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between two polarizing elements and we extract the translational diffusion coefficient DT and the
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emulsion of droplets of liquid crystal in a nematic phase, whose roto-translational dynamics is
found to be well described by theory. The simplicity of our approach makes our method a viable
alternative to particle tracking and depolarized dynamic light scattering.
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1. Introduction

Dispersions of colloidal particles in a liquid are among the most studied soft condensed
matter systems for both fundamental science and industrial applications [1]. The dynamics of
these dispersions has been traditionally studied with a wide portfolio of methods that include
Video Particle Tracking (VPT), Dynamic Light Scattering (DLS), and Fluorescence Correlation
Spectroscopy (FCS) [2, 3]. All these methods enable characterizing the translational dynamics of
the particles and, when the particles are non-spherical or optically anisotropic, also their rotational
ones. In particular, Depolarized Dynamic Light Scattering (DDLS) is the extension of DLS that
relies on the fact that anisotropic particles alter the state of polarization of light that impinges on
them [2, 4, 5]: if the dispersion is placed between cross-polarizers, fluctuations in the scattering
intensity are observed not only when the particles translate but also when they rotate. The study
of these intensity fluctuations enable accessing both the translational and the rotational diffusion
coefficients of the particles. These two quantities can be used to size the colloidal particles or, if their
size is known, to probe the viscoelastic properties of the hosting medium, the so called microrheology
[6, 7]. This application of Brownian motion as probe of the translational and rotational degrees
of freedom appears particularly intriguing in view of the translational–rotational decoupling that
occurs in several systems ranging from colloidal crystals, glasses and gels [8–10] to supercooled
fluids with dynamic heterogeneity [11, 12].

Recently, a novel technique named Differential Dynamic Microscopy (DDM) was proposed for
the quantification of the translational diffusion coefficient of arbitrarily small colloidal particles
[13, 14]. DDM is based on using a commercial optical microscope equipped with a camera instead
of a more expensive and dedicated DLS laser setup. Being based on the time analysis of spatial
Fourier transforms of real-space images, DDM opens to a space-resolved investigation of the sample
dynamics with obvious advantages for spatially heterogenous systems [15]. Extending DDM to the
measurement of rotational diffusion would be extremely important for both sizing and microrheology
applications since rotational diffusion depends cubically on the particle size, in contrast with the
linear dependence exhibited by translational diffusion. This stronger dependence implies a larger
sensitivity to particle size in sizing applications and to the forces exerted by the medium on the
particles in microrheological ones.

Here we demonstrate that polarized-DDM (p-DDM), basically DDM with the addition of two
polarizing elements [16], enables a very simple and accurate characterization of the translational and
rotational diffusion of optically anisotropic particles dispersed in water. We provide a self-contained
theoretical description of the problem and we discuss in detail the optical conditions under which p-
DDM can be applied and provides meaningful results. Finally, we discuss the connection of p-DDM
with related methods aimed to characterize rotational diffusion of colloidal particles [17–19].

2. Theory

In this Section we will describe the theoretical framework needed to plan, execute and interpret
microscopy experiments with optically anisotropic particles for the extraction of quantitative
information on their roto-translational dynamics. Our analysis is based on three main pillars:
(i) a recent extension by Degiorgio et al. [20] of the scattering theory from optically anisotropic
particles [2]; (ii) a modification of the analysis in Ref. [14] to include polarization effects in the
description of DDM experiments; (iii) the identification of a suitable experimental geometry for
p-DDM experiments.
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Scattering from optically anisotropic uniaxial particles

An optically anisotropic uniaxial particle is described by a polarizability tensor that admits a
diagonal form with elements α1, α2 and α3 with α2 = α1. The anisotropy parameter is defined as
β = α3−α1. If such particle is dispersed in a solvent of refractive index ns then its average (excess)
polarizability is α = 2α1+α3

3 − V
(
n2
s − 1

)
, where V is the particle volume. When illuminated by

a plane wave A0(z) = E0e
−jkz of wave-number k, this particle emits a scattered field that, in

addition to the component EV V that is parallel to E0, also bears a perpendicular component EV H .
Following Van de Hulst [21], one has:

EV V = SV V
e−jkr+jkz

jkr
A0(z) (1)

and

EV H = SV H
e−jkr+jkz

jkr
A0(z) (2)

where the dimensionless amplitudes SV V and SV H are functions of the scattering angle θs measured
with respect to the incident direction z, and depend upon the orientation of the particle.

According to standard treatment [2], in the Rayleigh-Gans approximation (weakly-scattering
particles) and for small scattering angles, the scattering amplitudes SV V and SV H are given by the
following expressions:

SV V = jk3α+ jk3β

√
16π

45
Y2,0(θ, ϕ) (3)

SV H = jk3β

√
2π

15
j [Y2,−1(θ, ϕ) + Y2,1(θ, ϕ)] (4)

that are written in terms of the the spherical harmonic function Yl,m(θ, ϕ) of order l, m. We
note that both SV V and SV H are purely imaginary quantities, which implies that the scattered field
in the forward direction (and in the far -field of the particle) is in quadrature with the transmitted
field. An immediate consequence of this fact is that it is not possible to observe interference of the
forward scattered light with the transmitted beam. This prevents the so-called heterodyne detection
of scattering signal from these particles, unless special experimental precautions are taken. A simple
and elegant solution to this problem is the one proposed in Ref.[5], where the authors insert in the
collection arm between the sample and the analyzing element a quarter-wave plate having the
fast axis parallel to the axis of the polarizer, enabling thereby the interference of transmitted and
scattered light.

Very recently, it has been pointed out by Degiorgio et al. in Ref.[20], that Eqs. 3, 4 are not
compatible with the energy conservation as expressed by the optical theorem [21], as they do not
account for the effect of radiation reaction. The self-consistent treatment in Ref.[20] leads to the
following modified expressions, accurate up to the second order in k3α:

SV V =

(
jk3α+

2

3
k6α2 +

4

27
k6β2

)
+

[
jk3β +

2

9
k6
(
α2
3 − α2

1

)]√16π

45
Y2,0(θ, ϕ) (5)

SV H =

[
jk3β +

1

3
k6
(
α2
3 − α2

1

)]√2π

15
j [Y2,−1(θ, ϕ) + Y2,1(θ, ϕ)] (6)
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Compared to Eqs. 3 and 4, new terms arise for both SV V and SV H . These new terms are
purely real and ensure the existence of a component of the scattered field that is in phase with the
transmitted field. Whether the amplitude of such component becomes measurable in practice in
experiments depends on the mismatch between the average polarizability of the particle and the
polarizability of the solvent, as expressed by Eqs. 5 and 6 [22]. The result of Degiorgio et al. [20] is
relevant for the experiments described here, since in this configuration DDM is in fact a heterodyne
scattering technique [15, 23]. Our description will thus make use of the more accurate expressions
for SV V and SV H given by Eqs. 5 and 6.

Microscopy of optically anisotropic uniaxial particles: real space

When a collection of such particles is observed with a microscope, the image formation process can
be described within the general framework of Ref. [14], where the image formation is treated as a
linear space-invariant process. Within this model, the coherence properties of the light source, the
details of the collection optics and the intrinsic scattering properties of the sample determine an
effective three-dimensional (3D) point-spread function (PSF) K(x, z). The microscope image I(x)
can be thus obtained as a weighted sum of all the contributions that are originated by the different
layers of the sample, each layer being described by a transmittance function t(x, z) ≡ E(x,z+dz)

A0(z)
.

Here, as above, A0(z) is the incident field that impinges on the layer and E(x, z + dz) is the total
field (scattered + transmitted) emerging from the layer.

Optically isotropic particles In Ref. [14], this summation was performed for a collection of identical
particles described by the same scattering amplitude a = aA + jaP . Under the assumption of a
weakly scattering sample, the relation t(x, z) = 1 + a · c(x, z)dz/k2 holds, where

c(x, z) =
∑
n

δ(x− xn)δ(z − zn) (7)

is the number density of particles and dz is the layer thickness. The resulting expression for the
normalized intensity distribution reads

s(x, t) =
I − I0
I0

=

ˆ ˆ ˆ
dx′dz′K(x− x′,−z′)c(x′, z′, t) (8)

where I0 is the average intensity in the image and where we have considered the time-dependence
in the particles positions. In Eq. 8, the scattering amplitude a is incorporated in the effective PSF
that can be written as K = aATAF + jaPTPF , where TAF and TPF are the PSF for amplitude
and phase objects, respectively [14]. Phase objects are those for which scattering is in quadrature,
whereas for amplitude objects scattering is in phase with the transmitted field. In general, an
optically isotropic particle acts in a mixed way, altering both the amplitude and the phase of light
[21]. This suggests to rewrite Eq. 8 as

s(x, t) =
´ ´ ´

dx′dz′TAF (x− x′,−z′)cA(x
′, z′, t)+

+j
´ ´ ´

dx′dz′TPF (x− x′,−z′)cP (x
′, z′, t)

(9)

where cA = aAc and cP = aP c can be thought of as densities associated to the scattering
amplitude of particles that scatter in phase and in quadrature with the transmitted beam,
respectively. Being the scattering amplitude a identical for all particles, the above-reported
equations are not immediately applicable as it is to optically anisotropic particles, unless they
are all oriented along the same direction.
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Figure 1. Sketch of the experimental setup used for p-DDM experiments. Unpolarized light
emitted by a source (not shown) is polarized by using a polarized element oriented in the vertical
(V) direction. Vertically polarized light interacts with the suspension, in which the optical axis
(represented as a red line) of each particle is randomly oriented. As a consequence, the light
emerging from the sample also bears a horizontally polarized component. A second polarizing
element (analyser) oriented at an angle γ with respect to the vertical direction is used to filter the
light scattered by the sample. A time-lapse acquisition of images in this configuration is acquired
and used to perform an imaging-based depolarized dynamic light scattering experiment (see text
for details).

Optically anisotropic particles However, this difficulty can easily be bypassed by defining the
densities cA and cP in a way that accounts for the possible different orientation of each particle
with respect to the incident polarization. We consider for definiteness the experimental setup
sketched in Fig. 1, where the illumination beam is polarized along the vertical direction and the
light transmitted and scattered by the sample passes through an analyzer rotated by an angle γ
with respect to the vertical direction. In these conditions the transmittance function for a sample
layer of thickness dz is defined as t(x, z) ≡ E(x,z+dz)

A0(z) cos γ
. Here E(x, z+dz) is now the projection along

the analyzer of the total field (scattered + transmitted) emerging from the layer, and cos γ is a
geometrical correction that ensures t(x, z) = 1 if no scatterers are present within the layer. Use of
Eqs. 1 and 2 leads thus again to Eq.9 where now

cA(x, z, t) = ℜ [cV V (x, z, t) + cV H(x, z, t) tan γ] (10)

cP (x, z, t) = ℑ [cV V (x, z, t) + cV H(x, z, t) tan γ] (11)

and where the newly introduced quantities

cV V (x, z, t) =
∑
n

SV V (θn(t), ϕn(t))δ(x− xn(t))δ(z − zn(t)) (12)
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cV H(x, z, t) =
∑
n

SV H(θn(t), ϕn(t))δ(x− xn(t))δ(z − zn(t)) (13)

can be thought of as densities associated to the scattering amplitude of polarized and depolarized
scattering. It is interesting to note that the case of optically isotropic particles can be obtained as a
special case with SV V =

(
jk3α+ 2

3k
6α2
)

and SV H = 0. This leads to cA = 2
3k

6α2c and cP = k3αc,
which agrees with the analysis in Ref. [14], provided that aA = 2

3k
6α2 and aP = k3α.

Microscopy of optically anisotropic uniaxial particles: Fourier space

The two-dimensional (2D) Fourier transform ŝ(q, t) =
´
s(x, t)e−jq·xdx of the normalized intensity

distribution in Eq. 9 reads

ŝ(q, t) =

ˆ
dqzT̃AF (q, qz)c̃A(q, qz, t) + j

ˆ
dqzT̃PF (q, qz)c̃P (q, qz, t) (14)

where the symbol □̂ is used from hereon to indicate the 2D Fourier transform of the
corresponding quantity and the symbol □̃ is used for the 3D Fourier transform. Starting from
Eq. 14 it is possible to calculate the (non-normalized) image intermediate scattering function
Fi(q,∆t) = ⟨ŝ∗(q, 0)ŝ(q,∆t)⟩ [15]. A relatively simple expression for Fi(q,∆t) can be obtained as
shown in Appendix for a dilute suspension of non-interacting spherical particles of radius R in the
small-q limit, where the axial dynamics does not substantially affect the image correlation function
[14, 24] and one has

Fi(q,∆t) ≃
[
A′

1(q)e
−DT q2∆t +A′

2(q)e
−(DT q2+6DR)∆t

]
(15)

where detailed expression for the amplitudes A′
1/2(q) are provided in Appendix. In Eq. 15, the

coefficients DR = kBT
8πηR3 and DT = kBT

6πηR are the the Stokes-Einstein predictions for the rotational
and translational diffusion coefficient, respectively, where kB is the Boltzmann constant, T the
absolute temperature and η the viscosity of the solvent.

The image intermediate scattering function in Eq. 15 can be also written in its normalized
version

fi(q,∆t) =
Fi(q,∆t)

Fi(q, 0)
= f1(q)e

−Γ1(q)∆t + f2(q)e
−Γ2(q)∆t (16)

where we have defined Γ1(q) = DT q
2 + 6DR, Γ2(q) = DT q

2, f1(q) = A′
1(q)/(A

′
1(q) + A′

2(q))
and f2(q) = A′

2(q)/(A
′
1(q) + A′

2(q)), with f1 + f2 = 1. The dynamics of the suspension is thus
described by two modes with relative amplitude f1 and f2 and different rates. We note that fi has
exactly the same form of the intermediate scattering function which is expected for a heterodyne
DDLS experiment [2] and, similarly to DDLS, the q-resolved study of the two modes allows the
simultaneous determination of both DT and DR.

3. Materials and methods

3.1. Sample synthesis and preparation

The sample is an aqueous suspension of spherical particles with a polymerized nematic liquid
crystal core [19, 25–27]. The optical birefringence typical of the nematic phase makes the particles
optically anisotropic with a uniaxial symmetry. The particles used in this study have been prepared
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according to the protocol described in Ref.[25] by emulsification of the liquid crystal (RM257, Merck)
in water at a temperature of 80° C, in which the phase is nematic. With a UV lamp the photo-
initiator Darocur 1173 (Ciba), initially added to the solution, is activated and allows the RM257
to polymerize in order to create droplets with a nematic core where the liquid crystal is confined
in an axial configuration. After this procedure, the particles are consistently polydisperse. The
degree of polydispersity is then reduced by using a method that makes use of iterated liquid-solid
colloidal phase transitions induced by attractive depletion interactions [28]. After this procedure the
final mass fraction of the dispersion is (2.4± 0.1)× 10−2. To determine the particle hydrodynamic
radius we dilute the sample to a final mass fraction (1.1± 0.1)× 10−5, by adding deionized water
of resistivity 20 MΩ cm. The dilute suspension is loaded into a capillary tube (Vitrocom Inc.) with
rectangular section and thickness along the optical axis equal to 50 µm. The sample temperature is
kept at 20.0±0.1 °C for the whole duration of the experiments by means of a commercial microscope
hot stage (Instec HCS302). At this temperature, the viscosity of the solvent is η = 1.02± 0.02 mPa
ů s. A first characterization of the particles is obtained with particle tracking performed on bright
field movies (100 fps) that provides an average hydrodynamic radius of 191 ± 7 nm. On the same
sample we also performed p-DDM measurements, as described in the following.

3.2. Polarized differential dynamic microscopy (p-DDM)

The particles in suspension are imaged by using a Nikon Eclipse Ti-E commercial microscope
equipped with a Hamamatsu Orca Flash 4.0 v2 camera. We used a microscope objective with
magnification M = 20X and numerical aperture NA = 0.4. The pixel size after magnification and
2× 2 binning is equal to 0.645 µm. With respect to standard DDM, where no polarizing elements
are used, here we sandwich the sample between two polarizers that are mutually oriented at an
angle γ = 75 ° (p-DDM configuration). A sequence of N = 100000 square images I(x, t) is acquired
with a frame rate r = 800 fps. Here x = (x, y), the z axis is oriented along the microscope optical
axis and the time variable can assume only discrete values that are integer multiples of 1/r. Each
image is obtained with exposure time texp = 1.2 ms and has Npix = 128 pixels per side.

A representative image acquired in the described condition is shown in Fig. 2a. For comparison,
in Fig. 2b a bright-field image of the same sample is also reported. As it can be appreciated also
from the supplementary movie M1, while the translational dynamics of the particles is well captured
in both configuration, only in the polarized set-up the rotational dynamics produces a clear signal,
in the form of an intermitted blinking of the intensity associated to each particle. Once acquired and
saved on disk, an image sequence is analyzed as in standard DDM. For each time delay ∆t = k/r
of interest, with k = 1, ...., N − 1 the difference signal d(x, t0,∆t) = [I(x, t+∆t)− I(x, t)] /I0 is
calculated and its spatial Fourier power spectrum is computed by using a Fast Fourier Transform
(FFT) routine. In the presence of stationary or quasi-stationary statistical processes, an average
over power spectra with the same ∆t but different reference time t0 is obtained, which increases
the statistical accuracy of the data. This leads to the so called image structure function (ISF)

di(q,∆t) =
⟨
|FFT [D(x, t0,∆t)]|2

⟩
t0

(17)

that captures the dynamics of the sample as a function of the two-dimensional scattering wave-
vector q and of the delay time ∆t. The ISF is connected to the (normalized) intermediate scattering
function fi(q,∆t) [2] by the relation

di(q,∆t) = 2A′(q) [1− fi(q,∆t)] + 2B(q) (18)
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Figure 2. (a) Bright-field image of a suspension of optically anisotropic particles. (b) Image of
the same sample observed between polarizers mutually oriented at 75°. The scale bar corresponds
to 50 µm. In both cases a background image, obtained as the average of a stack of 100000 images,
was subtracted to eliminate static contributions. See also Supplementary Movie M1 for a dynamic
comparison of the two imaging conditions.

where B(q) is a term that accounts for the camera noise and A′(q) is an amplitude term that
contains information about the static scattering from the sample and details about the imaging
system [15]. As described in Section 2, the intermediate scattering function is given by Eq. 16 and
A′(q) = A′

1(q) + A′
2(q). Here, due to the random orientation of the particles with respect to the

polarizing elements, the ISF di(q,∆t) bears a circular symmetry and we can perform azimuthal
averaging of the data to increase the statistical accuracy at each q =

√
q2x + q2y, as previously done in

other cases [13, 14, 29–33]. We note however that this is not a general rule and the two-dimensional
nature of the ISF provides in general a powerful way to inspect the dynamics along directions in
the q plane that are of particular interest for the problem under study [16].

4. Results and discussion

We report in Fig. 3 the intermediate scattering functions obtained with p-DDM for some
representative values of the scattering wave-vector q. As expected from Eq. 16, the observed
relaxation exhibits two different decays for all values of q. In principle, fitting of these curves
to Eq. 16 provides estimates for Γ1(q) = DT q

2 + 6DR, Γ2(q) = DT q
2, and for the two

amplitudes fj(q), with j = 1, 2. However, we find that the dynamics is not fully captured
by a sum of two simple-exponential decays, as it would be expected for the roto-translational
diffusion of a collection of identical particles. In the presence of a moderate size polydispersity,
as in our case, it is usual to replace the single-exponential decay e−Γ∆t with the expansion
e−Γ̄∆t

[
1 + µ2

2! (∆t)
2 − µ3

3! (∆t)
3
+ ...

]
, where µn =

´ (
Γ− Γ̄

)n
G(Γ)dΓ are the central moments of

the normalized distribution G(Γ) of the decay rates [34]. This form for the intermediate scattering
function is such that the mean value Γ̄ of G(Γ) provides an estimate for the average decay rate and
µ2/Γ̄

2, the normalized variance of G(Γ), provides an estimate for the width of the distriibution and
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Figure 3. Symbols: intermediate scattering function f(q,∆t) obtained in the polarized
microscopy experiment for different wave vectors q = 0.38, 0.60,1.06, 1.81, 3.93 µm−1. Continuous
lines: best fitting curves with the model function given in Eq. 19.

in turn for the sample polydispersity. Using this expansion for both the terms in Eq. 16 we obtain

fpol(q,∆t) = f1e
−Γ1∆t

[
1 +

µ
(1)
2

2! ∆t2 − µ
(1)
3

3! ∆t3
]
+

+(1− f1) e
−Γ2∆t

[
1 +

µ
(2)
2

2! ∆t2 − µ
(2)
3

3! ∆t3
]
,

(19)

where for notational simplicity we indicate as Γ1 and Γ2 the (average) decay rates associated
to the two terms. In Fig. 4 we report the results obtained for Γ1(q) and Γ2(q) with blue squares
and orange circles, respectively.

Fitting our data to the theoretical expressions Γ1(q) = DT q
2 + 6DR, and Γ2(q) = DT q

2

provides the best estimates DT = 1.14± 0.02 µm2/s and DR = 25.1± 1.0 s−1 for the translational
and rotational diffusion coefficients, respectively. By using these values for the diffusion coefficient
in the Stokes-Einstein relations for translational and rotational motion, we obtain similar radii,
R = 185± 5 nm and R = 185± 3 nm, respectively. Alternatively, it is possible to use the viscosity-
and temperature-independent relationship DT

DR
= 4

3R
2 [4] to obtain R = (185 ± 4) nm. All these

values are in good agreement with the result R = 191± 7 nm obtained by VPT .
To probe translational diffusion without contributions from the rotational dynamics, we also

performed experiments with bright-field DDM i.e. without any polarizers. For these experiments
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Figure 4. Decorrelation rates obtained from the fit of the structure functions obtained in
the polarized (blue squares and orange circles) and bright-field (yellow triangles) microscopy
experiments with the model functions given, respectively, in Eq, 19 and 20. Squares and circles
represents the decorrelation rates Γ1(q) and Γ2(q), respectively (see Eq. 19). Triangles represent
the decorrelation rate Γ3(q) (see Eq.20 ). The continuous line is the best fit of Γ1(q) in the form
6DR +DT q2 , leading to DR = 25.1± 1.0 s−1. DT was kept fixed to the value DT = 1.14± 0.02
µm2/s obtained from the fit of Γ2(q) with a function of the form DT q2 (dashed line). The best
fit of Γ3 with the same functional form provides DT = 1.18± 0.02 µm2/s (dotted line).

N = 40000, Npix = 128, texp = 1.2 ms and r = 100 fps. For all q we find that the intermediate
scattering functions are well described by a single-decay, once again well captured by the expansion

fbf (q,∆t) = e−Γ3∆t

(
1 +

µ
(3)
2

2!
∆t2 − µ

(3)
3

3!
∆t3

)
(20)

and the extracted decay rate Γ3(q) is shown in Fig. 4 (yellow triangles). Fitting of our data
to the expression Γ3(q) = DT q

2 gives DT = 1.18± 0.02 µm2/s and R = 179± 5 nm, in agreement
with the value extracted with p-DDM and also compatible with the result R = 191±7 nm obtained
by VPT .

The consistency of our results can be checked by inspecting the polydispersity index µ2/Γ̄
2,

whose q-dependence is shown in Fig. 5 for both p-DDM (blue squares and orange circles) and
bright-field DDM (yellow triangles) experiments. As expected, the mean value 0.11 ± 0.03 of the
polydispersity index associated to roto-translational diffusion (blue squares) is larger than the ones
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Figure 5. Polydispersity index, defined as the ratio of the second term of the cumulant expansion
κ2(q) and the square of first cumulant Γ(q) of the exponential decays given in 19 (p-DDM) and 20
(bright-field DDM). Blue squares and orange circles are obtained with p-DDM and are associated
with the first and the second exponential decay in Eq. 19, respectively; continuous and dashed
lines correspond to the respective mean values. Yellow triangles are obtained with bright-field
DDM and are associated with the single decay in Eq. 20. The corresponding average value is
represented as a dotted line.

extracted from the analysis of translational motion in both p-DDM (orange circles) and bright-
field DDM (yellow triangles), which have compatible mean values: 0.02 ± 0.01 and 0.035 ± 0.010,
respectively. In fact, taking into account that in the explored low-q regime: Γ1 ∝ DR ∝ R−3,
while Γ2 = Γ3 ∝ DT ∝ R−1, it follows immediately and in agreement with our data that the
polydispersity index associated to the rate Γ1 (i.e. to rotational diffusion in our q-range) should be
nine times larger than the ones associated to the rates Γ2 and Γ3 (i.e. to translational diffusion).

In our working conditions, we can estimate that the fractional attenuation of the transmitted
intensity due to scattering amounts to t = 1.85 × 10−5, as estimated from the integral of the
scattering intensity. We also performed measurements in the concentration interval 5×10−6 < ϕ <
5× 10−5 (data not shown). While dynamics in such a dilute regime does not show any significant
dependence on volume fraction, we find that, as expected, t scales linearly with volume fraction,
t = 1.65ϕ. A conservative estimate of the maximum volume fraction ϕmax for which multiple
scattering effects can be safely neglected is obtained as the volume fraction where the transmitted
intensity is attenuated by 1%. In this study, this attenuation value is found at ϕmax = 0.5%.
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Our results show that p-DDM allows an effective determination of the roto-translational
diffusion of spherical, optically anisotropic particles. It is interesting to compare our approach with
recently proposed Digital Fourier Microscopy methods, used for similar purposes [17–19]. Coherent
laser light illumination was used both in the seminal work in Ref. [17] and more recently in Ref.
[19]. In both cases, a near field scattering setup with optical polarizers was employed successfully
to characterize rod-like particles [17] and spherical particles with an optically anisotropic core [19].
While the analysis in Ref. [19] was based on calculating the structure function similarly to what is
done in the present work, in Ref. [17] the dynamics was too fast to be captured with a pixel-based
detector and a time-exposure scheme was adopted. In both studies, the dynamics of the particles
was successfully assessed at the expense of building a specialized optical setup, which might restrict
the use of such methods to those laboratories where an optics expertise is available. By contrast, our
p-DDM approach is based on a commercial microscope and no prior knowledge of advanced optics
is needed for their use. Another difference between p-DDM and near field scattering is that in the
latter a laser light source is employed while in the former, sample illumination is obtained with a
halogen lamp, whose degree of spatial and temporal coherence can be adjusted with diapraghms and
filters. Reducing the light source coherence might help with longer acquisitions, in which laser-based
setups usually exhibit tedious time-dependent interference fringes that can impair the success of the
measurement [23]. In Ref. [18] the authors have shown that traditional DDM can be used to recover
the rotational diffusion coefficient of single optically anisotropic Janus particles but, owing to the
peculiar nature of the sample, the study was performed without optical polarizers. This was made
possible by the use of large particles (above the diffraction limit) made of two different materials,
which become visible because of differential absorption. This approach cannot be easily translated
to particles that are arbitrarily small or whose optical anisotropy is not based on absorption. Also,
the authors in Ref. [18] treat the translational motion as a disturbance that can cause difficulties
in data analysis. Our approach overcomes both difficulties, along the lines that were also suggested
in Ref.[18]. Finally, p-DDM could be adapted to be used with particles whose optical asymmetry
is more complex than uniaxial [2] and also with particles exhibiting shape anisotropy, such as for
instance bacteria. In the latter case, however, the signal would be in general smaller than the one
originated by particles with a strong optical anisotropy such as the ones used in this work.

5. Conclusions

We have demonstrated polarized differential dynamic microscopy, a method based on a commercial
microscope that allows the simultaneous characterization of the translational and rotational
diffusion coefficients of optically anisotropic particles. Compared to particle tracking, p-DDM is
less subject to artifacts arising from the image processing but at the same time is less effective in
obtaining information at the single particle level. With respect to DDLS, p-DDM is currently less
sensitive to small colloidal particles, whose scattering cross section scales in the Rayleigh regime
as R6 [21], but we expect that such gap will be reduced as more sensitive pixel detectors are
made available. On the other hand, we envision applications in which p-DDM may even result
more suitable than DDLS. For instance, it has been shown that the rotational motion of seed
particles in laminar or turbulent flows can be used as a probe of the local fluid vorticity [35]. In
this respect, DDLS can easily access the rotational dynamics of an ensemble of small particles but
in most cases of interest the shear gradients occurr over a distance that is too large compared
with the particle size. If the size of the particles is increased, the roto-translational relaxation rate
Γ1(q) = DT q

2+6DR = DT q
2
[
1 + 9

2
1

(qR)2

]
, is mainly set by translational diffusion unless the second
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term on the r.h.s. becomes dominant. In practice, once the particle radius R is chosen, this implies
that one needs to probe the dynamics at small enough q (such that qR < 1), a challenging feat for
DDLS experiments. This is not the case for p-DDM that naturally probes the dynamics of large
particles for small q,with the added bonus of its space-resolving capability. For all these reasons,
we envision that p-DDM will be a valid complement rather than a replacement for both DDLS and
particle tracking.
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Appendix A. Derivation of Eq. 15

Aim of this Appendix is deriving Eq. 15, starting from the definition Fi(q,∆t) = ⟨ŝ∗(q, 0)ŝ(q,∆t)⟩
[15] and from Eq. 14. Under quite general assumptions on the symmetry of the optical system,
T̃AF (q, qz) is an even function of both q and qz, while T̃PF is an even function of q and an odd
function of qz [14]. We can make use of these symmetries to obtain

Fi(q,∆t) =
´
dqz|T̃AF (q, qz)|2FAA(q, qz,∆t)+

+
´
dqz|T̃PF (q, qz)|2FPP (q, qz,∆t)

(A.1)

where we have introduced the (non-normalized) intermediate scattering functions
FA(q, qz,∆t) = ⟨c̃∗A(q, qz, 0)c̃A(q, qz, t)⟩ and FP (q, qz,∆t) = ⟨c̃∗P (q, qz, 0)c̃P (q, qz, t)⟩ for amplitude
and phase, respectively. Using Eqs. 5, 6, 11 and 10, we can rewrite Eq. A.1 as a function of the
particles positions and orientations. If the particles are spherical, as in the case of our experiment,
even in presence of non-negligible inter-particle interactions, the orientations of the optical axes of
different particles are uncorrelated [2] and one gets⟨

Y ∗
2,m(θn1(0), ϕn1(0))Y2,m′(θn2(∆t), ϕn2(∆t))

⟩
= δn1,n2δm,m′

1

4π
FR(∆t) (A.2)

where FR(t) is a rotational correlation function [4]. The spatial correlation properties of the
sample can be described in terms of the collective and self- dynamic structure factors, which are
defined as:

FS(q, qz,∆t) =
1

N

∑
n

⟨
e−jq·[xn(∆t)−xn(0)]e−jqz [zn(∆t)−zn(0)]

⟩
(A.3)

FC(q, qz,∆t) = ⟨ĉ(q, qz, 0)ĉ∗(q, qz,∆t)⟩ =
= 1

N

∑
n1,n2

⟨
e−jq·[xn1 (∆t)−xn2 (0)]e−jqz[zn1 (∆t)−zn2 (0)]

⟩ (A.4)

Making use of the these definitions, we can recast Eq. A.1 in the form

Fi(q,∆t) =
´
dqzA1(q, qz)P (q, qz)FC(q, qz,∆t)+

+
´
dqzA2(q, qz)P (q, qz)FS(q, qz∆t)FR(∆t)

(A.5)
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where we have explicitly introduced the form factor P (q, qz) of the particles and where A1 and
A2 are two new effective transfer functions associated to the collective translational diffusion and
to the self- roto-translational diffusion, respectively:

A1 =
(
k3α

)2 |TP |2 +
(
2

3
k6α2 +

4

27
k6β2

)2

|TA|2 (A.6)

A2 =
4

45

(
k3β

)2(
1 +

3

4
tan2 γ

)
|TP |2+

16

3645

[
k6
(
α2
3 − α2

1

)]2(
1 +

27

16
tan2 γ

)
|TA|2(A.7)

A relatively simple expression for A1 and A2 can be obtained for the case of a dilute suspension
of non-interacting particles. In this case FR(t) = e−6DRt, where the DR is the Stokes-Einstein
rotational diffusion coefficient and FC(q, t) = FS(q, t) = e−DT q2∆t, where DT is the Stokes-Einstein
rotational diffusion coefficient. Moreover, as discussed in [14, 24] for Brownian particles, the axial
dynamics does not substantially affect the image correlation functions. In the low-q regime, Eq.
A.5 can be approximated with its 2D form:

Fi(q,∆t) ≃ P (q)
[
A′

1(q)e
−DT q2∆t +A′

2(q)e
−(DT q2+6DR)∆t

]
(A.8)

where A′
1/2(q) =

´
dqzA1/2(q, qz).

—————–
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