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Abstract

Small-amplitude weakly coupled oscillators of the Klein�Gordon lattices are approximated

by equations of the discrete nonlinear Schrödinger type. We show how to justify this ap-

proximation by two methods, which have been very popular in the recent literature. The

�rst method relies on a priori energy estimates and multi-scale decompositions. The second

method is based on a resonant normal form theorem. We show that although the two methods

are di�erent in the implementation, they produce equivalent results as the end product. We

also discuss the applications of the discrete nonlinear Schrödinger equation in the context of

existence and stability of breathers of the Klein�Gordon lattice.
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1 Introduction

We consider the one-dimensional discrete Klein�Gordon (dKG) equation with the hard quartic
potential in the form

ẍj + xj + x3
j = ε(xj+1 − 2xj + xj−1), j ∈ Z, (1.1)

where t ∈ R is the evolution time, xj(t) ∈ R is the horizontal displacement of the j-th particle in
the one-dimensional chain, and ε > 0 is the coupling constant of the linear interaction between
neighboring particles. The dKG equation (1.1) is associated with the conserved-in-time energy

H =
1

2

∑
j∈Z

ẋ2
j + x2

j + ε(xj+1 − xj)2 +
1

4

∑
j∈Z

x4
j , (1.2)

which is also the Hamiltonian function of the dKG equation (1.1) written in the canonical variables
{xj , ẋj}j∈Z. The initial-value problem for the dKG equation (1.1) is globally well-posed in the
sequence space `2(Z), thanks to the coercivity of the energy H in (1.2) in `2(Z).

1

online version: http://dx.doi.org/10.1142/S0129055X1650015X 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187954842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


By using a scaling transformation

x̃j(t̃) = (1 + 2ε)−1/2xj(t), t̃ = (1 + 2ε)1/2t, ε̃ = (1 + 2ε)−1ε, (1.3)

and dropping the tilde notations, the dKG equation (1.1) can be rewritten without the diagonal
terms in the discrete Laplacian operator,

ẍj + xj + x3
j = ε(xj+1 + xj−1), j ∈ Z. (1.4)

Note that the values of ε in (1.4) are now restricted to the range
(
0, 1

2

)
, because the map ε →

(1 + 2ε)−1ε is a di�eomorphism from (0,∞) to
(
0, 1

2

)
. This restriction does not represent a

limitation if we study the solutions of the dKG equation for su�ciently small values of ε.
We consider the Cauchy problem for the dKG equation (1.4) and we aim at giving an approx-

imation of its solutions by means of equations of the discrete nonlinear Schrödinger type, up to
suitable time scales. This approach can be useful in general, but it may have additional interest
when particular classes of solutions of the dKG equation (1.4) are taken into account. In the
case of systems of weakly coupled oscillators, the relevant objects are given by time-periodic and
spatially localized solutions called breathers.

Existence and stability of breathers have been studied in the dKG equation in many recent
works. In particular, exploring the limit of weak coupling between the nonlinear oscillators,
existence [27] and stability [2, 4] of the fundamental (single-site) breathers were established (see
also the recent works in [30, 31]). More complicated multi-breathers were classi�ed from the point
of their spectral stability in the recent works [1, 25, 33]. Nonlinear stability and instability of
multi-site breathers were recently studied in [11].

If the oscillators have small amplitudes in addition to being weakly coupled, the stability of
multi-breathers in the dKG equation is related to the stability of multi-solitons in the discrete
nonlinear Schrödinger (dNLS) equation:

2iȧj + 3|aj |2aj = aj+1 + aj−1, j ∈ Z, (1.5)

where aj(εt) ∈ C is the envelope amplitude for the linear harmonic eit supported by the linear
dKG equation (1.4) with ε = 0. The relation between the dKG and the dNLS equations (1.4)
and (1.5) was observed in [29] and [33] based on numerical simulations and perturbation results,
respectively.

The present contribution addresses the justi�cation of the dNLS equation (1.5), and its gener-
alizations, for the weakly coupled small-amplitude oscillators of the dKG equation (1.4). In fact,
we are going to explore two alternative but complementary points of view on the justi�cation
process, which enables us to establish rigorous bounds on the error terms, over the time scale
during which the dynamics of the dNLS equation (1.5) is observed.

The �rst method in the justi�cation of the dNLS equation (1.5) for small-amplitude weakly
coupled oscillators of the dKG equation (1.4) is based on a priori energy estimates and elementary
continuation arguments. This method was used in the derivation of the dNLS equation [8] and
the Korteweg�de Vries equation [5, 12, 13, 38] in a similar context of the Fermi�Pasta�Ulam
lattice. The energy method is based on the decomposition of the solution into the leading-order
multi-scale approximation and the error term. The error term is controlled by integrating the
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dKG equation with a small residual term over the relevant time scale. The energy method is
computationally e�cient and simple enough for most practical applications.

The second method is based on the resonant normal form theorem, which transforms the
given Hamiltonian of the dKG equation to a simpler form by means of near-identity canonical
transformations [3, 16]. The normal form, once it is obtained in the sense of an abstract theorem,
does not require any additional work for the derivation and the justi�cation of both the dNLS
equation and its generalizations, which appear immediately in the corresponding relevant regimes.
Starting from the works [17, 18], the normal form approach for the dKG equation was recently
elaborated in [30] and applied in [31] for a stability result.

We hope that the present discussion of the two equivalent methods can motivate the readers
for the choice of a suitable analytical technique in the justi�cation analysis of similar problems of
lattice dynamics. It is our understanding that the two methods are equivalent with respect to the
results (error estimates, time scales) but they have some di�erences in the way one proves such
results.

Besides justifying the dNLS equation (1.5) on the time scale O(ε−1), we also extend the error
bounds on the longer time intervals of O(| log(ε)|ε−1). Similar improvements were reported in
various other contexts of the justi�cation analysis [8, 22, 24, 26]. Within the context of breathers,
we show how the known results on the existence and stability of multi-solitons in the dNLS
equation (1.5) can be used for similar results for the dKG equation (1.4).

We �nish the introduction with a review of related results. Small-amplitude breathers of
the dKG and dNLS equations were approximated with the continuous nonlinear Schrödinger
equation in the works [6, 7, 36]. An alternative derivation of the continuous nonlinear Schrödinger
equation was discussed in the context of the Fermi�Pasta�Ulam lattice [19, 20, 21, 37]. In the
opposite direction, the derivation and the justi�cation of the dNLS equation from a continuous
nonlinear Schrödinger equation with a periodic potential were developed in the works [34, 35].
The justi�cation of the popular variational approximation for multi-solitons of the dNLS equation
in the limit of weak coupling between the nonlinear oscillators is reported in [9]. Bifurcations of
periodic traveling waves from the linear limit of coupled nonlinear oscillators was developed with
the use of symmetries of the dNLS equation in [14, 15].

The paper is organized as follows. Section 2 reports the justi�cation results obtained from the
energy method and multi-scale expansions. Section 3 reports the justi�cation results obtained
from the normal form theorem. Section 4 discusses applications of these results for the existence
and stability of breathers in the dKG equation.

2 Justi�cation of the dNLS equation with the energy method

In what follows, we consider the limit of weak coupling between the nonlinear oscillators, where
ε is a small positive parameter. We also consider the small-amplitude oscillations starting with
small-amplitude initial data. Hence, we use the scaling transformation xj = ρ1/2ξj , where ρ
is another small positive parameter. Incorporating both small parameters, we rewrite the dKG
equation (1.4) in the equivalent form

ξ̈j + ξj + ρξ3
j = ε(ξj+1 + ξj−1), j ∈ Z. (2.1)
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The standard approximation of multi-breathers in the dKG equation (2.1) with multi-solitons
of the dNLS equation (1.5) corresponds to the balance ρ = ε. In Sections 2.1�2.3, we generalize
the standard dNLS approximation by assuming that ε2 � ρ ≤ ε. In Section 2.4, we discuss further
generalizations when ρ belongs to the asymptotic range ε3 � ρ ≤ ε2.

2.1 Preliminary estimates

To recall the standard dNLS approximation, we de�ne the slowly varying approximate solution
of the dKG equation (2.1) in the form

Xj(t) = aj(εt)e
it + āj(εt)e

−it. (2.2)

Substituting the leading-order solution (2.2) to the dKG equation (2.1) and removing the resonant
terms e±it at the leading order of O(ε), we obtain the dNLS equation in the form

2iȧj + 3ν|aj |2aj = aj+1 + aj−1, j ∈ Z, (2.3)

where the dot denotes the derivative with respect to the slow time τ = εt and the parameter
ν = ρ/ε is de�ned in the asymptotic range ε� ν ≤ 1.

With the account of the dNLS equation (2.3), the leading-order solution (2.2) substituted into
the dKG equation (2.1) produces the residual terms in the form

Resj(t) := ρ
(
a3
je

3it + ā3
je
−3it
)

+ ε2
(
äje

it + ¨̄aje
−it) . (2.4)

The second residual term is resonant but occurs in the higher order O(ε2), which is not an obstacle
in the justi�cation analysis. The �rst residual term is non-resonant but it occurs at the leading
order of O(ρ)� O(ε2). Therefore, the �rst term needs to be removed, which is achieved with the
standard near-identity transformation. Namely, we extend the leading-order approximation (2.2)
to the form

Xj(t) = aj(εt)e
it + āj(εt)e

−it +
1

8
ρ
(
a3
j (εt)e

3it + ā3
j (εt)e

−3it
)
. (2.5)

For simplicity, we do not mention that Xj depends on ε and ρ. Substituting the approximation
(2.5) into the dKG equation (2.1), we obtain the new residual terms in the form

Resj(t) := ε2
(
äje

it + ¨̄aje
−it)− 1

8
ερ
(
(a3
j+1 + a3

j−1)e3it + (ā3
j+1 + ā3

j−1)e−3it
)

+
3

8
ρ2
(
aje

it + āje
−it)2 (a3

je
3it + ā3

je
−3it
)

+
9

4
ερ
(
ia2
j ȧje

3it − iā2
j

˙̄aje
−3it
)

+
3

64
ρ3
(
aje

it + āje
−it) (a3

je
3it + ā3

je
−3it
)2

+
1

8
ε2ρ
(
ä3
je

3it + ä3
je
−3it
)

+
1

512
ρ4
(
a3
je

3it + ā3
je
−3it
)3
. (2.6)

Note that all the time derivatives of aj in the residual term (2.6) can be eliminated from the dNLS
equation (2.3) provided that {aj}j∈Z is a twice di�erentiable sequence with respect to time. For
all purposes we need, it is su�cient to consider the sequence space `2(Z). Hence we denote the
sequence {aj}j∈Z in l2(Z) by a.

The next results give preliminary estimates on global solutions of the dNLS equation (2.3),
the leading-order approximation (2.5), and the residual term (2.6).
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Lemma 1 For every a0 ∈ `2(Z) and every ν ∈ R, there exists a unique global solution a(t) of the
dNLS equation (2.3) in `2(Z) for every t ∈ R such that a(0) = a0. Moreover, the solution a(t) is

smooth in t and ‖a(t)‖`2 = ‖a0‖`2.

Proof. Local well-posedness and smoothness of the local solution a with respect to the time
variable t follow from the contraction principle applied to an integral version of the dNLS equa-
tion (2.3). The contraction principle can be applied because the discrete Laplacian operator is
a bounded operator on `2(Z), whereas `2(Z) is a Banach algebra with respect to pointwise mul-
tiplication and the `2(Z) norm is an upper bound for the `∞(Z) norm of a sequence. Global
continuation of the local solution a follows from the `2(Z) conservation of the dNLS equation
(2.3).

Lemma 2 For every a0 ∈ `2(Z), there exists a positive constant CX(‖a0‖`2) (that depends on

‖a0‖`2) such that for every ρ ∈ (0, 1] and every t ∈ R, the leading-order approximation (2.5) is

estimated by

‖X(t)‖`2 + ‖Ẋ(t)‖`2 ≤ CX(‖a0‖`2). (2.7)

Proof. The result follows from the Banach algebra property of `2(Z) and the global existence
result of Lemma 1.

Lemma 3 Assume that ρ ≤ ε. For every a0 ∈ `2(Z), there exists a positive ε-independent constant
CR(‖a0‖`2) (that depends on ‖a0‖`2) such that for every ε ∈ (0, 1] and every t ∈ R, the residual

term in (2.6) is estimated by

‖Res(t)‖`2 ≤ CR(‖a0‖`2)ε2. (2.8)

Proof. The result follows from the Banach algebra property of `2(Z), as well as from the global
existence and smoothness of the solution a(t) of the dNLS equation (2.3) in Lemma 1.

2.2 Justi�cation of the dNLS equation on the dNLS time scale

The main result of this section is the following justi�cation theorem.

Theorem 1 Assume that ρ is de�ned in the asymptotic range ε2 � ρ ≤ ε. For every τ0 > 0,
there is a small ε0 > 0 and positive constants C0 and C such that for every ε ∈ (0, ε0), for which
the initial data satis�es

‖ξ(0)−X(0)‖l2 + ‖ξ̇(0)− Ẋ(0)‖l2 ≤ C0ρ
−1ε2, (2.9)

the solution of the dKG equation (2.1) satis�es for every t ∈ [−τ0ρ
−1, τ0ρ

−1],

‖ξ(t)−X(t)‖l2 + ‖ξ̇(t)− Ẋ(t)‖l2 ≤ Cρ−1ε2. (2.10)
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Remark 1 If ρ = ε, the justi�cation result of Theorem 1 guarantees that the dynamics of small-

amplitude oscillators follows closely the dynamics of the dNLS equation (1.5) on the dNLS time

scale [−τ0, τ0] for the variable τ = εt.

Remark 2 If ρ = ε8/5, the error term in (2.10) satis�es the O`2(ε2/5) bound. The error term is

controlled on the longer time scale [−τ0ε
−3/5, τ0ε

−3/5] for the variable τ = εt of the dNLS equation

(2.3) with ν = ε3/5.

To develop the justi�cation analysis, we write ξ(t) = X(t) + y(t), where X(t) is the leading-
order approximation (2.5) and y(t) is the error term. Substituting the decomposition into the
lattice equation (2.1), we obtain the evolution problem for the error term:

ÿj + yj + 3ρX2
j yj + 3ρXjy

2
j + ρy3

j − ε(yj+1 + yj−1) + Resj = 0, j ∈ Z, (2.11)

where the residual term Res(t) is given by (2.6) if a(t) satis�es the dNLS equation (2.3). Asso-
ciated with the evolution equation (2.11), we also de�ne the energy of the error term

E(t) :=
1

2

∑
j∈Z

[
ẏ2
j + y2

j + 3ρX2
j y

2
j − 2εyjyj+1

]
. (2.12)

For every ε ∈
(
0, 1

4

)
, the energy E(t) is coercive and controls the `2(Z) norm of the solution in

the sense
‖ẏ(t)‖2`2 + ‖y(t)‖2`2 ≤ 4E(t), (2.13)

for every t, for which the solution y(t) is de�ned. The rate of change for the energy (2.12) is
found from the evolution problem (2.11):

dE

dt
=
∑
j∈Z

[
−ẏjResj + 3ρXjẊjy

2
j − 3ρXjy

2
j ẏj − ρy3

j ẏj

]
. (2.14)

Thanks to the coercivity (2.13), the Cauchy�Schwarz inequality, and the continuous embedding
of `2(Z) to `∞(Z), we obtain∣∣∣∣dEdt

∣∣∣∣ ≤ 2E1/2
[
‖Res(t)‖`2 + 6ρE1/2‖X(t)‖`2‖Ẋ(t)‖`2 + 12ρE‖X(t)‖`2 + 8ρE3/2

]
. (2.15)

To simplify the analysis, it is better to introduce the parametrization E = Q2 and rewrite (2.15)
in the equivalent form∣∣∣∣dQdt

∣∣∣∣ ≤ ‖Res(t)‖`2 + 6ρQ‖X(t)‖`2‖Ẋ(t)‖`2 + 12ρQ2‖X(t)‖`2 + 8ρQ3. (2.16)

The energy estimate (2.16) is the starting point for the proof of Theorem 1.

Proof of Theorem 1. Let τ0 > 0 be �xed arbitrarily but independently of ε and assume that
the initial norm of the perturbation term satis�es the following bound

Q(0) ≤ C0ρ
−1ε2, (2.17)
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where C0 is a positive ε-independent constant and ε ∈
(
0, 1

4

)
is su�ciently small. Note that the

bound (2.17) follows from the assumption (2.9) and the energy (2.12) subject to the choice of the
constant C0.

To justify the dNLS equation (2.3) on the time scale [−τ0ρ
−1, τ0ρ

−1] for t, we de�ne

T0 := sup

{
t0 ∈ [0, τ0ρ

−1] : sup
t∈[−t0,t0]

Q(t) ≤ CQρ−1ε2

}
, (2.18)

where CQ > C0 is a positive ε-independent constant to be determined below. By the continuity
of the solution in the `2(Z) norm, it is clear that T0 > 0.

By using Lemmas 2 and 3, as well as the de�nition (2.18), we write the energy estimate (2.16)
for every t ∈ [−T0, T0] in the form∣∣∣∣dQdt

∣∣∣∣ ≤ CRε2 + ρ
(
6C2

X + 12CXCQρ
−1ε2 + 8C2

Qρ
−2ε4

)
Q. (2.19)

If ε > 0 is su�ciently small and ε2 � ρ, for every t ∈ [−T0, T0], one can always �nd a positive
ε-independent k0 such that

6C2
X + 12CXCQρ

−1ε2 + 8C2
Qρ
−2ε4 ≤ k0. (2.20)

Integrating (2.19), we obtain

Q(t)e−ρk0|t| −Q(0) ≤
∫ |t|

0
CRε

2e−ρk0t
′
dt′ ≤ CRε

2

ρk0
. (2.21)

By using (2.17), we obtain for every t ∈ [−T0, T0]:

Q(t) ≤ ρ−1ε2
(
C0 + k−1

0 CR
)
ek0τ0 . (2.22)

Hence, we can de�ne CQ :=
(
C0 + k−1

0 CR
)
ek0τ0 and extend the time interval in (2.18) by el-

ementary continuation arguments to the full time span with T0 = τ0ρ
−1. This completes the

justi�cation of the dNLS equation (2.3) in Theorem 1. �

2.3 Justi�cation of the dNLS equation on the extended time scale

Next, we justify the dNLS equation (2.3) on the extended time scale

[−A| log(ρ)|ρ−1, A| log(ρ)|ρ−1], (2.23)

for the variable t, where the positive constant A is �xed independently of ε. The main result of
this section is the following justi�cation theorem.

Theorem 2 Assume that there is α ∈ (0, 1) such that ρ is de�ned in the asymptotic range

ε
2

1+α � ρ ≤ ε.
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For every A ∈
(
0, k−1

0 α
)
, where k0 is de�ned in (2.28) below, there is a small ε0 > 0 and positive

constants C0 and C such that for every ε ∈ (0, ε0), for which the initial data satis�es

‖ξ(0)−X(0)‖l2 + ‖ξ̇(0)− Ẋ(0)‖l2 ≤ C0ρ
−1ε2, (2.24)

the solution of the dKG equation (2.1) satis�es for every t in the time span (2.23),

‖ξ(t)−X(t)‖l2 + ‖ξ̇(t)− Ẋ(t)‖l2 ≤ Cρ−1−αε2. (2.25)

Remark 3 If ρ = ε, the extended time scale (2.23) corresponds to the interval [−A| log(ε)|, A| log(ε)|]
for the variable τ = εt in the dNLS equation (2.3), hence it extends to all times τ as ε→ 0.

Remark 4 If ρ = ε8/5, then the error term in (2.25) satis�es the O`2(ε2(1−4α)/5) bound, which is

small if α ∈
(
0, 1

4

)
. The error term is controlled on the longer time scale[

−τ0| log(ε)|ε−3/5, τ0| log(ε)|ε−3/5
]

for the variable τ = εt of the dNLS equation (2.3) with ν = ε3/5.

Proof of Theorem 2. We use the same assumption (2.17) on the initial norm of the perturbation
term. To justify the dNLS equation (2.3) on the time scale (2.23) for t, we de�ne

T ∗0 := sup

{
t0 ∈

[
0, A| log(ρ)|ρ−1

]
: sup

t∈[−t0,t0]
Q(t) ≤ CQρ−1−αε2

}
, (2.26)

where CQ is a positive ε-independent constant to be determined below.
By using Lemmas 2 and 3, as well as the de�nition (2.26), we write the energy estimate (2.16)

for every t ∈ [−T ∗0 , T ∗0 ] in the form∣∣∣∣dQdt
∣∣∣∣ ≤ CRε2 + ρ

(
6C2

X + 12CXCQρ
−1−αε2 + 8C2

Qρ
−2(1+α)ε4

)
Q. (2.27)

If ε > 0 is su�ciently small and ε2 � ρ1+α, then for every t ∈ [−T ∗0 , T ∗0 ], one can always �nd a
positive ε-independent k0 such that

6C2
X + 12CXCQρ

−1−αε2 + 8C2
Qρ
−2(1+α)ε4 ≤ k0. (2.28)

By integrating the energy estimate (2.27) in the same way as is done in (2.21), we obtain for every
t ∈ [−T ∗0 , T ∗0 ]:

Q(t) ≤ ρ−1ε2
(
C0 + k−1

0 CR
)
ek0A| log(ρ)|

≤ ρ−1−αε2
(
C0 + k−1

0 CR
)
, (2.29)

where the last bound holds because k0A ∈ (0, α). Hence, we can de�ne CQ := C0 + k−1
0 CR and

extend the time interval in (2.26) by elementary continuation arguments to the full time span
with T ∗0 = A| log(ρ)|ρ−1. This completes the justi�cation of the dNLS equation (2.3) on the time
scale (2.23). �
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2.4 Approximations with the generalized dNLS equation

Extensions of the justi�cation analysis are de�nitely possible by including more ε-dependent terms
into the dNLS equation (2.3) and the leading-order approximation (2.5), which makes the residual
term (2.6) to be as small as O(εn) for any n ≥ 2. These extensions are not so important if
ε2 � ρ ≤ ε but they become crucial to capture the correct balance between linear and nonlinear
e�ects on the dynamics of small-amplitude oscillators if ρ ≤ ε2.

To illustrate these extensions, we show how to modify the justi�cation analysis in the asymp-
totic range ε3 � ρ ≤ ε2. We use the same leading-order approximation (2.5) in the form

Xj(t) = aj(εt)e
it + āj(εt)e

−it +
1

8
ρ
(
a3
j (εt)e

3it + ā3
j (εt)e

−3it
)
, (2.30)

but assume that a(τ) with τ = εt satisfy the generalized dNLS equation

2iȧj + 3εδ|aj |2aj = aj+1 + aj−1 +
ε

4
(aj+2 + 2aj + aj−2) , j ∈ Z. (2.31)

Here we have introduced the parameter δ = ρ/ε2 in the asymptotic range ε� δ ≤ 1. Substituting
(2.30) and (2.31) into the dKG equation (2.1), we obtain the modi�cations of the residual terms
(2.6) in the form

Resj(t) :=
1

4
ε2 (4äj + aj+2 + 2aj + aj−2) eit +

1

4
ε2 (4¨̄aj + āj+2 + 2āj + āj−2) e−it

−1

8
ερ
(
(a3
j+1 + a3

j−1)e3it + (ā3
j+1 + ā3

j−1)e−3it
)

+
1

8
ε2ρ
(
ä3
je

3it + ä3
je
−3it
)

+
3

8
ρ2
(
aje

it + āje
−it)2 (a3

je
3it + ā3

je
−3it
)

+
9

4
ερ
(
ia2
j ȧje

3it − iā2
j

˙̄aje
−3it
)

+
3

64
ρ3
(
aje

it + āje
−it) (a3

je
3it + ā3

je
−3it
)2

+
1

512
ρ4
(
a3
je

3it + ā3
je
−3it
)3
. (2.32)

By using the extended dNLS equation (2.31), we realize that the residual terms of the O`2(ε2)
order are canceled and the residual term in (2.32) enjoys the improved estimate

‖Res(t)‖`2 ≤ CR(‖a0‖`2)ε3, (2.33)

compared with the previous estimate (2.8). As a result, the justi�cation analysis developed in the
proof of Theorems 1 and 2 holds verbatim and results in the following theorems.

Theorem 3 Assume that ρ is de�ned in the asymptotic range ε3 � ρ ≤ ε2. For every τ0 > 0,
there is a small ε0 > 0 and positive constants C0 and C such that for every ε ∈ (0, ε0), for which
the initial data satis�es

‖ξ(0)−X(0)‖l2 + ‖ξ̇(0)− Ẋ(0)‖l2 ≤ C0ρ
−1ε3, (2.34)

the solution of the dKG equation (2.1) satis�es for every t ∈ [−τ0ρ
−1, τ0ρ

−1],

‖ξ(t)−X(t)‖l2 + ‖ξ̇(t)− Ẋ(t)‖l2 ≤ Cρ−1ε3. (2.35)
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Theorem 4 Assume that there is α ∈
(
0, 1

2

)
such that ρ is de�ned in the asymptotic range

ε
3

1+α � ρ ≤ ε2.

There is A0 > 0 such that for every A ∈ (0, A0), there is a small ε0 > 0 and positive constants C0

and C such that for every ε ∈ (0, ε0), for which the initial data satis�es

‖ξ(0)−X(0)‖l2 + ‖ξ̇(0)− Ẋ(0)‖l2 ≤ C0ρ
−1ε3, (2.36)

the solution of the dKG equation (2.1) satis�es for every t in the time span (2.23),

‖ξ(t)−X(t)‖l2 + ‖ξ̇(t)− Ẋ(t)‖l2 ≤ Cρ−1−αε3. (2.37)

We note that X in Theorems 3 and 4 is de�ned by the leading-order approximation (2.30),
whereas a satis�es the generalized dNLS equation (2.31). The time scales in Theorems 3 and 4
are appropriate for the generalized dNLS equation (2.31) because δ ≤ 1 and ερ−1 ≥ ε−1.

3 Justi�cation of the dNLS equation with the normal form method

The purpose of this section is to show that the results of Theorems 1, 2, 3, and 4 can be obtained
with a di�erent method relying on the resonant normal form theorem, mainly working at the
level of the Hamiltonians. This slightly di�erent point of view, as we stressed in the introduction,
moves the main di�culties in the early steps of this approach, in terms of de�nitions and theorems
to get the normal form established. But after this e�ort, it is straightforward to get the desired
results of justi�cation of the dNLS equation in many di�erent regimes.

Another di�erence between this section and the previous one is in the dimension of the chain,
in�nite for the energy method, and �nite for the normal form method, but with estimates uniform
in the size of the chain. The main reason for this asymmetry in the presentation is that the normal
form theorems from the previous works [17, 18, 30] were developed for �nite chains, and their
extension to the in�nite case is beyond the scope of the present paper.

In what follows, we consider the dKG equation (1.4) on a �nite chain of 2N + 1 oscillators
under periodic boundary conditions, where N is arbitrary large but �nite. The �nite dKG chain
is associated with the Hamiltonian H = H0 +H1, where

H0 :=
1

2

N∑
j=−N

[
y2
j + x2

j − 2εxj+1xj
]
, H1 :=

1

4

N∑
j=−N

x4
j , (3.1)

subject to the periodic boundary conditions x−N = xN+1 and y−N = yN+1. It is quite clear from
the expression above that H is an extensive quantity, i.e. roughly speaking proportional to N ,
and more precisely, it is translation invariant and with a short interaction range (see Section 2 in
[30] for details). By preserving the extensivity, via a suitable normal form construction, we are
able to get uniform estimates with respect to N .
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To be more de�nite, it was proven in [30] that for any small coupling ε, there exists a canonical
transformation TX which puts the Hamiltonian H = H0 +H1, with H0 and H1 in (3.1), into an
extensive resonant normal form of order r

H(r) = HΩ + Z + P (r+1) , {HΩ,Z} = 0 , (3.2)

where HΩ is the Hamiltonian for the system of 2N + 1 identical oscillators of frequency Ω (which
is the average of the linear frequencies [18]), Z is a non-homogeneous polynomial of order 2r+ 2,
P (r+1) is a remainder of order 2r + 4 and higher, and r grows as an inverse power of ε. Such a
normal form was shown to be well de�ned in a small ball Bρ1/2(0) ⊂ P of the phase space P,
endowed with the Euclidean norm (which becomes the `2(Z) norm in the limit N →∞), provided
rρ1/2 � 1. The linear part of the Hamiltonian HΩ = Ωρ is equivalent to the selected squared
norm (uniformly with N), thus the almost invariance of HΩ over times |t| ∼ (r2ρ)−r−1 is easily
derived since ḢΩ = {HΩ, P

(r+1)}.
Looking at the structure of Z, the normal form HΩ +Z produces a generalized dNLS equation,

where all the oscillators are coupled to all neighbors and the coupling coe�cients both for linear
and nonlinear terms decay exponentially with the distance between sites. To be more speci�c, Z
can be split as the sum of homogeneous polynomials Z0, Z1, ..., Zr, where Zj is of the order 2j+2,
and r ≥ 1. Each of these homogenous polynomials can be developed in powers of the coupling
coe�cient ε, where the term of order εm is responsible for the coupling between lattice sites
separated by the distance m. The key ingredient to obtain the normal form is the preservation
of the translation invariance (called cyclic symmetry in [18, 30]), which also allows us to produce
estimates that are uniform with N .

If we limit to r = 1, the transformed Hamiltonian (3.2) reads

H(1) = K + P (2) , K := HΩ + Z0 + Z1 ,

where the quadratic and quartic polynomials Z0 and Z1 include all-to-all interactions, exponen-
tially decaying with ε. Hence, K represents the Hamiltonian of the generalized dNLS equation.
If we truncate both Z0 and Z1 at the leading order in ε, we recover the Hamiltonian of the usual
dNLS equation.

The linear transformation is analyzed in Section 3.1. The nonlinear normal form transforma-
tion is performed in Section 3.2. Approximations with the usual dNLS equation are obtained in
Section 3.3. Approximations with the generalized dNLS equation are discussed in Section 3.4.

3.1 Linear transformation

We start with the de�nitions of cyclic symmetry, interaction range, centered alignments and
exponential decay (see also [18, 30]).

The translational invariance of the model (3.1) is formalized by using the idea of cyclic sym-

metry. The cyclic permutation operator τ is de�ned as

τ(x−N , . . . , xN ) = (x−N+1, . . . , xN , x−N ). (3.3)

This operator can be applied separately to the variables x and y. We extend the action of this
operator on the space of functions as

(
τf
)
(x, y) = f(τx, τy).

11



De�nition 1 (Cyclic symmetry) We say that a function F is cyclically symmetric if τF = F .

We introduce an operator, indicated by an upper symbol ⊕, acting on functions: given a
function f , a new function F = f⊕ is constructed as

F = f⊕ :=
N∑

l=−N
τ lf . (3.4)

We say that f⊕(x, y) is generated by the seed f(x, y). Our convention is to denote the cyclically
symmetric functions by capital letters and their seeds by the corresponding lower case letters.
It is worth to note that the Hamiltonian H = H0 + H1 de�ned by (3.1) is clearly of the form
H = h⊕, generated by the seed h(x, y) = 1

2(y2
0 + x2

0)− εx1x0 + 1
4x

4
0.

De�nition 2 (Interaction range) Given the exponents (j, k), we de�ne the support S(xjyk) of
the monomials xjyk and the interaction distance `(xjyk) as follows:

S(xjyk) = {l : jl 6= 0 or kl 6= 0} , `(xjyk) = diam
(
S(xjyk)

)
. (3.5)

We stress that, di�erently from what has been developed in [17, 18], it is possible to impose that
the seeds of all the functions are centrally aligned, according to the following de�nition [30].

De�nition 3 (Centered alignment) Let F = f⊕ be a cyclically symmetric function, with f
depending on 2N + 1 variables, f = f(x−N , . . . , x0, . . . , xN ). The seed f is said centrally aligned

if it admits the decomposition

f =

N∑
m=0

f (m) , S(f (m)) ⊆ [−m, . . . ,m] . (3.6)

In order to formalize and control the interaction range, we introduce one more de�nition.

De�nition 4 (Exponential decay) The seed f of a function F is said to be of class D(Cf , µ)
if there exist two positive constants Cf and µ < 1 such that for any centrally aligned component

f (m) it holds ∥∥∥f (m)
∥∥∥ ≤ Cfµm , m = 0, . . . , N ,

where ‖·‖ is a standard polynomial norm1.

Remark 5 If we are dealing with an Hamiltonian, De�nition 4 encodes, when the constant Cf
does not depend on N , the short range nature of the interaction; this, together with the translation

invariance given by means of the cyclic symmetry constitute the extensivity of the Hamiltonian.

1Given a homogeneous polynomial f(x, y) =
∑

|j|+|k|=s fj,kx
jyk of degree s in x, y and a positive radius R, we

de�ne the polynomial norm of f by ‖f‖R := Rs
∑

|j|+|k|=s |fj,k|; we often drop the subscript R.
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We can now focus on the harmonic part H0 of the Hamiltonian H. From (3.1), H0 can be
written as the quadratic form

H0(x, y) =
1

2
y · y +

1

2
Ax · x (3.7)

where A is a circulant and symmetric matrix given by

A := I− ε(τ + τ>) . (3.8)

Here τ = (τij) is the matrix representing the cyclic permutation (3.3), i.e. with τij = δi,j+1 (mod 2N+1)

using the Kronecker's delta notation. The following proposition reduces the quadratic part H0 of
the Hamiltonian to the quadratic normal form and preserves the extensivity of H0.

Proposition 1 For every ε ∈ (0, 1
2) the canonical linear transformation q = A1/4x, p = A−1/4y

transforms the quadratic Hamiltonian H0 to the quadratic normal form

H(0) = HΩ + Z0 , {HΩ, Z0} = 0 , (3.9)

where HΩ = h⊕Ω and Z0 = ζ⊕0 are cyclically symmetric polynomials, with centrally aligned seeds

hΩ and ζ0 of the form

hΩ =
Ω

2
(q2

0 + p2
0) (3.10)

and

ζ0 =

N∑
m=1

ζ
(m)
0 , ζ

(m)
0 = bm[q0(qm + q−m) + p0(pm + p−m)]. (3.11)

Here Ω and bm are de�ned by

Ω :=
1

2N + 1

N+1∑
j=−N

ωj , bm :=
(
A1/2

)
1,m+1

, (3.12)

where ωj are the frequencies of the normal modes of H0. Moreover, there exists a suitable positive

constant Cζ0 such that each component ζ
(m)
0 satis�es the exponential decay∥∥∥ζ(m)
0

∥∥∥ ≤ Cζ0(2ε)m ,

hence ζ0 ∈ D
(
Cζ0 , 2ε

)
.

Proof. We give here only few ideas to grasp the exponential decay of the all-to-all interactions
due to the linear transformation. After applying q = A1/4x, p = A−1/4y, we have

H0 =
1

2
p>A1/2p+

1

2
q>A1/2q. (3.13)

By de�ning T := τ + τ>, one can rewrite A1/2 as

A1/2 = (I− εT )1/2 =

∞∑
l=0

(
1/2

l

)
(−ε)lT l .
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In order to obtain the decomposition (3.9), we separate the diagonal part from the o�-diagonal part
A1/2 = Ω I+B and insert this decomposition into (3.13). The exponential decay (2ε)m comes from
the observation that

(
T l
)

1,m+1
= 0 for all 0 ≤ l < m and from the estimate |(Tm)1,m+1| ≤ 2m.

One can restrict to consider only the �rst raw due to the circulant nature of all the matrices
involved (for all details see Appendix 6.1.1 in [18]).

The following proposition shows how the linear transformation in Proposition 1 changes the
quartic part H1 of the Hamiltonian and preserves the extensivity of H1.

Proposition 2 Under the linear transformation in Proposition 1, the quartic part H1 given in

(3.1) is cyclically symmetric (H1 = h⊕1 ) with a centrally aligned seed given by

h1 =
N∑
m=0

h
(m)
1 . (3.14)

Moreover, there exists a suitable positive constant Ch1 such that each component h
(m)
1 satis�es the

exponential decay ∥∥∥h(m)
1

∥∥∥ ≤ Ch1(2ε)m ,

hence h1 ∈ D
(
Ch1 , 2ε

)
.

Proof. The proof of this proposition includes some technical steps, similar to those in the proof
of Proposition 2 in [30] and Lemma 3.4 in [18]. We only stress here that there is no loss in the
decay rate (2ε) between the seeds of Z0 and H1 thanks to the di�erent choice of alignment, as
proven in Lemma 5 of [30].

We can clarify the statements of Propositions 1 and 2 by saying that in a suitable set of
coordinates, the coupling part of the quadratic Hamiltonian H0 shows all-to-all linear interactions,
with an exponentially decaying strength with respect to the distance between the sites. Such a
linear transformation introduces similar all-to-all interactions also in the quartic Hamiltonian H1.
Moreover, in the new coordinates qj , the seed h1 of the quartic term has the same exponential
decay as the seed ζ0 of the quadratic term.

3.2 First-order nonlinear normal form transformation

By using Propositions 1 and 2, the Hamiltonian H in (3.1) is transformed into the form

H = HΩ + Z0 +H1. (3.15)

We are now ready to state the (�rst-order) normal form theorem. This �rst-order theorem rep-
resents the easiest formulation of the more generic Theorem 1 of [30]. The idea is to perform,
by using the Lie transform algorithm explained in [16], one normalizing step, provided ε is small
enough. Moreover, the normalizing canonical transformation is well de�ned in a (small) neigh-
borhood Bρ1/2 of the origin, where ρ is su�ciently small.
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Theorem 5 Consider the Hamiltonian H = h⊕Ω +ζ⊕0 +h⊕1 with seeds hΩ, ζ0, h1, in (3.10), (3.11),
and (3.14). There exist positive γ, ε∗ <

1
2 and C∗ such that for every ε ∈ (0, ε∗), there exists a

generating function X1 = χ⊕1 of a Lie transform such that TX1H
(1) = H, where H(1) is a cyclically

symmetric function of the form

H(1) = HΩ + Z0 + Z1 + P (2) , (3.16)

with 0 = {HΩ, Z0} = {HΩ, Z1}, whereas Z1 = ζ⊕1 is a polynomial of degree four whose seed ζ1 is

of class D (Ch1 , 2ε), and P
(2) is a remainder that includes terms of degree equal or bigger than

six. Moreover, if the smallness condition on the energy

ρ < ρ∗ :=
1

96(1 + e)C∗
, (3.17)

is satis�ed, then the following statements hold true:

1. X1 de�nes an analytic canonical transformation on the domain B 2
3
ρ1/2 such that

B 1
3
ρ1/2 ⊂ TX1B 2

3
ρ1/2 ⊂ Bρ1/2 B 1

3
ρ1/2 ⊂ T

−1
X1
B 2

3
ρ1/2 ⊂ Bρ1/2 .

Moreover, the deformation of the domain B 2
3
ρ1/2 is controlled by

z ∈ B 2
3
ρ1/2 ⇒ ‖TX1(z)− z‖ ≤ 44C∗ρ

3/2 ,
∥∥∥T−1
X1

(z)− z
∥∥∥ ≤ 44C∗ρ

3/2 . (3.18)

2. the remainder is an analytic function on B 2
3
ρ1/2, and it is represented by a series of cyclically

symmetric homogeneous polynomials H
(1)
s of degree 2s+ 2

P (2) =
∞∑
s=2

H(1)
s H(1)

s =
(
h(1)
s

)⊕
, h(1)

s ∈ D(2C̃s−1
∗ Ch1 ,

√
2ε) . (3.19)

The interval (0, ε∗) with ε∗ <
1
2 comes from the inequality

f(ε) :=

(
3Ω

64Cζ0

)(1− 2ε)
[
1− (2ε)

3
4

]
√

2ε
> 1

(see for reference formula (33) in [31]), and the constants C∗ and γ can be written as

C∗ =
4Ch1

3γ(1− 2ε)
[
1− (2ε)

3
4

] (3.20)

and

γ = 2Ω

(
1− 1

2f(ε)

)
⇒ Ω < γ < 2Ω. (3.21)

Since ε is su�ciently smaller than 1
2 , the constants C∗ is essentially independent on ε, i.e.

C∗ = O
(
Ch1
Ω

)
,

which implies that the same holds true for the threshold ρ∗ so that

ρ∗ ≈
2Ω

3Ch1(1 + e)
. (3.22)
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3.3 Approximation with the dNLS equation

We apply here the normal form transformation of Theorem 5 in order to approximate the Cauchy
problem ż = {H, z} of the �nite dKG equation (1.4) with a small initial datum z0. Let us
denote with K := HΩ + Z0 + Z1 the normal form part of the Hamiltonian H(1) = K + P (2) in
formula (3.16). Since Z0 and Z1 have centrally aligned seeds with the exponential decay (see
decompositions (3.11) and (3.14)), we have

Z0 =

N∑
m=1

Z
(m)
0 , Z

(m)
0 :=

(
ζ

(m)
0

)⊕
(3.23)

and

Z1 =

N∑
m=0

Z
(m)
1 , Z

(m)
1 :=

(
ζ

(m)
1

)⊕
. (3.24)

Note that the expansion for Z0 starts at m = 1, while Z1 starts with m = 0. By truncating the
ε expansion of each normal form term Zj at their leading orders, we de�ne the e�ective normal

form Hamiltonian Keff as

Keff := HΩ + Z
(1)
0 + Z

(0)
1 , Kres := K −Keff . (3.25)

As already stressed in [30], the truncated normal form Keff represents the Hamiltonian of the
dNLS equation. In complex coordinates ψj = (qj + ipj)/

√
2, the Hamiltonian Keff reads as

Keff = (Ω + 2b1)
∑
j

|ψj |2 − b1
∑
j

|ψj+1 − ψj |2 +
3

8

∑
j

|ψj |4 , (3.26)

where b1 = O(ε) < 0 is the same as in the expression (3.12) of Proposition 1. The corresponding
dNLS equation is

iψ̇j =
∂Keff

∂ψj
= Ωψj + b1(ψj+1 + ψj−1) +

3

4
ψj |ψj |2 , (3.27)

and it has the same structure as the dNLS equation (2.3).
We denote with z(t) the evolution of the dKG transformed Hamiltonian K + P (2), with za(t)

the evolution of the dNLS model Keff and consequently with δ(t) the error

δ(t) := z(t)− za(t) . (3.28)

The two time scales over which we control the error of the approximation are given by

T0 :=
1

ρ
, T ∗0 :=

α

κ0ρ
ln

(
1

ρ

)
, (3.29)

where α ∈ (0, 1) is an arbitrary parameter, and κ0 = O(Ch1) is given in (3.43). Similar de�nitions
are used in (2.18) and (2.26), in the proof of Theorems 1 and 2.
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Theorem 6 Let us take ρ ful�lling (3.17) and ε ∈ (0, ε∗) as in Theorem 5. Let us �rst consider

the two independent parameters ρ and ε in the regime ε2 � ρ ≤ ε. Then, there exists a positive

constant C independent of ρ and ε such that for any initial datum z0 ∈ B 2
3
ρ1/2 with ‖δ0‖ ≤ ρ−1/2ε2,

the following holds true:

‖δ(t)‖ ≤ Cρ−1/2ε2 , |t| ≤ T0 . (3.30)

Let us now consider the two independent parameters ρ and ε in the regime ε
2

1+α � ρ ≤ ε, where
α ∈ (0, 1) is arbitrary. Then, there exists a positive constant C independent of ρ and ε such that

for any initial datum z0 ∈ B 2
3
ρ1/2 with ‖δ0‖ ≤ ρ−1/2ε2, the following holds true:

‖δ(t)‖ ≤ ρ−1/2−αε2, |t| ≤ T ∗0 . (3.31)

Remark 6 The upper bound for the error δ given in (3.30) and (3.31) refers to the time evolution

of the normal form (3.26) in the transformed variables ψ, which are near-identity deformations of

the original variables (x, y). Since the transformation TX is Lipschitz, with a Lipschitz constant

L of order L = O(1), the same bound of the error holds also in the original coordinates. Thus,

from the analytic point of view, the nonlinear deformation of the variables does not a�ect the

dependence of the estimates on ρ and ε: only the constant C is changed by the Lipschitz factor L.

Remark 7 The above estimates are equivalent, both in terms of error smallness and time scale,

to the ones obtained in Theorems 1 and 2, once the original variables xj = ρ1/2ξj are recovered.

Remark 8 The requirement ε2 � ρ on the time scale T0 is needed in order to provide a meaningful

approximation, which means that the error is much smaller than the leading approximation za(t)

‖δ(t)‖ ≤ ρ−1/2ε2 � ρ1/2 ∼ ‖za(t)‖ .

The same reason lies behind the requirement ε
2

1+α � ρ on the extended time scale T ∗0 .

Before entering into the proof of Theorem 6, we need a further de�nition in order to control
the norm of vector �elds. Given F an extensive Hamiltonian with seed f , we will make use of
the notation XF to indicate the associated Hamiltonian vector �eld J∇F , with J given by the
standard Poisson structure. The Hamiltonian vector �eld inherits, in a particular form, the cyclic
symmetry. Indeed, it was proved in [30, 31] that

∂xjF = τ j∂x0F, ∂yjF = τ j∂y0F, j = −N, . . . , N . (3.32)

As a result, a possible (but not unique) choice for the seed of XF is given by the couple
(∂y0F,−∂x0F ). This fact allows us to de�ne in a reasonable and consistent way the following
norm ∥∥∥XF

∥∥∥⊕
R

:= ‖∂y0F‖R + ‖∂x0F‖R . (3.33)

As is shown in Proposition 1 of [30], the norm (3.33) allows us to control a natural operator norm.

Moreover, as is stated in Lemma 4 of [30], if F = f⊕ with f of class D(Cf , µ), then
∥∥∥XF

∥∥∥⊕
R
is

controlled by Cf . Both these properties will be used in the forthcoming estimates (3.38) and (3.41).
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Proof of Theorem 6. Following a standard approach, we �rst decompose the Hamiltonian
H = HL +HN in its quadratic and quartic parts

HL := HΩ + Z0, HN := Z1 + P (2),

so that Keff = HL + HN − P (2) − Kres. Correspondingly, the vector �eld is decomposed as
XH = XHL + XN . Denote the linear operator for XHL by L. The equation of motions for z(t)
and za(t) reads{

ż = Lz +XN (z) ,

ża = Lza +XN (za)− Res(t) ,
with Res(t) := XP (2)(za(t)) +XKres(za(t)) . (3.34)

The error δ(t) de�ned by (3.28) satis�es the equation

δ̇ = Lδ + [XN (za + δ)−XN (za)] + Res(t) , (3.35)

whose solution, with the initial value δ0, is given by Duhamel formula

δ(t) = eLtδ0 + eLt
∫ t

0
e−Ls[XN (za + δ)−XN (za) + Res(s)]ds . (3.36)

Now, since {HL, HΩ} = 0, one has that L is an isometry. This allows to estimate

‖δ(t)‖ ≤ ‖δ0‖+

∫ t

0
[‖XN (za(s) + δ(s))−XN (za(s))‖+ ‖Res(s)‖]ds . (3.37)

The second term in the r.h.s. can be estimated with the de�nition of the residual and using the
information that za(t) preserves the norm, as a consequence of the conservation of HΩ

‖XP (2)(za(s))‖ ≤ C
Ch1C∗ρ

5/2

(1− 4
√

2ε)2
, ‖XKres(za(t))‖ ≤ C

[
Cζ0ρ

1/2ε2 + Ch1ρ
3/2ε

]
(1− 2ε)2

, (3.38)

where the two contributions in the second inequality come from the truncation of Z0 and Z1

respectively. Thus, we obtain

‖Res(s)‖ ≤ C
ρ1/2

(1− 4
√

2ε)2

[
Cζ0ε

2 + Ch1ρε+ Ch1C∗ρ
2
]
. (3.39)

On the other hand, if
‖δ‖ � ‖za‖ ∼ ρ1/2 , (3.40)

then the increment of the nonlinear �eld can be well approximated by

‖XN (za(s) + δ(s))−XN (za(s))‖ ≤
∥∥X ′N (ζa)

∥∥ ‖δ‖ ,
where

ζa := za + λδ , λ ∈ (0, 1) .
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If the smallness condition (3.40) for δ holds, then ‖ζa‖ ∼ ρ1/2, which implies

‖XN (za(s) + δ(s))−XN (za(s))‖ ≤
∥∥X ′N∥∥ρ ‖δ‖ .

By using the decomposition X ′N = X ′Z1
+X ′

P (2) it is possible to obtain

∥∥X ′N∥∥ρ1/2 ≤ C1
Ch1

(1− 4
√

2ε)2
ρ . (3.41)

By inserting (3.39) and (3.41) into (3.37), one gets a typical Gronwall-like integral inequality ,
which provides the time-dependent upper bound

‖δ(t)‖ ≤ eκ0ρt ‖δ0‖+ Cρ1/2

[
ε2

ρ
+ ε+ C∗ρ

](
eκ0ρt − 1

)
≤ eκ0ρtρ−1/2ε2 + Cρ−1/2

(
eκ0ρt − 1

)[
ε2 + ρε+ C∗ρ

2
]
, (3.42)

where κ0 provides an upper bound for ‖X ′N‖1 in (3.41)

κ0 := C1
Ch1

(1− 4
√

2ε∗)2
= O(Ch1) (3.43)

and C depends only on ε∗, Cζ0 , Ch1 . Then, the bound (3.30) follows from the assumption ρ ≤ ε.
The bound (3.31) is obtained similarly, just replacing the time span T ∗0 in the above (3.42),

which easily provides the factor ρ−α in front of the estimate. �

3.4 Approximations with the generalized dNLS equation

The standard dNLS approximation is no more valid when ε2 ∼ ρ. Indeed, in such a case, the
contribution ε2ρ−1 coming from the truncation of the linear �eld XHL in (3.42) is of order one,
hence the error δ(t) can be comparable with the approximation za(t)

‖δ(t)‖ ≤ Cρ1/2 ∼ ‖za(t)‖ .

In such a regime, it is then necessary to include in the Hamiltonian Keff at least the term Z
(2)
0 ,

responsible for the next-nearest neighbourhood linear interaction:

Keff := HΩ + Z
(1)
0 + Z

(2)
0 + Z

(0)
1 . (3.44)

Following the same steps as in the proof of Theorem 6, it is possible to prove the following result,
which is fully equivalent to Theorems 3 and 4.

Theorem 7 Let us take ρ ful�lling (3.17) and ε ∈ (0, ε∗) as in Theorem 5. Let us �rst consider

the two independent parameters ρ and ε in the regime ε3 � ρ ≤ ε2. Then, there exists a positive

constant C independent on ρ and ε such that for any initial datum z0 ∈ B 2
3
ρ with ‖δ0‖ ≤ ρ−1/2ε3,

it holds true

‖δ(t)‖ ≤ Cρ−1/2ε3 , |t| ≤ T0 . (3.45)
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Let us now consider the two independent parameters ρ and ε in the regime ε
3

1+α � ρ ≤ ε, where
α ∈ (0, 1) is arbitrary. Then, there exists a positive constant C independent of ρ and ε such that

for any initial datum z0 ∈ B 2
3
ρ1/2 with ‖δ0‖ ≤ ρ−1/2ε2, the following holds true:

‖δ(t)‖ ≤ ρ−1/2−αε3 , |t| ≤ T ∗0 . (3.46)

The result of Theorem 7 yields the Hamiltonian for the generalized dNLS equation:

Keff = (Ω + 2b1 + 2b2)
∑
j

|ψj |2 − b1
∑
j

|ψj+1 − ψj |2 − b2
∑
j

|ψj+2 − ψj |2 +
3

8

∑
j

|ψj |4 , (3.47)

where b2 = O(ε2) < 0 is the same as in the expression (3.12) of Proposition 1. The corresponding
generalized dNLS equation is

iψ̇j = Ωψj + b1(ψj+1 + ψj−1) + b2(ψj+2 + ψj−2) +
3

4
ψj |ψj |2 , (3.48)

which has the same structure as the generalized dNLS equation (2.31). Indeed, remembering that
Ω in (3.48) also has an expansion in ε, and that the time variable is rescaled with ε in (2.31), we
can rewrite the right-hand-side of the generalized dNLS equation (2.31) as follows:

ε

2
aj + (aj+1 + aj−1) +

ε

4
(aj+2 + aj−2) .

This shows an ε correction to the nearest neighbour coe�cient, which in the normal form approach
is embedded in the ε-dependence of Ω, b1, b2 and of the transformed coordinates.

More generally, within the normal form approach, di�erent regimes of parameters can be
treated with no e�orts: once the requested scaling between ε and ρ is chosen, one easily derives
the minimal, and also the optimal, number of terms in the expansions of Z0 and Z1 to be included.
The estimates follows as easily as before. Here we give the estimates for a general choice of
truncation:

Keff = HΩ +
l−1∑
j=1

Z
(j)
0 +

n−1∑
j=0

Z
(j)
1 , (3.49)

where N ≥ l ≥ 2 and N ≥ n ≥ 1. The error term δ is now estimated similarly to (3.42) as follows:

‖δ(t)‖ ≤ eκ0ρt ‖δ0‖+ Cρ1/2

[
εl

ρ
+ εn + C∗ρ

](
eκ0ρt − 1

)
, l ≥ 2 , n ≥ 1 . (3.50)

Hence one can deal with all the regimes and with the desired error precision in a compact and
�exible way. The extension to higher order terms in the nonlinearity would require further steps
of the normal form transformations, thus modifying thresholds ε∗ and ρ∗, following the general
version of Theorem 5 given in [30].
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4 Applications of the dNLS equation

We conclude the paper with a brief account of possible applications of the dNLS equations [see
(2.3) and (3.27)], and their generalizations [see (2.31) and (3.48)], in the context of small-amplitude
weakly coupled oscillators of the dKG equation (1.4).

Existence of breathers. Breathers of the dKG equation (time-periodic solutions localized
on the lattice) can be constructed approximately by looking at the discrete solitons of the dNLS
equation (1.5) in the form aj(τ) = Aje

iΩτ , where Ω ∈ R\[−1, 1] is de�ned outside the spectral
band of the linearized dNLS equation and A ∈ `2(R) is time-independent.

The limit ε → 0 is referred to as the anti-continuum limit of the dKG equation (1.4), when
the breathers at a �xed energy are continued uniquely from the limiting con�gurations supported
on few lattice sites [27, 33]. Compared to the anti-continuum limit, the dNLS approximation is
very di�erent, because the discrete solitons of the dNLS equation (1.5) are not nearly compactly
supported due to the fact that the dNLS equation (1.5) has no small parameter. Indeed, the
continuation arguments in [27, 33] are no longer valid in the small-amplitude approximation,
when the breather period T is de�ned near the linear limit 2π, because the inverse linearized
operators become unbounded in the linear oscillator limit as T → 2π. As a result, approximate
breathers obtained from Theorem 1 are no longer compactly supported.

The approximation of Theorem 1 and the construction of truly periodic solutions to the dKG
equation (1.4) can be extended to all times. To do so, we can use the Fourier series in time and
eliminate all but the �rst Fourier harmonic by a Lyapunov�Schmidt reduction procedure. Then,
the components of the �rst Fourier component satis�es a stationary dNLS-type equation, where
the dNLS equation (1.5) is the leading equation. In this way, similarly to the work [34], one can
justify the continuation of discrete solitons of the dNLS equation (1.5) as approximations of the
truly periodic breathers in the dKG equation (1.4).

Within the same scheme of Lyapunov�Schmidt decomposition, another equivalent route to
prove the existence of breathers in the dKG equation (1.4) is obtained by means of Theorem 5.
Indeed, the discrete solitons of the dNLS equation (1.5) can be characterized as constrained criti-
cal points of the energy, which are continued, under non-degeneracy conditions, to critical points
of the true energy of the dKG equation (1.4), see [31] for details.

Spectral stability of breathers. The spectral stability of breathers in the dKG equation
(1.4) can be related to the spectral stability of solitons in the dNLS equation (1.5). By Theorem
1 with ρ = ε, we are not able to relate stable or unstable eigenvalues of the dNLS solitons with
the Floquet multipliers of the dKG breathers, because the error term also grows exponentially at
the time scale O(ε−1) (the same problem is discussed in [12, 24] in the context of stability of the
travelling waves in FPU lattices). However, by Theorem 2 with ρ = ε, the approximation result
is extended to the time scale O(ε−1| log(ε)|). Therefore, we can conclude that all the unstable
eigenvalues of the dNLS solitons persist as unstable Floquet multipliers of the dKG breathers
within the O(ε) distance from the unit circle.

If the unstable eigenvalues of the dNLS solitons do not exist, we only obtain approximate
spectral stability of the dKG breathers, because the unstable Floquet multipliers of the dKG
breathers may still exist on the distance smaller than O(ε) to the unit circle. On the other hand,
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if the spectrally stable dNLS solitons are known to have internal modes [32], then the Floquet
multipliers of the dKG breathers persist on the unit circle by known symmetries of the Floquet
multipliers [33].

Long time stability of breathers. By means of the normal form approach, it is possible
to prove the long time stability result for single-site (fundamental) breather solutions of the dKG
equation (1.4). Indeed, the variational characterization of the existence problem for such breathers
in the normal form essentially implies an orbital stability in the normal form, which is translated
into a long time stability in the original dKG equation [31].

In the case of multi-site dNLS solitons, nonlinear instability is induced by isolated internal
modes of negative Krein signature, which are coupled with the continuous spectrum by the non-
linearity [23]. By using the extended time scale O(ε−1| log(ε)|) of Theorem 2 with ρ = ε, we
can predict persistence of this instability for small-amplitude dKG breathers. This nonlinear
instability was recently con�rmed for multi-site dKG breathers in [11].

Also quasi-periodic localized solutions were constructed for the dNLS equation, in the situation
when the internal mode of the dNLS soliton occurs on the other side of the spectral band of the
continuous spectrum [10, 28]. These solutions correspond approximately to quasi-periodic dKG
breathers. It is still an open question to consider true quasi-periodic breather solutions of the
dKG equation (1.4).
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