Asso

Impact of Valve Morphology on the Prevalence of Coronary Artery **Disease: A Systematic Review and Meta-Analysis**

Paolo Poggio, PhD;* Laura Cavallotti, MD;* Paola Songia, PharmD; Alessandro Di Minno, PharmD; Pasquale Ambrosino, MD; Liborio Mammana, MD; Alessandro Parolari, MD, PhD; Francesco Alamanni, MD; Elena Tremoli, PhD; Matteo Nicola Dario Di Minno, MD, PhD

Background—Literature studies suggested a lower prevalence of coronary artery disease (CAD) in bicuspid aortic valve (BAV) than in tricuspid aortic valve (TAV) patients. However, this finding has been challenged. We performed a meta-analysis to assess whether aortic valve morphology has a different association with CAD, concomitant coronary artery bypass grafting (CABG), and postoperative mortality.

Methods and Results—Detailed search was conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guideline to identify all patients with BAV or TAV and presence of CAD, concomitant myocardial surgical revascularization, and the postoperative mortality. Thirty-one studies on 3017 BAV and 4586 TAV patients undergoing aortic valve surgery were included. BAV patients showed a lower prevalence of CAD (odds ratio [OR]: 0.33; 95% CI: 0.17, 0.65), concomitant CABG (OR, 0.45; 95% CI: 0.35, 0.59), and postoperative mortality (OR, 0.62; 95% CI: 0.40, 0.97) than TAV. However, BAV subjects were significantly younger than TAV (mean difference: -7.29; 95% CI: -11.17, -3.41) were more frequently males (OR, 1.61; 95% CI: 1.33, 1.94) and exhibited a lower prevalence of hypertension (OR, 0.58; 95% CI: 0.39, 0.87) and diabetes (OR, 0.71; 95% CI: 0.54, 0.93). Interestingly, a metaregression analysis showed that younger age and lower prevalence of diabetes were associated with lower prevalence of CAD (Z value: -3.03; P=0.002 and Z value: -3.10; P=0.002, respectively) and CABG (Z value: -2.69; P=0.007 and Z value: -3.36; P=0.001, respectively) documented in BAV patients.

Conclusions—Analysis of raw data suggested an association of aortic valve morphology with prevalence of CAD, concomitant CABG, and postoperative mortality. Interestingly, the differences in age and diabetes have a profound impact on prevalence of CAD between BAV and TAV. In conclusion, our meta-analysis suggests that the presence of CAD is independent of aortic valve morphology. (J Am Heart Assoc. 2016;5:e003200 doi: 10.1161/JAHA.116.003200)

Key Words: aortic valve morphology • bicuspid aortic valve • coronary artery disease

ortic valve stenosis (AVS) is considered the most **A** prevalent form of valve disease.^{1,2} The number of people affected by this progressive and debilitating pathology will increase because of the aging population, causing an everincreasing public health burden.³ Traditionally, it was thought that AVS was related to valve degeneration attributed to aging, caused by several years of mechanical stress and

biological response to such injury. However, more recently, several risks factors have been linked to the development of AVS, including male sex, hypertension, hyperlipidemia, smoking, advanced age, and congenital bicuspid valve morphology.^{4,5} Overall, AVS pathogenesis is a multifactorial process and seems to be related to coronary atherosclerosis. In detail, an important link between AVS and early stages of coronary

Received January 8, 2016; accepted February 17, 2016.

From the Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P., L.C., P.S., A.D.M., L.M., F.A., E.T., M.N.D.D.M.); Dipartimento di Medicina e Chirurgia (L.C., L.M., F.A.) and Departments of Pharmacological and Biomolecular Sciences (P.S., E.T.) and Biomedical Sciences for Health (A.P.), University of Milan, Italy; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (P.A., M.N.D.D.M.); Unità Operativa di Cardiochirurgia e Ricerca Traslazionale, San Donato IRCCS, San Donato Milanese, Italy (A.P.).

Accompanying Figures S1 and S2 and Table S1 are available at http://jaha.ahajournals.org/content/5/5/e003200/DC1/embed/inline-supplementary-material-1.pdf

^{*}Dr Poggio and Dr Cavallotti contributed equally to this work.

Correspondence to: Paolo Poggio, PhD, Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138 Milan, Italy. E-mail: paolo.poggio@ccfm.it

^{© 2016} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

atherosclerotic plague has been hypothesized,⁶⁻⁸ and a multitude of studies have been published regarding the associations between AVS, coronary artery disease (CAD), and coronary artery bypass grafting (CABG).9-12 In addition, a very recent study by Boudoulas et al.¹³ describes the association between aortic stenosis and CABG focusing on valve morphology and concluding that "the incidence of coronary artery disease is extremely high in patients with aortic stenosis and tricuspid aortic valve." However, literature data are not consistent about this issue, and data about such an association have been challenged. In addition, the critical review of available studies highlights that, in most cases, only univariate unadjusted analyses were used, seldom taking into account for potential confounders. Thus, the aim of this study was to perform a meta-analysis of literature studies enrolling patients undergoing aortic valve surgery to assess whether aortic valve morphology (tri- or bicuspid) impacts on prevalence of CAD, concomitant CABG, and postoperative mortality. In addition, to assess the presence of potential confounders, we evaluated the impact of distribution of major clinical and demographic variables between patients with bior tricuspid aortic valve.

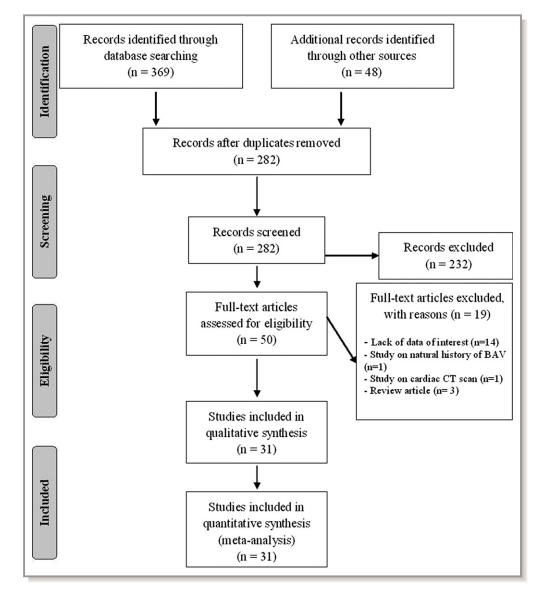
Methods

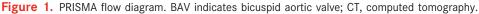
A protocol for this review was prospectively developed, detailing the specific objectives, criteria for study selection, outcomes, and statistical methods.

Search Strategy

To identify all available studies pertaining to prevalence of CAD, defined by atherosclerosis of 1 or more arteries that supply blood to the heart causing oxygen deficiency in the myocardium, we included articles with anamnestic CAD also when it was not specified whether it was anatomical CAD (70% stenosis or greater in at least 1 major coronary artery) or clinical CAD (previous acute myocardial infarction or percutaneous coronary intervention). A detailed search was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines¹⁴ to identify all concomitant myocardial surgical revascularization (CABG) and postoperative mortality in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) undergoing aortic valve surgery. A systematic search was performed in the electronic databases (PubMed, Web of Science, Scopus, and EMBASE), using the following search terms in all possible combinations: tricuspid aortic valve; bicuspid aortic valve; coronary artery disease; coronary artery bypass; myocardial infarction; mortality; and death. The last search was performed in November 2015. The search strategy was

developed without any language or publication year restriction. In addition, the reference lists of all retrieved articles were manually reviewed. In case of missing data, the authors were contacted by e-mail to try to retrieve original data. Two independent authors (P.P. and M.N.D.D.M.) analyzed each article and performed the data extraction independently. In case of disagreement, a third investigator was consulted (L.C.). Discrepancies were resolved by consensus. Selection results have been reported according to the PRISMA flow chart (Figure 1).


Data Extraction and Quality Assessment


According to the prespecified protocol, all studies evaluating prevalence of CAD or use of CABG or postoperative mortality in patients with BAV and in those with TAV undergoing aortic valve replacement were included in the analysis. Case reports, reviews, animal studies, and studies on natural history of patients with aortic valve disease (not undergoing surgery) were excluded. In each study, data regarding sample size, major clinical and demographic variables, number of patients with CAD, and number of those undergoing CABG and those dying postoperatively were extracted. Formal quality score adjudication was not used, because previous investigations failed to demonstrate its usefulness.¹⁵

Statistical Analysis and Risk of Bias Assessment

Statistical analysis was carried out using Comprehensive Meta-analysis (version 2 [2005]; Biostat, Englewood, NJ). Differences among BAV and TAV subjects were expressed as mean difference (MD) with pertinent 95% Cls for continuous variables, and as odds ratio (OR) with pertinent 95% Cl for dichotomous variables. Overall effect was tested using *Z* scores, and significance was set at *P*<0.05. Statistical heterogeneity among studies was assessed with the chi-square Cochran's Q test and with the I^2 statistic, which measures the inconsistency across study results and describes the proportion of total variation in study estimates, that is, attributed to heterogeneity rather than sampling error. In detail, I^2 values of 0% indicate no heterogeneity. 25% low, 25% to 50% moderate, and 50% high heterogeneity.

Publication bias was assessed by the Egger test and represented graphically by funnel plots of the standard difference in means versus SE. Visual inspection of funnel plot asymmetry was performed to address for possible small-study effect, as well as the Egger test to address publication bias, over and above any subjective evaluation. P < 0.10 was considered statistically significant.¹⁷ In order to be as conservative as possible, the random-effect method

was used to take into account the variability among included studies.

Metaregression Analyses

We hypothesized that differences in prevalence of CAD, use of CABG, or postoperative mortality between BAV and TAV patients may be affected by differences in clinical and demographic characteristics of patients included in different studies (mean age, sex, body mass index [BMI], hypertension, diabetes mellitus, hyperlipidemia, and smoking habit). To assess the possible effect of such variables in explaining the different results observed across studies, we planned to perform metaregression analyses after implementing a regression model with prevalence of CAD, use of CABG, or postoperative mortality between BAV and TAV patients as dependent variables (y) and the variables mentioned above as independent variables (x).

Results

After excluding duplicate results, the search retrieved 282 articles. Of these studies, 232 were excluded because they were off the topic after scanning the title and/or the abstract and 19 because they were reviews/comments/case reports or they lacked data of interest.

Thus, 31 articles (3017 BAV patients and 4586 TAV patients) were included in the final analysis (Figure 1). In detail, 15 studies with data on prevalence of CAD (1163 BAV and 2234 TAV patients), 16 reporting on use of CABG (1782 BAV and 1886 TAV patients), and 16 on postoperative mortality rate (1067 BAV and 2399 TAV patients) were included.

Table 1. Demographic and Clinical Data of BAV and TAV

Author (Year)	Reported Outcomes	Observation Time		Subjects	Age, y	Males	Hypertension	Hyperlipidemia	Diabetes	BMI	Smoking
Abdulkareem 2013 ¹⁸	CABG		BAV	192	58	71.3					
			TAV	203	65	62.5					
Ali 2010 ¹⁹	CABG, mortality	7 years	BAV	90	63	78.9	31.1	12.2	5.6		
		-	TAV	125	70	58.4	32.0	16.8	11.2		
Asano 2012 ²⁰	CABG, mortality	5 years	BAV	86	46.3						
			TAV	58	70						
Badiu 2010 ²¹	CAD, CABG, mortality	5 years	BAV	11	37	100.0	45.5	9.1			
			TAV	91	48	63.7	69.2	36.3	4.4		
Boudoulas 2015 ¹³	CABG		BAV	95	62	71.6	70	61	31		53
			TAV	175	71	55.4	87	60	47		48
Branchetti 2014 ²²	CAD		BAV	74	55.5	64.9	31.1	27.0	5.4		43.2
			TAV	61	64.4	70.5	42.6	42.6	13.1		19.7
Costopoulos 2014 ²³	Mortality	1 year	BAV	21	76.7	57.1	66.7		28.6	26.6	
			TAV	447	79.8	47.4	77.2		30.2	26.1	
Davies 1996 ²⁴	CABG		BAV	296							
			TAV	125							
Delius 1998 ²⁵	Mortality	10 years	BAV	16							
			TAV	31							
Eleid 2013 ²⁶	CAD, CABG		BAV	47	58	76.6	68.1	48.9	8.5		23.4
			TAV	53	66	75.5	86.8	49.1	11.3		13.2
Etz 2015 ²⁷	CAD, mortality	Inhospital	BAV	32	46.7	71.9	46.9				15.6
			TAV	347	61.6	63.7	72.0		9.2		10.7
Girdauskas 2014 ²⁸	Mortality	10 years	BAV	153	54	73.2	48.4		11.1		35.9
			TAV	172	64	47.7	57.0		15.7		40.1
Holubec 2014 ²⁹	CAD, CABG, mortality	2 years	BAV	60	45*	81.7	45.0				
			TAV	40	59*	67.5	75.0				
Hwang 2011 ³⁰	CAD, mortality	10 years	BAV	45	59.6	60.0	44.4	2.2	6.7		26.7
			TAV	43	58.3	48.8	23.3	2.3	9.3		9.3
Jackson 2014 ⁹	CAD		BAV	292	61.1	73.6	51.0		11.3		
			TAV	355	717	69.9	74.6		14.9		
Kochman 2014 ³¹	CAD, mortality	1 year	BAV	28	77.6	46.4	60.7		39.3		
			TAV	84	79.1	47.6	65.5		34.5		
Kvitting 2013 ³²	CABG		BAV	63	43	79.4	36.5		4.8	26	
-			TAV	170	36	67.6	25.9		2.4	24	
Liu 2015 ³³	CAD, mortality	30 days	BAV	15	75.4	60.0	33.3			23.6	
			TAV	25	75.8	68.0	56.0		12.0	21.7	
Mosalanezhad 2014 ³⁴	CABG, mortality	8 years	BAV	30	42	93.3			-		
			TAV	20	59	75.0					

ORIGINAL RESEARCH

Table 1. Continued

Author (Year)	Reported Outcomes	Observation Time		Subjects	Age, y	Males	Hypertension	Hyperlipidemia	Diabetes	BMI	Smoking
Nakamura 2014 ³⁵	CAD		BAV	17	70	76.5	58.8	35.3	17.6		35.3
			TAV	59	77	52.5	79.7	33.9	20.3		40.7
Philip 2015 ¹⁰	CAD		BAV	200	57		23.5	21.5	10.5		
			TAV	200	78		76.5	78.5	31.5		
Roberts 2003 ¹¹	CABG		BAV	232	64.7	72.0					
			TAV	267	74	51.3					
Roberts 2007a ³⁶	CABG, mortality	5 years	BAV	102							
			TAV	18							
Roberts 2007b ³⁷	CABG, mortality	4 years	BAV	187							
			TAV	235							
Roberts 2007c ³⁸	CABG		BAV	54							
			TAV	142							
Roberts 2007d ³⁹	CABG, mortality	13 years	BAV	180							
			TAV	107							
Rylski 2014 ¹²	CAD, mortality	Inhospital	BAV	41	55*	63.4	56.1		9.8		
			TAV	588	61*	64.1	81.1		9.2		
Shim 201140	CAD		BAV	50	52	78.0	40.0	20.0	12.0	24.7	32.0
			TAV	50	52	78.0	50.0	28.0	8.0	25.2	42.0
Stephan 199741	CABG		BAV	57	67	57.9					
			TAV	57	73	54.4					
Warner 201342	CAD		BAV	10	46.5	60.0	50.0	40.0	10.0	30.1	10.0
			TAV	13	46.3	76.9	38.5	46.2			23.1
Yuan 2010 ⁴³	CAD		BAV	241	56.1	77.2	30.7	24.1	10.8		
			TAV	225	62.8	64.0	41.8	24.9			

*Data reported as median value. BAV indicates bicuspid aortic valve; BMI, body mass index; CABG, coronary artery bypass grafting; CAD, coronary artery disease; TAV, tricuspid aortic valve.

Study Characteristics

Major characteristics of the 31 studies included in the metaanalysis are shown in Table 1.

The number of patients varied from 23 to 647, mean age from 36 to 79.8 years, and prevalence of male sex from 47.4% to 100%. Presence of hypertension was reported by 23.3% to 87.0% of patients, smoking habit by 9.3% to 53.0%, diabetes mellitus by 2.4% to 47.0%, and hyperlipidemia by 2.2% to 78.5%. Mean BMI varied from 21.7 to 30.1 kg/m². Length of follow-up for mortality assessment ranged from inhospital stay period to 13 years with a median of 5 years.

Coronary Artery Disease

Fifteen studies,* for a total of 1163 BAV and 2234 TAV patients, showed that CAD was reported by 13.5% of BAV and

30.3% of TAV patients (OR, 0.33; 95% CI: 0.17, 0.65; P=0.001; Figure 2). Heterogeneity among studies was significant (I²=86%; P<0.001), and it was not reduced by the exclusion of one study at a time. In addition, after excluding 2 studies by Kochman et al.³¹ and Liu et al.,³³ including patients undergoing transcatheter aortic valve implantation (TAVI), the results were entirely confirmed (OR, 0.31; 95% CI: 0.14, 0.66; P=0.002; I²=88%; P<0.001).

Concomitant CABG

Sixteen studies,** reporting on 1782 BAV and 1886 TAV patients, showed that the number of patients undergoing concomitant CABG was significantly lower between BAV than TAV patients (31.0% vs 45.7%; OR, 0.45; 95% CI: 0.35, 0.59; P<0.001; Figure 3). Heterogeneity among studies was significant (l²=56%; P=0.003). However, after excluding the study by

^{*}References 9, 10, 12, 21, 22, 26, 27, 29-31, 33, 35, 40, 42, 43.

^{**}References 11, 13, 18-21, 24, 26, 29, 32, 34, 36-39, 41.

	BAV	/	TAV	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Badiu 2010	0	11	15	91	3.4%	0.21 [0.01, 3.84]	
Branchetti 2014	4	74	14	61	7.0%	0.19 [0.06, 0.62]	
Eleid 2013	18	47	20	53	7.9%	1.02 [0.46, 2.30]	
Etz 2015	2	32	44	347	6.3%	0.46 [0.11, 1.99]	
Holubec 2014	4	60	9	40	6.8%	0.25 [0.07, 0.86]	
Hwang 2011	2	45	12	43	6.0%	0.12 [0.03, 0.58]	
Jackson 2014	33	292	169	355	8.6%	0.14 [0.09, 0.21]	
Kochman 2014	14	28	54	84	7.8%	0.56 [0.23, 1.32]	
Liu 2015	3	15	9	25	6.2%	0.44 [0.10, 2.00]	
Nakamura 2014	2	17	21	59	6.0%	0.24 [0.05, 1.16]	
Philip 2015	8	200	132	200	8.0%	0.02 [0.01, 0.05]	
Rylski 2014	7	41	109	588	7.8%	0.90 [0.39, 2.10]	
Shim 2011	4	50	2	50	5.6%	2.09 [0.36, 11.95]	
Warner 2013	1	10	2	13	3.9%	0.61 [0.05, 7.88]	
Yuan 2010	55	241	65	225	8.6%	0.73 [0.48, 1.10]	
Total (95% CI)		1163		2234	100.0%	0.33 [0.17, 0.65]	•
Total events	157		677				
Heterogeneity: Tau ² =	: 1.32; Chi	² = 102	2.91, df =	14 (P <	0.00001)); I² = 86%	
Test for overall effect:	Z= 3.23 ((P = 0.0	101)				0.005 0.1 1 10 200 Favours BAV Favours TAV

Figure 2. Prevalence of coronary artery disease in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

Asano et al.,²⁰ all results were confirmed without heterogeneity (OR, 0.49; 95% CI: 0.39, 0.61; P<0.001; I^2 =37%; P=0.07).

Postoperative Mortality

The 16 studies^{***} evaluating postoperative mortality showed a slightly significant difference in rate of mortality between BAV and TAV patients (16.2% vs 18.8%; OR, 0.62; 95% CI: 0.40, 0.97; P=0.04; I²=65%; P<0.001; Figure 4). Interestingly, a metaregression analysis showed that the mortality rate was independent by the length of the observation (Z value: -1.17; P=0.240). In addition, we conducted a subanalysis removing the 3 studies^{23,31,33} that analyzed patients undergoing TAVI; the results did not differ from the previous ones (OR, 0.51; 95% CI: 0.32, 0.84; P=0.006; I²=63%; P=0.001).

Clinical and Demographic Variables

As showed in Figure S1, when major clinical and demographic characteristics have been compared between BAV and TAV patients, we found that BAV subjects were significantly younger than TAV (MD, -7.29; 95% CI: -11.17, -3.41; *P*<0.001). In addition, BAV subjects were more frequently males (72.7% vs 60.1%; OR, 1.61; 95% CI: 1.33, 1.94; *P*<0.001) and exhibited a lower prevalence of hypertension (43.0% vs 65.4%; OR, 0.58; 95% CI: 0.39, 0.87; *P*<0.001) and diabetes (11.6% vs 16.3%; OR, 0.71; 95% CI: 0.54, 0.93;

P=0.01) than TAV. In contrast, no significant differences were found in prevalence of hyperlipidemia and smoking habit as well as in mean BMI between BAV and TAV patients.

Interestingly, a metaregression analysis showed that younger age and lower prevalence of diabetes were associated with lower prevalence of CAD (Z value: -3.03; P=0.002 and Z value: -3.10; P=0.002, respectively; Figure 5) and CABG (Z value: -2.69; P=0.007 and Z value: -3.36; P=0.001, respectively; Figure 6) documented in BAV patients as compared to TAV patients.

Sensitivity Analysis

Given the statistically significant difference in distribution of age, sex, hypertension, and diabetes between BAV and TAV patients, all the analyses have been repeated after including only studies enrolling patients comparable for all these variables.^{30,33,40–42} Interestingly, the difference in prevalence of CAD (OR, 0.65; 95% CI, 0.33, 1.26; P=0.20) and mortality rate (OR, 1.77; 95% Cl, 0.81, 3.87; P=0.15) were no longer significant. None of the 5 studies enrolling patients comparable for age, sex, hypertension, and diabetes provided information about concomitant CABG in BAV and TAV subjects. Thus, the sensitivity analysis was not performed for this outcome. When stratifying results according to the study design (retrospective or prospective), we found that the difference in CAD, concomitant CABG, and postoperative mortality between BAV and TAV patients were consistently confirmed only by retrospective studies. Interestingly, all the differences between the 2 groups were no longer significant in prospective studies (Table 2).

^{***}References 12, 19-21, 23, 25, 27-31, 33, 34, 36, 37, 39.

	BAV	/	TAV	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Abdulkareem 2013	40	192	80	203	9.7%	0.40 [0.26, 0.63]	
Ali 2010	24	90	48	125	8.0%	0.58 [0.32, 1.05]	
Asano 2012	6	86	27	58	4.7%	0.09 [0.03, 0.23]	
Badiu 2010	0	11	8	91	0.8%	0.43 [0.02, 7.90]	
Boudoulas 2015	25	95	109	175	8.5%	0.22 [0.12, 0.37]	
Davies 1996	66	296	56	125	9.7%	0.35 [0.23, 0.55]	
Eleid 2013	12	47	16	53	5.3%	0.79 [0.33, 1.91]	
Holubec 2014	4	60	1	40	1.2%	2.79 [0.30, 25.88]	
Kvitting 2013	2	63	4	170	2.0%	1.36 [0.24, 7.62]	
Mosala-Nezhad 2014	2	30	3	20	1.7%	0.40 [0.06, 2.67]	
Roberts 2003	108	232	161	267	10.8%	0.57 [0.40, 0.82]	-
Roberts 2007	32	102	12	18	4.1%	0.23 [0.08, 0.66]	
Roberts 2007-2	101	187	152	235	10.4%	0.64 [0.43, 0.95]	
Roberts 2007-3	29	54	89	142	7.5%	0.69 [0.37, 1.30]	
Roberts 2007-4	79	180	66	107	9.2%	0.49 [0.30, 0.79]	
Stephan 1997	22	57	30	57	6.4%	0.57 [0.27, 1.19]	
Total (95% CI)		1782		1886	100.0%	0.45 [0.35, 0.59]	•
Total events	552		862				
Heterogeneity: Tau ² = 0	.13; Chi ² =	= 34.11	df = 15	(P = 0.0)	03); I ² = 5	6%	
Test for overall effect: Z	= 5.95 (P	< 0.000	001)				0.005 0.1 1 10 200 Favours BAV Favours TAV

Figure 3. Prevalence of coronary artery bypass grafting (CABG) in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

Publication Bias

Because it is recognized that publication bias can affect results of meta-analyses, we attempted to assess this potential bias using funnel plot visual analysis (Figure S2).

Visual inspection of funnel plots of effect size versus SE for studies evaluating CAD, CABG, and mortality in BAV and in TAV patients suggested a symmetric distribution of studies around the effect size, and the Egger test confirmed the lack of publication bias for all these outcomes (CAD, P=0.868; CABG, P=0.914; mortality, P=0.403).

Discussion

This meta-analysis, which includes more than 7500 patients undergoing aortic valve surgery, shows, in agreement with

	BAV	/	TAV	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Ali 2010	27	90	65	125	10.6%	0.40 [0.22, 0.70]	
Asano 2012	1	86	10	58	3.4%	0.06 [0.01, 0.45]	
Badiu 2010	0	11	2	91	1.8%	1.56 [0.07, 34.48]	
Costopoulos 2014	6	21	52	447	7.9%	3.04 [1.13, 8.18]	
Delius 1998	0	16	2	31	1.8%	0.36 [0.02, 7.90]	
Etz 2015	9	32	68	347	9.0%	1.61 [0.71, 3.63]	+
Girdauskas 2014	27	153	47	172	10.8%	0.57 [0.33, 0.97]	
Holubec 2014	0	60	2	40	1.8%	0.13 [0.01, 2.72]	
Hwang 2011	1	45	6	43	3.2%	0.14 [0.02, 1.22]	
Kochman 2014	5	28	14	84	7.1%	1.09 [0.35, 3.35]	
Liu 2015	1	15	2	25	2.6%	0.82 [0.07, 9.91]	
Mosala-Nezhad 2014	1	30	5	20	3.1%	0.10 [0.01, 0.97]	
Roberts 2007	8	101	7	17	6.7%	0.12 [0.04, 0.41]	
Roberts 2007-2	37	171	69	213	11.2%	0.58 [0.36, 0.92]	
Roberts 2007-4	44	167	22	98	10.5%	1.24 [0.69, 2.22]	
Rylski 2014	6	41	77	588	8.5%	1.14 [0.46, 2.79]	
Total (95% CI)		1067		2399	100.0%	0.62 [0.40, 0.97]	•
Total events	173		450				
Heterogeneity: Tau ² = 0	.41; Chi ² =	43.17	df = 15	P = 0.0	001); I ² =	65%	
Test for overall effect: Z							0.005 0.1 1 10 200 Favours BAV Favours TAV

Figure 4. Post-operative mortality in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

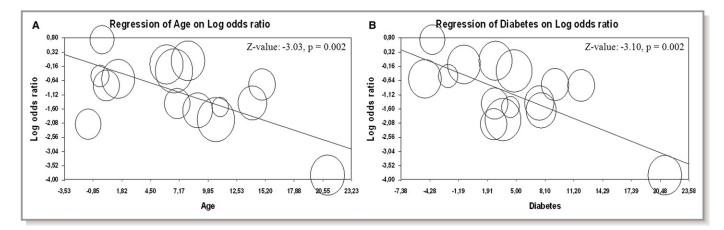


Figure 5. Meta-regression analysis. Effect of the difference in mean age (A) and in prevalence of diabetes (B) on prevalence of coronary artery disease in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

previously published data, a lower prevalence of CAD (13.5% vs 30.3%) and concomitant CABG (31% vs 45.7%) in BAV than in TAV patients, accompanied by a marginally lower rate of postoperative mortality (16.2% vs 18.8%). We also show that BAV patients enrolled in the included studies were \approx 7 years younger, more often males (72.7% vs 60.1%), and exhibited lower prevalence of hypertension (43.0% vs 65.4%) and diabetes (11.6% vs 16.3%) compared to TAV patients (Table S1).

Altogether, these data suggest that the lower cardiovascular risk reported in BAV patients may be partly explained by younger age and lower prevalence of some cardiovascular risk factors in this clinical setting. Interestingly, a meta-regression analysis confirmed and extended this hypothesis, showing that age and diabetes have a profound impact on the difference in prevalence of CAD and CABG between BAV and TAV patients. Moreover, when the analyses have been repeated after including only those studies enrolling patients matched for age, sex, hypertension, and diabetes, the difference in prevalence of CAD and postoperative mortality were no longer significant between the 2 groups of patients. Thus, patients with BAV typically develop aortic stenosis at a younger age, usually before 65 years, compared to aortic stenosis in patients with TAV, which more often develops after age 70.⁴⁴

Several studies analyzed prevalence of CAD in BAV and TAV patients, concluding that this atherosclerotic disease is uncommon in BAV, but is associated with TAV disease.^{9,24} However, recent developments suggest that "incidence of CAD is high in patients with aortic valve degeneration, both in those with tricuspid and bicuspid aortic valve."¹³

Our analysis shows that although the incidence of all the considered variables is lower in BAV compared to TAV patients, a higher mean age and a higher prevalence of hypertension and diabetes is found in the TAV group. The potential impact of these confounding covariates should be taken into account. Indeed, our sensitivity analysis shows that once hypertension, sex, diabetes, and age are taken into

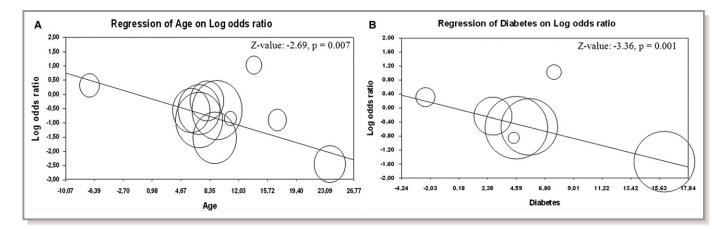


Figure 6. Meta-regression analysis. Effect of the difference in mean age (A) and in prevalence of diabetes (B) on prevalence of concomitant coronary artery bypass grafting in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

Table	2.	Stratification	of	the	Studies:	Retrospective	and	Prospective

	No. of Studies	OR (95% CI)	Heterogeneity
CAD			
Retrospective studies	8	0.37 (0.18, 0.76; <i>P</i> =0.007)	l ² : 84%; <i>P</i> <0.001
Prospective studies	7	0.30 (0.07, 1.32; <i>P</i> =0.11)	l ² : 87%; <i>P</i> <0.001
CABG			
Retrospective studies	15	0.45 (0.35, 0.59; <i>P</i> <0.001)	l ² : 59%; <i>P</i> =0.002
Prospective studies	1	0.43 (0.02, 7.90; <i>P</i> =0.57)	Not evaluable
Mortality			
Retrospective studies	13	0.57 (0.34, 0.94; <i>P</i> =0.03)	l ² : 72%; <i>P</i> <0.001
Prospective studies	3	1.08 (0.41, 2.86; <i>P</i> =0.88)	l ² : 0%; <i>P</i> =0.95

CABG indicates coronary artery bypass grafting; CAD, coronary artery disease; OR, odds ratio.

account and only studies with patients comparable for these variables are included, the differences in prevalence of CAD between BAV and TAV patients is no longer significant.

The finding that, in the TAV group, higher mean age and increased prevalence of diabetes and hypertension are paralleled by a higher prevalence of CAD, concomitant CABG, and postoperative mortality somehow supports the hypothesis that the etiopathogenetic mechanism underling aortic valve degeneration is similar or complementary to coronary atherosclerosis. Indeed, recent evidence suggested that risk factors responsible for pathogenesis of atherosclerosis are also related to development of aortic calcification and stenosis.^{13,45,46} However, the reasons why many patients with CAD do not develop aortic stenosis are still under debate. The major explanation may reside in the anatomic variation in size and diameter in normal tricuspid aortic valve⁴⁷ and the genetic predisposition to aortic calcification, such as lipoprotein(a) expression levels encoded by the lipoprotein(a) gene.⁴⁸

Another finding of our analysis is the marginally lower postoperative mortality in BAV than in TAV patients. Evaluating the risk of post operative mortality in BAV and TAV patients, it is interesting to highlight that the only study¹⁹ providing an adjusted multivariate analysis showed that valve morphology did not impact on mortality rate. Moreover, similar findings have been confirmed by Roberts et al.^{37,39} by means of an unadjusted analysis. On the other hand, it is noteworthy to stress that 4 studies^{20,27,28,32} consistently highlighted that an increasing age was the main predictor of postoperative mortality. Overall, these evidences confirm and extend our data suggesting that the difference in mean age between BAV and TAV might, at least in part, explain the difference in postoperative mortality documented in these 2 groups. Indeed, when we have analyzed only studies on patients comparable for age, sex, hypertension, and diabetes, the differences in postoperative mortality rate between BAV and TAV patients were no longer significant. In addition, after

stratifying results according to study design, we found that differences between BAV and TAV patients were confirmed only by retrospective studies. Interestingly, all the differences between the 2 groups were no longer significant in prospective studies.

We recognize that our study has several potential limitations. The studies included in our meta-analysis have different inclusion and exclusion criteria with no clear definition of CAD. In addition, most of the patients included in the analysis had concomitant cardiovascular risk factors. Given that metaanalysis is performed on aggregate data and some missing information is present in each study, the multivariate approach allowed for the adjustment for some (but not all) potential confounders. Thus, although results of metaregression analyses were able to refine analyses by assessing the influence of most clinical and demographic variables on the observed results, caution is necessary in overall results interpretation. Moreover, heterogeneity among the studies was generally significant. Although it was not possible to conclusively ascertain sources of heterogeneity, publication bias did not affect results of our meta-analysis.

In conclusion, patients undergoing aortic valve replacement might represent a potential bias. Patients undergoing surgery are a subset of patients with BAV or TAV, and this could influence the results. This might limit the reproducibility of reported results. However, a large study⁴⁹ reporting on natural history of BAV and TAV patients not undergoing surgery confirmed the lack of difference in cardiovascular mortality between the 2 groups. In addition, the studies included analyzed not only aortic valve stenosis pathology, but also aortic valve regurgitation. However, in the studies analyzing both aortic valve pathologies,^{18,22,26,27,35} there are no significative differences between BAV and TAV groups.

A further potential confounder is represented by inclusion of studies analyzing patients' candidate for TAVI, who, besides the older age, have a greater prevalence of comorbidities. However, a subanalysis excluding these 3 studies 23,31,33 confirmed all our findings.

In conclusion, the results of the meta-analysis here presented shows that analysis of raw data clearly suggests an association of aortic valve morphology with prevalence of CAD, concomitant CABG, and postoperative mortality. Interestingly, differences in age and diabetes have a profound impact on prevalence of CAD and concomitant CABG between BAV and TAV patients. Thus, based on our analysis, BAV patients do not exhibit a lower risk of CAD compared to TAV patients. However, further studies or patient-level metaanalysis are needed to adjust results for potential confounders and definitely address this issue.

Author Contributions

Paolo Poggio and Matteo Nicola Dario Di Minno conceived and designed the study, performed statistical analysis, interpreted results, and drafted the manuscript; Laura Cavallotti, Paola Songia, Alessandro Di Minno, Pasquale Ambrosino, and Liborio Mammana acquired clinical data and drafted the manuscript; Alessandro Parolari and Elena Tremoli interpreted results and performed critical revisions. All authors read and approved the final version of the manuscript. Paolo Poggio and Matteo Nicola Dario Di Minno had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of data analysis.

Sources of Funding

This work was supported by the Fondazione Gigi e Pupa Ferrari ONLUS, the Italian Ministry of Health (RC2014 BIO61 and RC2015 BIO30), and the Fondazione Umberto Veronesi.

Disclosures

None.

References

- Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. *Lancet*. 2006;368:1005–1011.
- Osnabrugge RL, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM, Bogers AJ, Piazza N, Kappetein AP. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002– 1012.
- Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol. 2015;66:561–577.
- Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630–634.
- Patel DK, Green KD, Fudim M, Harrell FE, Wang TJ, Robbins MA. Racial differences in the prevalence of severe aortic stenosis. *J Am Heart Assoc.* 2014;3:e000879 doi: 10.1161/JAHA.114.000879.

- Chandra HR, Goldstein JA, Choudhary N, O'Neill CS, George PB, Gangasani SR, Cronin L, Marcovitz PA, Hauser AM, O'Neill WW. Adverse outcome in aortic sclerosis is associated with coronary artery disease and inflammation. J Am Coll Cardiol. 2004;43:169–175.
- Kizer JR, Wiebers DO, Whisnant JP, Galloway JM, Welty TK, Lee ET, Best LG, Resnick HE, Roman MJ, Devereux RB. Mitral annular calcification, aortic valve sclerosis, and incident stroke in adults free of clinical cardiovascular disease: the Strong Heart Study. *Stroke*. 2005;36:2533–2537.
- Olsen MH, Wachtell K, Bella JN, Gerdts E, Palmieri V, Nieminen MS, Smith G, Ibsen H, Devereux RB; substudy L. Aortic valve sclerosis relates to cardiovascular events in patients with hypertension (a LIFE substudy). *Am J Cardiol*. 2005;95:132–136.
- Jackson V, Eriksson MJ, Caidahl K, Eriksson P, Franco-Cereceda A. Ascending aortic dilatation is rarely associated with coronary artery disease regardless of aortic valve morphology. *J Thorac Cardiovasc Surg.* 2014;148:2973– 2980.e2971.
- Philip F, Faza NN, Schoenhagen P, Desai MY, Tuzcu EM, Svensson LG, Kapadia SR. Aortic annulus and root characteristics in severe aortic stenosis due to bicuspid aortic valve and tricuspid aortic valves: implications for transcatheter aortic valve therapies. *Catheter Cardiovasc Interv.* 2015;86:E88–E98.
- Roberts WC, Ko JM. Weights of operatively-excised stenotic unicuspid, bicuspid, and tricuspid aortic valves and their relation to age, sex, body mass index, and presence or absence of concomitant coronary artery bypass grafting. Am J Cardiol. 2003;92:1057–1065.
- Rylski B, Desai ND, Bavaria JE, Vallabhajosyula P, Moser W, Pochettino A, Szeto WY, Milewski RK. Aortic valve morphology determines the presentation and surgical approach to acute type A aortic dissection. *Ann Thorac Surg.* 2014;97:1991–1996; discussion 1996-1997.
- Boudoulas KD, Wolfe B, Ravi Y, Lilly S, Nagaraja HN, Sai-Sudhakar CB. The aortic stenosis complex: aortic valve, atherosclerosis, aortopathy. J Cardiol. 2015;65:377–382.
- Moher D, Liberati A, Tetzlaff J, Altman DG; Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Open Med.* 2009;3:e123–e130.
- Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA. 1999;282:1054–1060.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557–560.
- Sterne JA, Egger M, Smith GD. Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. *BMJ*. 2001;323:101–105.
- Abdulkareem N, Soppa G, Jones S, Valencia O, Smelt J, Jahangiri M. Dilatation of the remaining aorta after aortic valve or aortic root replacement in patients with bicuspid aortic valve: a 5-year follow-up. *Ann Thorac Surg.* 2013;96:43–49.
- Ali A, Patel A, Ali ZA, Abu-Omar Y, Freed D, Sheikh AY, Athanasiou T, Pepper J. Stentless aortic valve replacement in patients with bicuspid aortic valve disease: clinical outcome and aortic diameter changes during follow-up. *Eur J Cardiothorac Surg.* 2010;38:134–140.
- Asano M, Kunihara T, Aicher D, El Beyrouti H, Rodionycheva S, Schafers HJ. Mid-term results after sinutubular junction remodelling with aortic cusp repair. *Eur J Cardiothorac Surg.* 2012;42:1010–1015.
- Badiu CC, Eichinger W, Bleiziffer S, Hermes G, Hettich I, Krane M, Bauernschmitt R, Lange R. Should root replacement with aortic valve-sparing be offered to patients with bicuspid valves or severe aortic regurgitation? *Eur J Cardiothorac Surg.* 2010;38:515–522.
- Branchetti E, Bavaria JE, Grau JB, Shaw RE, Poggio P, Lai EK, Desai ND, Gorman JH, Gorman RC, Ferrari G. Circulating soluble receptor for advanced glycation end product identifies patients with bicuspid aortic valve and associated aortopathies. *Arterioscler Thromb Vasc Biol.* 2014;34:2349–2357.
- Costopoulos C, Latib A, Maisano F, Testa L, Bedogni F, Buchanan L, Naganuma T, Sticchi A, Sato K, Miyazaki T, Figini F, Giannini F, Taramasso M, Naim C, Carlino M, Chieffo A, Montorfano M, Alfieri O, Colombo A. Comparison of results of transcatheter aortic valve implantation in patients with severely stenotic bicuspid versus tricuspid or nonbicuspid valves. *Am J Cardiol.* 2014;113:1390–1393.
- Davies MJ, Treasure T, Parker DJ. Demographic characteristics of patients undergoing aortic valve replacement for stenosis: relation to valve morphology. *Heart*. 1996;75:174–178.
- Delius RE, Samyn MM, Behrendt DM. Should a bicuspid aortic valve be replaced in the presence of subvalvar or supravalvar aortic stenosis? *Ann Thorac Surg.* 1998;66:1337–1342.
- Eleid MF, Forde I, Edwards WD, Maleszewski JJ, Suri RM, Schaff HV, Enriquez-Sarano M, Michelena HI. Type A aortic dissection in patients with bicuspid aortic valves: clinical and pathological comparison with tricuspid aortic valves. *Heart*. 2013;99:1668–1674.

- Etz CD, von Aspern K, Hoyer A, Girrbach FF, Leontyev S, Bakhtiary F, Misfeld M, Mohr FW. Acute type A aortic dissection: characteristics and outcomes comparing patients with bicuspid versus tricuspid aortic valve. *Eur J Cardiothorac Surg.* 2015;48:142–150.
- Girdauskas E, Disha K, Borger MA, Kuntze T. Long-term prognosis of ascending aortic aneurysm after aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. *J Thorac Cardiovasc Surg.* 2014;147:276–282.
- Holubec T, Zacek P, Jamaliramin M, Emmert MY, Tuna M, Nedbal P, Dominik J, Harrer J, Falk V, Vojacek J. Valve cuspidity: a risk factor for aortic valve repair? *J Card Surg.* 2014;29:585–592.
- Hwang HY, Shim MS, Park EA, Ahn H. Reduction aortoplasty for the ascending aortic aneurysm with aortic valve disease. Does bicuspid valve matter? *Circ J.* 2011;75:322–328.
- 31. Kochman J, Huczek Z, Scislo P, Dabrowski M, Chmielak Z, Szymanski P, Witkowski A, Parma R, Ochala A, Chodor P, Wilczek K, Reczuch KW, Kubler P, Rymuza B, Koltowski L, Scibisz A, Wilimski R, Grube E, Opolski G. Comparison of one- and 12-month outcomes of transcatheter aortic valve replacement in patients with severely stenotic bicuspid versus tricuspid aortic valves (results from a multicenter registry). Am J Cardiol. 2014;114:757–762.
- Kvitting JP, Kari FA, Fischbein MP, Liang DH, Beraud AS, Stephens EH, Mitchell RS, Miller DC. David valve-sparing aortic root replacement: equivalent midterm outcome for different valve types with or without connective tissue disorder. J Thorac Cardiovasc Surg. 2013;145:117–126, 127.e111-115; discussion 126-117.
- 33. Liu XB, Jiang JB, Zhou QJ, Pu ZX, He W, Dong AQ, Feng Y, Jiang J, Sun Y, Xiang MX, He YX, Fan YQ, Dong L, Wang JA. Evaluation of the safety and efficacy of transcatheter aortic valve implantation in patients with a severe stenotic bicuspid aortic valve in a Chinese population. J Zhejiang Univ Sci B. 2015;16:208–214.
- Mosala Nezhad Z, de Kerchove L, Hechadi J, Tamer S, Boodhwani M, Poncelet A, Noirhomme P, Rubay J, El Khoury G. Aortic valve repair with patch in nonrheumatic disease: indication, techniques and durability[†]. *Eur J Cardiothorac Surg.* 2014;46:997–1005; discussion 1005.
- 35. Nakamura Y, Ryugo M, Shikata F, Okura M, Okamura T, Yasugi T, Izutani H. The analysis of ascending aortic dilatation in patients with a bicuspid aortic valve using the ratio of the diameters of the ascending and descending aorta. J Cardiothorac Surg. 2014;9:108.
- 36. Roberts WC, Ko JM, Filardo G, Henry AC, Hebeler RF Jr, Cheung EH, Matter GJ, Hamman BL. Valve structure and survival in quinquagenarians having aortic valve replacement for aortic stenosis (+/-aortic regurgitation) with versus without coronary artery bypass grafting at a single US medical center (1993 to 2005). Am J Cardiol. 2007;100:1584–1591.
- 37. Roberts WC, Ko JM, Filardo G, Henry AC, Hebeler RF Jr, Cheung EH, Matter GJ, Hamman BL. Valve structure and survival in septuagenarians having aortic valve replacement for aortic stenosis (+/-aortic regurgitation) with versus without coronary artery bypass grafting at a single US medical center (1993 to 2005). Am J Cardiol. 2007;100:1157–1165.

- Roberts WC, Ko JM, Garner WL, Filardo G, Henry AC, Hebeler RF Jr, Matter GJ, Hamman BL. Valve structure and survival in octogenarians having aortic valve replacement for aortic stenosis (+/- aortic regurgitation) with versus without coronary artery bypass grafting at a single US medical center (1993 to 2005). *Am J Cardiol.* 2007;100:489–495.
- Roberts WC, Ko JM, Filardo G, Henry AC, Hebeler RF Jr, Cheung EH, Matter GJ, Hamman BL. Valve structure and survival in sexagenarians having aortic valve replacement for aortic stenosis (+/-aortic regurgitation) with versus without coronary artery bypass grafting at a single US medical center (1993 to 2005). *Am J Cardiol.* 2007;100:1286–1292.
- Shim CY, Cho IJ, Yang WI, Kang MK, Park S, Ha JW, Jang Y, Chung N. Central aortic stiffness and its association with ascending aorta dilation in subjects with a bicuspid aortic valve. J Am Soc Echocardiogr. 2011;24:847–852.
- 41. Stephan PJ, Henry AC III, Hebeler RF Jr, Whiddon L, Roberts WC. Comparison of age, gender, number of aortic valve cusps, concomitant coronary artery bypass grafting, and magnitude of left ventricular-systemic arterial peak systolic gradient in adults having aortic valve replacement for isolated aortic valve stenosis. *Am J Cardiol.* 1997;79:166–172.
- Warner PJ, Al-Quthami A, Brooks EL, Kelley-Hedgepeth A, Patvardhan E, Kuvin JT, Heffernan KS, Huggins GS. Augmentation index and aortic stiffness in bicuspid aortic valve patients with non-dilated proximal aortas. *BMC Cardiovasc Disord*. 2013;13:19.
- Yuan SM, Jing H, Lavee J. The bicuspid aortic valve and its relation to aortic dilation. *Clinics (Sao Paulo)*. 2010;65:497–505.
- 44. Otto CM. Calcification of bicuspid aortic valves. Heart. 2002;88:321-322.
- Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization of the early lesion of 'degenerative' valvular aortic stenosis. Histological and immunohistochemical studies. *Circulation*. 1994;90:844–853.
- 46. Capoulade R, Clavel MA, Dumesnil JG, Chan KL, Teo KK, Tam JW, Cote N, Mathieu P, Despres JP, Pibarot P. Impact of metabolic syndrome on progression of aortic stenosis: influence of age and statin therapy. J Am Coll Cardiol. 2012;60:216–223.
- 47. Shibayama K, Harada K, Berdejo J, Tanaka J, Mihara H, Itabashi Y, Shiota T. Comparison of aortic root geometry with bicuspid versus tricuspid aortic valve: Real-time three-dimensional transesophageal echocardiographic study. J Am Soc Echocardiogr. 2014;27:1143–1152.
- 48. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KF, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O'Brien KD, Kamstrup PR, Nordestgaard BG, Tybjaerg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Sjogren M, van der Pals J, Kalsch H, Muhleisen TW, Nothen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong O, Erbel R, Kathiresan S, Melander O, Gudnason V, O'Donnell CJ, Post WS. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–512.
- Roberts WC, Vowels TJ, Filardo G, Ko JM, Mathur RP, Shirani J. Natural history of unoperated aortic stenosis during a 50-year period of cardiac valve replacement. *Am J Cardiol.* 2013;112:541–553.

SUPPLEMENTAL MATERIAL

Impact of Valve Morphology On the Prevalence of Coronary Artery Disease:

A Systematic Review and Meta-Analysis

Figure S1.Distribution of major clinical and demographic characteristics in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).(A) sex, (B) age, (C) hypertension, (D) diabetes, (E) hyperlipedimia, (F) BMI and (F) smoking.

A: Sex

	BA\	/	TAV	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Abdulkareem 2013	137	192	127	203	7.8%	1.49 [0.98, 2.27]	
Ali 2010	71	90	73	125	5.4%	2.66 [1.43, 4.94]	 -
Badiu 2010	11	11	58	91	0.4%	13.17 [0.75, 230.70]	
Boudoulas 2015	68	95	97	175	6.3%	2.03 [1.18, 3.46]	
Branchetti 2014	48	74	43	61	4.4%	0.77 [0.37, 1.60]	-+
Costopoulos 2014	12	21	212	447	3.3%	1.48 [0.61, 3.58]	- +
Eleid 2013	36	47	40	53	3.2%	1.06 [0.42, 2.67]	
Etz 2015	23	32	221	347	3.9%	1.46 [0.65, 3.25]	- -
Girdauskas 2014	112	153	82	172	7.1%	3.00 [1.88, 4.78]	
Holubec 2014	49	60	27	40	3.1%	2.14 [0.85, 5.44]	<u>+</u>
Hwang 2011	27	45	21	43	3.6%	1.57 [0.68, 3.66]	-+
Jackson 2014	215	292	248	355	8.9%	1.20 [0.85, 1.70]	+
Kochman 2014	13	28	40	84	3.5%	0.95 [0.40, 2.25]	
Kvitting 2013	50	63	115	170	4.7%	1.84 [0.92, 3.67]	
Liu 2015	9	15	17	25	1.7%	0.71 [0.19, 2.67]	
Mosala-Nezhad 2014	28	30	15	20	1.1%	4.67 [0.81, 27.01]	+
Nakamura 2014	13	17	31	59	2.0%	2.94 [0.86, 10.06]	+
Roberts 2003	167	232	137	267	8.5%	2.44 [1.68, 3.54]	
Rylski 2014	26	41	377	588	5.0%	0.97 [0.50, 1.87]	-+-
Shim 2011	39	50	39	50	3.0%	1.00 [0.39, 2.58]	
Stephan 1997	33	57	31	57	4.3%	1.15 [0.55, 2.42]	- -
Warner 2013	6	10	10	13	1.0%	0.45 [0.07, 2.74]	
Yuan 2010	186	241	144	225	8.0%	1.90 [1.27, 2.85]	
Total (95% CI)		1896		3670	100.0%	1.61 [1.33, 1.94]	•
Total events	1379		2205				
Heterogeneity: Tau ² = 0	.07: Chi ² :	= 36.66	df = 22	P = 0.0)3); I ² = 40	1%	
Test for overall effect: Z							0.01 0.1 1 10 10
			,				Favours BAV Favours TAV

B: Age

	Expe	erimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Abdulkareem 2013	58	14	192	65	16	203	5.5%	-7.00 [-9.96, -4.04]	
Ali 2010	63	12	90	70	12	125	5.4%	-7.00 [-10.25, -3.75]	
Asano 2012	46.3	14.5	86	70	8.4	58	5.4%	-23.70 [-27.45, -19.95]	
Boudoulas 2015	62	13	95	71	10	175	5.5%	-9.00 [-12.00, -6.00]	
Branchetti 2014	55.5	13	74	64.4	11	61	5.3%	-8.90 [-12.95, -4.85]	
Costopoulos 2014	76.7	7.1	21	79.8	7.4	447	5.4%	-3.10 [-6.21, 0.01]	
Eleid 2013	58	14	47	66	13	53	5.1%	-8.00 [-13.32, -2.68]	
Etz 2015	46.7	13	32	61.6	12	347	5.2%	-14.90 [-19.58, -10.22]	
Girdauskas 2014	54	11	153	64	7	172	5.6%	-10.00 [-12.03, -7.97]	
Hwang 2011	59.6	11.3	45	58.3	12.1	43	5.2%	1.30 [-3.60, 6.20]	
Kochman 2014	77.6	5.5	28	79.1	6.8	84	5.5%	-1.50 [-4.00, 1.00]	
Kvitting 2013	43	12	63	36	13	170	5.4%	7.00 [3.45, 10.55]	
Liu 2015	75.4	5.7	15	75.8	5.5	25	5.4%	-0.40 [-4.00, 3.20]	
Mosala-Nezhad 2014	42	10	30	59	13.5	20	4.8%	-17.00 [-23.91, -10.09]	
Nakamura 2014	70	7	17	77	7	59	5.4%	-7.00 [-10.78, -3.22]	
Philip 2015	57	8	200	78	8	200	5.6%	-21.00 [-22.57, -19.43]	÷-
Shim 2011	52	14	50	52	14	50	5.1%	0.00 [-5.49, 5.49]	
Warner 2013	46.5	11.6	10	46.3	15.1	13	3.9%	0.20 [-10.71, 11.11]	
Yuan 2010	56.1	15.1	241	62.8	14.7	225	5.5%	-6.70 [-9.41, -3.99]	
Total (95% CI)			1489			2530	100.0%	-7.29 [-11.17, -3.41]	•
Heterogeneity: Tau ² = 6	i9.35; Ch	i² = 47	9.06, di	f = 18 (F	, < 0.0	0001);	I² = 96%		
Test for overall effect: Z									-50 -25 0 25 Favours BAV Favours TAV

C: Hypertension

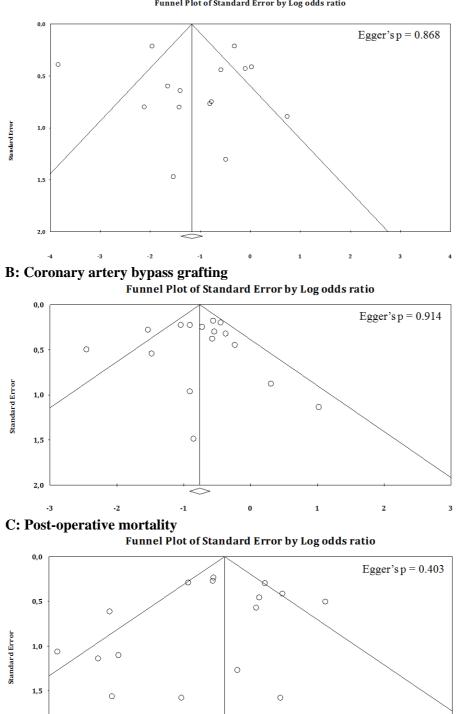
	BAV	/	TA\	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Ali 2010	28	90	40	125	5.6%	0.96 [0.54, 1.72]	_ - _
Badiu 2010	5	11	63	91	3.9%	0.37 [0.10, 1.32]	
Boudoulas 2015	70	95	87	175	5.7%	2.83 [1.64, 4.88]	
Branchetti 2014	23	74	26	61	5.3%	0.61 [0.30, 1.23]	
Costopoulos 2014	14	21	345	447	4.7%	0.59 [0.23, 1.50]	
Eleid 2013	32	47	46	53	4.5%	0.32 [0.12, 0.89]	-
Etz 2015	15	32	250	347	5.2%	0.34 [0.16, 0.71]	_
Girdauskas 2014	74	153	98	172	5.9%	0.71 [0.46, 1.10]	
Holubec 2014	27	60	30	40	4.9%	0.27 [0.11, 0.66]	_
Hwang 2011	20	45	10	43	4.8%	2.64 [1.05, 6.62]	
Jackson 2014	149	292	265	355	6.1%	0.35 [0.25, 0.49]	
Kochman 2014	17	28	55	84	4.8%	0.81 [0.34, 1.97]	
Kvitting 2013	23	63	44	170	5.5%	1.65 [0.89, 3.05]	- -
Liu 2015	5	15	14	25	3.7%	0.39 [0.10, 1.49]	
Nakamura 2014	10	17	47	59	4.2%	0.36 [0.11, 1.16]	
Philip 2015	47	200	153	200	5.8%	0.09 [0.06, 0.15]	- - -
Rylski 2014	23	41	477	588	5.4%	0.30 [0.16, 0.57]	_
Shim 2011	20	50	25	50	5.1%	0.67 [0.30, 1.47]	
Warner 2013	5	10	5	13	3.0%	1.60 [0.30, 8.49]	
Yuan 2010	74	241	94	225	6.0%	0.62 [0.42, 0.90]	
Total (95% CI)		1585		3323	100.0%	0.58 [0.39, 0.87]	◆
Total events	681		2174				
Heterogeneity: Tau ² =	0.67; Chi	i ^z = 138	3.10, df=	19 (P <	0.000013); I² = 86%	
Test for overall effect:			•	· - •			0.005 0.1 1 10 200 Favours BAV Favours TAV

D: Diabetes

	BAV	/	TA\	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Ali 2010	5	90	14	125	4.8%	0.47 [0.16, 1.35]	- _
Badiu 2010	0	11	4	91	0.8%	0.85 [0.04, 16.74]	
Boudoulas 2015	31	95	47	175	10.5%	1.32 [0.77, 2.27]	- + =
Branchetti 2014	4	74	8	61	3.7%	0.38 [0.11, 1.32]	- _+
Costopoulos 2014	6	21	135	447	5.5%	0.92 [0.35, 2.43]	
Eleid 2013	4	47	6	53	3.4%	0.73 [0.19, 2.76]	
Etz 2015	0	32	32	347	0.9%	0.15 [0.01, 2.50]	
Girdauskas 2014	17	153	27	172	8.9%	0.67 [0.35, 1.29]	-++
Holubec 2014	6	60	7	40	4.1%	0.52 [0.16, 1.69]	
Hwang 2011	3	45	4	43	2.6%	0.70 [0.15, 3.31]	
Jackson 2014	33	292	53	355	11.8%	0.73 [0.46, 1.16]	
Kochman 2014	11	28	29	84	6.2%	1.23 [0.51, 2.96]	
Kvitting 2013	3	63	4	170	2.7%	2.08 [0.45, 9.54]	
Liu 2015	0	15	3	25	0.8%	0.21 [0.01, 4.30]	
Nakamura 2014	3	17	12	59	3.1%	0.84 [0.21, 3.40]	
Philip 2015	21	200	63	200	10.5%	0.26 [0.15, 0.44]	
Rylski 2014	4	41	54	588	4.8%	1.07 [0.37, 3.11]	
Shim 2011	6	50	4	50	3.4%	1.57 [0.41, 5.93]	 +•
Warner 2013	1	10	1	13	0.8%	1.33 [0.07, 24.32]	
Yuan 2010	26	241	35	225	10.5%	0.66 [0.38, 1.13]	-•+
Total (95% CI)		1585		3323	100.0%	0.71 [0.54, 0.93]	•
Total events	184		542				
Heterogeneity: Tau ² =	0.11; Chi	≈ = 28.3	34, df = 1	9 (P = (0.08); I^z =	33%	0.005 0.1 1 10 200
Test for overall effect:				-			0.005 0.1 1 10 200 Favours BAV Favours TAV
							Favours BAV Favours TAV

E: Hyperlipidemia

	BAV		TAV	/		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Ali 2010	11	90	21	125	10.0%	0.69 [0.31, 1.51]	+ -
Badiu 2010	1	11	33	91	6.5%	0.18 [0.02, 1.43]	
Boudoulas 2015	61	95	60	175	10.5%	3.44 [2.04, 5.80]	
Branchetti 2014	20	74	26	61	10.2%	0.50 [0.24, 1.03]	
Eleid 2013	23	47	26	53	10.0%	1.00 [0.45, 2.18]	_ + _
Hwang 2011	1	45	1	43	4.9%	0.95 [0.06, 15.76]	
Nakamura 2014	6	17	20	59	9.2%	1.06 [0.34, 3.30]	
Philip 2015	43	200	157	200	10.6%	0.08 [0.05, 0.12]	
Shim 2011	10	50	14	50	9.7%	0.64 [0.25, 1.63]	e
Warner 2013	4	10	6	13	7.7%	0.78 [0.15, 4.13]	
Yuan 2010	58	241	56	225	10.7%	0.96 [0.63, 1.46]	
Total (95% CI)		880		1095	100.0%	0.65 [0.28, 1.51]	-
Total events	238		420				
Heterogeneity: Tau ² =	1.67; Chi	² = 124	l.99, df=	10 (P <	0.00001)); I² = 92%	
Test for overall effect:	•						0.005 0.1 1 10 200 Favours BAV Favours TAV


F: BMI

	Expe	rimen	tal	Control		1	Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Costopoulos 2014	26.6	4.4	21	26.1	4.6	447	26.6%	0.50 [-1.43, 2.43]	+	
Kvitting 2013	26	16	63	24	15	170	7.5%	2.00 [-2.55, 6.55]		
Liu 2015	23.6	4.8	15	21.7	3.1	25	17.1%	1.90 [-0.82, 4.62]		
Shim 2011	24.7	2.9	50	25.2	2.7	50	43.0%	-0.50 [-1.60, 0.60]		
Warner 2013	30.1	6.8	10	25.8	5.8	13	5.7%	4.30 [-0.96, 9.56]	+	
Total (95% CI)			159			705	100.0%	0.64 [-0.69, 1.97]	•	
Heterogeneity: Tau ² = 0.75; Chi ² = 6.09, df = 4 (P = 0.19); l ² = 34% -1 -1 -1 Test for overall effect: Z = 0.95 (P = 0.34) -50 -25 0 25 50 Favours BAV Favours TAV -50 -25 0 25 50										

G: Smoking habit

U	BA\	/	TAV		Odds Ratio			Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	m, 95% Cl	
Boudoulas 2015	53	95	48	175	15.1%	3.34 [1.98, 5.64]				
Branchetti 2014	32	74	12	61	12.8%	3.11 [1.42, 6.79]				
Eleid 2013	11	47	7	53	10.5%	2.01 [0.71, 5.70]		+		
Etz 2015	5	32	37	347	10.7%	1.55 [0.56, 4.27]		-+	•	
Girdauskas 2014	55	153	69	172	15.7%	0.84 [0.53, 1.31]			-	
Hwang 2011	12	45	4	43	9.1%	3.55 [1.04, 12.04]		ŀ		
Nakamura 2014	6	17	24	59	9.9%	0.80 [0.26, 2.44]				
Shim 2011	16	50	21	50	12.5%	0.65 [0.29, 1.47]			_	
Warner 2013	1	10	3	13	3.7%	0.37 [0.03, 4.23]	_	•		
Total (95% CI)		523		973	100.0%	1.52 [0.90, 2.59]			•	
Total events	191		225							
Heterogeneity: Tau? = 0.41: Chi? = 27.49. df = 8 (P = 0.0006); l? = 71%										
Test for overall effect: Z = 1.56 (P = 0.12) 0.005 0.1 1 10 200 Favours BAV Favours TAV								200		

Figure S2.Funnel plots of effect size versus standard error for studies evaluating the prevalence of coronary artery disease (A), coronary artery bypass grafting (B), postoperative mortality (C) in patients with bicuspid (BAV) and tricuspid aortic valve (TAV).

A: Coronary artery disease

2,0 -3

-2

-1

0

Log odds ratio

1

2

3

Funnel Plot of Standard Error by Log odds ratio

Outcome	Number of studies	Effect size		
CAD	15 studies 1,163 BAV and 2,234 TAV	OR: 0.33, 95% CI: 0.17, 0.65, p = 0.001		
CABG	16 studies 1,782 BAV and 1,886 TAV	OR: 0.45, 95% CI: 0.35, 0.59, p < 0.001		
Mortality	16 studies 1067 BAV and 2399 TAV	OR: 0.62, 95% CI: 0.40, 0.97, p = 0.04		
Age	19 studies 1489 BAV and 2530 TAV	MD: -7.29, 95%CI: -11.17, -3.41, p < 0.001		
Male gender	23 studies 1896 BAV and 3670 TAV	OR: 1.61, 95% CI: 1.33, 1.94, p < 0.001		
Hypertension	20 studies 1585 BAV and 3323 TAV	OR: 0.58, 95% CI: 0.39, 0.87, p < 0.001		
Diabetes	20 studies 1585 BAV and 3323 TAV	OR: 0.71, 95%CI: 0.54, 0.93, p = 0.01		
Hyperlipidemia	11 studies 880 BAV and 1095 TAV	OR: 0.65, 95% CI: 0.28, 1.51, p = 0.32		
BMI	5 studies 159 BAV and 705 TAV	MD: 0.64, 95%CI: -0.69, 1.97, p = 0.34		
Smoking habit	9 studies 523 BAV and 973 TAV	OR: 1.52, 95% CI: 0.90, 2.59, p = 0.12		

CAD: coronary artery disease; CABG: Coronary artery bypass grafting; BMI: body mass index; BAV: bicuspid aortic valve; TAV; tricuspid aortic valve; OR: odds ratio; MD: mean difference; 95% CI: 95% confidence intervals