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SUMMARY
Chemokines represent a major mediator of innate immunity and play a key role in the selective

10 recruitment of cells during localized inflammatory responses. Beyond critical extracellular mediators
of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident
and infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells). Chemokines repre-
sent ideal candidates for mechanistic studies (particularly in murine models) to better understand the
pathogenesis of chronic inflammation and possibly become biomarkers of disease. Nonetheless, ther-

15 apeutic approaches targeting chemokines have led to unsatisfactory results in rheumatoid arthritis,
while biologics against pro-inflammatory cytokines are being used worldwide with success. In this
comprehensive review we will discuss the evidence supporting the involvement of chemokines and
their specific receptors in mediating the effector cell response, utilizing the autoimmune/primary biliary
cholangitis setting as a paradigm.

ARTICLE HISTORY
Received 30 November 2015
Accepted 26 January 2016

KEY WORDS
innate immunity; chemokine
receptor; tolerance
breakdown; biologics;
monoclonal antibody;
autoimmune cholangitis

20 The chemokine alphabet

Chemokines (chemeia, alchemy, and kinesis, movement) repre-
sent a large family of cytokines that control leukocyte recruit-
ment. Based on the common capability to induce migration of
various cells (chemotaxis), these small (8–14 kDa) proteins were

25 cumulatively coined ‘chemokines’, derived from ‘chemotactic
cytokines’. Chemokines share structural similarity and possess
a pattern of cysteine residues near the amino-terminal (-NH2� )
domain, responsible for their tridimensional structure [1].

In 1961, the first chemokine, platelet factor-4 (PF-4), was
30 identified by Deutsch and Kain [2]. At the earliest stages of

chemokine discovery, names were created arbitrarily based on
the producing cell type or the proposed function, as in the
cases of� PF-4, monocyte chemoattractant protein 1 (MCP-1),
stromal derived factor 1 (SDF-1), and mucosal epithelial

35 chemokine� . With the development and progress of� expressed
sequence tag� databases and bioinformatics in the 1990s, sig-
nificantly more chemokines were identified by molecular clon-
ing. Interleukin-8 (IL-8/CXCL8) was first discovered in 1987 as a
leukocyte chemoattractant characterized by the basic three-

40 dimensional structure showing the conserved monomeric fold
[3]. Since then, chemokines have grown to a large family now
comprising over 50 members. Chemokine receptors are seven
transmembrane (7TM) spanning G� -protein-coupled receptorsAQ4

(GPCR) and expressed mainly on immune and inflammatory
45 cells, although they have been found on non� immune cells

such as resident cells within the liver [4–7].
In 2000, a systematic chemokine nomenclature was pro-

posed and ligands are now named according to subclass (CC,

CXC, CX3C, or C [where X is any amino acid residue and C is
50cysteine]) followed by L for ligand and a unique number. In a

complementary fashion, the chemokine receptor nomencla-
ture uses CC, CXC, XC, or CX3C followed by R (for receptor)
and then a number [8] (Figure 1). This nomenclature was not
applicable to both humans and mice, as it was designed

55primarily for human chemokines based on their genomic loca-
lization, and was later updated for mice through chemokine
genomic organization using the murine genome.

Structural characteristics of chemokines

Chemokines include over 50 small, prevalently basic, heparin-
60binding proteins spanning 70–125 amino acids with molecular

weights ranging from 6 to 14 kDa [9]. Based on the number
and location of conserved cysteine residues near the
N-terminus of the protein, chemokines are grouped into four
subfamilies, designated CC, CXC, C, and CX3C� [10]. The biolo-

65gical effects of chemokines on their target cells follow the
binding to specific G� -protein-linked transmembrane receptors
called chemokine receptors. The majority of known chemo-
kines belong to the CC and CXC subgroups, particularly with
the first two cysteine residues adjacent to each other (CC) in

7028 chemokines numbered CCL1� –28. Although CC chemokines
primarily induce monocyte chemotaxis, MCP-1 (CCL2), macro-
phage inflammatory protein 1 alpha (MIP-1α � [CCL3� ]), and
regulated on activation, normal T cell expressed and secreted
(RANTES� [CCL5� ]) may also exert chemotactic activity toward� T

75cells and natural killer (NK) cells [11,12] and MIP-3α attracts IL-
17-producing Th17 cells [13].
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In the case of CXC chemokines, the first two conserved
cysteine residues are separated by � 1 non-conserved amino
acid residue (C–X–C) and this applies to 17 CXC chemokines

80 as chemoattractants for neutrophils. CXC chemokine ligands
can be further subdivided based upon the presence or
absence of the specific three amino acid sequence, glutamic
acid–leucine–arginine (the ‘ELRAQ5 ’ motif), preceding the first
conserved cysteine residue. These structural differences are

85 important because they determine the biological activity of
CXC family members. Most of the CXC chemokines have the
ELR sequence near the N� -terminus, termed the ELR-positive
CXC chemokines (ELR+), such as GRO-alpha (CXCL1), GRO-beta
(CXCL2), GRO-gamma (CXCL3), ENA-78 (CXCL5), GCP-2

90 (CXCL6), NAP-2 (CXCL7), and IL-8 (CXCL8), which are potent
chemoattractants for neutrophils and potent promoters for
angiogenesis, whereas CXC chemokines that lack the ELR
motif� , such as� PF-4 (CXCL4), monokine induced by IFN-γ (MIG

� [CXCL9� ]), and inducible protein 10 (IP-10� [CXCL10� ]), are potent
95 inhibitors of angiogenesis [14].

C chemokines lack the first and third cysteine, containing
only disulfide bond with two cysteine residues at their
N-terminus, whereas two disulfide bonds are present between
the first and third, and the second and fourth cysteine resi-

100 dues, respectively, in CXC and CC chemokines. The C chemo-
kine family includes only two members,� that is lymphocyte-
specific chemotactic peptide XCL1 (lymphotactin-alpha) and
XCL2 (lymphotactin-beta) [15].

Finally, CX3C chemokines are characterized by the unique
105 position of cysteine residues in which the two N-terminal

cysteine residues are separated by three variable amino acids.

To date, the only member of CX3C family is fractalkine (CX3CL1)
which is unique among chemokines because it is synthesized as
a membrane-bound molecule presented on a mucin-like stalk

110which functions as an adhesion molecule for capturing leuko-
cytes, while the soluble form functions as a chemoattractant [16].

Functional classes of chemokines

Chemokines may be broadly arrayed into two functional groups,

� that is inflammatory and homeostatic [8] but discrimination is
115not strict and some overlapping is encountered [8,17].

Inflammatory chemokines are produced under inflammatory
conditions by infiltrating and resident cells in response to pro-
inflammatory mediators (IL-1 and TNF AQ6-α), bacterial products
(lipopolysaccharide [LPS]) and infectious agents (viruses). They

120are actively involved in the recruitment of monocytes, neutro-
phils, NK cells, and other effector cells into site of inflammation
and injury. Typical inflammatory chemokines include CCL2, CCL3,
CCL4, CCL5, CXCL1, CXCL2, and CXCL8 [18]. In particular, ELR+

CXC chemokines could promote the early stage of wound heal-
125ing and granuloma formation, whereas CXC chemokines without

the ELR motif might be produced in the late stage to antagonize
angiogenesis [19]. On the other hand, homeostatic chemokines
are constitutively and differentially expressed at steady levels in
the bone marrow, lymphoid, and nonlymphoid tissues (skin and

130mucosa) and act specifically on lymphocytes and dendritic cells,
being involved in hematopoiesis, immune surveillance, and
adaptive immune responses [20]. Their homeostatic role is to
modulate the physiological migration of cells as part of normal
tissue development and functional maintenance. Homeostatic

Figure 1. Chemokine receptors are classified according to the chemokine family they bind, followed by an R (for receptor) and a number that corresponds to the
order of its discovery. Specific chemokine ligand-receptor interaction lead to directional cellular migration, activation, and various biological responses via different
intracellular signaling pathways.
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135 chemokines inlcude CCL14, CCL19, CCL20, CCL21, CCL25, CCL27,
CXCL12, and CXCL13.

Chemokine receptors

In 1991, the first chemokine receptors were identified with the
discovery of two human � IL-8 receptors on the surface of

140 granulocytes, which were initially referred to as IL-8RA (now
CXCR1) and IL-8RB (now CXCR2) [21,22]. Soon after that, the
first CC chemokine receptor,� that is� MIP-1α/RANTES receptor,
was reported [23]. To date, 19 human chemokine receptors
have been identified and the biological effects of chemokines

145 are mediated by their binding to cell� -surface receptors that
belong to the family of G� -protein-coupled receptors (GPCR)
containing � 7TM� domains, which trigger intracellular signals
that direct cellular migration and other cellular functions [1].
Chemokine receptors are named according to a systemic

150 nomenclature and they are also grouped into four subfamilies
depending on the type of chemokine ligand they recognize.
Thus, receptors for CC chemokines are referred to as CCR,
receptors for CXC as CXCR, receptors for XC as XCR, and
receptors for CX3C as CX3CR. The numbering is based on

155 the date of deposition of the chemokine receptor sequence
within the nucleic acid databases [24].

Chemokine receptors are typically activated only by class-
restricted ligands, except for Duffy antigen receptor complex
(DARC), which binds both CC and CXC chemokines with high

160 affinity [25]. A majority of chemokines share the same receptor
for their chemotactic function, although several chemokines
specifically bind to only one receptor with a one-on-one ratio.
For instance, CXCR4 selectively binds to CXCL12 but CXCR3
binds to MIG (CXCL9), IP-10 (CXCL10), and I-TACAQ7 (CXCL11).

165 Even when multiple ligands interact with a single receptor,
diverse effects are produced because the binding affinity and
the resulting effects differ across ligands. As an example, the
chemokine receptors of inflammatory chemokines show a
propensity to have a great number of chemokine ligands.

170 Most chemokines exert their chemotactic function as ago-
nists, but some may have an ambivalent function with agonist
and antagonist capacity depending on the different receptors.
For instance, chemokine ligands such as CXCL9, 10, and 11
function as an agonist for CXCR3, while being antagonists for

175 CCR3 [26]. CXCR3 is expressed preferentially on Th1 cells, but
CCR3 is typically associated with Th2 cells. Consequently, this
observation indicates that chemokines that attract Th1 cells via
CXCR3 may concomitantly inhibit the recruitment of Th2 cells in
response to CCR3 ligands, thus favoring T cell polarization and

180 differentiation [26]. In contrast, homeostatic chemokine recep-
tors bind only one or two chemokine ligands. Homeostatic
receptors (CXCR4, CXCR5, and CCR7) are expressed on B cells,
T cells, and mature dendritic cells. Some homeostatic chemo-
kine receptors bind specifically to only one ligand such as

185 CXCR4-CXCL12 (SDF-1) and CXCR5-CXCL13 (BCA-1) whereas
others share the binding domain with more than one
chemokine� , such as CCR7-CCL19 (ELC) or CCR7-CCL21 (SLC)
[27,28]. CCR7 controls the migration of naive T cells and anti-
gen-activated dendritic cells to the T cell-rich areas of secondary

190 lymphoid organs [29]. In contrast, CXCR5 and its ligand,

CXCL13, play an essential role in B cell migration and thus the
organization of B cell follicles in lymph nodes and spleen [30].

The genetics of chemokines and chemokine
receptors

195Chemokine genes are clustered within specific regions on the
mammalian chromosomes. Two major gene clusters are pre-
sent for CXC and CC genes which encode inflammatory CXC or
CC chemokines, called the major-cluster chemokines
(Figure 2). They are tightly located mainly on the human

200chromosomes 4q12–q21 (CXC) and 17q11–q21 (CC), respec-
tively [31,32]. Each major cluster can be additionally divided
into two discrete subregions. Therefore, the CXC major cluster
is composed of GRO and IP-10 subregions, and the CC gene
cluster contains MIP and MCP subregions.

205In the human GRO subregion, nine functional AQ8genes, such
as CXCL8, CXCL6, CXCL4L1, CXCL4, CXCL7, CXCL5, CXCL3, and
CXCL2, are mapped. These chemokines can have a potent
chemotactic activity for neutrophils as they interact with
CXCR1 and CXCR2 [33].

210In human and mouse IP-10 subregion, four functional
genes, CXCL9, CXCL10, CXCL11, and CXCL13, are present.
CXCL9, CXCL10, and CXCL11, as stated earlier, have been
known as dual-function chemokines based on the fact that
they are agonists for CXCR3� preferentially, and act as antago-

215nists for CCR3 [26]. CXCL13 is known to be a homeostatic
chemokine trafficking and homing of B cells to the secondary
lymphatic follicles associated with its cognate receptor,
CXCR5, which is required for lymphoid follicle formation, folli-
cular helper T cell (Tfh) and T cell-dependent B cell activation

220[34]. The gene for CXCL13 is located, apart from the other
members of IP-10 region, on human chromosome 4 [35].

In the MIP subregion of the CC gene cluster, at least eight
genes, such as CCL5, CCL16, CCL14, CCL15, CCL23, CCL18, CCL3,
and CCL4, are located [33]. These chemokines, which act via

225G-protein-coupled cell surface receptors (CCR1, 3, 5) expressed
by lymphocytes and monocytes/macrophages, are known for
their chemotactic and pro-inflammatory effects but can also
promote homoeostasis. In the human MCP subregion of the CC
gene cluster, there are six genes, such as CCL2, CCL7, CCL11,

230CCL8, CCL13, and CCL1. In the mouse MCP subregion, the gene
for CCL12 is additionally located, but the gene for human CCL13
does not exist. Chemokines in the CC cluster act as an inflamma-
tory chemokines with exception of CCL1, which is involved in
fibrogenesis [36]. Other group of genes for homeostatic chemo-

235kines are located separately or in small clusters on unique chro-
mosomal locations (the non-cluster chemokines) [37].

Eighteen chemokine receptor genes with chemotactic
functions have been identified in the human genome, such as
10 CCR, 6 CXCR, 1 XCR, and 1 CX3CR genes. Besides, five atypical

240chemokine receptor genes encoding DARC, CCBP2, CCRL1,
CCRL2, CXCR7 have also been identified [38,39]. One major
gene cluster of chemokine receptors is located mainly on the
human chromosome 3. Most of the receptors in themajor cluster
interact with inflammatory cytokines, excluding CCR9, CXCR6,

245and XCR1 which could bind homeostatic chemokines. The
other chemokine receptor genes are found as single genes or
in mini-clusters on the human chromosome 2 (CXCR4, CXCR2,

EXPERT REVIEW OF CLINICAL IMMUNOLOGY 3



CXCR1, and CXCR7), 6 (CCR6), 11 (CXCR5), 17 (CCR10 and CCR7),
and x� (CXCR3) [40,41]. In mouse, the genomic organization of

250 chemokine receptor genes is very similar to that of the human
genes. In addition, there is one additional gene termed Ccr1l1
(CCr1-like 1) in the mouse genome, which is located between
Ccr1 and Ccr3 in the major gene cluster [42].

The majority of chemokine and chemokine receptor genes
255 rank among the most rapidly evolving genes in phylogeny.

Variation in gene sequence is common among individuals for
most chemokine and chemokine receptors. However, the
degree of polymorphism varies greatly among different genes.

Atypical chemokine receptors

260 In addition to conventional chemokine receptors which share
conserved signaling pathway through G-protein� -coupled che-
mokine receptors (GPCRs), a smaller subgroup of chemokine
receptors referred to as ‘atypical chemokine receptors (ACR)’
does not signal through the GPCRs upon ligation of cognate

265 chemokines and lacks chemotactic activity [43].� Because all� 7TM

domain-containing members of the ACR subfamily have mod-
ified or are missing DRYLAIV AQ9motif, a highly conserved determi-
nant of G� -protein coupling found in conventional GPCRs at the
boundary between the third transmembrane domain and the

270second intracellular loop� , ACR are not able to couple to
G-proteins and could not then activate the typical G-protein-
mediated signaling and cellular responses [44]. Even though
not directly inducing chemotactic activity, ACR have preserved
the ability to activate β-arrestin-dependent signaling pathways,

275which is required for biological functions of chemokine inter-
nalization and scavenging activity [45,46] leading to generation
of chemokine gradients in tissues through the process of bind-
ing, sequestration, scavenge, transcytosis, or presentation of
their chemokine ligand [45]. To date, the ACR subfamily

280includes five receptors, D6,� DARC� , CXCR7, and CC-Chemokine
Receptors like-1 and 2 (CCRL1 and CCRL2).

D6 was cloned in 1997 initially from placenta and hemato-
poietic stem cells [42,47], but more recent data confirmed that it
is expressed in skin, gut, lung, liver, spleen, kidney, heart, muscle,

285brain, placenta, predominantly on lymphatic endothelial cells

Figure 2. Gene mapping of the human chemokines (CC and CXC chemokine gene clusters) and chemokine receptors on chromosomes 3, 4, 17, and X.
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[42] and binds to inflammatory CC chemokines (CCR1-5) while
failing to bind homeostatic CC chemokines or CXC, CX, or CX3C
chemokines. The expression of D6 may scavenge chemokines
during their lymphatic flow in order to limit leukocyte trafficking

290 and to adhere to the endothelial lining of lymphatics, which thus
functions to aid in the resolution of inflammatory reactions. Mice
that lack D6 demonstratemarkedly increased inflammatory reac-
tions, which might be associated with the exaggerated chemo-
kine response at inflammation site [48].

295 DARC was initially discovered as the Duffy (Fy) blood group
antigen and named after the first hemophiliac patient, Duffy,
who was thought to develop antibodies to this antigen [49].
As the Duffy blood group antigen became known as a che-
mokine receptor that can bind many ligands, it was renamed

300 as� DARC� . Human DARC binds a large number of pro-inflam-
matory CC and CXC chemokines [50]. DARC was originally
identified on red blood cells, but has also been found as an
abundant receptor on vascular endothelial cells, which are the
primary site of leukocyte transmigration in most tissues [51].

305 The expression of DARC on erythrocytes functions to bind and
remove chemokines from sites of overproduction, such as
inflammatory sites [52]. Besides, the function of DARC on
endothelial cells facilitates the migration of chemokine-posi-
tive cells from tissues to the vascular lumen [43].

310 CXCR7 was originally identified as a GPCR isolated from a
canine thyroid cDNA library and was considered to be an orphan
receptor, named RDC1 [53]. Based on the sequence similarity
and genomic localization of RDC1 between species, RDC1 was
suggested to be a chemokine receptor. Moreover, RDC1 has

315 been shown to bind to CXCL11/I-TAC, a ligand for CXCR3� and
CXCL12/SDF-1, a ligand for CXCR4 [54]. Thus, RDC1 was recently
renamed CXCR7, according to the current chemokine receptor
nomenclature [55], despite lack of evidence of coupling to G� -
proteins and cell activation. Instead of the canonical DRYLAIV

320 motif present in classical chemokine receptors, CXCR7 has
DRYLSITAQ10 sequence which could not induce classical signaling
responses following ligand binding [54]. CXCR7 expression has
been found on subsets of T and B cells, activated endothelial
cells, fetal hepatocytes, placenta, and vascular endothelium

325 [27,54,56–58]. CXCR7 is also expressed on the surface of many
tumor cells as a membrane-associated receptor protein [59].
Recent studies showed that CXCR7 acts exclusively as a decoy
receptor, whereas other studies demonstrated that it also med-
iates the action of CXCL12 or CXCL11 [60,61]. Nevertheless,

330 other research groups have still reported that CXCR7 is closely
related to cancer proliferation, adhesion, invasion, metastasis
and angiogenesis [58,62,63], or angiogenesis [64,65].

Chemokines/chemokine receptors in� primary biliary
cholangitis

335 Primary biliary cholangitis (PBC) is a chronic cholestatic auto-
immune disease, selectively targeting the small- and medium-
size bile ducts [66,67], with the histological appearance of
chronic nonsuppurative destructive cholangitis mediated by
mononuclear inflammatory cells such as T cells, B cells, � NK�

340 cells, macrophages, and eosinophils around the biliary tracts
[68] driven by chemokines [69]. The potential contribution of
chemokines and inflammation to the progression of PBC in

chemokine–chemokine receptor network may provide impor-
tant clues in biliary epithelial cell (BEC) injury in PBC and will

345be discussed in further detail in the next� sections (Figure 3).

MCP-1 (CCL2)

� MCP-1/CCL2� is a potent chemoattractant chemokine that reg-
ulates the migration and infiltration of monocytes, T lympho-
cytes, NK cells, and dendritic cells to the sites of inflammation

350and works as a key factor in initiating the various inflammatory
responses [7,70]. MCP-1 is expressed predominantly by macro-
phages, when stimulated by pro-inflammatory cytokines such
as IL-1β, IL-6, and, TNF-α, but can also be produced by a
variety of other cells and tissues, including fibroblasts,

355endothelial cells, bronchoalveolar epithelial cells, renal
tubules, hepatocytes, kupffer cells, and BEC [4,7,71–75].

At PBC immunohistochemistry, MCP-1-positive inflammatory
cells can be detected mainly in portal tracts and accentuated
around the damaged bile ducts, as well as around epitheloid

360granulomas that characterize the PBC liver [76]. In recent stu-
dies of human with biliary disorders and in animal models of
biliary fibrosis, BECs play an active role in expressing profibro-
genic proteins and chemokines such as IL-8 and MCP-1. BEC-
expressed chemokines cause mononuclear cells to infiltrate into

365the damaged sites in PBC [69], and BEC senescence contributes
to non-suppurative destructive damage in PBC by altering
microenvironment in conjunction with the upregulation of
senescence-associated secretory phenotype� such as cytokines
(IL-1 and IL-6), chemokines (IL-8 and MCP-1), growth factors,

370and profibrogenic factors [77,78]. Senescent BECs increase
expression of MCP-1/CCL2 and CX3CL1 which may cause corre-
sponding CCR2- and CX3CR1-expressing cells to infiltrate and
inflame in small bile duct lesions in PBC (Table 1) [77,79].

MIP-1α (CCL3), MIP-1β (CCL4), and RANTES (CCL5)

375� MIP-1α/CCL3� , initially described in 1988 as MIP-1, along with
the closely related MIP-1β (CCL4), is a pro-inflammatory che-
mokine of the CC subfamily. Both proteins are markedly pro-
duced by neutrophils, lymphocytes, dendritic cells, mast cells,
NK cells, and macrophages� and can be induced by various pro-

380inflammatory cytokines (IL-1, TNF-α, gamma interferon [IFN-γ])
or by exposure to bacterial � LPS� [80]. RANTES (CCL5) is an
8 kDa protein classified as a CC chemokine, and identified
along with MIP-1α and MIP-1β as the major HIV-suppressive
factors produced by CD8+� T cells [81]. Like MIP-1α and MIP-1β,

385RANTES is also secreted by a variety of cells including macro-
phages, activated NK cells, T cells, and certain types of tumor
cells [82,83]. MIP-1α and 1β and RANTES play active roles in
recruitment of inflammatory cells to the site of inflammation
because their signals are delivered through CCR1 and CCR5

390[84]. In particular, CCR5, a� 7TM G-protein-coupled receptor, is
used as their common receptor and predominantly expressed
on Th1 cells, macrophages, dendritic cells, and eosinophils
[85]. MIP-1α and RANTES could modulate magnitude and
cytokine polarity of the T cell response [86]. MIP-1α may

395have a direct effect on T cell differentiation by� finding that
addition of MIP-1α to activated T cells promoted development
of IFN-γ-producing cells [87].
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The pathway via CCL5 and its receptors (CCR1 and CCR5)
has been demonstrated to be implicated in the onset of liver

400 fibrosis in experimental models using CCR1- and CCR5-defi-
cient mice, confirming the activation of CC chemokines (MIP-
1α/1β and RANTES) in human fibrogenesis [88]. Interestingly, it
is also evident that the expression of CCR5 is augmented on
circulating effector memory T cell (CD45ROhighCD57+ CD8high

405 T cells) in PBC cases and these T cells, which respond specifi-
cally to PDC-E2, accumulate around the portal area in PBC [89].

The transmigration of PBC liver-infiltrating mononuclear
cells (LMNC) is significantly enhanced when stimulated with
MIP-1α, MIP-1β, and RANTES. In addition, BECs from PBC cases

410cocultured with autologous LMNCs produced significantly
higher levels of MIP-1α and MIP-1β, RANTES as well as IP-10
[69]. Based on these findings, it is likely that BEC-induced
chemokines may be active players in PBC pathogenesis and
elicit migration and infiltration of mononuclear cells, and

415further leading to the expansion of autoreactive T cells con-
tributing to liver lesions in PBC.

MIG (CXCL9) and IP-10 (CXCL10)

� IFN-γ� -� IP-10� and � MIG� are members of CXC chemokine family.
They were identified as products of genes induced by macro-

420phages following exposure to IFN-γ [90,91]. They have potent
chemotactic activities for activated T lymphocytes and NK cells
[91]. They are similar in molecular structure and also have a
common receptor, CXCR3, which is highly expressed on acti-
vated T cells and NK cells [92–95]. Early studies reported that

425increased expression of MIG and IP-10 is associated with IFN-γ
production skewing to Th1-type immune response and found
in patients with psoriasis and viral or bacterial infections [96–
99]. MIG and IP-10 are preferentially expressed by human hepa-
tic sinusoidal endothelial cells [5] and hepatocytes. Activated

430Kupffer cells along with sinusoidal endothelial cells are able to
secrete MIG and IP-10 in response to IFN-γ [5,100,101]. Notably,

Figure 3. Chemokines and chemokine receptors in the pathogenesis of primary biliary cirrhosis. Interaction of chemokines infiltrating immune cells, predominantly
composed of Th1 cells, Th17 cells, NK cells, CD8+ T cells and monocytes, with their cognate chemokine receptors is found around the portal tract, eventually
resulting in the immune-mediated destruction of small bile ducts.

Table 1. Main chemokines and receptors observed in primary biliary cirrhosis.

Chemokine
Common
names Receptor Cells expressing receptors

CCL2 MCP-1 CCR2 Monocytes/macrophages, DCs, NK,
basophils, HSCs

CCL3 MIP-1α CCR1,
CCR5

Th1 cells, NK, DCs, CD8� T cells,
monocytes

CCL4 MIP-1β CCR1,
CCR5

Th1 cells, NK, DCs, CD8 T� cells,
monocytes

CCL5 RANTES CCR1,
CCR5

Th1 cells, NK, DCs, CD8 T� cells,
monocytes, HSCs

CCL20 MIP-3α CCR6 Th17 cells, DCs, γδ T, B cells, HSCs
CXCL9 MIG CXCR3 Th1/Th17 cells, NK, DCs, Treg Kupffer

cells, hSCs, LSECs
CXCL10 IP-10 CXCR3 Th1/Th17 cells, NK, DCs, Treg Kupffer

cells, HSCs, LSECs
CXCL11 I-TAC CXCR3 Th1/Th17 cells, NK, DCs, Treg Kupffer

cells, HSCs, LSECs
CX3CL1 Fractalkine CX3CR1 Monocytes/macrophages, NK Kupffer

cells, BECs

DC� : dendritic cells; NK:� natural killer cells� ; HSCs:� hepatic stellate cells; LSECs:� liver
sinusoidal endothelial cells; BECs:� biliary epithelial cells.
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activated hepatic myofibroblasts produce CXC (IL-8, MIG, and
IP-10) and CC (MCP-1, MIP-1α, and RANTES) chemokines [7].

MIG and IP-10 mRNA expression is enhanced in inflamed liver
435 [102,103] and their serum levels are increased during flares of

chronic hepatitis B, suggesting that MIG and IP-10 are involved in
recruitment of pro-inflammatory leukocytes into the liver [104].
In patients with PBC, the levels of circulating IP-10 and MIG are
significantly increased, and expression of CXCR3 in livers is also

440 increased, supporting the view that IFN-γ-inducible chemokines
(CXCL9, CXCL-10, and CXCL11) and their specific receptor
(CXCR3) could contribute to the activation and attraction of
Th1 cells to the site of inflammation in the liver.

Fractalkine (CX3CL1)

445 Fractalkine is the only onemember of CX3C chemokine family and
signals through CX3CR1 [16,105]. Fractalkine exists in two different
forms, one as the membrane-bound form that functions as an
adhesion molecule for capturing circulating leukocytes and one
soluble form containing the chemokine domain generated

450 through the cleavage of extracellular portion by metalloprotei-
nases such as ADAM10 or ADAM17 [105,106]. Fractalkine is widely
expressed in macrophages, dendritic cells, epithelial cells, and
endothelial cells [107–109]. The secretion can be greatly upregu-
lated in response to inflammatory cytokines such as IL-1β, TNF-α,

455 and IFN-γ or LPS [110,111]. The presence of fractalkine is also
found in rheumatoid arthritis synovium [109]. Upregulation of
fractalkine and its receptor, CX3CR1, in inflammatory cells (mono-
cyte, T cells, and NK cells) and target tissue expression may con-
tribute to immune-related inflammatory diseases and promote

460 trafficking and retention of CX3CR1-expressing cells to the site of
inflammation [112]. Upregulation of fractalkine/CX3CR1 has been
advocated to participate in the development of atherosclerosis
[113], rheumatoid arthritis [109], systemic lupus erythematosus
[114], and colon cancer [115].

465 In patients with PBC, the expression of fractalkine is upre-
gulated in� BECs� , followed by the CX3CR1-expressing CD4�

+ and
CD8�

+ T cells, suggesting that recruitment of mononuclear cells
to bile ducts via fractalkine/CX3CR1 may contribute to the
autoimmune inflammation of bile ducts [69,116,117]. Such a

470 pro-inflammatory activity of BECs in PBC was demonstrated to
be secondary to the intervention of� LMNC [69].

CXCR3

CXCR3 is a G� -protein-coupled receptor for CXC chemokines.
CXCR3 exists mainly in two forms, A and B. While both bind to

475 the CXC chemokines, such as MIG (CXCL9), IP-10 (CXCL10), and
I-TAC (CXCL11), CXCR3-B also binds CXCL4 [118]. Binding of
chemokines to CXCR3 may lead to the diversity of cellular
effects. CXCR3 is expressed primarily on activated T lympho-
cytes, NK cells, and dendritic cells [94,119]. CXCR3 is activated

480 by three IFN-γ-inducible ligands (MIG, IP-10, I-TAC). At the sites
of inflammation, CXCR3-expressing T cells have been abun-
dantly demonstrated and selectively recruited by MIG and IP-
10 (CXCR3 ligands) [5,120].

According to the differentiation of CD4+ effector subsets and
485 then depending on their different inflammatory cytokine pro-

duction, CXCR3 is differently upregulated and associated with

the migration of effector cells to the sites of inflammation or
infection [121–123]. Th1 cells preferentially express CXCR3 and
CCR5, whereas Th2 cells favor the expression of CCR3 and CCR4

490[95,124]. Interaction of CXCR3 and its signature ligands directs
the migration and accumulation of Th1 cells, into sites of Th1-
mediated inflammation, which has been shown in inflammatory
synovial tissues of rheumatoid arthritis, inflamed renal tissues of
lupus nephritis, and hepatic inflammation of chronic liver dis-

495eases [120,125,126]. These observations were supported by
experimental evidence, in which CXCR3 deficiency, using
CXCR3−/− mice backcrossed into the MRL/lpr background, was
associated with milder glomerulonephritis through interference
with trafficking of Th1 and even Th17 cells into the kidney [127].

500These findings suggest that IFN-γ–CXCR3–chemokine interac-
tion play an important role for the recruitment of inflammatory
cells into the focus of inflammation and contribute to Th1 and
even Th17 immune-mediated diseases, further implying a pos-
sible approach to a therapeutic target.

505Furthermore, studies in PBC patients demonstrated CXCR3-
positive mononuclear cells were densely infiltrated into the
damaged bile ducts in early rather than in advanced stages
[128]. The frequency of CXCR3-expressing cells in peripheral
blood and the inflamed portal areas, along with its chemokine

510ligands such as MIG and IP-10, significantly increased [129,130].
These data undoubtedly support that CXCR3-chemokine pair
interaction may play a role in the generation of PBC.

Recent study identified that CXCR3 can be expressed on a
subset of FOXP3+� Tregs, which are detected at peripheral sites

515of chronic inflammation such as chronic hepatitis [126,131–
133]. NKT AQ11cells have been also implicated in liver injury of
hepatitis [134] as activated liver NKT cells secrete IFN-γ that
can induce IFN-γ-inducible chemokines such as IP-10, which
then induce the CXCR3+ Treg recruitment into the inflamed

520portal area via a cytokine–chemokine pathway [132]. These
observations support the possibility that interaction between
NKT and Treg cells may contribute to the pathogenesis of
autoimmune hepatitis and PBC. However, it is still unclear if
the trafficking Tregs could fulfill their suppressive function of

525immune responses locally into inflamed liver [135,136].

CX3CR1

Chemokine CX3C motif receptor 1 (CX3CR1) is known as a
fractalkine receptor and is a unique member of the GPCR
family through which migration and adhesion of cells such

530as monocytes and lymphocytes are mediated [105,137].
CX3CR1 is mainly expressed on monocytes, T lymphocytes,
dendritic cells, NK cells, and mast cells [105,117,138,139].
CX3CR1 has been demonstrated to be preferentially expressed
in Th1 cells which respond to fractalkine. CX3CR1-expressing

535cells also show perforin and granzyme B [140,141]. The expres-
sion of CX3CR1 is increased on monocytes during chronic
inflammatory diseases such as rheumatoid arthritis, inflamma-
tory kidney diseases and renal allograft rejection, coronary
artery diseases, and inflammatory bowel diseases

540[105,109,142–144]. Studies reported that the co-localization
and upregulation of fractalkine and CX3CR1 are also predomi-
nant in BECs and mononuclear cells, respectively, in PBC as
well as chronic hepatitis C-liver injury patients [116,145]. It was
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reported that the expression of fractalkine and CX3CR1 was
545 upregulated in injured bile ducts of PBC, CX3CR1-expressing

mononuclear cells including CD4+ and CD8+ T cells were
densely infiltrated into bile ducts and within the biliary epithe-
lium. These findings suggest that migration and accumulation
of CX3CR1-expressing cells around bile ducts, mediated by

550 upregulated fractalkine/CX3CR1 interaction, may play a pivotal
role in the pathogenesis of PBC and bile duct injury.

Expert commentary

There is extensive literature on the importance of chemokines and
their cognate receptors inmultiple autoimmune disorders and in a

555 variety of other human diseases involving different degree of
immune dysregulation [146–160]. In this paper, we have focused
on PBC, but with the understanding that the lessons in PBC are
proof of principle on the molecular interactions, and the cellular
basis of chemokines and their receptors in other autoimmune

560 diseases. Indeed, the interaction of chemokines with their chemo-
kine receptors on inflammatory cells is believed to play a role in
the establishment and� maintenance of inflammation in PBC, regu-
lated by the microenvironmental milieu including cytokines and
inflammatory mediators as ligands. Nonetheless, evidence sup-

565 porting this view is currently limited and the mechanisms of
immune activation and inflammatory response via chemokine/
chemokine receptors in PBC remain enigmatic.

Over the past decade, a number of studies were directed to
examine the contribution of chemokines in PBC, as in other

570 autoimmune or chronic inflammatory conditions, and this may
be representative of the orchestrated symphony of immune
cells and mediator that � are expected to be at the bases of
tolerance breakdown and autoimmunity development.
Interaction between chemokines and chemokine receptors is

575 involved in the pathogenesis of PBC, by directing the migration
and positioning of diverse inflammatory and immune cells into
the small bile ducts. These infiltrating cells are able to produce
a vast array of chemokines, develop chronic inflammation, and
then progressively proceed to fibrosis, which eventually leads

580 to the vanishing of bile ducts. Beyond the recruitment of
immune cells, recent data suggest that chemokine receptors
can be expressed on non-immune cells, such as hepatocytes,

stellate cells, sinusoidal endothelial cells, and BEC, and they are
able to express chemokine ligands [6,126].

585Five-year view

The fundamental role of chemokines is to guide selective cells to
specific tissues and the growing understanding of their roles in
mediating the immune response raised high hopes toward� perso-
nalizedmedicine to treat deficits in a range of biological processes

590within the immune system, such as development, polarization,
activation, and differentiation. Under autoimmune conditions, the
chemokine–chemokine receptor interactions play important roles
in trafficking of autoreactive lymphocytes into the focus of inflam-
mation, and contribute to the determination of infiltrating patho-

595logical cell types and their communication with resident cells,
leading to cellular and humoral immune responses resulting in
autoimmune inflammation. In spite of the rapid progress in our
understanding the functions of chemokines and their receptors in
the immune system physiologically and pathologically, further

600elucidation of the molecular mechanisms and their regulation in
vivo are awaited. In the meantime, monoclonal antibodies and
small molecules are being proposed to treat chronic autoimmune
diseases, as well exemplified by the large number of approaches
used in rheumatoid and psoriatic arthritis [161], but data are

605largely inconclusive. A stronger contamination between areas of
clinical and basic research may provide answers to the remaining
major questions in PBC as in other areas; this may ultimately lead
to the fulfillment of the domino prophecy in which finding the key
to one autoimmune disease may well lead to a faster understand-

610ing of other unrelated conditions.
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Key issues

● The 2000 systematic chemokine nomenclature defines ligands according to subclass (CC, CXC, CX3C, or C) followed by L for ligand and a unique number.�
● In a complementary fashion, the chemokine receptor nomenclature uses CC, CXC, XC, or CX3C followed by R (for receptor) and then a number.�
● Beyond critical extracellular mediators of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident and

infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells).�
● Chemokine interactions have been implicated in a diverse range of biological processes in the immune system, such as immune cell development,

polarization, activation, and differentiation.�
● The majority of chemokine and chemokine receptor genes rank among the most rapidly evolving genes in phylogeny.�
● Eighteen chemokine receptor genes with chemotactic functions have been identified in the human genome, such as 10 CCR, 6 CXCR, 1 XCR, and 1

CX3CR genes.�
● In addition to conventional chemokine receptors which share conserved signaling pathway through G-protein� -coupled chemokine receptors (GPCRs), a

smaller subgroup of chemokine receptors referred to as ‘� ACR� ’ does not signal through the GPCRs upon ligation of cognate chemokines and lacks
chemotactic activity.�

● At PBC immunohistochemistry, MCP-1-positive inflammatory cells can be detected mainly in portal tracts and accentuated around the damaged bile
ducts, as well as around epitheloid granulomas that characterize the PBC liver.�

● The transmigration of PBC� LMNC� is significantly enhanced when stimulated with MIP-1α, MIP-1β, and RANTES.�
● In patients with PBC, the expression of fractalkine is upregulated in� (BEC� , followed by the CX3CR1-expressing CD4+� and CD8+� T cells.
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