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ABSTRACT

Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phoshoprotein which
shuttles continuously between the nucleus and cytoplasm. Many findings have
revealed a complex scenario of NPM functions and interactions, pointing to prolifer-
ative and growth-suppressive roles of this molecule. The gene NPM1 that encodes
for nucleophosmin (NPMI) is translocated or mutated in various lymphomas and
leukemias, forming fusion proteins (NPM-ALK, NPM-RARa, NPM-MLF1) or NPM
mutant products. Here, we review the structure and functions of NPM, as well as the
biological, clinical and pathological features of human hematologic malignancies
with NPM1 gene alterations. NPM-ALK indentifies a new category of T/Null lym-
phomas with distinctive molecular and clinico-pathological features, that is going to
be included as a novel disease entity (ALK+ anaplastic large cell lymphoma) in the
new WHO classification of lymphoid neoplasms. NPM1 mutations occur specifically
in about 30% of adult de novo AML and cause aberrant cytoplasmic expression of
NPM (hence the term NPMc+ AML). NPMc+ AML associates with normal karyotpe,
and shows wide morphological spectrum, multilineage involvement, a unique gene
expression signature, a high frequency of FLT3-internal tandem duplications, and dis-
tinctive clinical and prognostic features. The availability of specific antibodies and
molecular techniques for the detection of NPM1 gene alterations has an enormous
impact in the biological study diagnosis, prognostic stratification, and monitoring of
minimal residual disease of various lymphomas and leukemias. The discovery of
NPM1 gene alterations also represents the rationale basis for development of
molecular targeted drugs.

Key words: nucleophosmin, NPM mutations, lymphomas, ALK, acute myeloid
leukemia, normal karyotype, ARF, antibodies.
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ucleophosmin (NPM), also known as B23,' NO38,

and numatrin, is an abundant, highly conserved,

ubiquitously expressed nucleolar phosphoprotein
which belongs to the nucleoplasmin/nucleophosmin fam-
ily of nuclear chaperones.”® Many findings have revealed a
complex scenario of NPM functions and interactions,
pointing to proliferative and growth-suppressive roles of
this molecule.* Nucleophosmin is an essential protein,
since inactivation of the gene encoding for nucleophosmin
(NPM1) in the mouse germ line leads to developmental
defects that cause embryonic death in mid-gestation.® In
humans, accumulating evidence suggests that NPM is
directly implicated in the pathogenesis of cancer. NPM is
over-expressed in solid tumors of diverse histological ori-
gin® or is involved in tumor progression.” In several hema-
tologic malignancies, the NP1 locus is lost® or translo-
cated leading to the formation of oncogenic fusion pro-
teins." Moreover, we recently discovered that NPM1 is
mutated in about one-third of adult patients with acute
myeloid leukemia (AML),” which makes NPA1 muta-
tions the most frequent genetic lesions so far identified in
de novo AML. Here we review the structure and biological
functions of the NPM molecule and discuss the role that
NPM alterations play in the pathogenesis and clinico-
pathological behavior of human Iymphomas and
leukemias, focusing on AML carrying cytoplasmic/mutat-
ed NPM (NPMc* AML).""

The NPM1 gene and the structure of the encoded
protein

The NPM1 gene contains 12 exons™ and in humans
maps to chromosome 5q35. The NPM protein exists in
two alternatively spliced:™ B23.1, the prevalent isoform in
all tissues,'® contains 294 amino acids,'® whereas B23.2, a
truncated protein, lacks the last 35 C-terminal amino acids
of B23.1 and is expressed at very low levels. The NPM
molecule contains distinct domains' that account for its
multiple biochemical functions (Figure 1A). The N-termi-
nal hydrophobic portion of NPM contains the regions that
are responsible for the self-oligomerization and chaperone
activities of the molecule™ (Figure 1A). Under native con-
ditions, both in resting and proliferating cells, over 95% of
cellular NPM protein exists as an oligomer.” The
oligomerization domain of NPM also contains a highly
conserved motif that appears critical for mediating ADP-
ribosylation factor (ARF) binding in vivo.” Through its N-
terminal hydrophobic domain, NPM also exerts a chaper-
one activity, preventing protein aggregation in the nucleo-
lus, favoring histone and nucleosome assembly,”* and
increasing acetylation-dependent transcriptional activity.*
Recently, NPM has also been found to act as a chaperone
for Bax; that is, it induces the conformational changes of
Bax that precede this molecule’s translocation into mito-
chondria,® a key event in the control of the apoptotic
pathway. The chaperone activity of NPM also depends
upon the first of the two acidic domains" (stretches of
aspartic and glutamic acids) that are located in the middle
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Figure 1. A. Structure and functional domains of wild-type NPM1.
Starting from the N-terminus, the protein displays two nuclear
export signal (NES) motifs (residues 42-49 and 94-102), a metal
binding domain, two acidic regions (residues 120-132 and
160-188), a bipartite nuclear localization signal (NLS) motif
(residues 152-157 and 190-197), a basic cluster inside a mod-
erately basic region, and an aromatic region at the C-terminus
unique to NPM isoform 1 containing the nucleolar localization sig-
nal (NLS) with tryptophan residues 288 and 290. B. Structure and
functional domains of NPM altered proteins in hematologic malig-
nancies. The NPM/ALK fusion protein is constituted by the amino-
terminal portion of NPM (amino acids 1-116) and the cytoplasmic
tail of ALK protein which contains the tyrosine kinase (TK)
domain. The NPM/RAR«o fusion protein is constituted by the
amino-terminal portion of NPM (amino acids 1-147) and the DNA
binding, dimerization and ligand binding domain of RAR«. protein.
A variant fusion protein of 563 amino acids has been described.
The NPM/MLF1 fusion protein is constituted by the amino-termi-
nal portion of NPM (amino acids 1-175) and almost the entire
MLF1 protein, excluding only the first 16 amino acids at the N-ter-
minus. The 14-3-3 binding domain of MLF1 is indicated. Mutated
NPM protein in AML: (NPMmut) mutations at the NPM C-terminus
introduce a new NES motif and disrupt tryptophan residues 288
and 290 (or 290 only) at the nucleolar binding domain (asterix).
See, for comparison, Figure 1A.

portion of the protein. In fact, the negatively charged
acidic cluster on the outside of the NPM oligomer may
serve as a binding site for ribosomal basic proteins, possi-
bly minimizing non-specific interactions between riboso-
mal proteins and rRNA, during ribosome assembly in the
nucleoli.” The first acidic segment also contains a major
protein kinase casein kinase II (CK2) site (Ser 125).
Phosphorylation by the abundant CK2 in the nucleolus is
involved in NPM chaperoning® since it reduces the affini-
ty of NPM for substrate, promoting dissociation.
Occurring during interphase, phosphorylation may help
to regulate the function of NPM in the nucleolus.”®” The
segment between the two acidic stretches and part of the
C-terminus of NPM accounts for the ribonuclease activity
of the protein. The C-terminus also contains a short aro-
matic stretch with two tryptophans at positions 288 and
290, which are crucial for NPM binding to the nucleolus®
(the so-called nucleolar localization signal). NPM binding
to the nucleolus and other subnuclear compartments”® is
also conditioned by several potential cyclin-dependent
kinase 1 (CDK1) phosphorylation sites in the C-terminal
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region. Phosphorylation induces NPM to shuttle between
the nucleolus and nucleoplasm (a common feature of
nucleolar components involved in ribosome biogenesis),
and appears to reduce the affinity of NPM for other nucle-
olar components.”* Finally, the bipartite nuclear localiza-
tion signal (NLS)” and nuclear export signal (NES)
motifs™ of NPM play major roles in regulating the
nucleo-cytoplasmic traffic of the protein (see below).

NPM expression

NPM is more highly expressed in proliferating cells than
in quiescent ones® and increases in response to mitogenic
stimuli.* NPM over-expression promotes survival and
recovery of hematopoietic stem cells under conditions of
stress * and decreases the sensitivity of human HL-60
leukemic cells to retinoic acid-induced differentiation and
apoptosis.”* Conversely, NPM levels drop after retinoic
acid-induced differentiation of HL-60 leukemic cells” and
TPA-induced megakaryocytic differentiation of K562
cells.® Loss of NPM, or inhibition of NPM shuttling,
blocks protein translation and arrests the cell-cycle.” NPM
control of cell growth and proliferation is probably the
result of several activities which include modulation of
ribosome biogenesis as well as interactions with histones,
p53 and ARF oncosuppressor proteins (see below). The
close association of NPM over-expression with increased
proliferation concurs with the finding that NPM is a tran-
scriptional target of the Myc oncogene.*

The NPM isoforms have different patterns of subcellu-
lar distribution: B23.1 is located in the granular compo-
nent of the nucleolus,™ which contains maturing pre-ribo-
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Nucleolus Figure 2. Mechanism of altered nucleo-

cytoplasmic traffic of wild-type and
mutant NPM. A. Export from the nucle-
us to the cytoplasm of wild-type NPM is
minimal since the wild-type protein con-
tains only weak physiological NES
motifs (purple circles). Moreover, the
two tryptophans at the C-terminus (red
circles) drive wild-type NPM to the nucle-
olus, where the bulk of protein accumu-
lates. Immunofluorescence analysis
(lower panel) clearly shows nucleolar
localization of NPM in NIH3T3 mouse
fibroblasts transfected with eGFP/wild-
type NPM. B. NPM mutants accumulate
in the cytoplasm (immunofluorescence
image in lower panel) since the muta-
tion creates an additional NES motif at
the C-terminus (gray circles)which is
available for Crmil-mediated nuclear
export. Moreover, mutations of the two
tryptophans (cian stars) impair nucleo-
lar localization. Dimerization between
mutated and wild-type NPM partially
delocalize the latter into cytoplasm. NPC
is the Nuclear Pore Complex. The image
in the lower panel is a confocal micro-
graph of NIH3T3 cells transfected with
eGFP-NPM mutant A. Nuclei are coun-
terstained red with propidium iodide.
Cells were analysed with a Zeiss LSM
510 confocal microscope and recon-
structed with Imaris software (Bitplane,
Zurich, CH, Switzerland).

somal particles;® retention is probably due to its nucleic
acid-binding domain interacting with other nucleolar
components, possibly RNA.*? The rare B23.2 isoform
mostly localizes in the nucleoplasm.®*

Although most NPM resides in the nucleolus,”* this
molecule shuttles from the nucleus to cytoplasm.** The
NLS signal drives NPM from the cytoplasm to the nucleo-
plasm, where it is translocated to the nucleolus through its
nucleolar binding domain, particularly tryptophans 288
and 290.* NPM remains in nucleoli, even though it con-
tains highly conserved hydrophobic leucine-rich NES
motifs within residues 94-102*" and 42-49,* which drive it
out of the nucleus. Therefore, in physiological conditions,
nuclear import of wild-type NPM predominates over
export, thus explaining why most of the wild-type NPM
is found in the nucleolus (Figure 2A).

Although the levels of the NPM pools in the nucleo-
plasm and the cytoplasm are very low, they are crucial for
proper execution of the diverse cellular activities of NPM,
such as centrosome duplication and ribosome biogene-
sis.”* The size of these NPM pools closely depends upon
regulation of NPM traffic across the different subcellular
compartments. The exchange of NPM between the nucle-
olus and the nucleoplasm is strictly regulated by the
capacity of this molecule to bind more or less efficiently
to nucleolar components, which seems in turn to depend
upon several variables: the oligomerization state of the
molecule; the interaction of NPM with ARF or other
nucleolar proteins; the phosphorylation state of CDK1
sites (mutants carrying changes of all four CDKI sites
delocalize in the nucleoplasm);”” and critical tryptophans
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at position 288 and 290. Interactions between NPM and
other proteins may be involved in nucleoli assembly and
disassembly.® Finally, regulation of NPM traffic between
the nucleus and cytoplasm mostly occurs through the NLS
and NES motifs.”*

Alterations in the regulation of NPM cellular traffic may
contribute to tumorigenesis. Indeed, an abnormal subcel-
lular distribution of fusion and wild-type NPM proteins
(see below) is a general property of lymphomas and
leukemias carrying NPA1 gene alterations.

The functions of NPM

NPM is a multifunctional protein. Here is a brief
description of the main functions of NPM that have been
observed to date. NPM is a key player in ribosome bio-
genesis, supporting cell growth and proliferation. It medi-
ates 5S rRNA nuclear export, interacting with ribosomal
protein L5.* NPM intervenes in processing and/or assem-
bly of ribosomes through its nucleo-cytoplasmic shuttling
properties and intrinsic RNAse activity,” and its ability to
bind nucleic acids,” to process pre-RNA molecules,* and
to act as a chaperone,” impeding protein aggregation in
the nucleolus during ribosome assembly.” Recently,
Pelletier er al®" demonstrated a mechanistic link between
TSC1/mTOR signaling, nucleophosmin-mediated nuclear
export of ribosome subunits, protein synthesis levels, and
cell growth.

NPM maintains genomic stability*® by controlling DNA
repair mechanisms®* and centrosome duplication® dur-
ing mitosis. In resting cells, NPM associates with the
unduplicated centrosome and after CDK2-cyclinE-mediat-
ed phosphorylation on threonine 993, it dissociates from
it,”*¢ thereby enabling proper chromosome duplication.
Following phosphorylation on serine 4 by PLK1 and
NEK2A,” NPM re-associates with centrosomes at the
mitotic spindle during mitosis.® A recent study points to
ROCK II kinase (an effector of Rho small GTPase) being
the effector of the CDK2/cyclinE-NPM pathway in the
regulation of centrosome duplication.” As NPM inactiva-
tion leads to unrestricted centrosome duplication and
genomic instability,* NPM appears to protect from centro-
some hyper-amplification and from the consequent
heightened risk of cellular transformation. This view is
supported by the observation that NPA 17 mice develop
a myelodysplastic-like syndrome with signs of dysery-
thropoiesis which is caused by unrestricted centrosome
duplication.®

NPM is involved in the apoptotic response to stress and
oncogenic stimuli,” and can modulate the activity and sta-
bility of the oncosuppressor protein p53.%% Notably,
nucleolar integrity, NPM and p53 stability are functional-
ly linked.®®** Cellular stress-inducing stimuli disrupt
nucleolar integrity and re-locate NPM from the nucleolus
to the nucleoplasm, leading to p53 activation,*® and
growth arrest. Moreover, nucleoplasmic NPM reinforces
p53 stability by binding to, and inhibiting, Mdm?2,*a p53
E3-ubiquitin ligase,”* even though nucleolar stress may
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activate p53 independently of Mdm?2.%

NPM stabilizes the oncosuppressor ARF and determines
its subcellular localization,” thus contributing to modulat-
ing growth-suppressive pathways. NPM co-localizes
with ARF in the nucleolus,” forming high molecular
weight complexes.”” NPM protects ARF from degrada-
tion,™” stabilizing and maintaining a basal ARF level in
the nucleolus, probably because ARF assumes a stable
structure only when bound to NPM,™ thus escaping the
rapid proteasome-mediated destruction which many mis-
folded proteins are subjected to.* Increased ARF levels
after oncogenic stress affect NPM polyubiquitination,”
promoting NPM degradation and interfering with the
NPM nucleo-cytoplasmic shuttling which regulates sever-
al functions of NPM. Subnuclear compartimentalization
of ARF is important for its regulation.” In response to cel-
lular stresses, NPM and ARF are displaced to the nucleo-
plasm where competitive binding between Mdm?2 and
NPM for ARF leads to formation of NPM-Mdm?2 and
ARF-Mdm?2 binary complexes where Mdm2 sequestra-
tion strongly activates the p53 pathway.” Thus, the ARF-
NPM interaction site is bi-compartimental. In the nucleo-
lus, ARF directly accesses the tRNA processing machinery
through its association with NPM, thus preventing export
of processed rRNA and inhibiting cell growth.” In the
nucleoplasm ARF may regulate the p53 cell cycle pathway
through multiple interactions with NPM, Mdm2 and
other proteins such as ARF-BP1,” leading to a block of
cell-cycle progression. It has been proposed that ARF acts
as a parasitic peptide on the NPM molecule, since in
exploiting this chaperone for its own survival it antago-
nizes normal NPM activities.* However, the biological
consequences of the NPM-ARF interaction still remain
poorly defined. NPM seems to fall into a newly discov-
ered category of genes that function both as oncogenes
and oncosuppressors.* When NPM expression is aberrant-
ly increased, NPM may function as an oncogene by pro-
moting aberrant cell growth through enhancement of
ribosome machinery® and, possibly, by inhibiting pro-
grammed cell death.® Paradoxically, when NPM expres-
sion is reduced and its subcellular distribution altered (as
in tumors carrying alterations of the NP1 gene), NPM
behaves as an oncosuppressor, possibly facilitating
tumorigenesis through destabilization and functional
impairment of the ARF-tumor suppressor pathway and
increased genomic instability.*

Lymphomas and leukemias carrying NPM1 gene
translocations

The NPM1 gene is translocated in CD30* anaplastic
large-cell lymphoma and in rare variants of AML" (Figure
1B). Cells from these tumors contain an oncogenic fusion
protein (NPM-ALK, NPM-RARa or NPM-MLF1) (Figure
1B) and a reduced level of wild-type NPM due to the loss
of one functional allele of the NP1 gene (hemizygosity).



ALCL expressing NPM-ALK

Anaplastic large cell lymphoma (ALCL) is characterized
by a proliferation of tumor cells, usually with anaplastic
morphology, which express the CD30 molecule, tend to
grow cohesively and invade lymph node sinuses.*® Due
to ALK gene translocations, about 60% of ALCL express
the anaplastic lymphoma kinase (ALK) protein, hence the
term ALK® ALCL." About 85% of ALK* ALCL carry the
t(2;5)(p23;q35) chromosome translocation,™ in which the
ALK gene on chromosome 2 is fused with the NPA11 gene
on chromosome 5.* The chimeric gene encodes for a
fusion protein comprising the amino-terminal portion of
NPM (containing the oligomerization domain) and the
entire cytoplasmic region of ALK (containing the tyrosine
kinase domain)® (Figure 1B). The other 15% of ALK
ALCL are molecularly heterogeneous, since the ALK gene
fuses with many different partners.®?®* ALK® ALCL
exhibits distinctive molecular, pathological and clinical
features® and, unlike other peripheral T-cell lymphomas,
has a good prognosis.”* Tumor cells of ALCL with t(2;5)
contain the NPM-ALK fusion protein and the wild-type
NPM protein. They characteristically express the ALK
protein in the cytoplasm and ectopically in the nucleus
because, through the NPM oligomerization domain,
NPM-ALK forms heterodimers with wild-type NPM,
which in turn, via shuttling, import NPM-ALK into nucle-
oli"* (Figure 3, top and middle). Due to the presence of
the NPM-ALK fusion protein," ALCL cells also show aber-
rant NPM cytoplasmic expression. This can be detected
by an antibody against the N-terminus of NPM which is
retained in the fusion protein® (Figure 3, bottom). In con-
trast, wild-type NPM, which is recognized by an antibody
against the NPM C-terminus (not retained in NPM-ALK),
maintains its nucleolar localization (not showsn)."*
Through the oligomerization domain of NPM, NPM-ALK
can also form homodimers (Figure 3, top panel) that lead
to constitutive activation of the ALK tyrosine kinase
domain, a major trigger of lymphomagenesis.** This
appears a general mechanism that also underlies the for-
mation of homodimers between ALK fusion proteins
other than NPM-ALK.* Thus, the NPM moiety of NPM-
ALK would appear to play no other role in transformation
beyond serving as an oligorimerization domain for the
chimera.®® Since wild-type NPM in ALCL with t(2;5)
retains its nucleolar localization,™? its functions may not
be perturbed by the NPM-ALK fusion product. Whether
the loss of one functional NPA1 allele contributes to
tumourigenesis* remains an open question.

AML carrying the NPM-RAR protein

This extremely rare genetic alteration has been so far
reported in three children with acute promyelocytic
leukemia (APL) carrying the t(5;17) translocation.**" The
t(5;17) causes the NPV 1 gene to fuse with the retinoic
acid receptor-a. gene (RAR0) (Figure 1B). Morphologically
these cases look like the typical APL cases carrying the
t(15;17)/PML-RARa rearrangement.”

Nucleophosmin alterations in hematologic malignancies

ALCL NPM-ALK-

ALK

NPM-NH:

Figure 3. Localization of wild-type NPM and NPM-ALK fusion pro-
tein in ALCL with t(2;5). (Top) Schematic representation of wild-
type NPM and NPM-ALK fusion proteins in ALCL with t(2,5).
Cytoplasmic NPM positivity is due to the presence in the cyto-
plasm of NPM-ALK. Wild-type NPM can form heterodimers with
NPM-ALK causing its dislocation into the nucleus (arrow). Wild-
type NPM is nucleus-restricted. (Middle) Immunostaining for ALK
protein. ALK is expressed both in the cytoplasm and nucleoli of
tumor cells (arrow). Normal residual lymphoid cells are ALK-neg-
ative. Alkaline phosphatase anti-alkaline phosphatase (APAAP)
technique; x 800. (Bottom) Immunostaining for NPM N-terminus
(retained in the fusion protein). NPM shows the expected nuclear
localization in addition to aberrant expression in the cytoplasm
(long arrow). Normal residual lymphoid cells display nucleus-
restricted NPM positivity (short arrows) (APAAP technique; x 800).
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Leukemic cells express the NPM-RARa. fusion protein
and its reciprocal, as well as wild-type NPM and RARa
from the uninvolved alleles.”” In two cases investigated by
immunocytochemistry,*®" NPM showed diffuse nuclear
positivity which was very unlike the typical wild-type
NPM nucleolar staining. Furthermore, after a long latency,
NPM-RARao transgenic mice in which the fusion gene is
expressed under the control of a human cathepsin G
(hCG) minigene, develop monoblastic leukemia with the
NPM/RARa oncoprotein localizing in leukemic cell nucle-
oli.” These findings suggest that NPM-RARo physically
interacts with wild-type NPM, either by delocalizing it
from the nucleolus or by altering its function in the nucle-
olus. The NPM-RARo. fusion protein does not appear to
interact with PML, nor alter its localization.*

Like PML-RARo,, the NPM-RARa: fusion protein modu-
lates retinoid-responsive gene expression,* perturbing the
retinoid acid signal pathway and arresting myeloid differ-
entiation at the promyelocyte stage. APL carrying NPM-
RARa shows a good response to differentiation therapy
with all-transretinoic acid (ATRA).”

AML carrying the NPM-MLF1 fusion protein

The rare chromosomal translocation t(3;5)(q25;q35)
occurs in <1% of cases of AML and generates a chimeric
gene named NPM-MLF1(myelodysplasia/myeloid leukemia
factor 1).% In the encoded NPM-MLF1 fusion protein, the
N-terminal portion of NPM is fused to almost the entire
MLEF1 protein, excluding only the first 16 amino acids at
the N-terminus® (Figure 1B). AML with t(3;5) embraces all
French-American-British (FAB) categories but is most fre-
quently M6.”

Immunohistochemical hallmarks of leukemic cells car-
rying NPM-MLF1 are aberrant nuclear MLF1 expression,
with a mechanism similar to the t(2;5), and aberrant cyto-
plasmic NPM positivity.® Cytoplasmic NPM positivity is
due to the NPM-MLF1 fusion protein in the cytoplasm
and to wild-type NPM which is dislocated, through an
unclear mechanism, from the nucleus to the cytoplasm.®
As these aberrant staining patterns are frequently
observed in myeloid and erythroid cell precursors, at least
one myeloid-committed cell appears to be involved.*
Interestingly, HLS7 (the murine gene counterpart to
human AMLF1) influences erythroid/myeloid lineage
switching and development of normal hematopoietic
cells.” The mechanism underlying the NPM-MLF1 fusion
protein induction of malignant transformation remains
unknown. Since MLF1 is not usually expressed in normal
hematopoietic tissues, NPM-MLF1 may promote ectopic
MLEF1 expression in hematopoietic cells, thus contributing
to myelodysplasia/AML." Interestingly, MLF1 prevents
erythro-leukemic cells from undergoing biological and
morphological maturation in response to erythropoietin,™
possibly in part through an interaction with the recently
identified MLF1IP protein.” This finding concurs with the
frequent association of t(3;5) AML with the FAB M6 sub-

type.”
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Table 1. AML with t(3;5) vs NPMc* AML: common and distinctive
features.

Features AML with t(3;5)% NPMc* AML™

Frequency < 1% of AML About 30% of adult AML

Age Younger Older

Origin May be associated with MDS® Usually de novo

Karyotype t(3;5)(925;q35) Normal (85% cases)*

Genetic lesion NPM/MLF1 chimeric gene”  NPM exon-12 mutations™

MLF1-labeling  Nuclear (aberrant) + cytoplasmic** None

NPM expression Nuclear+cytoplasmic Nuclear+cytoplasmic

Morphology (FAB) Wide spectrum Wide spectrum
(mostly M6) (mostly M4-M5)

Multilineage involvement Yes Yes

(D34 expression Absent Absent

°MDS: myelodysplastic syndrome; *About 15% of cases show minor cytogenetic
abnormalities; *No mutations in the coding region of the NPM allele not involved
in the translocation. **May sometimes be only nuclear.

The contribution of NPM to NPM-MLF1-induced leuke-
mogenesis remains to be determined. The interaction
between the NPM moiety of the fusion protein and wild-
type NPM causes formation of heterodimers (wild-type
NPM/NPM-MLF1)** and transport of the chimeric pro-
tein into the nucleus, which may result in functional alter-
ations.” Reduced levels of wild-type NPM (due to the loss
of one NPM1 functional allele) and its cytoplasmic dislo-
cation may also contribute to leukemogenesis. In fact,
NPM*" heterozygous mice develop a hematologic disor-
der with features resembling those of human myelodys-
plastic syndromes.* Despite sharing some features with
NPMc* AML (see below), AML patients carrying t(3;5) are
younger at presentation, may have suffered from previous
myelodysplasia, show no NPM1 mutations and have a
poorer prognosis (Table 1).

AML carrying cytoplasmic/mutated nucleophosmin
(NPMc* AML)

In early 2005, we reported that NPV1 mutations closely
associate with AML carrying a normal karyotype®” (AML-
NK). Molecular alterations in AML-NK have always been
difficult to study because, although this leukemia subgroup
accounts for 40-50% of adult AML,*'* it lacks chromoso-
mal rearrangements that direct researchers towards
cloning and characterization of oncogenic fusion genes,
such as those encoded by the translocations t(15;17),
t(8;21) or Inv(16)."” Attempts to stratify AML-NK using
gene microarrays'™'® succeeded in associating gene
expression patterns with differences in response to treat-
ment, but no specific genetic subgroups emerged. In the
difficult setting of AML-NK, our discovery of NPAM1
mutations is yet another example of how simple observa-
tions at the microscope™ sometimes provide the key. The
clue to the identification of NPAI1 mutations in AML-NK
came from our immunohistochemical studies on ALCL
with t(2;5)." Having observed that NPM, instead of being
restricted to nucleoli as in normal tissues,™ is aberrantly
expressed in the cytoplasm?® (due to the presence of the



NPM-ALK protein) (Figure 3, bottom) we reasoned that
immunohistochemical detection of cytoplasmic NPM in
routine biopsy samples might serve as a quick and sensi-
tive method to screen tumors for the presence of NP1
gene alterations. Consequently, we extended our
immunohistochemical studies to a wide range of human
neoplasms, including leukemias, and found the first cases
of AML with cytoplasmic NPM expression (NPMc* AML)
but no known NPM fusion proteins. Subsequent analysis
of a large cohort of AML patients established that cyto-
plasmic NPM was associated with normal karyotype and
other distinctive biological and clinical features.” These
findings led us to hypothesize that yet unidentified genet-
ic lesion underlies NPMc™ AML. As the only distinguish-
ing feature was NPM cytoplasmic dislocation, the NP1
gene emerged as the most likely candidate and indeed,
gene sequencing revealed mutations at exon 12."

General characteristics of NPM1 mutations

NPM1 mutations appear to be specific for de novo
AML.?* Although mutational studies of NP1 in tumors
other than AML are scarce, immunohistochemical analy-
sis of NPM in thousands of hematopoietic and extra-
hematopoietic neoplasms has consistently revealed nucle-
us-restricted NPM expression, which indicates no NP1
mutations are present."? Rare reports of NP1 mutations
in chronic myelomonocytic leukemia™" are question-
able, since most such cases developed AML within 1 year
and probably represented early stage M4 or M5 AML
with marked monocytic differentiation. Finding NP1
mutations in 2/38 (5.2%) myelodysplastic patients™ does
not concur with our immunohistochemical studies in 50
patients with various myelodysplastic syndromes who
showed nucleus-restricted NPM expression, indicating an
unmutated NPV 1 gene (Falini, unpublished results). Thus,
whether NPA1 mutations occur occasionally in
myelodysplastic syndromes remains to be clarified in larg-
er series of patients. Although NPAI1 mutations are found
in about one-third of adult AML patients, they were
detected in only 1/79 human myeloid leukemic cell
lines."® This cell line, called OCI-AML3 was originally
generated at the Ontario Cancer Institute, Ontario,
Canada," from a 57-year old male patient with AML-M4
and an unknown karyotype at diagnosis. The OCI-AML3
cell line exhibits the distinctive features of NPMc* AML,
since it carries NP1 mutation A and expresses cytoplas-
mic NPM."

NPM1 mutations are consistently heterozygous and a
wild-type allele is retained. With very few exceptions, i.e.
involvement of exon 11" and exon 9,"® NPAI41 mutations
are restricted to exon 12." About 40 molecular variants of
NPM1 mutations have been described to date in AML
patients,” with >95% occurring at nucleotide position
960. The most common mutation (so-called mutation A™)
duplicates a TCTG tetranucleotide at positions 956 to 959
of the reference sequence (GenBank accession number
NM_002520), and accounts for 75%-80% of adult NPMc*

Nucleophosmin alterations in hematologic malignancies

AML cases. Mutations B and D are observed in about
10% and 5% of cases, respectively; other mutations are
very rare. Independently of their type, all mutation vari-
ants generate common alterations at the C-terminus of
the NPM leukemic mutants which are responsible for
their dislocation into cytoplasm (see below). NPV 1 muta-
tions tend to be stable.”™"" Loss of mutations at relapse is
extremely rare and sometimes associated with a change
from a normal to an abnormal karyotype.™™

Cytoplasmic/mutated NPM closely associates with
AML-NK; and it is mutually exclusive with major recur-
rent genetic abnormalities.”™*" About 86% of patients
with NPMc® AML have a normal karyotype: the other
14% show chromosomal abnormalities that are likely to
be secondary.™" The interaction of NP/1 mutations with
other genetic alterations in AML-NK is interesting. FLT3-
ITD targets NPMc* AML twice as often as AML-NK car-
rying nuclear/unmutated NPM.">""**"" NP/11 mutations
are likely primary events, preceding the acquisition of
FLT3-ITD™ or other mutations. In contrast, partial tan-
dem duplications within the MLL gene (MLL-PTD) and
cytoplasmic/mutated NPM are usually mutually exclu-
sive.™"" In two large studies, CEBPA, KIT and NRAS
mutations did not appear to differ between NP/ 1-mutat-
ed and NPM1-unmutated AML-NK."*'* Mutations of p53
are rare in NPMc* AML (about 3% of cases),™ concurring
with their being mainly found in AML with karyotype
abnormalities."*"”

Properties of NPM leukemic mutant proteins

One of the most distinctive features of NPM mutants is
their aberrant localization in the cytoplasm of leukemic
cells” (Figure 2B). This is causally related to two alter-
ations at the leukemic mutant C-terminus: (i) generation
of an additional leucine-rich NES motif;™ and (ii) loss of
tryptophan residues 288 and 290 (or residue 290 alone)
which are crucial for NPM nucleolar localization.”® We
recently demonstrated that both alterations are needed to
ensure NPM cytoplasmic dislocation™ (Figure 2B).
Observing that rare NPM mutants, despite retaining tryp-
tophan 288, still delocalize in cytoplasm, led us to discov-
er a close correlation between the type of NES motif and
C-terminal mutated tryptophans.”™ Mutations of both
tryptophans are always found with the very common
NES motif, L-xxx-V-xx-V-x-L; retention of tryptophan
288 is always associated with rare NES variants in which
valine at the second position is replaced by leucine,
phenylalanine, cysteine or methionine.” One explanation
might be that, in order to counterbalance tryptophan 288,
which drives mutants to the nucleolus,” the rare variant
NES motifs need to be more efficient than the L-xxx-V-
xx-V-x-L sequence in binding Crm1 and dislocating NPM
to the cytoplasm.

All NPM leukemic mutants interfere with wild-type
NPM and oncosuppressor ARF functions by binding and
recruiting them into the nucleoplasm and cytoplasm.'"'*
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Diagnosis of NPMc* AML

NPMc* AML is easily diagnosed by molecular biology
techniques'*"¥ or immunohistochemistry, since detection
of aberrant cytoplasmic NPM expression is predictive of
NPM1 mutations.™ Immunohistochemistry is the first
choice technique for diagnosing NPMc* AML in the case
of a dry-tap or biopsy from extramedullary sites,™ and for
the analysis of hematopoietic lineage involvement.'
Immunohistochemistry must be applied on paraffin sec-
tions since fresh material (smears or cytospins) is not suit-
able for reliably detecting cytoplasmic dislocation of
NPM. Molecular analysis is the first choice assay for mon-
itoring minimal residual disease.™

Three different types of antibodies are available for the
immunohistochemical detection of NPM in tissue sec-
tions. Monoclonal antibodies directed against fixative-
resistant epitopes of NPM™"™" do not distinguish
between mutated and wild-type NPM and stain NPMc*
AML cells in the nucleus (mostly containing wild-type
NPM) and in the cytoplasm (Figure 4A) which contains
the NPM mutant protein and wild-type NPM (recruited
by the mutant, as shown in Figure 2B). Despite lack of
specificity for NPM mutants, these antibodies are the
most widely used, reliable reagents for the immunohisto-
chemical diagnosis of NPMc" AML." Polyclonal antibod-
ies recognizing NPM mutants but not wild-type
NPM"e#1% stain only the cytoplasm of NPMc™ AML cells,
indicating that mutants are mostly cytoplasmic (Figure 4,
middle). Due to their high specificity for NPM mutants,
these antibodies are useful when studying lineage involve-
ment in NPMc" AML,™ but because of antigenic denatu-
ration, are suitable for diagnostic purposes in only 50-60%
of samples." Future efforts should be devoted to generat-
ing antibodies against NPM mutants that can be more
widely applied. Finally, a monoclonal antibody recogniz-
ing wild-type NPM but not NPM mutants™"'* stains
NPMc* AML cells in the nucleus and cytoplasm (ot
shown), providing evidence that wild-type NPM is dislo-
cated into the cytoplasm. This antibody is of little diag-
nostic relevance. The best control for assessing specificity
of NPM cytoplasmic positivity is immunostaining with an
antibody against C23/nucleolin, another abundant shut-
tling nucleolar protein,” which in NPMc* AML must have
nucleus-restricted localization® (Figure 4C).

Since cytoplasmic NPM is fully predicitve of NPA1
mutations," immunohistochemistry could be used as a
first-line screening to rationalize cytogenetic and molecu-
lar studies in AML. A potential approach is shown in
Figure 5.

Pathological, phenotypic and genotypic features of
NPMc* AML

Although associated with a wide morphological spec-
trum, NPMc® AML is mostly of M4 and M5 cate-
gories.™ Interestingly, up to 90% of AML-M5b carry
cytoplasmic/mutated NPM;™"™ gene expression profiling
of AML* also revealed a cluster dominated by monocytic
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Figure 4. Aberrant cytoplasmic expression of NPM in NPMc* AML.
(Top) Nuclear plus cytoplasmic expression of NPM in leukemic
blasts (arrows). Normal residual hematopoietic cells show nucle-
us-restricted NPM (arrowhead). Bone marrow biopsy paraffin sec-
tion stained with monoclonal antibody 376 that recognizes wild-
type and mutated NPM (APAAP technique; hematoxylin counter-
staining; x 1,000). (Middle) Cytoplasmic-restricted expression of
mutant NPM protein in NPMc* AML (arrow). Bone marrow biopsy
paraffin section stained with a polyclonal antibody (Sil-A) that rec-
ognizes mutated but not wild-type NPM (APAAP technique; hema-
toxylin counterstaining; x1,000) (Bottom) Nucleus-restricted
expression of C23/nucleolin in NPMc* AML (arrows). Double
arrows indicated the expected NPM cytoplasmic positivity in a
mitotic figure. Bone marrow biopsy paraffin section stained with
a specific anti-C23 monoclonal antibody (APAAP technique;
hematoxylin counterstaining; x1,000).

leukemias and a high frequency of NP1 mutations. A
high frequency of NPA1 mutations has been reported in



AML with prominent nuclear invaginations (cup-like
nuclei).”” NPMc* AML shows frequent multilineage
involvement.™ At immunohistochemistry, over 95% of
NPMc* AML cases are negative for CD34," as was subse-
quently confirmed by gene expression profiling' which
also showed CD133/PROM1 gene down-regulation.
Another striking feature of the NPMc* AML gene-expres-
sion signature is activation of numerous members of the
homeodomain-containing family of transcription factors,
including HOX and TALE genes,™ some of which are
oncogenes implicated in hematopoietic development and
leukemogenesis."**'** Interestingly, NPMc® AML cases
with a normal karyotype and those carrying minor chro-
mosomal abnormalities show the same molecular signa-
ture," providing evidence that NPMc" AML is a distinct
subgroup of leukemia regardless of karyotype, and that
the minor chromosomal abnormalities which occasional-
ly accompany NPA1 mutations are secondary events (see
above).

Clinical features of NPMc* AML and response to therapy

The incidence of NPM1 mutations increases with
age,”?"#1% accounting for 2.1%-6.5% of childhood
AML™121 (9%-26.9% of pediatric AML-NK)Z'2214 byt
25%-35% 15127 of adult AML (45.7%-68.8% of adult
AML-NK)."1211212 These findings suggest that the molec-
ular pathogenesis of AML-NK may be different in adults
and children. Notably, there is also evidence for a variabil-
ity of NPM1 mutation types according to patient age,
with uncommon non-typical (i.e. non-type A) mutations
being most prevalent in children and younger adults."”
Three large clinical studies™ """ found that NPA11 muta-
tions are significantly more frequent in females.

Cases of NPMc" AML-NK are associated with higher
blast counts and more extramedullary involvement (main-
ly gingival hyperplasia and lymphadenopathy) than cases
of AML-NK without NPA11 mutations.'”'” Platelet counts
are significantly higher in NPMc* than in NPMc AML-
NK."?" Concurring with this clinical observation is the
enhanced ability of K562 cells for megakaryocytic differ-
entiation after transfection with a C-terminal NPM
mutant.® Most investigators have found that cytoplas-
mic/mutated NPM predicts a good response to induction
therapy.”™"'" In contrast, Déhner et al.”™ observed the
best complete remission rate in the NPA1-mutated/FLT3-
ITD negative group, whilst AML patients carrying both
mutations showed poor responses.

NPM1 mutations without concomitant FLT3-1TD iden-
tify a subgroup of AML-NK patients with a favorable
prognosis™'”'* and has been associated with an approx-
imately 60% probability of survival at 5 years in younger
patients.” In a donor versus no-donor comparison, the
good prognostic group of NPM1-mutated/FLT3 ITD-neg-
ative patients did not benefit from allogeneic stem cell
transplantation,' suggesting that such treatment should
not be recommended for NPMc* AML in first complete
remission. These results underline the value of molecular
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Anti-NPM

Immunostaining of
bone marrow biopsy

Cytoplasmic NPM
(30-35% AML)

Nucleus-restricted NPM
(65-70% AML)

Avoid analysis of

S Perform analysis of
NPM1 mutations

NPM1 mutations

Perform other Cytogenetics NPM1 mutations FLT3-ITD
cytogenetic and
molecular studies NK (85%) AK (15%) MRD

Prognostic
markers

Figure 5. NPM-immunostaining-based approach to molecular and
cytogenetic analysis of AML. AML patients can be subdivided by
the results of immunohistochemistry on paraffin sections into two
subgroups, i.e. those expressing nucleus-restricted NPM (NPMc)
(left) or cytoplasmic NPM (NPMc?*) (right). The arrow in the NPMc~
sample indicates the expected cytoplasmic positivity of a mitotic
figure. The arrows in the NPMc* sample indicate leukemic cells
with aberrant cytoplasmic expression of NPM. NPM mutational
analysis can be avoided in NPMc™ AML but should be performed
in NPMc* cases, since molecular information about NPM1 status
in NPMc* AML can serve as a prognostic factor (in association with
FLT3-ITD) and is critical for monitoring minimal residual disease.
NK: normal karyotype; AK: abnormal karyotype (other than recur-
rent cytogenetic abnormalities); MRD: minimal residual disease.

genetic screening in improving risk stratification of
patients with AML-NK." Screening is facilitated by
recently developed assays that simultaneously detect
NPM1, FLT3-ITD and CEBPA mutations,""" all of which
have a prognostic impact in AML-NK. 127152

Unsolved issues

Several questions remain unanswered on the role of
NPM in the development of hematopoietic malignancies
and on the clinical significance of NP1 gene alterations.
Although the ALK, RARo and MLF1 moieties are believed
to dominate in promoting tumorigenesis in lymphomas
and leukemias carrying NPM fusion proteins, there is evi-
dence that NPM moieties are not only innocent
bystanders. This view is supported by the finding that
leukemias developing in transgenic mice expressing either
PML/RARe, PLZE/RARa, or NPM/RARa show different
phenotypes.” Since NPM behaves as an oncosuppressor,*
a reduction in wild-type NPM may also contribute to
tumorigenesis, due to ineffective ARF stabilization with
consequent inactivation of the ARF growth-inhibitory
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function. However, dose reduction of NPM at the nucleo-
lar level may differ among tumor types, e.g. lower levels
in AML carrying t(3;5) in which one allele is altered and
the wild-type NPM is dislocated into the cytoplasm® than
in ALCL with t(2;5), in which one allele is altered but the
location of wild-type NPM is apparently unaffected by the
translocation.”

The molecular mechanism underlying the development
of NPMc" AML is unclear. The ability of NPM leukemic
mutants to recruit the oncosuppressor pl19*¥in the cyto-
plasm and interfere with its stability and activities"*'**
may contribute to the development of AML. However,
pl9*¥ is only one potential target of NPM mutants. In
NPMc" AML, the perturbed cellular traffic of the wild-
type and mutant NPM proteins could influence the
nuclear/nucleolar import and functions of other, as yet
unidentified, critical molecules.'™ " The close associations
of FLT3-ITD with NPM1 mutations in clinical prac-
tice™"'" suggests that these genetic lesions may co-oper-
ate to promote leukemic transformation. There is also
experimental evidence that the NPM leukemic mutants
(but not wild-type NPM) co-operate with adenovirus E1A
to transform primary MEF in soft agar.”* NPMc'/E1A"
MEF cells also show high efficiency at forming foci in
low-density seeding assays, comparable to that of
RasV12'/E1A* MEF cells.™

Interestingly, the gene expression profile of NPMc*
AML is characterized by up-regulation of genes involved
in stem cell maintenance (such as HOX genes)."*'* NPMc*
AML also shows Notchl-ligand JAG1 up-regulation and
CDKN2C/p18-INK4C repression,'® both of which are
associated with hematopoietic stem cell expansion.''*
Accordingly, NPM leukemic mutants may confer self-
renewal properties on hematopoietic targets.

Studies on NPM abnormalities in leukemias may lead to
updating of the World Health Organization (WHO) classi-
fication of AML."™ The term primary AML not otherwise
characterized,® which is defined according to slightly mod-

ified FAB criteria, encompasses about 60% of AML cases,
including all AML-NK and, therefore, NPMc" AML. We
propose that, because of its distinctive genetic, biological
and clinical features, NPMc* AML and NPMc" myeloid
sarcoma'” should be included as a separate AML entity in
the upcoming version of WHO classification.

Multicenter studies are warranted to assess the favor-
able prognostic value of NP1 mutations (in the absence
of FLT3-ITD) in various clinical settings and to provide
answers to a series of questions. Does the prognostic
value of mutated NPA1 also apply to the poor prognostic
category of AML patients over 60 years old? Should
NPM1-mutated/FLT3-ITD negative AML-NK patients be
exempted from allogeneic stem cell transplantation as
first-line therapy?®'® Is the NPA1 mutation a better
molecular marker than FLT3-ITD'" or Wilms’ tumor gene
(WTI)'* for monitoring minimal residual disease in AML-
NK? Will quantification of NPM1-mutated copies™ pre-
dict early relapse and patients with long-term survival?
Recent retrospective studies indicate that this may be the
case,'® but large prospective clinical trials are required to
confirm this exciting finding. Finally, better understanding
of the mechanism underlying leukemogenesis in NPMc*
AML may eventually lead to the development of more
specific anti-leukemic therapies.
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