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Probing anharmonicity of a quantum oscillator in an optomechanical cavity
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We present a way of measuring with high precision the anharmonicity of a quantum oscillator coupled to
an optical field via radiation pressure. Our protocol uses a sequence of pulsed interactions to perform a loop
in the phase space of the mechanical oscillator, which is prepared in a thermal state. We show how the optical
field acquires a phase depending on the anharmonicity. Remarkably, one only needs small initial cooling of the
mechanical motion to probe even small anharmonicities. Finally, by applying tools from quantum estimation
theory, we calculate the ultimate bound on the estimation precision posed by quantum mechanics and compare
it with the precision obtainable with feasible measurements such as homodyne and heterodyne detection on
the cavity field. In particular we demonstrate that homodyne detection is nearly optimal in the limit of a large
number of photons of the field and we discuss the estimation precision of small anharmonicities in terms of its
signal-to-noise ratio.
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I. INTRODUCTION

In recent years the field of quantum optomechanics has
attracted significant interest, with the aim to control massive
mechanical oscillators at the quantum level. In particular
quantum optomechanical cavities [1] have been investigated
in great detail and many research groups have proposed
and studied different implementations with moving end mir-
rors [2,3], separate intracavity membranes [4], or levitating
nanospheres [5–7] as mechanical oscillators.

Due to their peculiar properties, quantum optomechanical
systems have been historically studied in the context of force
sensing [8,9] and have been recently proposed as a promising
platform to test collapse models of quantum mechanics [10,11]
and phenomenological models of quantum gravity [12,13]. A
major focus of research is now also devoted to the preparation
of nonclassical states of the mechanical motion, such as
squeezed states [14–18], single-phonon excitations [19–21],
or even Schrödinger cat states [22–24].

In nearly every case cited above, the quantum mechanical
oscillator is approximated harmonic, as the intrinsic anhar-
monic terms are considered small enough to be neglected.
However, it has been recently shown how the anharmonic
and/or nonlinear regime can be accessed in different physical
platforms. For instance, the effects of nonlinearities have been
explored (and exploited) in mechanical resonators based on
graphene and carbon nanotubes (see [25,26] and references
therein). Also, in the case of a levitated nanosphere it has
been shown that its thermal energy is sufficient to drive the
motion of the oscillator into the nonlinear regime [27]; in
another example, electrostatic gradient forces are exploited
in order to enhance the intrinsic quartic anharmonicity of a
nanomechanical resonator [28]. Finally, the nonlinear dynam-
ics and the cooling of a levitating nanosphere motion in a
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hybrid electro-optical trap has been experimentally achieved
in Ref. [29].
Aside from perturbing the behavior and results that one would
obtain in the harmonic case, anharmonicity gives rise to
new interesting quantum peculiarities. For instance, Milburn
and Holmes studied the quantum and classical dynamics
of an anharmonic oscillator in phase space showing that
a decoherence reduction results in a quantum-to-classical
transition [30]. On the other hand, anharmonicity has been
proven to be a resource to generate nonclassical quantum
states [31–33], and a measure able to quantify the nonlinearity
of a quantum oscillator has been recently proposed [34]. Given
these premises, it is now desirable to design a protocol able
to measure anharmonicity in order to efficiently analyze its
contribution to the dynamics and its effect on the experimental
results.

In this work we present a scheme to estimate the anhar-
monicity of a quantum mechanical oscillator in an optome-
chanical cavity. Specifically, we provide a method based on
the measurement of the phase shift of an optical field after
its interactions with a quantum anharmonic oscillator. High
precision can be achieved requiring a feasible initial cooling
of the oscillator and the protocol is revealed to be robust against
losses. Furthermore, we give the ultimate quantum bound on
the precision achievable through this setup, comparing it to
the one obtainable with standard measurements on the optical
field, such as homodyne and heterodyne measurements. The
paper is structured as follows. In Sec. II we introduce the model
of an optomechanical cavity and we present a pulsed scheme
that has been already studied in the literature to measure the
quantum dynamics of optomechanical systems [9,12,35,36].
In particular we show how the unitary operator that describes
the overall evolution of the system is related to a displacement
operation that drives the mechanical oscillator along a closed
path in phase space. Section III is dedicated to the computation
of the anharmonic contribution to the evolution and its effect
on the phase shift acquired by the optical field. In Sec. IV we
apply tools from quantum estimation theory and calculate the

2469-9926/2016/93(5)/052306(7) 052306-1 ©2016 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187952215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.93.052306


LATMIRAL, ARMATA, GENONI, PIKOVSKI, AND KIM PHYSICAL REVIEW A 93, 052306 (2016)

quantum Fisher information (QFI) and the Fisher information
(FI) for different measurement schemes to quantify how our
estimation method performs. We finally evaluate the corre-
sponding signal-to-noise ratio to better discuss the estimability
of small values of anharmonicity against noise fluctuations.
Section V is devoted to a summary.

II. MODEL

We consider a single-mode optical field of frequency ωc

coupled to a quantum anharmonic oscillator of mass m and
frequency ωm in an optomechanical cavity of length L. The
effective Hamiltonian describing our system in a frame rotating
at the laser frequency on resonance with the optical cavity
frequency is H = H0 + Hint, where

H0 = 1

2
�ωm

(
X2

m + P 2
m

) + γ

4
�ωmX4

m (1)

is the free Hamiltonian of the mechanical oscillator, with
Xm = (b†0 + b0)/

√
2 and Pm = i(b†0 − b0)/

√
2 its quadratures

operators and γ � 1 the quartic anharmonic parameter. We
will replicate in Appendix B all the results for the case of a
cubic anharmonicity δ/3�ωmX3

m. The interaction Hamiltonian
is given by [37]

Hint = �gncXm, (2)

where nc = a†a is the photon number operator for the cavity
field and g = (ωc/L)

√
�/mωm is the coupling strength. In the

case of a pulsed regime the interaction is much faster than a
mechanical period and the mechanical position is essentially
constant during the interaction. We can then neglect the free
evolution of the harmonic oscillator during the interaction time
and the dynamics can be described by the unitary operator [35]

U = eiλncXm (3)

with λ = g/k the rescaled coupling constant and k the cavity
decay rate, which in the pulsed regime satisfies the bad cavity
limit k � ωm.

Loosely speaking, the operator in Eq. (3) can be pictured as
a displacement operation by λnc/

√
2 along Pm in the oscillator

phase space (the sentence is rigorous if the cavity field is
prepared in a Fock state |n〉).

As soon as the interaction vanishes, the oscillator is free
to evolve under the Hamiltonian H0 and Xm and Pm start to
interchange themselves accordingly. We can therefore drive
the oscillator along closed loops in phase space by selecting
the appropriate time between consecutive pulsed interactions.
More specifically, we imagine that the same light pulse enters
the cavity, escapes after a short interaction (lasting a time 1/k),
and waits in an engineered loop before being injected again
(see Fig. 1).

III. ESTIMATION PROTOCOL

Using four pulsed interactions, each described by the
operator in Eq. (3) with a free mechanical evolution in between,
we drive the quantum oscillator along a loop in its phase space.
The total evolution operator can be written as

U = eiλncXm(3τ/4)eiλncXm(τ/2)eiλncXm(τ/4)eiλncXm, (4)

FIG. 1. Schematic representation of the model. The laser pulse
enters an optomechanical cavity and escapes entering in a delay loop
for an engineered time. The apparatus, composed of polarizing beam
splitters (PBSs), a λ/4 waveplate, and an electro-optic modulator
(EOM), is used to rotate the polarization before and after each pulse.
After the last interaction the EOM does not rotate the polarization
and the pulse escapes the cavity, being measured interferometrically
with respect to a reference field.

where τ = 2π/ω is the mechanical period of the quantum
anharmonic oscillator. To explicitly compute Eq. (4) we
need first to solve the dynamics of a quantum anharmonic
oscillator. Evolution of quadrature operators can be obtained
from Heisenberg evolution for annihilation (creation) opera-
tor [38,39], which reads (at the first order in γ )

b(t) � b0e
−iωt + γ

4

×
[

(e−iωt − e+3iωt )
b
†3
0

4
+ (e−3iωt − e−iωt )

b3
0

2

+ (e−iωt − eiωt )
3

2
b
†
0(1 + b

†
0b0)

]
, (5)

with

ω = ωm + 3
8γωm(2 + |A|2), (6)

|A| being the oscillation amplitude for the unperturbed
harmonic oscillator. We point out that to be consistent with
the perturbation approach we need the additional requirement
γ |A|2 = γ (λNp)2 � 1, with Np = 〈nc〉 the average number
of photons of the cavity field. By using Eq. (5) we find the
quadrature operators at times t = 0,τ/4,τ/2,3τ/4,

Xm(0) = Xm,

Xm

(
τ

4

)
� Pm + i

γ

4
√

2
�,

Xm

(
τ

2

)
� −Xm,

Xm

(
3τ

4

)
� −Pm − i

γ

4
√

2
�, (7)

with � = b3
0 − b

†3
0 − 3b

†
0 + 3b0 − 3b

†2
0 b0 + 3b

†
0b

2
0 the defor-

mation due to the anharmonic evolution. We remark that at
time t = τ the oscillator returns to its initial position (at
the first order in γ ). As we are going to discuss, this is an
essential requirement, since only for closed loops can the
field and oscillator become uncorrelated after a sequence of
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interactions [22,40]. In particular, to close the loop we need the
anharmonic frequency [see Eq. (6)] that actually is a function
of the anharmonic parameter we want to estimate. This is a
common situation in local quantum estimation theory and can
be worked out by subsequent adaptive measurements [41–43].
Moreover, since our final goal is to measure the anharmonic
parameter via an interferometric scheme (e.g., homodyne
and heterodyne detection), we can ensure the closure of
the loop also by looking at the visibility of the interference
fringes [23,44]. However, we should also remark that this is
not the case for the cubic anharmonicity (see Appendix B) that
does not alter the mechanical frequency. This peculiarity can
be exploited to distinguish the two anharmonicities by only
looking at the interferometric pattern.

We are now interested in the reduced dynamics of the cavity
field, i.e., we want to compute the completely positive map E
defined as

E(	0) = Trm[U	0 ⊗ νU †], (8)

where Trm[·] denotes the partial trace on the mechanical
oscillator, while 	0 and ν denote, respectively, the initial state
of the cavity field and of the mechanical oscillator. In the
following we will focus on the case where the oscillator
is initially prepared in a state diagonal in the Fock basis,
i.e., ν = ∑

n νn|n〉〈n|, that comprises the Gibbs thermal state.
In order to obtain this map, we can calculate the evolution
operator in Eq. (4) by substituting the expressions for the
quadrature operators in Eq. (7) (see Appendix A for further
details). After some algebra, given the assumptions described
above, the evolution of the optical field after a closed loop
reads (at the first order in γ and in the limit λ2〈nc〉2 � n̄)

E(	0) � ξeff	0ξ
†
eff, (9)

with

ξeff = exp

[
i

(
λ2n2

c − γ

2
(λ4n4

c + 3λ2n2
c n̄)

)]
, (10)

where n̄ is the average thermal phonon number. We thus
obtain an effective unitary operator ξeff acting on the cavity
field, retaining all the information on the dynamics, and in
particular on the anharmonicity parameter γ . We notice that
the field experiences a Kerr nonlinearity when it enters the
optomechanical cavity [45]. Also, we remark that Eq. (9) is
valid for any initial state of the oscillator diagonal in the Fock
basis, such as the Gibbs thermal state. This is one of the main
results of this paper, as the estimation of the anharmonicity γ

relies on doable cooling of the mechanical oscillator. Indeed,
the mild condition on the average number of thermal phonons
λ2〈nc〉2 � n̄ guarantees that after a period the oscillator is
uncorrelated from the field and closes the loop in phase space.

Since our protocol relies on having the same light pulse for
each interaction, it is worth estimating losses that might occur
in the delaying fiber loops. The ratio between consecutive
pulses can be modeled as λi+1/λi = 1 − ε. The intensities of
the four pulsed interactions in Eq. (4) and the resulting effective
map (acting only on the cavity field) will be accordingly
modified. Specifically, losses will affect the evolution operator
and as a consequence, mirror and field will be correlated after
a loop. The overall noise on the anharmonic evolution can be
neglected when εn̄ � 〈nc〉, which is commonly satisfied in

today’s experiments (more details on this model are reported
in Appendix C).

Supposing that all the previous conditions are satisfied,
we can calculate the mean value of the optical field after a
four-pulse interaction. If the cavity field is initially prepared
in a coherent state 	0 = |α〉 〈α|, the phase reads (in the limit
γ λ4N3

p � 1 and λ2N2
p � n̄)

〈a〉 � 〈α|ξ †
effaξeff|α〉 � α〈a〉0e

−i(γ /2)λ4(4N3
p+18N2

p+10Np+1),

(11)

with 〈a〉0 = eiλ2−Np(1−ei2λ2
) the phase acquired by the field

for a harmonic dynamics, where now Np = 〈nc〉 = |α|2. As
can be seen in Eq. (11), after a loop of the oscillator, the
phase shift acquired by the optical field is independent of
mechanical initial states, though it retains all the information
on the dynamics.

IV. ESTIMATION PROPERTIES OF THE ANHARMONIC
PARAMETER

In order to assess how well one can estimate the anhar-
monicity parameter γ through our measurement scheme, we
are going to exploit tools from local quantum estimation
theory [46], deriving the ultimate bounds on the estimation
precision and comparing them with the bounds corresponding
to practical measurement schemes. We start by calculating the
QFI corresponding to the parameter γ for the output state (9),
under the assumptions previously discussed. As the effective
dynamics is unitary, for an initial pure coherent state |α〉, the
output state will still be pure, i.e., |ψγ 〉 = ξeff|α〉, and the QFI
can be evaluated as follows:

Qγ = 4(〈ψ ′
γ |ψ ′

γ 〉 − |〈ψ ′
γ |ψγ 〉|2)

= λ8(〈ψγ |n8
c |ψγ 〉 − 〈ψγ |n4

c |ψγ 〉2)

= 16λ8N7
p + O(N6

p), (12)

where |ψ ′
γ 〉 is the derivative of the state with respect to the

anharmonic parameter. The QFI sets the ultimate lower bound
on the estimation precision for the parameter γ (quantified by
the variance of an unbiased estimator), through the so-called
quantum Cramér-Rao theorem that reads

Var(γ ) � 1

MQγ

� 1

16Mλ8N7
p

, (13)

where M denotes the number of measurements performed. We
deduce from Eq. (13) that the estimation is highly enhanced
by the Kerr nonlinearity in Eq. (9), where the anharmonic
contribution scales as ∼ γ λ4n4

c . The quantum bound is always
in principle achievable for a single parameter, in the sense
that there exists a positive-operator-valued measure whose
(classical) FI is equal to the QFI. To evaluate if feasible
measurements are optimal we proceed by calculating the
corresponding FI, which in general reads

Fγ =
∫

d(•)
[∂γ p(•|γ )]2

p(•|γ )
, (14)

where p(•|γ ) is a generic conditional probability of obtaining
the measurement outcome •, given the value of the parameter
γ . In the following we will focus on two measurement
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strategies for the cavity field: homodyne and heterodyne
detection.

Homodyne detection corresponds to a projection on quadra-
ture operators eigenstates Xφ|x〉φ = x|x〉φ , where Xφ =
xc cos φ + pc sin φ and the pair of operators (xc,pc) denote,
respectively, the position and momentum operators for the
cavity field. In the Fock basis, we can write the quadrature
operator eigenstates as [47]

|x〉φ = e−x2/2

(
1

π

)1/4 ∞∑
m=0

Hm(x)

2m/2
√

m!
e−imφ |m〉, (15)

where Hm(x) is the mth Hermite polynomials. The conditional
probability of obtaining the outcome x, given γ , is

p(x|γ ) = |φ〈x|ψγ 〉|2

= e−(|α|2+x)

√
π

∣∣∣∣∣
∞∑

m=0

αmHm(x)

2m/2m!
eim{φ−λ2m[1+(γ /2)λ2m2]}

∣∣∣∣∣
2

.

(16)

Unfortunately, there is no analytical way to compute this
series, however, by fixing all the parameters (α,φ,λ,γ ) and
by varying the measurement outcome x, we can numerically
evaluate the integral and find the FI as in Eq. (14). We
show in Fig. 2 the ratio between the homodyne FI and the
corresponding QFI by optimizing the phase φ. As it can be
seen from Fig. 2, the larger the photon number is the more
the ratio F hom

γ /Qγ approaches one. We also observe that
we already reach a very good agreement with 30 photons,
though this is actually very low compared to the number of
photons in a standard optomechanical cavity setup. This clearly
shows that homodyne detection is an advantageous method to
probe anharmonicity with arbitrarily high precision, safely
conjecturing its optimality in the limit of a large number of
photons.

On the other hand, heterodyne detection corresponds to a
projection on a coherent state |η〉, which can be performed
through a double-homodyne detection scheme [48]. The

FIG. 2. Ratio F hom
γ /Qγ for cubic (red triangles) and quartic (blue

dots) anharmonicities as a function of the average number of photons
Np . Experimental parameters are set as λ ∼ 1.5 × 10−5 and γ =
10−25 and the phase φ is optimized to φ = π/2.

corresponding conditional probability is given by

p(η|γ ) = |〈η|ψγ 〉|2

= e−(|α|2+|η|2)

∣∣∣∣∣
∞∑

m=0

αmη∗m

m!2
e−iλ2m2[1+(γ /2)λ2m2]

∣∣∣∣∣
2

.(17)

The FI can be computed by integration over in the whole
complex plane spanned by coherent states

F het
γ = 1

π

∫
d2η

[∂γ p(η|γ )]2

p(η|γ )
, (18)

where the dependence on the phase parameter has dropped out,
as opposed to the case of homodyne detection. Also in this case
the FI has been evaluated numerically for an initial coherent
state with up to 35 photons. Our numerical results show that the
optimality of heterodyne measurement, quantified by the ratio
between FI and QFI, does not depend on any parameter, since
the ratio is fixed to F het

γ /Qγ = 0.5. We thus conclude that it is
much more convenient to perform a homodyne measurement
on the cavity field in order to estimate the anharmonicity with
higher precision and nearly quantum limited.

As we are dealing with very small values of the parameter
to be estimated, the signal-to-noise ratio is an important figure
of merit that has to be considered. It tells us how the effective
contribution of the physical quantity we want to measure
compares to the noise. More specifically, bearing in mind
Cramér-Rao bound theorem, we can define for any parameter
ζ its signal-to-noise ratio Rζ and derive the upper bound

Rζ = ζ 2

Var(ζ )
� ζ 2MQζ , (19)

where Qζ denotes the QFI for the parameter of interest and
M is the number of measurements performed. An essential
requirement for efficient metrology is to achieve a significant
value of the signal-to-noise ratio Rζ > 1 with a reasonable
number of experimental runs.

In our specific case, in the limit of a large number of photons
we get

R(4)
γ � 16γ 2λ8N7

pM,

R(3)
γ � 16

9
δ2λ6N5

pM (20)

for a quartic and a cubic anharmonicity, respectively, and we
have shown before that these bounds may be in principle
achievable via homodyne detection in the limit of a large
number of phonons.

If we substitute the usual values of cavity parameters in
Eq. (20), e.g., Np ∼ 109 and λ ∼ 10−4, and consider a number
M ∼ 104 of experimental runs (which still allows us to use
optimal asymptotic estimators, such as the Bayesian or the
MaxLik estimator), our results show that one can in principle
probe anharmonicities as low as γ ∼ 10−20 for the quartic case
and δ ∼ 10−15 for the cubic case. Eventually, we observe that
for these values of the parameters all the assumptions that we
have made (i.e., γ λ4N3

p � 1, λ2N2
p � n̄, and εn̄ � Np) are

satisfied for temperatures of a few degrees kelvin, which can
be easily achieved through dilution refrigeration.
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V. CONCLUSION

We have presented a protocol to estimate the anharmonicity
of a mechanical oscillator relying on a four-pulse interaction
with an optical field. Under reasonable initial cooling the
output oscillator and optical field states are uncorrelated;
specifically, the oscillator returns to its initial position, while
the cavity field undergoes an effective unitary operator that
retains information on the anharmonicity of the mechanics.
Since a frequency shift is only obtained in the case of quartic
anharmonicities and not in the cubic case, the scheme can
also discriminate between the two. By using tools from local
quantum estimation theory, we have also derived the ultimate
bounds on the estimation precision, showing how this can
be arbitrarily high by increasing the number of photons of
the initial coherent state. Furthermore, we have shown the
performances of homodyne detection, conjecturing its near
optimality in the limit of a large number of photons. Finally,
we have shown the efficiency of our method in estimating
small anharmonicities by considering state-of-the-art values
of the optomechanical parameters.
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APPENDIX A: ANHARMONIC DISPLACEMENT
OPERATOR AND PHASE

In this section we sum up the main steps that lead to Eq. (9).
By substituting Eqs. (7) in (4) we get

U � eiλnc[−Pm−i(γ /4
√

2)�]e−iλncXmeiλnc[Pm+i(γ /4
√

2)�]eiλncXm.

(A1)
If now we apply Zassenhaus formula [49], the first and third
terms can be rewritten, respectively, as (to the first order in γ )

eiλnc[−Pm−i(γ /4
√

2)�] � e−iλncPme(γ /4
√

2)f1(b0,b
†
0),

eiλnc[Pm+i(γ /4
√

2)�] � eiλncPme(γ /4
√

2)f2(b0,b
†
0), (A2)

where

f1(b0,b
†
0) = λnc� − 3√

2
λ2n2

c(b†2 − b2) +
√

2iλ3n3
cPm,

f2(b0,b
†
0) = −λnc� − 3√

2
λ2n2

c(b†2 − b2) −
√

2iλ3n3
cPm.

(A3)

Switching the latter factors in Eq. (A2) to the left and right,
respectively, by iteratively applying Zassenhaus expansion we
obtain the evolution operator at the first order in γ ,

U �
(

1+ γ

4
√

2
F1(b0,b

†
0)

)
eiλ2n2

c

(
1+ γ

4
√

2
F2(b0,b

†
0)

)
, (A4)

where F1 (2)(b0,b
†
0) correspond to f1 (2) after the switch.

Summing up the two functions F1 and F2 and performing the
partial trace on the mechanical oscillator initially in a thermal
state, it is then possible to obtain at first order in γ the effective
unitary operator

ξeff � exp

(
i(λ2n2

c − γ

2
(λ4n4

c + 3λ2n2
c n̄)

)
. (A5)

In the limit λ2N2
p � n̄, we get the mean value of the optical

field shown in Eq. (11) for an initial coherent state |α〉,
〈a〉 = 〈α|ξ †

effaξeff|α〉

= αe−(|α|2+iλ2)
∞∑

n=0

|α|2n

n!
e−2iλ2ne−i(γ /2)λ4(4n3+6n2+4n+1)

� α〈a〉0e
−i(γ /2)λ4(4N3

p+18N2
p+10Np+1), (A6)

where in the last step we have assumed γ λ4N3
p � 1. For the

sake of completeness we report here the exact result for the
QFI,

Qγ = 4(〈ψ ′
γ |ψ ′

γ 〉 − |〈ψ ′
γ |ψγ 〉|2)

� λ8(〈ψγ |n8
c |ψγ 〉 − 〈ψγ |n4

c |ψγ 〉2)

� λ8
(
16N7

p + 216N6
p + 964N5

p + 1640N4
p

+ 952N3
p + 126N2

p + Np

)
. (A7)

APPENDIX B: CUBIC ANHARMONICITY

In the case of a cubic anharmonicity the correction to the
free Hamiltonian reads

Han = δ

3
�ωmX3

m, (B1)

where the parameter δ quantifies the anharmonicity. Again,
following [39] we get the evolution for the annihilation
(creation) operator at the first order in δ and for initial
displacements that satisfy δλNp � 1,

b(t) � b0e
−iωt + δ

23/2

[
(e−iωt − 1)(2b

†
0b0 + 1)

+(e−2iωt − e−iωt )b2
0 + (e−iωt − e2iωt )

b
†2
0

3

]
, (B2)

where in this case ω = ωm since the frequency is unperturbed
at the first order in δ. We highlight that we might exploit this
feature to distinguish the two anharmonicities by looking at
the revival in the visibility interference. The overall evolution
operator can thus be evaluated as in Eq. (4) by the anharmonic
evolution of quadrature operators, which results in

Xm(0) = Xm,

Xm

(
τ

4

)
� Pm + δ(� + b

†2
0 ν + b2

0ν
∗),

Xm

(
τ

2

)
� −Xm + δ

(
2� + 1

3

(
b
†2
0 + b2

0

))
,

Xm

(
3τ

4

)
� −Pm + δ(� + b

†2
0 ν∗ + b2

0ν), (B3)
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with � = −(b†0b0 + 1/2) and ν = −(1/6)(2i + 1). Going
through the same procedure we showed in Appendix A, we
recover the final effective evolution operator for the cavity
field only (in the limit λ2N2

p � n̄)

ξeff � exp

[
i

(
λ2n2

c − 2δ

9
λ3n3

c

)]
, (B4)

from which we deduce that the optical field experiences a Kerr
nonlinearity proportional to n3

c entering into the cavity. Hence,
the mean value of the optical field after four pulses now results
(in the limit δλ3N2

p � 1)

〈a〉 = 〈α|ξ †
effaξeff|α〉 � α〈a〉0e

−i(2/9)δλ3(3N2
p+3Np+1). (B5)

As a result, the QFI for a cubic anharmonicity δ, given an
initial coherent state |α〉, reads

Qγ = 4(〈ψ ′
γ |ψ ′

γ 〉 − |〈ψ ′
γ |ψγ 〉|2)

� λ6(〈ψγ |n6
c |ψγ 〉 − 〈ψγ |n3

c |ψγ 〉2)

� 16

81
λ6

(
9N5

p + 54N4
p + 84N3

p + 30N2
p + Np

)
, (B6)

leading to the Cramér-Rao bound

Var(δ) � 1

MQγ

� 9

16Mλ6N5
p

. (B7)

APPENDIX C: EFFECT OF LOSSES

In this appendix we evaluate the effect of losses on the
unitary operator presented in Eq. (9). Since losses cause
decreasing intensities for consecutive pulses, we can depict a

lossy model through decreasing coupling strengths λi+1/λi =
1 − ε with i = 1, . . . ,4. By following the same procedure as
in Appendix A, the evolution operator reads

U � e−iλ4ncPme(γ /4)f1(b0,b
†
0)eiλ4ncPm

× ξhe
−iλ1ncXme(γ /4)f2(b0,b

†
0)eiλ1ncXm, (C1)

where ξh is the harmonic displacement given by

ξh = D(ncμ)ein2
c [λ3λ2+(1/2)(λ2−λ4)(λ1−λ3)]. (C2)

Here D(ncμ) = enc(μb†−μ∗b) with μ = (1/
√

2)[(λ4 − λ2) +
i(λ1 − λ3)] a displacement operator that does not allow the
light and mirror to be disentangled after a closed loop.
The functions f1(b0,b

†
0) and f2(b0,b

†
0) have the same formal

definitions as in (A3) with λ → λ4 and λ → λ1, respectively.
Calculating the exponentials in (C1) and expanding at the first
order in γ we get

U � ξh + γ

4
[F1(b0,b

†
0)ξh + ξhF2(b0,b

†
0)]. (C3)

In order to estimate the contribution of losses, we perform the
partial trace over the mechanical degrees of freedom

〈ξh〉 = e−(|μ|2/2)n2
c (1+2n̄)ein2

c [λ3λ2+(1/2)(λ2−λ4)(λ1−λ3)],

γ

4
〈F1(b0,b

†
0)ξh + ξhF2(b0,b

†
0)〉 � γ

4
λ4n4

c + O(ελ4n3
c n̄).

(C4)

It is therefore possible to neglect the effect of losses on
the anharmonic contribution to the unitary operator in the
limit εn̄ � Np. We also point out that losses change also
the harmonic term (and phase) giving rise to a reduction
of visibility that can be estimated before performing the
experiment.
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