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Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are neuro-
muscular diseases, caused by accumulation of CUG and CCUG RNAs
in toxic aggregates. Here we report that the increased stability of
themutant RNAs in both types of DM is caused by deficiency of RNA
helicase p68. We have identified p68 by studying CCUG-binding
proteins associated with degradation of the mutant CCUG repeats.
Protein levels of p68 are reduced in DM1 and DM2 biopsied skeletal
muscle. Delivery of p68 in DM1/2 cells causes degradation of the
mutant RNAs, whereas delivery of p68 in skeletal muscle of DM1
mouse model reduces skeletal muscle myopathy and atrophy. Our
study shows that correction of p68 may reduce toxicity of the mu-
tant RNAs in DM1 and in DM2.
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Myotonic dystrophy type 1 (DM1) is a neuromuscular dis-
ease characterized by myotonia, distal muscle weakness,

heart conduction defects, and, in the congenital form, a delay
in myogenesis and severe cognitive abnormalities (1). DM1 is
caused by expanded CTG repeats within the 3′ untranslated
region of the DMPK gene (2). Myotonic dystrophy type 2 (DM2)
is a late-onset disease that is caused by expanded CCTG repeats
in intron 1 of the ZNF9/CNBP gene (3). Development of thera-
peutic approaches for DM1 or DM2 is an urgent need. Numerous
data suggest that DM1 and DM2 are caused by RNA gain-of-
function mechanisms (4–6). Initial studies showed that mutant
RNAs mainly affect two RNA-binding proteins, CUG-binding
protein 1 (CUGBP1) and muscleblind-like protein 1 (MBNL1) (7–
9). CUG repeats elevate protein levels of CUGBP1 by increasing its
stability (5). In addition, CUG repeats change signal transduction
pathways, such as the glycogen synthase kinase 3β (GSK3β)–cyclin
D3 pathway, regulating CUGBP1 activity (5, 10). CUG and CCUG
repeats form double-stranded hairpin structures and sequester
MBNL1 (9, 11, 12). Several other RNA-binding proteins, such as
Staufen1 and two members of the DEAD-box RNA helicases
family, DDX5/p68 and DDX6, are also involved in DM1 (13–15).
We showed that the mutant CUG and CCUG RNAs are very

stable (16), suggesting that the activity of RNA-binding proteins
regulating RNA decay is reduced in DM1 and in DM2. In this
study, we tested this hypothesis by isolation and analysis of sev-
eral CCUG-binding proteins. We found that the levels of one of
these proteins, p68, are reduced in DM1 and DM2 biopsied
muscle and that correction of p68 leads to degradation of the
mutant CUG and CCUG RNAs, disintegration of RNA foci, and
reduction of DM muscle pathology.

Results and Discussion
Identification of p68 Helicase as CUG/CCUG-Binding Protein, Which is
Reduced During Degradation of CCUG Repeats. Given the critical
role of RNA CUG and CCUG repeats in DM1/2, we performed
a careful analysis of CCUG-binding proteins with altered activ-
ities upon accumulation and degradation of the mutant CCUG
repeats in tetracycline (tet)-regulated CHO cell model of DM2. In
this model, CCUG100 repeats mainly increased activities of two

RNA-binding proteins with the approximate molecular weights
50 and 100 kDa (Fig. 1A). Previous analysis of tet-regulated cell
models expressing CUG and CCUG repeats showed that a single
dose of Dox causes maximal accumulation of CUG or CCUG
repeats at 17–24 h after Dox addition, whereas approximately
half of the mutant RNAs is degraded at 36–48 h after Dox ad-
dition (16). Analysis of CCUG-binding proteins in tet-HeLa-
CCUG100 cells at 7–24 h after Dox addition showed that CCUG
repeats increase activities of two proteins with molecular weights 50
and 100 kDa similar to those observed in inducible CHO cells (Fig.
1B), whereas the activity of CCUG-binding protein with mo-
lecular weight 75 kDa is increased at 24 h. The activities of these
three proteins were reduced during degradation of the mutant
CCUG repeats (48 h after Dox addition) (Fig. 1B). UV cross-
linking analysis of proteins from normal and DM2 myoblasts
showed that activity of the 75-kDa CCUG-binding protein is also
reduced in DM2 (Fig. 1C). Normal human myoblasts contain sev-
eral other CCUG-binding proteins migrating in the positions 40, 50,
55, and 100 kDa. The activities of CCUG-binding proteins with
molecular weights 50 and 100 kDa were increased in DM2 myo-
blasts, whereas the activities of proteins with approximate mo-
lecular weights 40, 55, and 75 kDa are reduced (Fig. 1C).
Because the identified proteins have altered CCUG-binding ac-

tivity in DM2 myoblasts, we suggested that these proteins might be
involved in the degradation of the mutant CCUG repeats. There-
fore, we performed purification of the CCUG repeat binding pro-
teins from HeLa cells expressing CCUG100 RNA, using a series of
HPLC-based chromatographies. First separation of proteins in the
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ion exchange UnoQ column and UV cross-link analysis identified
CCUG-binding proteins with molecular weights 40, 50–55, 75, and
100 kDa (Fig. 1D). The 75-kDa CCUG-binding protein was
detected in peaks 1, 4, and 5. Because peak 5 contains a much
smaller number of proteins than do other peaks, the protein frac-
tions from peak 5 were subjected to further separation by chroma-
tography on the size exclusion column, SEC125, and by the second
ion exchange chromatography on the UnoQ column (run 2) (Fig.
1E). This separation yielded a significant enrichment of the CCUG-
binding protein with the approximate molecular weight 75 kDa (Fig.
1 F and G). Mass spectrometry analysis revealed that this protein is
the p68 RNA helicase. The identity of this protein was confirmed in
western blot assay with antibodies to p68 (Fig. 1H). Taken together,
we conclude that p68 RNA helicase binds to RNA CCUG repeats
and that its activity is reduced in DM2 myoblasts.

Correction of p68 Levels in DM1 and DM2 Cells Dissociates CUG and
CCUG Foci in Nucleus and in Cytoplasm. The reduction of RNA-
binding activity of p68 in DM2 myoblasts suggested that p68

might also be reduced in skeletal muscle of patients with DM2.
Western blot analysis showed that the levels of p68 are reduced
in biopsied skeletal muscle from patients with DM2 (Fig. 2A).
Recent analysis of the proteins bound to CUG repeats showed
that p68 binds to CUG foci and modulates splicing activity of
MBNL1 (14). It appears that p68 levels are increased in im-
mortalized cultured DM1 myoblasts (17). However, p68 levels
were reduced in DM1 biopsied muscle (Fig. 2B). CUGBP1 (used
as a marker) was increased in the same muscle biopsies from
patients with DM1 and DM2. It is likely that the reduction of p68
in DM1 muscle is caused by the mutant CUG repeats because
p68 was also reduced in muscle of DM1 mice expressing 250
CUG repeats in the 3′ UTR of human skeletal actin (HSALR

model) (18) (Fig. 2C).
The RNA helicases are proteins involved in dsRNA unwinding

(19), allowing ribonucleases to access RNA-binding sites to facili-
tate RNA degradation. Given these activities of helicases, we
considered p68 as a reasonable candidate to unwind ds-CUG and
CCUG hairpins during decay of the mutant RNAs. Because p68 is
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Fig. 1. P68 is a CCUG-binding protein with the reduced activity in DM2. (A) Mutant CCUG repeats increase activities of 50- and 100-kDa RNA-binding
proteins. UV cross-link analysis of cytoplasmic proteins with 32P-CCUG100 probe. (B) UV cross-link analysis identifies three CCUG-binding proteins with ap-
proximate molecular weights 50, 75, and 100 kDa increased by CCUG100 repeats in tet-regulated HeLa cells. (C) UV cross-link analysis of cytoplasmic proteins
from normal and DM2 myoblasts with 32P-CCUG100 RNA; arrows: proteins with increased and reduced activities in DM2 myoblasts. (D) Identification of CCUG-
binding proteins (shown by arrows) by UV cross-link assay in the chromatography fractions (UnoQ column; run 1) using the CCUG100 probe. The protein
fractions were stained with Coomassie Blue. Five peaks with different protein composition are underlined. (E) A diagram of purification procedure for a
CCUG-binding protein with molecular weight 75 kDa (see text). (F) Coomassie staining of the purified protein with molecular weight 75 kDa after SEC125 and
UnoQ (run 2). Mass spectrometry showed that a CCUG-binding protein with molecular weight 75 kDa is a p68 RNA helicase. (G) UV cross-link analysis of
proteins at different steps of the purification of p68—peak 5 (first step), S125 column (second step), and UnoQ (run 2; third step)—using CCUG100 probe;
arrow: p68 bound to CCUG probe. HeLa whole-cell extract (WCE) and immunoprecipitated p68 (p68-IP) from the HeLa cells were examined as controls.
(H) Western blot analysis with anti-p68 confirms that the purified protein with molecular weight 75 kDa is p68 RNA helicase. Antibodies to p68 recognize p68
in the HeLa WCE in peaks 2 and 5 at the first steps of purification and in peak 5 after two rounds of purification.
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reduced in DM1 and DM2 biopsied skeletal muscle, this deficiency
of p68 might prevent unwinding of CUG and CCUG hairpins and
might reduce degradation of the mutant RNAs causing their ag-
gregation in foci. To examine this hypothesis, DM1 myoblasts with
300 CTG repeats were transfected with p68-GFP, and CUG foci
were examined by FISH assay. We found that CUG foci are dis-
integrated in 55% of cells transfected with p68 (Fig. 2 D and E). In
DM1 myoblasts with 60 CTG repeats, ectopic p68 almost com-
pletely dissociated CUG aggregates (SI Appendix, Fig. S1 A and B).
However, in DM1 myoblasts with 500 CTG repeats, ectopic p68
reduced CUG foci in 40% of cells (Fig. 2E), suggesting that p68
needs additional proteins to unwind long CUG expansions in the 3′
UTR of DMPK.
The UV cross-link analysis suggested that the mechanism by

which p68 reduces CUG foci might be associated with the direct
binding of p68 to CUG repeats. We found that both endogenous
p68 and ectopic p68, expressed in HeLa cells, bind to the expanded
CUG repeats in vitro (SI Appendix, Fig. S1 C and D).
It has been suggested that the mutant DMPK mRNA form foci

in the nuclei only and that after RNA foci dissociation the mu-
tant DMPK migrates to the cytoplasm. We observed CUG-pos-
itive foci in both the nucleus and cytoplasm of DM1 myoblasts
(Fig. 2D), whereas ∼30% of DM1 myoblasts did not have CUG
aggregates in both compartments. Quantification of foci in DM1
myoblasts transfected with p68 showed that p68 causes the dis-
sociation of RNA foci in the nucleus and cytoplasm of DM1
myoblasts to an equal extent (Fig. 2F). This indicates that p68
has an equally beneficial effect on CUG foci dissociation in the
nucleus and cytoplasm and that foci formation in the cytoplasm
is not due solely to foci dissociation in the nucleus and migration
of the mutant RNA to cytoplasm. Similar to DM1 cells, ectopic

expression of p68 causes disintegration of CCUG foci in DM2
fibroblasts (Fig. 2G and SI Appendix, Fig. S2) and in the Dox-
inducible HeLa model of DM2 (Fig. S3).

Ectopic Expression of p68 Causes Degradation of the Mutant CUG and
CCUG RNAs in DM1 and DM2 Cells. Foci dissociation in DM1 and
DM2 cells by p68 suggested that RNA foci might disintegrate due
to degradation of mutant RNAs. Therefore, we compared levels of
the mutant DMPK mRNA in DM1 fibroblasts after transfection
with p68 using northern blot assay. We found that ectopic expres-
sion of p68 causes significant reduction of the mutant DMPK
mRNA (Fig. 3A and SI Appendix, Fig. S4A). Similar reduction of
the mutant CUG RNA was observed in Dox-inducible CHO cells
expressing CUG914 RNA (Fig. 3B and SI Appendix, Fig. S4B). It
appears that the effect of p68 on the reduction of the mutant
DMPK mRNA or CUG RNA was specific because no degradation
of GAPDH mRNA was observed (Fig. 3 A and B).
We also analyzed the effects of ectopic expression of p68 on

the degradation of the mutant CCUG repeats in DM2 fibro-
blasts. We found that mutant CCUG repeats migrate as a smear
band on the gel (Fig. 3C). After transfection with p68, the
CCUG-positive signal was significantly reduced (Fig. 3C and SI
Appendix, Fig. S4C). Degradation of the mutant CCUG repeats
is specific because ZNF9 and GAPDH mRNAs were not de-
graded (Fig. 3C and SI Appendix, Fig. S4D). p68 also degrades
the mutant CCUG100 RNA in tet-regulated HeLa cells. The
intensity of the CCUG100 signal was reduced in HeLa cells
transfected with p68 (Fig. 3D). Respectively, transfected cells
accumulated low–molecular-weight CCUG-positive RNA that
likely represents products of degradation of CCUG100 RNA
(Fig. 3D and SI Appendix, Fig. S4E). Based on these data, we
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Fig. 2. Correction of p68 activity in DM1 and DM2 causes disintegration of CUG and CCUG foci. Western blot analysis of proteins from normal, DM2 (A), and DM1
(B) biopsied muscles with antibodies to p68, CUGBP1, and α-tubulin. (C) Western blot analysis of skeletal muscle proteins fromWT and HSALR mice with antibodies
to p68, CUGBP1, and β-actin. (D) Ectopic expression of p68 reduces the number of cells with CUG foci in DM1 myoblasts. FISH analysis of DM1 myoblasts
transfected with p68-GFP using CAG probe (red). DM1 cells transfected with p68-GFP were detected by fluorescent analysis (green). Nuclei were stained with DAPI
(blue). (E) p68-dependent dissociation of CUG foci depends on the length of CTG expansions. Bar graphs show the average percentage of cells with CUG foci in
DM1 myoblasts from patients with 60, 300, and 500 CTG repeats transfected with GFP or p68-GFP. (F) Delivery of p68 in DM1 myoblasts with 300 CTG repeats
causes dissociation of foci in both the nucleus and cytoplasm. CUG foci were counted in both the nucleus and cytoplasm (300 cells per set). (G) Ectopic expression of
p68 reduces the number of CCUG foci in DM2 fibroblasts. CCUG foci (red) were detected by FISH analysis in DM2 fibroblasts transfected with p68-GFP (green).
Nuclei were stained with DAPI. Original magnification is 60×. Data are presented as mean ± SEM. *P < 0.05, **P < 0.005, ***P < 0.0005.
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conclude that normalization of p68 is beneficial for degradation
of the mutant RNAs in DM1 and DM2.

Normalization of p68 in Skeletal Muscle of HSALR Mice Reduces
Muscle Pathology. To determine if correction of p68 might re-
duce DM1 muscle pathology, recombinant adeno-associated vector
expressing p68-GFP (SI Appendix, Fig. S5A) was injected in Gas-
trocnemius (gastroc) muscle of 2-mo-old HSALR mice. At this age,
the HSALR mice do not show significant muscle phenotype. By
3 mo, however, skeletal muscle in these mice is characterized by
myopathy including a variability of myofiber size with central
nuclei and atrophy. Muscles were analyzed 2–4 wk after in-
jection, and expression of p68-GFP was confirmed by fluorescent
analysis (SI Appendix, Fig. S5B). The UV cross-link analysis in-
dicated that p68-GFP binds to CUG RNA in vitro (SI Appendix,
Fig. S5 C and D). Recombinant p68 caused the reduction of
CUG foci in muscle of HSALR mice (SI Appendix, Fig. S6). H&E
staining showed significant improvement of muscle histology in
HSALR mice treated with p68 (Fig. 4 and SI Appendix, Fig. S7).
In control HSALR muscle treated with PBS, fibers were variable
in size. However, there was a recovery of myofiber uniformity
within muscle tissue treated with p68. In HSALR mice treated
with PBS, at 3 mo of age the average cross-sectional area of
myofibers is increased due to presence of hypertrophic fibers
similar to untreated HSALR mice (10). We found that p68
treatment normalized the average area of myofibers (Fig. 4 and
SI Appendix, Fig. S7A). To confirm the recovery of the fiber size
in the p68-treated HSALR mice, the mean minimal Feret’s di-
ameter was examined. We found that the minimal myofiber di-
ameter was increased in the PBS-treated muscle of HSALR mice
relatively WT muscle; however, the mean fiber diameter was nor-
malized in the p68-treated muscle (SI Appendix, Fig. S7B). Muscles
treated with p68 showed improved myofiber bundle bunching
compared with muscle treated with PBS (Fig. 4). Quantification of
myofiber number in similar regions of gastroc muscles from PBS-

and p68-treated mice showed that p68 treatment significantly
increases the total number of myofibers with reduced central nu-
clei (Fig. 4 and SI Appendix, Fig. S7 C and D). EM analysis showed
the improvement of myofibrillar organization in the p68-treated
HSALR muscle (SI Appendix, Fig. S8). These data show that nor-
malization of p68 causes reduction of myopathy and muscle atrophy
associated with DM1.

Hypothetical Role of p68 in DM1/2 Pathology.Whereas many studies
are focused on the correction of toxic effects caused by the
mutant CUG and CCUG repeats, the mechanisms which prevent
degradation of these repeats are not well understood. Recent
reports showed that RNA helicases p68/DDX5 and DDX6 bind
to and remodel the mutant CUG RNA (14, 15). It has been
proposed that these RNA helicases have a different effect on the
mutant CUG repeats. Ectopic expression of DDX6 decreased
CUG foci in DM1 cells (15). In contrast, p68 might increase the
stability of CUG repeats because inhibition of p68 in tet-regu-
lated HeLa cells by siRNA to p68/p72 reduces the number of
CUG foci (14). The findings described in this paper show that
the correction of p68 levels in DM1 cells reduces the number of
CUG foci (Fig. 2 D and E). Therefore, we suggest that p68 and
DDX6 might unwind the ds-CUG repeats within the mutant
DMPK mRNA and improve its processing.
It appears that the beneficial effect of p68 in DM1 is stronger

than that of DDX6 because the disintegration of CUG foci by
p68 promotes degradation of the mutant DMPK mRNA (Fig. 3A
and SI Appendix, Fig. S4A), whereas DDX6 disassembles CUG
foci without degradation of the mutant DMPK mRNA (15). In
addition, DDX6 does not reduce the stability of CCUG foci (15),
whereas correction of p68 improves disintegration and degra-
dation of both CUG and CCUG mutant RNAs (Figs. 2 and 3).
The reason for the reduction of CUG foci by the inhibition of
p68/p72 in the Laurent et al. paper (14) remains to be de-
termined. It is possible that the inhibition of both p68 and p72
might have a different effect on the stability of CUG foci than
has p68 alone.
Examination of the role of p68 in vivo showed that intramuscular

injection of p68 in HSALR mice reduces DM1 muscle histopathol-
ogy. This result is in agreement with the reduction of CUG foci in
the HSALR muscle, treated with p68, but not with GFP (SI Ap-
pendix, Fig. S6).
It has been shown that the bridging integrator-1 (BIN1) protein

contributes to muscle weakness in DM1 (20). The splicing of BIN1
mRNA is misregulated in DM1, leading to an increase of the iso-
form lacking exon 11 (20). We examined the expression of this
isoform in HSALR muscle and found that the BIN1 isoform lacking
exon 11 is increased in untreated HSALR mice, whereas the isoform
retaining exon 11 is reduced (SI Appendix, Fig. S9). In contrast,
HSALR muscle treated with p68 shows improvement of the splicing
of BIN1 by reduction of the isoform lacking exon 11 and increase of
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Fig. 4. Intramuscular delivery of p68 corrects myopathy and atrophy in
HSALR mice. H&E analysis of gastroc muscles of WT and HSALR mice injected
with p68-GFP or with PBS. Arrows show fibers with central nuclei. Quanti-
fication of the average myofiber size, myofiber number, and central nuclei is
shown in SI Appendix, Fig. S7.
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the isoform retaining exon 11 (SI Appendix, Fig. S9). Because this
splicing event is regulated by MBNL1, the improvement of the
splicing of BIN1 in the p68-treated muscle suggests that p68 is
beneficial for the correction of at least some splicing events, mis-
regulated by MBNL1 in DM1. We hypothesize that this effect
might be due to disintegration of CUG foci, which releases MBNL1
and possibly other RNA-binding proteins associated with the mu-
tant CUG repeats. We previously suggested that several RNA-
binding proteins might bind to the mutant CUG foci, including p68
and MBNL1 (21). Both p68 and DDX6 might reduce stability of
CUG foci releasing sequestered RNA-binding proteins such as
MBNL1. This hypothesis is supported by the findings in this study,
which show that the correction of p68 is sufficient to reduce CUG
foci by ∼50% in DM1 cells with 300–500 CTG repeats (Fig. 2E).
Based on these data, we suggest that a synergistic effect of p68,
DDX6, and MBNL1 might be needed to disintegrate the majority
of CUG foci in DM1.
Further studies are necessary to determine the relationship

of p68 and MBNL1 in RNA processing in DM1. It is possible
that during regulation of splicing p68 promotes MBNL1 bind-
ing to its targets, as was shown by Laurent et al. (14).
The mechanism by which p68 protein is reduced in DM1 and

in DM2 is unknown. Our recent study showed that the in-
hibitors of GSK3, correcting CUGBP1 activity in DM1 mice,
significantly reduce DM1 pathology (10). We found that GSK3
inhibitor TDZD-8 restores p68 levels in HSALR mice (SI Ap-
pendix, Fig. S10). Because CUGBP1 regulates many mRNAs,
we hypothesize that p68 is one of the targets of CUGBP1 and
that the reduction of the repressive form of CUGBP1 by GSK3
inhibitors leads to the normalization of p68 and degradation of
the mutant CUG RNA. Regardless of whether p68 is a direct or
indirect target of CUGBP1, data presented in this study show
that the correction of p68 helicase leads to the reduction of
toxic RNAs and to correction of DM pathology.

Materials and Methods
Purification of RNA-Binding Proteins Using HPLC Techniques. Cytoplasmic
proteins were collected from the induced HeLa cells expressing CCUG100 RNA.
Twenty milligrams of proteins were loaded on ion exchange column UnoQ
and eluted with a gradient 0–0.5 M NaCl. Chromatography fractions were
used for the electrophoretic analysis, UV cross-linking with CCUG100 probe,
and for western blot assay. Fractions containing proteins of interest were
combined and further separated by size exclusion and ion exchange chro-
matographies, as shown in Fig. 1E. The purified p75 protein was subjected
to mass spectroscopy at the Baylor College of Medicine Protein Core Facility.
FISH assay, Western and Northern blot analyses were performed as described
(16). Detailed description of these methods is also provided in SI Appendix,
Experimental Procedures.
UV cross-linking assay. Proteins were incubated with 32P-CCUG100 or

32P-CUG123

for 30 min at room temperature, subjected to UV light, and then treated
with RNase A. The RNA–protein complexes were separated by SDS/PAGE,
and proteins were transferred to nitrocellulose membrane. The mem-
branes were exposed to X-ray film and stained with Coomassie blue to
verify protein loading.
Animal experiments. The experiments with animals were approved by the
Institutional Care and Use Committee at Baylor College of Medicine and
Cincinnati Children’s Hospital. AAV8-GFP-p68 (2.55 × 1010 GC) was admin-
istered to the right gastroc muscle of the 2-mo-old HSALR mice while the left
muscle of the same mouse was injected with the same amount of AAV8-GFP
or PBS. Gastroc muscles were collected 2–4 wk after injections and examined
by H&E staining and by electron transmission microscopy. WT mice of the
matching sex and age were used as controls. The analysis of the number of
total fibers and the average fiber size in the largest area of the cross sections
were determined as previously described (10). Some 5-mo-old HSALR mice
were treated with TDZD-8 (at a dose of 10 mg/kg) three times a week for 1 wk.

For other methods, see SI Appendix, Experimental Procedures.
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