detect any up-

regulation of the transcripts for both factors, confirming WAT CD45
-
CD34

+
 as the putative 

secreting cells (Fig.22). 
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Fig.17 Tumor growth in xenograft with human TNBC. Tumor growth was significantly increased in co-

injected NSG mice (1x10
6
 hBC cells + 0.05x10

6
 hWAT progenitors CD45

-
CD34

+
) compared to mice injected 

with hBC alone (n=10, * p<0.05, ** p<0.01, *** p<0.001). NSG injected with hWAT cells alone were used 

as negative controls (n=5). A) MDA-MB-436; B) HCC1937; C) MDA-MB-231. 
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Fig.18 Circulating hGM-CSF in NSG mice injected with TNBC cells. Plasmatic hGM-CSF was analyzed 

through HS ELISA (#HSGM0, R&D). Mice co-injected with hBC and hWAT progenitors displayed higher 

hGM-CSF, compared to hBC (n=12, * p<0.05, ** p<0.01, *** p<0.001). No circulating hGM-CSF was 

detected in mice injected with hWAT progenitors alone (n=5). A) MDA-MB-436; B) MDA-MB-231. 
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Fig.19 IHC for hMMP9 expression in tumors collected from xenograft BC models. Representative 

images of MMP9 expression in hBC from MDA-MB-436 injected mice, stained with 1:100 rabbit anti-

human MMP9 (#ab76003, Abcam), acquired with APERIO Digital System (scale bars 300µm). NSG mice 

co-injected with hBC and hWAT progenitors displayed increased MMP9 expression. 
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Fig.20 WB for hMMP9 detection in tumor microenvironment from BC xenografts. Representative 

images of whole tumor lysates (15µg) from NSG mice injected with MDA-MB-436 (A) or HCC1937 (B) 

alone or with hWAT CD45
-
CD34

+
. Co-injected mice displayed increased hMMP9 expression. MMP9 pro-

forms (92kDa) and active forms (82kDa and 67kDa) were stained with 1:200 rabbit anti-hMMP9 (#10375-2-

AP, Proteintech). Beta actin was used as loading control. 

 

 

 

Fig.21 Zymography on tumors from xenograft BC mice. Representative image of zymogram detecting 

hMMP9 proteolytic activity in whole tumor lysates collected from NSG mice, injected with MDA-MB-436 

and/or hWAT CD45
-
CD34

+
 progenitors. Co-injected mice displayed higher MMP9 activity. 
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Fig.22 qRT-PCR on tumors collected from NSG mice. GM-CSF and MMP9 transcripts were quantified in 

BC cells collected from tumors of NSG mice, injected with MDA-MB-436 (BC) alone or in combination 

with hWAT progenitors. All values were normalized for ABL gene expression and expressed as times-fold 

compared to mice injected with BC cells alone (n=9, ns: not significant). 

 

3.3 ASCs and EPCs role in GM-CSF and MMP9 release 

The CD45
-
CD34

+ 
fraction, isolated from the SVF of WAT, is composed by two sub-

populations of progenitors, characterized by distinct biological properties: ASCs (CD45
-

CD34
+
CD31

-
) or EPCs (CD45

-
CD34

+
CD31

+
). To understand in which cell population 

occurred the observed GM-CSF and MMP9 up-regulation, primary ASCs and EPCs were 

co-cultured in vitro with TNBC cells (MDA-MB-436). 

Secreted GM-CSF was evaluated through ELISA, revealing that both ASCs and EPCs 

synergically increased the cytokine release in presence of BC (Fig.23). In details, ASCs 

and EPCs alone did not express detectable levels of GM-CSF, but after being co-cultured 

with BC, in transwell or direct systems, displayed a significant up-regulation. However, 

EPCs seemed to be more prone to increase GM-CSF in direct co-cultures, compared to 

ASCs. 

MMP9 release was detected through WB on cellular supernatants (Fig.24). EPCs 

expressed higher baseline levels of MMP9 compared to ASCs. However, the amount of 
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MMP9 released was significantly enhanced in co-cultures of ASCs, in both direct and 

transwell conditions. A minor release was detected in EPCs direct co-cultures. 

To confirm the transcriptional up-regulation occurring in ASCs and EPCs after BC 

exposure, qRT-PCR was used to analyze GM-CSF and MMP9 transcripts (Fig.25). EPCs 

expressed similar baseline levels of GM-CSF but higher levels of MMP9, although not 

statistically significant compared to ASCs baseline expression. 

GM-CSF was significantly up-regulated in both EPCs and ASCs, when cultured in 

transwell with MDA-MB-436 (Fig.25). Conversely, MMP9 was significantly up-regulated 

in ASCs, in a less extent in EPCs (Fig.25). These results suggested that both progenitor 

populations, ASCs and EPCs, up-regulated GM-CSF and MMP9 after being exposed to 

BC cells. EPCs seemed to be more effective in GM-CSF release, whereas ASCs may 

contribute more efficiently to MMP9 secretion. 
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Fig.23 GM-CSF quantitation in ASCs/EPCs co-cultured with BC. MDA-MB-436 (BC) were cultured 

alone or with ASCs (CD45
-
CD34

+
CD31

-
) or EPCs (CD45

-
CD34

+
CD31

+
). Co-cultures were performed in 

transwell or in direct cultures (collagen). GM-CSF, detected through Quantikine ELISA (#DGM00, R&D), 

was significantly highly released in media of co-cultures, using both ASCs and EPCs (n=3, * p<0.05, ** 

p<0.01 vs. BC control). 
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Fig.24 MMP9 evaluation through WB in ASCs/EPCs co-cultured with BC. Representative image of WB 

staining pro-MMP9 (92kDa) in cellular supernatants, using 1:2000 anti-hMMP9 (#ab76003, Abcam). Image 

was acquired with ChemiDOC MP System. Both ASCs and EPCs contributed to MMP9 release in co-

cultures with MDA-MB-436 (BC). 
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Fig.25 qRT-PCR on ASCs and EPCs co-cultured in transwell with BC. GM-CSF and MMP9 transcripts 

levels were normalized for ABL gene expression and expressed as times-fold to MDA-MB-436 (BC) control. 

GM-CSF and MMP9 were significantly up-regulated in both ASCs and EPCs in transwell co-cultures 

compared to single cultures (n=3, * p<0.05, *** p<0.001, vs. single cultures). 
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3.4 Identification of tumor mechanisms regulating GM-CSF and MMP9 release 

Different factors were investigated in co-cultures of MDA-MB-436 and WAT CD45
-

CD34
+
 cells, to assess the mechanism by which BC cells induced the release of GM-CSF 

and MMP9 by WAT progenitors. 

NF-κB regulatory pathway was firstly investigated as potential up-stream mechanism. 

Bortezomib, NF-κB specific inhibitor, was tested at different concentrations to not affect 

cell viability (data not shown). The selected concentration (3nM) was added to in vitro co-

cultures. Bortezomib did not affect GM-CSF or MMP9 transcripts level in BC cells or 

WAT progenitors cultured alone. The drug failed to prevent the up-regulation observed in 

WAT progenitors following BC exposure (Fig.26). The results were confirmed at protein 

level (Fig.27-28A). 

The inflammatory mediator IL-1β was then analyzed for its ability to regulate GM-CSF 

and/or MMP9 release. Anti-human IL-1β MoAb was added to culture media. Transcription 

of both molecules was significantly reduced in treated WAT progenitors cultured alone 

compared to untreated cells (Fig.26). However, WAT cells in transwell with BC reduced 

MMP9 release in presence of the MoAb. Conversely, IL-1β neutralization did not affect 

GM-CSF or MMP9 transcription in BC cells, cultured alone or in transwell system. 

The results were confirmed at protein level: GM-CSF was not affected by anti-IL-1β 

neutralization in co-cultures (Fig.27), whereas MMP9 release was strongly reduced in 

direct co-cultures, as shown by WB (Fig.28A). 

These results suggested that IL-1β may be involved in the observed MMP9 up-regulation, 

induced in WAT progenitors by BC cells. 

The reciprocal regulation of the factors under investigation was also evaluated.  

To exclude MMP9 regulation on GM-CSF release, an irreversible inhibitor of MMP9, SB-

3CT, was added to co-cultures and analyzed for GM-CSF protein release in cellular 
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supernatant. SB-3CT did not affect the cytokine release in single or co-cultures, as detected 

by ELISA (Fig.27). 

Anti-human GM-CSF MoAb was then added at two different concentrations (0.5-1µg/ml) 

to co-culture systems. MMP9 release was found deeply affected by GM-CSF neutralization 

in a dose-dependent manner, as depicted by WB in transwell and direct co-cultures 

(Fig.28B). Transcriptional up-regulation was also significantly impaired in WAT 

progenitors (Fig.26).  

GM-CSF release was found itself down-regulated in co-cultures in presence of anti-GM-

CSF MoAb (Fig.27). Conversely, anti-GM-CSF MoAb did not significantly affect GM-

CSF and MMP9 release by BC cells. These results were further confirmed by qRT-PCR, 

which detected impaired transcription of GM-CSF and MMP9 in WAT progenitors 

exposed to BC, and of MMP9 in WAT progenitors cultured alone (Fig.26). 

These findings suggested GM-CSF to be an up-stream regulator of MMP9 in WAT 

progenitors. Moreover, GM-CSF itself further triggered its own expression in the same 

cells, with a positive feedback regulation. 

 



94 

 

A

***

ti
m

es
-f

o
ld

co
m

p
a
re

d
to

B
C

 c
tr

BC CTR BC transwell 

WAT

WAT 

CTR

WAT transwell 

BC

GM-CSF

ti
m

es
-f

o
ld

co
m

p
a
re

d
to

B
C

 c
tr

B

**

**

MMP9

BC CTR BC transwell 

WAT

WAT 

CTR

WAT transwell 

BC

**

***

***

 

Fig.26 qRT-PCR on co-cultures neutralized for several factors potentially involved in GM-CSF or 

MMP9 up-regulation. MDA-MB-436 (BC) cells and WAT-derived CD45
-
CD34

+
 progenitors were cultured 

alone or in transwell system, in presence of 3nM Bortezomib (Sigma-Aldrich) or 0.4µg/ml MoAb anti-hIL-

1β (#MAB201, R&D) or 0.5-1µg/ml MoAb anti-hGM-CSF (#sc-377039, Santa Cruz Biotechnology). All 

values were normalized for ABL housekeeping gene expression and expressed as times-fold to untreated BC 

control (n=3, ** p<0.01, *** p<0.001, ns: not significant, vs. untreated). A) GM-CSF (CSF2) up-regulation 

in WAT progenitors was significantly reduced by GM-CSF neutralization, in a dose-dependent manner; B) 

MMP9 was efficiently down-regulated by anti-IL-1β and anti-GM-CSF MoAbs in WAT cells after BC 

exposure. Anti-IL-1β MoAb affected MMP9 in WAT progenitors cultured alone. Conversely, Bortezomib 

significantly increased MMP9 expression in BC. 
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Fig.27 GM-CSF quantitation in co-cultures added with potential inhibitors. ELISA (#DGM00, R&D) 

detected hGM-CSF in cellular supernatants from MDA-MB-436 (BC) and WAT progenitors CD45
-
CD34

+ 

co-cultures. GM-CSF was efficiently down-regulated when neutralized by its MoAb (1µg/ml) (n=3, ** 

p<0.01, *** p<0.001, ns: not significant, vs. untreated control).  
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Fig.28 MMP9 release in co-cultures added with potential inhibitors. Representative images of WB 

staining pro-MMP9 (92kDa) in co-cultures from MDA-MB-436 (BC) and WAT CD45
-
CD34

+
 progenitors 

(W), acquired through ChemiDOC MP System. A) Medium was added with 3nM Bortezomib or 0.4µg/ml 

MoAb anti-IL-1β. Bortezomib did not affect MMP9 release, whereas IL-1β neutralization was more effective 

in preventing MMP9 release in direct co-cultures; B) Anti-GM-CSF MoAb (0.5-1µg/ml) added to co-cultures 

significantly prevented MMP9 release in both direct and transwell co-cultures. 
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3.5 GM-CSF and MMP9 inhibition in DIO syngeneic model of BC 

3.5.1 Tumor growth and metastatic spread 

In obesity, the number of CD45
-
CD34

+
 progenitors is markedly increased in WAT, thus 

the impact of GM-CSF and MMP9 was investigated in DIO FVB/Hsd or BALB/c mice. 

To obtain DIO models, 6-week old FVB/Hsd or BALB/c mice were administered with 

HFD for 30 days, before BC orthotopic injection. Mice were considered to be obese at that 

time point (Fig.29).  

BALB/c mice displayed an increased body weight and adiposity, although in a less extent 

compared to FVB/Hsd strain, which weight rapidly increased. 
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Fig.29 Weekly body weight of DIO mice. Mice were administered with ad libitum HFD (60% kcal, 

Brogaarden) for 30 days before BC injection, until the end of experimental procedures. No statistical 

difference was observed between the two strains at time points analyzed (n=20, p>0.05). 

 

FVB/Hsd mice were orthotopically injected with primary murine MMTV-ErbB2
+
 BC cells 

and treated with anti-GM-CSF MoAb and/or MMP9 inhibitor (SB-3CT). A first setting of 

experiments was performed, including distinct controls for each specific treatment 

(Fig.30). The administration of anti-mGM-CSF MoAb or SB-3CT significantly impaired 

BC local growth. SB-3CT was effective in reducing BC growth at early phases (Fig.30B), 
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whereas the anti-tumor effect of anti-GM-CSF MoAb was more stable (Fig.30C). 

Accordingly, metastatic spread to lungs and axillary lymph nodes was strongly reduced in 

treated mice, compared to controls (Fig.31). 

 

A
MMTV-

ErbB2+ 

injection

0

HFD

FVB/Hsd 6-

week old

females

Therapy

starting

30 33

Tumor volume 

measurement

Sacrifice

56 70

B

C Time (days)

T
u

m
o

r
g

ro
w

th
(m

m
3
)

***

Time (days)

T
u

m
o

r
g

ro
w

th
(m

m
3
)

**

**

*

*

**

**

 

Fig.30 Inhibition of GM-CSF or MMP9 in DIO FVB mice. FVB/Hsd mice, fed with HFD, were injected 

with 0.5x10
6
 MMTV-ErbB2

+
 BC cells. A) Schematic view of experimental design; B) Tumor growth was 

reduced in anti-MMP9 treated mice (SB-3CT, Sigma-Aldrich) compared to controls administered with 

vehicle (n=5, * p<0.05, ** p<0.01); C) Tumor growth reduction in anti-mGM-CSF MoAb (#BE0259, 

BioXcell) mice, compared to IgG2a controls (#BE0089, BioXcell) (n=5, * p<0.05, ** p<0.01, *** p<0.001). 
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Fig.31 Metastases evaluation in lungs from DIO FVB mice. Lungs were analyzed 70 days after MMTV-

ErbB2
+
 injection in DIO FVB/Hsd mice. A) Treated mice displayed significant reduction in metastatic spread 

to lungs compared to respective controls, IgG2a MoAb for anti-GM-CSF or vehicle for SB-3CT (n=5, ** 

p<0.01); B) Representative H&E staining of lungs and axillary lymph nodes (scale bars represent 4mm), 

acquired with APERIO Digital System. 

 

The experiment was repeated to evaluate the combined therapeutic effects and potential 

synergy of the two inhibitors. The co-administration of anti-GM-CSF MoAb and SB-3CT 
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displayed a significant synergistic effect in reducing local tumor growth in MMTV-ErbB2
+ 

BC injected mice (Fig.32). GM-CSF and MMP9 single inhibitions affected tumor growth 

in a similar extent, with no significant difference. 

To mimic clinical practice, the metastatic evaluation was assessed 30 days after tumor 

resection (mastectomy). The combined inhibition displayed significant impairment in 

metastatic spread to lungs and axillary lymph nodes (p<0.001), higher than single 

inhibitions (Fig.33). 
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Fig.32 Tumor growth in DIO FVB mice neutralized for GM-CSF and MMP9. FVB/Hsd mice fed with 

HFD were injected with 0.5x10
6
 MMTV-ErbB2

+
 BC and treated with anti-mGM-CSF MoAb (#BE0259, 

BioXcell) and/or SB-3CT (Sigma-Aldrich). Control mice were administered with both vehicle and IgG2a 

MoAb (#BE0089, BioXcell). A) Schematic representation of experimental design; B) Tumor growth 

measurement started 26 days after BC injection. Combined inhibition significantly reduced BC growth (n=5, 

* p<0.05, ** p<0.01, *** p<0.001 vs. IgG2a+vehicle control); C) Representative images from tumors 

collected during mastectomy, 60 days after BC injection. 
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Fig.33 Lungs metastatic spread in DIO FVB mice treated with combined anti-GM-CSF and anti-

MMP9. Evaluation of metastatic spread 30 days post mastectomy (120 days from MMTV-ErbB2
+
 BC 

injection). A) Quantitation of lungs metastases revealed a synergic effect of GM-CSF and MMP9 inhibitions 

in reducing tumor spread (n=5, ** p<0.01, *** p<0.001, vs. IgG2a+vehicle control); B) Representative 

images of H&E staining of lungs and axillary lymph nodes, acquired with APERIO Digital System (scale 

bars represent 4mm). 
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The role of GM-CSF and MMP9 in tumor progression was also investigated in DIO 

BALB/c injected with TNBC (4T1 cells). The model was characterized by highly 

aggressive tumor profile, with a fast tumor growth and metastatic spread to multiple sites, 

including lungs, spleen and liver. Mastectomy was performed 20 days after 4T1 injection 

(Fig.34A).  

BC growth was significantly reduced in all treated groups (p<0.001), starting 2 weeks after 

tumor injection, confirming previously obtained results in FVB/Hsd mice (Fig.34B).  

All mice displayed, 15 days after mastectomy, axillary lymph nodes swelling and high 

metastatic infiltration in lungs, which lost their normal lobular shape and architecture 

(Fig.35). Nevertheless, treated mice displayed less widespread metastases compared to 

control mice, especially in case of SB-3CT administration. However, the quantitation of 

metastases was not possible due to the too extensive tumor infiltration in lungs, which 

lobules often appeared as a whole tumor mass.  

Spleens were deeply infiltrated: spleens collected from tumor-bearing mice appeared 

enlarged compared to un-injected mice and larger in untreated controls compared to treated 

mice (Fig.36).  

Collectively, these data suggested that GM-CSF and MMP9, produced by WAT, might 

have a significant role in promoting local and metastatic BC progression in a setting of 

obesity, both in TNBC and in ErbB2
+
 BC. 
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Fig.34 Effect of GM-CSF and/or MMP9 inhibition in DIO BALB/c mice. BALB/c mice were 

administered with HFD for 30 days and injected with 0.03x10
6
 4T1 cells. A) Schematic view of experimental 

design; B) Tumor growth measured 7 days after BC injection until mastectomy. All treated mice significantly 

decreased local BC growth compared to controls, administered both with vehicle and IgG2a MoAb (n=10, 

*** p<0.001); C) Representative images of tumors collected during mastectomy, 20 days after BC injection. 
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Fig.35 Lungs metastases in DIO BALB/c mice. Representative H&E staining of lungs and axillary lymph 

nodes, collected 15 days after mastectomy, in HFD BALB/c mice injected with 4T1 cells. Images were 

acquired with APERIO Digital System (scale bars represent 3mm). 
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Fig.36 Spleens collected from DIO BALB/c mice injected with 4T1. Representative images of spleens, 

collected 15 days post mastectomy, from HFD BALB/c mice. Spleen from a not-tumor bearing DIO BALB/c 

mouse was used as negative control. In tumor-bearing mice, controls displayed higher spleen swelling 

compared to treated mice. 
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3.5.2 Immune system regulation 

GM-CSF and MMP9 ability to regulate immune system was investigated in syngeneic 

models of BC, through a multiparametric flow cytometry analysis. 

Several immune populations, both lymphoid and myeloid compartments, were analyzed in 

PB, peritumoral WAT and BC tumors, collected from both DIO FVB/Hsd-MMTV-ErbB2
+
 

and BALB/c-4T1 mice. 

Circulating levels of classic monocytes and inflammatory monocytes were strongly 

impaired in anti-GM-CSF treated mice compared to controls, in both syngeneic models 

(Fig.37). Other myeloid cells were impaired in a less extent, including granulocytes, 

whereas dendritic cells were unaffected by the treatment.  

NK cells and lymphoid populations, such as B lymphocytes, T-helper and cytotoxic T 

lymphocytes, were also unaffected by GM-CSF neutralization (data not shown). 

Conversely, circulating T-regs were significantly reduced in both models (p<0.01, Fig.37). 

Tumors and peritumoral WAT were analyzed for immune cells infiltration (Fig.38-39): T-

regs and some myeloid cells were found reduced after anti-GM-CSF treatment, compared 

to IgG2a control. Cells involved in immunosuppression such as MDSCs were highly 

reduced: G-MDSCs were impaired in both tumor and WAT and intratumoral Mo-MDSCs 

were efficiently reduced. Macrophages and TAMs, quantified as CD206
+
MHCII

low 

macrophages, were also impaired in treated mice. 

Furthermore, T-regs were found to be significantly reduced in peritumoral WAT in both 

BC models, when GM-CSF was neutralized. 

Taken together, these data suggested that GM-CSF might promote immune cells 

recruitment in tumor microenvironment, establishing immunosuppressive mechanisms and 

fostering tumor escape. 

Anti-MMP9 inhibition did not influence PB, WAT or tumor immune populations, 

compared to vehicle-administered control mice (data not shown). 
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Fig.37 Flow cytometry analysis on circulating immune cells in DIO syngeneic mice neutralized for 

GM-CSF. A) Absolute quantitation of cells in PB, collected from DIO FVB/Hsd injected with MMTV-

ErbB2
+
 BC (30 days post injection) and BALB/c injected with 4T1 (15 days post injection). Anti-GM-CSF 

treated mice displayed a significant decrease of several immune cells (n=10, * p<0.05, ** p<0.01, *** 

p<0.001, ns: not significant, vs. IgG2a control); B) Gating strategy (top line) and representative images of 

gated cells in PB collected from BALB/c mice. 
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Fig.38 Absolute quantitation of peritumoral and intratumoral immune cells in DIO mice neutralized 

for GM-CSF. Number of immune cells per gram (g) of tissue in tumors (A) or peritumoral WAT (B), 

collected from DIO syngeneic mice (n=10, * p<0.05, ** p<0.01, *** p<0.001, ns: not significant vs. 

respective IgG2a control). 
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Fig.39 Flow cytometry analysis on intratumoral and peritumoral immune cells. Gating strategy (top 

line) and representative images of macrophages (CD45
+
CD11b

+
F4/80

+
), G-MDSCs (CD45

+
Ly6C

dim
Ly6G

+
) 

and Mo-MDSCs (CD45
+
Ly6G

-
Ly6C

+
) detected in peritumoral WAT collected from anti-GM-CSF treated 

mice compared to IgG2a controls. 

 

To further support the hypothesis, WAT and tumor tissue from anti-GM-CSF treated mice 

were analyzed by qRT-PCR. A PCR array was used to evaluate molecules potentially 

involved in mouse inflammation and immunity regulation. In anti-GM-CSF treated mice, 

several factors involved in immunosuppression were down-regulated in both WAT and 

tumor, compared to IgG2a controls (Fig.40). In general, gene expression was mostly 

affected in WAT compared to tumor tissue, suggesting a strong reduction of WAT 

immunosuppressive activity. 

Some immunosuppressive factors were detected to be down-regulated, such as IL-10, IL-5, 

CXCL5 and CD274 (PD-L1). In addition, some molecules and receptors, mainly involved 
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in TAMs and MDSCs recruitment and functionality, were down-regulated, such as CCL22, 

CCL4, IL-1β and CXCR5. Of note, GM-CSF (CSF2) itself was found down-regulated in 

both WAT and tumor tissue, confirming the in vitro results that suggested the presence of a 

feedback regulation. 
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Fig.40 Mouse inflammation and immune system related-genes analysis. Peritumoral WAT and BC 

tumors were collected from DIO FVB/Hsd mice, injected with MMTV-ErbB2
+
 BC cells and treated with 

anti-GM-CSF. Gene expression was analyzed through PCR Array (#PAMM-181Z, Qiagen). Results were 

calculated with web-based software RT
2
 Profiler PCR Array Data Analysis. Values are displayed as times-

fold expression compared to IgG2a MoAb controls (n=5). 

 

3.5.3 Inhibition of intratumoral angiogenesis 

To investigate if angiogenesis was affected by the inhibition of GM-CSF and/or MMP9, 

intratumoral microvessel density (MVD) was investigated, through a double immune-

fluorescence analysis. IF stained both endothelial cells (CD31
+
) and pericytes (α-SMA

+
), 

in tumor-bearing DIO BALB/c and FVB/Hsd mice.  
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In both BC models, quantitation of blood vessels indicated a strong inhibition of 

angiogenesis in treated tumors compared to control group, with a significantly (p<0.01) 

lower MVD (Fig.41). The co-administration of inhibitors further impaired tumor 

angiogenesis (p<0.001), suggesting that both factors might be crucial in promoting BC 

neovascularization.  

The ratio between CD31
+
/α-SMA

+
 vessels was not significantly affected by any treatment; 

however, the combined therapy targeted more α-SMA
+
 cells than CD31

+
 endothelial cells 

(Fig.41D). 
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Fig.41 Reduced neoplastic angiogenesis in DIO syngeneic mice. Representative images (A) acquired with 

Leica confocal microscope (20x magnification). Staining was performed with anti-mCD31 (green, 1:20 

#ab28364, Abcam), anti-αSMA (red, 1:3000 #A2547, Sigma-Aldrich) and DAPI nuclear staining (blue). 

Scale bars represent 100µm. Analysis of intratumoral MVD in DIO BALB/c mice injected with 4T1 cells (B) 

or FVB/Hsd mice injected with MMTV-ErbB2
+
 BC cells (C). Blood vessels quantitation was performed with 

ImageJ software. In all treated mice the number of vessels was significantly reduced (n=3, ** p<0.01, *** 

p<0.001 vs. vehicle+IgG2a control). D) Quantitation of relative amount of CD31
+
 and αSMA

+
 blood vessels 

(n=3), normalized for tumor area in MMTV-ErbB2
+
 injected mice (ns: not significant). 
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3.6 Metformin regulated GM-CSF and MMP9 release by WAT progenitors 

3.6.1 Co-cultures in vitro 

The antidiabetic drug Metformin has been widely reported to inhibit the onset and 

metastatic progression of several BC subtypes in diabetic patients (Goodwin et al., 2011), 

especially in presence of concomitant obesity (Ko et al., 2015). The drug was reported to 

target both BC cells and tumor microenvironment, including endothelial cells and WAT-

derived progenitors (Dallaglio et al., 2014; Orecchioni et al., 2015). 

To assess if Metformin was possibly involved in GM-CSF and/or MMP9 regulation, the 

drug was added to the in vitro co-culture system, between TNBC cells (MDA-MB-436) 

and hWAT CD45
-
CD34

+
 progenitors. 

Metformin was tested at different concentrations on BC and WAT cells, which were 

cultured for 72 hours in presence of the drug (Fig.42). Metformin does not require to be 

metabolized by hepatic enzymes in order to be biologically active. Cells were analyzed to 

assess apoptosis rate and viability through flow cytometry. The chosen dose (5mM) did not 

significantly affect cell viability of both BC and WAT progenitor cells. 

Cellular supernatant was firstly screened for angiogenesis and inflammatory mediators, 

through antibody array (Fig.43). Metformin affected the release of several factors in both 

single and co-cultures: TIMP-4, IGFBP2, IGFBP3, Endostatin and Angiogenin were 

reduced in BC cells (Fig.43B, top panel); IL-8 and SerpinE1 release was impaired in WAT 

progenitors (Fig.43B, middle panel).  

GM-CSF and MMP9 were strongly inhibited by Metformin in co-cultures, but not in single 

cells cultures, suggesting that the drug prevented the observed up-regulation in WAT 

progenitors (Fig.43B bottom panel).  

Of note, VEGF was detected to be up-regulated in WAT progenitors cultured alone, but 

not in co-cultures or in BC cells (Fig.43B, middle panel). This is in accordance with some 

recent findings suggesting the existence of a paradoxical regulation of angiogenesis 
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mediated by the drug, that differed according to the cell type analyzed (Dallaglio et al., 

2014). 
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Fig.42 Metformin dose evaluation in vitro. Different concentrations (2-10nM) of Metformin (Sigma-

Aldrich) were tested to determine the unaffecting dose on cell viability. A) Gating strategy of flow cytometry 

analysis to isolate viable and nucleate cells (Syto16
+
7AAD

-
AnnexinV

-
); B) Percentages of viable cells after 

72 hours: MDA-MB-436 cells (top panel) or hWAT CD45
-
CD34

+
 progenitors (bottom panel). The chosen 

dose (5mM) did not alter cells viability (n=3, * p<0.05 vs. untreated). 
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Fig.43 Antibody array on co-cultures added with Metformin. Metformin (5mM) was added to MDA-MB-

436 and WAT CD45
-
CD34

+
 progenitors cultured alone or in transwell system. Cellular supernatant was 

screened through Proteome Profiler array (#ARY007, R&D). A) Representative images acquired with 

ChemiDOC MP System; B) Dots intensity quantitation using ImageJ software: values are displayed as 

percentages compared to untreated cells (adapted from Orecchioni et al., Int J Cancer, 2015). 
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Several co-cultures, using WAT CD45
-
CD34

+
 cells isolated from different subjects (n=5), 

were analyzed for GM-CSF and MMP9 protein levels in presence of Metformin.  

GM-CSF release was significantly inhibited in both transwell and direct co-cultures, as 

shown by ELISA (Fig.44). Of note, Metformin failed to down-regulate GM-CSF release in 

BC seeded alone. 

MMP9 expression in cellular supernatant was analyzed with WB, confirming the drug 

ability to prevent protein release in co-cultures, but not in single cells cultures (Fig.45). 

Accordingly, zymography confirmed the reduced enzymatic activity of MMP9 in direct co-

cultures in presence of Metformin (Fig.46).  

Unexpectedly, the mRNAs levels of GM-CSF and MMP9 were not down-regulated by 

Metformin in WAT progenitors, suggesting an alternative mechanism of inhibition of 

proteins release (Fig.47). Although, GM-CSF transcripts were found up-regulated by 

Metformin in both BC and WAT progenitors in transwell co-cultures, suggesting a more 

complex regulation induced by the drug. 

 

h
G

M
-C

S
F

(p
g

/m
l)

WAT BC BC + WAT

direct

co-culture

BC + WAT 

transwell 

co-culture

*

**

ns

 

Fig.44 Effect of Metformin on GM-CSF release in co-cultures. Metformin (5mM) was added to in vitro 

co-cultures between MDA-MB-436 and WAT CD45
-
CD34

+
 progenitors. GM-CSF quantitation was 

performed through ELISA (#DGM00, R&D). Metformin significantly inhibited GM-CSF release in co-

cultures, but not in BC single cultures (n=5, * p<0.05, ** p<0.01, ns: not significant, vs. untreated). 
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Fig.45 Metformin inhibited MMP9 release in co-cultures. Representative image of WB staining pro-

MMP9 (1:2000 #ab76003, Abcam), acquired with ChemiDOC MP System. Metformin (5mM) strongly 

affected MMP9 release in co-cultures between MDA-MB-436 and WAT CD45
-
CD34

+ 
progenitors. 

 

 

Fig.46 Zymography on culture supernatants added with Metformin. Representative image of zymogram 

acquired through ChemiDOC MP System. Metformin (5mM) was added to co-cultures of MDA-MB-436 and 

WAT progenitors, inhibiting MMP9 proteolytic activity in direct co-cultures. 
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Fig.47 Transcriptional regulation induced by Metformin. qRT-PCR analyzed MDA-MB-436 (BC) and 

WAT CD45
-
CD34

+
 progenitors alone or in transwell co-cultured, treated or not with 5mM Metformin. 

Values of GM-CSF (A) or MMP9 (B) were normalized for ABL gene expression and expressed as times-fold 

to corresponding untreated sample (n=5, ** p<0.01, *** p<0.001, ns: not significant). 
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3.6.2 Metformin effect in xenograft model of BC 

NSG mice, injected with MDA-MB-436 cells alone or in combination with hWAT CD45
-

CD34
+
 progenitors, were administered with Metformin in drinking water (2mg/ml). Mice 

weight, serum levels of glucose, cholesterol and triglycerides were not significantly 

affected by the treatment, suggesting that the drug had not adverse effects on mice 

metabolism (data not shown). Tumor growth was significantly inhibited by Metformin in 

all treated mice (Fig.48).  

Circulating levels of hGM-CSF were analyzed through HS ELISA. In all treated mice a 

reduction of hGM-CSF was detected, compared to untreated controls. The reduction was 

highly significant in co-injected mice and the effect was time-dependent (Fig.49). 

hMMP9 expression, previously demonstrated to be up-regulated in hBC-hWAT co-

injected mice, was reduced in tumors collected from Metformin administered mice 

(Fig.50). Conversely, Metformin did not reduce hMMP9 expression in mice injected with 

hBC alone, although pro-MMP9 was even higher in treated compared to untreated ones. 

These data confirmed a new possible effect of Metformin in vivo, through the modulation 

of GM-CSF and MMP9. 
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Fig.48 Tumor growth in xenograft mice treated with Metformin. NSG mice were injected with 1x10
6
 

MDA-MB-436 cells alone or in combination with 0.2x10
6
 WAT CD45

-
CD34

+
 progenitors (n=12 per study 

arm). Metformin was administered in drinking water (2mg/ml) starting 3 days after BC injection. Tumor 

growth was reduced in treated mice compared to respective controls (** p<0.01, *** p<0.001). 
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Fig.49 Quantitation of circulating hGM-CSF in xenograft models treated with Metformin. Metformin 

significantly reduced hGM-CSF in plasma of NSG mice injected with MDA-MB-436 (BC) alone or with 

hWAT CD45
-
CD34

+
 (n=5, * p<0.05, ** p<0.01, *** p<0.001 vs. respective untreated). The quantitation was 

done through HS ELISA (#HSGM0, R&D), values expressed as times-fold compared to untreated BC mice. 
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Fig.50 Metformin administration to xenograft mice reduced MMP9 up-regulation in co-injected mice. 

Representative image of WB detecting pro- and active MMP9 (1:100, #10375-2-AP, Proteintech) in whole 

tumor lysate, acquired with ChemiDOC MP System. Tumors collected from Metformin-treated co-injected 

(MDA-MB-436 + WAT progenitors) mice displayed reduced MMP9 expression, in both precursor and active 

forms, compared to untreated controls. Beta actin was used as loading control. 

 

3.6.3 Metformin administration to DIO syngeneic model 

As previously demonstrated, Metformin was able to reduce GM-CSF and MMP9 release in 

vitro and in vivo. The efficacy of the drug was then questioned in DIO syngeneic mice, 

which were administered either with Metformin, anti-GM-CSF MoAb or SB-3CT.  

Metformin efficacy in reducing BC volume was confirmed, displaying the same efficiency 

of anti-GM-CSF or anti-MMP9 specific treatments (Fig.51).  

Similarly, the number of metastases in lungs and axillary lymph nodes were significantly 

reduced in all treated mice compared to controls (p<0.01, Fig.52). Of note, none of 

Metformin treated mice displayed axillary lymph nodes swelling, whereas all control mice 

displayed deep tumor infiltration and significant lymph nodes swelling. 
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Fig.51 Metformin effect on BC growth in DIO syngeneic models. FVB/Hsd mice, fed with HFD, were 

injected with 1x10
6
 MMTV-ErbB2

+
 BC cells. Mice were treated with anti-mGM-CSF MoAb or SB-3CT or 

Metformin, which was dissolved in drinking water (n=5 per study arm). A) Tumor growth was monitored, 

starting 24 days after BC injection. A significant reduction was detected in all treated mice compared to 

vehicle+IgG2a controls (* p<0.05, ** p<0.01, *** p<0.001); B) Representative images of tumors collected 

during mastectomy, 60 days after BC injection. 
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Fig.52 Metastatic evaluation in lungs from DIO mice treated with Metformin. Lungs and axillary lymph 

nodes were collected from DIO FVB/Hsd mice injected with MMTV-ErbB2
+
 BC. A) Quantitation of lungs 

metastases revealed a significant reduction in metastatic spread in all treated mice (n=5, ** p<0.01 vs. 

vehicle+IgG2a controls); B) Representative H&E staining images acquired with APERIO Digital System 

(scale bars represent 4mm). 

 

The quantitation of intratumoral angiogenesis was evaluated through IF staining of 

CD31
+
αSMA

+
 vessels (Fig.53): among different drugs, Metformin was the most effective 

in reducing angiogenesis (p<0.001), compared to anti-GM-CSF or anti-MMP9 specific 

treatments (p<0.01). 

Multiparametric flow cytometry analysis of PB and tissues, collected from Metformin-

treated mice, revealed that the drug had similar effects displayed by anti-GM-CSF specific 

neutralization, regarding myeloid cells and immunosuppressive microenvironment 

modulation (Fig.54-55).  

Metformin reduced circulating levels of monocytes, inflammatory monocytes and 

granulocytes, similarly to GM-CSF neutralization (Fig.54). Conversely, dendritic cells 

were significantly reduced by Metformin, but not by GM-CSF specific neutralization. 
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Several populations involved in immunosuppression and tumor immune escape, such as T-

regs and TAMs, were down-regulated in peritumoral WAT, whereas G-MDSCs were 

strongly impaired in tumors of Metformin treated mice (Fig.55). Additionally, Metformin 

significantly reduced the presence of inflammatory monocytes in both tumors and WAT, 

supporting the anti-inflammatory activity of the drug. 

Collectively these data suggested that GM-CSF and MMP9 inhibition, mediated by 

Metformin, might explain some of its anti-tumor effects already reported in BC preclinical 

models. 
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Fig.53 Intratumoral angiogenesis regulated by Metformin. DIO FVB/Hsd mice injected with MMTV-

ErbB2
+
 BC were treated either with Metformin, anti-GM-CSF MoAb or SB-3CT. A) Representative images 

acquired with Leica Confocal microscope (20x magnification). Staining was performed with anti-mCD31 

(green, 1:20 #ab28364, Abcam), anti-αSMA (red, 1:3000 #A2547, Sigma-Aldrich) and DAPI nuclear 

staining (blue). Scale bars represent 100µm; B) MVD evaluation in BC through IF (n=3, ** p<0.01, *** 

p<0.001 vs. vehicle+IgG2a control). 
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Fig.54 Circulating immune cells in Metformin treated mice. Multiparametric flow cytometry analysis on 

PB from DIO FVB/Hsd mice, injected with MMTV-ErbB2
+
 BC. Metformin and GM-CSF inhibition had 

similar effects (n=5, * p<0.05, ** p<0.01, *** p<0.001, ns: not significant, vs. IgG2a control). 
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Fig.55 Metformin regulation of immunity in tumor microenvironment in DIO syngeneic mice. 

Multiparametric flow cytometry analysis of BC (A) and peritumoral WAT (B) isolated from DIO FVB/Hsd 

mice injected with MMTV-ErbB2
+
 BC cells: direct comparison of Metformin and GM-CSF neutralization. 

The two treatments displayed similar effects in modulating immune cells (n=5, * p<0.05, ** p<0.01, *** 

p<0.001, ns: not significant, vs. IgG2a control). 
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4. Discussion 
 

Recent and abundant epidemiology and clinical literature have reported a relationship 

between WAT and BC progression (van den Brandt et al., 2000; Cleary P and Grossmann, 

2009). In particular, dysfunctional WAT in obesity has been associated with an increased 

risk of developing BC and a poorer prognosis. 

WAT is composed by several populations, which might cooperate to promote the 

establishment of a permissive microenvironment (Muller C et al., 2013; Bertolini et al., 

2014; Orecchioni et al., 2015). 

A complex network of interactions exists between different WAT stroma cells and BC. 

Among them, the interaction with the progenitor-like population, contained in the CD45
-

CD34
+
 fraction, seemed particularly relevant. This resident population of progenitors has 

recently been characterized in the SVF from lipofilling samples, displaying some unique 

features compared to BM-derived progenitors (Martin-Padura et al., 2012; Orecchioni et 

al., 2013). The fraction is composed by two distinct sub-populations of progenitors, ASCs 

and EPCs, displaying different surface markers and biological properties. The role of these 

progenitors in BC progression was extensively investigated in preclinical models (Martin-

Padura et al., 2012; Zhang Y et al., 2012; Orecchioni et al., 2013). WAT progenitors 

increased local tumor growth and metastatic spread to lungs and axillary lymph nodes. In 

addition, they promoted BC vascularization, differentiating to mature endothelial cells 

(EPCs) or pericytes (ASCs) and being recruited into blood vessels (Zhang Y et al., 2012; 

Orecchioni et al., 2013). ASCs were also able to generate CAAs and fibroblast-like cells, 

which might contribute to BC progression (Chandler et al., 2012; Zhang Y et al., 2012). 

ASCs and EPCs synergistically contributed to EMT in ductal carcinoma (Orecchioni et al., 

2013). 
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The molecular mechanism underlying the interaction between WAT progenitors and BC 

has not completely been clarified yet. The involved molecular signaling was investigated 

in the present study. 

 

4.1 Identification of GM-CSF and MMP9 in WAT progenitors-BC interaction 

Several studies suggested that distinct molecules, produced either by BC or ASCs, might 

promote a permissive tumor microenvironment. Among them, IL-6, TGFβ and IL-10 were 

the most studied (Walter et al., 2009; Razmkhah et al., 2011; Kucerova et al., 2013), 

frequently associated with the obesity-related chronic inflammation (Subbaramaiah et al., 

2011; Iyengar et al., 2016). 

A general overview of BC-WAT progenitors interplay was obtained through a screening of 

multiple factors through a proteomic antibody array. It analyzed 55 soluble factors 

involved in human angiogenesis, inflammation and ECM remodeling. A preliminary 

evaluation was performed using a TNBC human cell line (MDA-MB-436), that has already 

been used in cell assays and in xenograft models in combination with primary human 

WAT progenitors (Orecchioni et al., 2013; Martin-Padura et al., 2012). 

Paracrine signaling was predominantly proposed in defining the interaction between WAT 

progenitors and BC (Kucerova et al., 2013). However, some cell-to-cell mechanisms were 

also suggested, such as exosome-related interactions (Lin et al., 2013). Therefore, cellular 

supernatant was screened in single cell cultures, in transwell co-cultures (allowing only 

paracrine interactions) and in direct co-cultures (allowing also adhesion-mediated cell-to-

cell mechanisms). 

BC produced a large amount of pro-angiogenic and inflammatory mediators, whereas 

WAT progenitors expressed a limited variety of these factors, such as IL-8 and SerpinE1. 

However, secreted levels of these highly secreted molecules were not affected in co-

cultures, suggesting to not be involved in the interaction. 
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Two soluble molecules were found significantly up-regulated in both transwell and direct 

co-cultures: GM-CSF and MMP9.  

The observed results needed to be further validated with quantitative assays, using 

different BC cell lines and WAT progenitors isolated from different subjects. Therefore, 

protein up-regulation was confirmed through ELISA, whereas MMP9 release and activity 

were detected, respectively, by WB and zymography. 

GM-CSF and MMP9 were detected to be up-regulated in co-culture supernatants in all 

three available TNBC cell lines (MDA-MB-436, MDA-MB-231, HCC1937), whereas in 

ductal ER
+
 carcinoma (ZR-75-1) were poorly detectable. 

qRT-PCR analysis revealed that WAT progenitors significantly up-regulated transcription 

of both transcripts, after TNBC exposure. BC cells did not modify their baseline 

expression after being exposed to WAT progenitors. Of note, ductal carcinoma displayed a 

reduced production of GM-CSF and MMP9, compared to other TNBC cell lines. This is in 

accordance to the more aggressive phenotype observed in TNBC compared to ductal ER
+
 

carcinoma. 

WAT progenitors cultured alone expressed poor levels of both factors and secreted 

proteins were usually undetectable in culture media. However, after being exposed to BC, 

the secreting profile of these cells dramatically changed, with a significant release of GM-

CSF and MMP9. The up-regulation occurred even when murine WAT progenitors were 

co-cultured with human BC cell line, suggesting that the mechanism might be highly 

conserved. 

The up-regulation occurred in both transwell and direct co-cultures, suggesting being 

dependent on paracrine interactions. Although, an adhesion-mediated release cannot be 

exclude for MMP9, due to the higher release detected in direct co-cultures. 

The hypothesis might be that BC induces a cancer-associated phenotype in WAT 

progenitors, which normally do not express significant levels of GM-CSF or MMP9. Upon 
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BC exposure, WAT progenitors displayed a dramatic up-regulation of GM-CSF/MMP9 

transcripts and protein release. 

Since WAT CD45
-
CD34

+
 fraction is composed by distinct progenitor sub-populations, co-

culture experiments were set up with purified ASCs and EPCs. 

Results showed that the highly release occurred in both progenitors after BC exposure, in a 

complementary manner: MMP9 was higher released by ASCs, whereas GM-CSF was 

preferentially up-regulated by EPCs. This is in accordance with the previously published 

data obtained in preclinical models, where ASCs and EPCs cooperated to support BC 

growth, angiogenesis and metastatic spread (Orecchioni et al., 2013). However, distinct 

up-stream regulatory mechanisms cannot be excluded for the two populations. 

ASCs have already been reported to produce higher levels of GM-CSF compared to BM-

derived mesenchymal stem cells or fibroblasts (Banas et al., 2008). The release of GM-

CSF by ASCs was enhanced in hypoxia conditions (Rehman et al., 2004), suggesting that 

hypoxia-related factors released by BC cells might be involved in the observed protein 

release. According to our findings, GM-CSF up-release was detected in direct co-cultures 

media between SKBR3 BC cell line and ASCs (Kucerova et al., 2013), although the 

authors did not investigate its specific source, attributing the increased expression to BC 

altered profile. Another study reported that ASCs expressed high levels of MMP9, which 

secretion was not altered in co-cultures with inflammatory cells (Hattori and Ishihara, 

2015). MMP9 was also produced by BM-derived EPCs and its secretion was significantly 

enhanced in co-cultures with BC cells (Suriano et al., 2008). 

To our knowledge, this is the first work that specifically investigates the role of GM-CSF 

and MMP9 release in BC-associated WAT progenitors. 

 

4.2 Up-regulation of GM-CSF and MMP9 in xenograft models 

To assess if the observed in vitro interaction occurred in preclinical models, WAT 

progenitors were co-injected with TNBC cells in immunodeficient NSG mice. This model 
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was previously used to validate the pro-tumorigenic effects of WAT progenitors in BC 

xenografts (Martin-Padura et al., 2012; Orecchioni et al., 2013).  

GM-CSF is a known hematopoietic and growth cytokine, able to mobilize stem cells to PB 

and to induce the differentiation of macrophages and granulocytes (Bhattacharya et al., 

2015). Therefore, circulating levels of hGM-CSF were investigated in PB through HS 

ELISA. This assay did not cross-react with the murine counterpart, confirming its 

specificity. Mice injected with WAT progenitors alone, as negative controls, did not 

display any detectable levels of the cytokine. 

On the contrary, MMP9 expression was evaluated in tumor microenvironment, since its 

activity is essential in promoting tumor invasion into surrounding tissues (Duffy et al., 

2000). In addition to the inactive pro-MMP9, active forms were also detected in whole 

tumor lysate, due to the presence in tumor microenvironment of other MMPs and enzymes, 

mostly absent in vitro conditions. 

Both human GM-CSF and MMP9, including its biologically active forms, were found 

significantly higher released in co-injected mice, compared to mice injected with BC alone. 

However, transcriptional up-regulation was not observed in BC cells collected from co-

injected mice, suggesting WAT progenitors as putative secreting cells. 

The presence of WAT progenitors was associated with a more aggressive BC phenotype, 

directly linking GM-CSF and MMP9 release to the previously observed increased tumor 

invasion and metastatic spread in these xenograft models (Martin-Padura et al., 2012; 

Zhang Y et al., 2012; Orecchioni et al., 2013). 

 

4.3 Investigation of up-stream mechanisms leading to GM-CSF/MMP9 release 

The mechanism underneath GM-CSF and MMP9 up-regulation needed to be unveiled. In 

the present work, several BC cell lines differentially stimulated GM-CSF and MMP9 

release by WAT progenitors. This suggests that distinct tumor cells produce different 
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amount of soluble mediator(s), which may regulate GM-CSF/MMP9 transcription in WAT 

progenitors. 

Both GM-CSF and MMP9 were induced by several pathways, including NF-κB, which 

was often found de-regulated in obesity (Morris et al., 2011). However, this hypothesis 

was excluded since Bortezomib, a specific NF-κB inhibitor, was unable to prevent GM-

CSF and MMP9 up-regulation in vitro co-cultures. 

IL-1β was reported to induce the expression of GM-CSF in WAT (Kim et al., 2008) and 

MMP9 in mature endothelial cells (Qin et al., 2012). The neutralization of IL-1β in single 

cell cultures was able to reduce GM-CSF/MMP9 transcription in WAT progenitors, but not 

in BC cells. In co-cultures, the neutralization of the factor reduced MMP9 transcriptional 

up-regulation in cancer-associated WAT progenitors, but failed to prevent GM-CSF 

release. 

One hypothesis might be that BC produces high levels of IL-1β that, in turn, induces the 

observed MMP9 transcriptional up-regulation in WAT progenitors, independently from 

NF-κB pathway activation. This is supported by the finding that IL-1β release is 

significantly altered in obesity, contributing to chronic low grade inflammation and 

cancerogenesis (Subbaramaiah et al., 2011; Arendt et al., 2013). 

GM-CSF was reported to up-regulate MMP9 in squamous carcinoma, increasing 

invasiveness and malignancy of tumor cells (Gutschalk et al., 2013). Accordingly, our 

results demonstrated that GM-CSF neutralization significantly reduced MMP9 

transcription and protein release in co-cultures, targeting WAT progenitors, but not BC. 

Of note, in the present work GM-CSF neutralization significantly affected its own release 

in vitro co-cultures and in vivo syngeneic models. The neutralization of GM-CSF resulted 

in its impaired transcription and protein release, in WAT progenitors both cultured alone or 

after BC exposure. From these findings, GM-CSF might affect the dysfunctional profile of 

WAT progenitors through two mechanisms: a) Induction of a positive feedback regulation 

on its own release; b) Transcriptional up-regulation of MMP9.  
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The existence of a positive GM-CSF feedback regulation has already been reported in 

myeloid cells (Seydel et al., 2008), where GM-CSF induced STAT5 epigenetic regulation 

of its own promoter. 

The last question is whether the amount of GM-CSF produced by BC is sufficient alone to 

trigger GM-CSF/MMP9 production by WAT progenitors or, more likely, other tumor-

related factors are involved in this complex regulatory network. Moreover, IL-1β role 

needed to be clarified. IL-1β might be induced by GM-CSF and, consequently, implicated 

into MMP9 regulation, or might independently affect MMP9 expression. In support of the 

first option, GM-CSF was reported to significantly induce IL-1β expression in 

inflammatory microenvironment (Kim et al., 2008). 

 

4.4 Role of GM-CSF and MMP9 in BC progression 

GM-CSF displays a pleiotropic activity on a multitude of cells, including both precursors 

and mature cells (Bhattacharya et al., 2015). However, its main role involves immune 

system regulation, through the modulation of granulocytes, macrophages and dendritic 

cells (DC) in inflammation and autoimmunity. 

The increased expression of type IV collagenase, MMP9, was instead correlated to higher 

tumor grade, metastasis and angiogenesis in several types of cancer (Duffy et al., 2000; 

van’t Veer et al., 2002; La Rocca et al., 2004; Hattori and Ishihara, 2015), including 

TNBC (Mehner et al., 2014). 

In the present study the impact of GM-CSF and MMP9 on tumor progression was 

evaluated in DIO FVB/Hsd and Balb/c mice injected, respectively, with primary MMTV-

ErbB2
+
 BC cells or 4T1 TNBC cell line. The DIO models were chosen because in obesity 

the number of WAT CD45
-
CD34

+
 progenitors is dramatically increased (Martin-Padura et 

al., 2012; Dallaglio et al., 2014). Furthermore, the possible regulatory effect of GM-CSF 

over immune system can be assessed only in immunocompetent syngeneic models.  
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Both GM-CSF and MMP9 inhibitions significantly impaired local tumor growth and 

metastatic spread to lungs, confirming the relevance of these molecules in promoting a 

permissive tumor microenvironment, independently from BC hormone receptors status. 

The combined inhibition synergically impaired BC progression and angiogenesis, 

strengthened the relevance of these factors in tumor progression.  

The observed outcome may not involve a direct effect on tumor cells, but, more likely, a 

modulation of tumor microenvironment and ECM properties. In particular, in GM-CSF 

neutralization there was a reduction of tumor angiogenesis and immunosuppressive 

microenvironment. Conversely, MMP9 inhibition impaired tumor angiogenesis affecting 

ECM properties, reducing tumor invasion and metastasis. At variance with some studies 

reporting a possible modulation of T-cells induced by MMP9 (Benson et al., 2011), in the 

present study MMP9 inhibition did not affect immune cells in PB, tumors or peritumoral 

WAT. Both factors have already been reported to promote angiogenesis, through ECM 

remodeling induced by MMP9 (Duffy et al., 2000) or VEGF induced-release caused by 

GM-CSF (Wang et al., 2014). 

Regarding immune regulation, myeloid cells appeared to be the main target of GM-CSF in 

peritumoral WAT. GM-CSF has been reported to regulate the homing of myeloid cells to 

WAT (Kim et al., 2008). In our models, the neutralization of GM-CSF was associated with 

a reduced number of PB monocytes and WAT/tumor macrophages. In particular, TAMs 

(M2 macrophages) were impaired in WAT, supporting the findings of Su et al. (2014), 

who suggested GM-CSF to be a crucial TAMs inducer. Macrophages accumulation was 

previously shown to promote tumor growth in obesity, by increasing chronic inflammation, 

tumor immune escape and angiogenesis (Arendt et al., 2003; Su et al., 2014). Therefore, 

some of the observed effects in anti-GM-CSF treated mice were possibly due to the lower 

macrophages activation. According to TAMs reduction, MDSCs were strongly impaired in 

tumors and WAT collected from anti-GM-CSF mice. In particular, G-MDSCs were 

strongly reduced in both tumor and WAT, whereas Mo-MDSCs were found impaired only 
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in tumors. This is supported by the reported GM-CSF ability to expand MDSCs in BC 

(Morales et al., 2010), further triggering immune tolerant microenvironment. 

In contrast, lymphoid cells seemed to be not affected by GM-CSF neutralization. This was 

expected, as GM-CSF receptors are usually not expressed by T-cells, B-cells and NK-cells 

(Rosas et al., 2007). Of note, T-regs were down-regulated in both WAT and PB from anti-

GM-CSF treated mice. This finding suggests a possible regulatory role of GM-CSF over T-

regs differentiation, supported by the related impaired FOXP3 expression. This is in 

accordance with the proposed role of GM-CSF in T-regs expansion (Gangi et al., 2005; 

Kared et al., 2008).  

Several interleukins and cytokines, involved in immunosuppression, were found strongly 

down-regulated in WAT of GM-CSF neutralized mice: IL-10 is produced by MDSCs and 

TAMs and is involved in immune tolerance and T-regs expansion (Razmkhah et al., 2011); 

CCL2 recruits TAMs and inflammatory monocytes (Arendt et al., 2013; Movahedi et al., 

2010); PD-L1 expression was also down-regulated, suggesting an involvement of GM-CSF 

in the promising PD-1/PD-L1 pathway. These data are in accordance with some recent 

evidence, collected from pancreatic cancer patients, in which in vitro GM-CSF ablation 

helped defeating immune escape mechanisms (Takeuchi et al., 2015). Furthermore, GM-

CSF was reported to induce tolerogenic dendritic cells in BC, activating a regulatory Th2 

immune response and increasing BC malignancy (Ghirelli et al., 2015). 
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Fig.56 Schematic view of the proposed molecular interaction  between BC and WAT-derived 

progenitors. 

 

4.5 Therapeutic intervention targeting GM-CSF and MMP9 and the role of 

Metformin 

GM-CSF over-expression in WAT progenitors might be relevant in the observed pro-

tumorigenic activity of these cells. To our knowledge, this is the first study underlines GM-

CSF over-expression by WAT-derived progenitors in response to BC and its neutralization 

in obese preclinical models. 

The role of GM-CSF in tumor progression has recently been investigated (Gutschalk et al., 

2013; Su et al., 2014; Wang et al., 2014; Ghirelli et al., 2015). However, in many of those 

studies GM-CSF was analyzed when expressed by tumor cells. The knockout of GM-CSF 

in TNBC or its neutralization through specific MoAb in lean xenograft models did not 

affect local tumor growth, but inhibited metastatic spread (Park et al., 2007; Su et al., 

2014). These results strengthen our data collected in orthotopic models with concomitant 

obesity, suggesting that GM-CSF neutralization might be more effective in WAT-enriched 

tumors. 
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The total amount of GM-CSF released in tumor microenvironment might be essential in 

defining its biological effect, which was reported to be dose- and context-dependent (Li et 

al., 2004; Parmiani et al., 2007). A positive correlation was observed between high 

production of GM-CSF, increased metastasis and reduced survival in BC patients (Su et 

al., 2014). Conversely, low levels of GM-CSF were associated with enhanced innate 

immunity response. GM-CSF might enhance vaccine-induced immune response, if 

administered at low doses, whereas an opposite effect was detected at higher dosages 

(Parmiani et al., 2007). This might explain why in some studies GM-CSF was reported to 

have anti-tumor activity (Eubank et al., 2009). 

Our and other findings challenge the therapeutic applications of GM-CSF, which is widely 

used for PB mobilization/collection of hematopoietic stem cells and, more recently, for 

immunotherapy protocols (Arellano et al., 2008). The use of GM-CSF should be critically 

evaluated in BC patients, especially with concomitant obesity.  

To our knowledge, no clinical trial involving GM-CSF inhibition in BC patients was ever 

approved. 

MMP9 was selected as the other putative factor potentially involved in the pro-tumorigenic 

role of WAT-derived progenitors. MMP9 neutralization has already been investigated in 

several preclinical models of BC, including orthotopic TNBC (Mehner et al., 2014). The 

silencing of the molecule in BC cells was associated with an impaired BC growth, 

angiogenesis and invasion in surrounding tissues. However, in those studies MMP9 

production by microenvironment cells, such as WAT-derived progenitors, has never been 

investigated. Conversely, our data suggest that MMP9 neutralization might be more 

effective in obese models of BC compared to their lean counterparts. 

In spite of the encouraging preclinical results, early clinical trials with MMPs inhibitors 

had failed, showing no beneficial effect in cancer patients (Fingleton, 2007). This may be 

explained by the poor efficiency of MMPs inhibitors at that time and/or by the enrolment 

of patients with late-stage, advanced metastatic cancer (Fingleton, 2007). Our data, instead, 
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suggested that MMPs inhibition could be more efficient in the early stages of tumor 

progression and, in particular, in obese patients and/or in WAT-embedded cancers. 

Recently, Metformin administration was reported to significantly reduce BC incidence in 

diabetic patients (Goodwin et al., 2011; Zhang P et al., 2013), especially with concomitant 

obesity, as demonstrated by a recent clinical trial (Ko et al., 2015). Furthermore, 

hyperglycemia and hyperinsulinemia were frequently associated with breast WAT 

inflammation and BC progression with a poor prognosis (Iyengar et al., 2016), suggesting 

Metformin as a safe and cheap therapeutic option.  

In preclinical models, Metformin significantly affected tumor progression and neoplastic 

angiogenesis, targeting both BC and WAT cells (Liu B et al., 2009; Brown et al., 2010; 

Dallaglio et al., 2014; Orecchioni et al., 2015). However, the mechanism by which the 

drug inhibits tumor progression has been so far elusive. In this context, our study is one of 

the first to report GM-CSF and MMP9 as potential Metformin targets. 

In the present work, Metformin significantly reduced factors release in vitro co-cultures 

and in BC xenograft mice. The drug failed in regulating GM-CSF/MMP9 release by single 

BC and WAT progenitors, suggesting to preferentially target proteins higher release in co-

cultures. 

Previous studies confirmed the putative role of Metformin in reducing MMP9 in mature 

endothelial cells (Esfahanian et al., 2012) or in BC (Dallaglio et al., 2014). 

However, in the present study the inhibition did not involve transcriptional regulation, but, 

more likely, post-transcriptional mechanisms and/or protein synthesis and exocytosis. This 

hypothesis might be supported by the finding that Metformin dephosphorylates the 

eukaryotic initiation factor 4E-binding protein (4E-BP) and ribosomal protein S6 kinase 

(S6K) through mTOR inhibition, leading to protein synthesis inhibition (Dowling et al., 

2007).  

Conversely, paradoxical effects induced by Metformin in BC and endothelial cells were 

reported in vitro (Dallaglio et al., 2014): the drug displayed opposite effects over 
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angiogenesis-related genes, with a short-term induction of transcription of pro-

angiogenesis mediators, including VEGF, and long-term anti-angiogenic regulation. This 

might explain some of our contradictory results, which displayed increased VEGF release 

by WAT progenitors and a paradoxical up-regulation of GM-CSF transcripts in co-cultures 

in presence of Metformin.  

Metformin administration to DIO syngeneic models confirmed the anti-diabetic drug 

ability to reduce BC local growth, metastasis and angiogenesis. The effect was comparable 

to anti-GM-CSF or anti-MMP9 specific treatments. Metformin was even more effective in 

reducing intratumoral angiogenesis and in modulating immune system, suggesting that 

more complex regulation of the drug might occur, additionally to the proposed GM-

CSF/MMP9 inhibition. 

Collectively, these data proposed Metformin as inhibitor of GM-CSF and MMP9, which 

might be key targets of its anti-neoplastic activity.  

Even though further investigations are required to clarify the mechanism used by 

Metformin to reduce GM-CSF and MMP9 levels, the present study supports Metformin 

clinical studies in BC, particularly in a setting of obesity and/or insulin resistance. 

 

4.6 Conclusions and future perspectives 

Obesity is often associated with a poor BC prognosis and higher grade. This might be 

partially mediated by the significant expansion of WAT-derived progenitors. WAT 

progenitors displayed increased pro-tumorigenic activity in preclinical model of BC, 

promoting the establishment of a permissive microenvironment. In this context, the 

inhibition of mechanisms involved in BC progression acquires a tremendous relevance in 

the choice of the proper therapeutic strategy.  

In the present study, MMP9 and GM-CSF are suggested as therapeutic targets to disrupt 

the interaction between WAT progenitors and BC cells. These cytokines are poorly 

expressed by WAT progenitors, but face a dramatic up-regulation in the presence of BC 
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cells. The effect was pronounced in TNBC, characterized by high tumor grade and poor 

prognosis.  

To our knowledge, this is the first work specifically investigating the interaction between 

BC and both ASCs and EPCs, isolated from primary human WAT. Present findings unveil 

a dramatic alteration occurring in both ASCs and EPCs, after being exposed to tumor cells. 

WAT progenitors acquire a cancer-associated phenotype, characterized by unique secretion 

profile and higher pro-tumorigenic activity. 

The role of GM-CSF and MMP9 in tumor biology has already been investigated, but, 

within the present work, their inhibition is suggested as potential adjuvant therapy to 

standard chemotherapeutic agents, especially in obesity setting. Of note, both proteins 

appeared to be suitable targets of Metformin, which has widely been investigated as 

repurposed drug in BC clinical trials. The mechanism by which Metformin reduces GM-

CSF/MMP9 protein release needs to be further elucidated. 

The complex network of regulation, leading to GM-CSF/MMP9 up-regulation in WAT 

progenitors, is currently under investigation. However, soluble mediators (GM-CSF, IL-1β 

or others) produced by tumor cells are likely to be involved in this regulation. 

One possible debatable argument might be the validity of this up-regulation in other WAT-

embedded tumors, such as in prostate, colon or even in hematological malignancies. It 

would be of interest to investigate how WAT- or BM-derived progenitors interact with 

different tumors and if the observed GM-CSF/MMP9 up-regulation still occurs. 

Furthermore, GM-CSF and/or MMP9 up-regulation needs to be clarified: it might be not 

restricted to WAT progenitors, but be induced in other tumor microenvironment cells, such 

as CAAs, CAFs, pericytes or mature endothelial cells. 
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Appendix 

Relevant publications: 

 

1. Complementary populations of human adipose CD34+ progenitor cells promote 

growth, angiogenesis, and metastasis of breast cancer 

 

Orecchioni S, Gregato G, Martin-Padura I, Reggiani F, Braidotti P, Mancuso P, Calleri A, Quarna 

J, Marighetti P, Aldeni C, Pruneri G, Martella S, Manconi A, Petit JY, Rietjens M, Bertolini F. 

 

Cancer Res. 2013 Oct 1;73(19):5880-91. doi: 10.1158/0008-5472.CAN-13-0821. 

 

Abstract 

Obesity is associated with an increased frequency, morbidity, and mortality of several types of 

neoplastic diseases, including postmenopausal breast cancer. We found that human adipose tissue 

contains two populations of progenitors with cooperative roles in breast cancer. CD45(
-

)CD34(
+
)CD31(

+
)CD13(

-
)CCRL2(

+
) endothelial cells can generate mature endothelial cells and 

capillaries. Their cancer-promoting effect in the breast was limited in the absence of CD45(-

)CD34(
+
)CD31(

-
)CD13(

+
)CD140b(

+
) mesenchymal progenitors/adipose stromal cells (ASC), which 

generated pericytes and were more efficient than endothelial cells in promoting local tumor growth. 

Both endothelial cells and ASCs induced epithelial-to-mesenchymal transition (EMT) gene 

expression in luminal breast cancer cells. Endothelial cells (but not ASCs) migrated to lymph nodes 

and to contralateral nascent breast cancer lesions where they generated new vessels. In vitro and in 

vivo, endothelial cells were more efficient than ASCs in promoting tumor migration and in 

inducing metastases. Granulocyte colony-stimulating factor (G-CSF) effectively mobilized 

endothelial cells (but not ASCs), and the addition of chemotherapy and/or of CXCR4 inhibitors did 

not increase endothelial cell or ASC blood mobilization. Our findings suggest that adipose tissue 

progenitor cells cooperate in driving progression and metastatic spread of breast cancer. 
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2. The biguanides metformin and phenformin inhibit angiogenesis, local and 

metastatic growth of breast cancer by targeting both neoplastic and 

microenvironment cells 

 

Orecchioni S*, Reggiani F*, Talarico G*, Mancuso P, Calleri A, Gregato G, Labanca V, Noonan 

DM, Dallaglio K, Albini A, Bertolini F. 

* equally contributed 

 

Int J Cancer. 2015 Mar 15;136(6):E534-44. doi: 10.1002/ijc.29193. 

 

Abstract 

The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast 

cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), 

commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit 

angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in 

vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory 

chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited 

the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic 

growth of triple negative and HER2
+
 BC in immune-competent and immune-deficient mice 

orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a 

genetically engineered murine model model of HER2
+
 BC. In vivo, biguanides increased 

pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel 

density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a 

dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. 

Considering their safety profile, biguanides deserve to be further investigated for BC prevention in 

high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy 

consolidation or maintenance therapy for the prevention of BC recurrence. 
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3. The presence of wild type p53 in hematological cancers improves the efficacy of 

combinational therapy targeting metabolism 

 

Allende-Vega N, Krzywinska E, Orecchioni S, Lopez-Royuela N, Reggiani F, Talarico G, Rossi 

JF, Rossignol R, Hicheri Y, Cartron G, Bertolini F, Villalba M. 

 

Oncotarget. 2015 Aug 7;6(22):19228-45. 

 

Abstract 

Manipulation of metabolic pathways in hematological cancers has therapeutic potential. Here, we 

determined the molecular mechanism of action of the metabolic modulator dichloroacetate (DCA) 

in leukemic cells. We found that DCA induces the AMP-activated protein kinase (AMPK)/p53 

pathway with increased efficacy in tumors expressing wild type (wt p53). Clinically relevant, low 

concentrations of doxorubicin synergize in vitro and in vivo with DCA to further enhance p53 

activation and to block tumor progression. Leukemia cell lines and primary leukemic cells 

containing mutant p53 are resistant to the above-described combination approach. However, DCA 

synergized with the Hsp90 inhibitor 17-AAG to specifically eliminate these cells. Our studies 

strongly indicate that depending on the p53 status, different combination therapies would provide 

better treatment with decreased side effects in hematological cancers. 
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4. Mechanisms of obesity in the development of breast cancer 

 

Orecchioni S*, Reggiani F*, Talarico G*, Bertolini F. 

* equally contributed 

 

Discov Med. 2015 Sep;20(109):121-8. 

 

Abstract 

Preclinical models and clinical retrospective data indicate that obesity is associated with a 

significant increase in the incidence, severity, and mortality from different types of cancer, 

including postmenopausal breast cancer. As discussed in the present review, both soluble factors 

and cellular players are involved in the mechanisms promoting local and metastatic breast cancer 

progression by adipose tissue. As the incidence of obesity is increasing worldwide, there is an 

urgent need for adequate preclinical models and preclinical and clinical studies designed to 

investigate how to inhibit the tumor-promoting activity of the adipose tissue. 
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5. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 

demonstrates anti-leukemic activity in acute myeloid leukemia 

 

Allegretti M, Ricciardi MR, Licchetta R, Mirabilii S, Orecchioni S, Reggiani F, Talarico G, Foà R, 

Bertolini F, Amadori S, Torrisi MR, Tafuri A. 

 

Sci Rep. 2015 Dec 17;5:18137. doi: 10.1038/srep18137. 

 

Abstract 

Aberrant activation of the PI3K/Akt/mTOR pathway is a common feature of acute myeloid 

leukemia (AML) patients contributing to chemoresistance, disease progression and unfavourable 

outcome. Therefore, inhibition of this pathway may represent a potential therapeutic approach in 

AML. The aim of this study was to evaluate the pre-clinical activity of NVP-BKM120 (BKM120), 

a selective pan-class I PI3K inhibitor, on AML cell lines and primary samples. Our results 

demonstrate that BKM120 abrogates the activity of the PI3K/Akt/mTOR signaling, promoting cell 

growth arrest and significant apoptosis in a dose- and time-dependent manner in AML cells but not 

in the normal counterpart. BKM120-induced cytotoxicity is associated with a profound modulation 

of metabolic behaviour in both cell lines and primary samples. In addition, BKM120 synergizes 

with the glycolitic inhibitor dichloroacetate enhancing apoptosis induction at lower doses. Finally, 

in vivo administration of BKM120 to a xenotransplant mouse model of AML significantly 

inhibited leukemia progression and improved the overall survival of treated mice. Taken together, 

our findings indicate that BKM120, alone or in combination with other drugs, has a significant 

anti-leukemic activity supporting its clinical development as a novel therapeutic agent in AML. 
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6. Aspirin and atenolol enhance metformin activity against breast cancer by targeting 

both neoplastic and microenvironment cells 

 

Talarico G, Orecchioni S, Dallaglio K, Reggiani F, Mancuso P, Calleri A, Gregato G, Labanca V, 

Rossi T, Noonan DM, Albini A, Bertolini F. 

 

Sci Rep. 2016 Jan 5;6:18673. doi: 10.1038/srep18673. 

 

Abstract 

Metformin can induce breast cancer (BC) cell apoptosis and reduce BC local and metastatic growth 

in preclinical models. Since Metformin is frequently used along with Aspirin or beta-blockers, we 

investigated the effect of Metformin, Aspirin and the beta-blocker Atenolol in several BC models. 

In vitro, Aspirin synergized with Metformin in inducing apoptosis of triple negative and endocrine-

sensitive BC cells, and in activating AMPK in BC and in white adipose tissue (WAT) progenitors 

known to cooperate to BC progression. Both Aspirin and Atenolol added to the inhibitory effect of 

Metformin against complex I of the respiratory chain. In both immune-deficient and immune-

competent preclinical models, Atenolol increased Metformin activity against angiogenesis, local 

and metastatic growth of HER2
+
 and triple negative BC. Aspirin increased the activity of 

Metformin only in immune-competent HER2
+ 

BC models. Both Aspirin and Atenolol, when added 

to Metformin, significantly reduced the endothelial cell component of tumor vessels, whereas 

pericytes were reduced by the addition of Atenolol but not by the addition of Aspirin. Our data 

indicate that the addition of Aspirin or of Atenolol to Metformin might be beneficial for BC 

control, and that this activity is likely due to effects on both BC and microenvironment cells. 
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7. Extracellular ATP induces apoptosis through P2X7R activation in Acute Myeloid 

Leukemia cells but not in normal hematopoietic stem cells 

 

Salvestrini V, Orecchioni S, Talarico G, Reggiani F, Mazzetti C, Bertolini F, Orioli E, Adinolfi E, 

Pezzi A, Cavo M, Lemoli RM, Curti A. 

 

Oncotarget. 2016 Dec 13. doi: 10.18632/oncotarget.13927. 

 

Abstract 

Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer 

cells types. Among the receptors engaged by ATP, P2X7R is the most consistently expressed by 

tumors. P2X7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, 

triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells 

express high level of P2X7R. Here, we show that P2X7R activation with high dose ATP  induces 

AML blast cells apoptosis. Moreover, P2X7R is also expressed  on leukemic stem/progenitor cells 

(LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not 

observed on normal hematopoietic stem cell (HSC) progenitors. Notably, the antileukemic activity 

of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture 

medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. 

Xenotransplant experiments confirmed ATP antineoplastic activity in vivo.  

Overall, our results demonstrate that P2X7R stimulation by ATP induced a therapeutic response in 

AML at the LSC level while the normal stem cell  compartment was not affected. These results 

provide evidence that ATP would be promising for developing innovative therapy for AML. 

  



161 

 

8. GM-CSF and MMP9 are key regulators of the effect of adipose progenitor cells 

over breast cancer onset and metastatic progression (Submitted) 

 

Reggiani F, Labanca V, Mancuso P, Rabascio C, Talarico G, Orecchioni S, Manconi A, Bertolini 

F. 

 

Abstract 

We recently described a human cell population with progenitor-like phenotype (CD45
-
CD34

+
), 

resident in the white adipose tissue (WAT) and able to promote local and metastatic breast cancer 

(BC) progression and angiogenesis. However, the molecular mechanism involved in this 

interaction has been so far elusive. An extensive screening of candidate molecules revealed that 

two proteins were significantly up-regulated in WAT-derived progenitors following culture with 

BC cells: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and Matrix 

metallopeptidase 9 (MMP9). In vivo, both proteins were overexpressed in orthotopic models of 

human BC co-injected with human WAT progenitors. The inhibition of GM-CSF in diet-induced 

obese BC mice led to a reduced intratumor vascularization and to a strong impairment of 

immunosuppressive microenvironment, targeting mainly myeloid cells such as macrophages and 

myeloid derived suppressor cells. This resulted in a significantly reduced local BC growth and 

lower metastatic progression. MMP9 inhibition reduced neoplastic angiogenesis and significantly 

decreased local and metastatic tumor growth. The combination of GM-CSF and MMP9 inhibition 

was synergic in impairing angiogenesis, local and metastatic tumor growth. As we recently 

reported that Metformin targets both BC cells and the neoplastic WAT environment, we 

investigated Metformin effect over GM-CSF and MMP9 expression. Metformin inhibited GM-CSF 

and MMP9 up-release from WAT progenitors in vitro. Circulating GM-CSF and MMP9 were 

significantly reduced in BC xenografts administered with Metformin and in obese mice Metformin 

had similar effects of GM-CSF/MMP9 specific inhibitions. Collectively, these results indicate GM-

CSF and MMP9 as candidate targets to prevent the pro-tumorigenic effect of WAT progenitors on 

BC local and metastatic progression. 


