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Chapter 1

Introduction

1.1 Background

Classical algebraic geometry is the study of geometric objects defined locally
by systems of polynomial equations. While this could be done over any base
field k, in this thesis, we will work exclusively over the complex numbers C.
In addition to the Zariski topology which is defined in relation to the zero sets
of polynomial equations, complex algebraic varieties can also be endowed with
the Euclidean topology, and can be studied using analytic techniques. Serre
showed in his landmark paper Géométrie Algébrique et Géométrie Analytique
[Ser56] a precise correspondence between a complex algebraic variety and its
analytification. This correspondence provides a wealth of tools to study both
the local and global structures.

One important tool on the analytic side is Hodge theory. Let X be a smooth
projective complex algebraic variety of dimension n, that is, a complex man-
ifold that can be embedded into a projective space PNC for some N > n. Al-
gebraic topology provides a set of invariants, namely the cohomology groups
Hk(X,Z). They are however too coarse to be useful: many varieties have the
same cohomology groups. A Hodge structure is an enhancement on Hk(X,Z).
Hodge theory gives a direct sum decomposition

Hk(X,C) = Hk(X,Z)⊗ C =

k⊕
p=0

Hp,k−p(X)

with Hp,k−p(X) = Hk−p,p(X). The group Hp,q(X) is naturally isomorphic to
the cohomology group Hq(X,ΩpX) of the sheaf of differential p-forms on X.

Hodge structures encode many geometric properties of the variety X. One
can show that every algebraic subvariety Z ⊂ X of codimension d defines a
class in Hd,d(X) ∩H2d(X,Z). Let A2d(X) ⊂ H2d(X,Z) denote the subgroup
generated by all such classes. The Hodge conjecture predicts that there is an
equality

A2d(X)⊗Q = H2d(X,Q) ∩Hd,d(X).

The right hand side is a linear algebraic object that can be computed relatively
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easily. The Hodge conjecture thus relates the set of algebraic subvarieties of
X, which is a priori difficult to understand, to an algebraic invariant of X.

A hyperplane section L ⊂ X defines a class η ∈ H1,1(X) ∩H2(X,Z), called a
polarization of X. The polarization fixes the embedding of X into a projective
space, induces a decomposition of Hk(X,Q) into primitive direct components,
called the Lefschetz decomposition. Note that the Lefschetz decomposition
does not hold on Hk(X,Z) usually since most polarizations are not principal.
The polarization also defines a bilinear form

q : Hk(X,C)⊗Hk(X,C)→ H2n(X,C) ∼= C

such that the primitive components of Hk(X,C) are orthogonal. The bilinear
form q restricts to a bilinear form qQ : Hk(X,Z) × Hk(X,Z) → Z, which is
called a polarization of the Hodge structure on Hk(X,Z). Polarized Hodge
structures are much finer algebraic invariants than the cohomology groups. We
see in Section 1.1.2 that in some cases they uniquely determine the polarized
variety X.

1.1.1 Geometric realization of Hodge structures

Hodge structures can also be defined abstractly. Let VZ be an abelian group.
A Hodge structure of weight k on VZ is a direct sum decomposition of the
vector space

VC := VZ ⊗ C =

k⊕
p=0

V p,k−p

satisfying V p,k−p = V k−p,p. A polarization on a Hodge structure is a bilinear
form q : VZ × VZ → Z satisfying certain conditions. The numbers hp,q =
dimV p,q are called the Hodge numbers of VZ.

In a recent paper [Sch15], Schreieder showed that under mild assumptions,
almost all symmetric sequences of numbers (hk,0, . . . , h0,k) can be obtained as
the weight k Hodge numbers of some smooth projective variety X. However,
Hodge structures contain more information in the form of the embedding VZ
in VC and one may ask if all Hodge structures arise geometrically.

To avoid problems with torsion groups, we only consider rational Hodge struc-
tures VQ = VZ ⊗ Q. A polarized Hodge structure is called simple if it does
not have any non-trivial polarized sub-Hodge structures. Let VQ be a Q-vector
space, given a simple polarized rational Hodge structure (VQ, V

p,q, q), we ask if
there exists a smooth projective varietyX such that (Hk(X,Q), Hp,q(X), qH) ⊇
(VQ, V

p,q, qV ) with qV = qH|VQ .
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For k = 0, the answer is trivially positive. For k = 1, given any polarized
Hodge structure on a Q-vector space VQ, there exists an abelian variety A =
V 1,0/VZ, where VZ is any lattice in VQ with the required polarization. For
k ≥ 2, there exist Hodge structures which do not arise geometrically, but
there are no general results on when a Hodge structure is geometric.

An interesting case is when the weight k = 2 and dimV 2,0 = 1. In this case,
Kuga and Satake [KS67] showed that any polarized weight 2 rational Hodge
structure V = (VQ, V

p,q) with dimV 2,0 = 1 is actually geometric. In their
construction (cf. [Gee00]), they showed that there exists a polarized weight 1
Hodge structure C+(Q) with an inclusion of polarized Hodge structures V ↪→
C+(Q)× C+(Q). Let A be an abelian variety with polarized weight 1 Hodge
structure C+(Q), then H2(A × A,Z) contains V as a sub-Hodge structure.
The abelian variety A obtained through the Kuga-Satake construction is of
dimension 2n where n = dimV , so H2(A×A,Q) becomes extremely large and
intractable as n increases. One can then ask if there exist smaller geometric
Hodge structures containing V.

We say that a weight 2 Hodge structure is of type (p, n, p) if dimV 2,0 = p
and dimV 1,1 = n. Projective K3 surfaces provide examples of simple Hodge
structures of type (1, n, 1) for all n ≤ 19. On the other hand, by the Enriques-
Kodaira classification of minimal surfaces, there does not exist any smooth
projective surface with h2,0 = 1 containing a simple Hodge structure of type
(1, n, 1) for n > 19. For n = 20, it is known that a general deformation of a
Hilbert scheme Z [2] of a K3 surface Z contains a simple weight 2 sub-Hodge
structure of type (1, 20, 1). There are no known smooth projective varieties
of any dimension with h2,0 = 1, containing simple Hodge structure of type
(1, n, 1) for n > 20.

For larger n, one should thus look for varieties X with Hodge structures of type
(p,m, p) where p > 1 and m > n containing a simple sub-Hodge structure of
type (1, n, 1). Note that if X is a smooth projective variety, and S is a surface
obtained by taking successive hyperplane sections of X, then by the Lefschetz
hyperplane theorem, we have H2(X,Q) ↪→ H2(S,Q). Hence, if H2(X,Q)
contains V as a sub-Hodge structure, then so does H2(S,Q) and it suffices to
look for surfaces containing V.

To find sub-Hodge structures, one can look for quotients by finite groups.
Suppose S is a smooth projective surface and G is a finite abelian group
acting on S. There is a quotient map f : S → F := S/G and an eigenspace
decomposition

H2(S,C) =
⊕
χ∈Ĝ

H2(S,C)χ

where Ĝ is the character group of G and H2(S,C)χ is the eigenspace of the
character χ, that is, σ(s) = χ(σ)(s) for all σ ∈ G and s ∈ H2(S,C)χ. Note

3



that the eigenspace H2(S,C)1 of the trivial character is equal to H2(F,C).

The eigenspace decomposition is a decomposition of rational Hodge structures
if χ(σ) ∈ Q for all χ ∈ Ĝ and σ ∈ G, that is, if G = (Z/2Z)k is a product of
involutions. It is thus interesting to seek surfaces S with an involution ι such
that the (-1)-eigenspace H2(S,Q)− contains a simple Hodge structure of type
(1, n, 1) with n > 20.

In Chapter 4 of this thesis, we study two examples of nodal surfaces in detail.
A nodal surface is a surface whose only singularities are ordinary double points.
Let F ⊂ P3 be a nodal surface. The set of nodes on F is said to form an even
set if there exists a double cover f : S → F which is branched precisely on the
set of nodes of F .

Such surfaces have been studied by Casnati, Catanese and Tonoli [CC97;
CT07]. They showed that there are very few possibilities for the cardinal-
ity of the set of nodes. For F being a sextic surface, an even set of nodes can
have cardinality t ∈ {24, 32, 40, 56}. We studied the cases where t = 40 and
t = 56.

Of particular interest are nodal sextic surfaces with an even set of 40 nodes
(cf. Chapter 4.2). In this case, we showed that H2(S,Q)− is of Hodge type
(1, 26, 1). However, we constructed the complete family of even 40-nodal sextic
surfaces and showed that they can, in general, be obtained as hyperplane
sections of EPW sextic fourfolds, which were extensively studied by Kieran
O’Grady [OGr06; OGr13]. His work shows that H2(S,Q)− has a sub-Hodge
structure V of type (1, 20, 1), and that V is the weight 2 Hodge structure of
a deformation of a Hilbert scheme Z [2] for some K3 surface Z. As mentioned
above, such Hodge structures V are well-understood, and we do not obtain
any new interesting simple Hodge structures.

1.1.2 Deformations and Torelli type results

In complex geometry, one often seeks examples of surfaces satisfying certain
properties. For example, K3 surfaces are simply connected compact Kähler
manifolds with trivial canonical bundles ωX = OX (cf. [Huy15]). It is possible
to find specific examples of K3 surfaces, for example, any smooth projec-
tive quartic surface in P3 is a K3 surface, but when studying such examples,
one needs to distinguish between properties specific to these examples and
properties that are satisfied by a “general” K3 surface. A smooth projec-
tive quartic surface in P3 has an ample divisor given by a hyperplane section,
but a “general” K3 surface is not projective, and hence has no ample divi-
sors. A natural question to ask is: how many K3 surfaces are there, and
how many of them contain ample divisors? The answers to both of these
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questions are known: the moduli space of K3 surfaces is 20 dimensional, in
which the moduli space of projective K3 surfaces forms a countable union of
19-dimensional subspaces. It is also not a coincidence that a K3 surface X has
h1,1(X) := dimH1,1(X) = 20 and, if X is projective, then the Neron-Severi
group NS(X) := H2(X,Z) ∩ H1,1(X) has rank ≤ 19. Indeed, in Proposi-
tion 3.3.15, we recall that this is the only case in which the deformation of a
projective hypersurface may not be projective.

We see that the relevant objects of study should be families of varieties rather
than varieties. A moduli space, informally speaking, is the set of isomorphism
classes of (polarized) varieties satisfying certain properties, and can be en-
dowed with a natural topology making it an algebraic variety (or scheme or
stack). For example, one can talk about the moduli space of algebraic curves
of fixed genus g.

Moduli spaces, if they exist, are usually very singular and difficult to describe.
One can map them to better understood moduli spaces, and try to understand
the image and the fibres of the morphism. One such space is the period
domain, which is a moduli space of Hodge structures over a fixed Z-module VZ
(or Q-vectorspace VQ). The map that sends a variety to its Hodge structure is
called the period map. Deformation theory and period maps are rich subjects,
covered in many books, eg. [CMP03].

A Torelli-type result asks if the period map is injective. It is named after
Torelli, who proved that the period map for smooth projective curves of genus
g is injective. However, in general, Torelli-type results are difficult to obtain.
They are only known to hold for K3 surfaces and most projective hypersurfaces.

An easier question is whether the period map is locally injective. By taking
the derivative of the period map at the point corresponding to a variety X,
we obtain the infinitesimal period map at X. A variety is said to satisfy the
infinitesimal Torelli property if the infinitesimal period map is injective.

An important result of Kodaira and Spencer is that for a smooth projective
variety X, the set of isomorphism classes of infinitesimal deformations of X can
be parametrized by the cohomology group H1(X,TX) where TX is the tangent
sheaf of X. The infinitesimal period map can also be expressed entirely in
terms of sheaves on X:

dPk : H1(X,TX)→
k−1⊕
i=0

Hom(Hk−i,i(X), Hk−i−1,i+1(X)).

To study families of nodal surfaces, we need to extend these classical results
to singular varieties. This forms the bulk of Chapters 2 and 3 of this thesis.

Steenbrink extensively studied the Hodge structure on varieties with quotient
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singularities, called V-manifolds [Ste77]. Using certain sheaves of differen-
tial forms on such varieties, he showed that V-manifolds have pure Hodge
structures. Using Steenbrink’s definitions, we prove the infinitesimal Torelli
theorem for nodal surfaces (Theorem 3.3.16).

1.2 Organization of the thesis

The main goal of this thesis is to study families of nodal surfaces.

Chapters 2 and 3 set the stage by extending general constructions and results
for smooth projective varieties to singular varieties. Many results in these two
chapters may be familiar to experts but some proofs have been included since
appropriate references could not be found.

Chapter 2 focuses on Hodge theoretical aspects. We review classical Hodge
theory (Section 2.1) and Steenbrink’s construction of sheaves of differential
forms on V-manifolds (Section 2.2). We also recall the explicit computation
of the cohomology groups as sub-modules of polynomial rings in the case of
projective hypersurfaces (Section 2.3).

Extending Steenbrink’s definitions, we define tangent sheaves on V-manifolds
(Section 2.2.2). We also state the log-cotangent short exact sequence for V-
manifolds as divisors on smooth projective varieties (Theorem 2.2.14) but defer
the technical proof to Chapter 5. Instead, we prove it directly for nodal surfaces
in Section 2.2.4.

In Chapter 3, we recall the definition of the Kodaira-Spencer map (Section
3.1), including that for divisors and for G-equivariant deformations, and the
infinitesimal period map (Section 3.2).

The main new result of this chapter is the infinitesimal Torelli theorem for
nodal surfaces (Theorem 3.3.16), which is proven in Section 3.3.

Chapter 4 forms the bulk of the thesis. We construct and study two families
of nodal surfaces, their deformations and Hodge structures.

Even 56-nodal sextic surfaces are studied in Section 4.1. A family of such
surfaces has previously been constructed by Catanese and Tonoli [CT07], but
we give a simpler and more geometric construction of even 56-nodal sextic
surfaces, starting from a non-hyperelliptic genus 3 curve C and the choice of
a divisor B ∈ |2KS2C | (Theorem 4.1.1). We show that the 12-dimensional
deformation family we obtain is a smooth open dense subset of the family
obtained in [CT07, Main Theorem B] (Corollary 4.1.7) and that deformations
in the family are unobstructed (4.1.14). We also give an explicit method for
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constructing numerical examples of such surfaces in Section 4.1.4.

The contents of Chapter 4.1, other than Section 4.1.3, are contained in the
preprint [GZ16], which has been accepted for publication by the Journal of
Algebraic Geometry.

In Chapter 4.2, we study even 40-nodal sextic surfaces. We recall three con-
structions of even 40-nodal sextic surfaces, due to Gallarati, Casnati-Catanese
and the one arising from EPW sextic fourfolds. We give explicit examples of
each construction, and use them to prove numerous results. We prove that all
three constructions yield the same universal smooth irreducible 28-dimensional
family of even 40-nodal sextic surfaces (Proposition 4.2.11, Corollary 4.2.15
and Theorem 4.2.20). Using the EPW sextic construction, we show that the
negative eigenspace H2(S,C)− of type (1, 26, 1) has a sub-Hodge structure of
type (1, 20, 1). In Section 4.2.5, we describe an example of an even 40-nodal
sextic surface with additional involutions using the results of Camere [Cam12]
for EPW sextic fourfolds. All results in this section, other than the construc-
tions, are original.

Finally, in Chapter 5, we prove two technical results (Remark 2.2.6 and Theo-
rem 2.2.14) from Chapter 2. In Sections 5.1 and 5.2, we give a quick introduc-
tion to the theories of perverse sheaves [BBD82] and mixed Hodge modules
[Sai88], recalling only the results necessary for our application. The proofs of
our results are given in Section 5.3.
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Chapter 2

Hodge theory

Throughout this thesis, we shall only work with varieties defined over the
complex numbers.

Complex Hodge structures on smooth projective varieties are relatively well-
understood, following the classical works of Hodge [Hod41] and Griffiths [Gri68].
While Deligne [Del71a] introduced the notion of mixed Hodge theory to deal
with singular varieties, in practice, the mixed Hodge structures can be ex-
tremely complicated and difficult to compute.

In this chapter, we give concrete results for computing the complex Hodge
structures on certain singular varieties. The singularities on the varieties we
will consider are called quotient singularities, which are obtained as quotients
of smooth manifolds by finite groups. They were studied extensively by Steen-
brink [Ste77]. We shall review complex Hodge theory, the results of Steenbrink
and others, as well as give some simple extensions of these results.

2.1 Review

In this section, we state some definitions and results from classical Hodge
theory. This is by no means complete, interested readers may refer to the
many excellent textbooks on this subject, for example, [Voi02].

Definition 2.1.1. Let HR be an R-module (R = Z,Q,R,C). A pure R-Hodge
structure of weight k on HR is the data of a finite decreasing filtration F pHC
on the complexification HC := HR ⊗ C, called the Hodge filtration, satisfying
the condition that

F pHC∩F k+1−pHC = 0 and F pHC⊕F k+1−pHC = HC ∀ 0 ≤ p ≤ k.

Let Hp,k−p = F pHC ∩ F k−pHC, then there is a direct sum decomposition

HC =
⊕
i∈Z

Hi,k−i.

A Hodge structure is a purely algebraic object. The interest in Hodge struc-
tures arise from the fact that, for every smooth projective manifold X, it
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is possible to associate a weight k Hodge structure to its cohomology group
Hk(X,Z). This is done as follows: there is a resolution of the constant sheaf
CX by sheaves of differential forms

0→ CX → OX → Ω1
X → · · · → ΩnX → 0

where dimX = n and ΩpX are the sheaves of holomorphic differential p-forms
on X. This is called the (holomorphic) de Rham complex. We set ΩpX = 0 for
p < 0 and p > n. To this resolution, one can associate the Fröhlicher spectral
sequence

Epq1 = Hq(X,ΩpX) =⇒ Hp+q(X,C).

If X is a compact Kähler manifold, this spectral sequence can be shown to
degenerate at E1, that is to say, there is a direct sum decomposition

Hk(X,C) = Hk(X,Z)⊗C =
⊕
p+q=k

Hp,q(X) where Hp,q(X) := Hq(X,ΩpX).

Furthermore, there are isomorphisms Hp,q(X) = Hq,p(X), so we have a Hodge
structure on Hk(X,C) given by the filtration

F pHk(X,C) =
⊕
i≥p

Hi,k−i(X).

More intrinsically, there is a filtration on the de Rham complex given by

F pΩ•X = Ω≥pX = (0→ ΩpX → · · ·Ω
n
X → 0)

which induces the isomorphism

F pHk(X,C) = Hk(X,F pΩ•X).

However, if X is not a smooth projective variety, the de Rham resolution may
not induce a pure Hodge structure on Hk(X,Q). Deligne [Del71b] introduced
the notion of mixed Hodge structures, on which there is a weight filtration in
addition to the Hodge filtration, and every graded weight component has a
pure Hodge structure. He also showed that, on any variety X, Hk(X,Q) has
a mixed Hodge structure. We will not use the weight filtration in this thesis,
interested readers can refer to numerous texts such as [Del71b; PS08; Voi03].

Consider the de Rham complex on a smooth open algebraic variety U . If U
is affine, then Hi(U,ΩpU ) = 0 for all i > 0, so the standard de Rham complex
does not give any interesting structure on Hk(U,C). We instead consider the
log-de Rham complex.

Definition 2.1.2. Let Y be smooth projective variety and X be a divisor on
Y . The sheaf of log differential forms is the sheaf of forms ω having simple
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poles along X whose differentials have simple poles as well, i.e.

ΩpY (logX) = {ω ∈ ΩpY (X) | dω ∈ ΩpY (X)}

= ker(ΩpY (X)
d−→ Ωp+1

Y (2X)/Ωp+1
Y (X)).

There is a well-defined complex

Ω•Y (logX) =
(
0→ OY

d−→ Ω1
Y (logX)

d−→ · · · d−→ Ωn−1
Y (logX)

d−→ ΩnY (X)→ 0
)

of sheaves of log differential forms, where d is the usual differential. This is
called the log-de Rham complex.

We also define TY (− logX) = Hom(Ω1
Y (logX),OY ) =: Ω1

Y (logX)∨.

Example 2.1.3. Suppose X ⊂ Y is a simple normal crossing divisor. Let
z1, . . . , zn be local coordinates on Y , with X being defined by z1 · · · zk = 0.
Then, ΩpY (logX) is locally generated by p-th exterior products of the differ-
ential forms {dz1z1 , . . . ,

dzk
zk
, dzk+1, . . . , dzn}.

Let U be a smooth open algebraic variety of dimension n. Then there exists
a compactification Y ⊃ U such that X = Y \ U is a simple normal crossing
divisor. Let j : U → Y be the open inclusion. There is a quasi-isomorphism
between Rj∗CU and the log-de Rham complex:

Rj∗CU
qis
= Ω•Y (logX).

Define a Hodge filtration on Rj∗CU by

F p(Rj∗CU ) = Ω≥pY (logX) = (0→ ΩpY (logX)→ · · · → ΩnY (X)→ 0).

In this case, the Leray spectral sequence

Epq1 = Hq(Y,ΩpY (logX)) =⇒ Hp+q(X,Rj∗CU ) = Hp+q(U,CU )

degenerates at E1, but there is no Hodge symmetry, i.e. Epq1 6= Eqp1 , hence
it does not define a pure Hodge structure on Hk(U,QU ). One can refer to
[Voi02, Section 8.4.1] for the definition of the weight filtration on Hk(U,QU ).

A key step in the construction of the weight filtration uses a set of short exact
sequences, which are of independent interest. We present them in following
proposition.

Proposition 2.1.4 ([EV92, §2.3]). Let Y be a smooth algebraic variety of
dimension n and X ⊂ Y a smooth reduced divisor. Then, there are short
exact sequences

0→ ΩpY
i−→ ΩpY (logX)

r−→ Ωp−1
X → 0, 1 ≤ p ≤ n; (2.1)

0→ ΩpY (logX)(−X)
i−→ ΩpY

r−→ ΩpX → 0, 0 ≤ p ≤ n− 1. (2.2)
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More generally, let X =
⋃k
i=1Xi be a simple normal crossing divisor with

irreducible components Xi. Then, there are short exact sequences

0→ Ω1
Y

i−→ Ω1
Y (logX)

r−→
k⊕
i=1

OXi
→ 0; (2.3)

0→ Ωn−1
Y (logX)(−X)

i−→ Ωn−1
Y

r−→
k⊕
i=1

ωXi
→ 0. (2.4)

Proof. These short exact sequences can be defined locally. Let z1, . . . , zn be a
set of local coordinates around a point x ∈ X such that the divisor X is given
by z1 = 0. The first map i in each sequence is an inclusion of sheaves. The
second map r in (2.1) is the residue map defined by taking dz1

z1
7→ 1 and killing

all terms without the factor dz1
z1

. The second map r in (2.2) is the restriction
map that kills z1. It is an easy exercise to check that the two sequences are
exact. With a similar argument, one can check that the short exact sequences
(2.1) for p = 1 and (2.2) for p = n − 1 generalize to simple normal crossing
divisors. �

We obtain from the short exact sequence (2.4) a short exact sequence relating
the tangent and the log tangent sheaves of Y .

Corollary 2.1.5. Let Y be a smooth algebraic variety of dimension n and X =⋃k
i=1Xi be a simple normal crossing divisor in Y with irreducible components

Xi. Then there is a short exact sequence

0→ TY (− logX)→ TY →
k⊕
i=1

OXi
(Xi)→ 0.

Proof. This sequence is obtained by tensoring the short exact sequence (2.4)
by the locally free sheaf ω−1

Y . The perfect pairings [Voi02]

ΩpY ⊗ Ωn−pY → ωY , ΩpY (logX)⊗ Ωn−pY (logX)→ ωY (X)

induce canonical isomorphisms

ΩpY = Hom(Ωn−pY , ωY ),

ΩpY (logX) = Hom(Ωn−pY (logX), ωY (X)) = Hom(Ωn−pY (logX)(−X), ωY ).

Hence, there are isomorphisms

TY = Ω1∨
Y = Hom(Ωn−1

Y , ωY )∨ = Ωn−1
Y ⊗ ω−1

Y and

TY (− logX) = Ω1
Y (logX)∨ = Hom(Ωn−1

Y (logX)(−X), ωY )∨

= Ωn−1
Y (logX)(−X)⊗ ω−1

Y .

12



For the last term, the adjunction formula gives ωXi = ωY (Xi)|Xi
, so Ωn−1

Xi
⊗

ω−1
Y = ωXi

⊗ ω−1
Xi

(Xi) = OXi
(Xi). �

Remark 2.1.6. In this section, we only considered complex Hodge structures,
where we take R = C. Complex Hodge structures are the easiest to study, and
it is sufficient for the purpose of this thesis. However, it is worth noting
that the integral and rational Hodge structures contain most of the interesting
geometrical information, but they are less well understood. The rational Hodge
structure, for example, is the subject of the Hodge conjecture, which asks if,
for a smooth projective variety X, all classes in H2p(X,Q) ∩ Hp,p(X) arise
from algebraic cycles, in other words, they are of geometric origin.

2.2 V-manifolds

In this section, we study in greater detail the Hodge structure on a special
type of singular complex analytic variety known as V-manifolds. The singu-
larities on V-manifolds are by definition quotient singularities and are “mild”.
We shall show that the Hodge structures of V-manifolds are pure by directly
defining sheaves of differential forms Ω̃• on them. We will study these sheaves
in greater detail. Most of the results in this section are due to Steenbrink
[Ste77, Section 1].

2.2.1 Definition and first properties

Definition 2.2.1. A V-manifold is a complex analytic variety X of dimension
n which admits an open covering X =

⋃
i∈I Ui such that for each i ∈ I, there

is an analytic isomorphism Ui = Di/Gi where Di ⊂ Cn is an open ball and
Gi ⊂ GL(n,C) is a finite subgroup.

A V-manifold is normal and hence the singular locus Σ has codimension
codimXΣ ≥ 2. The singularities of a V-manifold are quotient singularities
by definition.

Definition 2.2.2. A finite subgroup G of GL(n,C) is called small if no ele-
ment of G has 1 as an eigenvalue of multiplicity exactly n− 1, i.e. G does not
contain rotations about hyperplanes. Conversely, a subgroup G ⊂ GL(n,C)
is called big if it is generated by elements of G that have 1 as an eigenvalue
of multiplicity exactly n− 1, that is, it is generated by rotations about hyper-
planes.

Every finite subgroup G ⊂ GL(n,C) admits a unique maximal big normal
subgroup Gbig such that the quotient G/Gbig is small. The quotient by a big
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subgroup is smooth, that is, there is an isomorphism Cn/Gbig
∼= Cn. If x ∈ Σ

is a singular point in X, then there is an open neighbourhood U of x such that
U = D/G where D ⊂ Cn is an open ball and G is a small subgroup. We will
focus on quotients by small subgroups in this section.

Definition 2.2.3. Let X be a V-manifold with singular locus Σ. Let j :
X \ Σ→ X be the open inclusion. Define Ω̃pX = j∗Ω

p
X\Σ.

Remark 2.2.4. Any meromorphic function on X that is holomorphic outside
a subset Σ of codimension ≥ 2 extends uniquely to a holomorphic function on
X. Hence, Ω̃0

X = j∗OX\Σ = OX . (cf. [Ser66, Proposition 4]).

We summarize some results of Steenbrink regarding the properties of Ω̃pX :

Theorem 2.2.5 ([Ste77, (1.8–1.13)]). Let X be a V-manifold and the sheaves
Ω̃pX be defined as in Definition 2.2.3.

(i) Let U ⊂ X be an open subset such that U = D/G where D ⊂ Cn is an
open ball and G is a small subgroup. Let f : D → U be the quotient map.
Then Ω̃pX|U = (f∗Ω

p
D)G.

(ii) Let π : X̃ → X be a resolution of singularities of X. Then, Ω̃pX = π∗Ω
p

X̃
.

(iii) There is a perfect pairing Ω̃pX ⊗ Ω̃n−pX → Ω̃nX =: ω̃X and ω̃X is the
dualizing sheaf ([GR70, Section 3.2], cf. [Ste77, Proof of 1.12]), that
is, for any coherent sheaf F on X, there is a canonical isomorphism
Extp(F , ω̃X)∨ = Hn−p(X,F).

Remark 2.2.6. The isomorphism of (ii) induces an injective morphism in
cohomology

Hk(X, Ω̃pX) ∼= Hk(X,π∗Ω
p

X̃
) ↪→ Hk(X̃,Ωp

X̃
).

This map is usually not surjective since the higher derived images Riπ∗Ω
p

X̃

(i > 0) do not vanish in general. It is possible to find a sheaf on X̃ whose
derived direct image is isomorphic to Ω̃pX . To do so requires some advanced
machinery which we will treat in Chapter 5. In Proposition 2.2.21, we shall
describe it for the simplest case of nodal surfaces.

A consequence is that Ω̃pX is coherent for all p and vanishes for p < 0 and
p > n [Ste77, (1.10)]. The complex

Ω̃•X = (0→ OX → Ω̃1
X → · · · → Ω̃nX → 0)

is a resolution of CX [Ste77, (1.9)]. Similar to the smooth case in Section 2.1,
Peters and Steenbrink showed
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Theorem 2.2.7 ([PS08, Theorem 2.43]). Let X be a projective V-manifold.
Then Hk(X,Q) admits a pure Hodge structure of weight k. In particular, there
is a Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X), where Hp,q(X) := Hq(X, Ω̃pX).

2.2.2 Tangent sheaves

As we are interested in studying the deformation theory of V-manifolds, we
need a notion of a tangent sheaf.

Definition 2.2.8. We define the tangent sheaf of a V-manifold X to be T̃X =
Hom(Ω̃1

X ,OX).

We claim that, on each open subset U = D/G ⊂ X, the tangent sheaf so
defined is precisely the G-invariant part of TD. This justifies the definition
(cf. Theorem 2.2.5(i)). We first need a technical lemma.

Lemma 2.2.9. Let D ⊂ Cn be an open subvariety, endowed with the action
of a finite subgroup G ⊂ GL(n,C). Suppose f : D → U = D/G is a finite
étale covering (i.e. it is unramified). Let E and F be coherent sheaves on D
and U respectively, then there is an isomorphism of OU -modules

Hom((f∗E)G,F) ∼= f∗Hom(E , f∗F)G.

Proof. It suffices to check the isomorphism locally around each point x ∈ U .
Since f is finite étale, we can choose a sufficiently small open neighbourhood
V of x such that f−1V =

∐g
i=1 Vi where g = |G| and Vi are all isomorphic to

V . On V , we can evaluate

Γ(V,Hom((f∗E)G,F)) = Hom((
⊕
E(Vi))

G,F(V )),

Γ(V, f∗Hom(E , f∗F)G) = Hom(
⊕
E(Vi),

⊕
f∗F(Vj))

G.

Note that Hom(E(Vi), f
∗F(Vj)) = 0 unless i = j, so

Hom(
⊕
E(Vi),

⊕
f∗F(Vj)) =

⊕
Hom(E(Vi), f

∗F(Vi)).

The group G acts by permuting the components of the direct sum, so there
are isomorphisms F(V ) ∼= f∗F(Vi) for all i. Therefore, we get

Γ(V,Hom((f∗E)G,F)) = Hom((
⊕
E(Vi))

G,F(V )) ∼= Hom(E(V1),F(V ))

∼= Hom(E(V1), f∗F(V1)) ∼=
⊕

Hom(E(Vi), f
∗F(Vi))

G

∼= Γ(V, f∗Hom(E , f∗F)G).
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Proposition 2.2.10. Let U = D/G where D ⊂ Cn is an open ball and
G ⊂ GL(n,C) is a small subgroup. Let f : D → U be the quotient map. Then,
T̃U = (f∗TD)G.

Proof. The proof follows by formal operations using the definition of T̃U . Let
Σ = SingU . Then,

T̃U = Hom(Ω̃1
U ,OU )

= Hom(j∗Ω
1
U\Σ, j∗OU\Σ) (Definition 2.2.3)

= j∗Hom(j∗j∗Ω
1
U\Σ,OU\Σ) (Projection formula)

= j∗Hom(Ω1
U\Σ,OU\Σ) (j∗j∗ = id)

= j∗Hom((f∗Ω
1
D\Σ)G,OU\Σ) (G-invariance for finite étale covers)

= j∗f∗Hom(Ω1
D\Σ, f

∗OU\Σ)G (Lemma 2.2.9)

= f∗j∗Hom(Ω1
D\Σ,OD\Σ)G (j∗f∗(−)G = f∗j∗(−)G)

= (f∗j∗TD\Σ)G = (f∗TD)G.

The last equality holds by a similar argument to the first four equalities. �

By Theorem 2.2.5(iii), we have

T̃X = (Ω̃1
X)∨ = Hom(Ω̃n−1

X , ω̃X)∨ = ω̃∨X ⊗ Ω̃n−1
X .

This gives us an alternative characterization of the tangent sheaf which will
be useful later:

Lemma 2.2.11. Let X be a V-manifold. Then, T̃X = Ω̃n−1
X ⊗ ω̃∨X .

To end the section, we combine these characterizations of the tangent and
cotangent sheaves on V-manifolds with classical results for quotients by big
subgroups.

Definition 2.2.12. Let Y be a V-manifold with singular locus Σ. Let j :
Y \ Σ → Y be the open inclusion. For a divisor X ⊂ Y , define Ω̃pY (logX) =

j∗Ω
p
Y \Σ(logX \ Σ) and T̃Y (− logX) = Ω̃1

Y (logX)∨.

Corollary 2.2.13. Suppose U = D/G where D ⊂ Cn is an open ball and G ⊂
GL(n,C) is an abelian subgroup. Let f : D → U be the quotient map and let B
be the union of the codimension 1 components of the branch locus. Then, there
are isomorphisms of sheaves (f∗Ω

p
D)G = ΩpU and (f∗TD)G = T̃U (− logB).

16



Proof. The group G has a maximal big normal subgroup Gbig such that
Gsmall = G/Gbig is small. Let f ′ : D → D′ = D/Gbig be the quotient by the
abelian group Gbig. It is branched along a normal crossing divisor B′ ⊂ D′,
with (f ′∗Ω

p
D)Gbig = ΩpD′ and (f ′∗TD)Gbig = TD′(− logB′) [Par91, Proposition

4.1].

The action of Gsmall on D′ fixes a locus Σ of codimension ≥ 2. Under the
quotient map f ′′ : D′ → U , the image of B′ is precisely the union of the
codimension 1 components of the branch locus. Hence, we get

(f ′′∗ΩpD′)
Gsmall = Ω̃pU and (f ′′∗ TD′(− logB′))Gsmall = T̃U (− logB).

�

2.2.3 V-manifolds as divisors on smooth varieties

A common technique in the study of singular varieties, especially from an
analytical point of view, is to embed them into a smooth manifold. In this
section, we suppose Y is a smooth algebraic variety of dimension n and X ⊂ Y
is a divisor such that X is a V-manifold. We want an analogue of Proposition
2.1.4.

The short exact sequences (2.1) and (2.2) do not hold in general for all singular
varieties X (assuming we have a reasonable definition for Ω̃pX). In [Ste06],
Steenbrink gave some classes of surface singularities for which the short exact
sequences hold. His proof (implicitly) uses computations on vanishing cycles
around such singularities. We state the theorem for V-manifolds in general:

Theorem 2.2.14. Let Y be a smooth projective variety of dimension n + 1
and X ⊂ Y be a reduced divisor with only quotient singularities. Then, there
are exact sequences

0→ ΩpY
i−→ ΩpY (logX)

r−→ Ω̃p−1
X → 0, (1 ≤ p ≤ n); (2.5)

0→ ΩpY (logX)(−X)
i−→ ΩpY

r−→ Ω̃pX , (0 ≤ p ≤ n− 1). (2.6)

However, we will defer the proof to Chapter 5, where we show a more general
version as an easy consequence of Saito’s theory of mixed Hodge modules. It
is possible to prove the result directly for isolated quotient singularities, see
Proposition 2.2.23 for the case of nodal surfaces.

Remark 2.2.15. In contrast to the case where X is smooth, the left exact
sequence (2.6) is almost never right exact when p > 0.

Now, we give some easy consequences of Theorem 2.2.14.
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Corollary 2.2.16 (Adjunction formula). Let Y be a smooth projective variety
of dimension n and X ⊂ Y be a reduced divisor with only quotient singularities.
Then ω̃X = ωY (X)|X .

Proof. The short exact sequence

0→ ωY → ωY (X)→ ω̃X → 0

induces a right exact sequence

ωY |X → ωY (X)|X → ω̃X → 0.

Let z1, . . . , zn be local coordinates in Y of a neighbourhood of x ∈ X, such
that X is defined by a holomorphic function f . In these coordinates, the map
ωY → ωY (X) is given by gdz1 ∧ · · · ∧ dzn 7→ gf

f dz1 ∧ · · · ∧ dzn.

On restricting to X, gf ≡ 0, so the map ωY |X → ωY (X)|X is zero. Hence,
ω̃X ∼= ωY (X)|X . �

Remark 2.2.17. If Y = Pn, then Corollary 2.2.16 is a special case of [Har77,
Theorem III.7.11]. In such a case, ω̃X is an invertible sheaf.

However, ω̃X is not invertible for a general V-manifold. For example, let
X = C2/〈σ〉 with σ being the action induced by the matrix diag(ζ3, ζ3) where
ζ3 is a primitive third root of unity. Then X is not Gorenstein at the origin
and ω̃X is not invertible.

Equipped with the adjunction formula, the same proof as that of Corollary
2.1.5 gives the following result:

Corollary 2.2.18. Let Y be a smooth projective variety of dimension n and
X ⊂ Y be a reduced divisor with only quotient singularities. Then, there is a
left exact sequence

0→ TY (− logX)→ TY → OX(X).

2.2.4 Example: nodal surfaces

The simplest example of a quotient singularity is an ordinary double point.

Definition 2.2.19. A nodal surface is a 2-dimensional projective V-manifold,
with only ordinary double points as singularities. That is, the singularities
of X are locally isomorphic to C2/G where G = 〈diag(−1,−1)〉, or in local
coordinates, they are locally isomorphic to {z2

1 − z2z3 = 0} ⊂ C3.
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In chapter 4, we will study the Hodge theory and deformations of nodal sur-
faces in details. The goal of this subsection is to give the construction suggested
in Remark 2.2.6 and prove Theorem 2.2.14 without appealing to the machinery
of Chapter 5.

Note that the sheaf Ωp
X̃

in Theorem 2.2.5(ii) is not the unique sheaf satisfying

π∗Ω
p

X̃
= Ω̃pX . The proof of [Ste77, Lemma 1.11] can be applied without change

to obtain the following generalization.

Lemma 2.2.20 (cf. [Ste77, Lemma 1.11]). Let π : X̃ → X be a resolution
of singularities for a V-manifold X such that the exceptional divisor E is
simple normal crossing. Then, any differential form ω that is holomorphic on
X̃ \E and meromorphic on E is holomorphic on all of X̃. Hence, the sheaves
π∗Ω

p

X̃
(logE) and π∗Ω

p

X̃
(kE) for any k ≥ 0 are isomorphic to Ω̃pX .

Proposition 2.2.21. Let X be a nodal surface with a set of nodes Σ =
{p1, . . . , pk}. Let π : X̃ → X be the minimal resolution of singularities of

X with exceptional divisor N =
∐k
i=1Ni such that Ni = π−1(pi). There are

isomorphisms

Rπ∗OX̃ = OX , Rπ∗ωX̃ = ω̃X ,

Rπ∗Ω
1
X̃

(logN) = Rπ∗Ω
1
X̃

(logN)(−N) = Ω̃1
X .

In particular, R1π∗Ω
1
X̃

=
⊕k

i=1 Cpi is a skyscraper sheaf.

Proof. By Lemma 2.2.20, the isomorphisms hold if we replace Rπ∗ with the
underived direct image π∗. It remains to show that Riπ∗ of the given sheaves
vanish for all i > 0.

Without loss of generality, we may assume that k = 1 and that X has only
one node p, so N = π−1p ∼= P1. Consider the Cartesian square

N
i //

π

��

X̃

π

��
p

i
// X

The derived base change formula gives

Li∗Rπ∗Ω
l
X̃

= Rπ∗Li
∗Ωl

X̃
= Rπ∗Ω

l
X̃|N = RΓ(N,Ωl

X̃|N ). (2.7)

The second equality follows since Ωl
X̃

is a vector bundle on X̃, so it is flat and
Li∗ = i∗. Since the fibres of π have dimension ≤ 1, the higher direct images
Riπ∗F vanish for all i ≥ 2 and coherent sheaves F , and are skyscraper sheaves
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concentrated on p for i = 1. Taking the first cohomology of (2.7) gives the
value of R1π∗Ωl

X̃
on p as

i∗R1π∗Ω
l
X̃

= H1(N,Ωl
X̃

).

For l = 0, we have H1(N,OX̃) = H1(N,ON ) = 0. For l = 2, using the
adjunction formula ωN = ωX̃(N)|N gives H1(N,ωX̃) = H1(N,ωN (−N)) =
H1(P1,OP1(−2 + 2)) = 0 since the self intersection N ·N = −2. Thus, we get
the derived isomorphisms Rπ∗OX̃ = OX and Rπ∗ωX̃ = ω̃X .

For l = 1, we first show that R1π∗Ω
1
X̃

(logN) = 0. We use the short exact
sequence for cotangent bundles (cf. [Har77, Chapter II, Theorem 8.17(2)])

0→ ON (−N)→ Ω1
X̃|N → Ω1

N → 0.

SinceH1(N,ON (−N)) = H1(P1,OP1(2)) = 0, we getH1(N,Ω1
X̃

) = H1(Ω1
N ) =

C. Applying π∗ to the short exact sequence (2.1)

0→ Ω1
X̃
→ Ω1

X̃
(logN)→ ON → 0

gives a long exact sequence

0→ π∗Ω
1
X̃
→ π∗Ω

1
X̃

(logN)→ π∗ON = Cp →
→ R1π∗Ω

1
X̃

= Cp → R1π∗Ω
1
X̃

(logN)→ R1π∗ON = 0.

The first two terms are isomorphic by Theorem 2.2.5(ii) and Lemma 2.2.20.
Hence, the map π∗ON → R1π∗Ω

1
X̃

is an isomorphism and R1π∗Ω
1
X̃

(logN) = 0.

Thus, Rπ∗Ω
1
X̃

(logN) = Ω̃1
X .

To show the other equality Rπ∗Ω
1
X̃

(logN)(−N) = Ω̃1
X , we consider the short

exact sequence (2.2)

0→ Ω1
X̃

(logN)(−N)→ Ω1
X̃
→ Ω1

N → 0.

Applying the functor π∗ gives a long exact sequence

0→ π∗Ω
1
X̃

(logN)(−N)→ π∗Ω
1
X̃
→ 0→

→ R1π∗Ω
1
X̃

(logN)(−N)→ R1π∗Ω
1
X̃
→ Cp → 0.

Since R1π∗Ω
1
X̃
∼= Cp, we get R1π∗Ω

1
X̃

(logN)(−N) = 0, thus giving

Rπ∗Ω
1
X̃

(logN)(−N) = π∗Ω
1
X̃

= Ω̃1
X .

�
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We can also give an explicit characterization of the tangent sheaf T̃X for a
nodal surface.

Proposition 2.2.22. Let X be a nodal surface with singular locus Σ. Let
π : (X̃,N) → (X,Σ) be the resolution of singularities of X. Then, T̃X ∼=
Rπ∗TX̃(− logN).

Proof. A node is a canonical singularity, that is, if π : (X̃,N) → (X,Σ) is a
resolution of singularities, then KX̃ = π∗KX where KX := π∗KX̃ is a Weil
divisor. Hence, ωX̃ = π∗π∗ωX̃ = π∗ω̃X . Furthermore, in the proof of Proposi-
tion 2.2.23, we will show that ω̃X is generated by dz2∧dz3

z1
in a neighbourhood

of the double point, so it is locally free and KX is a Cartier divisor as well.

By Lemma 2.2.11, Proposition 2.2.21 and the projection formula, we obtain

T̃X = Ω̃1
X ⊗ ω̃∨X = Rπ∗Ω

1
X̃

(logN)(−N)⊗ ω̃∨X
= Rπ∗(Ω

1
X̃

(logN)(−N)⊗ π∗ω̃∨X) = Rπ∗(Ω
1
X̃

(logN)⊗ ω∨
X̃

(−N))

= Rπ∗TX̃(− logN).

The last equality follows since there is a perfect pairing

Ω1
X̃

(logN)⊗ Ω1
X̃

(logN)→ ωX̃(N).

�

Finally, we prove Theorem 2.2.14 directly for nodal surfaces.

Proposition 2.2.23. Let X be a nodal surface, then there are short exact
sequences

0→ ΩpP3

i−→ ΩpP3(logX)
r−→ Ω̃p−1

X → 0, 1 ≤ p ≤ 3); (2.8)

0→ ΩpP3(logX)(−X)
i−→ ΩpP3

r−→ Ω̃pX , (0 ≤ p ≤ 2). (2.9)

Proof. The first maps i in both sequences are inclusions of sheaves. Recall
that Ω̃pX = j∗Ω

p
X\Σ where Σ is the singular locus of X and j : X \ Σ → X

is the open inclusion, so the composition r ◦ i is determined by that on the
smooth locus of X, and is zero by Proposition 2.1.4. It remains to check that
ker r = im i and r is surjective in (2.8).

By Proposition 2.1.4, both short exact sequences hold at all smooth points
x ∈ X, hence it suffices to check them on the singular locus. Let x ∈ X be a
singular point, and U ⊂ X be an open ball centered at x. In local coordinates
{z1, z2, z3} of U , we can define X ∩U by z2

1 − z2z3 = 0 with the singular point
x being the origin.

21



First, we show that ker r = im i in both complexes. If ξ ∈ Γ(U, ker r), then
ξ|U\0 ∈ Γ(U \ 0, ker r) = Γ(U \ 0, im r) by Proposition 2.1.4. Since the point 0
is of codimension ≥ 2 in U , all differential forms on U \ 0 extend uniquely to
differential forms on U , so Γ(U \0, im r) = Γ(U, im r) and we get ξ ∈ Γ(U, im r).

Finally, we show that in (2.8), r is surjective. By Theorem 2.2.5(i), we have
Ω̃p−1
U = (f∗Ω

p−1
D )G where D ⊂ C2 is an open ball and G = Z/2Z. Choose

coordinates (u, v) on D such that G acts by sending (u, v) 7→ (−u,−v). Then,
the map f is given by (u, v) 7→ (uv, u2, v2). The map ΩpP3(logX) → Ω̃p−1

X is
a morphism of OP3-modules, so it suffices to prove that it is surjective on the
generators of Ω̃p−1

X .

For p = 1, Ω̃0
X = OX is locally generated by 1 ∈ OX . It is the image of the

form

2z1dz1 − z3dz2 − z2dz3

z2
1 − z2z3

=
d(z2

1 − z2z3)

z2
1 − z2z3

∈ Ω1
P3(X).

Note that its differential is

d

(
d(z2

1 − z2z3)

z2
1 − z2z3

)
=
−d(z2

1 − z2z3) ∧ d(z2
1 − z2z3)

(z2
1 − z2z3)2

= 0,

so 2z1dz1−z3dz2−z2dz3
z2
1−z2z3

∈ Ω1
P3(logX) and r is surjective for p = 1.

For p = 2, (Ω1
D)G is generated by {udu, vdv, udv, vdu} as a C[uv, u2, v2]-

module. We have udu = 1
2f
∗dz2, vdv = 1

2f
∗dz3 and

f∗
(
z1dz2

z2

)
=

2u2vdu

u2
= 2vdu, f∗

(
z1dz3

z3

)
=

2v2udv

v2
= 2udv.

Hence, Ω̃1
X is locally generated by {dz2, dz3,

z1dz2
z2

, z1dz3z3
}. The preimages of

the first two generators are

d(z2
1 − z2z3) ∧ dz2

z2
1 − z2z3

,
d(z2

1 − z2z3) ∧ dz3

z2
1 − z2z3

.

It is easy to see that their differentials are zero, so they lie in Ω2
P3(logX).

Consider the differential forms

ξj =
2zkdz1 ∧ dzj − z1dzk ∧ dzj

z2
1 − z2z3

∈ Ω1
P3(X), ({j, k} = {2, 3}).
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Their differentials are

dξj =

(
(z2

1 − z2z3)d(2zkdz1 ∧ dzj − z1dzk ∧ dzj)
− d(z2

1 − z2z3) ∧ (2zkdz1 ∧ dzj − z1dzk ∧ dzj)

)
(z2

1 − z2z3)2

≡ −2zjzkdzk ∧ dz1 ∧ dzj − 2z2
1dz1 ∧ dzk ∧ dzj

(z2
1 − z2z3)2

(mod (z2
1 − z2z3)−1)

=
2dzk ∧ dz1 ∧ dzj

z2
1 − z2z3

≡ 0 (mod (z2
1 − z2z3)−1),

so ξj ∈ Ω2
P3(logX). We have

r(ξj) = r

(
z1(2

zjzk
z1
dz1 ∧ dzj − zjdzk ∧ dzj − zkdzj ∧ dzj)

zj(z2
1 − z2z3)

)
=
z1dzj
zj

since
zjzk
z1

= z1 on X and 2z1dz1 − zjdzk − zkdzj = d(z2
1 − z2z3). Hence, r is

surjective for p = 2.

Similarly, for p = 3, (Ω2
D)G is generated by du ∧ dv. We have du ∧ dv =

1
4f
∗(dz2∧dz3z1

), so dz2∧dz3
z1

generates Ω̃2
X . We check that

r

(
dz1 ∧ dz2 ∧ dz3

z2
1 − z2z3

)
=r

(
(2z1dz1 − z3dz2 − z2dz3) ∧ dz2 ∧ dz3

z1(z2
1 − z2z3)

)
=
dz2 ∧ dz3

z1
.

�

2.3 Hodge structure of singular hypersurfaces

In this section, we study the Hodge structure of another class of singular vari-
eties, singular hypersurfaces, and in particular, try to explicitly compute their
cohomology groups in certain cases. Cohomology groups of smooth hyper-
surfaces were studied by Griffiths [Gri69a; Gri69b] in the context of period
mappings. This was extended to some singular hypersurfaces by Steenbrink
[Ste06] and was further generalized by Dimca and Saito [DS14] using mixed
Hodge modules. Most results in this section are restatements of results from
these three papers.

Let X ⊂ Pn+1 be a hypersurface defined by a homogeneous polynomial F of
degree d. Let S = C[X0, . . . , Xn+1] be the graded ring of polynomials and
J = 〈 ∂F∂Xi

|i = 0, . . . , n + 1〉 be the Jacobian ideal. Let Sk, Jk and (S/J)k
denote the sub-C-vector spaces of homogeneous polynomials of degree k.

If X is smooth, Griffiths [Gri69b] (cf. [Voi03, Corollary 6.12]) showed that
there are isomorphisms of vector spaces

Hn−p,p(X)prim
∼= (S/J)(p+1)d−n−2.
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We wish to obtain a similar result for certain singular hypersurfaces. The
central part of Griffiths’ proof is contained in the case of Hn−1,1(X). Since
this will be the only case that we will be using later, we shall only prove this
case.

We start with a few simple technical lemmas.

Lemma 2.3.1 ([Ste06]). Let X ⊂ Pn+1 be a reduced hypersurface. Then, the
sheaf of log differential forms ΩpPn+1(logX) has a Γ(Pn+1,−)-acyclic resolution
by the complex

0→ ΩpPn+1(X)
d−→ Ωp+1

Pn+1(2X)/Ωp+1
Pn+1(X)→ K2 → K3 → · · ·

where the subcomplex K• is supported on the singular locus.

Proof. The map

ΩpPn+1(X)
d−→ Ωp+1

Pn+1(2X)/Ωp+1
Pn+1(X)

is surjective away from the singular locus of X (the proof is by local computa-
tions, see for example [Voi03, Corollary 6.7]). Hence, the cokernel is supported
on SingX. We may choose K• to be an acyclic resolution of the cokernel, sup-
ported on SingX.

Hence, by the definition of sheaves of log differentials, the complex

0→ ΩpPn+1(X)
d−→ ΩpPn+1(2X)/ΩpPn+1(X)→ K•

is a resolution of ΩpPn+1(logX) that is acyclic in degrees ≥ 2.

By Bott’s formula [OSS80], Hi(Pn+1,ΩpPn+1(l)) = 0 for all i > 0, 0 ≤ p ≤ n
and l > 0. Hence, the first two terms of the complex are Γ(Pn+1,−)-acyclic.

�

For p = n, we can explicitly compute H1(Pn+1,ΩnPn+1(logX)) using the above

resolution. Recall that J = 〈 ∂F∂zi 〉 ⊂ S is the Jacobian ideal of X and we let

I =
√
J be the radical ideal of J . The ideal I is the defining ideal of the

(reduced) singular locus of X.

Definition 2.3.2. A singularity is reduced if, for any point x ∈ X, JX,x is a
radical ideal of OX,x where JX is the Jacobian ideal sheaf.

Example 2.3.3. Simple surface singularities, i.e. ADE singularities, are re-
duced.

Lemma 2.3.4. Let X ⊂ Pn+1 be a reduced hypersurface defined by a homoge-
neous polynomial F of degree d. Suppose further that the singular subscheme
of X is non-empty and reduced. Let S, J and I be defined as above. Then,
H1(Pn+1,ΩnPn+1(logX)) = (I/J)2d−n−2.
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Proof. By the resolution in Lemma 2.3.1, we see that H1(Pn+1,ΩnPn+1(logX))
is the first cohomology of the complex

0→ H0(Pn+1,ΩnPn+1(d))→ H0(Pn+1, ωPn+1(2d)/ωPn+1(d))
k−→

→ H0(Pn+1,K2) = H0(SingX,K2). (2.10)

Dualizing the short exact sequence

0→ Ω1
Pn+1 → OPn+1(−1)⊕n+2 → OPn+1 → 0

and tensoring with ωPn+1 gives

0→ ωPn+1 = OPn+1(−n− 2)
E−→

→ ωPn+1(1)⊕n+2 = OPn+1(−n− 1)⊕n+2 → ΩnPn+1 → 0.

Using the isomorphism H0(Pn+1,OPn+1(l)) = Sl, we can rewrite (2.10) as

0→ Sd−n−2
E−→ S⊕n+2

d−n−1
h−→ S2d−n−2/FSd−n−2

k−→ H0(SingX,K2)

where

E : A 7→ (. . . , AXi, . . .), and h : (. . . , Gi, . . .) 7→
n+1∑
i=0

Gi
∂F

∂Xi
.

The image of h is clearly J2d−n−2, which contains the vector space FSd−n−2.
Now it suffices to show that the kernel of k on S2d−n−2 is precisely I2d−n−2.

By Lemma 2.3.1, there is an inclusion H0(Pn+1, coker d) ⊂ H0(SingX,K2),
so the map k is induced from the map

k̃ : ωPn+1(2X)/ωPn+1(X)→ coker d.

In local coordinates z1, . . . , zn+1, we see that the differential d sends a mero-

morphic differential form σ = g
f dz1 ∧ · · · ∧ d̂zi ∧ · · · dzn+1 (where f is the

holomorphic function defining X locally) to

dσ =
f ∂g
∂zi
− g ∂f∂zi
f2

dz1∧· · ·∧dzn+1 ≡ −
g

f2

∂f

∂zi
dz1∧· · ·∧dzn+1 (mod ωPn+1(X)).

The polynomial g ∂f∂zi is zero on the singular locus of X. On the other hand,
since the singular locus of X is reduced, the Jacobian ideal sheaf is locally
radical, and hence, { ∂f∂zi } locally generate all holomorphic functions that are
zero on the singular locus.

Thus, the image of d, or equivalently the kernel of k̃, is precisely the sheaf
of all differential forms g

f2 dz1 ∧ · · · ∧ dzn where g is a holomorphic function
that is zero on the singular locus. On the global level, we obtain that ker k =
I2d−n−2/FSd−n−2. �
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Remark 2.3.5. Note that Lemma 2.3.4 does not hold for X smooth. If X
is smooth, the radical ideal I =

√
J is the irrelevant ideal. So, if 2d = n + 2,

then H1(Pn+1,ΩnPn+1(logX) = (S/J)0
∼= C 6= 0 = (I/J)0.

Our goal is to compute the cohomology groups on X, so it remains to relate
the cohomology groups of X with the log cohomology groups on Pn+1.

Proposition 2.3.6. Suppose n ≥ 2. Let X ⊂ Pn+1 be a singular projec-
tive hypersurface of degree d with only reduced quotient singularities, then
H0(X, ω̃X) ∼= Sd−n−2 and H1(X, Ω̃n−1

X )prim
∼= (I/J)2d−n−2 where I =

√
J

is the radical of the Jacobian ideal J of the hypersurface X.

Proof. By Theorem 2.2.14, there are short exact sequences

0→ ωPn+1 → ωPn+1(X)→ ω̃X → 0 and

0→ ΩnPn+1 → ΩnPn+1(logX)→ Ω̃n−1
X → 0.

Since Hi(Pn+1, ωPn+1) = 0 for all i < n+ 1, we obtain

H0(X, ω̃X) = H0(Pn+1, ωPn+1(X)) = H0(Pn+1,O(d− 4)) ∼= Sd−4.

For n ≥ 2, Bott’s formula gives H1(Pn+1,ΩnPn+1) = 0, so we get an isomor-
phism

(I/J)2d−n−2 = H1(Pn+1,ΩnPn+1(logX)) = ker(H1(X,Ωn−1
X )

∼−→ H2(Pn+1,ΩnPn+1)) = H1(X,Ωn−1
X )prim.

�

We can also compute the first cohomology group H1(X, T̃X) of the tangent
sheaf for X having reduced quotient singularities.

Proposition 2.3.7. Let X ⊂ Pn+1 be a projective hypersurface of degree d
with only reduced quotient singularities. Suppose n ≥ 2 and (n, d) 6= (2, 4),
then H1(X, T̃X) ∼= (I/J)d.

Proof. By [Har77, Theorem III.7.11], for a hypersurface X ⊂ Pn+1, the dual-
izing sheaf ω̃X is invertible, so ω̃∨X = ω̃−1

X . Thus, by Lemma 2.2.11, we have
ω̃∨X
∼= ω−1

Pn+1(−X)|X = OPn+1(n+2−d)|X . Tensoring the short exact sequence

0→ ΩnPn+1 → ΩnPn+1(logX)→ Ω̃n−1
X → 0

by ω−1
Pn+1(−X) gives

0→ ΩnPn+1(n+ 2− d)→
→ ΩnPn+1(logX)(n+ 2− d)→ Ω̃n−1

X ⊗ ω̃∨X = T̃X → 0. (2.11)
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For n ≥ 2 and (n, d) 6= (2, 4), we obtain Hi(Pn+1,ΩnPn+1(n + 2 − d)) = 0

for i = 1, 2 by Bott’s formula, so there is an isomorphism H1(X, T̃X) =
H1(Pn+1,ΩnPn+1(logX)(n + 2 − d)). The same proof as that of Lemma 2.3.4,

with a twist by O(n+ 2− d), gives H1(X, T̃X) ∼= (I/J)d. �

Remark 2.3.8. The short exact sequence (2.11) can also be written as

0→ TPn+1(−X)→ TPn+1(− logX)→ T̃X → 0

so H1(X, T̃X) = H1(Pn+1, TPn+1(− logX)) ∼= (I/J)d.

Remark 2.3.9. For (n, d) = (2, 4), there is an isomorphism

(I/J)4 = ker(H1(X, T̃X)→ H2(P3,Ω2
P3) ∼= C).

In Chapter 3, we show that H1(X, T̃X) parametrizes the isomorphism classes
of infinitesimal deformations of X. The space (I/J)4 parametrizes those de-
formations which are projective.
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Chapter 3

Deformation theory

In this chapter, we review the Kodaira-Spencer map, which parametrizes the
infinitesimal deformations of a variety by the first cohomology group of its
tangent sheaf. Using the Kodaira-Spencer map, we define the infinitesimal
period map which compares the deformation of a variety to the deformation
of its Hodge structure. Finally, we show that the infinitesimal Torelli theorem
holds for nodal surfaces.

3.1 The Kodaira-Spencer map

In this section, we define the Kodaira-Spencer map. Much of the contents of
this section can be found in [Ser06] or [CMP03].

In their papers [KS58], Kodaira and Spencer showed that infinitesimal defor-
mations of a smooth projective manifold M can be expressed entirely in terms
of the cohomology group H1(M,TM ). They gave an analytic construction
(cf. [Man05]) but we shall give an algebraic definition of the Kodaira-Spencer
map.

Let C[ε] = C[x]/(x2) be the square-zero extension of C. A first order infinites-
imal deformation is a pullback square

M
i //

��

Mε

f

��
Spec C // Spec C[ε]

in which f is a flat morphism. A morphism of infinitesimal deformations is a
commutative diagram

Mε
//

f

��

Mε′

f ′

��
Spec C[ε] // Spec C[ε′]
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which restricts to the identity on the central fibre M → Spec C. Let DefM
denote the set of isomorphism classes of first order infinitesimal deformations.

Given any representative Mε → Spec C[ε] of an isomorphism class, there
exists an open affine cover {Ui} of M such that the family is trivial on each
Ui, i.e. there is an isomorphism θi : Ui × Spec C[ε]

∼−→ Mε|Ui = Mε ×M Ui.
The infinitesimal deformation is uniquely determined by the set of transition
maps

θij = θ−1
i θj : Uij × Spec C[ε]→ Uij × Spec C[ε] on Uij = Ui ∩ Uj .

The maps θij define derivations OUij → OUij . The tangent sheaf is defined
as TM = Hom(Ω1

M ,OM ) = Der(OM ,OM ), so each θij defines an element
ηij ∈ Γ(Uij , TM ). The Čech cocycle condition ηij + ηjk + ηki = 0 holds on the
intersection, and {ηij} gives a well defined class in H1(M,TM ). This gives us
a well-defined map

κ : DefM → H1(M,TM )

called the Kodaira-Spencer correspondence. Indeed it is a bijection when M is
smooth [Ser06, Prop. 1.2.9], and it gives DefM a vector space structure.

Let f :M→ B be a smooth family of smooth projective complex varieties. Let
0 ∈ B and M =M0 = f−1(0). A deformation family of M is a commutative
diagram

M
i //

��

M

f

��
{pt} // B.

Where there is no risk of confusion, we shall just refer to a deformation family
by the map f .

For a smooth variety B, the algebraic tangent space at 0 is given by

TB,0 = Hom0(Spec C[ε], B) = {φ ∈ Hom(Spec C[ε], B) | f((ε)) = 0}.

There is a well-defined map TB,0 → DefM taking φ ∈ Hom0(Spec C[ε], B) to
the infinitesimal deformation Mε → Spec C[ε] which is the pullback of the
deformation family f : M → B along φ. Combining the two maps gives the
Kodaira-Spencer map

KSf : TB,0 → DefM
κ−→ H1(M,TM ). (3.1)

A family f :M→ B is said to be versal if KSf is surjective and universal if
it is an isomorphism. There exists a versal deformation only if, for all classes
ξ ∈ H1(M,TM ), the Lie bracket [ξ, ξ] = 0 ∈ H2(M,TM ) [KS58, §6]. A smooth
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manifold M admits a universal family if H2(M,TM ) = 0 [KNS58, Theorem,
p. 452].

We can extend the Kodaira-Spencer map in two different ways: the first is to
consider deformations of pairs (M,D) whereM is a smooth variety andD ⊂M
is a smooth effective divisor, while the second is to consider deformations
of singular varieties. In the second case, we shall only consider the simple
situation of a quotient variety of the form X = M/G where M is a smooth
manifold and G is a finite group.

3.1.1 Kodaira-Spencer map for divisors on varieties

Let M be a smooth algebraic variety and D ⊂M an effective divisor. Let L =
OM (D) be the line bundle associated to D and ΣL be the sheaf of differential
operators of degree ≤ 1 on M . Let s ∈ H0(L) be the section defining D, then
s defines a morphism

d1s : ΣL → L : ∂ 7→ ∂s.

An infinitesimal deformation of the triple (M,L, s) is defined to be a triple
(Mε,Lε, sε) where Mε is a flat C[ε]-scheme (ε2 = 0), Lε is a line bundle
on Mε and sε ∈ H0(Mε,Lε), satisfying isomorphisms Mε ⊗C[ε] C ∼= M and
Lε ⊗C[ε] C ∼= L which send sε ⊗C[ε] C to s. Two infinitesimal deformations
(Mε,Lε, sε) and (M ′ε,L′ε, s′ε) are isomorphic if there are C[ε]-isomorphisms
Mε

∼−→ M ′ε and Lε
∼−→ L′ε sending sε to s′ε, restricting to the identity on

(M,L, s) (cf. [Wel83, Section 1]).

We shall call an infinitesimal deformation of a triple (M,L, s) satisfying the
assumptions in the first paragraph an infinitesimal deformation of the pair
(M,D), and denote the vector space of isomorphism classes of infinitesimal
deformations of (M,D) by DefM,D.

Welters [Wel83, Prop. 1.2] proved that the set of isomorphism classes of in-
finitesimal deformations of the triple (M,L, s) is given by the first hypercoho-
mology group H1(M,d1s) of the complex

0→ ΣL
d1s−−→ L → 0.

A simple manipulation gives us the following proposition.

Proposition 3.1.1. Let M be a smooth algebraic variety and D ⊂ M an
effective divisor. Then, DefM,D = H1(M,d1s) where d1s is the complex

0→ TM
d1s−−→ OD(D)→ 0.

In particular, if D is smooth, DefM,D = H1(M,TM (− logD)).
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Proof. The sheaf ΣL lies in a short exact sequence [Wel83, p. 178, (1.10)]

0→ OM → ΣL → TM → 0.

Since the composition OM → ΣL
d1s−−→ L given by f 7→ fs is injective, there is

a commutative diagram

0 // OM // ΣL //

d1s

��

TM //

d1s

��

0

0 // OM // L = OM (D) // OD(D) // 0.

This gives a quasi-isomorphism of the latter two vertical complexes in the
derived category Db(OM ), hence DefM,D = H1(M,d1s) = H1(M,d1s).

If D is a smooth, the short exact sequence (Corollary 2.1.5)

0→ TM (− logD)→ TM
d1s−−→ OD(D)→ 0

implies that there a quasi-isomorphism between TM (− logD) seen as a complex

concentrated in degree 0 and TM
d1s−−→ OD(D). This gives an isomorphism of

cohomology groups

H1(M,TM (− logD)) = H1(M,d1s).

�

If D is not smooth, but is a V-manifold instead, the situation is more compli-
cated. By Corollary 2.2.18, the sequence

0→ TM (− logD)→ TM → OD(D)

is usually only left exact. Let C be the cokernel of the map TM (− logD)→ TM
and C′ be the cokernel of the inclusion C → OD(D). We then get a diagram
of short exact sequences

0 // TM

��

TM //

d1s

��

0

��
0 // C // OD(D) // C′ // 0.

This induces a long exact sequence in hypercohomology

0→ H1(M,TM (− logD))→ H1(M,d1s)→ H0(M, C′).

Hence, we can conclude:
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Corollary 3.1.2. Let M be a smooth algebraic variety and D ⊂M an effec-
tive divisor. Suppose that D is a V-manifold. Then, H1(M,TM (− logD)) ⊆
DefM,D.

Example 3.1.3. Suppose M ∼= Pn+1 and D is a hypersurface defined by a ho-
mogeneous polynomial F of degree d. Let J = 〈 ∂F∂Xi

〉 ⊂ S = C[X0, . . . , Xn+1]

be the Jacobian ideal and I =
√
J be the radical of J . In this case, we can

evaluate DefM,D: there is a diagram

0 // OPn+1 // OPn+1(1)⊕(n+2) //

h

��

TPn+1 //

d1s

��

0

0 // OPn+1 // OPn+1(d) // OD(D) // 0

where h is given by (Gi) 7→
∑n+1
i=0 Gi

∂F
∂Xi

. Furthermore, O(1)n+2 and O(d)

are Γ(Pn+1,−)-acyclic, so h is an acyclic resolution d1s. Hence,

DefPn+1,D = H1(Pn+1, d1s) = H1(Pn+1, h) = coker (H0(h)) = (S/J)d.

Recall from Remark 2.3.8 that H1(Pn+1, TPn+1(− logD)) ∼= (I/J)d. There is
a short exact sequence

0→ H1(Pn+1, TPn+1(− logD)) ∼= (I/J)d →
→ DefPn+1,D

∼= (S/J)d → (S/I)d → 0.

Since Pn+1 has no non-trivial deformations, DefPn+1,D parametrizes the defor-
mations of D in Pn+1. The kernel of the map (S/J)D → (S/I)D is precisely
the deformations whose defining polynomials remain in I, thus fixing the sin-
gular locus. Hence, H1(Pn+1, TPn+1(− logD)) parametrizes the deformations
of D in Pn+1 that preserve the singular locus.

3.1.2 Kodaira-Spencer map for quotient varieties

Let M be a smooth projective complex algebraic variety, G a finite group that
acts on M and X = M/G be the quotient variety.

Definition 3.1.4. Let X be a quotient variety. A deformation of X as a
quotient variety over a smooth base B is defined to be a deformation f :M→
B of M such that the action of G on M extends to a (holomorphic or algebraic)
action on M such that the diagram

M σ //

f   

M

f~~
B
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commutes for all σ ∈ G. Such a deformation of M is also called a G-equivariant
deformation. Let the space of isomorphism classes of G-equivariant first order
infinitesimal deformations of M be denoted by DefGM or DefX where X =
M/G.

We shall construct the Kodaira-Spencer map for G-equivariant deformations.

There is a natural G-action on the category of deformation families of M
[Rim80] which acts by sending a deformation family f : M → B to the
deformation family

M
iσ−1

//

��

M

f

��
Spec C // B

for each σ ∈ G. This action preserves isomorphism classes, so it induces an
action on DefM . It is clear that DefGM = (DefM )G is the G-invariant subspace
of first order infinitesimal deformations.

Remark 3.1.5. There is a natural induced G-action on the tangent bundle
TM . It is defined as follows. Let U = {Ui}i∈I be a covering of M by open balls
such that G acts as a permutation on the indices in I, i.e., for each σ ∈ G, there
is an isomorphism σ|Ui

: Ui
∼−→ Uσ(i). Let {yk} and {xk} be local coordinates

of Uσ−1(i) and Ui respectively such that σ ∈ G sends yk to xk. The induced

G-action on TM is by sending the basis { ∂
∂yk
} to { ∂

∂xk
}.

Proposition 3.1.6. The Kodaira-Spencer correspondence

κ : DefM → H1(M,TM )

is an isomorphism of G-modules. Hence, it induces an isomorphism

κ : DefGM → H1(M,TM )G.

Proof. Let U be an open covering of M and f :Mε → B be a representative
of a class [f ] ∈ DefM . The Kodaira-Spencer correspondence κ is defined by

sending the transition functions Uij × Spec C[ε]
θij−−→ Uij × Spec C[ε] to the

Čech 1-cycles {ηij}, which defines a class in H1(M,TM ).

Choose the open covering U defined in Remark 3.1.5. Then, σ ∈ G acts by
sending

(θij) 7→ (σθσ−1(i)σ−1(j)σ
−1) and (ηij) 7→ (σησ−1(i)σ−1(j)σ

−1),

hence the action of G commutes with the Kodaira-Spencer correspondence κ.
�
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Combining Corollary 2.2.13 and Proposition 3.1.6, we get

Corollary 3.1.7. Let M be a smooth manifold endowed with the action of
a finite group G. Let B be the union of the codimension 1 components of
the branch locus of X = M/G. Then, the vector space DefX of isomor-
phism classes of the infinitesimal deformations of X as a quotient variety is
parametrized by H1(M,TM )G = H1(X, T̃X(− logB)).

Remark 3.1.8. We contrast our result with that of Pardini [Par91] for big
subgroups of GL(n,C). In [Par91, Proposition 4.1], Pardini showed that
for a quotient map f : M → X branched over a divisor B on X, the in-
finitesimal G-equivariant deformations are parametrized by H1(M,TM )G =
H1(X,TX(− logB)).

We also understand the deformation of a divisor on a quotient variety.

Corollary 3.1.9. Let M be a smooth manifold endowed with the action of a
finite group G and f : M → X = M/G be the quotient map. Let D ⊂ X
be a divisor and D̃ = f−1D be the preimage of D on M . Denote the space
of isomorphism classes of the infinitesimal deformations of the pair (X,D)
obtained as a quotient of (M, D̃) by DefG

M,D̃
= DefX,D. Then, DefX,D =

H1(M,d1s)
G where d1s is the complex

0→ TM
d1s−−→ OD̃(D̃)→ 0

and s ∈ OM (D̃) is the section defining D. Furthermore, the G-invariant
cohomology group H1(M,TM (− log D̃))G is a subspace of DefX,D and equality

holds if D̃ is smooth.

Proof. Let L = OM (D̃) and s ∈ H0(M,L) be the section defining D̃. The
section s is invariant under G.

Fixing an open cover U of M , a deformation in DefM,D̃ can be represented by

a triple (θij , lij , s̃i = si + biε) where Uij × Spec C[ε]
θij−−→ Uij × Spec C[ε] are

transition functions,

lij =

(
1 0
ηij 1

)
∈ End(H0(Uij ,L)[ε]) with ηij ∈ End(H0(Uij ,L)),

and s̃i ∈ H0(Ui,L)[ε] are infinitesimal deformations of si = s|Ui
. By the proof

of [Wel83, Proposition 1.2], the Kodaira-Spencer correspondence for manifold-
divisor pairs sends a deformation (θij , lij) to a pair (bi, ηij) ∈ C0(U ,L) ⊕
C1(U ,ΣL) which is a 1-cocycle in H1(d1s).

As in the proof of Proposition 3.1.6, using the basis given in Remark 3.1.5, it is
clear that the G-action commutes with the Kodaira-Spencer correspondence.
The conclusion then follows from Proposition 3.1.1 and Corollary 3.1.2. �

35



3.2 Infinitesimal period map

In this section, we briefly recall the definition of a period map, and generalize it
to define the infinitesimal period map for V-manifolds. The results for smooth
projective varieties in this section are due to Griffiths [Gri68] and can be
found in many standard texts, for example, [Voi02, Chapter 10] and [CMP03,
Chapter 5].

Let B 3 0 be an open ball, and f :M→ B be a family of smooth projective
varieties. We wish to understand how the Hodge structure of Mb = f−1(b)
varies across the family. The period map is a holomorphic map

Pk : B → Dk : [Mb] 7→ (F pHk(Mb,C))

where Dk is the period domain, which is the moduli space of pure Hodge
structures of weight k. Fix M0 = f−1(0) and the vector space V = Hk(M0,Q).
Since B is contractible, Ehresmann’s lemma gives canonical isomorphisms φb :
Hk(Mb,C)

∼−→ VC for all b ∈ B, so F pHk(Mb,C) can be canonically identified
with subspaces of VC. Furthermore, the Hodge numbers are constant in the
family (cf. [Voi02, Proposition 9.20]), so Dk is in fact a subspace of a product
of Grassmannians

k∏
p=1

Gr(bp,k, VC) where bp,k = dim (F pHk(M0,C).

By Lefschetz’s hyperplane theorem, the Hodge structure on Hk(Mb,Q) is de-
termined by that on a general hyperplane section of Mb for all k 6= n = dimMb.
Hence, the most interesting case of the period map is when k = n.

If the deformation is trivial, the Hodge structure is constant over the family
and the period map is trivial, so we suppose that all deformations in the family
f :M→ B are non-trivial. If the period map Pn is injective, then the family
can be identified with a subspace of the period domain. A universal family
f : M → B is said to satisfy the Torelli property if the period map Pn is
injective.

Checking whether a family satisfies the Torelli property is difficult. A signifi-
cantly easier question is to ask if the period map Pn is locally injective, that
is, if, for any [M ] ∈ B, its differential

dPn : T[M ]B → TPn[M ]D

is injective.

By the Kodaira-Spencer isomorphism for universal families, we know that
T[M ]B ∼= H1(M,TM ). The codomain of dPk can be expressed in terms of the
Hodge structure of M :
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Proposition/Definition 3.2.1 ([Voi02, Theorem 10.21]). Let M be a smooth
projective variety. The infinitesimal period map is the morphism

dPk : H1(M,TM )→
k⊕
p=1

Hom(Hk−p(M,ΩpM ), Hk−p+1(M,Ωp−1
M )) (3.2)

defined by sending η ∈ H1(M,TM ) to the map η ∪ − : ω 7→ η ∪ ω. In lo-
cal coordinates z1, . . . , zn, we can write η as

∑
fi

∂
∂zi

, so η ∪ − is given by
contracting the differential forms, with the action on each one form given by
∂
∂zi

(fdzi) = ∂f
∂zi

.

Definition 3.2.2. Let M be a smooth projective variety of dimension n. M
is said to satisfy the infinitesimal Torelli property if the infinitesimal period
map dPn is injective.

Let X = M/G be a quotient variety where G is an abelian group. Taking the
G-invariant components on both sides of the map (3.2) gives a map

dPk : H1(M,TM )G →
k⊕
p=1

Hom(Hp,k−p(M), Hp−1,k−p+1(M))G

=

k⊕
p=1

⊕
χ∈Ĝ

Hom(Hp,k−p(M)χ, H
p−1,k−p+1(M)χ−1)

where Ĝ is the character group of G and Hp,q(M)χ is the eigenspace of
Hp,q(M) corresponding to the character χ.

Recall from Theorem 2.2.5(i) that the eigenspace corresponding to the trivial
character Hp,q(M)1 = Hp,q(M)G is precisely equal to Hp,q(X), which defines
a pure Hodge structure on Hp+q(X,Q) by Theorem 2.2.7. Thus, one can
define the infinitesimal period map for X by projecting onto the components
with trivial characters.

However, from a geometrical perspective, the period map Pk is only well-
defined if the filtration (F pHk(−,C)) is constant dimensional, at least in an
open neighbourhood of [X]. We thus need to impose an additional condition
in the definition.

Definition 3.2.3. Let X = M/G be a quotient variety of dimension n and
f :M→ B a versalG-equivariant deformation family withM = M0 = f−1(0).
Let Mb = f−1(b) for any b ∈ B. Suppose Hp,k−p(Mb)

G is constant dimensional
for all b in an open neigbourhood of 0. Then, the infinitesimal period map is
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defined to be

dPk : H1(M,TM )G = H1(X, T̃X(− logD))

−→
k⊕
p=1

Hom(Hk−p(X, Ω̃pX), Hk−p+1(X, Ω̃p−1
X ))

where D is the union of the codimension 1 components of the branch divisor.
X is said to satisfy the infinitesimal Torelli property if the dPn is injective.

Remark 3.2.4. The domain of the infinitesimal period map in Definition
3.2.3 is restricted to locally-trivial or G-equivariant infinitesimal deformations
of X (cf. Section 3.1.2). If we embed a general singular variety X as a divisor
in a smooth projective variety Y , we see from Corollary 3.1.2 that a general
infinitesimal deformation of X in Y is not equisingular. A general deformation
will cause a jump in Hodge numbers, and as such the period map is not well-
defined.

In this thesis, we will only be consider G-equivariant deformations of V-
manifolds (cf. Chapter 4). The infinitesimal Torelli property determines if
the Hodge structure on the middle cohomology distinguishes all non-trivial
deformations of the V-manifold X.

3.3 Infinitesimal Torelli theorem for
nodal surfaces

After the proof of the original Torelli theorem for smooth projective curves,
the next major result is Griffiths’ proof of the Torelli theorem for most smooth
projective hypersurfaces [Gri69a; Gri69b]. The first step in Griffiths’ proof is
to prove the infinitesimal Torelli theorem.

Theorem 3.3.1 (Infinitesimal Torelli theorem for smooth hypersurfaces
[Gri69a, Theorem 9.8(b)]). Let X ⊂ Pn+1 be a smooth hypersurface of degree
d and suppose n ≥ 3 and d ≥ 3 or n = 2 and d > 3. Then, the infinitesimal
period map

dPn : H1(X,TX)→
n⊕
p=1

Hom(Hp,n−p(X), Hp−1,n−p+1(X))

is injective.

The proof uses the description of cohomology groups using polynomial rings
given in Section 2.3.
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Let X ⊂ Pn+1 be a projective hypersurface defined by a homogeneous poly-
nomial equation F (z0, . . . , zn+1) = 0 of degree d. Let S = C[z0, . . . , zn+1] be
the ring of polynomials and J = 〈 ∂F∂zi 〉 be the Jacobian ideal. We denote by
Sd, Jd and (S/J)d the homogeneous parts of degree d.

In Section 2.3, we showed that there are isomorphisms Hp,n−p(X)prim =
(S/J)(n−p+1)d−n−2 and H1(X,TX) = (S/J)d. The infinitesimal period map
factors through the map

Π : (S/J)d →
n⊕
p=1

Hom((S/J)(n−p+1)d−n−2, (S/J)(n−p+2)d−n−2)

[P ] 7→ ([Q] 7→ [P ·Q]).

The proof of the injectivity of Π (and hence Theorem 3.3.1) relies on a key
lemma.

Lemma 3.3.2 (Macaulay’s theorem [Mac16, §86], cf. [CMP03, Theorem 7.4.1]).
Let (P0, . . . , Pn+1) be a regular sequence of homogeneous polynomials of degrees

d0, . . . , dn+1 in S and ρ =
∑n+1
i=0 di − (n + 2). Then (S/J)l = 0 for all l > ρ

and there is a perfect pairing

(S/J)l ⊗ (S/J)ρ−l → (S/J)ρ ∼= C

induced by multiplication in S.

To prove Theorem 3.3.1, the lemma is applied to Pi = ∂F
∂zi

. The sequence
(Pi) is regular if and only if the hypersurface X ⊂ Pn is smooth. The ideal
〈P0, . . . , Pn〉 is precisely the Jacobian ideal J and ρ = (n+ 2)(d− 2).

However, for singular hypersurfaces, the radical ideal I = rad(J) of the Ja-
cobian is not the irrelevant ideal m, so the sequence ( ∂F∂zi ) is not regular and
Macaulay’s theorem cannot be applied. Indeed, the radical ideal I = I(SingX)
is the ideal defining the singular locus of X.

To prove the infinitesimal Torelli theorem for certain singular hypersurfaces,
we need an analogue of Macaulay’s theorem.

From now on, we shall assume that n = 2, so X is a surface of degree d in P3.
We further assume that X is a nodal surface.

Let X ⊂ P3 be a nodal surface defined by a homogeneous polynomial F ∈
C[z0, . . . , z3] of degree d. Let Z = {p1, . . . , pk} be the set of nodes of X and
Fi = ∂F

∂zi
(0 ≤ i ≤ 3) be the partial derivatives of F . So, Z is the zero locus of

the set of partial derivatives. Let J = 〈F0, . . . , F3〉 be the Jacobian ideal of F
and I =

√
J be its radical.
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Let E =
⊕3

i=0OP3(d − 1) and s be the section of E defined by (F0, . . . , F3).
Consider the Koszul complex

K• =
(

0→
4∧
E∨ →

3∧
E∨ →

2∧
E∨ → E∨ → OP3 → 0

)
where the differential maps are contractions by the section s. We place OP3 in
degree 0.

Since the zero locus of the section s is the finite set Z, which is of codimension
3 in P3, by [CMP03, Problem 7.2.2(b)], the Koszul complex K• is exact in

degrees < −(4 − 3) = −1. Note that the map E∨ (F0,...,F3)−−−−−−→ OP3 is surjective
away from Z, and the cokernel at each point of Z is isomorphic to C, so there
is an exact sequence

E∨ → OP3 → OZ → 0.

Thus, the extended complex, which we shall also call K• by abuse of notation,

K• =
(

0→
4∧
E∨ →

3∧
E∨ →

2∧
E∨ → E∨ → OP3 → OZ → 0

)
is exact everywhere except in degree −1. Indeed, there is a quasi-isomorphism

K• qis
=

ker(E∨ → OP3)

im (
∧2 E∨ → E∨)

[1].

The righthand side is supported on Z since the complex K• is exact away from
Z by [CMP03, Problem 7.2.2(b) or Theorem 7.4.1]. We define K to be the
sheaf

K :=
ker(E∨ → OP3)

im (
∧2 E∨ → E∨)

.

Consider the twisted complex K• ⊗O(l) for some integer l. We can associate
to it the spectral sequence

Ep,q1 = Hq(P3,Kp(l)) =⇒ Hp+q(P3,K• ⊗O(l)) = Hp+q(Z,K[1]),

dr : Ep,qr → Ep+r,q−r+1
r . (3.3)

Note that Hp+q(P3,K• ⊗ O(l)) = Hp+q+1(Z,K) is independent of the twist
since it is supported on a finite set.

The cohomology group Ep,q1 = Hq(P3,Kp(l)) is zero except where q = 0 or
q = 3, so we have E2 = E3 = E4 and E5 = E6 = · · · = E∞. Indeed, Ep,qr 6= 0
only if q = 0, 3 and −4 ≤ p ≤ 1.
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Consider the map d4 : E−4,3
4 → E0,0

4 . We have

E−4,3
4 =

ker(E−4,3
1

d1−→ E−3,3
1 )

im (E−5,3
1 = 0

d1−→ E−4,3
1 )

= ker
(
H3(P3,

4∧
E∨(l))

αl−→ H3(P3,

3∧
E∨(l))

)
= ker

(
H3(P3,O(−ρ− 4 + l))

αl−→ H3(P3,

3⊕
i=0

O(−ρ− 5 + l + d))
)

∼= coker
(
H0(P3,

3⊕
i=0

O(ρ− l − d+ 1))
α∗l−−→ H0(P3,O(ρ− l))

)∨
= coker

( 3⊕
i=0

Sρ−l−d+1
α∗l−−→ Sρ−l

)∨
= (S/J)∨ρ−l

where ρ = 4d− 8 and the fourth isomorphism is given by Serre duality. αl is
multiplication by the polynomials (F0, . . . , F3) and α∗l is its dual. Similarly,

E0,0
4 =

ker(E0,0
1

d1−→ E1,0
1 )

im (E−1,0
1 = 0

d1−→ E0,0
1 )

=
ker
(
H0(P3,OP3(l))→ H0(P3,OZ(l))

)
im
(
H0(P3, E∨(l))→ H0(Proj3,OP3(l))

)
=

ker
(
H0(P3,OP3(l))→ H0(P3,OZ)

)
im
(
H0(P3,

⊕3
i=0O(l − di))

βl−→ H0(Proj3,O(l))
)

=
Il

im
(⊕3

i=0 Sl−di
βl−→ Sl

) = (I/J)l

where βl is multiplication by (F0, . . . , F3). Note that α∗l = βρ−l.

Thus, d4 induces a morphism

d4 : (S/J)∨ρ−l → (I/J)l. (3.4)

Lemma 3.3.3. The morphism d4, restricted to (I/J)∨ρ−l induces a duality

(I/J)∨ρ−l
∼−→ (I/J)l. In particular, the morphism d4 : (S/J)∨ρ−l → (I/J)l is

surjective.

Proof. The composition of the map (3.4) for l and ρ− l gives

(S/J)∨ρ−l → (I/J)l → (I/J)∨ρ−l and (S/J)∨l → (I/J)ρ−l → (I/J)∨l
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which are dual to the inclusion I/J → S/J . Hence, there is a natural duality
(I/J)l ∼= (I/J)∨ρ−l.

We can also prove directly that d4 is surjective. Since E4,−3
4 = 0, we have

E0,0
5 = coker (E−4,3

4
d4−→ E0,0

4 ). The spectral sequence of (3.3) converges to
Hp+q(Z,K[1]) and H0(Z,K[1]) = H1(Z,K) = 0 since Z is a finite set, so
E0,0

5 = E0,0
∞ = 0 and d4 is surjective. �

Remark 3.3.4. Unlike the regular case (Macaulay’s theorem, Lemma 3.3.2),
the perfect pairing

(I/J)ρ−l ⊗ (I/J)l → C

is not induced by multiplication of polynomials in I. This is clear since
(I/J)ρ = 0.

We can however show a weaker form of the multiplication property (Lemma
3.3.11). To do so we need to relate the algebraic independence of the partial
derivatives Fi and the independence of the set of nodes.

Definition 3.3.5. Let Z = {p1, . . . , pk} be a set of points on a hypersurface
X and {ei} be a basis for Sl, the vector space of homogeneous polynomials of
degree l. We say that the set Z imposes independent conditions in degree l
(or simply, is independent in degree l) if the rank of the matrix (ei(pj))i,j is
k.

It is clear from the definition that if Z is independent in degree l, then it is
independent in all degrees ≥ l.

Remark 3.3.6. The kernel of the matrix (ei(pj))i,j is the vector space Il.
So, if Z is a set of k points, then Z is independent in degree l if and only if
dimSl − dim Il = k.

There are numerous results regarding independence of nodes. The main result
that we shall use in this thesis is that of Severi. He showed that the set of
nodes Z on a nodal surface X ⊂ P3 is independent in degree 2d − 5 [Sev46,
§14].

A recent work of Mustaţă and Popa uses mixed Hodge modules and Hodge
ideals to give a vast generalization of this lemma. They showed that for any
reduced hypersurface D ⊂ Pn+1 of degree d, with isolated singularities of
multiplicity m, the set Z of singular points imposes independent conditions
in degree (bn+1

m c+ 1)d− n− 2 [MP16, Corollary H]. However, in the case of
nodal surfaces, their result is slightly weaker, it only yields independence in
degree 2d−4, which is insufficient for proving the infinitesimal Torelli theorem
for nodal surfaces.
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To prove the infinitesimal Torelli theorem, we need conditions on the algebraic
independence of the partial derivatives Fi.

Lemma 3.3.7. Let X ⊂ P3 be a nodal surface defined by a homogeneous
polynomial F of degree d. Then, the partial derivatives Fi = ∂F

∂zi
are alge-

braically independent in degrees ≤ 2d − 4, that is, if
∑3
i=0HiFi = 0 with

degHiFi ≤ 2d− 4, then Hi = 0 for all i.

Proof. Since the Jacobian ideal J is generated by the four partial derivatives
Fi, which are of degree d − 1, the homogeneous module J2d−4 is generated
by the products Fizjd · · · zj2d−4

where 0 ≤ jd ≤ · · · ≤ j2d−4 ≤ 3. Hence,

dim J2d−4 ≤ 4 dimSd−3 = 4
(
d
3

)
. The partial derivatives are algebraically inde-

pendent in degrees ≤ 2d−4 if and only if the given set of generators is linearly
independent, i.e. dimJ2d−4 = 4

(
d
3

)
.

Let Z = {p1, . . . , pk} be the set of nodes. Since I = I(Z) is the ideal of
polynomials that vanish on Z, the homogeneous part I2d−4 is generated by the
kernel of the matrix (ei(pj))i,j , which has dimension at least dimS2d−4 − k.

By Proposition 2.3.6, we have dim (I/J)2d−4 = h1(Ω̃1
X)prim = h1(Ω̃1

X)−1. Let

π : X̃ → X be a resolution of singularities of X. By Proposition 2.2.21, there
is an isomorphism Ω̃1

X = Rπ∗Ω
1
X̃

(logE). The distinguished triangle

Rπ∗Ω
1
X̃
→ Rπ∗Ω

1
X̃

(logE) = Ω̃1
X → Rπ∗OE

+1−−→

gives a long exact sequence

0→ H1,0(X̃)
∼−→ H1,0(X)→ H0(E,OE) ∼= Ck → H1,1(X̃)→ H1,1(X)→ 0.

So, h1,1(X̃) = h1,1(X) + k, and by Noether’s formula, for a smooth hypersur-
face,

h1,1(X̃) = 10χ(OX̃)−K2
X̃

= 10

(
1 +

(
d− 1

3

))
− d(d− 4)2.

We can thus compute the dimension of the vector space J2d−4 to be

4

(
d

3

)
≥ dim J2d−4 = dim I2d−4 − dim (I/J)2d−4

≥ dimS2d−4 − k − h1(Ω̃1
X) + 1

=

(
2d− 1

3

)
− k − h1,1(X̃) + k + 1 = 4

(
d

3

)
. (3.5)

Hence, equality holds throughout, and we conclude that the partial dervatives
are algebraically independent in degree ≤ 2d− 4. �

43



Note the fact that equality holds in (3.5) implies that dimS2d−4−dim I2d−4 =
k, so by Remark 3.3.6, the nodes are independent in degree 2d− 4. Thus, we
have given an alternate proof of the result.

We now want to further show that the partial derivatives are algebraically
independent in degrees up to 2d− 3.

Recall the surjective map d4 : (S/J)∨ρ−l → (I/J)l (cf. (3.4)) induced from the
spectral sequence (3.3). We try to understand the kernel of the map d4. Note

that E−4,3
5 = ker(E−4,3

4
d4−→ E0,0

4 ) and

H0(Z,K) = H−1(X,K[1]) = E−4,3
5 ⊕ E−1,0

5 . (3.6)

We can compute

E−1,0
5 = E−1,0

2 =
ker
(
H0(P3, E∨(l))→ H0(P3,OP3(l))

)
im
(
H0(P3,

∧2 E∨(l))→ H0(P3, E∨(l))
)

=
ker
(⊕3

i=0 Sl−d+1
βl−→ Sl

)
im
(⊕

0≤i<j≤3 Sl−2d+2 →
⊕3

i=0 Sl−d+1

) .
Note that Jl = im

(⊕3
i=0 Sl−d+1

βl−→ Sl
)
.

Definition 3.3.8. We define the defect Dft(Jl) of Jl be the kernel of the map⊕3
i=0 Sl−d+1

βl−→ Sl and let dft(Jl) = dim Dft(Jl). Then dft(Jl) + dim Jl =
4dimSl−d+1.

Proposition 3.3.9. The partial derivatives Fi are algebraically independent
in degree 2d− 3, i.e. dft(J2d−3) = 0.

Proof. Note that for l < 2d − 2, we have Sl−2d+2 = 0, so E−1,0
5 = Dft(Jl).

Thus, by the equation (3.6), for l < 2d− 2, there are isomorphisms

H0(Z,K) = ker
(
(S/J)∨ρ−l

d4−→ (I/J)l
)
⊕Dft(Jl).

By Lemma 3.3.3, the map d4 is surjective, so we can compute the dimension
of H0(Z,K) as

h0(K) = dimSρ−l − dim Jρ−l − dim Il + dim Jl + dft(Jl).

Now we restrict to the cases where 2d − 5 ≤ l ≤ 2d − 3. Severi [Sev46, §14]
showed that the set of nodes on a nodal surface is independent in degrees
≥ 2d− 5, so dimSl − dim Il = k.

Recall that dft(Jl) + dim Jl = 4dimSl−d+1. Thus, for 2d− 5 ≤ l ≤ 2d− 3, we
have

h0(K) = dimSρ−l − 4 dim Jρ−l−d+1 + dft(Jρ−l)− dimSl + k + 4dim Jl−d+1.
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Since h0(K) is independent of l, we can compare the dimensions for l = 2d−5
and l = 2d− 3 to obtain dft(J2d−3) = dft(J2d−5) = 0 by Lemma 3.3.7. �

Remark 3.3.10. Proposition 3.3.9 gives the largest possible degree for alge-
braic independence. One can verify on Explicit examples 4.1.15 and 4.2.7 that
the partial derivatives Fi are no longer algebraically independent in degree
2d− 2.

Lemma 3.3.11. Let l < 2d − 4 and G ∈ Il. Suppose Gzj ∈ Jl+1 for all
j = 0, . . . , 3, then G ∈ Jl.

Proof. Let Fk = ∂F
∂zk

and Gzj =
∑
kHjkFk for each j with Hjk of degree

l − d+ 2 ≤ l. Then, for any i 6= j,

0 = G(zjzi − zizj) =

3∑
k=0

(ziHjk − zjHik)Fk.

By Proposition 3.3.9, the Fi’s are algebraically independent in degree l + 2 ≤
2d − 3, so the coefficients ziHjk − zjHik = 0 for all i, j, k. In particular, zj
divides Hjk for each j. Let Hjk = H ′jkzj , then G =

∑
kH
′
jkFk lies in Jl. �

We can now conclude:

Proposition 3.3.12. Let X ⊂ P3 be a nodal surface of degree d ≥ 4. Then,
the map

dP2 : H1(X, T̃X)→ Hom(H0(X, ω̃X), H1(X, Ω̃1
X))

is injective.

Proof. The map dP2 factors through

Π :H1(X, T̃X) = (I/J)d

−→ Hom(H0(X, ω̃X), H1(X, Ω̃1
X)prim) = Hom(Sd−4, (I/J)2d−4)

which is given by multiplication of polynomials. Suppose [P ] ∈ (I/J)d is in
the kernel of Π, that is, P · Q ∈ J2d−4 for all Q ∈ Sd−4. We shall prove that
P ∈ Jd, so [P ] = 0 ∈ (I/J)d.

Suppose, to the contrary, that P 6∈ Jd, then there exists a homogeneous poly-
nomial R ∈ S<d−4 of maximal degree such that P · R 6∈ J . By hypothesis,
P · R · zi ∈ J for all i = 0, . . . , 3. Lemma 3.3.11 then implies that P · R ∈ J ,
giving the contradiction. �
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Remark 3.3.13. In [EM15, Corollaire 5.2.2], Eyssidieux and Mégy proved a
similar result, that

Π : (I/J)d → Hom((S/J)d−n−2, (I/J)2d−n−2)

is injective. However, they needed to impose the condition that (I/J)≥d−n−2

is generated by (I/J)d−n−2. Our result, though much more restricted, avoids
this condition. In fact, for all our examples of nodal sextic surfaces in Chapter
4, (I/J)d−n−2 = (I/J)2 are zero.

Remark 3.3.14. The proof of Proposition 3.3.9 suggests that there is some
form of duality between the algebraic independence of Fi in degree l and the
independence of the nodes in degree ρ− l, for example, an equality dft(Jρ−l) =
k′l where k′l ≤ k is the rank of the matrix (ei(pj))i,j determining the dependence
of the nodes.

However, such an equality cannot hold for l ≥ 2d − 2 because the term
im
(⊕

0≤i<j≤3 Sl−2d+2 →
⊕3

i=0 Sl−d+1

)
in E−1,0

5 is non-zero. If we can un-
derstand this term better, it may be possible to use Mustaţă and Popa results
[MP16, Corollary H] on independence of nodes to prove the injectivity of the
infinitesimal period map for hypersurfaces in higher dimensions with isolated
singularities.

To prove the infinitesimal Torelli theorem, we further assume that X = M/G
is a quotient surface and G is small in the neighbourhoods of all points on
the singular locus of X. This assumption is not essential, but we have only
defined the infinitesimal period map for quotient surfaces, and not for general
V-manifolds. We need to show that the Hodge numbers are constant in an
open neighbourhood of X on a versal family of G-equivariant deformations of
M .

Proposition 3.3.15. Let X ⊂ Pn+1 be a projective hypersurface of degree d
such that X is a V-manifold. Suppose n ≥ 2 and (n, d) 6= (2, 4). Then all small
deformations of X parametrized by H1(X, T̃X) are projective hypersurfaces of
degree d, preserving the singularities of X.

Proof. By Proposition 2.3.7 and Remark 2.3.8, there is an isomorphism

H1(X, T̃X) = H1(Pn+1, TPn+1(− logX))

under the hypothesis n ≥ 2 and (n, d) 6= (2, 4). By Example 3.1.3, the latter
parametrizes all infinitesimal deformations of X in Pn+1 that preserve the
singularities. Since there is a unique linear system OPn+1(d) = OPn+1(X) in
Pn+1 of degree d, all deformations of X are projective hypersurfaces of degree
d. �
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Theorem 3.3.16. Let X ⊂ P3 be a nodal surface of degree d ≥ 5. Then X
satisfies the infinitesimal Torelli property.

Proof. The injectivity of the infinitesimal period map was already proven
in Proposition 3.3.12. It remains to show that the period domain is well-
defined in a small neighbourhood U of X in the moduli family parametrized
by H1(X, T̃X).

Suppose X has k nodes. By Proposition 3.3.15, any X ′ ∈ U is also a nodal
surface of degree d with k nodes. The Hodge numbers of a nodal surface of
degree d is only dependent on the number of nodes, hence the Hodge numbers
are constant on U and the period domain is well-defined. �

Remark 3.3.17. Deformations of nodal surfaces have been studied in greater
depth by Burns and Wahl [BW74]. They showed that the formal moduli
space of surfaces of degree d with at most nodal singularities extends that of
smooth surfaces of degree d, and is a reduced complete intersection of dimen-
sion

(
d+3

3

)
− 16 for d ≥ 5 (Corollary 2.11).

They further showed that G-equivariant deformations of a nodal surface X of
degree d is unobstructed if and only if the set Z of nodes is independent in
degree d [BW74, Corollary 4.3]. Thus, if d ≤ 5, all G-equivariant deformations
are unobstructed by Severi’s result on independence of nodes. For the two ex-
amples we give in Chapter 4 with d = 6, we show directly in both cases that the
infinitesimal deformations are unobstructed (Propositions 4.1.14 and 4.2.12),
and hence the nodes are independent in degree 6. This gives an improvement
over Severi’s result.
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Chapter 4

Nodal sextic surfaces

Recall from Definition 2.2.19 that a nodal surface is a projective surface with
only ordinary double points as singularities.

Definition 4.0.1. A set of nodes of a surface F is said to be even if there
exists a double cover S → F branched exactly on the nodes from that set.
An even k-nodal surface is a surface whose singular locus is exactly k nodes
forming an even set.

The involution defining the double cover f : S → F of an even nodal surface
induces a decomposition of the Hodge structure of S. In particular, the neg-
ative eigenspace H2(S,Q)− of the weight 2 Hodge structure often has small
h2,0 and large h1,1.

Hence, the double covers of even nodal surfaces provide a source of potentially
interesting simple weight 2 Hodge structures of geometric origin. In this chap-
ter, we study some families of such examples with detailed discussion of their
Hodge structures.

We shall focus on a set of examples previously considered by Casnati, Catanese
and Tonoli [CC97; CT07]. In [CT07], Catanese and Tonoli showed that an
even set of nodes on a sextic surface has cardinality in {24, 32, 40, 56}. They
provided a construction of these nodal surfaces in the paper [CC97], where
it is shown that even sets of nodes correspond to certain symmetric maps
between vector bundles. In this way, one can find explicit examples of such
surfaces, but the equations tend to be rather complicated and it is not easy
to understand the geometry of these surfaces. In this thesis we present more
explicit constructions of these nodal surfaces, and study their Hodge structures
through additional involutions and deformations.

Let F be an even k-nodal sextic surface and f : S → F be the double cover of
F ramified on the nodes p1, . . . , pk. There is a decomposition

f∗OS = OF ⊕F .

Casnati and Catanese [CC97, Proposition 3.1] showed that F is a quadratic
coherent sheaf, that is, there is an isomorphism F ∼−→ F∨.
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Let πF : F̃ → F be the desingularization of F . There is a Cartesian diagram

S̃
πS //

f̃
��

S

f

��
F̃

πF // F.

Let Ni ⊂ F̃ be the inverse images of the nodes pi ∈ F . The double cover f̃
is branched over the exceptional divisor ∆̃ =

∑
Ni. Since pi are nodes, the

exceptional curves Ni are (−2)-curves. Let Ei = f̃−1Ni, so

Ei · Ei =
1

4
f̃∗Ni · f̃∗Ni =

1

2
(Ni ·Ni) = −1

and Ei are (−1)-curves. Blowing down the exceptional curves Ei give the
surface S, hence S̃ is the blow up of S at f−1∆ where ∆ =

⋃
pi is the set of

nodes of F .

There exists a divisor L on F̃ such that 2L ≡ ∆̃. Let L = OF̃ (L), then there
is a decomposition (cf. [Par91, Proposition 4.1])

f̃∗OS̃ ∼= OF̃ ⊕ L
−1.

The OF̃ -linear involution on f̃∗OS̃ decomposes it into the eigensheaves OF̃
and L−1 with eigenvalues +1 and −1 respectively. We denote the eigenspaces
on the cohomology groups by Hi(S̃,OS̃)+ = Hi(F̃,OF̃ ) and Hi(S̃,OS̃)− =

Hi(F̃,L−1). Since Hi(S,OS) = Hi(S̃,OS̃) and Hi(F,OF ) = Hi(F̃,OF̃ ), we

have Hi(F,F) = Hi(F̃,L−1).

Lemma 4.0.2. Let F ⊂ P3 be an even k-nodal sextic surface and use the
notations as above. Then,

hi(OS̃)+ = hi(OF̃ ) = hi(OF ) =


1 i = 0

0 i = 1

10 i = 2

and

χ(OS̃)− = χ(L−1) = χ(F) = 11− k

4
.

Furthermore, K2
F = K2

F̃
= 24, K2

S̃
= 48− k and K2

S = 48.

Proof. Consider the short exact sequence

0→ OP3(−6)→ OP3 → OF → 0

and its associated long exact sequence. Since hi(OP3) = 0 for all i > 0 and
hi(OP3(−6)) = 0 for all i < 3, we have h0(OF ) = h0(OP3) = 1 and h2(OF ) =
h3(OP3(−6)) = h0(ωP3(6)) = h0(OP3(2)) = dimC[x0, . . . , x3]2 = 10.
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By the adjunction formula, the canonical divisor KF̃ = π∗FKF = π∗F (KP3 +
F )|F = π∗FO(2)|F is twice the general hyperplane section H. Since the inter-

section product H · ∆̃ is zero, the Riemann-Roch theorem for surfaces gives

χ(L−1) = χ(OF̃ ) +
(−L)(−L−KF̃ )

2
= 11 +

∆̃2

8
= 11− k

4
.

The adjunction formula gives K2
F̃

= (O(2) · O(2))|F = 2 · 2 · 6 = 24. There

is an isomorphism f̃∗(KF̃ + L) = KS̃ , so K2
S̃

= f̃∗(KF̃ + L)2 = 2((2H)2 +
1
4∆̃2) = 2(24 − 1

4 (2k)) = 48 − k. Since ∆̃S = f̃−1(∆̃) ⊂ S̃ is the blowup

of smooth points on S, we have KS̃ = π∗SKS + ∆̃S = π∗SKS + f̃∗L. Hence,

π∗SKS = KS̃ − f̃∗L = f̃∗KF̃ and K2
S = 2K2

F̃
= 48. �

4.1 56-nodal sextic surfaces

In [CT07], Catanese and Tonoli constructed a family of even 56-nodal sextic
surfaces as the degeneracy locus of a symmetric map. In this section, we give
a more direct construction starting from the theta divisor Θ of a principally
polarized abelian threefold. We will construct a family of even 56-nodal sextic
surfaces F with double cover S equipped with another double cover S → Θ
induced by the Albanese map of S. Any such surface F lies in a commutative
diagram of covering maps

S
p //

f

��

Θ

φ
��

F
p
// Θ

The double cover φ is induced by the involution [−1] on the abelian threefold
Alb(S), and it fixes 28 points on Θ. The nodal surface Θ has been studied
before, cf. [DO88, Chapter IX.6, Theorem 4 and Remark 6].

In Section 4.1.3, we shall show that a general member of the family of Catanese
and Tonoli lies in the family we constructed. By construction, F has an
involution with quotient Θ.

The contents of Sections 4.1.1, 4.1.2 and 4.1.4 are contained in the preprint
[GZ16].

4.1.1 Construction of a family of even 56-nodal surfaces

Let C be a smooth non-hyperelliptic curve of genus 3 and consider its Jacobian
A = Jac(C). The abelian variety A admits a principal polarization defined
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by a theta divisor Θ and we will identify Θ = S2C. We can choose Θ to
be a symmetric divisor on A, i.e. [−1]∗Θ = Θ. The involution [−1] on Θ
corresponds to the involution D 7→ KC−D on S2C, where KC is the canonical
divisor on C.

The linear system |2Θ| is totally symmetric, that is, [−1]∗D = D for all D ∈
|2Θ|. It defines a morphism

ϕ2Θ : A→ P7

which is the quotient map by the involution [−1]. Let A = A/[−1], the Kum-
mer variety of A, be the image of ϕ2Θ. The singular locus of A consists of 64
nodes, which are the images of the two-torsion points of A.

Consider the hyperplane H2Θ of P7 corresponding to the divisor 2Θ. The
intersection of H2Θ with A is the image Θ = Θ/[−1] of Θ, with multiplicity
two. As Θ contains 28 of the two-torsion points of A, the surface Θ has 28
nodes. Equivalently, these are the images of the 28 odd theta characteristics
in S2C.

To describe this map ϕ2Θ|Θ : Θ → P6, notice that the adjunction formula on

A shows that the canonical class of Θ is KΘ = Θ|Θ. Thus OΘ(2Θ) ∼= ω⊗2
Θ .

Moreover, the cohomology of the restriction sequence

0→ OA(Θ)→ OA(2Θ)→ OΘ(2Θ)→ 0

combined with Hi(A,OA(Θ)) = 0 for i > 0 (Kodaira vanishing or Riemann-
Roch on A), shows that h0(ω⊗2

Θ ) = h0(OΘ(2Θ)) = 7. Hence, when restricted
to Θ, the morphism ϕ2Θ|Θ = ϕ2KΘ is given by the complete linear system
|2KΘ|.

To understand this morphism better, we first consider the map ϕKΘ
. From the

restriction sequence above, twisted byOA(−Θ), one deduces thatH0(Θ, ωΘ) ∼=
H1(A,OA) is three dimensional. The map ϕKΘ

: Θ → P2 is the Gauss map,
which is a morphism of degree (Θ|Θ)2 = Θ3 = 6 factoring through Θ. As ϕKΘ

is surjective, the natural map S2H0(Θ, ωΘ) → H0(Θ, ω⊗2
Θ ) is injective, thus

the image has codimension one.

Let t ∈ H0(Θ, ω⊗2
Θ ) be a general section in the complement of the image of

S2H0(Θ, ωΘ). Since |2KΘ| is basepoint free, we may assume that the divisor
B in Θ defined by t = 0 is smooth and does not pass through any two-torsion
points. Since |2KΘ| is totally symmetric, we have [−1]∗B = B. Let s0, s1, s2

be a basis of H0(Θ, ωΘ). Then we have:

ϕ2KΘ : Θ → PH0(Θ, ω⊗2
Θ ) ∼= H2Θ

∼= P6,

x 7→ (. . . : si(x)sj(x) : . . . : t(x))0≤i≤j≤2.
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The image Θ of Θ thus lies in a cone over the Veronese surface of P2. This
cone is the image Y of the weighted projective 3-space P(1, 1, 1, 2), which is
embedded into P6 by the (very) ample generator OY (2) of its Picard group:

P(1, 1, 1, 2) → Y ⊂ P6,

(y0 : y1 : y2 : y3) 7→ (. . . : yiyj : . . . : y3)0≤i≤j≤2.

As ϕKΘ
has no base points, the surface Θ ⊂ Y does not contain the singular

point v = (0 : . . . : 0 : 1) of Y , the vertex of the cone over the Veronese surface.
Hence, Θ is a Cartier divisor on Y . The projection of Θ from v onto the
Veronese surface is the Gauss map ϕKΘ , which has degree 6/2 = 3 on Θ. This
implies that Θ lies in the linear system on Y defined by three times the ample
generator. Since the map S3H0(Y,OY (2)) → H0(Y,OY (6)) is surjective, we
conclude that Θ is defined by a weighted homogeneous polynomial p of degree
six in Y = P(1, 1, 1, 2):

Θ =

{
(y0 : y1 : y2 : y3) ∈ P(1, 1, 1, 2) :

p(y0, . . . , y3) =

3∑
i=0

p2i(y0, y1, y2)y3−i
3 = 0

}
,

where each p2i is homogeneous of degree 2i in y0, y1, y2. Since v 6∈ Θ, we may
and will assume that p0 = 1.

The weighted projective space P(1, 1, 1, 2) is also the quotient of P3 by the
involution i3 : (x0 : . . . : x3) 7→ (x0 : x1 : x2 : −x3), the quotient map is
explicitly given by:

p : P3 → P(1, 1, 1, 2), (x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2 : x2
3).

Now we define a surface F in P3 as F := p−1(Θ), thus F is defined by the
sextic equation P = 0 where

P := p6(x0, x1, x2) + p4(x0, x1, x2)x2
3 + p2(x0, x1, x2)x4

3 + x6
3.

The double cover p : F → Θ is branched over the points where x3 = 0, so
the branch locus is the divisor B ⊂ Θ defined by t = 0. Here B = B/[−1],
which is a smooth curve by the assumption that B is smooth and does not
pass through the 28 fixed points of [−1] in Θ. The same assumption implies
that the singular locus of F consists of 56 nodes. The 28 nodes of Θ form
an even set since the double cover Θ → Θ is branched only over the nodes.
Hence, the preimage ∆ ⊂ F of these nodes is also an even set. In fact, F has a
double cover S branched only over the nodes by pulling back the double cover
Θ→ Θ along p : F → Θ, cf. diagram (4.1).

We summarize the construction as follows:
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Theorem 4.1.1. There exists a family of even 56-nodal sextic surfaces, which
is parametrized by pairs (C,B) where C is a non-hyperelliptic curve of genus
3 and B ∈ |2KS2C | is a general divisor. Each surface F is obtained as the
double cover of Θ branched over B where Θ and B are images of Θ = S2C
and B ⊂ Θ under the quotient map A = J(C)→ A/[−1].

In particular, we have a 6 + 6 = 12 dimensional family of such surfaces.
Moreover, each surface in the family has an automorphism of order two.

4.1.2 Coverings of Θ

From the definition of S as the base change along p : F → Θ of the double
cover Θ → Θ, it follows that the covering S → Θ is a (Z/2Z)2-covering. Let
ι1 and ι2 be involutions on S with quotient surfaces F and Θ respectively. Let
ι3 = ι1ι2, then ι3 is an involution and we define T := S/ι3.

This gives a commutative diagram

S
p //

f

��

��

Θ

φ

��
T

��
F

p
// Θ

(4.1)

Proposition 4.1.2. The double cover S → T is unramified. In particular, T
is smooth and T → Θ is branched along B and the 28 nodes.

Proof. The ramification locus of S → T is the fixed locus R3 of ι3, which is
precisely the points s ∈ S such that ι3 ∈ Stab(Z/2Z)2(s). The fixed loci of
ι1 and ι2 are f−1∆ and p−1B respectively. Since the branch curve B does
not contain any of the 28 two-torsion points on Θ, the intersection of the
fixed loci f−1∆ ∩ p−1B = ∅. Hence, there are no points s ∈ S such that
Stab(Z/2Z)2(s) = (Z/2Z)2. In particular, R3 = {s ∈ S|Stab(Z/2Z)2(s) = 〈ι3〉} is

disjoint from f−1∆∪ p−1B. Since the ramification locus of S → Θ is precisely
the union of that of f and p, we conclude that R3 = ∅ and S → T is unramified.

�

We now consider the Hodge numbers of the surfaces in diagram 4.1.
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Proposition 4.1.3. The smooth surfaces Θ, S, T and F̃ have Hodge numbers:

h1,0 h2,0 h1,1

Θ 3 3 10
S 3 10 38

S̃ 3 10 94

F̃ 0 10 86
T 0 3 16

Proof. The cohomology groups of OΘ are computed using the short exact
sequence

0→ OA(−Θ)→ OA → OΘ → 0.

Since Θ is ample on A and KA = 0, hi(OA(−Θ)) = 0 for i < 3 by Kodaira
vanishing and, using Serre duality, h3(OA(−Θ)) = h0(OA(Θ)) = 1 since Θ is a
principal polarization. Moreover, hi(OA) = (3

i ), hence h1,0(Θ) = h1(OΘ) = 3
and h2,0(Θ) = 3. As

χtop(Θ) = 2−4h1,0(Θ)+2h2,0(Θ)+h1,1(Θ) = 2−12+6+h1,1(Θ) = h1,1(Θ)−4,

we can compute h1,1(Θ) from Noether’s formula:

χ(OΘ) =
χtop(Θ) +K2

Θ

12
⇒ h1,1(Θ) = 12χ(OΘ)−K2

Θ + 4 = 12− 6 + 4 = 10.

For the double cover p : S → Θ, branched over the divisor B, there is an
isomorphism

p∗OS = OΘ ⊕ L−1 with L ∼= ωΘ,

so L⊗2 = OΘ(B). Thus hi,0(S) = hi(OΘ) + hi(L−1). As L = ωΘ is ample, by
Kodaira vanishing we get hi(L−1) = 0 for i < 2. Hence, by Riemann-Roch

h2(L−1) = χ(ω−1
Θ ) = χ(OΘ) +

KΘ · (KΘ +KΘ)

2
= 7.

By Lemma 4.0.2, K2
S = 48, so we obtain h1,1(S) = 38 by Noether’s formula.

The blowup πS : S̃ → S at 56 points does not change h1,0 and h2,0, and
h1,1(S̃) = h1,1(S) + 56.

Lemma 4.0.2 give the Hodge numbers hi,0(F ) and hi,0(F̃ ), and also gives
K2
F̃

= 24. By Noether’s formula, we obtain h1,1(F̃ ) = 86.

Since S → T is an unramified double cover, we have χtop(S) = 2χtop(T ) and
K2
S = 2K2

T , so Noether’s formula implies that 2χ(OT ) = χ(OS) = 8. As
h1(OΘ) = h1(OS) and h1(OF ) = 0, the covering involutions of p and f act as
multiplication by +1 and −1 on H1(OS) respectively. The covering involution
of S → T is their product, thus it acts as −1 and we get h1(OT ) = 0. Hence,
h2(OT ) = χ(OT ) − 1 = 3. We have χtop(T ) = 2 − 0 + 2h2,0(T ) + h1,1(T ) =
8 + h1,1(T ), so from 2χtop(T ) = χtop(S) we obtain h1,1(T ) = 16. �
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A consequence of the fact that we have a morphism p : S → Θ and h1,0(S) =
h1,0(Θ), is that the Albanese map of S factors over the Albanese map for Θ,
which is just the inclusion Θ ↪→ A, hence A ∼= Alb(S).

4.1.3 Deformations of even 56-nodal surfaces

We want to understand the family of even 56-nodal sextic surfaces we con-
structed better. Recall that the 12 dimensional family M we constructed in
Theorem 4.1.1 is fibred over the moduli spaceM3 of smooth non-hyperelliptic
curves of genus 3, which is 6-dimensional. The fibre over C ∈ M3 is an open
subset of the linear system |2KS2C | ∼= P6.

From our construction, we can obtain explicit polynomials describing the de-
formation of an even 56-nodal sextic surface in each fibre.

Recall from Proposition 2.3.7 that DefF = H1(F, T̃F ) ∼= (I/J)6 where J ⊂
S = C[x0, . . . , x3] is the Jacobian ideal and I =

√
J is its radical.

First, we give an explicit description of the generators of H1(F, T̃F ) which
parametrize deformations of F fixing the curve C.

The short exact sequence

0→ TΘ(− logB)→ TΘ → OB(B)→ 0

of Corollary 2.1.5 induces a long exact sequence in cohomology. By the com-
putations of Lemma 4.1.13, we see that H0(Θ, TΘ) = 0, so there is a left exact
sequence

0→ H0(B,OB(B))G = H0(B,OB(B))→
→ H1(Θ, TΘ(− logB))G = H1(F, T̃F )→ H1(Θ, TΘ)G.

Thus, the subspace H0(B,OB(B)) ⊂ H1(Θ, TΘ(− logB))G parametrizes the
infinitesimal deformations of F that fix the curve C (cf. Section 4.1.1) but
vary the divisor B ∈ |2KΘ|. We give a basis of the subspace H0(B,OB(B))
in terms of polynomials in I.

Proposition 4.1.4. Let F be an even 56-nodal sextic surface defined by the
polynomial

P = p6(x0, x1, x2) + p4(x0, x1, x2)x2
3 + p2(x0, x1, x2)x4

3 + x6
3

where pi ∈ C[x0, x1, x2] are homogeneous polynomials of degree i. Then〈
Pij = xixj(p4 + 2p2x

2
3 + 3x4

3) | 0 ≤ i ≤ j ≤ 2
〉
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is a 6-dimensional subspace of (I/J)6, which parametrizes H0(B,OB(B)) ⊂
H1(F, T̃F ). Hence, the polynomials P +

∑
i,j εijPij (ε2

ij = 0) define infinitesi-
mal deformations of F which fix C but vary the divisor B ∈ |2KΘ|.

Proof. The surface F is a double cover of Θ ⊂ P(1, 1, 1, 2), the latter being
defined by the polynomial Q(u) = p6 +p4u+p2u

2 +u3 ∈ C[x0, x1, x2][u] where
u is of weight 2. In Section 4.1.1, we showed that there is an embedding

P(1, 1, 1, 2)→ P6 , (x0 : x1 : x2 : u) 7→ (. . . : xixj : . . . : u)0≤i≤j≤2

and the double cover φ : Θ→ Θ is induced by

φ2KΘ
: Θ→ P6 , x 7→ (. . . : si(x)sj(x) : . . . : t(x))0≤i≤j≤2

where si ∈ H0(Θ, ωΘ) and t ∈ H0(Θ, ω⊗2
Θ ) is the zero section defined by the

divisor B.

An infinitesimal deformation of B is given by a substitution t 7→ t+
∑
i,j εijsisj

where ε2
ij = 0. This induces a substitution u 7→ u +

∑
εijxixj . Applying the

substitution to the polynomial Q gives

Q(u+
∑

εijxixj) = Q(u) +
∑

εijxixj
∂Q

∂u

= Q(u) +
∑

εijxixj(p4 + 2p2u+ 3u2).

Hence, {xixj(p4 + 2p2u+ 3u2)} is a basis of H0(B,OB(B)) and pulling back
along P3 → P(1, 1, 1, 2) gives the basis {Pij}. �

Remark 4.1.5. Observe that ∂P
∂x3

= 2x3(p4+2p2x
2
3+3x4

3) and since the nodes

do not lie on the ramification locus x3 = 0, we have p4 + 2p2x
2
3 + 3x4

3 ∈ I.
Indeed, it is the unique generator of I4. Note that dimS4 = 35 is much smaller
than the number of nodes, so it is a surprise that I4 6= 0 for a general even
56-nodal surface.

Using Proposition 4.1.4, we show that the family obtained in Theorem 4.1.1
is locally a family of non-trivial deformations.

Proposition 4.1.6. Let F be an even 56-nodal sextic surface in the family
M of Theorem 4.1.1. Then, there is a small neighbourhood U of F in M such
that any deformation of F in U is non-trivial.

Proof. Suppose there exists a one-parameter family Fε (0 ≤ ε � 1) of small
deformations of F in U with F0 = F such that there is a family of isomorphisms
σε : F

∼−→ Fε. There is a family of involutions ιε on Fε such that Fε/〈ιε〉 =
Θε. By Proposition 3.3.15, the automorphism group of Fε is a subgroup of
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Aut(P3) = PGL(3). It permutes the 56 nodes, so it is a finite subgroup. In
particular, it is discrete, so the automorphisms σε are constant on the family.
Since σ0 = id, we have σ∗ε (ιε) = ι for all ε. Hence, the isomorphisms σε induce
isomorphisms on the quotient spaces σε : Θ→ Θε.

For each ε, there is a unique double cover Θε branched over the 28 nodes of
Θε. By definition of the family F , Θε is the theta divisor associated to some
non-hyperelliptic genus 3 curve Cε. By [Kem81, Thm. 3.6], there is a natural
isomorphism of the infinitesimal deformations of C and Θ:

H1(C, TC) ∼= H1(Θ, TΘ).

In particular, we see that σε induces an isomorphism σε : C → Cε. Hence,
in a sufficiently small open neighbourhood U ⊂ M around F , any trivial
deformation of F in U must lie in the fibre of the curve C in the fibration
M→M3.

Note that in the proof of Proposition 4.1.4, the substitution u 7→ u+
∑
εijxixj

produce all small deformations of F on the fibre, and all such deformations
are non-trivial by the same proposition. Hence, shrinking the neighbourhood
U if necessary, all small deformations of F in U are non-trivial. �

We now deduce that the 12 dimensional family of 56-nodal sextics we con-
structed is contained in the family constructed by Catanese and Tonoli in
[CT07, Main Theorem B]. Notice that they obtained a 27 dimensional subva-
riety of the space of sextic surfaces parametrizing 56-nodal sextics, but mod-
ulo the action of Aut(P3) one again finds a 27 − 15 = 12 dimensional fam-
ily. When using their Macaulay scripts (which can be found in the eprint
arXiv:math/0510499), we noticed that it produces sextics which are invariant
under the involution x0 7→ −x0 in P3.

Corollary 4.1.7. The 12 dimensional family of even 56-nodal sextic surfaces
constructed in Theorem 4.1.1 is an open dense sub-family of the 12 dimensional
family from [CT07, Main Theorem B].

Proof. For a double cover f : S → F of a 56-nodal sextic surface F , branched
exactly over the nodes of F , the quadratic sheaf F on F defined by f∗OS =
OF ⊕ F must satisfy (τ, a) = (3, 3) or (τ, a) = (3, 4), where 2τ = h1(F,F(1))
and a = h1(F,F), cf. [CT07, Theorem 2.5]. The family constructed in [CT07]
is the one with invariants (τ, a) = (3, 3). For our surfaces, we have h1,0(S) =
h1(F, f∗OS) = h1(F,OF )+h1(F,F) so we get h1(F,F) = 3, which shows that
they lie in the same family. Furthermore, the family constructed by Catanese
and Tonoli is irreducible, so since the two families are of the same dimension,
the familyM of Proposition 4.1.6 is an open dense subvariety of that of [CT07].

�
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We can further show that for any F ∈ M, the space of isomorphism classes
of infinitesimal deformations DefF = H1(F, T̃F ) is 12-dimensional. DefF is
isomorphic to the tangent space of M at F , so this implies that the family is
reduced and smooth and all deformations are unobstructed.

By definition, DefF = DefGS = H1(S, TS)G where G ∼= Z/2Z is the group
acting on S with quotient F . Let H ∼= Z/2Z be the other group action
inducing S → Θ. By [Par91, Proposition 4.1], there is a decomposition

H1(S, TS) = H1(Θ, TΘ(− logB))⊕H1(Θ, TS ⊗ ω−1
Θ ).

Hence,

DefF = H1(Θ, TΘ(− logB))G ⊕H1(Θ, TS ⊗ ω−1
Θ )G. (4.2)

Computing the cohomology groups requires careful consideration of the in-
duced action of G on the sheaves.

On Θ, the action of G is given by the involution [−1] : Θ → Θ which is the
restriction of the involution on the abelian variety A. The involution [−1]
induces (non-unique) involutions on coherent sheaves on A, Θ and B (since B
is a symmetric divisor, [−1] acts on B as well). On sheaves such as ΩpA and
TA, we can define a standard action of G as the action given by pulling back
the differentials. We denote the (+1)- and (−1)-eigenspaces with respect to
this standard basis by H∗+(X,F) = H∗(X,F)G and H∗−(X,F) respectively for
X = A,Θ, B and F a coherent sheaf on X endowed with a G-action.

To compute the cohomology groups, we use the Atiyah-Bott fixed point for-
mula to compare the relative dimensions of H∗+ and H∗−. We recall the theorem
here in the form that we need:

Theorem 4.1.8 ([AB68, Thm. 4.12]). Let X be a smooth algebraic variety,
τ : X → X an automorphism with only a set P of isolated fixed points. Let
F be any vector bundle on X and ϕ : τ−1F → F be an isomorphism. Then,
there is an equality∑

i≥0

(−1)itr(ϕ,Hi(X,F)) =
∑
p∈P

tr(ϕp,Fp)
det(1− dτp, TX,p)

. (4.3)

Remark 4.1.9. For the computations, we need the following short exact
sequences:

0→ TΘ → i∗TA ∼= (OΘ)⊕3 → OΘ(Θ) ∼= ωΘ → 0 (4.4)

0→ OΘ → OΘ(B)→ OB(B)→ 0 (4.5)

0→ TΘ(− logB)→ TΘ → OB(B)→ 0 (4.6)
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It is easy to check that all three exact sequences commute with ϕ for the
standard action of G. Note however that the isomorphisms in the first sequence
requires choosing the action −ϕ on OΘ and ωΘ, where ϕ is the standard action.

Let χ±(F) =
∑
i≥0(−1)ihi(F)± denote the Euler characteristics on the pos-

itive and negative eigenspaces respectively, then the left hand side of (4.3) is
equal to

χ+(F)− χ−(F) =
∑
i≥0

(−1)itr(ϕ,Hi(X,F)).

Corollary 4.1.10.

χ+(F) = χ−(F) ∀ F on B,

χ+(F)− χ−(F) =

{
7 F = OΘ, ωΘ,OΘ(B)

−14 F = TΘ, TΘ(− logB)
.

Proof. Since B does not pass through any fixed points of the symmetric invo-
lution τ , the right hand side of the Lefschetz fixed point formula is 0, giving
the first equality.

The divisor Θ passes through 28 fixed points, and since B does not pass
through them, locally around each p ∈ P , TΘ,p = TΘ(− logB)p and OΘ,p =
ωΘ,p = OΘ(B)p, so it suffices to show the formula for TΘ and OΘ. Let z1, z2

be the local coordinates around p ∈ P . ϕ induces the identity map on OΘ,p

while it sends ∂
∂zi
7→ − ∂

∂zi
on the tangent space. Hence, for each p ∈ P ,

trC(ϕp)

det(1− dτp)
=

{
1

det(2I) = 1
4 F = OΘ

tr(−I)
det(2I) = − 2

4 F = TΘ

Summing over the fixed points gives the desired results. �

We state, without proof, the following obvious counting result which we will
use multiple times:

Lemma 4.1.11. Suppose χ+(F)− χ−(F) =
∑
i≥0 h

i(F), then

hi+(F) =

{
hi(F) i even

0 i odd,
hi−(F) =

{
0 i even

hi(F) i odd.

Similarly for χ+(F)− χ−(F) = −
∑
i≥0 h

i(F).

Lemma 4.1.12. H1
+(Θ, TS ⊗ ω−1

Θ ) = 0.
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Proof. Tensoring the short exact sequence (4.4) with ω−1
Θ gives

0→ TΘ ⊗ ω−1
Θ → (ω−1

Θ )⊕3 → OΘ → 0.

Since ωΘ is ample, by Serre duality and Kodaira vanishing, we have hi(ω−1
Θ ) =

h2−i(ω⊗2
Θ ) = 0 for i < 2. This implies that H1(Θ, TΘ ⊗ ω−1

Θ ) ∼= H0(Θ,OΘ) ∼=
C. By Remark 4.1.9, the standard isomorphism ϕ on H1(Θ, TΘ⊗ω−1

Θ ) induces
−ϕ on H0(Θ,OΘ), so H1

+(Θ, TΘ ⊗ ω−1
Θ ) ∼= H0

−(Θ,OΘ), the latter being 0-

dimensional since H0(Θ,OΘ)+ = H0(Θ,OΘ) = H0(Θ,OΘ) = C. �

Lemma 4.1.13. 9 ≤ h1
+(TΘ(− logB)) ≤ 12.

Proof. The proof is a straightforward computation of the cohomologies of the
short exact sequences (4.4)-(4.6) using Corollary 4.1.10 and Lemma 4.1.11.

Short exact sequence (4.4) gives the cohomologies of TΘ

TΘ i∗TA OΘ(Θ)
h0

+ 0 0 0
h1

+ 6 9 3
h2

+ 0 0 0

TΘ i∗TA OΘ(Θ)
h0
− 0 3 3
h1
− 0 0 0
h2
− 8 9 1

while short exact sequence (4.5) gives that of OB(B)

OΘ OΘ(B) OB(B)
h0

+ 1 7 6
h1

+ 0 0 3
h2

+ 3 0 0

OΘ OΘ(B) OB(B)
h0
− 0 0 3
h1
− 3 0 0
h2
− 0 0 0

Finally, computing the cohomologies of short exact sequence (4.6) gives

TΘ(− logB) TΘ OB(B)
h0

+ 0 0 6
h1

+ x+ 9 6 3
h2

+ x 0 0

TΘ(− logB) TΘ OB(B)
h0
− 0 0 3
h1
− 3 0 0
h2
− 8 8 0

where 0 ≤ x ≤ 3. �

From these computations, we conclude

Proposition 4.1.14. Let F be an even 56-nodal sextic surface obtained from
the construction in Section 4.1.1. Then, h1(F, T̃F ) = 12, the deformations of
F are unobstructed and the family M is reduced and smooth at F .

Proof. Applying Lemmas 4.1.12 and 4.1.13 to (4.2), we have

h1(F, T̃F ) = h1
+(Θ, TΘ(− logB)) + h1

+(Θ, TΘ ⊗ ω−1
Θ ) ≤ 12.
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Theorem 4.1.1 shows that the deformation family is at least 12 dimensional,
and since DefF is the tangent space to the family at F , we have dim DefF =
h1(F, T̃F ) = 12. �

4.1.4 Construction of explicit examples

Let C be a non-hyperelliptic genus three curve, we will also denote the canon-
ical model of C, a quartic curve in P2, by C. Recall that Θ = S2C, the
symmetric product of C.

We show how to find the global sections inH0(Θ, ω⊗2
Θ ) in terms of the geometry

of C, following [BV96]. Note that if we map S2C → Jac(C) by p+q 7→ p+q−t
where t ∈ S2C is an odd theta characteristic (so 2t ≡ KC), then the image
of S2C is a symmetric theta divisor. Let d = z1 + . . . + z4 be an effective
canonical divisor on C, D =

∑
(zi + C) be the corresponding divisor on S2C

and ∆ be the diagonal in S2C. Then, 2KS2C = 2D −∆. By [BV96, Lemma
4.7], we have the restriction sequence

0→ OS2C(2KS2C)→ OS2C(2D)→ O∆(2D) ∼= OC(4d)→ 0.

and

H0(S2C,ω⊗2
S2C) ∼= ker

(
S2H0(C,ω⊗2

C )
µ−→ H0(C,ω⊗4

C )
)
.

where µ is the multiplication map. As h0(C,ω⊗2
C ) = 6, dimS2H0(C,ω⊗2

C ) =
21 and h0(C,ω⊗4

C ) = 14. By the same lemma, µ is surjective so indeed
h0(S2C,ω⊗2

S2C) = 7.

Let σ0, σ1, σ2 be a basis of H0(C,ωC). It induces a basis σi ⊗ σj of the
tensor product H0(C2, ωC2) = H0(C,ωC)⊗2. The sections of H0(Θ, ωΘ) ∼=
∧2H0(C,ωC) define the Gauss map S2C ∼= Θ → P2. Explicitly, the Gauss
map is induced by the map

C×C → P2, (x, y) 7→ (p12 : p13 : p23), pij(x, y) := σi(x)σj(y)−σj(x)σi(y).

The six products pijpkl span a six dimensional subspace of ker(µ) which is the
image of S2H0(Θ, ωΘ) in H0(Θ, ω⊗2

Θ ).

Let f(z) be a homogeneous quartic polynomial in C[z0, z1, z2] such that
f(σ0(x), σ1(x), σ2(x)) = 0 for all x ∈ C, that is, f defines the curve C ⊂ P2.
Choose any polynomial g(u, v) of bidegree (2, 2) in C[u0, u1, u2, v0, v1, v2] such
that g(z, z) = f(z) and let gs(u, v) := g(u, v) + g(v, u), then g̃(x, y) :=
gs(σ0(x), . . . , σ2(y)) ∈ S2H0(C,ω⊗2

C ) and lies in ker(µ). Thus the choice of
g̃ provides the section t used to construct the map ϕ2KΘ

, any other choice of
g̃ is of the form λg̃ +

∑
λijpij for complex numbers λ, λij with λ 6= 0.
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The map ϕ2KΘ : Θ→ P6 is therefore induced by the map

C × C → P6, (x, y) 7→
(
. . . : pij(x, y)pkl(x, y) : . . . : g̃(x, y)

)
.

A homogeneous polynomial P in seven variables gives an equation for the
image of this map if P (. . . , pij(u, v)pkl(u, v), . . . , g̃(u, v)) lies in the ideal of
C[u0, . . . , v2] generated by f(u) and f(v).

Explicit example 4.1.15. An explicit example, worked out using the com-
puter program Magma [BCP97], is provided by the choice f = z0z

3
1 + z1z

3
2 +

z2z
3
0 , which defines the Klein curve in P2. We will take g = u0u1v

2
1 +u1u2v

2
2 +

u2u0v
2
0 and the map ϕ2KΘ is given by:

(y00 : y01 : . . . : y22 : yg) =
(
p2

01 : p01p02 : p01p12 : p2
02 : p02p12 : p2

12 : g̃
)
.

One of the equations for the image is

y2
00y02 − y12y

2
22 − y01y

2
11 − 5y2

01y22 + (−y00y01 + y02y22 − y11y12)yg − y3
g = 0

(this equation thus defines the image in P(1, 1, 1, 2) ⊂ P6). Next we pull this
equation back to P3 along the map p by substituting yij = xixj and yg = x2

3,
moreover we change the sign of x1 in order to simplify the equation and we
obtain

Q := x5
0x2 + x0x

5
1 + x1x

5
2 − 5x2

0x
2
1x

2
2 + (x3

0x1 + x0x
3
2 + x3

1x2)x2
3 − x6

3 = 0.

The singular locus of the surface F defined by Q = 0 consists of 56 nodes and
these are thus an even set of nodes. To find all the nodes, we observe that
Aut(F ) contains a subgroup G336 of order 336 with generators

g7 := diag(ω, ω4, ω2, 1),

g2 :=
1√
−7


a c b 0
c b a 0
b a c 0
0 0 0

√
−7

 ,


a = ω2 − ω5,

b = ω − ω6,

c = ω4 − ω3,

where ω is a primitive seventh root of unity. One of the nodes is (1 : 1 : 1 : 1)
andG336 acts transitively on the 56 nodes, the stabilizer of a node is isomorphic
to the symmetric group S3. The covering involution diag(1, 1, 1,−1) generates
the center of G336 and G336

∼= {±1} × G168 where G168
∼= SL(3,F2) is the

automorphism group of the Klein curve. The equation of F can be written as
p6 + p4x

2
3 − x6

3, the discriminant of the cubic polynomial p6 + p4T − T 3 has
degree 12 in C[x0, x1, x2] and the curve it defines is the dual of the Klein curve.
This dual curve appears since the composition of the bicanonical map ϕ2KΘ

with the projection from the vertex of the cone Y over the Veronese surface is
the canonical map ϕKΘ

: Θ→ P2 which, under the identification Θ = S2C, is
the map sending p+ q to the line in (the dual) P2 spanned by p and q on the
canonical curve.
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4.2 40-nodal sextic surfaces

We now turn our attention to even 40-nodal sextic surfaces. By Lemma 4.0.2,
for a 40-nodal sextic, χ(L−1) = 1. Since h0(L⊗2) > 1, L is non-trivial and
we have h0(L−1) = 0 and so h2(L−1) − h1(L−1) = 1. Recall that hi(L−1) =
h0,i(S)−.

Hence, we have h0,2(S)− ≥ 1. In Subsection 4.2.1, we present a construction,
due to Gallarati, of a family of even 40-nodal sextic surfaces with double cover
S such that h0,2(S)− = 1 (Theorem 4.2.3, Proposition 4.2.4). The construction
realises an even 40-nodal sextic surface F as a sextic surface tangent to a
Kummer surface K along a curve C of genus 15. We then show that a general
even 40-nodal sextic surface is tangent to some Kummer surface along such
a curve, so this family forms a dense open subset of all even 40-nodal sextic
surfaces (Corollary 4.2.15).

We can compute the Hodge numbers of the weight 2 Hodge structure of sur-
faces in this family.

Lemma 4.2.1. Let F be an even 40-nodal sextic surface and f : S → F
the double cover branched over the nodes. Suppose h0,2(S)− = 1. Then,
h1,1(S)− = 26 and H2(S,Q) has a sub-Hodge structure H2(S,Q)− of type
(1, 26, 1).

Proof. Recall that ωF̃ = π∗FOF (2H) for a general hyperplane section H.
Hence, Noether’s formula gives

χ(OF̃ ) =
K2
F̃

+ χtop(F̃ )

12
=

4H2 + 2χ(OF̃ )− 2h1,0(F̃ ) + h1,1(F̃ )

12

⇒ h1,1(F̃ ) = 10χ(OF̃ ) + 2h1,0(F̃ )− 4H2 = 10 · 11− 24 = 86

since h0,1(F ) = 0 by Lemma 4.0.2. Thus, h1,1(F ) = h1(Ω̃1
F ) = h1(Ω1

F̃
)− 40 =

46.

The canonical divisors of S̃, S and F̃ are related by the formula KS̃ = f̃∗KF̃ +

∆̃ and KS̃ = π∗SKS + ∆̃, so K2
S = π∗SK

2
S = f̃∗K2

F̃
= 48. We also have

h0,1(S) = h0,1(F ) + h0,1(S)− = 0. Noether’s formula again gives us

h1,1(S) = 10χ(OS)−K2
S = 10 · 12− 48 = 72.

Hence, h1,1(S)− = h1,1(S)− h1,1(F ) = 26. �

By Lemma 4.2.1, H2(S,Q) contains a sub-Hodge structure of type (1, 26, 1).
The question is whether there exists a double cover S of a 40-nodal sextic
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for which the sub-Hodge structure of type (1, 26, 1) is simple. Unfortunately,
the answer is negative. In addition to Gallarati’s construction, we study 2
other constructions of 40-nodal sextic surfaces, and show that a general even
40-nodal sextic surface can be obtained by any of these 3 constructions. In
particular, using the EPW sextic construction (Subsection 4.2.4), we show that
H2(S,Q)− contains a sub-Hodge structure of type (1, 20, 1), so one cannot
produce a simple (1, 26, 1) Hodge structure using even 40-nodal sextic surfaces
(Corollary 4.2.21).

4.2.1 Gallarati’s construction

In the paper [Cat81], Catanese gave a construction, due to Gallarati, of a
family of 40-nodal sextic surfaces starting from Kummer surfaces. We recall
the construction in detail since many proofs in later sections rely heavily on
this construction.

A Kummer surface K is the quotient of a principally polarized abelian surface
(A,Θ) under the involution [−1] : a 7→ −a. Similar to the previous section, we
may choose Θ to be a symmetric divisor on A, so 2Θ is totally symmetric. It
induces a morphism

φ = φ2Θ : A→ P3

which is the quotient map by [−1]. This gives an explicit embedding of the
image K = φ2Θ(A) as a 16-nodal quartic surface in P3. By an abuse of
notation, we denote by φ the double cover A → K as well. It is ramified at
precisely the even set ∆16 of 16 nodes. We see that 2Θ ≡ φ∗H where H is the
generic hyperplane section on K.

Let πA : Ã → A and πK : K̃ → K be the blowups of A and K at the 16
2-torsion points respectively, and let ∆̃16 = π−1

K ∆16 and L16 = 1
2∆̃16. Where

there is no risk of confusion, we denote the hyperplane section on both a nodal
hypersurface and its blowup by H. We consider linear systems of the type
|kH − L16| on K̃.

Lemma 4.2.2. Let k > 0 be an integer. Then, H0(K̃,OK̃(kH − L16)) is
isomorphic to the negative eigenspace of H0(A,OA(2kΘ)) under the involution
induced by [−1]. Hence, the (projective) dimension of the linear system |kH −
L16| is

dim|kH − L16| = h0(OK̃(kH − L16))− 1 = 2k2 − 3.

Proof. Let Θ̃ be the strict transform of Θ under the blowup πA : Ã→ A. Ap-
plying the projection formula to the double cover φ̃ : Ã→ K̃ on the blowups,
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we get

φ̃∗OÃ(2kΘ̃) = φ̃∗(OÃ ⊗ φ̃
∗OK̃(kH)) = φ̃∗OÃ ⊗OK̃(kH)

= OK̃(kH)⊕OK̃(kH − L16).

There is an isomorphism RπA∗OÃ(2kΘ̃) = RπA∗OÃ ⊗OA(2kΘ) = OA(2kΘ),

so the negative eigenspace of H0(A,OA(2kΘ)) = H0(Ã,OÃ(2kΘ̃)) is precisely

the group H0(K̃,OK̃(kH − L16)).

Since the divisor 2kΘ is ample, we have h0(OA(2kΘ))± = χ(OA(2kΘ))± by
Kodaira vanishing. By Riemann-Roch,

χ(OA(2kΘ)) =
(2k)2Θ2

2
= 4k2 and

χ(OA(2kΘ))+ = χ(OÃ(2kΘ̃))+ = χ(OK̃(kH)) = χ(OK̃) +
k2H2

2
= 2 + 2k2.

Hence, we get

h0(OK̃(kH−L16)) = h0(OA(2kΘ))− = χ(OA(2kΘ))−χ(OA(2kΘ))+ = 2k2−2.

�

By the lemma above, the linear system |3H−L16| on K̃ is 15 dimensional. We
can choose a curve C̃K ∈ |3H−L16| such that it is the strict transform of some
curve C on K. Indeed, a general choice of the curve C is smooth (cf. proof of
[Cat81, Proposition 2.24]).

The curve C is a Weil divisor but not a Cartier divisor on K. Suppose the
node is defined locally by the equation {x2 + yz = 0} ⊂ C3, then the curve 2C
can be defined locally, for example, by the intersection with the hyperplane
y = 0. In this case, we say that the curve C is tangent to the surface K at the
node.

We can compute the arithmetic genus of the curve C using the adjunction
formula:

KC = KC̃K
= (KK̃ + C̃K)|C̃K

= C̃K|C̃K

⇒ degKC = (C̃K)2 = (3H − L16)2 = 9H2 +
1

4
∆̃2

16 = 9 · 4 +
1

4
(−32) = 28.

Therefore, pa(C) = 15.

Since H1(P3,OP3(l − 4)) = 0 for all l, the short exact sequence

0→ OP3(l − 4)→ OP3(l)→ OK(l)→ 0
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induces a short exact sequence

0→ H0(P3,OP3(l − 4))→ H0(P3,OP3(l))→ H0(K,OK(lH))→ 0. (4.7)

The surjectivity of H0(P3,OP3(l))→ H0(K,OK(lH)) implies that any section
s ∈ |lH| is defined by a homogeneous polynomial of degree l in C[z0, . . . , z3].

The divisor 2C̃K + ∆̃16 lies in the linear system |6HK̃ | = π∗K |6H|, so 2C lies
in the linear system |6H|. Hence, there exists a sextic surface F tangent to
K such that divK(F ) = 2C. By the short exact sequence (4.7), this surface
F is well-defined up to the choice of a quadratic section in H0(P3,OP3(2)).
More precisely, if f4 and f6 are homogeneous polynomials of degrees 4 and 6
respectively defining the surfaces K and F , then for any quadratic polynomial
q ∈ C[z0, . . . , z3], the polynomial f ′6 = f6 + qf4 defines another sextic surface
tangent to K along C.

Catanese [Cat81, Proposition 2.24] showed that a general choice of F is smooth
outside C and on ∆16. By [Cat81, Lemma 2.3], the number of nodes t in an
even set on F , the degrees m and n of K and F respectively, and the arithmetic
genus p of C are related by

p = 1− nm+
mn(m+ 2n)− 2t

8
.

Hence, a general F will have exactly 40 simple nodes lying on C which forms
an even set ∆ = ∆40.

We can summarize the above construction in the following result.

Theorem 4.2.3 ([Cat81, Proposition 2.24]). For each principally polarized
abelian surface (A,Θ) and symmetric curve D ∈ |6Θ|−, there exists a 10-
dimensional family of even 40-nodal sextic surfaces tangent to the Kummer
surface K = A/[−1] along the curve C = D/[−1], parametrized by homoge-
neous quadratic polynomials in C[z0, . . . , z3].

Now, consider the curve C as a Weil divisor on F , so 2C ∈ |OF (K)| =
|OF (4H)|. The curve C is tangent to the even set of 40 nodes, so 2C̃ ∈
|π∗F 4H − ∆̃| and C̃ ∈ |π∗F 2H − L|.

By [Par91, Proposition 4.1], (f̃∗ωS̃)− = ωF̃⊗L = OF̃ (2H+L). Since H ·∆̃ = 0,

H0(∆̃,O∆̃(2H + L)) = H0(∆̃,O∆̃( 1
2∆̃)) = H0(∆̃,O∆̃(−1)) = 0, so from the

short exact sequence

0→ OF̃ (2H − L)→ OF̃ (2H + L)→ O∆̃(2H + L)→ 0,

we obtain an isomorphism H0(F̃,OF̃ (2H − L)) ∼= H0(F̃,OF̃ (2H + L)) ∼=
H0(S̃, ωS̃)− = H2,0(S)−. We have previously shown that χ(OS)− = 1 and
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we know that h0,0(S)− = 0, so h2,0(S)− = h0,2(S)− ≥ 1. The curve C defines
a section s ∈ H0(F̃,OF̃ (2H − L)) ∼= H2,0(S)− and we shall show that s is
indeed the unique generator of the cohomology group.

Proposition 4.2.4. Let F be an even 40-nodal sextic surface which is a defor-
mation of one that is obtained from Gallarati’s construction. Let f : S → F be
the double cover ramified at the 40 nodes. Then, h0,1(S) = 0 and h0,2(S)− = 1.
In particular, h0(OF̃ (2H−L)) = h0,2(S)− = 1 and the linear system |2H−L|
is generated by a unique curve C̃.

Proof. Consider the family of even 40-nodal sextic surfaces obtained from
the Gallarati construction. We give a member of this family in Explicit
example 4.2.7. This particular 40-nodal sextic surface F has h1(L−1) = 0
and h2(L−1) = 1. Since the Hodge numbers in a family are upper semi-
continuous, any general member of the deformation family of even 40-nodal
sextic surfaces must have h1(L−1) = 0 and h2(L−1) = 1. Hence, for a gen-
eral double cover f : S → F , we have h0,1(S) = h0,1(F ) + h1(L−1) = 0 and
h0,2(S)− = h2(L−1) = 1. Since the Hodge numbers remain constant in a defor-
mation family of smooth projective varieties, we have h0,1(S)− = h0,1(S) = 0
and h0(OF̃ (2H −L)) = h0,2(S)− = 1 for all S in the deformation family. �

Corollary 4.2.5. The Hodge numbers of F and S are

h1,0 h2,0 h1,1

S 0 11 72
F 0 10 46

As shown in Lemma 4.2.1, H2(S,Q)− has a Hodge structure of type (1, 26, 1).

Proof. By the previous corollary, h1,0(S) = 0 and h2,0(S) = h2,0(S)+ +
h2,0(S)− = 10 + 1 = 11. Noether’s formula gives

χ(OS) =
χtop(S) +K2

S

12
⇒ h1,1(S) = 10(1+h2,0(S))−K2

S = 120−48 = 72.

Hence, h1,1(F ) = h1,1(S)+ = 72− 26 = 46. �

We now give a method to explicitly construct examples of even 40-nodal sextic
surfaces and provide an explicit example on which we can compute the Hodge
numbers.

Example 4.2.6. Let (A,Θ) be a principally polarized abelian surface, K =
A/[−1] be a Kummer surface and C be a curve on K whose strict transform
on K̃ lies in the linear system |3H −L16|. Recall that the non-reduced divisor
2C is defined by a section in H0(K̃, 6H − ∆̃16), i.e. a sextic polynomial f6
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which vanishes at all the nodes. However, a general sextic polynomial which
vanishes at all the nodes defines an irreducible curve C ′ of degree 24 on K,
so a priori, it is difficult to find a polynomial defining the divisor 2C. In this
example, we give an explicit procedure to construct such a polynomial f6 given
f4.

By Lemma 4.2.2, the linear system |2H−L16| is non-empty. Consider the map

H0(K̃,OK̃(2H − L16))⊗H0(K̃,OK̃(H))→ H0(K̃,OK̃(3H − L16)). (4.8)

Let 0 6= s ∈ H0(K̃,OK̃(2H−L16)) be any fixed section. Since K̃ is irreducible,
s is not a zero divisor and the map (4.8) is injective for any fixed s 6= 0. Let
g4 ∈ C[z0, . . . , z3] be a general quartic polynomial in the inverse image of
s2 ∈ H0(K,OK(4H)) to H0(P3,OP3(4)). By the exact sequence

0→ H0(P3,OP3) ∼= C→ H0(P3,OP3(4))→ H0(K,OK(4H))→ 0,

any quartic polynomial in the inverse image of s2 is of the form g4 + cf4 for
some constant c ∈ C. Each such quartic polynomial defines a quartic surface
tangent to K along a curve D. Let h ∈ H0(K̃,OK̃(H)) ∼= H0(P3,OP3(1)) ∼=
C[z0, . . . , z3]1 be any linear polynomial. Then, hs ∈ H0(K̃,OK̃(3H − L16))
and (hs)2 + qf4 = h2g4 + qf4 ∈ C[z0, . . . , z3] defines an even 40-nodal sextic
surface for a general q ∈ C[z0, . . . , z3]2. Hence, it suffices to give a construction
of g4.

The quartic polynomial g4 is the square of a section s ∈ H0(K̃,OK̃(2H −
L16)) ∼= H0(A,OA(4Θ))−. H0(A,OA(4Θ))− is 6-dimensional by Lemma 4.2.2,
but it is difficult to describe a general section of the cohomology group. Nev-
ertheless, we can find 6 special sections, which are inverse images of the six
odd theta divisors under the multiplication-by-two map [2] : A→ A.

The Kummer surface K is the image of A under the map φ|2Θ| : A→ P3. The
2-torsion subgroup A[2] ∼= (Z/2Z)4 acts on A and on the totally symmetric
linear system |2Θ|. This gives an action of A[2] on K under the morphism
φ : A → K ⊂ P(|2Θ|). Thus, the isogeny [2] : A → A induces a covering map
ψ : K → K. To avoid confusion, we denote the images of A, Θ and K under
these covering maps by A, Θ and K respectively. So, there is a commutative
diagram

A
[2] //

p:=φ|2Θ|

��

A := A

p:=p
��

K
ψ
// K ∼= K.

The multiplication-by-two map [2] sends the set of two torsion points A[2] ⊂ A
to the origin 0 ∈ A. Hence, ψ maps all 16 nodes of K to a single node x0 ∈ K.
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Since p = φ|2Θ|, any divisor in the linear system |2Θ| on A is the inverse image

of a hyperplane section H on K. By [BL92, Corollary 2.3.6], [2]∗p∗H lies in
the linear system [2]∗|2Θ| = |8Θ|, and is thus the inverse image of a quartic
polynomial on K. We seek a divisor D of K such that H := 2D is a hyperplane
section passing through the node x0 ∈ K, then D := ψ−1(D) passes through
all the nodes of K and is the required curve.

Consider the theta divisors of the abelian surface A. Any theta divisor on A
is a translation of Θ, so it can be written in the form Θ + a for some point
a ∈ A. If 2(Θ + a) ∈ |2Θ|, then 2a = 0, so a is a two-torsion point. There are
16 such theta divisors. In particular, 6 of them are odd theta divisors, that
is, they correspond to the zero locus of odd theta functions ϑ which satisfy
ϑ(x) = −ϑ(−x) for all x ∈ A. Therefore, each of the odd theta divisors Θi

(i = 1, . . . , 6) passes through the origin 0 ∈ A, and each also passes through 5
other two-torsion points of A by [BL92, Remark 4.7.7(a)].

Hence, for each odd theta divisor Θi = Θ + a with i = 1, . . . , 6, we have
2Θi = p∗Hi for some hyperplane Hi ⊂ K passing through 6 nodes of K,
including x0. Thus, there exists a divisor Di on K such that 2Di = Hi

and p∗Di = Θi. Let Di = ψ∗Di, so ψ∗Hi = 2Di is a non-reduced curve
on K defined by a quartic polynomial g4,i vanishing on the nodes of K. We
thus obtain examples of even 40-nodal sextic surfaces defined by polynomials
f6 = h2g4,i + qf4 for general linear polynomials h and quadratic polynomials
q.

Note that, in fact, the six sections s1, . . . , s6 corresponding to the curves
D1, . . . , D6 form a basis of H0(K̃,OK̃(2H − L16)).

We can compute an example by choosing explicit equations for the Kummer
surfaces K and K.

The group A[2] acts as the Heisenberg group on P3 and the images of a point
(z0 : . . . : z3) under the generators of this group are

(z0 : z1 : −z2 : −z3), (z0 : −z1 : z2 : −z3), (z1 : z0 : z3 : z2), (z2 : z3 : z0 : z1).

Under this action, the Heisenberg invariant polynomials of degree 4 are

P0 = z4
0 + · · ·+ z4

3 ,

P1 = 2(z2
0z

2
1 + z2

2z
2
3), P2 = 2(z2

0z
2
2 + z2

1z
2
3), P3 = 2(z2

0z
2
3 + z2

1z
2
2),

P4 = 4z0 · · · z3.

We can choose coordinates on P3 such that the Kummer surface K is defined
by the quartic polynomial f4 =

∑4
i=0 aiPi. Indeed, f4 defines a Kummer

surface if the coefficients a0, . . . , a4 satisfy the Segre cubic relation

a3
0 − a0a

2
1 − a0a

2
2 − a0a

2
3 + a0a

2
4 + 2a1a2a3 = 0.
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Conversely, a general solution of the equation above gives a Kummer surface.

The Heisenberg polynomials Pi induce a morphism

ψ : P3 → Y ⊂ P4, z 7→ (P0(z) : . . . : P4(z)) = (w0 : · · · : w4)

where Y is the image of the morphism. Y is a quartic threefold in P4, known
as the Igusa quartic, and is defined by the equation

Y : w2
4(w2

0 −w2
1 −w2

2 −w2
3) +w2

1w
2
2 +w2

2w
2
3 +w2

3w
2
1 +w4

4 − 2w0w1w2w3 = 0.

From the definition of ψ, we see that the image K = ψ(K) of the Kummer
surface is the intersection of the hyperplane HK = {h0 :=

∑
aiwi = 0} ⊂ P4

with Y .

Using the generators of the action of A[2] given above, we find that the image
of the fixed locus of any non-trivial involution in A[2] is a line in Y . The
quartic threefold Y is singular along 15 lines, each defined by the fixed locus
of a non-trivial element of A[2]. Any general hyperplane on P4 intersects the
singular locus of Y transversely at 15 points. Hence, for a general Kummer
surface K, the hyperplane HK intersects the singular lines transversely, giving
rise to 15 singular points on K. It is easy to check that these singularities are
indeed nodes on K. Together with x0, the image of the 16 nodes of K, these
15 + 1 nodes are the images of the two-torsion points of A.

Computationally, it is easy to find the 6 planes 2Di = Hi ⊂ HK (i = 1, . . . , 6)
passing through 6 nodes of K, including x0. Each Hi is the intersection of HK

with a hyperplane in P4 given by a linear polynomial hi ∈ C[w0, . . . , w4]. So,
the quartic polynomial g4,i is given by hi(P0, . . . , P4). Since hi is well-defined
modulo h0, g4,i is well-defined modulo f4.

Explicit example 4.2.7. We found a specific even 40-nodal sextic surface
using Magma [BCP97] as follows.

Let K be a Kummer surface defined by the equation f4 := P0− iP4 = 0 where
i2 = −1. The polynomial f4 is invariant under the action of the subgroup
G ⊂ SL(4,C) generated by diag(−1,−1, 1, 1) and the symmetric group S4

given by permutations of coordinates. The nodes of K are generated by the
point (1 : 1 : 1 : −i) under the action of the automorphism group G.

The image of the nodes of K in K ⊂ P4 under the map ψ is x0 = (i : 0 : 0 :
0 : 1). Each of the six hyperplanes

wi ± iwj = 0 (1 ≤ i < j ≤ 3)

passes through 6 nodes of K, including x0.

For example, we may take g4 = P1+iP2, h = z1+2z3 and q = z0z1+z1z2+z2z3.
Then, using Magma, we checked that

f6 = h2g4 + qf4
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is a 40-nodal surface, and the set of nodes is even by the Gallarati construction.
In this example, the curve C has 2 smooth irreducible components, intersecting
at 8 points. It has arithmetic genus 15.

Furthermore, we checked in Magma that the ideal I =
√
J where J is the

Jacobian ideal of f6 is generated by a single polynomial f4 in degree 4. So,
H0(F̃, 4H − ∆̃) ∼= I4 ∼= C. The kernel of the quadratic map

H0(F̃, 2H − L)→ H0(F̃, 4H − ∆̃) : s 7→ s2

is isomorphic to Z/2Z, thus h0(F̃, 2H − L) = 1. This is used in the proof of
Proposition 4.2.4.

We can also check that H0(F, T̃F ) ∼= (I/J)6 is 28-dimensional (cf. Proposition
4.2.12).

Remark 4.2.8. Any curve C obtained by the method in Example 4.2.6 will
have 2 irreducible components intersecting at 8 points. This is because in the
construction of the example, we have f6 = h2g4 + qf4, so the curve 2C is
defined by the ideal

(f6, f4) = (h2g4, f4) = (h2, f4) · (g4, f4).

Hence, C in general will have two irreducible components of degrees 4 and 8,
intersecting at 8 points on K. In the next example, we show how to obtain a
smooth curve C in the Gallarati construction.

Example 4.2.9. We found a basis {s1, . . . , s6} of H0(K̃,OK̃(2H − L16)) in

Example 4.2.6. A general section in H0(K̃,OK̃(2H − L16))⊗H0(K̃,OK̃(H))

is given by
∑6
i=1 λisihi where λi ∈ C and hi ∈ H0(K̃,OK̃(H)). We shall

demonstrate in Explicit example 4.2.10 that a general section gives a smooth
curve C under the map (4.8). We will discuss in this example how to construct
such a general section.

In Example 4.2.6, we see that there is no explicit polynomial description of
si, but there is a quartic polynomial gi (modulo f4) that defines s2

i . Now, we

seek a quartic polynomial g defining (
∑6
i=1 λisi)

2 for general λi. Expanding
the square gives

(

6∑
i=1

λisi)
2 =

6∑
i=1

λ2
i s

2
i + 2

∑
1≤i<j≤6

λiλjsisj ∈ H0(K̃,OK̃(4H − ∆̃16)). (4.9)

Let Di be the divisor defined by the section si. The section sisj corresponds
to the reduced divisor Di +Dj , which is determined by a quartic polynomial
gij such that there is an equality of ideals

(gij , f4) =
√

(gi, f4) · (gj , f4).
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Note that the divisors, 2Di and Di ∪ Dj only determine the polynomials gi
and gij (mod f4) up to constants µi and µij respectively. Hence, the section
in (4.9) is given by the polynomial

6∑
i=1

λ2
iµigi + 2

∑
1≤i<j≤6

λiλjµijgij .

By adjusting λi, we may assume without loss of generality that µi = 1 for all
i. The polynomial

6∑
i=1

λ2
i gih

2
i + 2

∑
1≤i<j≤6

λiλjµijgijhihj

where hi are linear polynomials then determines a divisor 2C for some curve
C = K ∩ F which is smooth for a general choice of λi and hi.

It remains to determine the coefficients µij . We do so by restricting the sections
si to a sufficiently small subvariety Z such that there is a polynomial expression
for si|Z .

Choose a hyperplane section H0 of K passing through 4 nodes, so H0 is a
curve of degree 4 in P2. Then, H0 has two irreducible components Z1 and Z2

of degree 2 in P2. The intersection Z1 ∩ Z2 is precisely the 4 nodes.

The two irreducible components are smooth, and hence isomorphic to P1. Let
Z be one of the components. Fixing a point on Z gives a standard parametriza-
tion

φ : P1 ∼−→ Z ⊂ K ⊂ P3 : (u, v) 7→ (r0(u, v) : · · · : r3(u, v))

where r0, . . . , r3 ∈ C[u, v] are quadratic polynomials. Hence, the polynomials
φ∗gi and φ∗gij are homogeneous of degree 8 in C[u, v].

The divisors 2Di|H0
are of degree 4 · 4 = 16, they are each a sum of 8 points,

including the 4 nodes, each with multiplicity 2. Hence, the divisors 2Di|Z are of
degree 8, more precisely, they are each a sum of the 4 nodes with multiplicities
1 and 2 other points with multiplicities 2. Thus,

φ∗gi = η(u, v)g2
i,0

where η(u, v) is a quartic polynomial, zero on the 4 nodes, and gi,0 are quadratic
polynomials, zero on the other two points. The constants µij are then the
unique constants such that

µijφ
∗gij = η(u, v)gi,0gj,0.

Explicit example 4.2.10. We demonstrate the above construction by ex-
tending the computations in Explicit example 4.2.7. Recall that the six sec-
tions s2

i are given by the polynomials Pi ± iPj (1 ≤ i < j ≤ 3).
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For example, let g1 = P1 + iP2 and g2 = P1 − iP2, then, using Magma, we
obtain a polynomial

g12 = z0z1z2z3 +
i

2
(z4

1 + z4
2)

which satisfies (g12, f4) =
√

(g1, f4) · (g2, f4).

Consider the plane z1−z2 = 0 which passes through the nodes (±1 : 1 : 1 : ∓i),
(±i : 1 : 1 : ∓1). The hyperplane section H0 defined by this plane is the union
of two smooth conics, one of which is given by

Z = K ∩
{
z2

0 +
√

2z0z2 + i
√

2z2
1 + z2

2

}
.

The map φ : P1 → Z ⊂ P3 is parametrized by

(u, v) 7→
(

(i+
√

2)u2 − 2
√

2uv +
√

2v2 : −iu2 + (2i+
√

2)uv −
√

2v2 :

−iu2 + (2i+
√

2)uv −
√

2v2 : −u2 − 2i
√

2v2
)
.

On this particular conic, the divisors D1 and D2 are actually supported on
the same points, so factoring φ∗g1 = c1η(u, v)g2

1,0, φ∗g2 = c2η(u, v)g2
2,0 and

φ∗g12 = c12g1,0g2,0 gives

η(u, v) = u(u− (1 + i)v)(u− (1− i)v)(u− 2(1− i
√

2)

3
v)

g1,0 = g2,0 = (u− (1− ζ)v)(u− (1− ζ3)v)

where ζ2 = i, with coefficients

c1 = −4(1 + i+ 2ζ3), c2 = −4(1− i+ 2ζ), c12 = 2i+
√

2.

So, we get

µ12 =

√
c1c2
c12

= 4.

Taking λ1 = 1, λ2 = 3, h1 = z0, h2 = z1, so

g6 = z2
0g1 + 6z0z1g12 + 9z2

1g2,

we get a 40-nodal sextic surface F defined by the polynomial

f6 = g6 + (z0z1 + z1z2 + z2z3)f4.

We verified with Magma (with computations done over finite fields) that the
intersection K ∩ F = 2C is given by a smooth curve C of genus 15.
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4.2.2 Universality of Gallarati’s construction

We shall show that Gallarati’s construction gives an irreducible 28-dimensional
family of even 40-nodal sextic surfaces. We will further show that a general
even 40-nodal sextic surface can be obtained using Gallarati’s construction.

Proposition 4.2.11. There is an irreducible 28-dimensional family M6 of
isomorphism classes of even 40-nodal sextic surfaces given by Gallarati’s con-
struction.

Proof. Let F6 be the space of polynomials f6 = qf4 +g6 defining even 40-nodal
sextic surfaces given by Gallarati’s construction (cf. Section 4.2.1). Recall that
every such 40-nodal sextic surface F yields a unique Kummer surface K ∈
|4H − ∆̃| which is tangent to F along a curve 2C. Hence there is a projection
from F6 to the space P4,6 of pairs (f4, 〈f4, g6〉) where 〈f4, g6〉 ⊂ C[z0, . . . , z3]
is the ideal generated by f4 and g6. There is a natural projection from P4,6 to
F4, the space of polynomials f4 ∈ C[z0, . . . , z3] defining Kummer surfaces.

The spaces F6, P4,6 and F4 can be projectivized and the projections commute
with the projectivizations to give

P(F6)
π1−→ P(P4,6)

π2−→ P(F4).

Let p = ([f4], 〈f4, g6〉) be a point in P(P4,6) where [f4] is the isomorphism class
of f4 under the equivalence relation λf4 ∼ f4 for all λ ∈ C∗. Fixing a choice
of g6 ∈ 〈f4, g6〉, for any [f6] ∈ π−1

1 (p), there is a unique λ ∈ C∗ such that
f4|(λf6 − g6). Hence, π−1

1 (p) is the affine space

{[f6] | ∃λ ∈ C∗ ∈ s.t. f4|λf6 − g6} = {qf4 + g6 | q ∈ C[z0, . . . , z3]}.

and the fibre of π1 is a 10-dimensional affine space.

For each Kummer surface K, the curve C of Gallarati’s construction lies in
the linear system |3H−L16|. By Lemma 4.2.2, dim |3H−L16| = 15. The fibre
of π2 is the image of |3H − L16| under the quadratic map

|3H − L16| → |6H − ∆̃16| : C 7→ 2C = div(f4, g6).

This is the projectivization of the quadratic map on the global sections

H0(K̃,OK̃(3H − L16))→ H0(K̃,OK̃(6H − ∆̃16)) : s 7→ s2.

Note that s2 = t2 if and only if s = ±t, so the quadratic map on the projec-
tivized linear systems is injective. Hence, the fibre of π2 is 15 dimensional.

By Lemma 3.3.7, the nodes of K are independent in degree 4, so dimF4 =
dimC[z0, . . . , z3]4 − 16 =

(
4+3

3

)
− 16 = 19 and dimP(F4) = 18. Hence,

dimP(F6) = 18 + 15 + 10 = 43.
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There is an action of Aut(P3) = PGL(3,C) on P(F6) which fixes the isomor-
phism class of the sextic surfaces, so the deformation family of even 40-nodal
sextic surfaces obtained from Gallarati’s construction is at most

dimP(F6)− dimPGL(3,C) = 43− 15 = 28.

We shall show that any isotrivial deformation in P(F6) lies in PGL(3,C). By
Proposition 3.3.15, all small deformations of F are projective. In particular, if
F ′ is a deformation of F such that there is an isomorphism σ : F

∼−→ F ′, then
σ lifts to an automorphism of P3, so by definition, σ ∈ PGL(3,C).

Therefore, there exists a family M6 of even 40-nodal sextic surfaces with no
trivial deformations, obtained as the quotient of a dense open subset of P(F6)
by PGL(3,C) (or we can see it as the stack quotient of P(F6) by PGL(3,C)).
This family M6 is 28-dimensional. Similarly, we can define M4,6 and M4 from
P(P4,6) and P(F4) and there is a projection

M6 →M4,6 →M4.

Since projective Kummer surfaces are quotients of principally polarized abelian
surfaces induced by the involution [−1], they form an irreducible family of
dimension 3. In particular, M4 is irreducible. As M6 is fibred over M4 with
smooth equidimensional fibres, we conclude that M6 is irreducible. �

We shall show that in fact, the tangent space to any point in M6 is also
28-dimensional.

Proposition 4.2.12. Let F be an even 40-nodal sextic surface obtained us-
ing the Gallarati construction. Then H1(F, T̃F ) is 28-dimensional and the
deformations of F are unobstructed.

Proof. By Proposition 2.3.7, we have H1(F, T̃F ) ∼= (I/J)6 and dim (I/J)6 =
68 − k where k is the rank of the matrix (ej(pi))i,j where {ej} is a basis of
the module S6 of degree 6 polynomials in 4 variables and {pi} is the set of
nodes. Hence, h1(F, T̃F ) ≥ 28. Indeed, equality holds if and only if the nodes
are independent in degree 6.

Recall that DefF = H1(F, T̃F ) parametrizes the infinitesimal deformations of
40-nodal sextics as quotient surfaces and DefK,C parametrizes the infinitesimal
deformations of the pair (K,C). Suppose F and K are defined by polynomials
f6 and f4 respectively, then the spaces DefF and DefK,C are the tangent spaces
to M6 and M4,6 at [f6] and ([f4], 〈f4, f6〉) respectively (cf. proof of Proposition
4.2.11). Since π1 : P(F6) → P(P4,6) is fibred over a 10-dimensional vector
space, there is a well-defined projection p : DefF → DefK,C whose kernel is
10-dimensional.
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Similarly, the fibre of the map π2 : P(P4,6) → P(F4) is a smooth quadric, so
there is a projection on the tangent space DefK,C → DefK whose kernel is
15-dimensional.

Since C is an ample divisor, all deformations in DefK,C are ample, so the

image of DefK,C → DefK = H1(K, T̃K) is the sub-vector space of projective
deformations of K. In particular, there is an inclusion

im (DefK,C → DefK) ⊂ im (H1(P3, TP3(− logK))→ H1(K, T̃K)).

where the second map is that given in Remark 2.3.8. By Remark 2.3.9, the
second image is isomorphic to (I/J)4 where J is the Jacobian ideal of the
quartic polynomial defining K and I =

√
J . By Lemma 3.3.7, the 16 nodes

of K are independent in degree 4, so dim (I/J)4 = dimS4 − dim J4 − 16 =(
4+3

3

)
− 16− 16 = 3.

We thus obtain dim DefK,C ≤ 15 + 3 = 18. Hence, h1(T̃F ) = dim ker p +
dim DefK,C = 28 and the nodes are independent in degree 6. �

Remark 4.2.13. We can also compute the dimension of the kernel of the
projection DefK,C → DefK directly using the methods of Section 3.1.1. By
Proposition 3.1.9, there is an isomorphism

DefK,C ∼= H1(A, d1s̃)
G

where d1s̃ is the complex

0→ TA
d1s̃−−→ OD(D)→ 0,

D = φ−1C ∈ |4Θ| is the pullback of C under the double cover φ : A → K
and s̃ ∈ H0(A,OA(4Θ)) is the section defining D. Applying the 5 term exact
sequence to the spectral sequence

Ep,q1 = Hq(A, (d1s̃)
p) =⇒ Hp+q(A, d1s̃)

gives

0→H0(D,OD(D))→ H1(A, d1s̃)→
→ ker(H1(A, TA)→ H1(D,OD(D)))→ E2,0

2 = 0.

Taking the G-invariant part gives the left exact sequence

0→H0(D,OD(D))G = H0(C,OC(C))→ DefK,C = H1(A, d1s̃)
G →

→ H1(A, TA)G = H1(K, T̃K).

Since the Kummer surface K has trivial canonical divisor, we get KC = C|C
by the adjunction formula. So, the first term has dimension h0(C,OC(C)) =
h0(C, ω̃C) = pg(C) = 15.
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Remark 4.2.14. Propositions 4.2.11 and 4.2.12 show that the moduli stack of
40-nodal sextic surfaces generated by Gallarati’s construction is 28-dimensional,
and the tangent space at each point is also 28-dimensional, so it is smooth. Fur-
thermore, the set of 40 nodes are independent in degree 6 since dim (S/J)6 −
dim (I/J)6 = 40.

Corollary 4.2.15. A general even 40-nodal sextic surface can be obtained by
Gallarati’s construction. Hence, M6 is open and dense in the family of all
even 40-nodal sextic surfaces.

Proof. Let F be any sextic surface with an even set of 40 nodes. Then, since
h0(OF̃ (2H − L)) = h0,2(F̃ ) > 0, we can find a curve C ⊂ F such that the

strict transform C̃ of C lies in |2H − L|. We thus have π∗F (2C) ∈ |4H − ∆̃|,
so the divisor 2C is defined by the ideal (f6, f4) ⊂ C[z0, . . . , z3] where f6

is the polynomial defining F and f4 is a quartic polynomial. By Gallarati’s
construction, we see that a general f4 defines a quartic surface which is smooth
outside the curve C and has only nodes as singularities on C. By [Cat81,
Lemma 2.3], such an f4 defines a Kummer surface in P3. Thus, F lies in the
family obtained from Gallarati’s construction. �

4.2.3 The Casnati-Catanese construction

In [CC97], Casnati and Catanese gave another construction for nodal surfaces
with an even set of nodes. Let F ⊂ P3 be a nodal surface with an even set of
nodes and f : S → F be a double cover branched at the nodes. The involution
on S corresponding to this double cover induces an eigenspace decomposition
f∗OS = OF ⊕F , where OF and F are the +1 and −1 eigenspaces respectively
of the OF -linear involution. Since F is singular, F is not necessarily a line
bundle.

The involution on f∗OS induces a non-degenerate pairing F ⊗F → OF , hence
there is an isomorphism F ∼−→ Hom(F ,OF ). We call such a coherent sheaf F
quadratic.

Theorem 4.2.16 ([CC97, Theorem 0.3]). Let F ⊂ P3 be a surface, and let F
be a quadratic sheaf on F . Then F fits into an exact sequence of the form

0→ E∨(−d)
φ−→ E → F → 0

where E is a locally free OP3-module and φ is a symmetric map.

Since F is supported on F , the surface F is obtained as the degeneracy locus
of the symmetric map φ, i.e., the locus where rankφ < rank E .

78



For an even 40-nodal sextic F , Casnati and Catanese explicitly gave E =
Ω1

P3(−1) ⊕ OP3(−2) [CC97, after Theorem 3.8.2]. There is a perfect pairing
Ω1

P3 ⊗ Ω2
P3 → ωP3 ∼= OP3(−4), so (Ω1

P3)∨ ∼= Ω2
P3(4). Theorem 4.2.16 gives us

the short exact sequence

0→ Ω2
P3(−1)⊕OP3(−4)

φ−→ Ω1
P3(−1)⊕OP3(−2)→ F → 0 (4.10)

where

φ =

(
φ0 β
βt q

)
is a symmetric matrix.

We shall show how one could obtain the equation of a 40-nodal sextic surface
from the above short exact sequence.

The Euler sequence

0→ Ω1
P3 → OP3(−1)⊕4 → OP3 → 0

and its dual, tensored by OP3(−4)

0→ OP3(−4)→ OP3(−3)⊕4 → Ω2
P3 → 0

gives a diagram

Ω2
P3(−1)⊕OP3(−4)

φ // Ω1
P3(−1)⊕OP3(−2)

��
OP3(−4)⊕4 ⊕OP3(−4)

φ̃ //

OO

OP3(−2)⊕4 ⊕OP3(−2)

Recall that there is an isomorphism OP3(l) ∼= S̃(l) where S = C[z0, . . . , z3]
is the graded polynomial ring in 4 variables. Under this isomorphism, the
morphisms in the diagram above are given by multiplication of matrices of
homogeneous polynomials. In particular, φ̃ is given by a 5× 5 matrix

φ̃ =

(
φ̃0 β̃

β̃t q

)
of homogeneous quadratic polynomials, where φ̃0, β̃ and q are sub-matrices of
dimensions 4× 4, 4× 1 and 1× 1 respectively.

The first vertical map is the quotient map to the cokernel of G 7→ (Gzi) while

the second vertical map is the inclusion of the kernel of Gi 7→
∑3
i=0Gizi. Thus,

a non-zero element of Ω1
P3(−1) can be represented by polynomials Gi ∈ S such
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that
∑
Gizi = 0. This is equivalent to imposing the condition on β̃ that(

z0 z1 z2 z3

)
β̃ = 0. By symmetry, this imposes a necessary and sufficient

condition for Ω2
P3(−1) as well.

Such a resolution preserves the rank of the matrix, so at any point p ∈ P3,
we have rankφ(p) = rank φ̃(p). Hence, the surface F is the locus where
rank φ̃(p) ≤ 3, i.e. where any 4 × 4 minor of φ̃ is zero. A 4 × 4 minor is
a homogeneous polynomial of degree 8, hence F is defined by a sextic polyno-
mial f6 which is the greatest common divisor of all such minors.

The Casnati-Catanese construction is related to Gallarati’s construction in the
following way.

For a 4 × 4 symmetric matrix A = (aij), there is a determinantal identity
[Cat81, (1.3)]

(aiiajj − a2
ij) detA = detAkk detA44 − (detAk4)2

where {i, j, k} = {1, 2, 3} and Aij is the (i, j)-th minor. Applying the identity
to A = φ(p) for any point p ∈ F and noting that detφ(p) = 0, we see that

detφ(p)kk detφ0(p) = (detφ(p)k4)2.

The nodes of F lie in the locus where rank φ̃(p) ≤ 2. In particular, φ0(p) = 0
for any node p. Hence, φ0 is a quartic polynomial passing through the nodes
of F . Furthermore, since the righthand side of the equation is a square, we
have divF (K) = 2C for some curve C on F . Hence, by the same proof as
Corollary 4.2.15, a general such K is a Kummer surface.

4.2.4 EPW sextics

The next construction arises from taking hyperplane sections of EPW sextic
fourfolds YA ⊂ P5.

EPW sextic fourfolds were first introduced by Eisenbud, Popescu and Walter
in [EPW01] and were extensively studied by O’Grady [OGr06; OGr13; OGr15;
OGr16], in particular, with respect to their double covers and the moduli space
of EPW sextics. They are related to an important class of algebraic varieties,
the Gushel-Mukai (GM) varieties [IM11]. Debarre and Kuznetsov understood
the moduli space and periods of GM varieties by relating them to the results
of O’Grady on EPW sextics. Correspondences between double EPW sextics
XA and GM varieties X of dimensions n = 4 or 6 induce isomorphisms of
the primitive Hodge structures H2(XA,Z)0

∼= Hn(X,Z)0 of type (1, 20, 1).
Interested readers may refer to [DK15; DK16] and also to [KP16] for a study
of the derived categories of GM varieties.
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In [OGr06], O’Grady showed that a general EPW sextic admits a smooth
double cover XA, ramified precisely along its singular locus, which is a smooth
surface of degree 40. Cutting YA by two generic hyperplanes gives a 40-nodal
surface F with a double cover S ⊂ XA ramified at the nodes. We show that a
general even 40-nodal sextic surface can be obtained through this construction
and H2(S,Q)− contains a sub-Hodge structure H2(XA,Q)− of type (1, 20, 1).

EPW sextics are defined as follows (cf. [OGr06]). Let V be a 6 dimensional
vector space and fix a volume form Λ6V

∼−→ C. This allows us to define a
symplectic form on Λ3V by (α, β) = vol(α ∧ β).

There is a subbundle E ⊂ Λ3V ⊗ OP(V ) defined, on each point v ∈ P(V ), by
the fibre

Ev = {α ∈ Λ3V |α ∧ v = 0} = v ∧ Λ2V ′

where dimV ′ = 5 and V = V ′ ⊕ Cv. Hence, dimEv =
(

5
2

)
= 10 = 1

2dim Λ3V .
It is clear that Ev is a Lagrangian subspace of Λ3V , so E is a Lagrangian
subbundle of Λ3V ⊗OP(V ).

Let A ⊂ Λ3V be any Lagrangian subspace and λA be the composition of the
inclusion and the projection

λA : E ↪→ Λ3V ⊗OP(V ) � (Λ3V/A)⊗OP(V )

An EPW sextic YA is defined to be the degeneracy locus V (detλA) of the map
of vector bundles λA. The singular locus of YA is the locus where rankλA ≤ 8.
It is in general a smooth surface of degree 40 in P5.

There exists a unique surface XA which is a double cover of YA branched
along the singular locus of YA. It is called a double EPW sextic. In [OGr06],
O’Grady showed that the pair (XA, YA) is a deformation of (Z [2], φH(Z [2]))
where Z is a K3 surface, Z [2] is the Hilbert scheme of Z, H is an ample divisor
on Z [2] with dim |H| = 5 and the morphism generated by the global sections
of OZ[2](H)

φH : Z [2] → P5

is a double cover on the image, which is a nodal sextic fourfold.

It is well-known that the Beauville-Bogomolov quadratic form on H2(Z [2],Z)
defines a polarized Hodge structure of type (1, 21, 1) [Bea83]. Since φH(Z [2])
is a hypersurface in P5, the Lefschetz hyperplane theorem implies that the
positive eigenspace H2(Z [2],Q)+ = H2(φH(Z [2]),Q) = H2(P5,Q) has Hodge
type (0, 1, 0). Hence, the negative eigenspace H2(Z [2],Q)− is of type (1, 20, 1).
Since the Hodge numbers are invariant in a deformation family, H2(XA,Q)−
has Hodge type (1, 20, 1) for all double EPW sextics XA, and is simple in
general.
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By the Lefschetz hyperplane theorem, there is an embedding of Hodge struc-
tures H2(XA,Z) ↪→ H2(S,Z) which respects the involution on S and XA.
Hence, H2(S,Z)− contains a sub-Hodge structure of type (1, 20, 1).

We now study the deformations of even 40-nodal sextic surfaces obtained from
EPW sextic fourfolds. We show that there is a 28-dimensional family of such
surfaces where all deformations are non-trivial.

EPW sextic fourfolds are parametrized by LG(Λ3V ), the space of Lagrangian
subspaces A ⊂ Λ3V . In [OGr15], O’Grady showed that there is a well-defined
GIT-quotient M = LG(Λ3V ) � PGL(V ) where PGL(V ) is the group of auto-
morphisms of P(V ). In the proof of [OGr13, Theorem 4.25], it was shown that
the family has dimension

dimM = dimLG(Λ3V )− dimPGL(V ) = 55− 35 = 20.

Furthermore, there is a rational map [OGr15, (0.0.6)]

p : M 99K DBBΛ

where DBBΛ is the Baily-Borel compactification of the period domain of polar-
ized weight 2 Hodge structures of type (1, 20, 1). It is defined by sending the
class of YA to the polarized weight 2 Hodge structure H2(XA,C)− when the
double EPW-sextic XA is smooth.

The map p is regular and injective when restricted to the dense open subspace
M0 = LG(Λ3V )0 � PGL(V ) where LG(Λ3V )0 ⊂ LG(Λ3V ) is the dense open
subset parametrizing smooth double EPW-sextics XA.

Lemma 4.2.17. Suppose F is an even 40-nodal sextic surface obtained from
some EPW sextic fourfold. Then there is a unique class [YA] ∈M0 such that
F is the intersection of YA with two hyperplane sections.

Proof. Let f : S → F be the double cover branched over the 40 nodes of
F , and suppose F is obtained by the intersection of an EPW sextic fourfold
YA with two hyperplane sections. The Lefschetz hyperplane theorem gives
an embedding of Hodge structures H2(XA,C) ↪→ H2(S,C). In particular,
H2(S,C)− has a sub-Hodge structure H2(XA,C)− of type (1, 20, 1). By the
injectivity of the map p : M0 → DBBΛ , H2(XA,C)− determines a unique class
[YA]. Hence, the surface F is determined by a unique isomorphism class of
EPW sextic fourfolds. �

An immediate consequence of the lemma is that if F ′ is a deformation of F
such that F ∼= F ′, then there is a unique (up to isomorphism) EPW sextic
fourfold YA ⊂ P5 such that F and F ′ are intersections of YA with subspaces
W,W ′ ⊂ P5 respectively where W ∼= W ′ ∼= P3.

82



Now, fix an EPW sextic fourfold YA ⊂ P5, an even 40-nodal sextic surface
F is obtained by taking the intersection of YA with two (general) hyperplane
sections. Deformations of F fixing YA are obtained by moving the hyperplane
sections, i.e. choosing a subspace P3 ⊂ P5. They are parametrized by the
Grassmannian Gr(4, 6), which is (6− 4) · 4 = 8-dimensional.

Explicitly, choose coordinates z0, . . . , z5 on YA such that the two hyperplane
sections are defined by z0 = 0 and z1 = 0. Then, a deformation Ft of F fixing
YA can be given by the hyperplane sections

z0 + t02z2 + t03z3 + t04z4 + t05z5 = 0, z1 + t12z2 + t13z3 + t14z4 + t15z5 = 0

where t = (tij) ∈ C8 corresponds to a point in the 8-dimensional Grassmannian
Gr(4, 6).

Let h6(z0, . . . , z5) ∈ C[z0, . . . , z5] be the polynomial defining the EPW sextic
fourfold, so the surface F is defined by the polynomial f6 = h6(0, 0, y0, . . . , y3) ∈
C[y0, . . . , y3]. As a polynomial in C[z2, . . . , z5][z0, z1], we can write h6 as

h6 = f6(z2, . . . , z5) + z0f50(z2, . . . , z5) + z1f51(z2, . . . , z5)

+ higher order terms in z0, z1

where f5j = ∂h6

∂zj |z0=z1=0
with j = 0, 1. Note that the polynomial f5j vanishes

at all the nodes of F , so f5j ∈ I =
√
J where J is the Jacobian ideal of f6.

After the change of coordinates{
w0 = z0 + t02z2 + . . .+ t05z5 , w1 = z1 + t12z2 + . . .+ t15z5 ,

w2 = z2 , . . . , w5 = z5

}
,

the surface Ft is defined by the hyperplane sections w0 = w1 = 0. Let
h6,t(w0, . . . , w5) be the polynomial obtained from h6 under the change of co-
ordinates, so f6,t = h6,t(0, 0, y0, . . . , y3) defines the surface Ft. We have

h6,t = h6(w0 − t02w2 − . . .− t05w5, w1 − t12w2 − . . .− t15w5, w2, . . . , w5)

= f6(w2, . . . , w5)−
∑

i∈{2,...,5}
j∈{0,1}

tijzif5j(w2, . . . , w5) + higher order terms in tij .

We obtain a set of 8 polynomials {zif5j |i ∈ {2, . . . , 5}, j ∈ {0, 1}} in (I/J)6
∼=

H1(F, T̃F ) generating the infinitesimal deformations parametrized by the Grass-
mannian Gr(4, 6). Hence, we have the following criterion

Lemma 4.2.18. Let YA ⊂ P5 be an EPW sextic fourfold and F be an even 40-
nodal sextic surface defined by intersecting YA with the hyperplanes z0 = z1 =
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0. Let h6 ∈ C[z0, . . . , z5] be the polynomial defining YA and f5j = ∂h6

∂zj |z0=z1=0

for j = 0, 1. The infinitesimal deformations of F fixing YA are parametrized by
the Grassmannian Gr(4, 6), and all infinitesimal deformations of F in Gr(4, 6)
are non-trivial if and only if the set

{zif5j |i ∈ {2, . . . , 5}, j ∈ {0, 1}} ⊂ (I/J)6

is linearly independent.

Let M2 be the family of even 40-nodal sextic surfaces obtained from EPW
sextics, fibred over the family M of EPW sextic fourfolds YA, with fibres
isomorphic to Gr(4, 6). Hence, the dimension of M2 is equal to

dimM + dim Gr(4, 6) = 20 + 8 = 28.

Lemma 4.2.19. Let F be an even 40-nodal sextic surface obtained from an
EPW sextic fourfold YA. Suppose all infinitesimal deformations of F in the
fibre of YA under the fibration M2 → M are non-trivial. Let F ′ ⊂ YA′ be a
sufficiently small deformation of F in M2, then all infinitesimal deformations
of F ′ in the fibre of YA′ are non-trivial as well. Hence, all small deformations
of F in M2 are non-trivial.

Proof. Let h6 ∈ C[z0, . . . , z5] be the polynomial defining YA. Since dimM2 =
28, there exists a polynomial h̃6 ∈ C[z0, . . . , z5][u1, . . . , u28], homogeneous of
degree 6 in the variables z0, . . . , z5, such that h6 = h̃6(0, . . . , 0) and, for any
u = (u1, . . . , u28) with |u| � 1, the polynomial h6,u = h̃6(u1, . . . , u28) ∈
C[z0, . . . , z5] defines a small deformation YA,u of YA. Let f̃5j = ∂h̃6

∂zj |z0=z1=0

and f5j,u =
∂h6,u

∂zj |z0=z1=0
for j = 0, 1.

By Lemma 4.2.18, all small deformations of Fu on the fibre are non-trivial if
and only if the set {zif5j,u|i ∈ {2, . . . , 5}, j ∈ {0, 1}} is linearly independent.
Let {ek} be the set of degree 6 monomials in C[z0, . . . , z5] and M be the matrix
of the coefficients of each ek in zif̃5j . Thus, M is of size 8× 84 with terms in
C[u1, . . . , u28].

There exist trivial deformations of Fu on the fibre if and only if rankM(u) <
8. This is a closed algebraic condition on C28. By assumption, F0 has no
trivial deformations on the fibre, so there is an open neighbourhood U ⊂ C28

containing the origin such that for any u ∈ U , all deformations of Fu on the
fibre are non-trivial.

Indeed, if u, u′ ∈ U such that YA,u 6∼= YA,u′ , then by Lemma 4.2.17, Fu 6∼=
Fu′ , so all deformations of F0 parametrized by U are non-trivial. Hence, U
parametrizes an open neighbourhood of F in M2 on which all deformations
are non-trivial. �

84



Theorem 4.2.20. A general even 40-nodal sextic surface F ⊂ P3 is the in-
tersection of an EPW sextic fourfold with two hyperplanes in P5.

Proof. In Proposition 4.2.11 and Corollary 4.2.15, we showed that a gen-
eral even 40-nodal sextic surfaces can be obtained from Gallarati’s construc-
tion, and that yields an irreducible 28-dimensional family. The rational map
M2 99K M6 from the family M2 of 40-nodal surfaces obtained from EPW
sextic fourfolds to the family M6 of even 40-nodal sextic surfaces is algebraic,
so the image is a Zariski-constructible subset of M6. Any constructible subset
of maximal dimension in an irreducible variety is in fact open and dense, so it
suffices to show that the image of M2 in M6 is 28-dimensional.

Since dimM2 = 28, we just need to show that there exists an open neigh-
bourhood U ⊂M2 of some even 40-nodal sextic surface F on which all small
deformations are non-trivial. Let YA be the image of F under the fibration
M2 → M. By Lemma 4.2.19, it suffices to find a surface F such that all
infinitesimal deformations of F in the fibre of YA are non-trivial.

Consider the EPW sextic YA and surface F constructed in Explicit example
4.2.24. Applying a change of coordinates

(z0, . . . , z5) 7→ (z2, 2z2 − z0, z3, z4, 2z5 − z1, z5),

the surface F is defined by the hyperplane sections z0 = z1 = 0. Using
Magma, we can check that the set of polynomials {zif5j |i ∈ {2, . . . , 5}, j ∈
{0, 1}} are linearly independent in (I/J)6, so by Lemma 4.2.18, all infinitesimal
deformations of F in the fibre of YA are non-trivial. �

We obtain the following corollary from the characterization of the Hodge struc-
ture of EPW sextics.

Corollary 4.2.21. Let f : S → F be the double cover of an even 40-nodal
sextic surface, branched at the 40 nodes. Then, H2(S,Q)− contains a simple
sub-Hodge structure of type (1, n, 1) where n ≤ 20. In particular, H2(S,Q)−
does not contain a simple sub-Hodge structure of type (1, 26, 1).

Proof. By Theorem 4.2.20, a general 40-nodal sextic surface F is obtained from
an EPW sextic YA, so Lefschetz’s hyperplane theorem gives an inclusion of
Hodge structures H2(XA,Q)− ↪→ H2(S,Q)−, so H2(S,Q)− contains a simple
sub-Hodge structure of type (1, 20, 1). Thus, dimNS(S)− = h1,1(S)− 20 = 6.
Since the dimension of the Neron-Severi group in a family is upper semi-
continuous, dimNS(S)− ≥ 6 for any double cover S of a 40-nodal sextic
surface. Hence, H2(S)− contains a simple sub-Hodge structure of type (1, n, 1)
where n ≤ 20. �
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4.2.5 Involutions on certain EPW sextic surfaces

In this final subsection, we study involutions on a family of even 40-nodal
sextic surfaces obtained using the EPW construction, and compute the induced
decompositions of Hodge structures on these surfaces. These involutions arise
as restrictions of symplectic involutions on EPW sextic fourfolds, first studied
by Camere in [Cam12].

Recall that the construction of an EPW sextic fourfold requires the choice
of a Lagrangian subspace A ⊂ Λ3V where V is a 6-dimensional vector space
equipped with a symplectic form. Let ι be an involution of V . This induces
a decomposition of V into (+1)- and (−1)-eigenspaces V+ and V−. Assume
that dimV+ = 4 and A ⊂ Λ3V is invariant under ι. Then, A decomposes into
eigenspaces A = A+ ⊕ A−. Let f1, f2 be a basis of V−. Further assume that
the eigenspaces of A take the precise forms

A+ =
{
f1 ∧ f2 ∧ v + φ(v) | v ∈ V+, φ : V+

∼−→ Λ3V+

s.t. v ∧ φ(w) = w ∧ φ(v) ∀ v, w
}

A− =
{
f1 ∧ x+ f2 ∧ u(x) | x ∈ Λ2V+, u : Λ2V+ → Λ2V+ is self-adjoint.

}
In [Cam12, Section 8], Camere showed that such an EPW sextic YA admits a
symplectic involution ι which lifts to a symplectic involution ι0 on XA.

The fixed locus of the involution ι on YA is the union of YA ∩ P(V+) and
YA ∩ P(V−). By [Cam12, Proposition 17], the first is the union of a smooth
quadric surface and a quartic Kummer surface, while the latter is a set of 6
isolated points. In [Cam12, Proposition 19], Camere showed that the induced
symplectic involution ι0 on XA fixes a K3 surface, which is the preimage of the
quadric surface under fA, and a set of 28 isolated points. 12 of the points are
the preimages of the 6 isolated points while the remaining 16 are preimages of
the nodes of the Kummer surface, which are ramified under fA : XA → YA.

There is another anti-symplectic involution ι1 = ιAι0 on XA. Camere showed
that the branch locus of fA intersects the fixed locus of the involution ι along an
octic curve which is the intersection of the quadric and the Kummer surfaces
and at the 16 nodes of the Kummer surface. Hence, ι1 fixes precisely the
preimage of the Kummer surface.

Recall that a 40-nodal surface F can be obtained by taking the intersection of
a general P3 ⊂ P(V ) with YA. By our choice of A, the fourfold YA is invariant
under the action of ι on P(V ). Let W ⊂ V be a 4-dimensional sub-vector
space. P(W ) is invariant under the action of ι if and only if W = W+ ⊕W−
where W+ ⊂ V+ and W− ⊂ V−.

In this section, we shall only consider W such that dim (W+,W−) = (3, 1).
Let F = P(W ) ∩ YA and S = f−1

A F . Let q : F → Z and pi : S → Vi (i = 1, 2)
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be the quotient of F and S by ι and ιi respectively. We obtain a commutative
diagram

S
p0 //

f

��

p1

��

V0

g0

��

V1
g1

  
F

q
// Z

where S → Z is a (Z/2Z)2-cover.

By our assumption that dimW ∩ V+ = 3, the intersection P(W ) ∩ P(V+) is
a plane in P(V ), hence for a general choice of W , the fixed locus of ι on F
is the union of a smooth quadric curve C0 and a smooth quartic curve C1

intersecting at 8 points (it does not pass through the 6 isolated fixed points
and the 16 nodes of the Kummer surface). The 8 intersection points lie on the
branch locus of fA, so they are nodes on F . The curves C0 and C1 do not
contain any other nodes of F .

The induced involution ι0 on S fixes the curve C0 and defines the quotient
map p0 : S → V0 = S/〈̂i〉 while ι1 = ιAι0 fixes the curve C1 and defines the
quotient map p1.

The surface Z is singular with 16 nodes, whose preimages are the 32 nodes of
F not contained in C0 ∪C1. The 8 nodes in C0 ∩C1 map to 8 smooth points,
which form the intersection of C0 and C1 on Z. The maps gi are ramified at
the union of the 16 nodes and C1−i.

We can obtain the Hodge numbers of the quotients of S by a rather long and
uninspiring computation which we shall omit.

Proposition 4.2.22. The Hodge numbers of V0, V1 and Z are

h1,0 h2,0 h1,1

V0 0 4 36
V1 0 3 32
Z 0 3 21

It is more instructive to write the Hodge numbers in terms of the eigenspace
decomposition of Hp,q(S):

h2,0:
11 4 7
10 3 7
1 1 0

h1,1:
72 36 36
46 21 25
26 15 11

The top left corner gives hp,q(S) and the columns and rows are decompositions
of Hp,q(S) with respect to ι0 and ιA respectively.
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To end off the section, we will give an example of a 40-nodal sextic surface
containing 4 such involutions.

Example 4.2.23. First, we describe the construction for EPW sextics. Let
V , A ⊂ Λ3V and λA : E → (Λ3V/A)⊗OP(V ) be defined as in Subsection 4.2.4.
For any point v ∈ V , it is easy to see that

detλA,v = 0 ⇐⇒ (v ∧ Λ2V ) ∩A 6= 0 ⇐⇒ dim (v ∧A) < dimA.

Let v0, . . . , v5 be a basis for V , then vijk = vi ∧ vj ∧ vk (i < j < k) is a basis
for Λ3V . We can write a basis for A asam =

∑
0≤i<j<k≤5

αijk,mvijk


1≤m≤10

.

Let v = (z0, . . . , z5). In the basis vijkl = vi ∧ vj ∧ vk ∧ vl of Λ4V , the image of
v ∧A is given by the 15× 10 matrix of linear polynomials

M(z) = (ziαjkl,m − zjαikl,m + zkαijl,m − zlαijk,m)0≤i<j<k<l≤5,m.

The locus of v ∈ V where dim (v ∧ A) < dimA is precisely the locus on
P(V ) where the rank of M(z) is less than 10. Eisenbud, Popescu and Welter
[EPW01] showed that, for a general choice of A, the greatest common divisor
of all the 10× 10 minors of M(z) is an irreducible sextic polynomial defining
an EPW sextic.

Explicit example 4.2.24. In our example, we take the Lagrangian subspace

A = 〈v014 + 3v235, 3v134 + v025, v234 + 3v015, 3v012 − v345, v013 − 3v245,

3v023 − v145, v024 − 3v135, 3v034 − v125, v123 − 3v045, 3v124 − v035〉.

Using Magma [BCP97], we find the EPW sextic fourfold YA using the above
algorithm. Consider the surface F defined by intersecting YA with the hyper-
planes defined by z1 = 2z0 and z5 = 2z4. The surface F is given by the sextic
polynomial

f6 = 23625z6
0 − 47925z4

0z
2
1 + 48075z4

0z
2
2 + 144375z4

0z
2
3 + 9855z2

0z
4
1

− 5790z2
0z

2
1z

2
2 − 292950z2

0z
2
1z

2
3 − 440000z2

0z1z2z
2
3 + 9855z2

0z
4
2

− 484950z2
0z

2
2z

2
3 + 144375z2

0z
4
3 − 243z6

1 + 1971z4
1z

2
2 + 9855z4

1z
2
3

+ 1971z2
1z

4
2 − 5790z2

1z
2
2z

2
3 − 47925z2

1z
4
3 − 243z6

2 + 9855z4
2z

2
3

+ 48075z2
2z

4
3 + 23625z6

3 .

We checked that the surface F is invariant under the four involutions given by

(z0, z1, z2, z3) 7→


(−z0, z1, z2, z3)

(z0, z1, z2,−z3)

(z3, z1, z2, z0)

(z3, z1, z2,−z0).
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As in the discussion above, each such involution fixes a reducible sextic curve
which is the union of a smooth conic and a smooth quartic curve, which inter-
sect at 8 nodes of F . We verified that the sets of nodes fixed by the involutions
are pairwise disjoint. An interesting observation is that the remaining set of
8 nodes also lies on a plane, defined by 12z1 + 41z2 = 0. The intersection of
F with this plane is also the union of a smooth conic and a smooth quartic
curve. However, there is no involution of F around this plane.

We computed the associated Kummer surface K and the curve C such that
divF (K) = 2C. It is interesting to note that, in this example, the curve C
is the union of 5 irreducible components, namely the smooth quartic curve in
the plane 12z1 + 41z2 = 0 and the 4 conics fixed by each of the 4 involutions.

This example was used in the proof of Theorem 4.2.20. We showed that all
infinitesimal deformations of this particular surface F fixing YA are non-trivial
and used it to deduce that all small deformations of F are non-trivial.
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Chapter 5

Generalizations using
mixed Hodge modules

In this chapter, we give the first step in generalizing the Hodge theoretical
results in Chapter 2 to more general singular varieties. To do so, we make
use of mixed Hodge modules, a technique developed by Morihiko Saito to
generalize variations of Hodge structures to singular varieties. We will give a
very brief introduction to mixed Hodge modules in the first two sections. In
the third section, we will apply these theories and demonstrate how they give a
coherent picture for understanding the behaviour of singularities on algebraic
varieties.

5.1 Perverse sheaves

We will begin by studying the underlying topological obstructions to varia-
tions of Hodge structures. This is best presented in the theory of perverse
sheaves, which can be seen as an extension of local systems to singular va-
rieties. Perverse sheaves were first introduced by Beilinson, Bernstein and
Deligne in [BBD82]. There are many other excellent exposés on perverse
sheaves, eg. [CM09; Moz08]. Over here, we shall just describe some basic
properties and let interested readers refer to the earlier texts for further de-
tails.

Let X be a complex algebraic variety of dimension n. A stratification S of X
is a sequence of Zariski-open subsets

∅ = Un+1 ⊂ Un ⊂ · · · ⊂ U1 ⊂ U0 = X

such that Si = Ui \ Ui+1 is either smooth of dimension i or empty. A con-
structible sheaf on X is a sheaf F of k-vector spaces (k = Q,R,C) such that
there exists a stratification S where F|Si is locally constant for each i.

Let ModckX be the category of constructible sheaves and denote by Db
c(kX)

the bounded derived category of complexes with constructible cohomology, i.e.
for each F• ∈ Db

c(kX), the sheaf Hi(F•) is constructible for each i and zero
for |i| sufficiently large.
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Let f : X → Y be a morphism of varieties. We can define six basic geo-
metric functors (known as Grothendieck’s six functors) between the derived
categories:

f∗ : Db
c(kY )→ Db

c(kX) f∗ : Db
c(kX)→ Db

c(kY )

f! : Db
c(kX)→ Db

c(kY ) f ! : Db
c(kY )→ Db

c(kX)

−⊗− : Db
c(kX)×Db

c(kX)→ Db
c(kX) Hom(−,−) : Db

c(kX)×Db
c(kX)→ Db

c(kX)

These are simply the derived versions of our usual functors: f∗ = f−1, f∗ =
Rf∗, f! = Rf!, ⊗ = ⊗L and Hom = RHom. To simplify notations, in this
chapter, we shall denote all derived functors as above and write, for example,
R0f∗ or H0(f∗) for the usual underived functors when needed.

The six functors form adjoint pairs (f∗, f∗), (f!, f
!) and (−⊗ F ,Hom(F ,−))

for any F ∈ Db
c(kX). There is also a notion of duality, called the Verdier

duality. The duality functor

D : Db
c(kX)→ Db

c(kX)

satisfies the identities Df∗D = f! and Df∗D = f !. The dualizing sheaf (or
complex) is the object ICX = a!

Xk ∈ Db
c(kX) where aX : X → Spec C is the

structure morphism, and we have the identity DF = Hom(F , ICX).

If f is proper, then f∗ = f!. If f is finite étale, then f∗ = f !.

From another perspective, we may start with the triangulated categoryDb
c(kX).

On a triangulated category, there is a notion of t-structures (see [BBD82] or
any other text on triangulated categories) which is a Z-partitioning of the cat-
egory. The 0-th partition is called the heart of the t-structure. The heart is a
sub-abelian category of the triangulated category and each other partition is a
translation of the heart by the shift functor [i]. For the derived category Db(A)
of an abelian category A, there is a standard t-structure where the heart is the
abelian category A viewed as complexes concentrated in the 0-th degree while
the i-th partition is the category of complexes concentrated in the i-th degree.

However, we can also choose a different t-structure on Db
c(kX), one of which is

the perverse t-structure. It is possible to explicitly define this t-structure, but
we shall only describe its heart. A perverse sheaf K is an object in Db

c(kX), a
complex concentrated in degrees −n to 0, such that dim Supp(H−i(P)) ≤ i and
dim Supp(H−i(DP)) ≤ i. Note that a perverse sheaf is a complex of sheaves
rather than a sheaf. The category Perv(kX) of perverse sheaves is abelian and
is the heart of the perverse t-structure on Db

c(kX).

Rather than trying to understand the definition of perverse sheaves, we shall
give a few examples. Most importantly, the dualizing complex ICX is perverse.
When X is smooth, we have ICX = kX [n] and Verdier duality is just the
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Poincaré duality. More generally, given a local system L on Un, there exists a
unique simple perverse sheaf ICX(L) such that ICX(L)|Un

= L. This is called
the intersection complex of L. We have ICX = ICX(kX).

We say that a functor F is left (or right, respectively) t-exact if H0(F ) is left
(right, resp.) exact on the abelian heart of the t-structure. On the standard
t-structure, f∗, f! and Hom are left t-exact, ⊗ is right t-exact and f∗ is t-exact.
It is different with respect to the perverse t-structure. We have the following
proposition:

Proposition 5.1.1 ([Moz08, Prop 3.29]). Let f : X → Y be an algebraic
morphism. Then, with respect to the perverse t-structure,

1. If f is quasi-finite, then f! and f∗ are right t-exact while f ! and f∗ are
left t-exact.

2. if f is affine, then f∗ is right t-exact while f! is left t-exact.

3. If f is finite, then f∗ = f! are t-exact.

Let pHi(F) be the i-th cohomology of a complex F ∈ Db
c(kX) with respect

to the perverse t-structure. A key result of Beilinson, Bernstein and Deligne
[BBD82, Théorème 6.2.10] can be restated using [Del68, Théorème 1.5]

Theorem 5.1.2. Let f : X → Y be a proper morphism of algebraic varieties,
and F ∈ Db

c(kX) be of geometric origin. Then, there exists a non-canonical
quasi-isomorphism

f∗F ∼=
⊕
i∈Z

pHi(f∗F)[−i].

In later works by Saito [Sai88] and de Cataldo-Migliorini [CM05], they showed,
using different methods, that for F = ICX the quasi-isomorphism above can
be chosen to compatible with Hodge theory. In the next section, we will present
Saito’s enhancement of this theorem.

Let Z ⊂ X be a Zariski-closed subset and consider the morphisms

Z
i−→ X

j←− U = X \ Z.

We have that i∗ = i! and j∗ = j! and the adjunctions induce natural morphisms

j!j
! → id→ i∗i

∗, i!i
! → id→ j∗j

∗.

It is a theorem that these two sequences are distinguished triangles in Db
c(kX).
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5.2 Mixed Hodge Modules

Mixed Hodge modules were first introduced by Morihiko Saito [Sai88] as a
generalization of the variation of Hodge structures to singular varieties. The
definition of mixed Hodge modules is extremely technical and beyond the
scope of this thesis. We will instead focus on the important properties of
mixed Hodge modules and specific examples. Interested readers may refer to
Saito’s original papers [Sai88; Sai90] or Schnell’s excellent exposé [Sch14].

Let X be a smooth algebraic variety of dimension n. Consider the data of
a quadruple (M, F,W,K) where M is a regular holonomic right DX -module
(see, for example, [HTT08] for the definition), F and W are filtrations on M
(the Hodge and weight filtrations respectively) and K ∈ Perv(QX) is a Q-
perverse sheaf with a fixed isomorphism K ⊗Q C ∼= DR(M). Here, DR is the
de Rham functor defined by

DR : Db(DX)→ Db
c(CX) : M 7→ (M⊗∧nTX → · · · →M⊗ TX →M)[n]

where Db(DX) is the derived category of DX -modules and the map sends
M∈Mod(DX) to a complex lying in degrees −n to 0.

Remark 5.2.1. Note that in this thesis, we adopt the convention of Saito and
Schnell and define Hodge modules using right DX -modules (cf. [Sch14, Section
A.3] for a discussion of the difference). Other texts such as [PS08, Chapters
13 and 14] use left DX -modules. The two conventions are equivalent, but lead
to different notations (cf. [PS08, Section 13.3.2]). For example, over a smooth
projective variety X, the equivalence sends the left DX -module OX to the
right DX -module ωX . Using left DX -modules, the de Rham functor is given
by the usual de Rham complex.

A mixed Hodge module is such a quadruple (M, F,W,K) whereM satisfying
certain conditions (the conditions imposed ensure that they are of “geometric”
origin). Denote the abelian category of mixed Hodge modules by MHM(X)
and its bounded derived category by Db(MHM(X)).

In this chapter, almost all mixed Hodge modules we consider are actually
pure, that is, the weight filtration is trivial. Hence, we shall forget the weight
filtration W . For examples with standard choices of Hodge filtration, we will
often denote the Hodge module (M, F,W,K) simply by KH . If we are not
concerned about the rational Hodge structure, we may simply denote a Hodge
module by KH

C .

Note that F also induces a filtration on DRM given by

FpDR(M) = (Fp−nM⊗∧nTX → · · · → Fp−1M⊗ TX → FpM)[n].
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When we talk about the Hodge filtration on KH
C , we refer to the induced

Hodge filtration on DRM = KC.

Example 5.2.2. Let X be a smooth projective algebraic variety of dimension
n. The “structure” Hodge module is QX [n]H = (ωX , F•,QX [n]) where the
Hodge filtration on ωX is defined by

FpωX =

{
ωX , p ≥ −n;

0, p < −n.

We see that the induced filtration on DRωX = CX is the stupid filtration

FpCX = (0→ · · · → 0→ ΩpX → · · · → Ωn−1
X → ωX)[n]

and classical Hodge theory shows that GrFp CX = Ωp+nX .

The forgetful functor

rat : Db(MHM(X))→ Db
c(QX) : (M, F,W,K) 7→ K

is exact since the de Rham functor is. The Hodge filtration is strict [Sai16,
(2.3.3)], that is,

GrF· : Db(MHM(X))→ Db(OX)

is an exact functor, where Db(OX) is the derived category of OX -modules on
X. Hence, given any distinguished triangle

A→ B → C
+1−−→

in Db(MHM(X)), we have a distinguished triangle of D-modules

GrFp A→ GrFp B → GrFp C
+1−−→ ∀ p ∈ Z.

Saito also defined the six functors f∗, f
∗, f!, f

!,⊗,Hom on mixed Hodge mod-
ules and showed that they commute with the forgetful functor rat [Sai90]. Note
that GrF does not commute with the six functors in general. If f : X → Y
is a projective morphism, then GrF commutes with the direct image functor
f∗ = f! up to a shift, more precisely GrFp f∗ = f∗GrFp [dimX − dimY ] (see the
definition of f∗ in [Sai90, p. 2.13]).

There exists a Hodge module enhancement for most geometric results on per-
verse sheaves.

Theorem 5.2.3 ([Sai88, Théorème 1]). Let f : X → Y be a proper algebraic
morphism. Then, the functor f∗ : Db(MHM(X))→ Db(MHM(Y )) is strict.
Let (M, F,W,K) ∈ Db(MHM(X)) be any mixed Hodge module of geometric
origin. There is an isomorphism

f∗(M, F,W,K) ∼=
⊕
i∈Z

pHi(f∗(M, F,W,K))[−i].
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We now give a few more examples of Hodge modules.

Example 5.2.4. Let D ⊂ X be a reduced closed subscheme and j : U =
X \D → X be the open immersion. Consider the sheaf

ωX(∗D) =
⋃
k≥0

ωX(kD)

of meromorphic differential forms with arbitary poles on D. Then, its image
under the de Rham functor is DR(ωX(∗D)) = j∗CU [n].

There is a Hodge module

(j∗QU [n])H = (ωX(∗D), F•, j∗QU [n])

where the Hodge filtration F• is dependent on the singularities of D. The pre-
cise definition of the Hodge filtration is beyond the scope of this introduction
(see, for example, [Sai07] or [MP16]), we shall just state some properties.

The Hodge filtration Fk−nωX(∗D) is contained in the pole order filtration
Pk−nωX(∗D) = ωX((k + 1)D), more precisely, there is an ideal Ik(D) ⊂ OX
such that Fk−nωX(∗D) = ωX((k+1)D)⊗Ik(D). These are called Hodge ideals,
and are invariants of the types of singularities on D [MP16]. In general, the
worse the singularities of D, the smaller the Ik(D). If D is smooth, then
Ik(D) = OX for all k. Mustaţă and Popa showed that I0(D) = OX if and
only if (X,D) is log-canonical [MP16, Corollary 10.3].

Saito ([Sai07, Theorem 1] or [MP16, Theorem 6.1]) gave another equivalent
Hodge filtration on (j∗QU [n])H which is often easier to work with. We may
also take this as the definition. Let π : (X̃, E) → (X,D) be a log resolution,
that is, π : X̃ → X is a resolution such that E = π∗D and E is a normal
crossing divisor in X̃. There is an isomorphism of filtered complexes

π∗(Ω
•
X̃

(logE), F•) ∼= DR(OX(∗D), F•) (5.1)

where the filtration on the left hand side is given by the stupid truncation

Fp(Ω
•
X̃

(logE)) =

(0→ · · · → 0→ Ωp
X̃

(logE)→ Ωk+1

X̃
(logE)→ · · · → Ωn

X̃
(logE))[n]

with GrFp (j∗CU [n]) = Ωp
X̃

(logE).

Example 5.2.5. Let X, D and U be defined as in the previous example.
Recall that Verdier duality gives an equivalence Dj! = j∗D. Verdier duality is
compatible with the mixed Hodge module structures, so it induces a duality
on the Hodge filtration

GrFp−n(j!CU [n])H ⊗GrF−p(j∗CU [n])H → GrF0 CX [n]H .
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From the previous examples, we have GrF−p(j∗CU [n])H = π∗Ω
n−p
X̃

(logE) and

GrF0 CX [n]H = ωX . There is a classical duality for Hodge structures on (X̃, E)
given by the perfect pairing

Ωp
X̃

(logE)⊗ Ωn−p
X̃

(logE)→ ωX̃(E).

Hence, we conclude that GrFp−n(j!CU [n])H = π∗Ω
p

X̃
(logE)(−E).

The reason for the convoluted definition of (j∗QU [n])H is to ensure compati-
bilty with the Hodge modules on D.

So far, we have only discussed Hodge modules on smooth varieties. This is
because D-modules are, a priori, only well-defined for smooth varieties. To
extend the definition to a singular variety X, we can embed X as a closed
subvariety of some smooth variety Y and define a D-module on X to be one
on Y supported on X. We can define

Db(MHM(X)) = Db
X(MHM(Y ))

where Db
X(MHM(Y )) is the full subcategory of Hodge modules on Y sup-

ported on X. Saito showed that this definition is independent of the choice of
embedding X ⊂ Y [Sai90, p. 223].

For a variety X of pure dimension n embedded as a divisor in Y , the Hodge
module ICHX is the cocone of

CY [n+ 1]H → (j∗CU [n+ 1])H

where j : U = Y \ X → Y is the open embedding. One can show that the
Hodge filtration on ICHX gives precisely the weight k part of the mixed Hodge
structure on Hk(X,C) for each k. We define Ω̃pX := GrFp−nIC

H
X .

Dually, the Hodge module CX [n]H is the cone of

(j!CU [n+ 1])H [−1]→ CY [n+ 1]H [−1]

and we define ΩpX := GrFp−nCX [n]H . In [du 81], du Bois defined a resolution
Ω•X of the constant sheaf CX for any variety X. In Lemma 5.3.3, we will show
that the complexes ΩpX obtained using mixed Hodge modules gives precisely
the same resolution.

Remark 5.2.6. Note that in [Ste06], Steenbrink used the notation Ω̃•X for du
Bois’ resolution. The author apologizes for the clash in notation. The Hodge
structure of a V-manifold X is pure and we have ICX = CX [n], so Ω̃•X = Ω•X
and in that case, the notation is consistent.

97



More generally, the distinguished triangles

j!j
! → id→ i∗i

∗ +1−−→, i!i
! → id→ j∗j

∗ +1−−→

hold in Db(MHM(Y )) as well [Sai90, p. 2.24].

5.3 Hodge theory of singular varieties

In general, the complex Ω̃pX is rather obscure and difficult to understand. In
this section, we prove a few results that allow us to compute its cohomologies.

First, we prove that in the case of V-manifolds, the complex Ω̃pX we defined is
indeed a sheaf and coincides with Steenbrink’s definition (see Section 2.2).

Proposition 5.3.1. Let X = M/G where M ⊂ Cn is an open ball and G ⊂
GL(n,C) is a small subgroup and let f : M → X be the quotient map. Then,
there is an isomorphism (f∗Ω

p
M )G = Ω̃pX . Hence, for a V-manifold X, the

Hodge module definition of Ω̃pX coincides with Steenbrink’s (Definition 2.1.2)
by Theorem 2.2.5(i).

Proof. Let Σ ⊂ X be the singular locus. Since G is small, the singular locus
coincides with the branch locus. Let U = M \ f−1Σ and V = X \ Σ, and
consider the diagram

U
j̃ //

f

��

M

f

��
V

j
// X

The morphism f : U → V is a finite étale map of smooth varieties, so there is
a decomposition

f∗CU [n] =
⊕
χ∈G∗

Lχ[n]

where G∗ is the group of characters of G and Lχ are local systems on V . Note
that if G is non-abelian, the rank of Lχ may be larger than one. Nevertheless,
the trivial character gives a trivial local system (f∗CU [n])G = L1[n] = CV [n].

By Theorem 5.2.3, the eigenspace decomposition of f∗CU [n] lifts to a decom-
position on the level of Hodge modules, so (f∗CU [n]H)G = CV [n]H .

Note that j̃!∗CU [n]H = CM [n]H and j̃!∗CV [n]H = ICHX . Since f is proper, we
have f∗ = f! = f!∗. Hence, we obtain

(f∗CM [n]H)G = (f∗j̃!∗CU [n]H)G = j!∗(f∗CU [n]H)G = j!∗CV [n]H = ICHX .
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Taking the (p − n)-th graded component of the Hodge filtration and noting
that f∗ commutes with GrFp , we get (f∗Ω

p
M )G = Ω̃pX . �

Next, we show how we can, in some cases, compute the sheaves Ω̃pX in terms
of a desingularization of X.

Lemma 5.3.2. Let X be a projective variety of dimension n and let Σ ⊂ X
be the singular locus of X. Suppose codimXΣ = d. Let π : (X̃, E) → (X,Σ)
be a log-resolution of (X,Σ). Then,

(i) there are isomorphisms Ω̃pX = π∗Ω
p

X̃
(logE) for p ≤ d;

(ii) for any 0 ≤ p ≤ n, the cohomology of the complex Ω̃pX vanishes in nega-

tive degrees, i.e. Hi(Ω̃pX) = 0 for all i < 0;

(iii) for any 0 ≤ p ≤ n, the map H0(Ω̃pX)→ R0π∗Ω
p

X̃
(logE) is injective, and

it is an isomorphism if d ≥ 2;

(iv) there are isomorphisms Ω̃pX = π∗Ω
p

X̃
(logE)(−E) for p ≥ n− d.

Proof. There is a diagram of morphisms

Ũ = X̃ \ E
j̃ //

π

∼

��

X̃

π

��

E
ĩoo

π

��
U = X \ Σ

j
// X Σ

i
oo

(5.2)

We consider the distinguished triangle

i!i
!ICHX = i∗IC

H
Σ → ICHX → j∗j

∗ICHX = (j∗CU [n])H
+1−−→ .

We take the (p−n)-th graded component of the aboved distinguished triangle.

Note that GrFp−ni∗IC
H
Σ = i∗GrF(p−d)−(n−d)IC

H
Σ [−d] = Ω̃p−dΣ [−d]. We can also

write GrFp−n(j∗CU [n])H in terms of the log sheaf on (X̃, E) using (5.1). Thus,
we get a distiguished triangle

i∗Ω̃
p−d
Σ [−d]→ Ω̃pX → π∗Ω

p

X̃
(logE)

+1−−→ . (5.3)

(i) If p < d, then Ω̃p−dΣ = 0, giving the isomorphism Ω̃pX = π∗Ω̃
p

X̃
(logE).

(ii) We prove by induction on the dimension of X. Suppose it is true for all
varieties of dimension k ≤ n− 1, in particular, it is true on Σ. So, taking the
cohomologies of the distinguished triangle (5.3) gives exact sequences

Hi−d(Ω̃p−dΣ )→ Hi(Ω̃pX)→ Hi(π∗ΩpX̃(logE)).
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The first and last terms are zero when i < 0 (by induction hypothesis and
since π∗ is left exact), so Hi(Ω̃pX) = 0 for all i < 0.

(iii) follows from taking the cohomologies of the distinguished triangle (5.3) in
degree 0 and using (ii).

(iv) Consider the dual sequence

j!j
!ICHX = (j!CU [n])H → ICHX → i∗i

∗ICHX
+1−−→ .

Taking the (p− n)-th graded component gives the distinguished triangle

π∗Ω
p

X̃
(logE)(−E)→ Ω̃pX →

→ GrFp−ni∗i
∗ICHX = i∗GrFp−ni

∗ICX [−d]H = i∗GrFp−n+di
∗ICHX [−d]

+1−−→ .

Since i∗ is right exact, we have pH>0(i∗ICX) = 0, so GrFp−n+di
∗ICHX = 0

whenever p > n− d. This gives us the required isomorphism. �

Lemma 5.3.3. ΩpX are precisely the sheaves defined by du Bois in [du 81].

Proof. Using the same setup as in the diagram (5.2), we obtain a morphism
of distinguished triangles

(j!CU [n])H // CX [n]H //

��

i∗CΣ[n]H
+1 //

��
π∗(j!CŨ [n])H // π∗CX̃ [n]H // π∗i∗CE [n]H

+1 // .

Since the first terms are isomorphic, we obtain a new distinguished triangle

CX [n]H → CΣ[n]H ⊕ π∗CX̃ [n]H → π∗i∗CE [n]H
+1−−→ .

Taking the (p−n)-th graded component of the Hodge filtration gives a distin-
guished triangle

ΩpX → ΩpΣ
⊕

π∗Ω
p

X̃
→ π∗Ω

p
E

+1−−→ .

This is precisely the characterization given by du Bois in [du 81, Proposition
3.9]. �

We shall now prove a generalization of Theorem 2.2.14.

Proposition 5.3.4. Let Y be a smooth algebraic variety of dimension n and
X ⊂ Y be a divisor. Then, there are short exact sequences

0→ ΩpY → ΩpY (logX)→ H0(Ω̃p−1
X )→ 0

for 1 ≤ p ≤ n.
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Proof. Let π : (Ỹ, X̃ + E) → (Y,X) be a log-resolution of (Y,X) such that
X̃ is the strict transform of X and E = π−1Σ is the total transform of the
singular locus Σ of X in Y . We have a diagram

Ũ = Ỹ \ (X̃ ∪ E)
j̃ //

π

∼

��

Ỹ

π

��

X̃ ∪ Eĩoo

π

��
U = Y \X

j
// Y X

i
oo

Consider the distinguished triangle

i!i
!ICY [n]H = i∗IC

H
X → CY [n]H → j∗j

∗CY [n]H = (j∗CU [n])H
+1−−→ .

Similar to the proof of Lemma 5.3.2, the (p− n)-th graded component of the
above distinguished triangle gives another distinguished triangle

i∗Ω̃
p−1
X [−1]→ ΩpY → π∗Ω

p

Ỹ
(log(X̃ + E))

+1−−→ .

Taking the cohomology gives an exact sequence

H−1(Ω̃p−1
X ) = 0→ ΩpY → R0π∗Ω

p

Ỹ
(log(X̃ + E))→ H0(Ω̃p−1

X )→ 0.

It remains to show that ΩpY (logX) = R0π∗Ω
p

Ỹ
(log(X̃ + E)).

There is a resolution of Ωp
Ỹ

(log(X̃ + E)) as

0→ Ωp
Ỹ

(X̃ + E)
d−→ Ωp+1

Ỹ
(2(X̃ + E))/Ωp+1

Ỹ
(X̃ + E)→ 0.

By Lemma 2.2.20, R0π∗Ω
p

Ỹ
= ΩpY . Since π∗OY (X) = OỸ (X̃ + E), by the

projection formula, we get R0π∗Ω
p

Ỹ
(k(X̃ + E)) = Ωp

Ỹ
(kX). Hence,

R0π∗Ω
p

Ỹ
(log(X̃ + E))

= ker
(
R0π∗Ω

p

Ỹ
(X̃ + E)

d−→ R0π∗(Ω
p+1

Ỹ
(2(X̃ + E))/Ωp+1

Ỹ
(X̃ + E))

)
= ker

(
ΩpY (X)→ Ωp+1

Y (2X)/Ωp+1
Y (X)

)
= ΩpY (logX).

�

Proposition 5.3.5. Let Y be a smooth algebraic variety of dimension n and
X ⊂ Y be a divisor. Then, there are exact sequences

0→ ΩpY (logX)(−X)→ ΩpY → ΩpX

for 0 ≤ p ≤ n− 1.
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Proof. Let Ỹ , X̃, E and all the morphisms be as defined in the proof of
Proposition 5.3.4.

Consider the distinguished triangle

j!j
!CY [n]H = (j!CU [n])H = π∗(j̃!CŨ [n])H → CY [n]H →

→ i∗i
∗CY [n]H = i∗CX [n]H

+1−−→ . (5.4)

The (p− n)-th graded component of the Hodge filtration on the distinguished
triangle 5.4 gives

π∗Ω
p

Ỹ
(log(X̃ + E))(−X̃ − E)→ ΩpY → GrFp−ni∗CX [n]H

+1−−→ . (5.5)

The last term is isomorphic to

GrFp−ni∗CX [n]H = i∗GrFp−nCX [n]H [−1] = i∗GrFp−n+1CX [n− 1]H = i∗Ω
p
X

which is a sheaf by Lemma 5.3.3.

Similar to the last part of the proof of Proposition 5.3.4, we obtain that
R0π∗Ω

p

Ỹ
(log(X̃ +E))(−X̃ −E) = ΩpY (logX)(−X). Hence, the degree 0 coho-

mology of the distinguished triangle (5.5) gives the required left exact sequence.
�

Theorem 2.2.14 follows immediately from the preceeding propositions.

Proof of Theorem 2.2.14. The theorem follows from Propositions 5.3.4 and
5.3.5 by noting that ΩpX = Ω̃pX for V-manifolds. �
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France, 1988.

[DS14] A. Dimca and M. Saito. Generalization of theorems of Griffiths and
Steenbrink to hypersurfaces with ordinary double points. 2014. url:
http://arxiv.org/abs/1403.4563.

[du 81] P. du Bois. “Complexe de de Rham filtré d’une variété singulière”.
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In: Ann. de l’institut Fourier 16.1 (1966), pp. 363–374.

[Sev46] F. Severi. “Sul massimo numero di nodi di una superficie di dato
ordine dello spazio ordinario o di una forma di un iperspazio”. In:
Ann. Mat. Pura Appl. 25 (1946), pp. 1–41.

[Ste06] J.H.M. Steenbrink. “Adjunction conditions for one-forms on sur-
faces in projective three-space”. In: Singularities and Computer
Algebra. London Math. Soc. Lecture Note Ser. 324. Cambridge:
Cambridge University Press, 2006, pp. 301–314.

[Ste77] J.H.M. Steenbrink. “Mixed Hodge Structure on the vanishing co-
homology”. In: Real and complex singularities, Oslo 1976. Ed. by
P. Holm. Alphen a/d Rijn: Sijthoff–Noordhoff, 1977, pp. 525–563.

[Voi02] C. Voisin. Hodge Theory and Complex Algebraic Geometry I. Cam-
bridge studies in advanced mathematics 76. Cambridge: Cambridge
University Press, 2002.

[Voi03] C. Voisin. Hodge Theory and Complex Algebraic Geometry II. Cam-
bridge studies in advanced mathematics 77. Cambridge: Cambridge
University Press, 2003.

[Wel83] G. Welters. “Polarized abelian varieties and the heat equations”.
In: Compositio Mathematica 49 (1983), pp. 173–194.

107



108



Acknowledgements

I am very grateful to my advisors, Bert van Geemen, Ronald van Luijk, and
Peter Stevenhagen, for their guidance and support throughout my PhD stud-
ies.

Bert has been instrumental in the course of my research, sharing with me
his immense knowledge of the subject. While granting me a large degree of
freedom to pursue my topic of interest, he provided ideas when I was stuck
and invested much time and effort to guide me through my thesis. He was
always available when I needed help, and was able to give useful insights even
if my questions were not in his area of expertise.

Although I did not work much with Ronald and Peter, they encouraged me
and provided important feedback on my work and progress, ensuring that I
was on track and had the resources that I needed.

Many people have inspired me in my career so far. I would like to thank
Luca Migliorini, whose lectures in Rennes in 2014 gave me the first (albeit
unsuccessful) idea for my PhD project, for taking time to discuss with me and
answer my silly questions; Gabriele Vezzosi, Pieter Belmans, Mauro Porta,
Paolo Stellari, Mattia Ornaghi, and Bas Edixhoven for the many insightful
discussions, broadening my perspective on mathematics; Paolo and Mattia,
again, for organizing the seminar on non-commutative motives in Milan, which
was a great learning experience; and many others whom I’ve talked to and
worked with over the last three years.

I would also like to thank the reading committee and the anonymous refer-
ees, for taking the time to read my thesis, providing valuable comments and
pointing out major mistakes.

Special thanks go to Swantje for proofreading my thesis and designing the
cover as well as Bert, Ronald, Leonardo, Mima, and Rosa for the translation
of the summary. Cover image is courtesy of David Madore who kindly supplied
the source code.

I am grateful towards Erasmus Mundus and the ALGANT program for funding
both my masters and doctorate studies, providing me the opportunity to study
in Europe and to meet many new people.

My deepest appreciation goes to my flatmate in Milan for two years, Qijun,
for all that we have done together, for encouraging me when I was down and

109



for bearing with me when I was being intolerable. Thank you for being a great
friend, flatmate and colleague!

The same appreciation also goes to Djordjo, my flatmate in Leiden for the first
three months, and to Giulio, who hosted me for way longer than expected.

My PhD experience would have been totally different, and nowhere near as
enriching, without my friends and colleagues at the department: in particu-
lar, Chloe, Mima, Djordjo, Giulio, Rosa, Raymond, Erik, Carlo, David, An-
drea, Leonardo, Marta, Michiel in Leiden; Qijun, Francesca, Carolina, Matteo,
Laura, Mattia, Simone, Martino in Milan. Thank you Kathelijne for always
being so cheery and making everything run smoothly.

Thank you to the friends who have stuck with me over many years: Yuxin,
Aylwin, Esther, Rong, Stefano, Danilo; as well as the new friends I have made:
Swantje, Jit, Liuba, Aleks, Catalina, Velten, my hiking buddies in Milan, and
many others.

Last but not least, a big thank you to my parents, for their never-ending
support, despite being so far away, over the last 28 years of my life and for the
years to come.

110



Summary

Ordinary double points are the simplest type of singularity on an algebraic
surface, and can be defined locally by the polynomial x2 − yz ∈ C[x, y, z].
Nodal surfaces are projective surfaces with only ordinary double points as
singularities.

Hodge theory and deformation theory of nodal surfaces are similar to those of
smooth surfaces in many respects, for example, nodal surfaces also have pure
Hodge structures. The similarities and differences are described in detail in
Chapters 2 and 3 of the thesis. Our first main result is the infinitesimal Torelli
theorem for nodal surfaces in P3, which states that all small non-trivial defor-
mations of nodal surfaces induce non-trivial variations of Hodge structures.

A nodal surface F is said to have an even set of nodes if there exists a double
cover f : S → F branched precisely over the nodes. We studied two families
of such surfaces in Chapter 4, namely sextic surfaces in P3 with even sets of
56 and 40 nodes respectively.

We found a new geometric construction for a universal family of even 56-nodal
surfaces whose double covers S satisfy h1,0(S) = 3, by showing that any such
surface is in turn the double cover of an even 28-nodal surface Θ/[−1] where
Θ = S2C is a symmetric theta divisor on the Jacobian of a non-hyperelliptic
curve C of genus 3 and [−1] is induced by the involution on the Jacobian.

The involution inducing the double cover f : S → F gives a decomposition of
Hodge structures into eigenspaces

H2(S,Q) = H2(S,Q)+ ⊕H2(S,Q)−, with H2(S,Q)+ = H2(F,Q).

The double cover S of an even 40-nodal surface has H2(S,Q)− of Hodge type
(1, 26, 1). We seek simple sub-Hodge structures of types (1, n, 1) with n > 20,
since we know very few examples of these. However, by comparing various
constructions of families of even 40-nodal surfaces, we showed that H2(S,Q)−
always contains a sub-Hodge structure, of type (1, 20, 1), arising from some
deformation of a Hilbert scheme of a K3 surface. Thus, this family of examples
failed to provide new geometric Hodge structures of interest.

In the final chapter, we extended some constructions from Chapter 2 to more
general singularities, using Saito’s theory of mixed Hodge modules. These re-
sults provide ways to compute the Hodge decompositions of singular varieties.
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Samenvatting

Normale dubbelpunten zijn de eenvoudigste singulariteiten op een algebräısch
oppervlak, lokaal zijn ze gedefinieerd door het polynoom x2 − yz ∈ C[x, y, z].
Nodale oppervlakken zijn projectieve oppervlakken met als enige singulari-
teiten normale dubbelpunten.

De Hodge theorie en de deformaties van nodale oppervlakken lijken erg veel op
die van gladde oppervlakken, nodale oppervlakken hebben bijvoorbeeld ook
pure Hodge structuren. De overeenkomsten en verschillen worden in detail
beschreven in Hoofdstukken 2 en 3 van dit proefschrift. Het eerste belangrijke
resultaat is de infinitesimale Torelli stelling voor nodale oppervlakken in P3.
Deze stelling zegt dat een niet-triviale deformatie van een nodaal oppervlak
een niet-triviale variatie van de Hodge structuur induceert.

We zeggen dat een nodaal oppervlak F een even verzameling van dubbel-
punten heeft als er een overdekking f : S → F van graad twee is die precies
vertakt over de dubbelpunten. In Hoofdstuk 4 worden twee families van zulke
oppervlakken bestudeerd, namelijk zesdegraads oppervlakken met even verza-
melingen van respectivelijk 56 en 40 dubbelpunten.

We hebben een nieuwe meetkundige constructie gevonden voor een universele
familie van nodale oppervlakken met een even verzameling van 56 dubbelpun-
ten en met een dubbele overdekking S zodat h1,0(S) = 3, door te laten zien
dat deze oppervlakken zelf ook een dubbele overdekking van een oppervlak
Θ/[−1] met 28 dubbelpunten zijn, waarbij Θ = S2C de symmetrische theta
divisor is op de Jacobiaan van een niet-hyperelliptische kromme C van geslacht
3 en [−1] is gëınduceerd door de involutie op de Jacobiaan.

De involutie op S gëınduceerd door de overdekking f : S → F geeft een
decompositie van Hodge structuren in eigenruimtes

H2(S,Q) = H2(S,Q)+ ⊕H2(S,Q)−, met H2(S,Q)+ = H2(F,Q).

Voor een oppervlak met een even verzameling van 40 dubbelpunten heeft
de overdekking S de sub-Hodge structuur H2(S,Q)− met Hodge getallen
(1, 26, 1). We zijn gëınteresseerd in irreducibile sub-Hodge structuren met
Hodge getallen (1, n, 1) en n > 20 omdat er weinig voorbeelden bekend zijn.
Echter, nadat we meerdere constructies van oppervlakken met 40 dubbelpun-
ten bestudeerd hebben, zijn we tot de conclusie gekomen dat H2(S,Q)− altijd
reducibel is, omdat er een sub-Hodge structuur met Hodge getallen (1, 20, 1)
is die afkomstig is van een deformatie van het tweede Hilbert schema van een
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K3 oppervlak. Helaas geeft deze familie dus geen meetkundige constructie van
interessante nieuwe Hodge structuren.

In het laatste hoofdstuk geven we met behulp van Saito’s theorie van gemengde
Hodge modulen generalisaties van enkele constructies uit Hoodstuk 2 voor
algemenere singulariteiten. Deze resultaten zijn van belang voor het berekenen
van de Hodge decompositie van singuliere variëteiten.
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Sommario

I nodi sono le singolarità le più semplici di una superficie algebrica, definite
localmente dal polinomio x2−yz ∈ C[x, y, z]. Le superfici nodali sono superfici
proiettive con soltanto nodi come punti singolari.

Le teorie di Hodge e della deformazione delle superfici nodali sono simili a
quelle delle superfici lisce, ad esempio anche le superfici nodali hanno strutture
di Hodge pure. Le similarità e le differenze sono studiate in dettaglio nei
capitoli 2 e 3 della tesi. Il primo, fra i risultati principali di questa tesi, è
il teorema di Torelli infinitesimale per superfici nodali in P3 che afferma che
ogni deformazione non-banale di una superficie nodale induce una variazione
non-banale di strutture di Hodge.

Una superficie nodale F ha un insieme di nodi pari se esiste un rivestimento
doppio f : S → F ramificato esattamente sopra i nodi di F . Nel capitolo 4 si
studiano due famiglie di tali superfici di grado sei in P3 con insiemi pari di 56
e 40 nodi rispettivamente.

Si è trovata una nuova costruzione geometrica di una famiglia universale di
superfici con 56 nodi pari, il cui rivestimento doppio S soddisfa h1,0(S) = 3,
usando che una qualsiasi tale superficie è a sua volta il rivestimento doppio
di una superficie Θ/[−1] 28-nodale pari dove Θ = S2C è un divisore theta
simmetrico della jacobiana di una curva non-iperellittica C di genere 3 e [−1]
è indotta dall’involuzione della jacobiana.

L’involuzione che induce il rivestimento doppio f : S → F dà una decompo-
sizione della struttura di Hodge in autospazi:

H2(S,Q) = H2(S,Q)+ ⊕H2(S,Q)−, con H2(S,Q)+ = H2(F,Q).

La sottostruttura di Hodge H2(S,Q)− del rivestimento doppio S di una su-
perficie pari 40-nodale ha numeri di Hodge (1, 26, 1). Si è interessati alle
sottostrutture irriducibili di Hodge con numeri di Hodge (1, n, 1) con n >
20 poiché soltanto pochi esempi sono noti. A seguito dello studio di varie
costruzioni di tali superfici, si è mostrato che, tuttavia, H2(S,Q)− ha sempre
una sottostruttura con numeri di Hodge (1, 20, 1) che è indotta dalla defor-
mazione di uno schema di Hilbert associato ad una superficie K3. Questi
esempi, quindi, non producono nuove strutture di Hodge geometriche di inter-
esse.

Nel capitolo finale è stata usata la teoria dei moduli misti di Hodge, introdotta
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da Saito, per estendere alcune costruzioni del Capitolo 2 a singolarità più
generali. Questi risultati permettono di determinare la decomposizione di
Hodge di varietà singolari.
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