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ABSTRACT

We reconstruct the radial profile of the projected gravitational potential of the galaxy cluster MACS J1206 from 592 spectroscopic
measurements of velocities of cluster members. To accomplish this, we use a method we have developed recently based on the
Richardson-Lucy deprojection algorithm and an inversion of the spherically-symmetric Jeans equation. We find that, within the
uncertainties, our reconstruction agrees very well with a potential reconstruction from weak and strong gravitational lensing as well
as with a potential obtained from X-ray measurements. In addition, our reconstruction is in good agreement with several common
analytic profiles of the lensing potential. Varying the anisotropy parameter in the Jeans equation, we find that isotropy parameters,
which are either small, β <∼ 0.2, or decrease with radius, yield potential profiles that strongly disagree with that obtained from
gravitational lensing. We achieve the best agreement between our potential profile and the profile from gravitational lensing if the
anisotropy parameter rises steeply to β ≈ 0.6 within ≈0.5 Mpc and stays constant further out.

Key words. galaxies: clusters: general – galaxies: kinematics and dynamics – dark matter – gravitational lensing: strong –
gravitational lensing: weak

1. Introduction

Galaxy clusters offer several classes of observables reflecting
their overall internal constitution: gravitational lensing effects
in their weak and strong variants, X-ray emission, the thermal
Sunyaev-Zel’dovich (tSZ) effect, and the kinematics of their
member galaxies. We neglect radio emission, turbulence, and
metal abundance in the intracluster gas and the population statis-
tics of member galaxies because these effects are locally driven.

Gravitational lensing measures the gravitational tidal field,
projected along the line of sight (l.o.s.) and thus directly probes
the projected gravitational potential more precisely its curvature.
The X-ray emission and the thermal Sunyaev-Zel’dovich effect
depend on powers of the density and temperature of the intra-
cluster medium. If equilibrium assumptions hold, hydrostatic
and virial equilibrium foremost, the X-ray emission, the ther-
mal Sunyaev-Zel’dovich effect and galaxy kinematics are also
determined by the gravitational potential. Current discussions of
the validity of these equilibrium assumptions can be found e.g.
in Martino et al. (2014), von der Linden et al. (2014), Planck
Collaboration Int. III (2013), Planck Collaboration XX (2014).

What is the gravitational potential that agrees best with all
cluster observables? This question is relevant for different rea-
sons. First, different observables trace the gravitational potential
at different scales. The cluster core can be probed by the stel-
lar kinematics of the brightest cluster galaxy, strong lensing and
X-ray emission probe the innermost regions, weak lensing and

galaxy kinematics probe large scales, and the tSZ effect falls in
between (see Umetsu et al. 2014; Merten et al. 2015; Newman
et al. 2013). Aiming at a reliable reconstruction of cluster density
profiles from their cores to their outskirts, combining all observ-
ables into a unique potential reconstruction offers the advantage
of covering all relevant scales in a single step. Second, compar-
ing cluster potential reconstructions based on lensing, on the one
hand, and based on the rest of the observables, on the other hand,
allows us to test the equilibrium assumptions or possible devia-
tions therefrom. Third, lensing and the other observables do not
necessarily see the same gravitational potential. While lensing is
sensitive to the sum of the Bardeen potentials, the other observ-
ables only probe the spatial potential. In general relativity, the
two Bardeen potentials agree in case of negligible anisotropic
stress. Differences in potential reconstructions based on lensing
compared to other observables may also hint at deviations from
relativity (see also Sartoris et al. 2014; Barreira et al. 2015, in
this context).

The gravitational potential has the major and important ad-
vantage that it is a locally measurable quantity, which is di-
rectly related to the observables listed above (see also Angrick
& Bartelmann 2009, 2012).

We have recently developed methods for reconstructing the
projected gravitational potential of galaxy clusters from their
X-ray emission, their tSZ effect and the kinematics of their
member galaxies (Sarli et al. 2014; Konrad et al. 2013; Majer
et al. 2013). These methods operate similarly, but with important
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differences in detail. That is, an observable is deprojected by
means of the Richardson-Lucy algorithm, requiring symmetry
assumptions. The deprojected quantities are related to the three-
dimensional gravitational potential by relations derived from
justifiable equilibrium assumptions. The gravitational potential
can then be projected along the line of sight. These methods
complement our techniques for joint cluster reconstruction from
weak and strong gravitational lensing (Bartelmann et al. 1996;
Cacciato et al. 2006; Merten et al. 2009; see also Coe et al. 2012;
Merten et al. 2011; Merten 2014 for examples).

In this paper, we reconstruct the projected gravitational po-
tential of the galaxy cluster MACS J1206.2−0847 based on
galaxy kinematics, applying the technique developed in Sarli
et al. (2014). This work is structured as follows: Sect. 2 briefly
reviews the reconstruction method. In Sect. 3, we describe the
selection and preparation of the data. Section 4 presents the re-
sults and compares the projected gravitational potential to that
obtained from gravitational lensing. We summarise in Sect. 5
and discuss other methods in the Appendix.

2. Reconstruction method

The basic assumptions of our reconstruction method are the fol-
lowing: we treat the galaxy cluster as a spherically symmetric
gas cloud of collisionless, pointlike test particles of mass m,
i.e. galaxies, moving in the gravitational potential of their com-
mon dark matter halo. The system can then be described by
the Jeans equation relating the radial velocity dispersion σ2

r
weighted by the galaxy number density ρgal to the gravitational
potential φ := Φ/m,

1
ρgal

∂(ρgalσ
2
r )

∂r
+ 2β
σ2

r

r
= −∂φ
∂r
, (1)

where the anisotropy parameter β := 1 − σ2
θ/σ

2
r quantifies the

ratio between the tangential and the radial velocity dispersions.
Expanding on the formal analogy with gas dynamics, we de-

fine an effective galaxy pressure P := ρgalσ
2
r . Using this def-

inition and setting β to zero, (1) would turn into the equation
of hydrostatic equilibrium for a gas. In addition, we introduce a
polytropic relation between the effective galaxy pressure and the
matter density,

P = P0

(
ρ

ρ0

)γ
· (2)

This was justified for a simulated cluster in Sarli et al. (2014). In
fact, the authors showed that the polytropic assumption is rea-
sonable for several density profiles. Additionally, we shall see in
our reconstruction results that the exact choice of the polytropic
index only affects the final results very mildly.

The reconstruction algorithm described in detail in Sarli et al.
(2014) proceeds along the following steps (see also Fig. 1):

1. In order to obtain the effective pressure P, we first have to de-
project the actual observable, i.e. the line-of-sight projected
velocity dispersion weighted by the galaxy number density,
ρgalσ

2
los. This is accomplished via the Richardson-Lucy de-

convolution or deprojection, see Lucy (1974, 1994).
2. Furthermore, we make use of the polytropic relation (2) to

rewrite the Jeans Eq. (1) in terms of the effective pressure.
This leads to a Volterra integral equation of the second kind
for the gravitational potentialΦ. After fixing the shape of the
anisotropy profile, we can solve this equation in a quickly
converging iteration process.

ρgalσ
2
los ρgalσ

2
r

ΦΨ

(Observable)

Jeans eq.

Richardson-Lucy

deprojection

Projection

Fig. 1. Scheme of the reconstruction algorithm. The observable is
converted to a three-dimensional quantity by Richardson-Lucy depro-
jection. This is then turned into the three-dimensional gravitational po-
tential, solving the Jeans equation. The resulting potential is finally
projected along the line of sight.

3. Finally, we project Φ along the line of sight to find the pro-
jected gravitational potential Ψ.

This entire algorithm depends on three parameters and a func-
tion, which is carefully adapted during the reconstruction. Noise
suppression within the Richardson-Lucy deprojection requires
regularisation, controlled by a smoothing scale L and an ampli-
tude α. Furthermore, we have to choose the polytropic index γ
in (2), usually being of order unity, as cluster analyses in Sarli
et al. (2014) suggest. This also implies that the galaxy fluid can
approximately be treated as an isothermal gas. The importance
of the polytropic index is investigated in more detail in Sect. 4.1.

As we shall demonstrate later, the dominant parameter is the
anisotropy profile β(r). However, if kinematic data are used ex-
clusively for cluster reconstruction, there is in principle a de-
generacy between the anisotropy parameter and the gravitational
potential. We resolve this well-known degeneracy by fixing the
β-profile to obtain a non-parametric estimate for the gravitational
potential. To avoid an arbitrary, unmotivated guess for β(r), we
choose it such that the reconstructed potential agrees best with
a reconstruction based on gravitational-lensing data. Alternative
methods for breaking the anisotropy-mass degeneracy and for
recovering the gravitational potential with galaxy kinematics are
discussed in the last section.

3. Data selection and preparation

The observational input data for the relaxed and massive galaxy
cluster MACS J1206, Ebeling et al. (2001, 2009), (Mlens ≈
5 × 1014 M� h−1, Umetsu et al. 2012) investigated here consist of
a catalogue of member galaxies (Biviano et al. 2013) observed in
the context of the CLASH project (Postman et al. 2012) as part of
a large spectroscopic campaign carried out with the Very Large
Telescope (VLT; CLASH-VLT Large Programme; Rosati et al.
2014). According to Biviano et al. (2013) and Annunziatella
et al. (2014), the spatial incompleteness of the spectroscopic
sample varies with position in the cluster by less than 20%.

The following analysis is based on 592 member galaxies in
total, selected via the method presented in Biviano et al. (2013).
In order to arrive at the line-of-sight projected velocity disper-
sion profile, we assign to every cluster member a projected ra-
dius from the cluster centre, which we take to be marked by the
brightest cluster galaxy. This is achieved by multiplying the an-
gular separation with the angular-diameter distance, calculated
with a standard ΛCDM-cosmology with recent cosmological
parameters from Planck Collaboration XVI (2014).
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We determine the line-of-sight projected velocities from the
measured redshifts as described in Harrison (1974). In our case,
we can use the non-relativistic relation between redshift z and
line-of-sight velocity vlos, since all involved velocities (see be-
low) are clearly in the non-relativistic regime. Thus,

vlos = c z . (3)

As we are only interested in the galaxy velocities with respect
to the cluster’s centre-of-mass, we have to take into account that
the observed redshift includes four main contributions: the mo-
tion of the observer with respect to a local comoving observer,
the motion of the cluster’s centre-of-mass with respect to a lo-
cal comoving observer, the motion of each galaxy with respect
to the cluster’s centre-of-mass, and finally the Hubble expan-
sion. Harrison (1974) has shown that neglecting the motion of
the cluster’s centre of mass leads to a multiplication of redshifts,

1 + z = (1 + z0)(1 + zcosm)(1 + zG) , (4)

where z0 is the redshift due to the observer’s motion with re-
spect to a local comoving observer, zcosm represents the Hubble
expansion, and zG the motion of each galaxy with respect to a
local comoving observer. To leading order, we can calculate the
cluster average of Eq. (4) and establish that the average redshift
of all member galaxies with respect to the local comoving frame
vanishes because we assume an isotropic distribution of veloci-
ties along the l.o.s.,

〈zG〉 = 0. (5)

Furthermore, we can safely assume that the contribution by the
Hubble expansion is the same for all cluster members,

〈zcosm〉 = zcosm. (6)

Thus, we end up with

1 + zcosm =
1 + 〈z〉
1 + z0

· (7)

Inserting Eq. (7) into Eq. (4), we find the following expression
for vlos, see also Fig. 2:

vlos = c zG = c

(
1 + z

1 + 〈z〉 − 1

)
· (8)

To arrive at the density-weighted, projected velocity dispersion
profile ρgalσ

2
los, we adapt the bin width to that chosen for the

potential from lensing for better comparability, i.e. a constant
bin width of 0.1 Mpc. Next, we calculate the velocity dispersion
within each bin and reconstruct the projected gravitational po-
tential as described above by solving the radial Jeans equation.

Because of the gauge freedom of the lensing potential, one is
in particular allowed to add an arbitrary constant. By convention,
we scale the potential such that Ψ(0) = 1 and use the normali-
sation Ψ(Rcut) = 0 for a given cut-off radius Rcut = 3 Mpc. This
is even larger than the virial radius of MACS J1206, which is
approximately 2 Mpc (Umetsu et al. 2012).

We perform a bootstrap analysis, i.e. for each bootstrap sam-
ple, we draw as many times with replacement from the original
dataset as there are member galaxies to obtain error bars and to
suppress the effect of outliers. Then, we reconstruct the gravita-
tional potential for each individual bootstrap sample. This proce-
dure is repeated 300 times. Finally, we calculate the mean of all
potentials and their standard deviation. The bootstrap analysis
also allows us to assess the effects of incompleteness and uncer-
tain membership assignment by varying the sample of galaxies
entering into the potential reconstruction.
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Fig. 2. Velocities projected along the l.o.s. of cluster members.

4. Results

4.1. Effect of reconstruction parameters

As indicated above, we have to fix three reconstruction pa-
rameters to perform the reconstruction: the regularisation am-
plitude α, the smoothing scale L, and the polytropic index γ.
Additionally, we have to model the anisotropy profile β(r).

Figure 3 shows how the variation of these reconstruction pa-
rameters affects the resulting potential Ψ. The amplitude of the
anisotropy parameter β clearly has the dominant effect. In par-
ticular, an isotropic velocity distribution corresponding to β→ 0
seems very implausible because of the strongly varying shape of
the potential resulting from this assumption.

Although the assumption of a polytropic relation (2) may
appear very bold, Fig. 3c shows that the particular choice of the
polytropic index does not really matter. Also, the effects of the
regularisation parameters α and L remain within the uncertain-
ties, which is of similar order as shown in Fig. 6. When they are
not varied, the parameters are set as follows: α = 0.3, L = 0.6,
γ = 1.1, and β = 0.6. The value chosen for the polytropic index
γ is motivated by the result of Sarli et al. (2014) that γ would
usually be around unity. The regularisation parameters are cho-
sen such that the agreement with the lensing reconstruction is
best.

4.2. Variable anisotropy profile

We also systematically investigate the effect of an anisotropy
parameter varying with radius. To accomplish this, we com-
pare radial profiles of gravitational potentials obtained with an
anisotropy parameter increasing or decreasing linearly in dis-
crete steps every 0.5 Mpc. In case of the decreasing anisotropy-
parameter profile, we choose β = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and
reverse for the increasing case.

Figure 4 shows both cases together with the potential recon-
struction from weak and strong gravitational lensing and a re-
construction with constant β = 0.6. First, one can observe that
the qualitative form of the anisotropy profile affects the curva-
ture of the potential: An increasing β profile leads to a potential
with negative curvature. In contrast, a decreasing β-profile leads
to a positive curvature and strong variations in the potential at
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Fig. 3. Reconstructed radial profiles of the projected gravitational potential of MACS J1206, obtained with different parameter sets for the smooth-
ing amplitude α (panel a)), smoothing scale L (panel b)), the polytropic index γ (panel c)), and the anisotropy parameter β (panel d)).

radii beyond 1 Mpc. The reconstruction using a constant β leads
to an almost straight line for the radial potential profile.

These results motivate the shape of the anisotropy profile
used later in Eq. (9). Since the potential from lensing first shows
a negative curvature at small radii and a linear evolution later,
we choose an anisotropy profile increasing for small radii and
turning constant afterwards to reproduce the linear behaviour.

4.3. Comparison with lensing and X-ray data

As a first test, we compare the projected gravitational potential
reconstructed from galaxy velocities with a reconstruction based
on weak and strong gravitational lensing data of Merten et al.
(2015) following constraints from Zitrin et al. (2012). After con-
verting the 2D-lensing potential map (see Fig. 5) into a radial
profile and using the same normalisation process as above, we
can compare the result from gravitational lensing to the poten-
tial obtained from cluster kinematics (Fig. 6).

The reconstruction parameters are chosen as listed above.
For the radial profile of the anisotropy parameter β, we assume

the following radially dependent profile, which is motivated in
Sect. 4.2. This profile turns out to be in qualitative agreement
with that in Biviano et al. (2013), i.e.

β(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.1 r < 0.2
0.4 0.2 ≤ r < 0.5
0.6 0.5 ≤ r ≤ 3.0.

(9)

Additionally, we compare it with a reconstruction based on
X-ray emission of the intracluster gas based on Donahue et al.
(2014) using Chandra data up to 0.72 Mpc, which is a typical
range of validity using this method for galaxy clusters.

The growing difference between the lensing and kinematic
profile outside ∼2 Mpc can be explained by the limited range of
validity of each reconstruction method. The small difference at
the innermost radii is due to increasing baryonic effects causing
the equilibrium assumption ultimately to break down. The X-ray
data agree well within the error boundaries.

A63, page 4 of 7

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527035&pdf_id=3


D. Stock et al.: The projected gravitational potential of the galaxy cluster MACS J1206 derived from galaxy kinematics

Table 1. Best-fit parameters for different models.

Model Parameters
Singular isothermal sphere A = −0.35 ± 0.01 B = 1.02 ± 0.01

Non-singular isothermal sphere C = −0.39 ± 0.01 sc = 0.38 ± 0.06 D = 1.11 ± 0.02
NFW E = −0.84 ± 0.10 rs = 1.37 ± 0.15 F = 0.97 ± 0.01
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Fig. 4. Radial profiles of the projected gravitational potential, recon-
structed from galaxy kinematics with different profiles of the anisotropy
parameter β. The other reconstruction parameters remain fixed at α =
0.3, L = 0.6 and γ = 1.1.

Fig. 5. Two-dimensional map of the lensing potential of MACS1206
based on weak and strong lensing.

4.4. Comparison with common lensing potentials

Furthermore, we can compare the radial profile of the projected
gravitational potential obtained from galaxy kinematics with ra-
dial profiles common in gravitational-lensing studies, such as the
singular (SIS) and the non-singular (NIS) isothermal spheres and
the NFW profile (Navarro et al. 1996; Narayan & Bartelmann
1996); see Fig. 7, i.e.:

ΨSIS(s) = A · s + B

ΨNIS(s) = C ·
√

s2
c + s2 + D

ΨNFW(s) = E · h(x) + F, (10)
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Fig. 6. Radial profiles of the gravitational potential of MACS J1206,
reconstructed from combined strong and weak gravitational lensing
(blue), X-ray emission (yellow), and from galaxy kinematics (red) with
the parameters α = 0.3, L = 0.6, γ = 1.1 and β as in (9).

with the function h(x), depending on the radius in units of the
scale radius x := r/rs (see Golse & Kneib (2002), i.e.

h(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ln2 x

2
− arcosh2 1

x
(x < 1)

ln2 x
2
+ arccos2 1

x
(x ≥ 1),

(11)

where sc, rs and A . . .F are free parameters determined by fitting
the models (10) to the potential obtained from galaxy kinemat-
ics. The parameter values are summarised in Table 1.

We can compare the results for the scales sc in case of the
softened isothermal sphere and rs in case of NFW with Umetsu
et al. (2012). They obtain

sc = 0.000028± 0.000006 (12)

rs = 0.345 ± 0.050. (13)

The agreement is quantified by a goodness-of-fit parameter Ω,
which we define in analogy to the χ2-function appropriate for un-
correlated measurements. Since our data points are not indepen-
dent but correlated by the bootstrap method, i.e. some data points
appear multiple times, we cannot interpret Ω as a χ2-function.
Because we just want to single out the best model, we do not
go into a more elaborate analysis for correlated measurements
here. For the ith data point xi with standard deviation σi and the
corresponding model prediction f (xi), we write

Ω :=
∑

i

(
f (xi) − xi

σi

)2

· (14)

As one can already see by eye, the softened isothermal
sphere and the NFW-model describe the data equally well.
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Fig. 7. Comparison of three analytic profiles of gravitational-lensing po-
tentials with the gravitational-potential profile of MACS J1206 recon-
structed from galaxy kinematics using α = 0.3, L = 0.6, γ = 1.1 and β
as in Eq. (9).

More quantitatively, the goodness-of-fit parameters for all lens-
ing model are

ΩSIS = 6.09

ΩNIS = 4.00

ΩNFW = 3.54. (15)

So far, all analytic lensing potentials are compatible with the
reconstruction from galaxy kinematics, but the error bars are
substantial.

5. Summary

We have recently developed a method for reconstructing the pro-
jected gravitational potential of galaxy clusters from the kine-
matics of their member galaxies. In our study, we applied this
method for the first time to a real galaxy cluster (MACS J1206).
The reconstruction assumes that the three-dimensional gravita-
tional potential of this cluster is approximately spherically sym-
metric. The potential reconstruction is based on 592 measured
galaxy velocities. Our results can be summarised as follows:
1) The reconstruction algorithm requires four parameters to be
set: the anisotropy parameter β; the polytropic index γ of the
effective galaxy pressure; the amplitude α of the regularisation
term in the Richardson-Lucy deconvolution and the length scale
L of the regularisation. We found that the reconstructed poten-
tial is almost insensitive to the so-called nuisance parameters γ,
α, and L, while it does depend very sensitively on the anisotropy
parameter β. 2) Within the bootstrap error bars, the reconstructed
potential profile is indistinguishable from the potential profile
obtained from the combination of weak and strong gravitational
lensing and from X-ray analysis. Typical analytic lensing pro-
files, such as the singular and non-singular isothermal spheres
and the NFW profile, also agree well with our reconstruction
from galaxy kinematics. 3) Small anisotropy parameters β <∼ 0.2
or anisotropy-parameter profiles decreasing with radius yield po-
tential profiles differing strongly from the profile obtained from
gravitational lensing. Best agreement with gravitational lensing
is achieved with an anisotropy parameter increasing to β ≈ 0.6
within 0.5 Mpc and staying constant further out.

Our results show that the method returns convincing results
on one well-studied galaxy cluster, which we use here as a test
case. Even though the uncertainties are still large, the anisotropy
parameter can be rather well constrained by comparing our re-
sults with those obtained from gravitational lensing. We see
three main future applications of this method: (1) in joint recon-
structions of galaxy-cluster potentials compatible with all cluster
observables; (2) in constraints of the anisotropy parameter; and
(3) in tests of fundamental assumptions, such as hydrostatic or
virial equilibrium, and possibly also of general relativity, if ap-
plied to large and well-measured cluster samples.

Appendix A: Discussion of other methods

On top of the conditions leading to the Jeans equation, the
method presented above implicitly rests on the assumption that
all test particles (i.e. galaxies) have the same mass, that their
number density is proportional to their mass density and that one
can establish a polytropic relation between their mass density ρ
and the effective galaxy pressure P := ρgalσ

2
r . Fixing the velocity

anisotropy profile β(r) enables us to constrain the gravitational
potential of the cluster via the radial Jeans equation using the ob-
served density-weighted galaxy velocity dispersion. Our method
does not assume the mass to follow light a priori, i.e. ρDM does
not necessarily need to follow ρgal. Since the resulting potential
is non-parametric, one can test the validity of particular paramet-
ric models as done above.

Another common deprojection method is the Abel inversion
using derivatives of observables. However, because of the fluc-
tuating nature of most observables, which cause strongly fluctu-
ating derivatives, we decided to use the Richardson-Lucy depro-
jection instead. This deprojection only involves integrals.

There are many other methods to determine the gravitational
potential of a cluster, or its mass, or to constrain the velocity
anisotropy. For example, Binney & Mamon (1982) use the line-
of-sight velocity dispersions as observables together with the
surface brightness in spherical galaxies. Assuming a constant
mass-to-light ratio, they can replace the unknown density in the
Jeans equation by the luminosity, and can thus determine the ve-
locity anisotropy profile β(r). However, in the context of galaxy
clusters it is not clear that the same relation between mass and
luminosity should hold as well.

Dejonghe & Merritt (1992) determine the potentialΦ by tak-
ing into account higher than second-order velocity moments of
the collision-less Boltzmann equation (CBE). Given the velocity
dispersions, and making use of a linear relation between the ob-
servables and Φ, they expand the gravitational potential in terms
of basis functions with unspecified coefficients. Using the posi-
tivity constraint of the distribution function and higher order mo-
ments of the CBE, they are able to determine the coefficients and
thus the potential. However, from a practical point of view, it be-
comes increasingly difficult to constrain higher-order moments
of the velocity distribution from their observable line-of-sight
projections, as the projection integrals turn out to be substan-
tially more complex with increasing order (see Richardson &
Fairbairn 2013, for instance).

A method very similar to ours is proposed by Mamon &
Boué (2010). Starting again from the Jeans equation and fixing
β(r), they determine both the number density and the velocity
dispersion observationally. Besides their using the Abel inver-
sion, the only difference from our method is that they determine
the number density of galaxies appearing in the Jeans equation
by counting. Hence, they do not need our assumed polytropic
relation between density and effective pressure. In future work,
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one could use this to test directly to what degree the polytropic
assumption is appropriate.

Wolf et al. (2010) and van der Marel et al. (2000) are consid-
ering a general parametrisation of β(r) and of the mass M(r) and
constrain all free parameters via a maximum-likelihood analysis
of the velocity dispersion predicted by the Jeans equation com-
pared to the observed dispersion. van der Marel et al. (2000) use
a constant velocity anisotropy whereas Wolf et al. (2010) take a
varying parametric profile.

Another way to break the anisotropy mass degeneracy is
taking the fourth order velocity moments of the CBE into ac-
count (Łokas (2002); see also Richardson & Fairbairn (2013) in
this context). By expressing the velocity distribution function in
terms of two integrals of motion, the energy E and the angular
momentum L, and further assuming that the distribution is sepa-
rable in E and L with β = const., the two fourth-order moments
are reduced to one equation involving the radial velocity to the
fourth power, β, the radial velocity dispersion and Φ. Thus, by
measuring the velocity dispersion and v4r , one can infer the grav-
itational potential by solving this fourth-order equation together
with the Jeans equation.

The MAMPOSSt method introduced by Mamon et al. (2013)
breaks the degeneracy assuming parametric forms for the grav-
itational potential, the velocity anisotropy, and the distribution
of 3D-velocities. By performing a maximum-likelihood fit of
the galaxy distribution in the projected phase space, all pa-
rameters can be determined. However, it has recently been
shown (Richardson & Fairbairn (2013) that their assumption of a
Gaussian 3D-velocity distribution is incompatible with the equi-
librium assumption underlying the CBE. One would thus have
to choose a different 3D-velocity distribution.
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