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A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a 

xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance 
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Abstract:  

Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia among adults. Despite its 

indolent nature, CLL remains an incurable disease. Herein we aimed to monitor CLL disease 

engraftment and,progression/regression in a xenograft CLL mouse model using ultra-small 

superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Spleen contrast 

enhancement, quantified as percentage change in signal intensity upon USPIO administration, 

demonstrated a difference due to a reduced USPIO uptake, in the spleens of mice injected with CLL 

cells (NSG-CLL, n=71) compared to controls (NSG-CTR, n=17). These differences were 

statistically significant both after 2 and 4 weeks from CLL cells injection. In addition comparison of 

mice treated with rituximab with untreated controls for changes in spleen iron uptake confirmed 

that it is possible to monitor treatment efficacy in this mouse model of CLL using USPIO-enhanced 

MRI. Further applications could include the preclinical in vivo monitoring of new therapies and the 

clinical evaluation of CLL patients. 

 

Keywords  

Chronic Lymphocytic Leukemia (CLL); Magnetic Resonance Imaging (MRI); Ultra-small 

Superparamagnetic Iron Oxide (USPIO); Xenograft NSG mice model; Disease monitoring.  

 

Abbreviations  

MRI, Magnetic Resonance Imaging; ROI, Region of Interest; CLL, Chronic lymphocytic leukemia; 

USPIO, Ultra-small Superparamagnetic Iron Oxide; SNR, Signal-to-Noise ratio; CT, Computed 

Tomography; SD, Standard Deviation; sem, standard error of mean; SI, Signal Intensity; ΔSNR%, 

percentage Signal-to-Noise ratio change; i.v., intravenous injection; i.p., intraperitoneal injection; 

RES, Reticulo-Endothelial System; PBMC, peripheral blood mononuclear cells; FC, Flow 

Cytometry; MHz, MegaHerzt; FIESTA, Fast Imaging Employing Steady State Acquisition; FA, 

Flip Angle; FoV, Field of view; TR, repetition time; TE, echo time; T1, longitudinal relaxation 

time; T2, transverse relaxation time; ROC, receiver-operating characteristic; CI, confidence 

interval. IGHV, immunoglobulin heavy chain variable region; FISH, fluorescent in situ 

hybridization. 

Units 

Mm, millimetre; g, gram; Mg, milligram; Kg, kilogram; µL, microliter; µmol, micromole; ms, 

millisecond; nm, nanometer; min, minute; °C, Centigrade.  
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1. Introduction 

Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in Western 

countries [1, 2]. CLL is characterized by the clonal expansion of mature CD5+/CD23+ lymphocytes 

that can infiltrate multiple organs including lymph nodes, the bone marrow, spleen, and liver. CLL 

is highly heterogeneous in terms of therapy-free interval, response to treatment and overall survival, 

ranging from rapid disease progression requiring early and frequent treatment, to survival for 

decades with minimal or no treatment. Staging of CLL patients involves periodical evaluation of 

lymph nodes, spleen, and liver infiltration and is used to define risk and treatment. Follow-up 

generally includes a blood cell count and palpation of lymph nodes, liver, and spleen every 3-12 

months [3, 4]. In daily clinical practice, a common modality for evaluating changes in spleen size is 

to assess if the spleen is palpable, which means that the spleen generally requires an enlargement of 

at least two folds in order for changes to be detected. In addition, unlike superficial lymph nodes, 

deep nodes cannot be evaluated by simple palpation alone. 

Several mouse models for the study of CLL development have been established[5]. These 

encompass transgenic models in which key genes have been altered [6-9]or xenograft models that 

use immunodeficient mice that are engrafted with human leukemic cells [10-12]. In all instances, 

development of the CLL clone can be followed by monitoring peripheral blood for the presence of 

leukemic cells, but the evaluation of lymphoid tissues (i.e. the spleen, in immunodeficient mice as 

lymph-nodes are mostly atrophic), where the leukemic cells have to seed to begin their proliferative 

phase, requires sacrificing the animals. Thus, sensitive and safe imaging techniques to monitor 

disease development may be useful in preclinical models and, more importantly also based on the 

above considerations, may find application in routine clinical practice.  

Computer tomography (CT) is used as the first-line modality for imaging of lymphoid malignancies 

[13]. The role of CT has not been clearly defined in CLL patients, although CT routine disease 

monitoring for CLL has been largely discouraged [3, 14, 15]. CT scans are recommended for 

baseline and final assessment in clinical trials and is not the method of choice to be used in clinical 

staging [16, 17]. Magnetic resonance imaging (MRI) has a high sensitivity in the diagnosis of the 

disease and also plays an important role in the assessment of disease activity without the need for 

exposure to ionizing radiation. The success of MRI in vivo highly depends on the molecular 

imaging agent used. With the help of efficient imaging agents, it is possible for MRI to precisely 

detect early-stage disease and to monitor the response to drug therapy. 

Superparamagnetic iron oxide (SPIO) or ultra-small superparamagnetic iron oxide (USPIO) 

nanoparticles are now primarily used and are becoming increasingly attractive as the precursor for 

the development of a target-specific MRI contrast agent in molecular MRI. The efficacy of iron 
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oxide nanoparticles used as specific contrast agent in MRI for liver, spleen, and lymph node has 

been demonstrated in experimental and clinical studies. Several studies have shown that these 

particles can significantly improve the detection and characterization of focal lesions within these 

organs [18-20]. Due to their size-dependent properties and their applicability in non-invasive 

imaging methods, these materials are promising candidates for research, diagnostic, and therapeutic 

applications in various fields such as cancer, neurodegenerative diseases (e.g. multiple sclerosis, 

[21-23], stroke [24, 25]), as well as in inflammatory diseases (e.g. rheumatoid arthritis [26] and 

atherosclerosis [27]). Iron oxide particles can be used as contrast medium in MRI because they are 

agents of high relaxivity able to enhance the contrast in T2/T2*-weighted MRI in tissues in which 

they accumulate. USPIO are taken up by the cells of the liver, spleen, bone marrow, and lymph 

nodes. Because of their small size (mean size 10-20 nm), they diffuse freely through capillaries and 

are phagocytized by tissue-resident inflammatory cells of the reticulo-endothelial system (RES), 

which predominantly consists of macrophages, although neutrophils may also take up USPIO [28-

30].  

In this study we aimed to establish a non-invasive specific MRI method to better visualize and to 

quantify the presence of CLL disease by USPIO within the spleen in a pre-clinical setting. In 

particular, we used a mouse xenogeneic transplantation model, NOD/Shi-scid, γc
null

 (NSG) mice, a 

NOD/SCID-derived strain that lacks the IL-2 family common cytokine receptor gamma chain gene 

(γc) [10, 11]. A secondary goal was to monitor CLL disease evolution using imaging strategies in 

an attempt to reduce the overall number of mice necessary for the evaluation of CLL cell 

engraftment over several time points, limiting their sacrifice and suffering during experimental 

protocols.  

 

2. Materials and Methods 

2.1 CLL Patients 

Newly diagnosed CLL patients from participating Institutions were enrolled within 12 months from 

diagnosis (O-CLL1 protocol clinicaltrial.gov identifier NCT00917540). Diagnosis was confirmed 

by flow cytometry (FC) analysis centralized at the National Institute of Cancer Laboratory in 

Genoa, Italy, together with the determination of CD38 and ZAP-70 expression and IGHV 

mutational status as previously described [31, 32]. Cytogenetic abnormalities involving deletions at 

chromosomes (11)(q22.3), (13)(q14.3) and (17)(p13.1), and trisomy 12 were evaluated by 

fluorescent in situ hybridization (FISH) in purified CD19+ population as previously described[32] 

(Table 1). 
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PBMC from patients with CLL were isolated by Ficoll-Hypaque (Seromed, Biochrom) density 

gradient centrifugation. 

 

2.2 Murine model 

Six to eight week old female NOD/Shi-scid,γc
null

 (NSG) mice (The Jackson Laboratory), a 

xenograft model for CLL growth in vivo [10, 11], were housed in sterile enclosures under specific 

pathogen-free conditions. All procedures involving animals were performed respecting the current 

National and International regulations and were reviewed and approved by the licensing and 

Animal Welfare Body of the IRCCS-AOU San Martino-IST National Cancer Research Institute, 

Genoa, Italy. 

NSG mice were infused by intravenous injection (i.v.) with 30-50x10
6
 PMNCs/mouse from 18 CLL 

cases (see Table 1) and the presence of CD19+CD5+ leukemic cells were checked after 2 and 4- 

weeks from the date of injection in blood samples taken from the retro-orbital vein.  

 

2.3 Preparation of USPIO particles-contrast agent and dosage 

The USPIO contrast agent (Feraspin XS, Miltenyi Biotech GmbH, Germany) used, consists of 

commercially available USPIO nanoparticles with a mean particle size of 10-20 nm, able to 

circulate in the bloodstream and be taken up by RES macrophages.. All animal groups were imaged 

before, and 24 hours after  i.v injection  of 100 µL/25 g mouse of USPIO, corresponding to a dose 

of 40 µmol Fe/kg body weight. 

 

2.4 In-vivo MRI experiments 

The mice were anesthetized by intraperitoneal injection (i.p.) with a combination of xylazine 

(30mg/kg) and ketamine (100mg/kg) and were positioned in a prototype coil (birdcage linear coil, 

transmit/receive coil, 100 mm in length, 55 mm in diameter, tuned at 127.6 MHz, Flick Engineering 

Solutions BV, Milwaukee, USA). The room temperature during experiments was 23°C and the 

mean acquisition time was limited to 20 min by the spontaneous awakening of mice. In vivo MRI 

was performed on a 3T clinical system (Sigma® EXCITE® HDxT, GE Healthcare, Milwaukee, 

USA). The approved imaging protocol is described in Table S1. The saline solution was 

administrated before and after MRI scanning in order to rehydrate the mice and to alleviate pain. 

After completion of the MRI, all mice were sacrificed in a saturated CO2 chamber and autopsies 

were performed. The spleens were collected for IHC analysis and cytofluorimetric analysis. 

 

2.5 MRI Signal Intensity Analysis 
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All animal groups were imaged before and 24 hours after USPIO administration as described above. 

Both qualitative and quantitative analyses were performed with FIESTA (Fast Imaging Employing 

Steady State Acquisition)-weighted sequences [33]. Quantitative analyses were expressed as Signal 

Intensity (SI) ± standard deviation (SD) for each mouse, calculated 24 hours after Feraspin XS 

administration, with SI being measured in the spleen, and the background noise was determined by 

drawning a region outside the anatomy of the mice, using an operator-defined region of interest 

(ROI). Circular ROIs were manually drawn and the size of the ROIs were measured by consistently 

acquiring the same size in the control group and in mice injected with CLL cells. After defining the 

ROIs, the SI in the spleen of each mouse was acquired. A circular ROI, positioned as indicated in 

Fig. 1, was used to calculate the signal-to-noise ratio (SNR) and ΔSNR% as follows [34, 35]: 

SNR= SItissue/SI noise  

ΔSNR%= [(SNR after USPIO) - (SNR before USPIO)/ SNR before USPIO]*100 

 

2.6 Histopathological analysis 

Formalin-fixed and paraffin-embedded spleen specimens were analyzed for the presence of human 

CLL infiltrates. The sections were deparaffined and antigen-retrieval was performed with citrate 

buffer high pH for 8 minutes. Double staining with CD20 and Ki67 by IHC was performed by 

incubation (32 min at 37°C) with a specific anti-human Ki67 antibody (MIB-1, DAKO Cytomation, 

dilution 1:25) and followed by addition of the polymeric detection system Ultraview Universal 

DAB Detection Kit (Roche, Ventana). Automatic dispensing of the second antibody (anti-CD20, 

L26- Roche Ventana Medical System) for 20 minutes at 37°C, was followed by addition of the 

polymeric detection system (Ultraview Universal RED Detection Kit). An appropriate positive 

tissue control was used for each staining run; the negative control consisted of performing the entire 

IHC procedure on adjacent sections in the absence of the primary antibody. The sections were 

counter-stained (automatically using a user-defined protocol) with Gill's modified hematoxylin and 

then cover-slipped. All  sections were quantitatively evaluated by two observers with an Olympus 

light microscope using 10 X, 40 X and 63 X objectives. All the sections were analyzed under a 

Leica DM3000 DMLB optical microscope (Leica Microsystems, Germany) and microphotographs 

were collected using a Leica DFC320 DMD108 digital microimaging camera (Leica Microsystems, 

Germany). Perls’ Prussian blue staining (Histological staining Kit, code 010236, Diapath) was 

performed to detect ferric (Fe3+) iron. 

 

2.7 Treatment with rituximab 
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CLL engraftment was achieved as described above. The anti-CD20 MAb, Rituximab, was donated 

by the pharmacy of our Institution from remnants of the patients’ sack therapy. Rituximab treatment 

was started using a dosage of 50 µg/mouse/dose (four treatments every 3 days) in 200µl of saline 

solution by i.v. injection [36]. The control group was injected with an equal volume of saline 

solution. Basal MRI was performed after four weeks of PBMC CLL injection before starting 

therapy and thereafter, at therapy completion [treated mice (n=3), control mice (n=3)] treated with 

saline solution as detailed in supplementary Fig. 1.  

After three days of the last dose of antibody, animals were sacrificed in a saturated CO2 chamber 

and autopsies were performed. Blood, and different samples of the spleens were evaluated by both 

FC and by IHC as described above. Fresh spleen tissue samples were mechanically resuspended 

with gentleMACS™ Dissociator (Miltenyi). The spleens were previously enzymatically digested 

using the Spleen Dissociation Kit (Miltenyi). The single-cell suspensions were evaluated by flow 

cytometry analysis with FACSCanto (BD Biosciences) and DIVA 6 (BD Biosciences) or FLOWJO 

V.9.8.3 software (Treestar Inc.) for: anti-human (hu) CD45 FITC, CD19 PECy7, CD5 APC 

antibodies (BD Biosciences). 

 

2.8 Statistical analysis 

The U-Mann Whitney statistical test was used for testing statistical differences between more than 

two groups of samples and the Wilcoxon test for matched-pairs groups.  

In order to identify the best cut-off value to be used in our experiments able to discriminate engrafted 

disease from engraftment failure, a diagnostic threshold of the relative enhancement measurements was 

sought by constructing receiver operating characteristic (ROC) curves. In an ROC curve, the true-positive 

rate (sensitivity) is plotted as a function of the false-positive rate (100 specificity) for different cut-

off points. Each point on the ROC plot represents a sensitivity and specificity pair that corresponds 

to a particular decision threshold. The area under the ROC curve (AUROC) was analyzed to define 

the performance of the applied methods. The 95% confidence intervals (CI) were calculated (see 

supplementary Fig.2). A value of P<0.05 was considered significant for all statistical calculations. 

Values are given as means ± sem.  

 

3. Results 

 

3.1 MRI signal measurements and histopathological correlations 
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NSG mice were inoculated with CLL cells and autologous T cells (defined as NSG-CLL) to favor 

the engraftment of the leukemic clones. USPIO-enhanced MRI was performed after two weeks 

and/or after four weeks in control mice (NSG-CTR, mice that did not receive any human cells), and 

in the NSG-CLL mice; results were expressed as ΔSNR%. 

Overall, twenty-four hours after USPIO administration we observed an increase in SI in the NSG-

CLL at two weeks (n=41) and at four weeks (n=28) compared to the NSG-CTR mice. In Fig. 2 two 

representative experiments of mice analyzed at four weeks are shown. Fig. 2A and 2D show MRI 

images of NSG-CTR and NSG-CLL after 24 h of USPIO administration. Fig. 2B and 2E show 

spleen IHC analysis of the same mice displaying the absence of CD20+ cells in NSG-CTR mice 

and the presence of focal aggregates of CD20 positive cells in NSG-CLL spleen surrounded by 

CD3+ cells (not shown). In addition, Perls’ Prussian blue staining (used to detect USPIO 

nanoparticles) indicated that ferric iron particles were excluded from the focal lesions (Fig 2F) 

whereas a random distribution of USPIO nanoparticles was observed in the spleens of NSG-CTR 

mice (Fig 2C). 

Fig. 3 summarizes the data obtained from all NSG mice analyzed including those that did not 

achieve engraftment [defined as NSG non-engrafted mice, (NSG-CLL-ne)] as demonstrated by the 

absence of CD20+ and CD3+ cells when sacrificed for IHC and FC examination of the spleen at 

four weeks (data not shown). In addition, at this time, their peripheral blood did not show presence 

of huCD45+ cells (data not shown). The U-Mann Whitney statistical test found a significant 

difference (P<0.0001) comparing the group of NSG-CTR mice to NSG-CLL mice at four weeks. 

Interestingly, a significant difference was also observed when comparing the NSG-CLL mice at two 

weeks (P<0.0001) (Fig. 3A). Significant differences were also observed comparing measurements 

of the same NSG-CLL mice at two and four weeks from PBMC CLL injection (Fig. 3B). 

  

3.2 Cut-off determination 

ROC analysis was utilized in order to identify the best cut-off for ΔSNR% to be used in our 

experiments for discriminating NSG-CLL mice from NSG-CTR. The best cut-off values were -4.8 

(AUC = 0.97 [95%CI 0.92-1.0]) at 2 weeks and -6.0 (AUC = 0.99 [95%CI 0.97-1.0]) at 4 weeks. 

(Supplementary Fig.2). 

 

 

3.3 Measurements of CLL disease regression in NSG engrafted mice.  

In order to investigate whether this technique would be useful for evaluating CLL disease 

regression upon therapy, NSG-CLL mice were treated with rituximab. Four mice were treated four 
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times at three-day intervals using a dosage of 50 µg/mouse, and compared with five mice injected 

with an identical volume of saline solution (mock-treated mice). 

MRI was carried out in three mock-treated NSG-CLL mice and in three NSG-CLL treated with 

rituximab and the relative signal measurements obtained at therapy start were compared with those 

obtained at therapy completion (Fig. 4). The SNR% values showed a clear reduction in animals 

treated with rituximab compared to mock-treated animals (Fig. 4C and 4D). Differences did not 

reach statistical significance likely due to the limited number of animals investigated. The general 

strategy of treatments and spleen evaluations is shown in Supplementary Fig.1.  

Spleen IHC analysis for expression of CD20, Ki67, CD3, and Perls’ Prussian blue staining of mice 

treated with rituximab or with saline solution are shown in Fig. 5A and 5B. Spleen tissue IHC 

indicates that the decreased MRI signal observed in rituximab-treated mice correlates with the loss 

of CD20+ cells organized in follicles (clearly observable in the spleen of mock-treated NSG-CLL 

mice). In addition, follicle residues are clearly infiltrated by T cells and USPIO nanoparticles (Fig. 

5B). Spleen FC analysis showed that huCD45/CD19/CD5+ cells were significantly less represented 

in rituximab-treated mice compared to mock-treated mice. In contrast, the percentage of CD3-

positive cells was significantly higher in mock-treated mice, compared to NSG-CLL mice treated 

with rituximab (Fig. 5C and 5D).  

 

4. Discussion 

MRI is a well-suited imaging modality for noninvasive cell tracking because of its tissue 

characterization, excellent image quality, and high spatial resolution, although currently nuclear 

imaging is a more sensitive technique. Furthermore, MRI advantages include lack of ionizing 

radiation, flexible image contrast, and the ability to assess localized function, perfusion, and 

necrosis. MRI offers the potential of tracking cells in vivo using innovative approaches and contrast 

media as well as cell labeling and image acquisition. 

In this study, we used MRI to track CLL cell seeding in a xenograft mouse model. We first 

observed that changes in spleen organization could be identified four weeks after CLL cell 

inoculation and analyzed by means of a high field 3T clinical scanner and USPIO nanoparticles. We 

used FIESTA acquisition because our previous observations indicated that it was suitable and also 

high sensitive in conditions of very low iron oxide nanoparticle concentrations [37] rendering this 

sequence the best option for the study of single cell iron oxide nanoparticles [33]. Histologic 

examination of the same spleens confirmed the presence of CD20+ nodular structures (see Fig. 2) 

surrounded by CD3+ cells (not shown). In addition, Perls’ Prussian blue staining demonstrated that 

iron particles were excluded from the nodular areas occupied by lymphoid cells, providing a 
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rational explanations for the MRI signals observed. The combination of extracellular with 

intracellular iron oxide nanoparticles compartmentalization within the CLL spleen, affected iron 

oxide proton relaxivity, which sometimes resulted in an increase rather than in the usual and 

expected SI decrease. This high T2-USPIO effect has also been reported by Simon G.H. et al [38]. 

FC analyses of splenic cell suspensions showed that huCD45+ cells were comprised of 

CD19/CD5+ cells and a variable proportion of CD3+ cells (not shown). An analogous approach of 

using FC to measure circulating T and B cells can be employed to assess the take of CLL 

engraftment in NSG mice although this method may be misleading, as leukemic cells can be 

difficult to track due to their extremely low number in peripheral blood. In addition, when tracked, 

the leukemic cells may represent cells merely surviving after the injection. Indeed, 17/19 non 

engrafted mice showed the presence of huCD45/CD19/CD5 cells (representing the bona fide the 

leukemic clone).  In contrast USPIO enhanced MRI spleen analysis was able to consistently assess 

the engraftment of CLL cells two weeks after their injection (see Fig. 3), as could also be confirmed 

by IHC evaluation.  

A reliable assessment of CLL engraftment two weeks after leukemic clone inoculation is most 

advantageous given that this animal model does not allow long term persistence/expansion of the 

inoculated leukemic cells beyond 6-8 weeks. Thereafter, mice can develop a graft-versus-host 

disease that may cause also the reduction and even disappearance of the leukemic cells [11]. In 

addition, leukemic cells can mature intointo plasmablasts/plasmacells [39]. The above limitations 

might impair the experimental data, particularly when drug treatments are evaluated, because this 

time-frame may not be sufficient to provide information on the long term effect of drugs.  

We also report the possibility of identifying a cut-off value for ΔSNR% able of discriminating 

NSG-CLL from NSG-CTR or NSG-ne mice. A similar cut-off value was used to identify the 

different disease extension at two and four weeks after inoculum in NSG-CLL mice. The 

identification of a relatively precise cut-off value allows investigators to reliably define when a 

single mouse can be considered engrafted or not and make decisions regarding the subsequent 

experimental procedures. This analysis however requires standardization on the instrument(s) used 

for the image acquisition. 

USPIO-enhanced MRI also was able to detect CLL disease regression after rituximab treatment of 

engrafted mice. MRI images, acquired before and following treatment, MRI images detected 

definite changes with an inversion of the ΔSNR% value (see Fig. 4). IHC showed a radical change 

in the architecture of the spleen  of treated animals compared to  controls. Following treatment, 

lymphoid infiltrates were mainly represented by unorganized T lymphocytes with the loss of the 

typical CD20+ nodular areas. Tissue Perls’ Prussian blue stain confirmed the diverse disposition of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 12 

USPIO nanoparticles (Fig. 5). Thus, this technique clearly distinguishes between the different types 

of lymphoid infiltrates on the basis of their organization. 

Another point that should be underlined is that the use of this technique limits the number of 

animals to be tested and sacrificed. This is important for several reasons: first, it requires fewer 

leukemic cells for injection thus sparing other cells for additional experimental procedures. 

Although a large number of CLL cells can generally be recovered from CLL patients, a typical 

experiment may require more than half a billion cells, a quantity often obtained from selected 

patients only. Second, this approach facilitates clearance of animal experimentation protocols by 

ethics committees. Currently, animal testing regulations pay increasingly more attention to the 

procedures and the experimental settings applied, encouraging the use of methods that limit animal 

sacrifice (and ultimately suffering of animals). A related point is the control of experimental 

variability, as only animals with evidence of disease are used to complete the experimental 

procedures with no additional trauma.  

 

5. Conclusions 

In summary, we present here an in vivo imaging approach for monitoring CLL disease evolution in 

a pre-clinical model of CLL using xenografted immunodeficient mice. MRI is a valuable, non-

invasive modality to predict progression in our CLL-model. In addition, by anticipating the timing 

of CLL engraftment, applications of MRI may include in vivo monitoring of new therapies thus 

allowing a longer temporal window to evaluate treatment efficacy and the possible emergence of 

therapy resistant clones. 

Finally, this method may have potential application in the clinical setting and may be used to 

evaluate organ involvement in CLL disease, allowing more accurate staging without exposing 

patients to additional radiation. 
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Figures captions 

 

Fig. 1. Representative slices of the sequence protocol used to measure the signal intensity (SI) 

in tissues of interest 

The regions of interest (ROIs, white circles) were drawn in the tissues of interest, spleen and in the 

region outside the anatomy of the mice (background noise) in order to measure the signal intensity 

(SI), as mean ± standard deviation (SD) and to calculate the signal-to-noise ratio (SNR) as 

described in Materials and Methods section. 

 

Fig. 2. Magnetic resonance image signal determination and histological analysis in control 

(NSG-CTR) compared to engrafted (NSG-CLL) mice 

The figure shows representative in vivo USPIO magnetic resonance images (MRI) obtained after 24 

h of USPIO administration in a NSG-CTR (A) and NSG-CLL mouse (D). The position of the 

spleen is indicated by the red outline. Matched histology sections (magnification, 100X) show the 

absence (B) or the presence (E) of CD20 (red) and Ki67 (brown) positive cells; Perls’ Prussian blue 

ferric iron staining (C and F) allows the detection of USPIO nanoparticles. 

 

Fig. 3. Comparison of magnetic resonance image signal intensity change in the spleen of 

control (NSG-CTR), engrafted (NSG-CLL) at 2 and 4 weeks and non-engrafted (NSG-ne) 

mice.  

(A) The scatter dot plot represents percentage Signal-to-Noise ratio change (ΔSNR%) of the MRI 

acquisition analysis comparing NSG-CLL mice at 2 weeks (red dots) and 4 weeks (blue dots) from 

peripheral blood mononuclear cell (PBMC ) CLL injection, NSG-CTR mice (black dots) and NSG-

ne (grey dots, evaluated at 4 weeks from PBMC CLL injection). Values of ΔSNR% are expressed 

as mean±sem. NSG-CTR mice: -42.16±5.6; NSG-CLL at 2 weeks: +16.32±3.95; NSG-CLL at 4 

weeks: +30.49±4.0; NSG-CLL-ne mice: -37.21±5.5. Statistical comparisons were carried out using 

the U-Mann-Whitney test. A P-value<0.0001 is indicated by *** and P=0.017 by *. (B) 

Comparison of MRI signals detected in the same mice 2 weeks (red dots) or 4 weeks (blue dots) 

from PBMC CLL injection (P=0.02 Wilcoxon-matched pair test).  

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 19 

Fig. 4 Representative experiment of treatment with rituximab  

The figure shows a representative in vivo USPIO magnetic resonance image (MRI) obtained 24 h 

after USPIO administration in a NSG-CLL mouse treated with saline solution (A) and a NSG-CLL 

mouse treated with rituximab (B). The position of the spleen is indicated by the red outline. MRI 

images show acquisition at therapy start (T.S.) and at therapy completion (T.C). The scatter dot 

plots (C) and (D) display data for each mouse and percentage Signal-to-Noise ratio change (ΔSNR%) 

mean values are calculated for each treatment-mice group (n=3) and the control NSG-CTR group. 

 

Fig. 5. Representative immunohistochemistry and flow cytometry analysis of mouse spleens 

from a rituximab experiment 

The figure shows the histologic analysis carried out for the presence of CLL cells (CD20, red), 

proliferating cells (Ki67, brown), T cells (CD3, red) and USPIO nanoparticles (Perls’ Prussian blue) 

in the NSG-CLL mice treated with saline solution (A) and in NSG-CLL mice treated with rituximab 

(B). Magnification 40X (left panels) and 200X (right panels).  

In panels C and D, the scatter-plots show the presence of CLL cells and autologous T-cells, 

respectively, evaluated by flow cytometry (CD45+/CD19+/CD5+ or CD45+/CD19-/CD5+), 

indicating a significant decrease of the percentage of CLL cells in the group of mice treated with 

rituximab (n=4) compared to the control group treated with saline solution (n=5). Statistical 

comparisons were carried out by Wilcoxon test. 
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Table 1. Biologic and molecular characteristics of CLL patients 

included in the study. 

Prognostic parameters n (% of total) 

CD38  

Negative 

Positive 

Total 

 

13 (72.2) 

5 (27.8) 

18 (100) 

ZAP-70 

Negative 

Positive 

Total 

  

6 (33.3) 

12 (66.7) 

18 (100) 

IGHV 

Mutated 

Unmutated 

Total 

  

13 (72.2) 

5 (27.8) 

18 (100) 

FISH 

Negative 

del(13)(q14) 

trisomy 12 

del(11)(q22.3) 

del(17)(p13) 

Total 

  

3 (17.6) 

14 (82.4) 

0 (0) 

0 (0) 

0 (0) 

17 (100) 
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Highlights  

 Non-invasive specific MRI method to monitor the CLL disease progression in a xenograft 

mouse model 

 reduction of  the mice number to be used and sacrificed in each experimental sett  

 Early and precise detection of the CLL cell graft take in NGS mice: cell engrafment is 

already evident two weeks following injection potential applications for staging and therapy 

monitoring in humans. 


