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Abstract
Ochratoxin A (OTA)—a toxin produced by Aspergillus carbonarius, Aspergillus ochraceus,
and Penicillium verrucosum—is one of themost-abundant food-contaminating mycotoxins. To

avoid the risk of OTA consumption for humans and animals, the rapid detection and quantita-

tion of OTA level in different commodities are of great importance. In this work, an impedimetric

immunosensor for ochratoxin A (OTA) detection, a common toxic botanical contaminant, was

developed via the immobilization of anti-OTA antibody on bovine serum albuminmodified gold

electrodes. A four-step reaction protocol was tested to modify the gold electrode and obtain

the sensing substrate. All the steps of the immunosensor elaboration and also the immuno-

chemical reaction between surface-bound antibody and ochratoxin A were analyzed using

cyclic voltammetry and electrochemical impedance spectroscopy. Modification of the imped-

ance due to the specific antigen-antibody reaction at immunosensor surface, was used in

order to detect ochratoxin A. Linear proportionality of the charge transfer resistance to the con-

centration of OTA allows ochratoxin A detection in the range of 2.5–100 ng/mL.

Introduction
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus ochraceus, Aspergilius niger and
Penicillium verrucosum, found as contaminants of a variety of food, such as cereals, coffee
beans, beans, grapes and dried fruit. OTA is one of the most toxic and widespread compound
from the ochratoxins group [1,2].

Studies have shown that OTA can have specific toxicological effects such as nephrotoxic, tera-
togenic, neurotoxic, hepatotoxic and immunotoxic, and it is believed to cause increased oxidative
stress at a cellular level [3,4]. The concerns about OTA contamination determined different
research groups to develop high-performance detection techniques for quality assessment.
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Fourty years ago, OTA was identified as a corn contaminant in USA, being produced by
Penicillium viridicatum wrestling. Ever since, OTA has been found through the whole world:
in regions with cold and temperate climate it is produced by Penicillium verrucosum and by
Aspergillus carbonarius and also in regions with hot and tropical climate, where it is produced
by Aspergillus ochraceus. Penicillium verrucosum is the specific fungi of stocked cereals, while
Aspergillus ochraceus is the most common champignon of the green coffee, spices, cocoa, soya,
peanuts, rice and Aspergillus carbonarius is contaminant of grapes [5]. Even though crop fungi
contamination can take place pre and post-harvest, OTA synthesis is believed to be performed
during the storage period. The mechanism of the OTA biosynthesis by different fungi and the
coding genes are not well known. It is clear that OTA production depends on the toxicogenic
power of the strains but also on the common practices during the food processing. For exam-
ple, prevention of OTA production in the cereals is achieved by controlling the humidity con-
ditions during the filling of the grain elevator and during storage, knowing that a water activity
higher than 0.8 (aw) is favorable to the development of Penicillium verrucosum. OTA contami-
nation of grapes in the wine yards is explained only by the fruit damages made by insects or by
the harvest devices, because, by default, Aspergillus strains are not pathogenic for the wine yard
itself.

Analytical methods for OTA quantification follow the same steps as the ones for the quanti-
fication of mycotoxins: sampling and sample preparation, extraction, purification (clean-up),
separation and detection. European Commission regulation No. 401/2006 from 23 February
2006 lays down the methods of sampling and analysis used for the official control of the
amount of mycotoxins in foodstuffs. The separation methods are coupled with the detection
technique that is sensitive enough to fulfill the legally imposed limits, but they require sample
extraction and clean-up and they are rather expensive and demand specially trained personnel.
Specific clean-up methods includes immunoaffinity columns [6,7]. After this step, HPLC was
recommended in order to detect the occurence of ochratoxin in food commodities: coffee, pep-
per, chili, prickly ash, cinnamon, aniseed, fennel, curry powder and cumin [7–9].

Chemical and enzymatic assays were used with success in small-molecule detection [10],
but nowadays the immunoassays are considered novel screening methods which provide sensi-
tive detection and can be used by non-specialists under field conditions. Although there is a
great emphasis on their selectivity, the main drawback is still their cross-reactivity. Scientific
literature indicated that false-negative results are rarely reported, but false-positive results are
more frequent and depend on several factors like temperature, pH, sample viscosity or ionic
strength [11]. Without sample clean-up or extraction before the testing, matrix effects might be
expected leading to significant overestimation of mycotoxin concentration, especially in colori-
metric detection when color samples are tested. Therefore, positive results should be confirmed
with the conventional analytical methods to avoid misinterpretations.

Electrochemical sensors and biosensors are an alternative solution due to their design and
method of detection. For example, OTA was detected using square wave voltammetry at a
glassy carbon electrode (GeE) [12]. Limit of detection of this assay was of 0.02 μg/kg and the
sensor was used for the detection of OTA extracted from wine sample using antibody modified
magnetic nanoparticles.

A biosensor for the detection of OTA was designed via the immobilization of HRP on screen
printed carbon electrode (SPCE) using a polypyrrole matrix [13].

Immunosensors have also been developed for effective and fast screening of OTA in food-
stuffs. These are based on a variety of detection techniques such as electrochemical [14,15],
optical (e.g surface plasmon resonance [16], optical waveguide light-mode spectroscopy tech-
nique [17], fluorescence [18,19] etc) and acoustic methods (quartz crystal microbalance immu-
nosensors [20]).

Functionalized Gold Electrodes for OTA Detection
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Kinetics and mechanisms of electron-transfer processes that correspond to the biocatalytic
reaction occurring at modified electrodes and also interfacial properties changes of modified
electrodes [21,22], such as those linked to biorecognition events involving antibody–antigen
binding, at modified surfaces [23] can be analyzed with the powerful tool of electrochemical
impedance spectroscopy (EIS).

Electrochemical detection systems seem most promising thanks to their high sensitivity, fea-
sibility of low cost, low endogenous background, compatibility with portability and
miniaturization.

Several reviews have been published on the use of EIS in biosensors [24,25]. Using EIS
method, there were monitored the changes in the electrical properties at the (bio)sensors inter-
face.These changes can be associated with specific binding events due to the recognition
between an analyte and a ligand. Antibodies and more recently, aptamers [26,27], have been
used as biorecognition elements in biosensors with EIS detection. Literature data indicated EIS
methods for ochratoxin detection from different matrices (Table 1).

In this work, an impedimetric immunosensor for the detection of ochratoxin A was developed
via the immobilization of the anti-OTA antibody gold electrodes previously modified with a
cross-linked film of bovine serum albumin. A four-step reaction protocol was tested in order to
modify the gold electrode and obtain the sensing substrate. All the steps of the immunosensor
elaboration and also immunochemical reaction between surface-bound antibody and ochratoxin
A were analyzed using cyclic voltammetry and electrochemical impedance spectroscopy. Modifi-
cation of the impedance appeared at immunosensor surface due to the specific antigen-antibody
reaction was used in order to detect ochratoxin A. Specifically, the increase of the electron-transfer
resistance (Rct) at the interface was correlated with OTA concentration in the range of interest.

Materials and Methods

Materials and reagents
Gold printed electrode DRP-250AT was purchased from DS Dropsens (Spain). The electrodes
(SPCEs) incorporate a conventional three-electrode configuration, which comprises a disk-

Table 1. Sensors used for ochratoxin A detection.

Type of biosensor Methods used to characterize the
electrodes

Linear range Detection limit (and other
parameters)

Refe-
rences

Highly sensitive and reusable electrochemical
impedimetric aptasensor

CV, EIS 1.25 ng/L—500
ng/L

0.25 ng/L [28]

Direct competitive immunosensor the substrate the p-benzoquinone
generated enzymatically was
detected by differential-pulse
voltammetry

in wines was of 0.11 ± 0.01
ng/L

[29]

A Langmuir-Blodgett (polyaniline (PANI)-stearic
acid (SA)) film based highly sensitive and robust
impedimetric aptasensor

SEM, FTIR, CV, EIS, contact angle
measurements

0.1 ng/mL -10 ng/
mL, and 1 μg/mL-

25 μg/mL

0.1 ng/ml in 15 min can be
reused*13 times

[30]

A self-assembled monolayer (SAM) of 11-amino-
1-undecanethiol (AUT) has been fabricated onto a
gold (Au) substrate to co-immobilize anti-
ochratoxin-A antibodies (AO-IgGs) and bovine
serum albumin (BSA)

SEM, CV, DPV, EIS over 0.5–6.0 ng/dL 0.08 ng/dL using 3σb/m
criteria, response time of 30 s,
regression coefficient of 0.999

[31]

Nanostructured zinc oxide (Nano-ZnO) film has
been deposited onto indium-tin-oxide (ITO) glass
plate for co-immobilization of rabbit-
immunoglobulin antibodies (r-IgGs) and bovine
serum albumin (BSA)

XRD, FTIR, SEM, EIS 0.006–0.01nM/dm3 0.006 nM/dm3, response time
as 25s, regression coefficient
of 0.997

[32]

doi:10.1371/journal.pone.0160021.t001
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shaped Au working electrode (1.6 mm diameter, 0.0196 cm2 geometrical area), Au counter
electrode and silver pseudo-reference electrode.

N-Hydroxysuccinimide (NHS—PubChem CID: 80170), N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide (EDC—PubChem CID: 15908), potassium ferrocyanide (K4Fe(CN)6—Pub-
Chem CID: 71309461), potassium ferricyanide (K3Fe(CN)6—PubChem CID: 26250), Ochratoxin
A (PubChem CID: 442530) were purchased from Sigma–Aldrich, St. Louis (USA). Bovine serum
albumin (BSA) Crystalized 100% was purchased fromMann Research Laboratories Division of
Becton Dickinson & Co NY (USA) andmonoclonal antibody anti-Ochratoxin A from Novus
Biologicals (Canada). Acetic acid (PubChem CID: 176), sodium acetate trihydrate (PubChem
CID: 23665404), acetonitrile (PubChem CID: 6342), sulphuric acid (PubChem CID: 1118) and
ethanolamine (PubChem CID: 700) were purchased from Chemical Company, Iasi (Romania).

Buffers and solutions
Acetate buffer pH 5.6, comprising of 0.1 M acetic acid and 0.1 M sodium acetate was prepared
using distilled deionized water. BSA 5 mg/mL in acetate buffer and antibody solution 5 μg/mL
in acetate buffer were prepared.

A solution containing 0.1 M KCl, 5 mM K3[Fe(CN)6] and 5 mM K4[Fe(CN)6] was used in
cyclic voltammetry and electrochemical impedance spectroscopy measurements. Blocking
buffer solution consisted of ethanolamine 0.1 M in water and NHS and EDC solution were also
prepared in deionized water.

OTA 5 mg/mL was diluted in different concentration in acetate buffer.

Apparatus
An Autolab PGSTAT100 Eco Chemie (Netherlands) potentiostat was used to carry out the
impedance spectra at 10 mV sinusoidal ac potential perturbation in the frequency range from
104 to 10−1 Hz, superimposed on +0.178 V dc potential, that is the potential of the ferrocya-
nide/ferricyanide couple [Fe(CN)6]4−/3−. The spectra were taken in 1mM ferrocyanide/ferricy-
anide solution (1:1 mixture) in 0.1M KCl as background electrolyte at room temperature. All
the measurements were performed in a solution of The FRA 4.9 software calculates and records
the real and imaginary parts of electrochemical impedance (Z’ and Z”) together with the phase
and represents them in Nyquist and Bode diagrams.

EIS using the classic ferricyanide/ferrocyanide redox probe was frequently used for quanti-
tation of various molecules with biosensors, including with real samples. A few recent examples
for ochratoxin A were included in Table 1. The ionic strength of the solution was always the
same and controlled by the composition of the electrolyte. All measurements were done in 5
mM potassium ferri/ferrocyanide in 0.1M KCl, before and after incubation with the standard
or sample solution, as indicated in Experimental-Solutions and Buffers section.

Based upon the principles of electrochemical spectroscopy, the equivalent electric circuit
that best fits the experimental data was found and optimum electrical parameters were
obtained: electrical resistance of the solution, charge transfer resistance, constant phase ele-
ment andWarburg impedance. For each modified electrode, the impedance spectra were
recorded before and after incubation with the standard or sample solution. The variation in the
Rct following incubation with standard/sample was calculated as ΔRct = Rct(after)-Rct(before)
and was correlated with the concentration of aflatoxin in the sample.

Electrode modification and immobilization of the antibodies
Before modification, Dropsens gold electrode have been subjected to electrochemical pretreat-
ment by applying 10 potential cycles between -0.3 and +1.5 V / pseudo silver reference

Functionalized Gold Electrodes for OTA Detection
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electrode with 100 mV/s scan rate in 0.5 M H2SO4 solution until the voltammogram character-
istic for a clean Au surface was obtained.

The clean gold electrode was first modified using BSA/EDC/NHS, creating a cross-linked
film that prevents the non-specific binding of OTA on gold, and allows further covalent attach-
ment of antibody. Electrode modification was performed as described by Polonschii et al. [33],
5 mg/ mL BSA (50 μL), 20 μL of 0.4M EDC and 20 μL of 0.1 M NHS were mixed and allowed
to stand 5 minutes at room temperature. Afterwards, 10 μL of this mixture were evenly spread
on the working electrode and allowed to stand at room temperature for 30 minutes in a humid
atmosphere. The electrode was rinsed with a lot of water and dried in air.

Next, the terminal carboxylic groups on BSA film were activated by dropping 10 μL of a 1:1 mix-
ture of EDC/NHS onto the sensor surface, allowing the reaction to proceed, allowing it to react for
40 min at room temperature in a humid dark room. The electrode surface was rinsed after each
step thoroughly with copious amounts of water for removing the unboundmaterial. After this, the
antibody anti-OTA immobilization was done by covering the modified electrode surface with a
10 μL droplet of the 5 μg/mL antibody solution in acetate buffer, allowing it to react in a water-satu-
rated atmosphere for 1 h at room temperature. After incubation the electrode was rinsed in water to
remove unbound antibodies and 75 μL ethanolamine 1M solution was drop cast onto the modified
surface and incubated 15 min with the aim to deactivate the remaining succinimide groups and also
to block unreacted active sites. These modified electrodes can then be stored dry several days at 4°C
without a decrease in the sensitivity, or they can be subjected to immunochemical reaction.

A schematic representation of the analytical principle of this electrochemical immunoassay
is shown in Fig 1.

For the OTA measurement, 10 μL of either sample or OTA standard solutions of different
concentrations in acetate buffer pH 5.6 were pipetted onto the working electrode area and
allowed to stand at room temperature for 45 min in a humid atmosphere (to prevent evapora-
tion). The immunosensor was rinsed with a large amount of water before the electrochemical
measurements.

Parameters such as the incubation time and the amount of antibody/electrode were opti-
mized to obtain good analytical characteristics, appropriate for Ochratoxin A detection in real
samples.

Results and Discussion

Electrochemical measurements
We have performed Faradic electrochemical impedance spectroscopy measurements using the
classic redox probe ferricyanide/ferrocyanide, at the formal potential of this reversible redox

Fig 1. Schematic outline of the electrochemical immunosensor for OTA determination.

doi:10.1371/journal.pone.0160021.g001
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couple, in order to induce the slightest possible perturbation in the system, as was recom-
mended by Bard and Faulkner [34].

Fig 2A displays the Nyquist impedance spectra recorded upon the stepwise process of elec-
trode modification, providing specific information on the barrier properties and the changes at
the interface sensor-solution throughout the biosensor building process. The bare gold elec-
trode showed an extremely small semicircle domain (black curves), implying a very low elec-
tron-transfer resistance of the redox probe.

After the grafting of the BSA film on the electrode, Rct increased significantly (red curves),
due to the deposition on the electrode surface of an organic layer with negatively charged ter-
minal carboxylic groups COO− (the isoelectric point of BSA being 4.7).

Fig 2. A) EIS Nyquist spectra of each modification electrode step, at 10 mV sinusoidal ac potential
perturbation, 104 to 10−1 Hz frequency, ferricyanide/ferrocyanide redox couple and B) Equivalent electric
circuit.

doi:10.1371/journal.pone.0160021.g002
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The protein layer acts as a physical and an electrostatic barrier for the [Fe(CN)6]
4−/3−

anions, preventing redox probe to reach the electrode surface and slowing down the electron
transfer kinetic between the probe and the electrode. Similar approaches were also used by
Radi and colab. [26]. Next, antibodies were covalently immobilized onto the BSA modified
electrode and a remarkable drop in the Rct was observed (blue curves) because the negative
charge of BSA- modified electrode is partly neutralized by the covalent attachment of the anti-
body. Afterwards, the Rct increased when the sensor was used for OTA detection (magenta
curves), as the OTA binding to surface-bound antibody created an additional barrier to the
electron transfer at the interface.

Variants of equivalent electrical circuits were tested before choosing the most appropriate
circuit for our experimental curves from Fig 2A. For this circuit, by using the facilities of FRA
4.9 software, we analysed each individual response for each experimental step and we consid-
ered the data where we obtained the low Chi-square values. The impedance data were fitted to
equivalent circuit shown in the Fig 2B that includes the solution resistance (Rs), the charge
transfer resistance (Rct), the constant phase element (Q) and the Warburg impedance element
(W).

Ideally, W and Rs represent the properties of the electrolyte and diffusion features of the
redox probe in this solution and they are not affected by modifications at the electrode surface.
Q value depends very much on the dielectric properties of the layer that separates the electrode
surface and the ionic charges, the thickness of the separation layer and surface area of the elec-
trode. A large increase in the Q value was noted when bare Au electrode was covered with
BSA-EDC-NHS layer, whereas a Q decrease was observed upon further attachment of the anti-
body or of OTA to the sensor interface.

Rct value depends on the insulating properties at the electrolyte/electrode interface. Rct

changes were much larger than those in other impedance components, and thus Rct can be
considered an adequate signal for the determination of the interfacial properties for the pre-
pared immunosensor.

The experiments were run in triplicated and statistical analysis was used. Table 2 shows the
average values of equivalent circuit parameters for all the steps of the immunosensor elabora-
tion and also for the immunochemical reaction between ochratoxin A and its antibody.

EIS is a sensitive tool for monitoring affinity interactions at surfaces, but particularly due to
this high sensitivity it is highly recommended to confront the impedance results with other
electrochemical techniques (cyclic voltammetry, linear swept voltammetry or differential pulse
voltammetry), and to record a good parallel control of the samples [35].

It was observed that our results are consistent with the cyclic voltammetry curves shown in
Fig 3A.

The cyclic voltammograms of soluble electroactive species provide a convenient tool for
monitor the various stages of the immunosensor building on gold electrode. The CV-s were
performed after all the step of electrode modification and also after toxin adding on electrode
surface. Fig 3A shows the CV-s in solution of 5 mM ferricyanide in 0.1 M KCl, 100 mV/s scan
rate, for initial gold electrode, BSA/EDC/NHS modified electrode, antibody anti-OTA/BSA/

Table 2. Averages values of the equivalent circuit parameters for various steps of the immunosensor.

Modification Rs (Ω cm2) Q (10−6μF) n Rct (Ω cm2) W (10−6 Ω cm2)

Bare electrode 4.10 142 0.92 1.267 806

BSA-cross linked film 4.52 513 0.85 413 635

Anti-OTA Antibody 4.29 238 0.88 157 683

OTA 10 ng/mL 3.97 122 0.86 307 724

doi:10.1371/journal.pone.0160021.t002
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Fig 3. A) CVs of the sample at 0.1 V/s scan rate in ferricyanide/ferrocyanide redox couple, after each step of
the immunosensor build-up and B) OTA calibration curve.

doi:10.1371/journal.pone.0160021.g003
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EDC/NHS modified electrode and after formation of immunochemical complex on the surface
of the anti-OTA/BSA/EDC/NHS modified electrode after 15 ng/mL OTA solution addition.

The cyclic voltammograms are strongly affected by the deposited layers, the difference
between the anodic and cathodic peak potentials does not remained constant, whereas the
peak current modifies significantly. It can be seen initial the characteristic quasireversible
redox cycle for a bare Au electrode and after its functionalization with BSA/EDC/NHS, the
electron transfer between the redox probe and electrode surface was severely affected and an
obvious decreasing of the anodic and cathodic peaks was observed. After the Ab immobiliza-
tion on the functionalized electrode surface, the peak currents of the redox couple of ferricya-
nide/ferrocyanide increases again. Immunochemical reaction of OTA molecules with the
antibody film determined a decrease in the Faradaic response. It was observed also an increase
in the peak-to-peak separation between the cathodic and anodic waves of the redox probe,
indicating that the electron-transfer kinetics of ferricyanide/ferrocyanide is obstructed. All the
observations are in accordance with results of EIS analyses about studied electrodes and these
two techniques allow a good parallel control of the samples [35].

To evaluate the immunochemical reaction between antibody anti-OTA and OTA, we
exposed the anti-OTA/BSA-EDC-NHS/Au electrode to various OTA concentrations. It was
found an increase for Rct parameter with the adding of OTA (Table 3).

The difference between Rct values before and after incubation with OTA is considered the
analytical signal ΔRct = Rct(after)-Rct (before). As it can be seen in Fig 3B, there is a steady lin-
ear increase in ΔRct with the OTA concentration. The calibration curve in Fig 4 was further
used for determining the OTA concentration in plant extracts samples.

Immunosensor specificity
In this work, we immobilized monoclonal antibody anti-Ochratoxin A from Novus Biologicals
(Canada) in order to propose a rapid method for ochratoxin A detection using antibody-
immobilized on BSA-functionalized gold electrodes. We chose to do as this because, even that
the cost of biosensor could increase, this choosing minimized the cross-reactivity (previous
tests were done to check cross reactivity using aflatoxin B1—data not shown in this paper–and
no cross-reactivity was observed).

Some control experiments were performed with a sensor fabricated without antibody, aim-
ing to confirm that the impedance changes were indeed due to specific interaction between
OTA and its antibody, and were not caused by nonspecific adsorption. This second sensor was
prepared using an identical protocol with identical conditions, buffers, concentrations, etc. as
used for the specific antibody electrodes.

Fig 4A shows the impedance spectra recorded for a sensor before and after the incubation of
10 ng/mL OTA and Fig 4B for supplemental control experiment that uses antibody-free device.
In this last case, no obvious impedance changes were detected upon the incubation with OTA,

Table 3. Average values of the equivalent circuit parameters for various OTA concentrations.

Conc. OTA (ng/mL) Rs (Ω cm2) Q (10−6μF) n Rct (Ω cm2) W (10−6 Ω cm2) ΔRct (Ω cm2)

100 4.16 172 0.85 1451 712 724

75 4.22 128 0.86 884 744 519

50 3.98 120 0.90 759 866 370

20 4.06 120 0.90 431 804 256

10 3.97 122 0.86 307 724 176

5 4.27 137 0.83 641 820 110

2.5 4.01 92 0.84 934 887 90

doi:10.1371/journal.pone.0160021.t003
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Fig 4. Nyquist plots at 10 mV sinusoidal ac potential perturbation, ferricyanide/ferrocyanide redox couple, for
response of sensor with an antibody specific for OTA (A) or of sensor without antibody (B).

doi:10.1371/journal.pone.0160021.g004
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which confirm that the observed impedance changes are due to specific antibody-OTA
interactions.

We have proven the specificity of the interaction with OTA and the fact that non-specific
adsorption effects are insignificant by making EIS determinations with a biosensor unmodified
with antibody anti-OTA.

OTA detection in plant extracts samples
The liquorice obtained from local market was crushed into mortar with pestle and 1 g of pow-
der was mixed for 6 minutes with 5 mL of acetate buffer (pH 5.6). The mixture was kept at rest
for 5 minutes and then was filtered through absorbent filter paper and 0.2 μmNylon syringe
filter. This extract (stock solution) was further diluted 1:1000 in acetate buffer in order to be
used for the experiment.

50 μL plant extract was mixed with 50 μL OTA in different concentrations before analysis
with the electrochemical immunosensor. A volume of 75 μL of each sample was dropped on
the surface of antibody- modified electrodes and allowed to incubate for 30 minutes. The
Nyquist diagrams were recorded before and after incubation of the sensors with the plant
extracts. The impedance data were fitted to equivalent circuit shown in Fig 2B, and the solution
resistance, the electron transfer resistance, the constant phase element and the Warburg
impedance element were determined (Table 4).

Using OTA calibration curve and ΔRct (the difference between Rct values before and after
incubation with plant extract) the OTA concentration of plant extracts was determined
(Table 5).

In this way, our new label-free, sensitive, cost-effective and fast EIS immunosensor can be
utilized for OTA detection. The sensor based on screen-printed gold electrodes was easily mod-
ified with a cross-linked film of BSA that further serves as “anchor” for the covalent immobili-
zation of the anti-OTA antibody. The casting of the protective BSA layer on the gold electrode
prevents any nonspecific binding between OTA and the gold surface.

The specific interaction between antibody and OTA induces an increase in electron transfer
resistance at the interface sensor-solution that is correlated with the concentration of OTA in
the sample. The detection of OTA was achieved by EIS on the linear range 2.5–100 ng/mL.
Obtained results have the advantage of larger linear range, which include the maximum levels
of OTA allowed by EC in various food products and are similar with some others obtained
using immunosensors and EIS/SPR detection [36]. The he immunosensor can be further opti-
mized and our next work will consider amplification strategies of the analytical signal in order
to improve the sensitivity of this method for OTA detection. One possible future option to
optimize the detection of these mycotoxins is the use of aptamers, where Catanante and colab.

Table 4. Values of the equivalent circuit parameters for electrodes with plant extracts.

Sample Rs (Ω cm2) Q (10−6μF) n Rct (Ω cm2) W (10−6 Ω cm2) ΔRct (Ω cm2)

Sample 1 OTA 5 ng/mL 4.01 107 0.87 261 670 122

Sample 2 OTA 10 ng/mL 4.02 153 0.87 409 848 150.5

doi:10.1371/journal.pone.0160021.t004

Table 5. OTA concentration in spiked plant extracts.

Sample ΔRct (Ω cm2) Concentration OTA (ng/mL) Recovery degree of OTA (%)

Sample 1 122 4.63 92.6%

Sample 2 150.5 9.82 98.2%

doi:10.1371/journal.pone.0160021.t005
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[37] obtained very promising results, with better dynamic range. Another possibility is to
employ PEC (label-free photoelectrochemical) platform recommended as strategy for fabrica-
tion of label-free biosensor by Yang and colab. [38].

Conclusion
A new label-free immunosensor for ochratoxin A detection was developed. This sensitive, fast
and cost-effective sensor based on a screen gold electrode, which was easily modified in order
to immobilize the monoclonal antibody anti-OTA, induced an increase in electron transfer
resistance at the interface immunosensor-solution that is related to ochratoxin A concentration
in the sample. The method could be successfully used for detection of ochratoxin A from plant
extracts using bioanalysis and biosensing.
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