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Quantum estimation of a two-phase spin rotation
Abstract
We study the estimation of an infinitesimal rotation of a spin-j
system, characterised by two unknown phases, and compare
the estimation precision achievable with two different strate-
gies. The first is a standard ‘joint estimation’ strategy, in which
a single probe state is used to estimate both parameters, while
the second is a ‘sequential’ strategy in which the two phases
are estimated separately, each on half of the total number of
system copies.
In the limit of small angles we show that, although the joint
estimation approach yields in general a better performance,
the two strategies possess the same scaling of the total phase
sensitivity with respect to the spin number j, namely ∆Φ ' 1/j.
Finally, we discuss a simple estimation strategy based on spin
squeezed states and spin measurements, and compare its
performance with the ultimate limits to the estimation preci-
sion that we have derived above.
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1. Introduction

The rapidly developing field of quantum metrology studieshow the peculiar features of quantum mechanics affect theachievable precision in the estimation of one or more pa-rameters [1]. The fundamental theoretical tools for theseinvestigations are provided by quantum estimation the-
ory [2–4], which gives fundamental bounds to the achiev-able accuracies in terms of the Quantum Fisher Informa-tion (QFI). Such theory is particularly useful when theparameters of interest are not accessible via a standardquantum-mechanical measurement. Indeed, most physi-cists are familiar with at least two problems of this type:the estimation of the optical phase (a single parameterestimation problem) and the experimental reconstructionof a system’s density matrix (a multiparameter problem).In both cases, the parameters of interest cannot be mea-sured directly, and they have to be inferred by a suitablepost-processing of the measured data.
The quantum estimation of multiple parameters is receiv-ing increasing attention in the literature (see for example[2, 5–10, 12–18]). This kind of estimation is fundamentally
∗E-mail: m.genoni@imperial.ac.uk

different from the single-parameter case, as different pa-rameters may be associated to mutually non-commutingoperators. Hence, the theoretical bounds provided by lo-cal estimation theory may not be achievable, as they mayassume measurement strategies that go beyond the op-erations allowed by quantum mechanics. In this context,remarkable efforts have been dedicated to the quantum es-timation of a generic SU(d) unitary operation [10, 19, 20].This is in line with the standard approach to quantum in-formation theory, which aims at characterising the proper-ties of quantum mechanical d-dimensional systems inde-pendently of their specific physical implementation. Thisgeneral approach is certainly preferable if no assumptionsare made regarding the structure of the system and of theunitary operations to be estimated.
On the other hand, when some additional information isavailable regarding the physical nature of the setup athand, it may be appropriate to place specific restrictionson the operations of interest. For example, suppose thatthe system in question is a physical spin-j particle inter-acting with a classical magnetic field of fixed amplitudeand direction. Then, the relevant operations to be es-timated will belong to the rotation group SO(3) (moreprecisely, to its spin-j representation). In such a case,employing an estimation strategy aimed at the entire
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Quantum estimation of a two-phase spin rotation

SU(2j + 1) group would be an unnecessary complication,if not a misuse of the available resources.In this paper we are concerned with one such instance: weconsider the quantum estimation of an infinitesimal rota-tion of a spin-j system, characterised by two unknownphases. This may represent, for example, the result ofthe interaction between a spin-j particle and a classicalmagnetic field lying in the XY plane. We propose twodifferent approaches: a ‘joint estimation’ strategy, wherea single probe state is used to estimate both parameterswith a single measurement setting, and a ‘sequential es-timation’ strategy, where different optimised probe statesare prepared, and the two phases are estimated sepa-rately, each on half of the number of system copies. Weshow that, though the two strategies give the same scal-ing in terms of the spin dimension j , the joint estimationstrategy yields, in general, a better performance.After having attacked the problem in its general form, wediscuss the relevant special case in which the two-phaseestimation is achieved by performing spin measurementson the probe states. Under this restriction, the conceptof spin squeezing [21, 22] takes a central role in deter-mining the performance of our estimation protocol. Thisagrees with the known results in the context of metrolog-ical tasks with spin systems. Indeed, instruments such asRamsey spectrometers [22, 24, 25], atomic clocks [22, 23]and ultra-sensitive magnetometers [26] have been shownto benefit from the presence of spin squeezing. We re-call that, also in the context of quantum metrology withbosonic systems, squeezing is well established as being adesirable feature [27, 28], able to enhance the performanceof single-parameter [29–34], as well as multiparameter es-timation protocols [15, 16, 18, 35].The paper is organised as follows. In the next section weprovide a brief introduction to local quantum estimationtheory, both for the single- and the multi-parameter case.In Sec. 3 we introduce the concept of spin squeezing,giving its definition for both the single- and the two-modecase. In Sec. 4 we discuss in detail the estimation problemat the center of our investigations. After having describedin detail the joint and sequential estimation strategies intheir most general form, and the corresponding estimationprecisions achievable, in Sec. 5 we discuss the role ofspin squeezing for estimation protocols that rely on spinmeasurements. Sec. 6 concludes the paper with someremarks.
2. Quantum estimation theory
We will give here a brief review of quantum estimationtheory [2–4]. Let us consider a family of quantum states
ρλ, labelled by a real parameter λ that we aim to esti-mate. The ultimate limit to the estimation precision of the

parameter λ is given by the quantum Cramèr-Rao bound(QCRB)
Var(λ) ≥ 1

MH(λ) , (1)
where M is the number of measurements performed,

H(λ) = Tr[ρλL2
λ ] , (2)

is the quantum Fisher information and Lλ is the Symmet-ric Logarithmic Derivative (SLD) , that is, the operatorsatisfying
2∂λρλ = Lλρλ + ρλLλ. (3)

Note that, in principle, one can always find a quantummeasurement able to attain equality in Eq. (1), hence sat-urating the QCRB.Moving on to a multiparameter scenario, let us consider afamily of quantum states ρz labelled by d different param-eters z = {zµ}, µ = 1, . . . , d. The SLD for each parameteris defined via
∂ρz

∂zµ
= L(S)

µ ρz + ρzL(S)
µ2 , (4)

from which one can calculate the QFI matrix H:
Hµν = Tr [ρz

L(S)
µ L(S)

ν + L(S)
ν L(S)

µ2
]
. (5)

We define the covariance matrix elements V (z)µν =
E [zµzν ] − E [zµ ]E [zν ] and consider a weight (positive defi-nite) matrix G. Then, the multiparameter QCRBs read

tr[GV] ≥ 1
M tr[G(H)−1] , (6)

where tr[A] is the trace operation on a finite dimensionalmatrix A and M is the number of measurements performed.We observe that if we choose G = 1 we obtain the boundon the sum of the variances of the parameters involved,
∑
µ

Var(zµ) := (∆z)2
M ≥ 1

M tr[H−1] , (7)
where we have introduced the overall multiparameter sen-sitivity ∆z. Differently from the single parameter case,the multiparameter bound is not always achievable, since
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optimal measurements for different parameters may corre-spond to non-commuting observables. A sufficient condi-tion for the achievability of the Cramér-Rao bound is thatthe SLDs corresponding to different parameters commuteon average on the probe state
Tr [ρz[L(S)

µ , L(S)
ν ]] = 0. (8)

We remark that other (not always achievable) bounds tothe estimation precision have been introduced in the mul-tiparameter case, together with the concept of most infor-
mative bound [5–9]. In this manuscript we shall focus onthe standard Cramèr-rao bound described above.
2.1. The pure state modelAn important special class of quantum estimation problemsis that in which the probe states are pure for all valuesof the parameters z: ρz = |ψz〉〈ψz|. Then, the SLDs areeasily calculated as [10]

L(S)
µ = 2∂µρz. (9)

It is convenient to introduce the auxiliary vectors
|lµ〉 = L(S)

µ |ψz〉, (10)
in terms of which the QFI matrix elements simplify to

Hµν = Re [〈lµ|lν〉] . (11)
Remarkably the sufficient condition for the achievabilityof the QCRB, as given in Eq. (8), becomes also necessaryhere [11]. This can be re-expressed as follows: an esti-mation strategy saturating the bound exists if and onlyif

Im [〈lµ|lν〉] = 0. (12)
The pure state model is particularly relevant when theparameters z to be estimated are associated to a family ofunitary maps. Indeed, suppose that the probe states canbe expressed as ρz = U(z)ρ0U(z)† , where ρ0 is a genericmixed state of a Hilbert space H0, and U(z) is a unitaryfamily on the same space. Let us now consider a genericpurification of ρ0, i.e., a pure state |ψ0〉 ∈ H0⊗HA, where
HA is an ancillary Hilbert space, such that TrA [|ψ0〉〈ψ0|] =
ρ0. Since any measurement strategy possible in the space
H0 is also possible in H0⊗HA, but not vice-versa, one hasthat the family of pure states |ψz〉 = U(z)⊗IA|ψ0〉, in gen-eral, allows a lower (or equal) QCRB for the parameters
z, as compared to the mixed states ρz.

3. Spin systems and spin squeezingLet us consider a spin-j system, characterised by the an-gular momentum operators ~̂J = (̂Jx , Ĵy, Ĵz)T, which satisfythe commutation rule
[̂Jα , Ĵβ ] = îJγ . (13)

where α , β, γ are a right-handed permutation of x, y, z.This implies an uncertainty relation
∆Ĵx∆Ĵy ≥ |〈Ĵz〉|2 , (14)

where ∆Ĵ2α = 〈Ĵ2α〉 − 〈Ĵα〉2 and 〈O〉 = Tr[ρO] denotes theexpectation value of an operator on a given quantum state
ρ. Several definitions of spin squeezing have been intro-duced, the most commonly adopted being that suggestedby Kitagawa and Ueda [21], and by Wineland et al. [22].In the following we will present the details regarding thelatter definition, which is more relevant to metrologicalapplications. For a generic spin state, the mean-spin di-rection (MSD) is defined as

~n = 〈~̂J 〉

|〈~̂J 〉|
. (15)

Without loss of generality, let us consider a state withMSD along the z-axis (in particular, 〈Ĵx〉 = 〈Ĵy〉 = 0).Then, suppose the system undergoes an infinitesimal ro-tation of angle φ around the x-axis. In the Heisenbergpicture, one has,
Ĵy → Ĵout

y ' Ĵy + φĴz . (16)
The above relations may then be exploited to estimate thevalue of φ from the measurement statistics of the observ-able Ĵout

y , via 〈Ĵout
y 〉 = φ〈Ĵz〉. One can see that the ‘phasesensitivity’ corresponding to this estimation strategy is
∆φ = ∆Ĵout

y

|∂φ〈Ĵout
y 〉|

≈ ∆Ĵy
|〈Ĵz〉|

, (17)
and thus is related to the initial variance of the operator
Ĵy. It is useful for our purposes to introduce the notion ofcoherent spin states (CSS). Given a unit vector ~n, theseare defined as

|C (~n)〉 = |j, j〉~n (18)
14
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where |j, j〉~n is the eigenstate of Ĵ~n = ~n ·~̂J with eigenvalue
j . For a CSS, the fluctuations of all the spin operatorsorthogonal to the the MSD are equal to (∆Ĵ~n⊥ )2 = j/2and then one proves that

∆φSQL = 1√2j , (19)
which is referred to as the standard quantum limit (SQL)or shot-noise limit. Just as in the bosonic case, the coher-ent states provide a reference for the definition of squeez-ing. Adopting the definition of Ref. [22], a state is said tobe spin squeezed if and only if its corresponding phasesensitivity is below the shot noise limit

∆φ ≤ ∆φSQL, (20)
that is, if and only if the state provides a better phasesensitivity as compared to a CSS.One can extend the concept of squeezing to a multipartitesystem. Let us briefly review two-mode spin squeezing[36–40], for a bipartite spin system described by opera-tors ~̂Ja = (̂Jxa , Ĵya , Ĵza )T with a = {1, 2}. Sums and dif-ferences of spin operators belonging to different systemsare denoted by Ĵα± = Ĵα1 ± Jα2 , and obey the uncertaintyrelations

∆Ĵx±∆Ĵy± ≥ |〈Ĵz+〉|2 . (21)
A state is said to be two-mode spin squeezed if

(∆Ĵx−)2 + (∆Ĵy+)2 ≤ |〈Ĵz+〉|. (22)
Here, the reduced fluctuations are not observed in thelocal degrees of freedom, but rather in the non-local op-erators Ĵx− and Ĵy+. In fact, two-mode spin squeezing isnot only a sufficient [39, 40], but also a necessary con-dition for entanglement in pure states of two subsystemswith equal spin (except for a set of bipartite states withmeasure zero) [41].
4. Estimation of a two-phases spin rotationIn this paper we consider the following estimation prob-lem: a probe state ρ undergoes a unitary evolution

Û(~φ) = exp{i~φ · ~̂J} , (23)
where ~φ = (φx , φy, 0), φx and φy are two unknown phaseswhich we aim to estimate, while ~̂J is a vector of spin-j

operators as above. In the case of a physical spin, theabove rotation could be the result of the interaction be-tween the system and a classical magnetic field lying inthe XY plane. Since we shall be interested in studyingthe ultimate limits on the achievable precision of such anestimation, and the transformation in Eq. (23) is unitary,we can restrict our attention to the pure state model asexplained in Section 2.1. Let us then consider a genericinput state |ψ0〉 ∈ Hj⊗HA, where Hj is the Hilbert spaceof a spin-j particle on which the transformation Û is act-ing, while HA is associated to a generic ancillary system.The evolved states are then
|ψ~φ〉 = Û(~φ)|ψ0〉. (24)

Notice that different figures of merit can be introduced toquantify the performance of a multi-parameter estimationstrategy. When no assumption is made about the unitaryoperation to be estimated, a parametrisation-independentfigure of merit may be preferable (see e.g. Ref. [10]). Inour case, however, there is a particular parametrisationof the unknown unitary, expressed by Eq. (23), whichhas a clear physical interpretation in terms of spin direc-tions and rotation angles. We thus consider a figure ofmerit for our estimation protocol based on this particularparametrisation: namely the sum of the variances of thetwo estimated phases. This corresponds to the QCRB inEq. (7) .We are interested in the limit of infinitesimal rotations,i.e. |~φ|�1, where Eq. (23) can be linearised as
Û(~φ) ' I+ i~φ · ~̂J. (25)

Combining this with Eqs. (9) and (10), one can easily cal-culate the auxiliary vectors |lµ〉, up to first order in ~φ,according to
|lµ〉 ' |l(0)

µ 〉+ |l(1)
µ 〉, (26)

|l(0)
µ 〉 = 2i(Ĵµ|ψ0〉 − |ψ0〉〈ψ0|Jµ|ψ0〉) , (27)
|l(1)
µ 〉 = 2(~φ · ~̂J|ψ0〉〈ψ0 |̂Jµ|ψ0〉 − |ψ0〉〈ψ0 |̂Jµ ~φ · ~̂J|ψ0〉) .(28)

Correspondingly, from Eq. (11) one is able to expand theQFI matrix elements as
Hµν ' H(0)

µν + H(1)
µν , (29)

H(0)
µν = 4〈∆Ĵµ Ĵν〉0 = 4[ 12 〈{Ĵµ, Ĵν}〉0 − 〈Ĵµ〉0〈Ĵν〉0

]
, (30)

H(1)
µν = 2i [〈[~φ · ~̂J, Ĵν ]〉0〈Ĵµ〉0 + 〈[~φ · ~̂J, Ĵµ ]〉0〈Ĵν〉0] , (31)
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where 〈Â〉0 = 〈ψ0|Â|ψ0〉. In what follows, we shall fo-cus on the regime |~φ| � 1, in which the second term inEq. (29) can be neglected, and the QFI matrix reduces to
Hµν ' H(0)

µν , that is, the covariance matrix of the operators
Ĵx and Ĵy, [see Eq. (30)]. Once the optimal quantum statesfor our estimation problem have been calculated in thisregime, we may use the first-order correction in Eq. (31) toestimate the range of validity of the zeroth-order approxi-mation. We are now ready to illustrate the two estimationstrategies at the center of our investigations.
4.1. Joint estimation strategyWe shall start by considering the standard approach tomultiparameter estimation, and look for a single inputstate |ψ0〉 which allows high sensitivity in the estima-tion of both parameters φx , φy as described in Fig. 1.According to the QCRB in Eq. (7), this amounts to finding

Û(�x, �y) Ĵx1

Ĵx2 Ĵy2

Ĵy1

� +

M
copies

M/2
copies

M/2
copies

Û(�x, �y)
M

copies

HS �HA

2
| 0�

| (ss)
0 �

Joint Estimation
of        and     .�x �y

Figure 1. ‘Joint estimation’ strategy for a two-phase rotation. M
copies of an initial probe state |ψ0〉 are prepared (in gen-
eral this may involve an ancilla with which the system
is entangled). After the action of the unitary operation
U(φx , φy), a joint measurement is performed on the sys-
tem plus the ancilla, followed by post-processing for the
determination of φx , φy.

the quantum state minimizing the quantity
Tr[H−1] ' Tr[(H(0))−1]. (32)

Exploiting Eq. (30), and the fact that for any operator Âone has 〈∆Â2〉0 ≤ 〈Â2〉0, we have
Tr[(H(0))−1] = 〈∆Ĵ2x 〉0 + 〈∆Ĵ2y〉04 [〈∆Ĵ2x 〉0〈∆Ĵ2y〉0 − (〈∆Ĵx Ĵy〉0)2]

≥ 14
( 1
〈∆Ĵ2x 〉0 + 1

〈∆Ĵ2y〉0
)

≥ 14
( 1
〈Ĵ2x 〉0 + 1

〈Ĵ2y〉0
)
. (33)

By minimising the expression in Eq. (33) under the con-straint 〈Ĵ2x 〉0 + 〈Ĵ2y〉0 = 〈Ĵ2〉0 − 〈Ĵ2z 〉0 one obtains the lowerbound
Tr[(H(0))−1] ≥ 1

j(j + 1)− 〈Ĵ2z 〉0 . (34)

The above derivation shows that saturating the inequality(34) requires the necessary conditions
〈∆Ĵx Ĵy〉0 = 0, (35)

〈Ĵx〉0 = 〈Ĵy〉0 = 0, (36)
〈Ĵ2x 〉0 = 〈Ĵ2y〉0 = 12 [j(j + 1)− 〈Ĵ2z 〉0] . (37)

In order to discuss concrete limits on the estimation pre-cision, we shall focus on achievable bounds. We recallthat a necessary and sufficient condition for the achiev-ability of the QCRB is given by Eq. (12). With the useof Eq. (27) one obtains Im [〈lµ|lν〉] ∝ 〈[̂Jµ, Ĵν ]〉, hence in thepresent context the QCRB is achievable if and only if
〈Ĵz〉0 = 0. (38)

Our task is then to find an initial state verifying Eqs. (35),(36), (37) and (38), while at the same time achieving thelowest possible value of 〈Ĵ2z 〉0. If j is an integer, it is easyto check that the state
|ψ0〉 = |j, 0〉 (39)

is the optimal choice, since it satisfies all the above con-straints, and yields 〈Ĵ2z 〉0 = 0. Note that in this case wehave not needed to introduce an ancillary system. Thecase in which j is semi-odd is slightly more complicated,since 〈Ĵ2z 〉0 = 0 is not achievable. Guided by this consid-eration, we look for states which yield the minimum valueof 〈Ĵ2z 〉, namely 1/4. This, together with Eq. (38), impliesthat our state must be an equally-weighted superposi-tion of the states |j, ± 12 〉. Furthermore, in order to satisfyEqs. (35) and (36), we shall make use of an ancilla withwhich our spin-j system is entangled. We thus considera state of the form
|ψ0〉 = 1√2 (|j, 12 〉|0〉A + eiφ|j,−12 〉|1〉A) , (40)

Where |0〉, |1〉 are two orthonormal states in the ancillaryHilbert space. Easy calculations show that such a stateverifies 〈Ĵz〉0 = 0 and Tr[(H(0))−1] = [j(j + 1) − 14 ]−1 asrequired. To summarise, we have shown that the optimalphase sensitivity for the joint estimation protocol, definedas ∆ΦJE = √Tr[H−1], is given by
∆ΦJE =


1√
j(j+1) j integer,

1√
j(j+1)− 14 j semi-odd. (41)
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Remarkably, the optimisation of the initial state yieldsvery different results depending on whether j is integer orsemi-odd: one obtains an eigenstate of Ĵz in the formercase, and an entangled system-ancilla state in the latter.Finally, let us comment on the zeroth-order approximationof Eq. (29) that we have adopted. Since the optimal statesthat we have derived verify 〈~̂J〉0 = 0, one can see thatthe first order correction to the QFI matrix [Eq. (31)] isidentically zero. Hence, our results are accurate up tosecond order in |~φ|.
4.2. Sequential estimation strategyThe next estimation scheme, sketched in Fig. 2, is basedon the simple idea of combining two single-parameter es-timation protocols. Given M copies of the system, we par-

Û(φx, φy)

Û(φx, φy)

|ψ0x�

|ψ0y�

Estimation of M/2
copies

M/2
copies

Estimation of 
 

φx

φy

Figure 2. ‘Sequential estimation’ strategy for a two-phase measure-
ment. The total number M of system copies is divided in
two ensembles, such that M/2 copies are devoted to the
estimation of φx , and M/2 copies to that of φy. The opti-
mal initial states and measurement strategies for the two
ensembles are in general different.

tition them into two ensembles composed of M/2 copieseach. Then, without loss of generality, we can assumethat the first Mx = M/2 copies are used to estimate thephase φx , while the remaining My = M/2 copies are ded-icated to the estimation of φy. Note that the optimisationof such a procedure can be expected to provide differentinitial states and measurement strategies for the two en-sembles. Let us now focus on the estimation of φx onthe first ensemble. As we are not interested in the pa-rameter φy, the QFI for this case is simply given by thein-diagonal element of the QFI matrix
H(φx ) = Hxx . (42)

At zeroth order in |~φ|, this is simply proportional to thevariance of Ĵx on the initial state:
H(0)
xx = 4〈ψ0|∆Ĵ2x |ψ0〉 ≤ 4j2, (43)

yielding an asymptotic variance of the estimated phase
Var(φx ) = ∆φx

Mx
≥ 14Mx j2 . (44)

Note that the inequality in Eq. (43) can be saturated onlyif 〈Ĵx〉 = 0 and 〈Ĵ2x 〉 = j2. One can verify that the onlystates verifying both conditions are of the form
|ψ0x〉 = 1√2 (|j, j〉x + eiξ |j, −j〉x

)
, (45)

where |j, m〉x are eigenstates of Ĵx with eigenvalue m.Since we are dealing with a single parameter estimationproblem, the bound is always achievable by means of aprojective measurement, and a suitable post-processing ofthe data. As regards the estimation of φy, one still obtainsat zeroth order
H(φy) = Hyy ≤ 4j2 , (46)

Var(φy) = ∆φy
My
≥ 14Myj2 . (47)

which is saturated by a state
|ψ0y〉 = 1√2 (|j, j〉y + eiξ |j, −j〉y

)
. (48)

Adopting a sequential strategy, and thus dividing the pro-tocols in Mx = My = M/2 copies for the estimation ofeach of the two parameters, when M � 1, the centrallimit theorem predicts the total experimental variance ofthe estimated parameters, as per
Var(φx ) + Var(φy) ≈ 2

M
(∆φ2

x + ∆φ2
y
)
. (49)

where ∆φ2
x ≥ 1/(4j2) and ∆φ2

y ≥ 1/(4j2) as derivedabove in the two single-parameters Cramér-Rao bounds.A comparison of this expression with the multi-parameterCramèr-Rao bound in Eq. (7), which is also expressed interms of the total number of measurements M , leads usnaturally to define the effective phase sensitivities
∆φeff

x = √2∆φx ∆φeff
y = √2∆φy . (50)

Then, the performance of our estimation protocol can bequantified via the two-phase sensitivity
∆Φ ≈ M [Var(φx ) + Var(φy)]= √(∆φeff

x )2 + (∆φeff
y )2. (51)

By adopting the optimal states in Eqs. (45) and (48), oneachieves the optimal phase-sensitivity for the sequentialestimation strategy as per
∆ΦSE = 1

j . (52)
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By comparing this result with the one in Eq. (41), oneobserves that the same asymptotic scaling is obtained forlarge values of the spin dimension j while, for interme-diate values, the joint estimation strategy yields a betterperformance. Also in this case, we can see that the firstorder corrections H(1)
xx and H(1)

yy [Eq. (31)] are identicallyzero for the considered probe states [Eqs. (45) and (48)],indicating that our treatment is valid up to second orderin |~φ|.
5. Restricting to spin measurementsSo far we have discussed general limits to the estima-tion precision, which assumed no restriction on the avail-able measurement strategies. Depending on the specificphysical implementation, it can be the case that only arestricted set of measurements can be performed on theprobe states. This motivates us to study the simple butrelevant special case in which only spin measurements areavailable. For this purpose, we find it convenient to treatthe problem in the Heisenberg picture, that is, we shallkeep fixed the probe state |ψ0〉, and apply the rotation tothe spin operators ~̂J , according to

~̂Jout = Û(~φ)† ~̂J Û(~φ) ' ~̂J − i[~φ · ~̂J, ~̂J ]. (53)
In particular, for the x and y components one has

Ĵout
x ' Ĵx − φy Ĵz , (54)
Ĵout
y ' Ĵy + φx Ĵz . (55)

5.1. Sequential strategyWe start by discussing a ‘sequential estimation strategy’based on spin measurements. Following the same linesas in Section 4.2, we partition M copies of the system intwo ensembles of Mx = My = M/2 copies. The first Mxcopies shall be employed to estimate the phase φx , by ex-ploiting Eq. (55). Following the same procedure outlinedin Section 3, we find that the resulting phase sensitivityfor the estimation of φx is
∆φx ' ∆Ĵy

|〈Ĵz〉|
. (56)

Hence, we find also in this case that the coherent spinstates provide the standard quantum limit ∆φSQL
x =1/√2j . To improve this figure, spin-squeezed states arerequired. We note at this point that the optimal scaling∆φx = 1/2j , also known as the Heisenberg limit, is notachievable within the present context. We have indeed

shown in Section 4.2 that the only states able to achievesuch precision are those given in Eq. (40). However, thesestates yield 〈Ĵz〉 = 0, meaning that they cannot be usedto estimate the value of φx via Eq. (55) [indeed, the corre-sponding variance in Eq. (56) would diverge]. Neverthe-less, it is still possible to find spin-squeezed states pro-viding the same asymptotical scaling ∆φx ∝ 1/j , as shownnumerically in Ref. [21], and analytically in Ref. [42] . Weprovide here a constructive example inspired by the latter.Suppose that the initial state is of the form
|ψ0〉 =


12
(
|j, −1〉y +√2|j, 0〉y + |j, 1〉y) j integer,

1√2 (|j, − 12 〉y + |j, 12 〉y) j semi-odd.(57)
The following properties are easily checked

〈Ĵy〉 = 0, (58)
〈Ĵ2y〉 = { 1√2 j integer,12 j semi-odd (59)
〈Ĵz〉 = { 1√2√j(j + 1) j integer,12

√
j(j + 1) + 14 j semi-odd (60)

Hence, for any j > 1/2 we have that |ψ0〉 is a spin-squeezed state characterised by a phase sensitivity
∆φspin

x =


1√
j(j+1) j integer,

1√
j(j+1)+ 14 j semi-odd. (61)

Clearly, the estimation of φy can be treated along thesame lines and yields analogous results. Recalling thedefinition of the effective phase sensitivities relevant forthe sequential estimation case [Eqs. (50) and (51)], we canwrite down the total phase sensitivity for our sequentialestimation strategy based on spin measurements:
∆ΦspinSE =


2√
j(j+1) j integer,

2√
j(j+1)+ 14 j semi-odd. (62)

This figure has to be compared with the optimal phasesensitivity achievable with a sequential strategy, given inEq. (52). One can see that asymptotically the relationship∆ΦspinSE ∼ 2∆ΦSE holds. Moreover, note that for j > 1/2the estimation precision expressed by Eq. (62) is alwaysbelow the standard quantum limit
∆ΦSQLSE = √2

j , (63)
18

Brought to you by | Università degli Studi di Milano
Authenticated

Download Date | 7/8/16 4:47 PM



Quantum estimation of a two-phase spin rotation

obtained by combining Eqs. (50), (51) and ∆φSQL
x =∆φSQL

y = 1/√2j . On the other hand, the above discussionshows that the Heisenberg limit ∆φHL
x = ∆φHL

y = 1/2j isnot achievable with spin measurements [this indeed wouldcorrespond to achieving Eq. (52)].
5.2. Two-mode spin-squeezingBefore concluding, we briefly discuss about the possibilityof using a single two-mode spin-squeezed probe state tojointly estimate both phases φx and φy. In this case, fol-lowing the two-mode spin-squeezed property describedin Eq. (22), the idea would be to prepare a state withreduced fluctuations in the operators Ĵx− and Ĵy+. In-deed, it can be shown that the phase sensitivities ob-tained by estimating φx , φy through the measurement ofrespectively Ĵy+ and Ĵx− are given by ∆φx ≈ ∆Ĵy+/|〈Ĵz+〉|and ∆φy ≈ ∆Ĵx−/|〈Ĵz+〉|. This situation presents someanalogies with the scheme presented in Ref. [18], where atwo-parameter displacement estimation is performed viaa bosonic two-mode squeezed state. However, in thatcase one is able to associate the two parameters to twocommuting observables (at the cost of adding some ex-tra noise), which can then be measured simultaneously.Here, the two observables Ĵout

x− and Ĵout
y+ do not commutein general, although they might commute on average de-pending on the probe state of choice. In such a casethe question of simultaneous measurement of the two spinoperators becomes nontrivial [43], and goes beyond thescope of this paper. One may then consider a measure-ment strategy which is motivated by simplicity: given Mcopies of the probe state, on M/2 of those we perform themeasurement of Ĵx1,2 , while the operators Ĵy1,2 are mea-sured on the remaining M/2 copies. Then, M/2 values for

Ĵx− and Ĵy+ are obtained respectively by subtracting orsumming the experimental outcomes. However, it can beseen that this is a ‘LOCC’ measurement strategy [10], i.e.it can be simulated by preparing an appropriate ensem-ble of single-mode spin-j states; this is then equivalentto adopting a ‘sequential strategy’ as in Section. 4.2, withthe additional restriction of using the same probe state forboth ensembles. These observations suggest that the useof two-mode spin-squeezed probe states combined withspin measurements, which may look appealing by draw-ing an analogy between our problem and the displacementestimation in bosonic systems [18], yields in fact no ad-vantage as compared to a simple sequential strategy withsingle-mode spin-squeezed states.
6. ConclusionsIn this paper we have studied the quantum estimation ofa two-phase infinitesimal spin rotation. By adopting thestandard quantum Cramér-Rao bound as a figure of merit,
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we have derived in closed form the ultimate limits to theestimation precision for both joint and sequential estima-tion of the two parameters. The results are summarised inFig. 3, where the different phase sensitivities are plottedas a function of the spin-dimension j . We observed thatthe joint estimation strategy gives in general a better es-timation precision and that, in both cases, the asymptoticscaling of the total phase sensitivity with the spin num-ber is ∆Φ ≈ 1/j , corresponding to the so-called Heisen-berg limit. Then, we have restricted our attention to theprecision achievable by adopting an estimation strategybased on spin measurements. We have shown that spin-squeezed states can be employed to beat the standardquantum limit ∆Φ = √2/j , and we have presented a con-structive example of a spin squeezed probe state achievingthe scaling ∆Φ ≈ 2/j .
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