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The mathematician’s patterns, like
the painter’s or the poet’s, must be
beautiful; the ideas, like the colours or
the words, must fit together in a
harmonious way.
Beauty is the first test:
there is no permanent place in the
world for ugly mathematics.

A mathematician’s apology,
G. H. Hardy,

1940.
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Introduction

The present thesis is a collection of results about problems that, during
the last four years, have challenged the author. The line connecting
the works presented here is the study of the arithmetic of surfaces that
are double covers of the projective plane, ramified along a curve of low
degree: in particular del Pezzo and K3 surfaces.

In Chapter 1, we recall some preliminary results about lattice the-
ory and algebraic geometry. After giving the definition of a lattice and
basic properties of integral lattices, the focus shifts towards algebraic
geometry. Namely, the definitions of weighted projective spaces, double
covers of surfaces, Picard groups, K3 surfaces, and del Pezzo surfaces
are given, together with some properties of these objects that will be of
use at a later stage.

The topic of Chapter 2 is the arithmetic of del Pezzo surfaces of
degree 2 over finite fields. Del Pezzo surfaces can be classified using
their degree, that is always an integer between 1 and 9. Morally, the
higher the degree the easier the surface. For example, the projective
plane P2 is a del Pezzo surface of degree 9; the blow-up of P2 at one
point, and P1 × P1 are del Pezzo surfaces of degree 8; smooth cubics in
P3 are del Pezzo surfaces of degree 3; double covers of P2 ramified along
a smooth quartic curve give examples of del Pezzo surfaces of degree 2.

It is a fact that every del Pezzo surface over an algebraically closed
field is birationally equivalent to P2 (see [Man86, Theorem IV.24.4]).
Over arbitrary fields, the situation is more complicated, and so it is
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Introduction

easier to look at weaker notions. Let k be any field and let X be a
variety of dimension n over k. The variety X is said to be unirational
if there exists a dominant rational map Pn 99K X, defined over k.

Work of B. Segre, Yu. Manin, J. Kollár, and M. Pieropan prove that
every del Pezzo surface of degree d ≥ 3 defined over k is unirational,
provided that the set X(k) of rational points is non-empty. C. Salgado,
D. Testa, and A. Várilly-Alvarado prove that all del Pezzo surfaces of
degree 2 over a finite field are unirational as well, except possibly for
three isomorphism classes of surfaces (see [STVA14, Theorem 1]). In
Chapter 2 it is shown that these remaining three cases are also unira-
tional, thus proving the following theorem.

Theorem A. Every del Pezzo surface of degree 2 over a finite field is
unirational.

A more general criterion for unirationality of del Pezzo surfaces of
degree 2 is also given.

Theorem B. Suppose k is a field of characteristic not equal to 2, and
let k be an algebraic closure of k. Let X be a del Pezzo surface of degree 2
over k. Let B ⊂ P2 be the branch locus of the anti-canonical morphism
π : X → P2. Let C ⊂ P2 be a projective curve that is birationally
equivalent with P1 over k. Assume that all singular points of C that
are contained in B are ordinary singular points. Then the following
statements hold.

1. Suppose that there is a point P ∈ X(k) such that π(P ) ∈ C − B.
Suppose that B contains no singular points of C and that all in-
tersection points of B and C have even intersection multiplicity.
Then the surface X is unirational.

2. Suppose that one of the following two conditions hold.

(a) There is a point Q ∈ C(k) ∩ B(k) that is a double or a
triple point of C. The curve B contains no other singular
points of C, and all intersection points of B and C have
even intersection multiplicity.

(b) There exist two distinct points Q1, Q2 ∈ C(k) ∩ B(k) such
that B and C intersect with odd multiplicity at Q1 and Q2
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and with even intersection multiplicity at all other intersec-
tion points. Furthermore, the points Q1 and Q2 are smooth
points or double points on the curve C, and B contains no
other singular points of C.

Then there exists a field extension ` of k of degree at most 2 for
which the preimage π−1(C`) is birationally equivalent with P1

` ; for
each such field `, the surface X` is unirational.

All these results are part of joint work with Ronald van Luijk; Theo-
rem A has been published in [FvL16]; everything contained in Chapter 2
can also be found in [FvL15].

While Chapter 2 is devoted to the study of the arithmetic of del
Pezzo surfaces, Chapter 3 deals with the arithmetic of K3 surfaces. K3
surfaces are a possible 2-dimensional generalisation of elliptic curves,
and in the last sixty years they have attracted a growing attention
since they are on the boundary between those surface whose geometry
and arithmetic we understand pretty well, and those whose geometry
and arithmetic is still obscure to us. Smooth quartic surfaces in P3 are
examples of K3 surfaces, as well as double covers of P2 ramified along
a smooth sextic curve.

Let X be a K3 surface. The study of the Picard lattice PicX can
give information about the arithmetic and the geometry of X. Even
though during the last years a range of techniques and theoretical algo-
rithms to compute the Picard lattice have been developed (see Chap-
ter 3 and [PTvL15] for references), we do not know yet of any practical
algorithm to compute the Picard lattice of a K3 surface.

In the chapter, the following family of K3 surfaces over Q is consid-
ered:

X : w2 = x6 + y6 + z6 + tx2y2z2.

Let t0 be an element of Q. Then Xt0 denotes denotes the member of
X for t = t0, that is, Xt0 is the surface over Q given by the equation
w2 = x6 + y6 + z6 + t0x

2y2z2. The main result of the chapter is a
description of the Picard lattice of the elements of X, given by the
following theorem.
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Introduction

Theorem C. Let t0 ∈ Q be an algebraic number. Then the surface Xt0

has Picard number ρ(Xt0) ∈ {19, 20}.
If ρ(Xt0) = 19, then the Picard lattice PicXt0 is an even lattice of

rank 19, determinant 25 33, signature (1, 18), and discriminant group
isomorphic to C6 × C2

12.

A more explicit description is given in Theorem 3.1.4. This theorem
can be used to rule out information about the geometry and the arith-
metic of the elements of the family X. In the last section of the chapter
we give some corollaries in this spirit.

The whole Chapter 3 is part of joint work with Florian Bouyer,
Edgar Costa, Christopher Nicholls, and Mckenzie West, and it comes
from a problem proposed by Anthony Várilly-Alvarado during the Ari-
zona Winter School 2015 (see [VA15, Project 1]).

In Chapter 4 we continue our study of K3 surfaces. Let k be any
field, and let x0, x1, x2, x3 denote the coordinates of P3

k. Let X ⊂ P3 be
a surface. We say that X is determinantal if it is defined by an equation
of the form

X : detM = 0,

where M is a square matrix whose entries are linear homogeneous poly-
nomials in x0, x1, x2, x3.

Let L(4,2,−4) be the rank 2 lattice with Gram matrix(
4 2
2 −4

)
.

In [Ogu15], Oguiso shows that a K3 surface S with Picard lattice
isometric to L(4,2,−4) admits a fixed point free automorphism g of posi-
tive entropy and can be embedded into P3 as a quartic surface. In the
same paper, Oguiso states that “it seems extremely hard but highly
interesting to write down explicitly the equation of S and the action of
g in terms of the global homogeneous coordinates of P3, for at least one
of such pairs” (cf. [Ogu15, Remark 4.2]). In [FGvGvL13], it is shown
that in fact such surfaces can be embedded as determinantal quartic
surfaces. In Chapter 4, as well as in the paper, we provide an explicit
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example of a determinantal quartic surface over Q with Picard lattice
isometric to L(4,2,−4).

Theorem D. Let R = Z[x0, x1, x2, x3] and let M ∈M4(R) be any 4×4
matrix whose entries are homogeneous polynomials of degree 1 and such
that M is congruent modulo 2 to the matrix

M0 =


x0 x2 x1 + x2 x2 + x3

x1 x2 + x3 x0 + x1 + x2 + x3 x0 + x3

x0 + x2 x0 + x1 + x2 + x3 x0 + x1 x2

x0 + x1 + x3 x0 + x2 x3 x2

 .

Denote by X the complex surface in P3 given by detM = 0. Then X is
a K3 surface and its Picard lattice is isometric to L(4,2,−4).

This result is part of joint work with Alice Garbagnati, Bert van
Geemen, and Ronald van Luijk; all the results contained in Chapter 4
are also exposed in [FGvGvL13]. In the same paper, an explicit descrip-
tion of the action of the fixed point free automorphism with positive
entropy of X is also provided, giving a full answer to Oguiso’s remark.
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Chapter 1

Background

In this chapter we introduce some basic notions that will come in handy
later. In Section 1.1 we introduce lattices, focusing on integral lattices
and giving some properties that will be mostly used in Chapter 3; in
Section 1.2 we introduce some basic notions of algebraic geometry, to-
gether with some well and less well known results that are needed to
state and prove the results contained in the next chapters.

1.1 Lattice theory warm up

In this section we introduce the notion of lattices together with some
basic results for later use. In the first part we follow [vL05, Section 2.1].

For any two abelian groups A and G, a symmetric bilinear map
A×A→ G is said to be non-degenerate if the induced homomorphism
A→ Hom(A,G) is injective.

A lattice is a free Z-module L of finite rank endowed with a non-
degenerate symmetric, bilinear form bL : L× L→ Q, called the pairing
of the lattice. If x, y are two elements of L, the notation x · y may be
used instead of bL(x, y), if no confusion arises.

A lattice is called integral if the image of its pairing is contained
in Z.

An integral lattice L is called even if bL(x, x) ∈ 2Z for every x in L.

A sublattice of L is a submodule L′ of L such that bL is non-
degenerate on L′.
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Chapter 1. Background

A sublattice L′ of L is called primitive if the quotient L/L′ is torsion
free.

The signature of L is the signature of the vector space LQ = L⊗ZQ
together with the inner product induced by the pairing bL.

Let E and L be two lattices. We define E ⊕ L to be the lattice
whose underlying Z-module is E×L and whose pairing bE⊕L is defined
as follows. Let (e, l), (e′, l′) be two elements of E × L; then we set

bE⊕L
(
(e, l), (e′, l′)

)
:= bE(e, e′) + bL(l, l′).

Remark 1.1.1. The natural embeddings of E and L into E ⊕ L defined
by

e 7→ (e, 0)

and
l 7→ (0, l)

respectively, both respect the intersection pairings on E,L and E ⊕ L.

If S is a sublattice of a lattice L, then we define its orthogonal
complement, denoted by S⊥, to be the sublattice of L given by

S⊥ = {x ∈ L | ∀y ∈ S, bL(x, y) = 0 }.

Lemma 1.1.2. Let S be a sublattice of a lattice L. The following
statements hold.

1. The orthogonal complement S⊥ of S is a primitive sublattice of L
and its rank equals rk(L)− rk(S);

2. S ⊕ S⊥ is a finite-index sublattice of L;

3. (S⊥)⊥ = SQ ∩ L.

Proof. This is a well known result. For a proof, see for example [vL05,
Lemma 2.1.5].

Let L be a lattice with pairing bL. With L(n) we denote the lattice
with the same underlying module and pairing given by n · bL.

Let L be a lattice of rank n with pairing bL and fix a basis (e1, ..., en)
of L. Then the Gram matrix of L with respect to the basis (e1, ..., en)
is the n× n matrix [bL(ei, ej)]1≤i,j≤n.

8



1.1. Lattice theory warm up

The determinant, also called discriminant, of the lattice L, denoted
by detL, is the determinant of any Gram matrix of L. One can easily
see that the determinant of a lattice is independent of the choice of the
basis, and hence of the Gram matrix.

Remark 1.1.3. Let M be an r × r symmetric Q-matrix with maximal
rank. Then (Zr,M) denotes the lattice whose underlying Z-module is
Zr and whose intersection pairing is defined by

ei · ej := M [i, j]

where e1 = (1, 0, ..., 0), ..., er = (0, ..., 0, 1) is the standard basis of Zr
and M [i, j] is the (i, j)-th entry of the matrix M .

A lattice L is called unimodular if detL = ±1.

Lemma 1.1.4. Let E and L be two lattices of rank m and n, and
signature (e+, e−) and (l+, l−), respectively. Then the lattice E⊕L has

1. rank equal to m+ n,

2. determinant equal to detE · detL,

3. signature equal to (e+ + l+, e− + l−).

Proof. Fix the bases (e1, ..., em) and (l1, ..., ln) for E and L respectively,
and letM andN be the the associated Gram matrices. By the definition
of the pairing bE⊕L it follows that the Gram matrix of E⊕L with respect
to the basis (e1, ..., em, l1, ..., ln) is the block matrix(

M 0
0 N

)
.

The statements follow.

Lemma 1.1.5. Let S be a finite-index sublattice of a lattice L. Then
the determinant of S equals [L : S]2 · det(L).

Proof. [BHPVdV04, Lemma I.2.1].

Let L be an integral lattice. We define the dual lattice of L to be
the lattice

L∗ = {x ∈ LQ | ∀y ∈ L, bL(x, y) ∈ Z }.
The pairing on L∗ is given by linearly extending bL to L∗; we will use
bL to also denote the pairing on L∗.

9



Chapter 1. Background

Remark 1.1.6. Sometimes the dual lattice L∗ of an integral lattice L
is also defined as Hom(L,Z). The two definitions are equivalent, in
fact L∗ and Hom(L,Z) are isomorphic as abelian groups, and the map
Ψ: L∗ → Hom(L,Z) defined by x 7→ (x∗ : y 7→ bL(x, y)) is an isomor-
phism. In order to see it, let (e1, ..., er) be a basis of L, then there
exists a basis (x1, ..., xr) of L∗ such that xi · ej = δi,j ; analogously, there
is a basis (y1, ..., yr) of Hom(L,Z) such that yi(ej) = δi,j . Obviously
x∗i = yi, and so it follows that Ψ is an isomorphism.

Given an integral lattice L, it is easy to see that L is a sublattice of
the dual lattice L∗; nevertheless, the dual lattice L∗ does not need to
be integral, since there is no condition on bL(x, y) to be integral for any
x, y inside L∗ − L.

Lemma 1.1.7. Let L be an integral lattice. Then L is a finite index
sublattice of L∗ and | detL| = [L∗ : L].

Proof. Well known result. For a proof we refer to [vL05, Lemma 2.1.13].

Remark 1.1.8. From Lemma 1.1.7 it follows that if L is a unimodular
lattice, then L is equal to its dual lattice L∗.

Let L be an integral lattice, let S ⊂ L be a sublattice and let T = S⊥

be its orthogonal complement inside L. We can naturally embed S ⊕ T
into L, by sending (s, t) ∈ S ⊕ T to s+ t ∈ L.

Let x be an element of L. By Lemma 1.1.2, the lattice S ⊕ T has
finite-index inside L; let m be the index [L : S⊕T ]. Then mx ∈ S⊕T ;
write mx = s + t, for some s ∈ S, t ∈ T . Consider the element
s/m ∈ LQ and let y be an element of S. Since t ∈ T = S⊥, one
has that y · s = y · (s+ t). Then y · s = y · (s+ t) = y · (mx) = m(y · x),
that is, y · s is divisible by m. It follows that y · (s/m) is an integer and
so, by the generality of y, the element s/m ∈ SQ is contained in S∗.
The same argument holds to show that t/m ∈ T ∗.

Then we define a map L→ S∗⊕T ∗ by sending x ∈ L to the element
(s/m, t/m) ∈ S∗⊕T ∗. The next lemma shows that this map is a finite-
index embedding.

Lemma 1.1.9. Let L be an integral lattice, and S a sublattice of L. Let
T = S⊥ be the orthogonal complement of S inside L. Then the maps

10



1.1. Lattice theory warm up

defined before are finite-index embeddings.

S ⊕ T ↪→ L ↪→ S∗ ⊕ T ∗

Proof. The first map is trivially an embedding and, by Lemma 1.1.2,
S ⊕ T has the same rank as L, so the embedding is finite-index.

Also the second map is trivially injective.
The lattice L has finite index inside S∗ ⊕ T ∗ since S∗ ⊕ T ∗ has, by

Lemma 1.1.7, the same rank as S ⊕ T , that in turn has the same rank
as L, as we have seen before.

Let L be an even lattice with pairing bL. We define the discriminant
group of L to be the quotient

AL := L∗/L.

The pairing bL of L induces a map qL : AL → Q/2Z, called the dis-
criminant quadratic form of L, defined by [x] 7→ bL(x, x) + 2Z. The
discriminant group is a finite group, and the minimal number of gener-
ators is denoted by `(AL).

Lemma 1.1.10. The map qL is well defined and quadratic. The cardi-
nality of AL equals |detL|.

Proof. This is a standard result. For a proof see [vL05, Lemma 2.1.17].

Lemma 1.1.11. Let L be an even lattice of rank r, and let AL denote
its discriminant group. Then `(AL) ≤ r.

Proof. The group AL is generated by the classes of the generators of
L∗, and L∗ has the same rank as L, namely r.

Let L be a unimodular lattice, and S ⊂ L a primitive sublattice of L;
let T denote the orthogonal complement S⊥ of S inside L. Recall that
Hom(L,Z) and Hom(S,Z) are isomorphic to L∗ and S∗, respectively (cf.
Remark 1.1.6); since L is unimodular, then L = L∗ (cf. Remark 1.1.8).
The restriction map Hom(L,Z)→ Hom(S,Z) induces a map L→ AS .

L = L∗
∼= // Hom(L,Z) // Hom(S,Z)

∼= // S∗ // S∗/S = AS

11



Chapter 1. Background

The kernel of this map is S ⊕ T , and so it induces an isomorphism

ψS : L/(S ⊕ T )→ AS .

The analogous construction for L and T induces an isomorphism

ψT : L/(S ⊕ T )→ AT .

Let δS : AS → AT be the isomorphism given by the composition
ψT ◦ ψ−1

S .

Proposition 1.1.12. Let L, S, T and δS be defined as before. Then the
following diagram commutes.

AS

qS
��

∼=
δS

// AT

q
ST

��
Q/2Z

[−1]
// Q/2Z

Proof. [Nik79, Proposition 1.6.1] or [BHPVdV04, Lemma I.2.5].

Let L be a lattice. With O(L) we denote the group of isometries
of L.

Let S be a sublattice of L. With O(L)S we denote the group of
isometries of L sending S to itself.

An isometry σ of a lattice L extends by linearity to an isometry
of L∗. It therefore induces an automorphism σ̄ of the discriminant
group AL. In this way we define the map ρL : O(L)→ Aut(AL).

Corollary 1.1.13. Let L be an even unimodular lattice and S a primi-
tive sublattice of L. Let T = S⊥ denote the orthogonal complement of S
inside L. There is an isomorphism %S between Aut(AS) and Aut(AT )
making the following diagram commute.

O(L)S
resS

yy

resT

%%
O(S)

ρS
��

O(T )

ρT
��

Aut(AS)
∼=
%S

// Aut(AT )

12



1.1. Lattice theory warm up

Proof. Let δS : AS → AT be the isomorphism as in Proposition 1.1.12.
Define %S : Aut(AS)→ Aut(AT ) by

φ 7→ δS ◦ φ ◦ δ−1
S .

First notice that % is bijective, since the map Aut(AS) → Aut(AT )
defined by

φ 7→ δ−1
S ◦ φ ◦ δS

serves as its inverse.
The commutativity of the diagram follows from the fact that we use

δS to identify AS and AT . See also [Huy15, Lemma 14.2.5].

Lemma 1.1.14. Let L be a unimodular lattice and S a primitive sub-
lattice of L and keep the notation as in Corollary 1.1.13.

Let resS,T : O(L)S → O(S)×O(T ) be the map defined by

α 7→ (α|S , α|T ).

Then the map resS,T is well defined, injective, and its image is

{(β, γ) ∈ O(S)×O(T ) | %S(ρS(β)) = ρT (γ)}.

Proof. See [Huy15, Proposition 14.2.6] or [Nik79, Theorem 1.6.1, Corol-
lary 1.5.2].

Proposition 1.1.15. Let L be an even indefinite lattice of signature
(m,n) and rank m+n, with discriminant lattice AL. If `(AL) ≤ m+n−2,
then any other lattice with the same rank, signature and discriminant
group is isomorphic to L.

Proof. See [Nik79, Corollary 1.13.3] or [HT15, Proposition 5].

Let L be an even lattice, S ⊆ L a finite-index sublattice, and
ι : S ↪→ L the inclusion map.

Let p ∈ Z be a prime and consider the quotient group L/pL. If x
is an element of L, we denote with [x]L = x+ pL its class inside L/pL.
The same construction and notation holds if we substitute L with S.
When clear from the context, we will drop the subscripts L or S, and
we will write simply [x] for [x]L or [x]S , respectively.

The inclusion map ι induces the homomorphism ιp : S/pS → L/pL,
defined by

ιp : [x]S 7→ [x]L.

13



Chapter 1. Background

Remark 1.1.16. Notice that if p is a prime, then S/pS and L/pL are
Fp-vector spaces and the homomorphism ιp is a homomorphism of Fp-
vector spaces.

We define Sp to be the kernel of ιp.

Lemma 1.1.17. The following equality holds:

Sp =
S ∩ pL
pS

.

Proof. The inclusion S∩pL
pS ⊆ Sp is trivial.

In order to see the other inclusion, let λ be an element of S such
that [λ] ∈ Sp, that is, ιp([λ]) ∈ pL. From this it follows that λ = pλ′,
for some λ′ ∈ L. Then λ ∈ S ∩ pL and the statement follows.

Lemma 1.1.18. Let x, y, x′, y′ be elements of L such that [x]L = [x′]L
and [y]L = [y′]L. Then bL(x, y) ≡ bL(x′, y′) mod p.

Proof. From the hypothesis it follows that there exist two elements
λ, µ ∈ L such that x′ = x+ pλ and y′ = x+ pλ. Then

bL(x′, y′) = bL(x+ pλ, y + pµ) =

= bL(x, y) + pbL(x, µ) + pbL(λ, y) + p2bL(λ, µ)

≡ bL(x, y) mod p.

Using the pairing bL on L and Lemma 1.1.18, we can define sym-
metric, bilinear forms on L/pL and S/pS, denoted by

bL,p : (L/pL)2 → Z/pZ

and
bS,p : (S/pS)2 → Z/pZ

respectively, both defined by sending ([x], [y]) to bL(x, y) mod p.

Lemma 1.1.19. The following diagram commutes.

(S/pS)2

ι2p
��

bS,p // Z/pZ

(L/pL)2
bL,p

// Z/pZ

14



1.1. Lattice theory warm up

Proof. Let x, y be two elements of S. Then

bL,p(ιp([x]S), ιp([y]S)) = bL,p([x]L, [y]L) = bL(x, y) mod p.

By definition

bS,p([x]S , [y]S) = bL(x, y) mod p.

Let [x]L be an element of L/pL, and define the homomorphism

[x]∗ : S/pS → Z/pZ

by sending [y]P ∈ S/pS to bL,p([x], [y]). In this way we get the morphism

φL,p : L/pL→ Hom(S/pS,Z/pZ),

defined by sending [x]L to [x]∗. In the same way, we define the morphism

φS,p : S/pS → Hom(S/pS,Z/pZ).

Let kp denote the kernel of φS,p.

Lemma 1.1.20. The subspace kp contains Sp and it is fixed by all the
isometries of S.

Proof. First we show Sp ⊆ kp. Let x be an element of Sp and fix a
representative x ∈ S of x, that is x = [x]S . By Lemma 1.1.17, there is a
x′ ∈ L such that x = px′. It follows that

[x]∗([y]S) = [px′]∗([y]S) = bL,p(px
′, y) = p bL,p(x

′, y) ≡ 0 mod p,

for any y ∈ S. So φS,p([x]S) = [x]∗ = 0 and hence [x]S ∈ kp.
In order to show that kp is fixed by the isometries of S, let [x]S

be an element of kp and σ any isometry of S. Then we have that
[σx]∗([y]S) = bL(σx, y) = bL(x, σ−1y). Since [x]S ∈ kp we have that
[x]∗ = 0, and so bL(x, σ−1y) ≡ 0 mod p. It follows that, for any y ∈ L,
bL(σx, y) ≡ 0 mod p, and therefore [σx] ∈ kp.

15



Chapter 1. Background

Lemma 1.1.21. The following diagram commutes.

0 // Sp
� � //
� _

��

S/pS
ιp // L/pL

φL,p
��

0 // kp
� � // S/pS

φS,p
// Hom(S/pS,Z/pZ)

Proof. The left square is trivially commutative, since all the maps in-
volved are inclusions.

The right square is also commutative since ιp preserves the pairing
on L/pL (cf. Lemma 1.1.19).

Remark 1.1.22. Let S be a lattice of rank r and fix a basis (e1, ..., er).
Let M be the Gram matrix of S associated to the fixed basis. Then we
have that S is isometric to the lattice (Zr,M); the isometry is given by
sending ei to the i-th element of the canonical basis of Zr.

Using this notation, kp is the subspace of S/pS ∼= (Z/pZ)r given by
the classes of the elements x ∈ Zr such that x ·M ≡ 0 mod p.

Keeping the notation introduced before, let x ∈ S be such that
[x]S ∈ kp and x2 ≡ 0 mod 2p2. Let y be another element of S such
that [x]S = [y]S , that is, there is an element z ∈ L such that y = x+pz.
It follows that y2 = (x + pz)2 = x2 + 2px · z + p2z2. By hypothesis
x2 ≡ 0 mod 2p2; since [x]S ∈ kp, the product x · z is divisible by p, and
so 2px · z ≡ 0 mod 2p2; since L, and therefore S, is an even lattice,
z2 is even, and so p2z2 ≡ 0 mod 2p2; hence y2 ≡ 0 mod 2p2. We can
then define k′p ⊂ S/pS to be the following subset of kp:

k′p := {[x]S ∈ kp | x2 ≡ 0 mod 2p2}.

Lemma 1.1.23. The subset k′p ⊂ kp contains Sp and it is invariant
under all the isometries of S.

Proof. First we show that Sp is contained in k′p. Let x be an ele-
ment of Sp. By Lemma 1.1.17, there is an element y ∈ L such that
x = [py]. It follows that x = [py + px′], for any x′ ∈ S. Then
x2 = p2y2 + 2p2y · x′ + p2x′2. Recall that L is an even lattice, and
so y · x′ ∈ Z and y2, x′2 ∈ 2Z. Then, x2 ≡ 0 mod 2p2 and thus we have
proved Sp ⊆ k′p.
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1.1. Lattice theory warm up

In order to show that k′p is invariant under the isometries of S con-
sider a class [x] ∈ k′p and let σ be an isometry of S. By Lemma 1.1.20
σ[x] ∈ kp. Since σ is an isometry, (σx)2 = x2 ≡ 0 mod 2p2, and so also
σx is an element of k′p.

Corollary 1.1.24. The equality S = L holds if and only if ιp is injective
for every prime p.

Proof. We only need to prove that if ιp is injective for every prime p
then S = L, as the other implication is trivial.

Assume then that ιp is injective for every prime p. Let λ be an
element of L. Since S has finite index inside L, there is a minimal
m ∈ Z>0 such that mλ ∈ S.

If m = 1 we are done. So assume m > 1. Then m can either be a
prime or not a prime.

If m is a prime, say q, let Sq = S∩qL
qS be the kernel of the map

ιq : S/qS → L/qL (cf. Lemma 1.1.17). Then it follows that [qλ] is
inside Sq. By assumption, Sq = {0}. This means that [qλ] = 0 or,
equivalently, that qλ ∈ qS. Since S is a torsion-free group (it is a
lattice), we can conclude that λ ∈ S. But then, by the minimality of
m, we get m = 1, contradicting the assumption of m to be greater than
1.

If m is not a prime, let p be a prime divisor of m and write m = pm′,
for some m′ ∈ Z. Using the same argument as before, we show that m′λ
is in S. In this way we got a m′ < m such that m′λ ∈ S, contradicting
the minimality of m.

This shows that m = 1 and so, by generality of λ, we have proved
that S = L.

Let L be an integral lattice, and let S ⊂ L be a finite-index sublattice
of L. Let p be a prime, and let ep denote the dimension of Sp = S∩pL

pS
as Fp-vector space. Let ([y1], ..., [yep ]) be an Fp-basis of Sp. Then there
exist x1, ..., xep ∈ L − S such that [yi] = [pxi], for i = 1, ..., ep. Let S′

be the sublattice of L generated by S ∪ {x1, ..., xep}. Obviously S is a
finite-index sublattice of S′ and, by construction, we have that pS′ is
contained in S.

Lemma 1.1.25. Let L, S, S′, ep and x1, ..., xep ∈ L − S be defined as
before. Then S′/S is an Fp vector space of dimension ep.

17
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Proof. Since pS′ is contained in S, the quotient S′/S is an Fp-vector
space. We claim that the classes [x1], ..., [xep ] form an Fp-basis for
S′/S. Clearly, they generate it, since they are the only generators
of S′ not contained in S. To show that they are linearly indepen-
dent, assume by contradiction that there are a1, ..., aep ∈ Fp such that
a1[x1] + ... + aep [xep ] = 0. This means that if we lift the classes
a1, ..., aep ∈ Fp to the integers b1, ..., bep ∈ Z, then b1x1 + ... + bepxep
is inside S; so, multiplying by p, it follows that b1y1 + ...+ bepyep ∈ pS.
This last statement implies that a1[y1] + ...+ aep [yep ] = 0 ∈ S/pS, con-
tradicting the hypothesis on ([y1], ..., [yep ]) to be an Fp-basis of Sp. Then
([x1], ..., [xep ]) is an Fp-basis for S′/S and the statement follows.

Corollary 1.1.26. Sp and S′/S are isomorphic as Fp-vector spaces.

Proof. By Lemma 1.1.25, S′/S is an Fp-vector space of dimension ep;
the Fp-vector space Sp has dimension ep by definition. So Sp and S′/S
are two Fp-vector spaces of the same dimension, hence they are isomor-
phic.

Remark 1.1.27. A more direct way to show that Sp and S′/S are iso-
morphic is given by considering the following commutative diagram with
exact rows.

0 // 0 //

��

0 //

��

Sp

��
0 // S

[p] //� _

��

S //� _

��

S/pS //

��

0

0 // S′
[p] //

��

S′ //

��

S′/pS′ // 0

S′/S
[p] // S′/S

Then, applying the snake lemma, we have the exact sequence

0 // Sp // S′/S
[p] // S′/S.

Since pS′ ⊆ S, the map [p] given by the multiplication by p is the zero
map. The map Sp → S′/S is then an isomorphism.

18



1.2. Geometric background

Proposition 1.1.28. Let p be a prime, and let L, S, S′ and ep be defined
as before. Then detS′ = p−2ep detS.

Proof. Since S is a finite-index sublattice of S′, it follows that the index
[S′ : S] equals the cardinality of S′/S; by Lemma 1.1.25, the Fp-vector
space S′/S has dimension ep, and so

[S′ : S] = #(S′/S) = pep .

Then, by Lemma 1.1.5, we have that detS = p2ep detS′ or, equivalently,
detS′ = p−2ep detS.

Remark 1.1.29. Since L is an integral lattice, so are S and S′, and
therefore detS and detS′ are both integers. It follows that, for any
prime p, if pm is the maximal power of p dividing detS, then 2ep ≤ m.

As immediate consequence, we have that the map ιp is injective for
all the primes p whose square does not divide detS.

Remark 1.1.30 (Some classic lattices). Here we introduce the notation
for some notable lattices. These lattices will be useful later.

With U we denote the lattice of rank 2 and Gram matrix

(
0 1
1 0

)
.

Let n be a positive integer.
With An we denote the lattice associated to the root system An. It

is an even, positive definite lattice of rank n and determinant n+1. See
[CS99, Section 4.6.1] for more information.

With E8 we denote the lattice associated to the root system E8. It
is an even, positive definite lattice of rank 8 and determinant 1. See
[CS99, Section 4.8.1] for more information.

With ΛK3 we denote the lattice given by

ΛK3 := U⊕3 ⊕ E8(−1)⊕2.

One can immediately notice that ΛK3 is an even unimodular lattice of
rank 22, determinant −1, and signature (3, 19).

1.2 Geometric background

In this section we give some general definitions and results in algebraic
geometry. We focus on the study of surfaces. After giving the definition
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Chapter 1. Background

of surface, we present some well-known results about the Picard group
of a surface, double covers, K3 surfaces, and del Pezzo surfaces.

Let k be a field. A variety over k is a separated, geometrically
reduced scheme X that is of finite type over Spec k.

We say that a variety X is smooth if the morphism X → Spec k is
smooth.

A variety has pure dimension d if all its irreducible components have
dimension d.
A curve is a variety of pure dimension 1.
A surface is a variety of pure dimension 2.
A three-fold is a variety of pure dimension 3.

Let X be a variety over a field k, and let K be any extension of k.
Then we denote by XK the base-change of X to K. Let k be a fixed
algebraic closure of k. Then we denote by X := Xk the base-change of
X to k.

1.2.1 The Picard lattice

In this subsection we introduce the notion of Picard lattice of a surface.
In doing so we basically follow [Har77, Section II.6] and [vL05, Section
2.2].

Let X be a scheme. We define the Picard group of X, denoted by
PicX, to be the group of isomorphism classes of invertible sheaves of
X (see [Har77, p.143]).

Remark 1.2.1. Equivalently, one can define the Picard group of X
as the group H1(X,O∗). In fact [Har77, Exercise III.4.5] shows that
PicX ∼= H1(X,O∗).

Let X be an irreducible variety over a field k. We define the Cartier
divisor group, denoted by CaDivX to be the group H0(X,K∗/O∗),
where K is the sheaf of total quotient rings of O. A Cartier divi-
sor is principal if it is in the image PCaDivX of the natural map
H0(X,K∗)→ H0(X,K∗/O∗). We define the Cartier divisor class group,
denoted by CaClX, to be the quotient CaDivX/PCaDivX. For more
details about these definitions, see [Har77, p.141], or also [HS00, A.2.2].

Assume X to be smooth, and let K(X) denote the function field
of X. We define the (Weil) divisor group, denoted by DivX, to be
free abelian group generated by all the prime Weil divisors of X. The

20
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group of principal divisors of X, denoted by PDivX, is the image of the
map K(X)∗ → DivX, defined by sending a function f to the divisor
(f) =

∑
Y vY (f)Y , where the sum is over all the prime Weil divisors Y

and vY (f) is the valuation of f in the discrete valuation ring associated
to the generic point of Y . We define the (Weil) divisor class group,
denoted by ClX, to be the quotient DivX/PDivX. For more details
about these definitions, see [Har77, p.130], or also [HS00, A.2.1].

Proposition 1.2.2. Let X be an irreducible, smooth variety over a field
k. Then there are natural isomorphisms

DivX ∼= CaDivX,

and
PicX ∼= CaClX ∼= ClX.

Proof. See [Har77, Proposition II.6.11] for the proof of DivX ∼= CaDivX.
See [Har77, Proposition II.6.15] for the proof of PicX ∼= CaClX.
See [Har77, Corollary II.6.16] for the proof of PicX ∼= ClX.

Remark 1.2.3. If X is a smooth, irreducible variety, then we can identify
Weil divisors and Cartier divisors. We will then simply talk about
divisors, without specifying ‘Weil’ or ‘Cartier’. In general, if we leave
out this specification, a divisor is intended to be a Weil divisor.

From now on, let X be a projective, smooth, geometrically irre-
ducible surface over a field k. Fix an algebraic closure k of k and let
X = Xk denote the base-change of X to k.

Theorem 1.2.4. There is a unique pairing DivX×DivX → Z, denoted
by C ·D for any two divisors C,D, such that

1. if C and D are nonsingular curves meeting transversally, then
C ·D = #(C ∩D), the number of points of C ∩D;

2. C ·D = D · C;

3. (C1 + C2) ·D = C1 ·D + C2 ·D;

4. if D is a principal divisor then D · C = 0, for any divisor C.

Proof. [Har77, Theorem V.1.1].
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We call this unique pairing on DivX the intersection pairing of X.
Let k1 be an extension of k such that k ⊆ k1 ⊆ k. Then the intersection
pairing of X restricts to a pairing on DivXk1 ; in particular, it restricts
to a pairing on DivX.

Remark 1.2.5. From Theorem 1.2.4.(4), it immediately follows that the
intersection pairing of X induces a pairing on ClX ∼= PicX.

Let D,E ∈ DivX be two divisors of X. We say that D and E are
linearly equivalent, denoted by D ∼lin E, if and only if they have the
same class inside ClX ∼= PicX.

Remark 1.2.6. Trivially, DivX/ ∼lin= ClX.

Let T be a non-singular curve. We define an algebraic family of
effective divisors on X parametrised by T to be an effective Cartier
divisor D on X × T , flat over T (cf. [Har77, Example III.9.8.5]).

Let D and E be two divisors of X. We say that D and E are prealge-
braically equivalent if and only if there are two non singular curves T1, T2

defined over k, two algebraic families D1 and D2 of effective divisors on
X parametrised by T1 and T2 respectively, two closed fibers D1, E1 of D1

and two closed fibersD2, E2 ofD2, such thatD = D1−D2, E = E1−E2.
We say that D and E are algebraically equivalent, denoted by D ∼alg E,
if there is a chain of divisors D = C0, C1, ..., Cn = E in DivX such that
Ci and Ci+1 are prealgebraically equivalent, for i = 0, ..., n − 1. Let
Div0

algX be the group of divisors of X that are algebraically equiv-

alent to 0, and let Pic0
algX be its image inside PicX. We define

the Néron–Severi group of X, denoted by NSX, to be the quotient
DivX/Div0

algX. For more details about these definitions see [Har77,
Exercise V.1.7].

Theorem 1.2.7 (Néron–Severi). Let X be defined as before. Then
NSX is a finitely generated abelian group.

Proof. See [LN59] or [Nér52] for a proof with k arbitrary. See [Har77,
Appendix B.5] for a proof with k = C.

Remark 1.2.8. By Theorem 1.2.7, we have that NSX ∼= Zρ⊕(NSX)tors,
for some integer ρ ∈ Z≥0. We define this ρ = ρ(X) to be the Picard
number of X. Note that ρ = dimQ NS(X)⊗Q.
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We say that D and E are numerically equivalent, using the notation
D ∼num E, if and only if D ·C = E ·C for every divisor C ∈ DivX. Let
Div0

numX be the group of divisors of X that are numerically equivalent
to 0, and let Pic0

numX be its image inside PicX. We define NumX to
be the quotient DivX/Div0

num.

Remark 1.2.9. Let D and E two divisors of X. From Theorem 1.2.4.(4)
it immediately follows that if D and E are linearly equivalent, they are
numerically equivalent too (cf. Proposition 1.2.11).

Proposition 1.2.10. The group NumX is a torsion free abelian group.

Proof. The group NumX is abelian since it is a quotient of DivX,
which is abelian by definition.

In order to see that NumX is torsion free let D be a divisor of X and
let [D]num its class inside NumX. Assume m[D]num = [mD]num = 0.
This means that (mD) · C = 0, for every divisor C ∈ DivX. It follows
that, for every divisor C ∈ DivX

0 = (mD) · C = m(D · C),

and so either m = 0, or (D·C) = 0 for every C ∈ DivX, i.e., [D]num = 0.
Hence NumX is torsion free.

Proposition 1.2.11. Let D,E be two divisors of X. If D ∼lin E, then
D ∼alg E. If D ∼alg E, then D ∼num E.

Proof. See [Har77, Exercise V.1.7.(b) and (c)].

Remark 1.2.12. The previous proposition tells us that there are two
natural surjections:

PicX → NSX → NumX.

Remark 1.2.13. From Proposition 1.2.11, we trivially get that:

Pic0
alg X ⊆ Pic0

numX,

and that

PicX/Pic0
algX

∼= NSX,

PicX/Pic0
numX

∼= NumX.
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Proposition 1.2.14. The natural map NumX → NSX/(NSX)tors is
an isomorphism.

Proof. It follows from [vL05, Proposition 2.2.17] and Remark 1.2.13.

Remark 1.2.15. From Proposition 1.2.14, it follows that NumX is a
free Z-module of rank ρ(X); also note that the intersection pairing of
X naturally induces a pairing on NumX. Then NumX, endowed with
the pairing induced by the intersection pairing, is a lattice of rank ρ(X).

Also, using the surjection NSX → NumX, the pairing on NumX
induces a pairing on NSX.

We can summarize the previous definitions and results with the
following commutative diagrams with exact rows.

0 // PDivX �
� //� _

��

DivX // PicX

��

// 0

0 // Div0
alg X

� � //
� _

��

DivX // NSX

��

// 0

0 // Div0
numX

� � // DivX // NumX // 0

0 // Pic0
alg X

� � //
� _

��

PicX // NSX

��

// 0

0 // Pic0
numX

� � // PicX // NumX // 0

Remark 1.2.16. If the adjective ‘geometric’ precedes any of the oper-
ators of this subsection introduced so far, then we mean the operator
acting on X instead of X. For example, the geometric Picard group of
X is the Picard group of X, that is, PicX.

Assume k is perfect and let Gk := Gal(k/k) be the absolute Galois
group of k, and fix an embedding of Xbar inside a projective space over
k; then Gk acts on the set of prime divisors of X, by acting on the
coefficients of the equations defining them. This induces an action of
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Gk on DivX and, since Gk sends principal divisors to principal divisors,
it also induces an action of Gk on PicX.

Let k1 ⊂ k be an algebraic extension of k. Let D be an element
of DivX. We say that k1 is the field of definition of D if Gal(k/k1) is
the stabilizer of D inside Gk; we say that D can be defined over k1 if
Gal(k/k1) is contained in the stabilizer of D inside Gk.

Analogously, if [D] is an element of PicX, we say that k1 is the field
of definition of [D] if Gal(k/k1) is the stabilizer of [D] inside Gk; we say
that [D] can be defined over k1 if Gal(k/k1) is contained in the stabilizer
of [D] inside Gk.

Remark 1.2.17. Let k1 ⊂ k an algebraic extension of k. Let D be an
element of DivX and let [D] denote its class inside PicX. The fact
k1 is the field of definition of [D] does not imply that k1 is the field of
definition of D: there might be an element σ ∈ Gal(k/k) sending D
to D′ = σD, such that D′ 6= D but [D] = [D′]. For the same reason,
the fact that [D] can be defined over k1 does not imply that D can be
defined over k1.

Let X be a surface over k = C. Then we can consider the complex
analytic space Xh associated to X. The topological space of Xh has
X(C) as underlying set. Let OXh denote structure sheaf of Xh. The
exponential sequence

0→ Z→ OXh → O
∗
Xh
→ 0

of sheaves induces an exact sequence of (cohomology) groups

0→ H1(Xh,Z)→ H1(Xh,OXh)→ H1(Xh,O∗Xh)→ H2(Xh,Z)→ ... .

Serre, in [Ser56], showed that H i(Xh,OXh) ∼= H i(X,OX) for every i.
Since PicX ∼= H1(X,O∗X) (cf. Remark 1.2.1), we have the following
exact sequence of groups.

0→ H1(Xh,Z)→ H1(X,OX)→ PicX → H2(Xh,Z)→ ... . (1.1)

Proposition 1.2.18. The Néron–Severi group NSX is isomorphic to a
subgroup of H2(Xh,Z) and the second Betti number b2 = dimH2(Xh,C)
is an upper bound for the Picard number of X.
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Proof. The image of H1(X,OX) inside PicX is exactly Pic0
alg X (see

[Har77, Appendix B, p. 447]). Recalling that NSX ≡ PicX/Pic0
alg X

(cf. Remark 1.2.13), the statement immediately follows from the exact
sequence (1.1).

Remark 1.2.19. The pairing of NSX induced by the intersection pairing
of X (cf. Remark 1.2.15) corresponds to the cup-product of H2(Xh,Z).

1.2.2 Weighted projective spaces

In the next sections, we will use the notion of weighted projective space.
In introducing it we follow [Dol82].

Let Q = (q0, ..., qr) be a r + 1-tuple of positive integers. Let k be
any field and let S(Q) be the polynomial algebra k[T0, ..., Tr] over the
field k graded by the conditions

deg Ti = qi,

for i = 0, ..., r. We define the weighted projective space of type Q, or
weighted projective space with weights Q, the projective scheme given
by Proj(S(Q)), denoted by Pk(Q).

If k = Q, we might drop the subscript and write P(Q) for PQ(Q).

Example 1.2.20. If Q = (1, ..., 1︸ ︷︷ ︸
r+1

), then the weighted projective space

with weights Q is simply the projective space Pr.
Let f(T0, ..., T1) be a homogeneous polynomial of weighted degree

d. Then the equation f(T0, ..., T1) = 0 defines an hypersurface of degree
d in Pk(Q). We say that an hypersurface of Pk(Q) is an hyperplane if
it has degree d = 1.

Example 1.2.21. The equation Ti = 0 defines an hyperplane if and only
if qi = 1.

Remark 1.2.22. For more theory and results about weighted projective
spaces we refer to [Dol82] and [Kol96, V.1.3].

1.2.3 Double covers

In this subsection we introduce the notion of double cover of a surface,
focusing on double covers of the projective plane. Given a double cover
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X of the projective plane, the main goal of the subsection is to give a
characterization of the plane curves whose pull-back on X splits into
two irreducible components. A large deal of what is described in this
subsection is a part of a joint work with Ronald van Luijk, and can be
found in [FvL15, Section 5].

Let k be a field with characteristic different from 2, and fix an alge-
braic closure k of k.

Let X,Y be two smooth, projective surfaces defined over k. We say
that X is a double cover of Y if there is a morphism f : X → Y that
is surjective, finite and of degree 2 (see [Har77, Section II.3] for these
definitions).

Let π : X → Y be a double cover of Y .

By definition of the double cover, the pre-image inside X(k) of a
point of Y (k) has at most 2 elements. We define the branch locus of π,
denoted by B ⊂ Y (k), to be the subset of Y (k) defined by

{x ∈ Y (k) | #π−1(x) = 1 }.

Proposition 1.2.23. The branch locus of π is a divisor of Y .

Proof. It follows from [Zar58].

We define the ramification locus of π, denoted by R ⊂ X, to be the
preimage π−1(B) on X of the branch locus B.

The double cover π : X → Y induces the involution ιX on X, defined
by sending each point P ∈ X to the unique other point of the fiber
π−1(π(P )), unless P ∈ R; if P ∈ R, then ιX fixes P .

The following definitions are given as in [FvL15, Section 5.1]. Given
a curve C over k, the normalisation map ϑ : C̃ → C is unique up to
isomorphism; the curve C̃ is regular and both C̃ and ϑ are called the
normalisation of C. For more details, see [Mum99, Theorem III.8.3] for
the case that C is irreducible; for the general case, take the disjoint
unions of the normalisations of the irreducible components. If P is a
singular point of C, we say that P is an ordinary singular point if, when
we consider the blow up of C at P , all the points above P are smooth.

Recall that the geometric genus g(C) of a geometrically integral
curve C over k is defined to be the geometric genus of the unique reg-
ular projective geometrically integral model of C; for the definition of
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geometric genus, see [Har77, p. 181]. If C is itself projective, then this
model is the normalisation C̃ of C. Note that we have g(Ck) ≤ g(C)

with equality if and only if C̃ is smooth (see [Tat52]). In particular,
we have g(C) = 0 if and only if C̃ is smooth and C is geometrically
rational.

Let C ⊂ P2
k be a curve over k and S ∈ C a closed point of C with

local ring OS,C ; let V ⊂ P2 be an open neighbourhood of S, and let
C ′ ⊂ P2

k be a curve that in V is given by h = 0 for some h ∈ OP2(V );
assume that S does not lie on a common component of C and C ′; then
the intersection multiplicity µS(C,C ′) of C and C ′ at S is the length
of the OS,C-module OS,C/(h). If S is a smooth point of C, then the
local ring OS,C is a discrete valuation ring, say with valuation vS , and
µS(C,C ′) equals vS(h).

We extend the notion of intersection multiplicity, replacing the point
S on the curve C by a branch of C, that is, a point of the normalisation
of C.

Let C ⊂ P2 be a curve and let ϑ : C̃ → C be the normalisation of
C. Let T ∈ C̃ be a closed point with local ring OT,C̃ . Let C ′ ⊂ P2

k

be a curve that is given in an open neighbourhood V ⊂ P2 of ϑ(T )
by h = 0 for some h ∈ OP2

k
(V ). If the curves C and C ′ have no

irreducible components in common, then the intersection multiplicity
µT (C̃, C ′) of C̃ and C ′ at T is defined to be the length of the OT,C̃-
module OT,C̃/(ϑ

∗h).

With the same notation as above, the quantity µT (C̃, C ′) is the
same as ordT (h) as defined in [Ful98, Section 1.2]. Since C̃ is regular,
the local ring OT,C̃ is a discrete valuation ring, say with valuation vT ,

and we have µT (C̃, C ′) = vT (ϑ∗h). If k is algebraically closed, then we
have µT (C̃, C ′) = dimkOT,C̃/(ϑ

∗h).

Lemma 1.2.24. Let C,C ′ ⊂ P2
k be curves with no common irreducible

components, and let ϑ : C̃ → C be the normalisation of C. Then for
every S ∈ C we have

µS(C,C ′) =
∑
T 7→S

µT (C̃, C ′) · [k(T ) : k(S)],

where the summation runs over all closed points T ∈ C̃ with ϑ(T ) = S
and where [k(T ) : k(S)] denotes the degree of the residue field extension.
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Proof. This follows immediately from [Ful98, Example 1.2.3].

Let C,C ′ ⊂ P2
k be curves over k that do not have any components

in common. Let Γ denote either C or its normalisation C̃. Then we
define the subset b(Γ, C ′) of Γ(k) as

b(Γ, C ′) = {T ∈ Γ(k) : µT (Γ, C ′) is odd}.

From now on let X be a smooth, projective, irreducible surface over
k, and let π : X → P2

k be a double cover of the projective plane.

Lemma 1.2.25. Let D be a geometrically integral curve on X, let
C = π(D) be its image under π, and assume C is not equal to the
branch locus B. Let D̃k, C̃k be the normalisations of Dk and Ck respec-

tively. The restriction of π to D induces a morphism π̃ : D̃k → C̃k. The

branch locus of π̃ is exactly b(C̃, B) ⊂ C̃(k).

Proof. We present the proof as in [FvL15, Lemma 5.4]. Without loss
of generality, we assume k = k. Let ϑ denote the normalisation map
C̃ → C. Let T ∈ C̃(k) be a point. Since C̃ is regular, the local ring OT,C̃
is a discrete valuation ring, say with valuation vT . As the characteristic
of k is not equal to 2, there is an open neighbourhood V ⊂ P2 of ϑ(T )
and an element h ∈ OP2(V ) such that the double cover π−1(V ) of V
is isomorphic to the subvariety of V × A1(u) given by u2 = h. We
denote the image of h in the local ring OT,C̃ and the function field

k(C̃) = k(C) by h as well. The extension k(C) ⊂ k(D) of function
fields is obtained by adjoining a square root η ∈ k(D) of h to k(C).
Note that the degree of the restriction of π to D is 1 if and only if this
extension is trivial, i.e., h is a square in k(C). The intersection B ∩ V
is given by h = 0, so we have µT (C̃, B) = vT (h). Suppose T ′ ∈ D̃(k)
is a point with π̃(T ′) = T . Since the characteristic of k is not equal to
2, the extension OT,C̃ ⊂ OT ′,D̃ of discrete valuation rings of k(C) and
k(D) = k(C)(η), respectively, is ramified if and only if vT (h) is odd,
that is, T is contained in b(C̃, B), which proves the lemma.

Proposition 1.2.26. Let D be a geometrically integral projective curve
on X, let C = π(D) be its image under π, and assume g(C) = 0.
Assume also that C is not equal to the branch locus B. Let C̃ denote
the normalisation of C and set n = #b(C̃, B). The following statements
hold.
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1. If n = 0, then π restricts to a birational morphism D → C and
g(D) = 0.

2. If n > 0, then π restricts to a double cover D → C and we have
that g(D) = g(Dk) = 1

2n− 1.

Proof. From g(C) = 0, we find that the normalisation C̃ is smooth.
Since the characteristic of k is not 2 and for any finite separable field
extension ` of k we have g(D`) = g(D) (see [Tat52, Corollary 2]), we
may (and do) replace k, without loss of generality, by a quadratic ex-
tension ` for which C̃(`) 6= ∅. Then C̃ is isomorphic to P1. Let D̃
denote the normalisation of D. The morphism π induces a morphism
π̃ : D̃ → C̃ ∼= P1 of degree at most 2. We claim that D̃ is smooth.
Indeed, if deg(π̃) = 1, then this is clear. If deg(π̃) = 2, then because
the characteristic of k is not 2, the curve D̃ can be covered by open
affine curves that are given by y2 = f(x) for some polynomial f ∈ k[x];
the regularity of D̃ implies that each polynomial f is separable, which
implies that D̃ is smooth. This shows that g(D) = g(Dk), so we may
(and do) replace k, without loss of generality, by k.

By hypotheses, C does not equal the branch locus B, so we may
apply Lemma 1.2.25. The Riemann-Hurwitz formula then yields

2g(D)− 2 = 2g(D̃)− 2 = deg(π̃) · (2g(C̃)− 2) + n = n− 2 deg(π̃).

If n = 0, then we find deg(π̃) = 1 and g(D) = 0. If n > 0, then π̃ is not
unramified, so deg(π̃) = 2 and we obtain g(D) = 1

2n− 1.

Corollary 1.2.27. Let C ⊂ P2 be a geometrically integral projective
curve with g(C) = 0 that is not equal to the branch locus B. Let C̃ de-
note its normalisation and set n = #b(C̃, B). The following statements
hold.

1. If n = 0, then there exists a field extension ` of k of degree at
most 2 such that the preimage π−1(C`) consists of two irreducible
components that are birationally equivalent with C`.

2. If n > 0, then the preimage π−1(C) is geometrically integral and
has geometric genus 1

2n− 1.
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Proof. Let A = π∗(C) the pullback of the curve C on the surface X.
Since C is geometrically integral and C 6= B, the curve A is geometri-
cally reduced. The morphism A → C induced by π has degree 2, and
so A = A ×k k consists of at most two components. Then there is an
extension ` of k of degree at most 2 such that the components of A` are
geometrically irreducible. Let ` be such an extension and let D be an
irreducible component of A`.

Suppose n = 0. Applying Proposition 1.2.26 to D` and C` = π(D`)
shows that the morphism D` → C` induced by π is a birational map.
Since D` → C` has degree 2, there is a unique second component of A`,
which equals ι(D`). This proves the first statement.

Suppose n > 0. By Proposition 1.2.26, the morphism Dk → Ck
induced by π has degree 2, so Dk is the only component of Ak and
therefore A is geometrically integral. Its genus follows from Proposi-
tion 1.2.26.

Remark 1.2.28. In Corollary 1.2.27 the hypotheses do not involve only
the curve C, but also its normalisation C̃. In particular, in (1) we
assume that #b(C̃, B) = 0. Even though the cardinalities of b(C̃, B)
and b(C,B) are not always the same, in some cases the equality holds:
for example, if C is smooth, then C ∼= C̃, and so #b(C̃, B) = #b(C,B);
if C is singular, but all the singularities lie outside C∩B, then again the
equality holds. For more details about the relation between #b(C̃, B)
and #b(C,B), see Propositions 1.2.29 and 1.2.31.

In the previous results, we described the preimage π−1(C) ⊂ X of a
curve C ⊂ P2, by looking at the intersection points of the branch locus
B with the normalisation C̃ of C. It is possible to give an analogous
description of π−1(C) by looking at the intersection points of B and
C itself, if we assume that all singular points of C that lie on B are
ordinary singular points.

The following proposition describes the integer n used in Proposi-
tion 1.2.26 in terms of C directly.

Proposition 1.2.29. Let C,C ′ ⊂ P2 be two projective plane curves with
no components in common. Let C̃ be the normalisation of C. Assume
also that C ′ is smooth and that all singular points of C that lie on C ′

are ordinary singularities of C. For each point S ∈ C(k), let mS denote
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the multiplicity of S on C. Then we have

#b(C̃, C ′) =
∑

S∈C(k)∩C′(k)

cS(C,C ′)

with

cS(C,C ′) =

{
mS if mS ≡ µS(C,C ′) (mod 2),

mS − 1 if mS 6≡ µS(C,C ′) (mod 2).

Proof. Let ϑ : C̃ → C be the normalisation map. Then we may write
b(C̃, C ′) =

⋃
S bS(C̃, C ′) with

bS(C̃, C ′) = {T ∈ ϑ−1(S) : µT (C̃, C ′) is odd}

and where the disjoint union runs over all S ∈ C(k) ∩ C ′(k). Suppose
S ∈ C(k)∩C ′(k). Since C ′ is smooth and the point S is either smooth or
an ordinary singularity on C, at most one of the mS points T ∈ ϑ−1(S)
satisfies µT (C̃, C ′) > 1. Hence, there is a point T0 ∈ ϑ−1(S) such
that for all T ∈ ϑ−1(S) with T 6= T0 we have µT (C̃, C ′) = 1 and thus
T ∈ bS(C̃, C ′). Since we are working over an algebraically closed field,
Lemma 1.2.24 yields µS(C,C ′) = µT0(C̃, C ′) +mS − 1. Hence, we have
T0 ∈ bS(C̃, C ′) if and only if mS and µS(C,C ′) have the same parity. It
follows that #bS(C̃, C ′) = cS(C,C ′). The proposition follows.

We will continue to use the notation cS(C,C ′) of Proposition 1.2.29,
which we call the contribution of S with respect to C ′. We set cS(C,C ′)
equal to 0 for S ∈ C(k) with S 6∈ C ′.
Remark 1.2.30. Let C ⊂ P2 be a geometrically integral projective curve.
The points of contribution 0 with respect to C ′ are the points of C(k)
that are not on C ′, together with the smooth points S ∈ C(k) for which
µS(C,C ′) is even. The points of contribution 1 are the smooth and
double points S of C(k) with S ∈ C ′ for which µS(C,C ′) is odd. The
points of type m > 1 are the ordinary singular points S of C(k) of
multiplicity m or m+ 1 with S ∈ C ′ for which µS(C,C ′) ≡ m (mod 2).

Proposition 1.2.31. Let C and C ′ be two geometrically integral pro-
jective curves in P2. Let C̃ denote the normalisation of C and let
Cs ⊂ C(k) denote the set of singular points of C. Assume that C ′

is smooth and that all singular points of C that lie on C ′ are ordinary.
Then the following statements hold.
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1. The set b(C̃, C ′) is empty if and only if the sets b(C,C ′) and Cs∩C ′
are.

2. We have #b(C̃, C ′) = 2 if and only if either

(a) b(C,C ′) = ∅ and there exists a point S ∈ C(k) such that
mS ∈ {2, 3} and Cs ∩ C ′ = {S}, or

(b) there exist two points of C, say S1, S2 ∈ C(k), with S1 6= S2,
such that b(C,C ′) = {S1, S2} and mS1 ,mS2 ∈ {1, 2} and
Cs ∩ C ′ ⊂ {S1, S2}.

Proof. Given that the contributions cS(C,C ′) are nonnegative, this fol-
lows easily from Proposition 1.2.29 and Remark 1.2.30.

1.2.4 K3 surfaces

In this subsection we briefly introduce the notion of K3 surface, giv-
ing the definition, some basic properties and some results that will
be needed in the following of the thesis. For an extensive study of
the topic, see [Huy15]; for more details about K3 surfaces over C,
see [BHPVdV04].

Let k be any field. A K3 surface over k is a smooth, projective,
geometrically irreducible surface X with canonical divisor KX ∼lin 0
and H1(X,OX) = 0. A complex K3 surface is a K3 surface defined over
k = C.

Let X be a K3 surface over a field k. For p, q ∈ {0, 1, 2}, we define
the (p, q)-Hodge number as

hp,q := dimHq(X,Ωp
X),

where Ωq
X =

∧q ΩX is the sheaf of regular q-forms on X.

Remark 1.2.32. Let X be a complex K3 surface. Then one can consider
the Hodge structure on H i(X,C) =

⊕
p+q=iH

p,q(X), where Hp,q(X)
denotes the group Hp(X,Ωq

X).
For an introduction to Hodge theory on complex surfaces, we refer

to [BHPVdV04, Section IV.2]; for an extensive study of Hodge theory
on complex manifolds (and not only), see [Voi07].

We present now some basic results about K3 surfaces over any field
k first, and then for complex K3 surfaces in particular.
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Proposition 1.2.33. Let X be a K3 over a field k. The the following
statements hold.

1. Linear, algebraic and numeric equivalences are all equivalent, that
is, PicX ∼= NSX ∼= NumX.

2. The Hodge diamond of X is the following.

1
0 0

1 20 1
0 0

1

3. The Picard number of X is at most 22, that is,

ρ(X) ≤ 22.

4. The arithmetic genus pa of X is

pa(X) = 1.

Proof. 1. [Huy15, Proposition 1.2.4].

2. [Huy15, Subsection 1.2.4].

3. [Huy15, Remark 1.3.7].

4. By definition pa = dimH2(X,OX)− dimH1(X,OX). Since X is
a K3 surface, H1(X,OX) = 0 and OX ∼= ωX = Ω2

X , and so it
follows that dimH1(X,OX) = 0 and

dimH2(X,OX) = dimH2(X,Ω2
X) = h2,2 = 1,

using point (2). Then pa = 1 − 0 = 1. See also [Har77, Exercise
III.5.3] and [Huy15, Subsection 1.2.3].

From Proposition 1.2.33.(1) it follows that PicX, endowed with the
pairing induced by the intersection pairing of X, is a lattice of rank
ρ(X) (cf. Remark 1.2.15), called the Picard lattice of X.
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Proposition 1.2.34. The lattice PicX is an even lattice of signature
(1, ρ(X)− 1).

Proof. The parity of PicX follows from the adjunction formula for sur-
faces (see [Har77, Proposition V.1.5]), recalling that X is a K3 surface
and so K = 0.

The signature immediately follows from the Hodge index theorem
(cf. [Har77, Theorem V.1.9]).

Lemma 1.2.35. Let X be a K3 surface over a field k, and let D ∈ DivX
be such that D2 = −2. Then either D or −D is linearly equivalent to
an effective divisor.

Proof. Let L(D) be the sheaf associated to the divisor D, and set
hi(D) = dimH i(X,L(D)). By the Riemann–Roch formula we have

h0(D)− h1(D) + h2(D) =
1

2
D · (D −K) + 1 + pa,

(cf. [Har77, Theorem V.1.6]). By Serre duality (cf. [Har77, Theorem
III.7.7]), h2(D) = h0(K −D). Since X is a K3 surface, K = 0 (by defi-
nition) and pa = 1 (cf. Proposition 1.2.33); since, by initial assumption,
D2 = −2, we have

h0(D)− h1(D) + h0(−D) = 1.

Since the terms on the left-hand side of the equation are all non-negative
integers,

h0(D) + h0(−D) ≥ 1.

It follows that h0(D) ≥ 1 or h0(−D) ≥ 1, that is, D or −D is linearly
equivalent to an effective divisor, respectively.

If X is a K3 surface over k = C, then we have some more results.

Proposition 1.2.36. Let X be a complex K3 surface. Then the fol-
lowing statements hold.

1. The cohomology group H2(X,Z), endowed with the cup product,
is a lattice isomorphic to the lattice ΛK3 (cf. Remark 1.1.30).

35



Chapter 1. Background

2. There is a primitive embedding of lattices PicX ↪→ H2(X,Z).
The image of the embedding is H2(X,Z) ∩H1,1(X).

3. ρ(X) ≤ 20.

4. Let X ′ be another complex K3 surface, and assume there is a
dominant rational map X ′ 99K X. Then ρ(X) = ρ(X ′).

Proof. 1. [BHPVdV04, Proposition VIII.3.3.(ii)].

2. It follows from Lefschetz (1, 1) Theorem (cf. [BHPVdV04, Theo-
rem IV.2.13]).

3. It directly follows from point (2) of this proposition, Remark 1.2.32,
and Proposition 1.2.33.(2).

4. [Sch13, Proposition 10.2].

Remark 1.2.37. If X is a K3 surface over C, Proposition 1.2.36.(2) tells
us that there is a primitive embedding of lattices PicX ↪→ H2(X,Z). If
we consider the étale cohomology instead of the singular one, a similar
statement holds also for K3 surfaces defined over finite fields, as follows.

Let X be a K3 surface over a finite field k of characteristic p. Let
` be a prime different from p and define the étale cohomology groups
H i

ét(X,Z`) and the Tate twist H i
ét(X,Z`(1)) as in [Mil80].

It turns out that H i
ét(X,Z`(1)) is a Z`-module of rank 1, 0, 22, 0, 1

for i = 0, 1, 2, 3, 4 (cf. [Băd01, Section 8.4 and Theorem 10.3]). In
particular, H2

ét(X,Z`(1)) has rank 22, it is endowed with a perfect pair-
ing with values in Z`, and there is a primitive embedding of lattices
PicX ⊗ Z` ↪→ H2

ét(X,Z`(1)), respecting the given pairings (see [Mil80,
Remark V.3.29.(d)]).

Remark 1.2.38. The lattice isomorphism H2(X,Z) ∼= ΛK3 in Proposi-
tion 1.2.36.(1) is not unique, nor canonical. Fixing such an isomorphism
φ is called a marking of X. The pair (X,φ) is called a marked K3 sur-
face.

Remark 1.2.39. Let X be a K3 surface over a field k. If ρ(X) = 22,
then X is said to be supersingular.

If k ↪→ C and ρ(X) = 20, then X is said to be singular.
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Remark 1.2.40. If X is a complex K3 surface, then we define the tran-
scendental lattice of X, denoted by T = T (X), to be the orthogonal
complement of the image of PicX inside H2(X,Z). Note that from
Proposition 1.2.36.(2) one has H2,0(X)⊕H0,2(X) ⊆ T (X)⊗ C.

In what follows, if X is a complex K3 surface, we will identify PicX
with its image inside H2(X,Z).

After giving some basic definitions, we state the Global Torelli The-
orem for K3 surfaces, and we show how it can be used to obtain some
information about the automorphism group of a complex K3 surface.

Let X and Y be two complex K3 surfaces. A lattice homomorphism
φ between H2(Y,Z) and H2(X,Z) is called a Hodge isometry if it pre-
serves the lattice pairing and its C-linear extension φC preserves the
Hodge structure, that is, φC(Hp,q(Y )) = Hp,q(X).

A Hodge isometry is called effective if it sends ample classes to ample
classes.

Proposition 1.2.41. Let f : X → Y be an isomorphism between two
K3 surfaces. The isomorphism f induces, by pull-back, a lattice ho-
momorphism f∗ : H2(Y,Z) → H2(X,Z). The homomorphism f∗ is an
effective Hodge isometry.

Proof. Let f∗ : H2(Y,Z)→ H2(X,Z) be the homomorphism induced by
f , by pull-back. Since f is an isomorphism, f∗ is an isometry of lattices.
The pull-back of a holomorphic 2-form of Y is a holomorphic form of X,
hence the C-linear extension f∗C of f∗ sends H2,0(Y ) to H2,0(X); since

H0,2(Y ) = H2,0(Y ), we also have that f∗C sends H0,2(Y ) to H0,2(X);
hence f∗C sends H2,0(Y )⊕H0,2(Y ) to H2,0(X)⊕H0,2(X) and therefore
also H1,1(Y ) to H1,1(X). Thus, f∗ is an Hodge isometry.

To show that f∗ is also effective, let D ∈ PicY be a very ample
class. Then D gives an embedding φD : Y → Pn, for some integer n,
determined by a basis (s0, ..., sn) of H0(Y,D). If f is an isomorphism,
then the composition f◦φD is an embedding of X, given by the elements
f ◦si = f∗si ∈ H0(X, f∗D). Thus, also f∗D is a very ample class. Using
the linearity of f∗, it follows that f∗ sends ample divisor classes to ample
divisor classes, proving the statement.

The previous proposition states that every isomorphism X → Y of
complex K3 surfaces gives an effective Hodge isometry from H2(Y,Z)
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to H2(X,Z). The converse is also true, as shown by the following
theorem.

Theorem 1.2.42 (Torelli theorem for K3 surfaces). Let X,Y be two
complex K3 surfaces and let φ : H2(Y,Z) → H2(X,Z) be an effective
Hodge isometry. Then there is a (unique) isomorphism f : X → Y such
that φ = f∗.

Proof. It follows from [BHPVdV04, Theorem VIII.11.1] and [BHPVdV04,
Corollary VIII.11.4].

Let X be a K3 surface and let f be an automorphism of X. Then
f induces, by pull-back, an isometry, say φ, of PicX. Define the map
(·)∗Pic : Aut(X) → O(PicX) by sending any f to the corresponding φ.
In general, (·)∗Pic does not need to be injective, but we will show that in
some cases it is so (cf. Proposition 1.2.47).

Remark 1.2.43. We have seen that every automorphism f of X induces
an effective Hodge isometry f∗ of H2(X,Z) (cf. Proposition 1.2.41).
Let OH(H2(X,Z)) denote the subgroup of effective Hodge isometries
of H2(X,Z), and let us identify PicX with its image inside H2(X,Z).
Then, by Proposition 1.2.36.(2), PicX = H1,1(X) ∩H2(X,Z), and so
an effective Hodge isometry sends the Picard lattice to itself. Then, we
can define the restriction map

|Pic : OH(H2(X,Z))→ O(PicX)

sending an effective Hodge isometry of H2(X,Z) to the isometry it
induces on PicX. Note that if f is an automorphism of X, then the
isometry of PicX it induces equals the map (f∗)|Pic. In other words,
the following diagram is commutative.

Aut(X)
(·)∗Pic //

(·)∗

''

O(PicX)

OH(H2(X,Z))

|Pic

77

Thanks to Theorem 1.2.42, we know that the automorphisms of
X are in a 1-to-1 correspondence with the effective Hodge isometries
of H2(X,Z).
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Let T (X) be the transcendental lattice of X. By Corollary 1.1.13,
there is an isomorphism % : Aut(AP )→ Aut(AT ) between the automor-
phism groups of the discriminant groupsAP = APic(X) andAT = AT (X),
making the following diagram commute.

Aut(X)

(·)∗
��

OH(H2(X,Z))
resT

''

resP=|Pic

ww
O(PicX)

ρP
��

O(T (X))

ρT
��

Aut(AP ) %P
// Aut(AT )

Proposition 1.2.44. The group OH(H2(X,Z)) is isomorphic to a sub-
group of the group

{(β, γ) ∈ O(PicX)×O(T (X)) | %P (ρP (β)) = ρT (γ)}. (1.2)

Proof. Let OPic(H
2(X,Z)) be the subgroup of O(H2(X,Z)) given by all

the isometries sending PicX to itself. Then, by definition, OH(H2(X,Z))
is contained in OPic(H

2(X,Z)). Also, from Lemma 1.1.14, we have
that OPic(H

2(X,Z)) is isomorphic to the group (1.2). The statement
follows.

Corollary 1.2.45. The group Aut(X) embeds into the group (1.2) in
Proposition 1.2.44.

Proof. By the Torelli theorem for K3 surfaces (cf. Theorem 1.2.42),
the group Aut(X) is in 1-to-1 correspondence with OH(H2(X,Z)). By
Proposition 1.2.44, OH(H2(X,Z)) is isomorphic to a subgroup of the
group (1.2).

Proposition 1.2.46. Let X be a K3 surface with odd Picard number.
Then O(T (X)) = {± idT }.

Proof. See Corollary [Huy15, 3.3.5].

39



Chapter 1. Background

Proposition 1.2.47. Let X be a complex K3 surface, and assume that
its Picard lattice has odd rank and discriminant not a power of 2. Then
the map (·)∗Pic : Aut(X)→ O(PicX) is injective.

Proof. We have seen that the map (·)∗Pic equals the composition of
the pull-back (·)∗ : Aut(X) → OH(H2(X,Z)) and the restriction map
|Pic : OH(H2(X,Z))→ O(PicX) (cf. Remark 1.2.43). It follows that if
φ ∈ O(PicX) is an element in the image of Aut(X), then there is an
automorphism f of X such that φ = f∗|PicX . Now assume that there

is also another such automorphism, say f ′, such that φ = (f ′)∗PicX or,
equivalently, such that φ = f ′∗|PicX . By Proposition 1.2.44 we have that

the automorphisms f and f ′ respectively correspond to the elements
(φ, ρ) and (φ, ρ′) in O(PicX) × O(T (X)), with φ inducing the same
automorphism on AP = AT as ρ and ρ′ respectively.

By Proposition 1.2.46 we have that ρ, ρ′ ∈ {± idT (X)}. If ρ = ρ′,
then f and f ′ correspond to the same element in O(PicX)×O(T (X))
and therefore they must be equal (cf. Corollary 1.2.45). Then assume,
without any loss of generality, that ρ = idT and ρ′ = −idT . It follows
that ρ induces the identity on AP and ρ′ the multiplication by −1,
and they both must be equal to the morphism induced by φ. The
identity and the multiplication by −1 can be the same map only if AP
is isomorphic to a power of the group Z/2Z. Since the cardinality of
the discriminant group of a lattice equals the determinant of the lattice,
and by the initial hypothesis the determinant of PicX is not a power
of 2, then AP cannot be isomorphic to a power of Z/2Z and therefore ρ
and ρ′ do not induce the same automorphism of AP . This way we get a
contradiction, coming from the assumption that ρ 6= ρ′. Hence, ρ = ρ′

and this concludes the argument.

After talking about automorphism of K3 surfaces in general, we
introduce the notion of symplectic automorphisms. Let X be a K3
surface and let f be an automorphism of X. We say that f is symplectic
if the induced action on H0(X,Ω2) = H2,0(X) is the identity. The
symplectic automorphisms of X form a subgroup of Aut(X), denoted
by

Auts(X) ⊂ Aut(X).
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Lemma 1.2.48. Let X be a K3 surface and let f be an automorphism
of X. Then f is symplectic if and only if f∗ acts as the identity on
T (X).

Proof. See [Huy15, Remark 15.1.2].

Proposition 1.2.49. Let X be a complex K3 surface. Let f be a sym-
plectic automorphism of X, and assume f has finite order n. Then f
fixes a finite number of points of X. In particular, if # Fix(f) denotes
the number of points fixed by f , we have that only the following tuples
(n,# Fix(f)) can and do occur.

n 2 3 4 5 6 7 8

# Fix(f) 8 6 4 4 2 3 2

ρ(X) ≥ 9 13 15 17 17 19 19

The table has been completed by a lower bound for ρ(X) coming from
the existence of a symplectic automorphism of order n.

Proof. See [Huy15, Section 15.1.2].

We conclude the section by giving some results about families of K3
surfaces.

Theorem 1.2.50. The family of marked complex K3 surfaces with Pi-
card number at least ρ is parametrised by the union of countably many
complex manifolds of dimension 20− ρ.

Proof. It follows from [Dol96, Corollary 3.2].

Lemma 1.2.51. Let X→ A1
k be a flat proper morphism over a field k,

such that its fibers are K3 surfaces. Assume the characteristic of k to be
0. Let η and t be the generic point and a closed point of A1, respectively,
and let Xη and Xt denote the fibers above η and t respectively. Then
the specialization map

spt : PicXη → PicXt

preserves the intersection pairing, is injective and has torsion-free cok-
ernel.

The same holds also if we base-extend Xη and Xt to an algebraic
closure of their field of definition.
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Proof. It follows from [MP12, Proposition 3.6]. See also [Huy15, Propo-
sition 17.2.10].

Lemma 1.2.52. Let k be a number field and let Ok be its ring of in-
tegers. Let X be a K3 surface over k, and let X → Spec(Ok) be an
integral model of X. Let p be a prime of good reduction for X, that is,
the fiber Xp is a K3 surface. Then the reduction map

spp : PicX → PicXp

preserves the intersection pairing, is injective and has torsion-free cok-
ernel.

The same holds also if we base-extend X and Xp to an algebraic
closure of their field of definition.

Proof. Just note that if η is the generic point of Spec(Ok), and Xη
denotes the fiber of X above η, then Xη ∼= X. The result then follows
from [MP12, Proposition 3.6]. See also [EJ11, Theorem 3.4] and [Huy15,
Remark 17.2.11].

1.2.5 Del Pezzo surfaces

In this section we introduce the notion of del Pezzo surface and some
basic results about these surfaces, focusing on del Pezzo surfaces of
degree 1 and 2. For a general introduction to del Pezzo surfaces we
refer to [Man86, Sections IV.24-26] and [Kol96, Section III.3]; another
standard reference is also [Dem80].

Let X be a smooth, projective, geometrically irreducible surface over
a field k. We say thatX is a del Pezzo surface if its anti-canonical divisor
−KX is ample. We define the degree of X to be the self intersection
K2
X of its (anti-)canonical divisor.

From now until the end of the subsection, let X denote a del Pezzo
surface over k, and let d denote the the degree of X.

Lemma 1.2.53. Keeping the notation introduced before, one has the
following inequality: 1 ≤ d ≤ 9.

Proof. [Man86, Theorem IV.24.3.(i)].
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Remark 1.2.54. A set of closed points on the plane is said to be in
general position if no three points lie on a line; no six points lie on a
conic; no eight points lie on a singular cubic, with one of the points at
the singularity.

Theorem 1.2.55. Keeping the notation as before, the following state-
ments hold, under the assumption that k is algebraically closed.

1. If d = 9, then X is isomorphic to P2.

2. If d = 8, then X is isomorphic to either P1×P1 or to the blow-up
of P2 at one point.

3. If 7 ≥ d ≥ 1, then X is isomorphic to the blow-up of P2 at 9− d
points in general position.

If d ≥ 3, then the converse of the above statements is also true, that
is, the blow up of P2 at 9 − d points in general position is a del Pezzo
surface of degree d.

Proof. [Man86, Theorem IV.24.4].

Remark 1.2.56. For d ∈ {1, 2} stricter conditions on the points are re-
quired in order for the converse of Theorem 1.2.55.(3) to hold. See [Man86,
Theorem IV.26.2].

Corollary 1.2.57. Let X be a del Pezzo surface over an algebraically
closed field k. Then X is birational to P2

k.

Proof. Trivial using Theorem 1.2.55.

Corollary 1.2.58. Let X be a del Pezzo surface over k, assume that
X is not birational to P1 × P1 and that k is algebraically closed. Set
r := 9− d. Then PicX, endowed with the intersection pairing of X, is
a lattice of rank r + 1, admitting a basis (E0, E1, ..., Er) such that

• E2
0 = 1;

• E2
i = −1, for i = 1, ..., r;

• Ei · Ej = 0, for every i 6= j.

Proof. [Man86, Proposition IV.25.1].
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Proposition 1.2.59. Let X be a del Pezzo surface of degree d over k.
If d = 1, then X is isomorphic to a hypersurface of degree 6 inside

Pk(1, 1, 2, 3). Conversely, any smooth hypersurface of degree 6 inside
Pk(1, 1, 2, 3) is a del Pezzo surface of degree 1.

If d = 2 then X is isomorphic to a hypersurface of degree 4 inside
Pk(1, 1, 1, 2). Conversely, any smooth hypersurface of degree 4 inside
Pk(1, 1, 1, 2) is a del Pezzo surface of degree 2.

Proof. See [Kol96, Theorem III.3.5].
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Unirationality of del Pezzo
surfaces of degree 2

In this section we will present some results about unirationality of del
Pezzo surfaces of degree 2. In particular, we will show that all del Pezzo
surfaces of degree 2 over a finite field are unirational. All the material
presented in this chapter is part of joint work with Ronald van Luijk,
and it can be found in [FvL15]; many of these results have already been
published in [FvL16].

2.1 The main results

In Chapter 1 we have already seen that every del Pezzo surface, and so
in particular every del Pezzo surface of degree 2, over an algebraically
closed field is birational to the projective plane.

The same statement does not need to hold if the field is not alge-
braically closed, and so we look at weaker notions. Let k be any field
and let X be a variety of dimension n over k. We say that X is unira-
tional if there exists a dominant rational map Pn 99K X, defined over
k.

Work of B. Segre, Yu. Manin, A. Knecht, J. Kollár, and M. Pieropan
prove that every del Pezzo surface of degree d ≥ 3 defined over k is
unirational, provided that the set X(k) of rational points is non-empty.
For references, see [Seg43, Seg51] for k = Q and d = 3, see [Man86,
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Theorem 29.4 and 30.1] for d ≥ 3 with the assumption that k is large
enough for d ∈ {3, 4}. See [Kol02, Theorem 1.1] for d = 3 in general.
See [Pie12, Proposition 5.19] and, independently, [Kne15, Theorem 2.1]
for d = 4 in general. Since all del Pezzo surfaces over finite fields have
a rational point (see [Man86, Corollary 27.1.1]), this implies that every
del Pezzo surface of degree at least 3 over a finite field is unirational.

Building on work by Manin (see [Man86, Theorem 29.4]), C. Sal-
gado, D. Testa, and A. Várilly-Alvarado prove that all del Pezzo surfaces
of degree 2 over a finite field are unirational as well, except possibly for
three isomorphism classes of surfaces (see [STVA14, Theorem 1]). In
this chapter, we show that these remaining three cases are also unira-
tional, thus proving our first main theorem.

Theorem 2.1.1. Every del Pezzo surface of degree 2 over a finite field
is unirational.

More generally, we give some sufficient conditions for a del Pezzo
surface of degree 2 to be unirational.

Theorem 2.1.2. Suppose k is a field of characteristic not equal to 2,
and let k be an algebraic closure of k. Let X be a del Pezzo surface of
degree 2 over k. Let B ⊂ P2 be the branch locus of the anti-canonical
morphism π : X → P2. Let C ⊂ P2 be a projective curve that is bira-
tionally equivalent to P1 over k. Assume that all singular points of C
that are contained in B are ordinary singular points. Then the following
statements hold.

1. Suppose that there is a point P ∈ X(k) such that π(P ) ∈ C − B.
Suppose that B contains no singular points of C and that all in-
tersection points of B and C have even intersection multiplicity.
Then the surface X is unirational.

2. Suppose that one of the following two conditions hold.

(a) There is a point Q ∈ C(k) ∩ B(k) that is a double or a
triple point of C. The curve B contains no other singular
points of C, and all intersection points of B and C have
even intersection multiplicity.
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(b) There exist two distinct points Q1, Q2 ∈ C(k) ∩ B(k) such
that B and C intersect with odd multiplicity at Q1 and Q2

and with even intersection multiplicity at all other intersec-
tion points. Furthermore, the points Q1 and Q2 are smooth
points or double points on the curve C, and B contains no
other singular points of C.

Then there exists a field extension ` of k of degree at most 2 for
which the preimage π−1(C`) is birationally equivalent with P1

` ; for
each such field `, the surface X` is unirational.

Corollary 2.1.3. Suppose k is a field of characteristic not equal to 2.
Let X be a del Pezzo surface of degree 2 over k. Assume that X has a k-
rational point, say P . Let C ⊂ P2 be a geometrically integral curve over
k of degree d ≥ 2 and suppose that π(P ) is a point of multiplicity d− 1
on C. Suppose, moreover, that C intersects the branch locus B of the
anti-canonical morphism π : X → P2 with even multiplicity everywhere.
Then the following statements hold.

1. If π(P ) is not contained in B, then X is unirational.

2. If π(P ) is contained in B, it is an ordinary singular point on C
and we have d ∈ {3, 4}, then there exists a field extension ` of k
of degree at most 2 for which the preimage π−1(C`) is birationally
equivalent with P1

` ; for each such field `, the surface X` is unira-
tional.

In the next section, we will present the three difficult surfaces and
prove Theorem 2.1.1. The main tool is Lemma 2.2.2, which states that
it suffices to construct a rational curve on each of the three del Pezzo
surfaces.

Recall that if X is a del Pezzo surface of degree 2, then X admits
56 exceptional curves (cf. [Man86, Theorem IV.26.2]). A point on X is
called a generalised Eckardt point if it lies on four of the 56 exceptional
curves.

If a point P on a del Pezzo is not a generalised Eckardt point,
and it does not lie on the ramification locus of the anti-canonical mor-
phism, then Manin’s construction, extended by C. Salgado, D. Testa,
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and A. Várilly-Alvarado, yields a rational curve that satisfies the as-
sumptions of case (1) of Corollary 2.1.3 with the degree d being such
that there are 4− d exceptional curves through P (cf. Example 2.3.7).

The three difficult surfaces do not contain such a point. The proofs
of unirationality of these three cases use a rational curve that is an
example of case (2) of Corollary 2.1.3 instead (cf. Remark 2.2.4 and
Example 2.3.9). Here we benefit from the fact that if k is a finite field,
then any curve that becomes birationally equivalent with P1 over an
extension of k, already is birationally equivalent with P1 over k itself.
For two of the three cases, the rational curve we use has degree 4. For
the last case, the curve we use has degree 3, but there also exist quartic
curves satisfying the hypotheses of case (2) of Corollary 2.1.3. This
raises the following question (cf. Question 2.4.6, Remark 2.4.8, and
Example 2.4.9), which together with case (2) of Corollary 2.1.3 could
help proving unirationality of del Pezzo surfaces of degree 2 over any
field of characteristic not equal to 2.

Question 2.1.4. Let d ∈ {3, 4} be an integer. Let X be a del Pezzo
surface of degree two over a field of characteristic not equal to 2, and let
P ∈ X(k) be a point on the ramification locus of the anti-canonical map
π : X → P2. Does there exist a geometrically integral curve of degree d
in P2 over k that has an ordinary singular point of multiplicity d− 1 at
π(P ), and that intersects the branch locus of π with even multiplicity
everywhere?

For some d, X, and P , the answer to this question is negative (see
Example 2.4.9), but in all cases we know of (all over finite fields), there
do exist singular curves of degree d with a point of multiplicity at least
d− 1 at π(P ). Hence, it may be true that the answer to Question 2.1.4
is positive for X and P general enough.

In line with case (1) of Corollary 2.1.3, we can ask, in fact for any
integer d ≥ 1, an analogous question for points P that do not lie on
the ramification locus, where we do not require the singular point to be
ordinary. In this case, if P lies on r ≤ 3 exceptional curves, then Manin’s
construction shows that the answer is positive for degree d = 4 − r.
Therefore, this analogous question is especially interesting when P lies
on four exceptional curves (cf. Remark 2.3.5 and Example 2.3.8).

In Section 2.3 we prove Theorem 2.1.2 and a generalisation, Corol-
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lary 2.1.3. In Section 2.4 we discuss how to search for curves satisfying
the assumptions of Theorem 2.1.2 and in particular of Corollary 2.1.3.

2.2 Proof of the first main theorem

Set k1 = k2 = F3 and k3 = F9. Let γ ∈ k3 denote an element satisfying
γ2 = γ+1. Note that γ is not a square in k3. For i ∈ {1, 2, 3}, we define
the surface Xi in P = P(1, 1, 1, 2) with coordinates x, y, z, w over ki by

X1 : − w2 = (x2 + y2)2 + y3z − yz3,

X2 : − w2 = x4 + y3z − yz3,

X3 : γw2 = x4 + y4 + z4.

These surfaces are smooth, so they are del Pezzo surfaces of degree 2. C.
Salgado, D. Testa, and A. Várilly-Alvarado proved the following result.

Theorem 2.2.1. Let X be a del Pezzo surface of degree 2 over a finite
field. If X is not isomorphic to X1, X2, or X3, then X is unirational.

Proof. See [STVA14, Theorem 1].

We will use the following lemma to prove the complementary state-
ment, namely that X1, X2, and X3 are unirational as well.

Lemma 2.2.2. Let X be a del Pezzo surface of degree 2 over a field k.
Suppose that ρ : P1 → X is a non-constant morphism; if the character-
istic of k is 2 and the image of ρ is contained in the ramification divisor
RX , then assume also that the field k is perfect. Then X is unirational.

Proof. See [STVA14, Theorem 17].

For i ∈ {1, 2, 3}, we define a morphism ρi : P1 → Xi by extending
the map A1(t)→ Xi given by

t 7→ (xi(t) : yi(t) : zi(t) : wi(t)),

where
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x1(t) = t2(t2 − 1),

y1(t) = t2(t2 − 1)2,

z1(t) = t8 − t2 + 1,

w1(t) = t(t2 − 1)(t4 + 1)(t8 + 1),

x2(t) = t(t2 + 1)(t4 − 1),

y2(t) = −t4,
z2(t) = t8 + 1,

w2(t) = t2(t2 + 1)(t10 − 1),

x3(t) = (t4 + 1)(t2 − γ3),

y3(t) = (t4 − 1)(t2 + γ3),

z3(t) = (t4 + γ2)(t2 − γ),

w3(t) = γ2t(t8 − 1)(t2 + γ).

It is easy to check for each i that the morphism ρi is well defined,
that is, the polynomials xi, yi, zi, and wi satisfy the equation of Xi,
and that ρi is non-constant. The methods used to find these curves are
exposed in Section 2.4.

Theorem 2.2.3. The del Pezzo surfaces X1, X2, and X3 are unira-
tional.

Proof. By Lemma 2.2.2, the existence of ρ1, ρ2, and ρ3 implies that
X1, X2, and X3 are unirational.

Proof of Theorem 2.1.1. This follows from Theorems 2.2.1 and 2.2.3.

Remark 2.2.4. Take any i ∈ {1, 2, 3}. Set Ai = ρi(P1) and Ci = πi(Ai),
where πi = πXi : Xi → P2 is as described in the previous section. By
Remark 2 of [STVA14], the surface Xi is minimal, and the Picard group
PicXi is generated by the class of the anti-canonical divisor −KXi . The
same remark states that the linear system | − nKXi | does not contain
a geometrically integral curve of geometric genus zero for n ≤ 3 if
i ∈ {1, 2}, nor for n ≤ 2 if i = 3. For i ∈ {1, 2}, the curve Ai has
degree 8, so it is contained in the linear system | − 4KXi |. The curve
A3 has degree 6, so it is contained in the linear system | − 3KXi |. This
means that the curve Ci has minimal degree among all rational curves
on Xi. The restriction of πi to Ai is a double cover Ai → Ci. The curve
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Ci ⊂ P2 has degree 4 for i ∈ {1, 2} and degree 3 for i = 3, and Ci is
given by the vanishing of hi, with

h1 =x4 + xy3 + y4 − x2yz − xy2z,

h2 =x4 − x2y2 − y4 + x2yz + yz3,

h3 =x2y + xy2 + x2z − xyz + y2z − xz2 − yz2 − z3.

For i ∈ {1, 2}, the curve Ci has an ordinary triple point Qi, with
Q1 = (0 : 0 : 1), Q2 = (0 : 1 : 1). The curve C3 has an ordinary
double point at Q3 = (1 : 1 : 1). For all i, the point Qi lies on the
branch locus Bi = BXi .

We will see later that the curve Ci intersects the branch locus Bi
with even multiplicity everywhere. Of course, one could check this
directly as well using the polynomial hi. In fact, had we defined Ci
by the vanishing of hi, then one would easily check that Ci satisfies
the conditions of part (2) of Corollary 2.1.3, which gives an alternative
proof unirationality of Xi without the need of the explicit morphism ρi
(see Example 2.3.9). Indeed, in practice we first found the curves C1,
C2, and C3, and then constructed the parametrisations ρ1, ρ2, ρ3, which
allow for the more direct proof that we gave of Theorem 2.2.3.

2.3 Proof of the second main theorem

Let k be a field of characteristic different from 2 and recall the notation
introduced in Section 1.2.3. In what follows X denotes a del Pezzo
surface of degree 2 over k, the map π : X → P2 is its associated double
covering map, with branch locus B ⊂ P2 and ramification locus R ⊆ X.
The map ι : X → X is the involution of X induced by the double
covering map π. Let P be a point inside X(k).

Combining Lemma 2.2.2 and Corollary 1.2.27 it is possible to relate
the existence of some particular plane curves with the unirationality of
a del Pezzo surface of degree 2.

Proposition 2.3.1. Let C ⊂ P2 be a geometrically integral projec-
tive curve with g(C) = 0. Let C̃ denote its normalisation and set
n = #b(C̃, B). The following statements hold.
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1. If n = 0, then there exists a field extension ` of k of degree at
most 2 such that the preimage π−1(C`) consists of two irreducible
components that are birationally equivalent to C`. For each such `
for which C` is rational, the surface X` is unirational.

2. If n = 0 and C is rational and there exists a rational point
P ∈ X(k) with π(P ) ∈ C − B, then the preimage π−1(C) con-
sists of two rational components and X is unirational.

3. If n = 2 and the preimage π−1(C) is rational, then the surface X
is unirational.

Proof. First note that since B is a smooth quartic, it has genus 3,
then by the initial hypothesis g(C) = 0 it follows that C 6= B. Let
A = π∗(C) the pull back of the curve C on the surface X. Since C is
geometrically integral and C 6= B, the curve A is geometrically reduced.
The morphism A → C induced by π has degree 2, and so A = A ×k k
consists of at most two components. Then there is an extension ` of k
of degree at most 2 such that the components of A` are geometrically
irreducible. Let ` be such an extension and let D be an irreducible
component of A`.

Suppose n = 0. Then, from Corollary 1.2.27.(1), the preimage
π−1(C`) consists of two irreducible components that are birationally
equivalent to C`. If, moreover, C` is rational, then Lemma 2.2.2 implies
the unirationality of X`, proving statement (1).

Assume C is itself rational and there is a rational point P ∈ X(k)
such that π(P ) ∈ C − B. Then we have that P 6= ι(P ) and the points
P and ι(P ) lie in different components of A` = D` ∪ ι(D`). Since the
Galois group G = G(`/k) fixes the points P and ι(P ), it follows that G
also fixes D` and ι(D`), so these components are defined over k. Then
statement (2) follows from (1) taking ` = k.

Statement (3) follows immediately from Corollary 1.2.27.(2) and
Lemma 2.2.2.

Remark 2.3.2. Note that statement (1) of Proposition 2.3.1 is consistent
with [STVA14, Corollary 1.3], in which it is stated that if X is a del
Pezzo surface of degree 2 over a finite field k, then there is a quadratic
extension k′/k such that Xk′ is unirational.
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Remark 2.3.3. Let D be a geometrically integral curve over a field k
with g(D) = 0. Then there exists a field extension ` of k of degree at
most 2 such that D` is rational. In fact, if k is a finite field, then D
is rational over k. Therefore, if k is finite in Proposition 2.3.1, then C
is rational; moreover, by case (3) we conclude that if n = 2, then X is
unirational over k.

Remark 2.3.4. Propositions 1.2.26 and 2.3.1 imply that the geometri-
cally integral projective curves D ⊂ X with g(D) = 0 are exactly the
geometrically irreducible components above geometrically integral pro-
jective curves C ⊂ P2 with g(C) = 0 and #b(C̃, B) ∈ {0, 2}, where C̃
denotes the normalisation of C.

Remark 2.3.5. Suppose P ∈ X(k) is a rational point that does not lie
on the ramification curve, so π(P ) 6∈ B. Suppose C is a geometrically
integral curve of degree d that has a singular point of multiplicity d− 1
at π(P ), and that intersects B with even multiplicity everywhere. Then
Proposition 1.2.31 shows that b(C̃, B) is empty, so, by Corollary 1.2.27,
the pull back π∗(C) splits into two components.

If X is general enough, then the Picard group PicX of X is gen-
erated by the canonical divisor KX , and the automorphism group of
X acts trivially on PicX, so these two components would be linearly
equivalent to the same multiple of KX ; as their union is linearly equiv-
alent to −dKX , we find that d is even. Hence, for odd d, the answer to
the analogous question mentioned below Question 2.1.4 is negative for
X general enough.

It is possible, however, that, even for odd d, a variation of this
analogous question still has a positive answer. If we forget the del
Pezzo surface, and only consider the quartic curve B ⊂ P2 with a point
Q ∈ P2 that does not lie on B, we could ask for the existence of a curve
of degree d that intersects B with even multiplicity everywhere, and on
which Q is a point of multiplicity d − 1. The argument above merely
shows that if such a curve exists for odd d and Q lifts to a rational point
on the del Pezzo surface, then the surface does not have Picard number
one.

Proof of Theorem 2.1.2. Assume that the assumptions of statement (1)
hold. This implies that Cs ∩ B = ∅ and b(C,B) = ∅. Therefore, by
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Proposition 1.2.31, we have #b(C̃, B) = 0. Statement (1) follows from
applying part (2) of Proposition 2.3.1.

Assume statement (2a) holds. This means that Cs ∩B = {Q} and
b(C,B) = ∅. Since Q is a double or triple point of C, Proposition 1.2.31
implies that #b(C̃, B) = 2. The conclusion of statement (2) follows
from applying part (3) of Proposition 2.3.1 and Remark 2.3.3.

Assume statement (2b) holds. It means that b(C,B) = {Q1, Q2}
and Cs ∩ B ⊆ {Q1, Q2}. Since the points Q1 and Q2 are distinct,
Proposition 1.2.31 implies that #b(C̃, B) = 2. As before, the conclu-
sion of statement (2) follows from part (3) of Proposition 2.3.1 and
Remark 2.3.3. This concludes the proof of the theorem.

Proof of Corollary 2.1.3. Set Q = π(P ). Let LQ denote the line in
the dual of P2 consisting of all lines L ⊂ P2 going through Q, and
note that LQ is isomorphic to P1. Since C has degree d and π(P ) is
a point of multiplicity d − 1, each line in LQ intersects C in a unique
d-th point, counting with multiplicity. It follows that C is smooth at
all points T 6= Q. It also follows that the rational map C → LQ that
sends a point T ∈ C to the line through T and Q is birational, so C is
birationally equivalent with P1. By hypothesis, all intersection points
of B and C have even intersection multiplicity.

Assume that Q is not contained in B. Since C is smooth away from
Q, the curve B contains no singular points of C. Then X is unirational
by part (1) of Theorem 2.1.2. This proves part (1).

Assume that Q is contained in B, that Q is an ordinary singularity
of C, and d ∈ {3, 4}. Then Q is a double or a triple point of C. Since
Q is the only singularity of C, the curve B contains no other singular
points of C. Then X is unirational by part (2) of Theorem 2.1.2. This
proves part (2).

We now give some examples of curves that satisfy the conditions of
Theorem 2.1.2 or Corollary 2.1.3.

Example 2.3.6. If C is a bitangent to the branch curve B that is defined
over k, and C(k) contains a point Q 6∈ B that lifts to a k-rational point
on X, then Theorem 2.1.2 implies that X is unirational. We can also
prove this directly. Indeed, in this case the pull back π−1(C) consists
of two exceptional curves that are defined over k, so X is not minimal.
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Blowing down one of these exceptional curves yields a del Pezzo surface
Y of degree 3 with a rational point. This implies that Y , and therefore
also X, is unirational.

Example 2.3.7. Suppose the point P ∈ X(k) is not a generalised Eckardt
point and P is not on the ramification curve. Set Q = π(P ), let
ρ : LQ → X be as in [FvL15, Section 4, p.6], and set C = π(ρ(LQ)).
Then by [FvL15, Proposition 4.14], the map ρ(LQ) → C has degree
1, so by Propositions 1.2.26 and 1.2.31, the intersection multiplicity of
C and the branch curve B is even at all intersection points. Also by
[FvL15, Proposition 4.14], the curve C has a point Q off the branch
curve B of multiplicity degC−1, so the curves of Manin’s construction
are examples of the curves described in Corollary 2.1.3. For further
discussion on this see [FvL15, Remark 4.15].

Example 2.3.8. Consider the surface X ⊂ P(1, 1, 1, 2) over F3, defined
by the equation

w2 = x4 + y4 + z4.

The surface X is a del Pezzo surface of degree 2. All its rational points
either are on the ramification curve, or they are generalised Eckardt
points. In fact, the surface X has 154 rational points over F9, with 28
of those lying on the ramification locus. The remaining 126 are gener-
alised Eckardt points, which is also the maximum number of generalised
Eckardt points a del Pezzo surface of degree two can have (see [STVA14,
before Example 7]). It follows that Manin’s method does not apply to
this surface. Let P be the point (0 : 0 : 1 : 1) on X. Then P is a gener-
alised Eckardt point and its image Q = π(P ) = (0 : 0 : 1) ∈ P2 does not
lie on the branch locus B, which is given by x4 + y4 + z4 = 0. Consider
the curve C ⊂ P2 given by x3y + xy3 = z(x+ y)2(y − x). The curve C
is a geometrically integral quartic plane curve that has a triple point at
Q and that intersects B with even multiplicity everywhere. Therefore,
by case (1) of Corollary 2.1.3, the surface X is unirational.

Of course, unirationality of X was already known: it follows for
instance from Lemma 20 in [STVA14] (cf. Example 2.3.10 below). It
is nice to see, though, that, even though Manin’s construction and the
generalisation in [STVA14] do not produce a curve in P2 of some degree d
with a point of multiplicity d−1 at Q, and even intersection multiplicity
with B everywhere, such curves do still exist, and then case (1) of

55



Chapter 2. Unirationality of del Pezzo surfaces of degree 2

Corollary 2.1.3 implies unirationality of X. This gives a positive answer
to the question below Question 2.1.4 for d = 4 and this particular surface
X and this generalised Eckardt point P .

One might ask whether there are curves of lower degree satisfying
the hypotheses of case (1) of Corollary 2.1.3. Indeed, there are conics
that do, for example the one given by y2 = xz. An exhaustive com-
puter search, based on Proposition 2.3.1.(2), and Corollary 2.4.2, shows
that there are no cubic curves with a double point at Q satisfying the
hypotheses of Corollary 2.1.3 and its case (1).

Example 2.3.9. Let X1, X2, X3 be the three del Pezzo surfaces defined
as in Section 2.2 and let Bi be their branch locus, for i = 1, 2, 3. For
i = 1, 2, 3, all rational points of the surface Xi lie on the ramifica-
tion locus. Consider the rational points P1 = (0 : 0 : 1 : 0) ∈ X1,
P2 = (0 : 1 : 1 : 0) ∈ X2, and P3 = (1 : 1 : 1 : 0) ∈ X3, and set
Qi = π(Pi). Clearly, we have Qi ∈ Bi. Set d1 = d2 = 4 and d3 = 3. Let
Ci ⊂ P2 be the projective plane curve of degree di given by the poly-
nomial hi defined as in Remark 2.2.4. The curve Ci is geometrically
irreducible and it has an ordinary singular point at Qi of multiplicity
di − 1. Given that the curve Ci pulls back to the geometrically irre-
ducible rational curve Ai of Remark 2.2.4, we find from Corollary 1.2.27
and Proposition 1.2.31 that Ci intersects Bi with even multiplicity ev-
erywhere.

Of course, one could also check directly that Ci intersects Bi with
even multiplicity everywhere. Then Corollary 2.1.3 and Remark 2.3.3
give an alternative proof that the surface Xi is unirational (cf. Re-
mark 2.2.4). There is a quartic alternative for C3 as well. The curve
C ′3 ⊂ P2 given by the vanishing of

h′3 =γ2x4 + x3y + γx2y2 + γ3xy3 − y4 + x3z + γx2yz + xy2z

− γy3z + γx2z2 + xyz2 + γ3y2z2 + γ3xz3 − γyz3 − z4

is geometrically integral, has an ordinary triple point at (−1 : 1 : 1),
and intersects B with even multiplicity everywhere.

Example 2.3.10. Let k be a field with characteristic different from 2.
Let a1, . . . , a6 ∈ k be such that the variety X in the weighted projective
space P = P(1, 1, 1, 2) defined by

w2 = a2
1x

4 + a2
2y

4 + a2
3z

4 + a4x
2y2 + a5x

2z2 + a6y
2z2
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is a del Pezzo surface of degree 2. This is the surface of Lemma 20 in
[STVA14], where it is noted that the surface in P given by the equation
w = a1x

2 + a2y
2 + a3z

2 intersects the surface X in a curve D, which
the anti-canonical map π : X → P2 sends isomorphically to the plane
quartic curve C ⊂ P2 given by

(a4 − 2a1a2)x2y2 + (a5 − 2a1a3)x2z2 + (a6 − 2a2a3)y2z2 = 0.

They also note that this curve C is birationally equivalent to a conic
under the standard Cremona transformation, so C and D are rational
over an extension of k of degree at most 2. If they are rational over k,
then X is unirational.

Indeed, one checks that the curve C satisfies the conditions of part
(1) of Proposition 2.3.1, and if C is rational over k, then it also satisfies
the conditions of part (1) of Theorem 2.1.2, where one can take P to
be any of the points on X above any of the singular points (0 : 0 : 1),
(0 : 1 : 0), and (1 : 0 : 0) of C.

2.4 Finding appropriate curves

In this section, we assume that the characteristic of k is not 2, and
we give sufficient easily-verifiable conditions for a curve C to satisfy
the hypotheses of Corollary 2.1.3. This is also how we found the three
curves, C1, C2, and C3 of Remark 2.2.4, whose existence implies unira-
tionality of the three difficult surfaces X1, X2, X3 (see Example 2.3.9
and Remark 2.4.7).

Let X ⊂ P(1, 1, 1, 2) be a del Pezzo surface of degree 2, given by
w2 = g with g ∈ k[x, y, z] homogeneous of degree 4. Let B ⊂ P2(x, y, z)
be the branch curve of the projection π : X → P2. Then B is given
by g = 0. Let P ∈ X(k) be a rational point and set Q = π(P ).
Without loss of generality, we assume Q = (0 : 0 : 1). Let C ⊂ P2 be
a geometrically irreducible curve of degree d ≥ 2 on which Q is a point
of multiplicity d− 1.

There are coprime homogeneous polynomials fd−1, fd ∈ k[x, y] of
degree d − 1 and d, respectively, such that C is given by zfd−1 = fd.
The projection away from Q induces a birational map from C to the
family LQ of lines in P2 through Q. Its inverse is a morphism ϑ that
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sends a line L ∈ LQ to the d-th intersection point of L with C. If we
identify LQ with P1, where (s : t) ∈ P1 corresponds to the line given by
sy = tx, then ϑ : P1 → C sends (s : t) to

(sfd−1(s, t) : tfd−1(s, t) : fd(s, t)).

The curve C has no singularities outside Q, and we may identify the
morphism ϑ : P1 → C with the normalisation of C. The points on P1

above the point Q are exactly the points where fd−1(s, t) vanishes. The
curve C has an ordinary singularity at Q if and only if d > 2 and
fd−1(s, t) vanishes at d− 1 distinct k-points of P1(s, t).

The pull back π∗(C) is birationally equivalent with the curve given
by w2 = G in the weighted projective space P(1, 1, 2d) with coordinates
s, t, w, and with

G = g
(
sfd−1(s, t), tfd−1(s, t), fd(s, t)

)
∈ k[s, t].

Proposition 2.4.1. For any point T ∈ P1(k), the intersection multi-
plicity µT (P1, B) equals the order of vanishing of G at T .

Proof. Since C either has degree 2 or it is singular, it is not equal to B.
As C is irreducible, it has no irreducible components in common with
B. By symmetry between s and t, we may assume T = (α : 1) for some
α ∈ k. Then the local ring OT,P1 is isomorphic to the localisation of

k[s] at the maximal ideal (s−α). Let ` ∈ k[x, y, z] be a linear form that
does not vanish at ϑ(T ). Then locally around ϑ(T ) ∈ P2, the curve B
is given by the vanishing of the element g/`4, whose image in OT,P1 is
G(s, 1)/L(s, 1)4 with L(s, t) = `

(
sfd−1(s, t), tfd−1(s, t), fd(s, t)

)
. Since

L(s, 1) does not vanish at α, we find that µT (P1, B) equals the order
of vanishing of G(s, 1) at α, which equals the order of vanishing of G
at T .

Corollary 2.4.2. We have b(P1, B) = ∅ if and only if G is a square in
k[s, t].

Proof. By Proposition 2.4.1, we have b(P1, B) = ∅ if and only if the
order of vanishing of G is even at every point T ∈ P1(k). This is
equivalent with G being a square in k[s, t].
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If B does not contain the unique singular point Q of C, then ϑ
induces a bijection b(P1, B) → b(C,B), so in this case we also have
b(C,B) = ∅ if and only if G is a square in k[s, t]. The following propo-
sition gives an analogue of this statement when Q is contained in B.

Proposition 2.4.3. Suppose that Q is contained in B. Then the ratio-
nal polynomial H = G/fd−1(s, t) is in fact contained in k[s, t]. Suppose,
furthermore, that the tangent line to B at Q is given by h = 0 with
h ∈ k[x, y], and that Q is an ordinary singular point on the curve C.
Then the following statements hold.

1. Suppose d is odd. Then the set b(C,B) is empty if and only if H
is a square in k[s, t].

2. Suppose d is even. If h divides fd−1, then H/h(s, t) is contained
in k[s, t]. The set b(C,B) is empty if and only if h divides fd−1

and H/h(s, t) is a square in k[s, t].

Proof. Write g =
∑4

i=0 giz
4−i, where gi ∈ k[x, y] is homogeneous of

degree i for all 0 ≤ i ≤ 4. If g(Q) = g0 vanishes, then each monomial of
g is divisible by x or y, which implies thatG is divisible by fd−1, which in
turn shows H ∈ k[s, t]. Suppose that all hypotheses hold. By g(Q) = 0
we find g0 = 0. The tangent line to B at Q is given by g1 = 0, so h is a
scalar multiple of g1. Note that all statements are invariant under the
action of GL2(k) on P1 and P2 given on their respective homogeneous
coordinate rings k[s, t] and k[x, y, z] by γ(s) = as + bt, γ(t) = cs + dt
and γ(x) = ax+ by, γ(y) = cx+ dy, γ(z) = z for

γ =

(
a b
c d

)
.

After applying an appropriate element γ ∈ GL2(k) and rescaling h, we
assume, without loss of generality, that h = g1 = y.

If y divides fd−1, then t divides fd−1(s, t); since all monomials in g
besides y are divisible by x2, xy, or y2, it follows that in this case G
is divisible by tfd−1(s, t), so H/t is contained in k[s, t]. This does not
depend on d being even.

In the open neighbourhood of Q given by z 6= 0, the curve B is
given by the vanishing of g/z4 = g(x/z, y/z, 1) =

∑
i gi(x/z, y/z). The
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maximal ideal m of the local ring OQ,C is generated by x/z and y/z,
so the image of g/z4 in OQ,C/m2 is g1(x/z, y/z) = y/z. Let T ∈ P1(k)
be a point with ϑ(T ) = Q, and let n be the maximal ideal of the
local ring OT,P1 . Then the image of g in OT,P1/n2 equals the image of
y/z, which is tfd−1(s, t)/fd(s, t). The point T corresponds to a linear
factor of fd−1(s, t). Since fd(s, t) does not vanish at T , we find that
the valuation vT (g) of g in OT,P1 is at least 2 if t vanishes at T , that
is, µT (P1, B) ≥ 2 if T = (1 : 0). We have µT (P1, B) = v(g) = 1 if
T 6= (1 : 0). From Lemma 1.2.24 we conclude

µQ(C,B) =

{
d− 2 + µ(1:0)(P1, B) if y divides fd−1,

d− 1 otherwise.
(2.1)

We now consider the two cases.

1. Suppose d is odd. From (2.1) it follows that µQ(C,B) is even
if and only if either y divides fd−1 and µ(1:0)(P1, B) is odd, or y
does not divide fd−1. This happens if and only if µT (P1, B) is odd
for all T ∈ P1 at which fd−1(s, t) vanishes. For all other points
R ∈ C with R 6= Q, the multiplicity µR(C,B) is even if and only if
µϑ−1(R)(P1, B) is even. From Proposition 2.4.1, we conclude that
b(C,B) is empty if and only if the order of vanishing of G is odd
at all points T ∈ P1 at which fd−1(s, t) vanishes and even at all
other points. This is equivalent with H being a square in k[s, t].

2. Suppose d is even. From (2.1) it follows that µQ(C,B) is even if
and only if y divides fd−1 and µ(1:0)(P1, B) is even. As in the case
for odd d, this implies that b(C,B) is empty if and only if the
order of vanishing of G is odd at all points T 6= (1 : 0) at which
fd−1(s, t) vanishes, and even at all other points, including (1 : 0).
Since the order of vanishing of tfd−1(s, t) at (1 : 0) is 2, this is
equivalent to G/(tfd−1(s, t)) = H/t being a square in k[s, t].

This finishes the proof.

We have already seen that the pull back π∗(C) is birationally equiv-
alent with the curve given by w2 = G in P(1, 1, 2d). This curve splits
into two k-rational components if and only if G is a square in k[s, t].
If Q is an ordinary singular point of C that lies on B, then this never
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happens. However, the curve π∗(C) may itself be k-rational, in which
case G factors as a square times a quadric.

We will now focus on the case d = 4, so Q is a triple point. The
following corollary says that if Q is an ordinary triple point, then we do
not need to factorise G, as we know exactly which part should be the
square, and which the quadric.

Corollary 2.4.4. Suppose that Q is an ordinary singular point of C
that lies on B. If the pull back π∗(C) ⊂ X is k-rational, then we have
d ≤ 4.

Moreover, suppose d = 4, and let the tangent line to B at Q be given
by h = 0 with h ∈ k[x, y]. Then the pull back π∗(C) ⊂ X is k-rational if
and only if there is a constant c ∈ k∗ such that the following statements
hold:

1. the polynomial h divides f3;

2. the polynomial cH(s, t)/h(s, t) is a square in k[s, t];

3. the conic given by cw2 = f3(s, t)/h(s, t) in P2(s, t, w) is k-rational.

Proof. Suppose π∗(C) is k-rational. Then π∗(C) is geometrically inte-
gral and has genus g(π∗(C)) = 0. From Proposition 1.2.26 we obtain
b(P1, B) = 2. From Proposition 1.2.29 we conclude that the contri-
bution cQ(C,B) is at most 2. Moreover, this proposition also gives
cQ(C,B) ≥ d − 2 with equality if and only if µQ(C,B) is even. We
conclude d ≤ 4.

Suppose d = 4. Then we have equality cQ(C,B) = 2 = #b(P1, B),
so µQ(C,B) is even, and we find that b(C,B) is empty. From Proposi-
tion 2.4.3 we find that h divides f3, and m = H(s, t)/h(s, t) is a square
in k[s, t]. Let c be the main coefficient of m(s, 1). Then cm is a square
in k[s, t]. Therefore, the k-rational curve given by w2 = G with

G = cm · h2(s, t) · c−1f3(s, t)/h(s, t) (2.2)

in P(1, 1, 2d) is birationally equivalent with the conic given by the
equation cw2 = f3(s, t)/h(s, t) in P2(s, t, w), which is therefore also
k-rational.

Conversely, if there is a constant c such that cH(s, t)/h(s, t) is a
square in k[s, t], then it follows from (2.2) that the conic given by
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cw2 = f3(s, t)/h(s, t) in P2(s, t, w) is birationally equivalent with the
curve in P(1, 1, 2d) given by w2 = G, which is birationally equivalent
with π∗(C). Hence, if this conic is k-rational, then so is π∗(C).

Remark 2.4.5. Corollary 2.4.4 helps us in finding all curves C of degree
d = 4 that satisfy the conditions of case (2) of Corollary 2.1.3 with
` = k. More explicitly, after a linear transformation of P2, we may
assume that Q = (0 : 0 : 1), and the tangent line to B at Q is given by
y = 0. Then we claim that every curve C of degree d = 4 that satisfies
the conditions of case (2) of Corollary 2.1.3 with ` = k is given by

yzφ2 = x4 + yφ3

for some homogeneous φ2, φ3 ∈ k[x, y] of degree 2 and 3, respectively,
with φ2 squarefree and not divisible by y. Indeed, we find that f3 is
divisible by y, so there is a φ2 ∈ k[x, y] such that f3 = yφ2; since C
is irreducible, the polynomial f4 is not divisible by y, so the coefficient
of x4 in f4 is nonzero, and after scaling φ2, f3, and f4, we may assume
that there exists a φ3 ∈ k[x, y] such that f4 = x4 + yφ3. Moreover, Q is
an ordinary singularity if and only if φ2 is squarefree and not divisible
by y.

Hence, to find all such curves C, we are looking for all pairs (φ2, φ3)
with φi ∈ k[x, y] homogeneous of degree i, such that

1. the polynomial φ2 is squarefree and y does not divide φ2,

2. the curve given by yzφ2 = x4 + yφ3 is geometrically integral,

3. there is a constant c ∈ k∗ such that polynomial c·G(s, t)/(t2φ2(s, t))
with

G = g
(
stφ2(s, t), t2φ2(s, t), s4 + tφ3(s, t)

)
is a square,

4. the conic given by cw2 = φ2(s, t) in P2(s, t, w), with c as in (3), is
k-rational.

Note for (3) that, because the characteristic is not 2, a homogeneous
polynomial H ∈ k[s, t] of even degree is a square in k[s, t] if and only
if there is a constant c ∈ k∗ such that cH is a square in k[s, t], which
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happens if and only if γ−1H(s, 1) is a square in k[s], where γ is the
main coefficient of H(s, 1). This follows from the fact that a monic
polynomial in k[s] is a square in k[s] if and only if it is a square in k[s].
Moreover, the c ∈ k∗ for which cH is a square, form a coset in k∗/k∗2,
so whether or not (4) holds does not depend on the choice of c.

Question 2.1.4 for d = 4 can be rephrased using Remark 2.4.5. It is
equivalent to the following question.

Question 2.4.6. Let k be a field of characteristic not equal to 2, and
g ∈ k[x, y, z] a homogeneous polynomial of degree 4 such that the curve
B ⊂ P2(x, y, z) given by the equation g = 0 is smooth, it contains the
point Q = (0 : 0 : 1), and the tangent line to B at Q is given by y = 0.
Do there exist homogeneous polynomials φ2, φ3 ∈ k[x, y] of degree 2 and
3, such that conditions (1)–(3) of Remark 2.4.5 are satisfied?

Remark 2.4.7. If k is a (“small”) finite field, then we can list all pairs
(φ2, φ3) with φi ∈ k[x, y] homogeneous of degree i, and check for each
whether the conditions (1)–(4) of Remark 2.4.5 are satisfied. In fact,
condition (4) is automatically satisfied over finite fields. Indeed, this
is how we found the curves C1, C2 given in Remark 2.2.4, whose exis-
tence implies unirationality of the three difficult surfaces X1, X2 (see
Example 2.3.9). Finding the rational cubic curve C3 on X3, as given in
Remark 2.2.4, was easier, based on part (1) of Proposition 2.4.3.

Remark 2.4.8. For any integer i, let k[x, y]i denote the (i+1)-dimensional
space of homogeneous polynomials of degree i. In general, over any field,
we can describe the set of pairs (φ2, φ3) ∈ k[x, y]2 × k[x, y]3 satisfying
condition (3) of Remark 2.4.5 as follows.

Identify k[x, y]2× k[x, y]3 with the affine space A7 and let R denote
the coordinate ring of A7, that is, R is the polynomial ring in the
3 + 4 = 7 coefficients of φ2 and φ3. Let Z ⊂ A7 be the locus of all
(φ2, φ3) that satisfy condition (3).

For generic φ2, φ3, that is, with the variables of R as coefficients,
the coefficients of the polynomial

G′ = G(s, t)/(t2φ2(s, t))

of condition (3) of Remark 2.4.5 lie in R. For general enough g, the
coefficient c ∈ R of s12 in the polynomial G′ ∈ R[s, t] is nonzero. On
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the open set U of A7 given by c 6= 0, we may complete G′(s, 1) to a
square in the sense that there are polynomials G1, G2 ∈ R[c−1][s] with
G1 monic of degree 6 in s and G2 of degree at most 5 in s such that
G′(s, 1) = cG2

1 − G2. The vanishing of the six coefficients in R of G2

determines the locus Z ∩U inside U of all pairs (φ2, φ3) at which cG′ is
a square. Note that we have c = G′(1, 0). For each point (s0 : t0) ∈ P1,
we can use an automorphism of P1 that sends (s0 : t0) to (1 : 0), to
similarly describe the intersection of Z with the open subset of A7 where
G′(s0, t0) is nonzero; it is also given by the vanishing of six polynomials
in R. We can cover A7 with open subsets of this form, thus describing
Z completely.

A naive dimension count suggests that the locus Z has dimension
7− 6 = 1. This is consistent with the following, similarly naive, dimen-
sion count. The family of quartic curves in P2 is 14-dimensional, as it is
the projective space P(k[x, y, z]4), where k[x, y, z]4 is the 15-dimensional
vector space of polynomials of degree 4. The codimension of the subset
of those curves having a triple point at Q is 6, and demanding that the
intersection multiplicity µQ(C,B) is at least 4 cuts down another di-
mension. Since B is also a quartic curve, by Bezout’s theorem it follows
that B and C have 16 intersection points, counted with multiplicity.
Hence, generically, the curves in the remaining 7-dimensional family in-
tersect B, besides in Q, in 16− 4 = 12 more points. One might expect
the subfamily of those curves where this degenerates to six points with
multiplicity 2 to have codimension 6, in which case this would leave a
1-dimensional family of quartic curves with a triple point at Q ∈ B and
intersecting B with even multiplicity everywhere.

However, the locus Z also contains some degenerate components
that we are not interested in. For example, the locus of all (0, φ3) for
which f4 = x4 + yφ3 is a square is contained in Z and has dimension
2. Also, for any smooth conic Γ that contains Q, that has its tangent
line at Q given by y = 0, and that has even intersection multiplicity
with B everywhere, we get a 1-dimensional subset of Z consisting of
pairs (φ2, φ3) that correspond with the union of Γ with any double line
through Q (these lines are parametrised by P1). Note that in all these
degenerate cases the curve C is reducible. Another degenerate case is
the limit of Manin’s construction. By [FvL15, Remark 4.11], this limit
curve is the non-reduced curve π∗π

∗(2L) = 4L, where L is the tangent
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line to B at Q, given by y = 0. Hence, this quartic curve is given by
y4 = 0, which does not correspond to a point on the affine set Z, as the
coefficient of x4 is zero.

Let Z0 denote the affine subset of Z corresponding to curves C that
are geometrically integral and on which Q is an ordinary triple point.
Then Questions 2.1.4 (for d = 4) and 2.4.6 can be rephrased by asking
whether the subset Z0 contains a k-rational point.

Example 2.4.9. Let B ⊂ P2 be the smooth curve given by

y4 − x4 − x3y − xy3 + y3z + yz3 = 0

over k = F3, and let Q be the point (0 : 0 : 1) ∈ B(k). The tangent
line to B at Q is given by y = 0. Running through all the homogeneous
polynomials in x, y of degree 2 and 3 over k one can find that there
is no pair (φ2, φ3) of polynomials satisfying conditions (1)–(3) of Re-
mark 2.4.5; there do exist pairs satisfying only conditions (2) and (3).
This means that Questions 2.1.4 (for d = 4) and 2.4.6 have negative
answer in this specific case. It could, however, still be true that the
answer is positive for X and P general enough.

Notice that the curve B is isomorphic to the Fermat curve of degree
four, that is, the curve given by x4 +y4 +z4 = 0, via the following linear
change of variables:

(x : y : z) 7→ (x− z : x+ y + z : z).
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Chapter 3

The geometric Picard
lattice of the K3 surfaces in
a family

The geometric Picard lattice of a K3 surface can give information about
the geometry as well as the arithmetic of the surface. A large literature
is devoted to the computation of the Picard lattice of a K3 surface.
In [PTvL15], Bjorn Poonen, Damiano Testa, and Ronald van Luijk
give an algorithm to compute the geometric Néron-Severi group of any
smooth, projective, geometrically integral variety X. The algorithm
works under the assumption that it is possible to explicitly compute
the Galois modules of X with finite coefficients, and it terminates if
and only if the Tate conjecture holds for X. In [HKT13], Hassett,
Kresch, and Tschinkel give an effective algorithm to compute the Pi-
card lattice of a K3 surface of degree two. The algorithm is “effective”
in the sense that given the equations defining the surface, it returns the
Galois module structure of the geometric Picard lattice of the surface.
Even though these algorithms show that in principle it is possible to
compute the geometric Picard lattice of a K3 surface, in practice the
computations involved are very hard to perform, making the algorithms
highly impractical. The main problem in the task of computing the ge-
ometric Picard lattice is to find enough divisors to generate the whole
geometric Picard lattice. This remains the main issue even if we are
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only interested in the geometric Picard number, that is, the rank of the
geometric Picard lattice. Work of Charles, Elsenhans, Jahnel, Klooster-
man, Kuwata, van Luijk, and others, show that there are different ways
to provide lower and upper bounds for the geometric Picard number.
See [vL05] and [vL07] for a method to give an upper bound of the ge-
ometric Picard number by looking at the reduction of the surface over
different finite fields; this method is later applied by Stephan Elsenhans
and Jörg Jahnel in [EJ08b] and [EJ08a]. Kuwata and Kloosterman,
in [Kuw00] and [Klo07], provide explicit examples of elliptic K3 surfaces
with geometric Picard number ρ ≥ r, for r = 0, 1, ..., 18. In [Cha14],
François Charles provides a non-deterministic algorithm to compute
the geometric Picard number of a K3 surface. We suggest to consult
[PTvL15] for a more accurate summary on this topic. All these meth-
ods, as well as the algorithm given by Charles, rely on the ability to
explicitly find enough divisors on the surface. We are not aware of the
existence of any practical algorithm that, given a surface X as input,
returns a set of divisors on X generating the geometric Picard lattice
of X.

In this chapter we consider a 1-dimensional family of K3 surfaces,
and we give an explicit description of the geometric Picard lattice of the
generic member of the family, providing also an explicit set of divisors
generating the Picard lattice. This information can then be used to
describe the geometric Picard lattice of every member of the family.

This chapter is part of joint work with Florian Bouyer, Edgar Costa,
Christopher Nicholls, and Mckenzie West. The joint work has its roots
in a question proposed by Anthony Várilly-Alvarado during the Arizona
Winter School 2015 (see [VA15, Project 1]). We are also indebted with
Alice Garbagnati for the comments that led to Proposition 3.7.6.

3.1 The main result

Let k be any field; recalling the notation introduced in Subsection 1.2.2,
we will use Pk to denote the weighted projective space Pk(1, 1, 1, 3); also,
let A1

k denote the affine line over k. Sometimes we might drop the index
k in Pk and A1

k, if no confusion arises.
Let Q be the field of rational numbers and fix an algebraic closure

Q. Let t and x, y, z, w be the coordinates of A1
Q and PQ, respectively.
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Let X ⊂ A1 × P be the threefold over Q defined by

X : w2 = x6 + y6 + z6 + tx2y2z2. (3.1)

Let p : X → A1 be the projection of X to A1, that is, the map defined
by sending the point (t0, (x0 : y0 : z0 : w0)) ∈ X to the point t0 ∈ A1.

Let t0 be a point in A1. The fiber p−1(t0) ⊂ A1 × P of X over t0 is
given by the following equations

p−1(t0) :

{
w2 = x6 + y6 + z6 + t0x

2y2z2

t = t0

The fiber p−1(t0) naturally embeds into P, and we denote its image
inside P by Xt0 ; we also denote by Bt0 the plane sextic curve defined
by

Bt0 : x6 + y6 + z6 + t0x
2y2z2 = 0. (3.2)

Proposition 3.1.1. Let t0 be a point of A1
Q \ {−3,−3ζ3,−3ζ2

3}, where

ζ3 is a primitive third root of unity. Then Xt0 is a K3 surface.

Proof. The surface Xt0 is defined by the equation

Xt0 : w2 = x6 + y6 + z6 + t0x
2y2z2,

and it is a double cover of P2 ramified above the sextic curve Bt0 ⊂ P2.
The curve Bt0 admits singular points if following system of equations

admits solutions. 
3x5 + t0xy

2z2 = 0

3y5 + t0x
2yz2 = 0

3z5 + t0x
2y2z = 0

One can see that this happens if and only if t0 = −3,−3ζ3,−3ζ2
3 . So,

for t0 6= −3,−3ζ3,−3ζ2
3 , the curve Bt0 is smooth and, therefore, Xt0 is

a K3 surface.

Remark 3.1.2. Define ti := −3ζi3, for i ∈ {0, 1, 2}. We claim that the
surfaces Xti , for i = 0, 1, 2, are non-smooth and, therefore, are not K3
surfaces.

One can easily see that Xt0 = X−3 has four ordinary double points:
(1 : ±1 : ±1 : 0).
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For i = 1, 2, the map (x : y : z : w) 7→ (ζi3x : y : z : w) gives an
isomorphism X−3 → Xti . So also Xti has four ordinary double points,
namely the points (ζi3 : ±1 : ±1 : 0), for i = 1, 2.

Nevertheless, for i = 0, 1, 2, blowing up Xti at its singular points,
we do obtain a K3 surface.

Let η be the generic point of A1 and let K = κ(η) denote the residue
field of η, that is, the function field Q(t). Fix an algebraic closure K of
K such that Q ⊂ K. Consider the fiber p−1(η)/K of X ⊂ A1×P above
η. The fiber p−1(η) naturally embeds into PK . We denote by Xη the
image of p−1(η) inside PK . Then Xη is the surface over K given by the
equation

Xη : w2 = x6 + y6 + z6 + tx2y2z2. (3.3)

By Proposition 3.1.1, the surface Xη ⊂ PK is a K3 surface.

The main goal of this chapter is to give a description of the geomet-
ric Picard lattice of Xη; using this we can get information about the
geometric Picard lattice of any fiber of X.

The first step in order to achieve the description of PicXη, is to
compute the geometric Picard number of Xη.

Proposition 3.1.3. The geometric Picard lattice of Xη has rank 19,
that is, ρ(Xη) = 19.

Proof. See Subsection 3.3.3.

Using some explicit divisors of Xη it is then possible to give a com-
plete description of PicXη, as shown by the main theorem below.

Theorem 3.1.4. Let η be the generic point of A1. Then the generic
fiber Xη = p−1(η) of X is a K3 surface with geometric Picard lattice
isometric to the lattice

U ⊕ E8(−1)⊕A5(−1)⊕A2(−1)⊕A2(−4). (3.4)

The proof of the theorem is given in two steps: first finding some
divisors on the surface and computing the lattice Λ they generate, then
proving that Λ is the full geometric Picard lattice.
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3.2 An automorphism subgroup of the Picard
lattice

Isometries of the Picard lattice of a K3 surface can be very useful in
order to find divisors (cf. Section 3.3). We have seen that an auto-
morphism of a K3 surface induces an (effective) isometry of the Picard
lattice. In this section, using the symmetries of the equation defining
Xη, we provide some automorphisms of Xη, and hence some (effective
Hodge) isometries of PicXη.

Let K and K be defined as before. Let ζ12 ∈ Q ⊂ K be a primitive
12-th root of unity and define ζ6 := ζ2

12, ζ4 := ζ3
12, and ζ3 := ζ4

12.

Remark 3.2.1. Note that ζi is a primitive i-th root of unity, for i ∈ {3, 4, 6}.
Let Q(ζ3) be the number field obtained by adjoining ζ3 to Q, i.e.,

the 3rd cyclotomic field. Since ζ6 = ζ3 + 1, we have that ζ6 ∈ Q(ζ3).
Throughout this section, and also in the following ones, we will use

the notation µn, Cn, Dn, and Sn to denote respectively the group of
n-th roots of unity inside Q ⊂ K, the cyclic group of order n, the group
of symmetries of the regular n-polygon (that is, the dihedral group of
order 2n), and the permutation group of a set with n elements, for any
positive integer n.

Consider the following automorphisms of PQ(ζ3):

• For any permutation σ of the set {x, y, z} of coordinate functions
of PQ(ζ3), consider the induced automorphism σ̄ : PQ(ζ3) → PQ(ζ3)

defined by

σ̄ : P 7→ (σ(x)(P ) : σ(y)(P ) : σ(z)(P ) : w(P )).

• For any triple (i, j, k) ∈ (Z/6Z)3 such that 2(i+j+k) ≡ 0 mod 6
consider the automorphism ψi,j,k : PQ(ζ3) → PQ(ζ3) defined by

ψi,j,k : (x : y : z : w) 7→ (ζi6x : ζj6y : ζk6 z : w).

Remark 3.2.2. Since PQ(ζ3) is a weighted projective space with weights
(1, 1, 1, 3), we have that

(x : y : z : w) = (ζ3x : ζ3y : ζ3z : w) = (ζ2
3x : ζ2

3y : ζ2
3z : w)

and therefore ψ4,4,4 = ψ2,2,2 = id. One can easily check that no other
automorphism ψi,j,k equals the identity.
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The above automorphisms of PQ(ζ3) can be extended to automor-
phisms of PK . Let G1, G2 ⊂ Aut(PK) be the subgroups of Aut(PK)
generated by the extension to PK of the automorphisms σ̄ and ψi,j,k,
respectively. We define G = 〈G1, G2〉 the subgroup of Aut(PK) gener-
ated by the elements of G1 and G2.

Let ψ and ς be two elements of G1 and G2, respectively. One can
easily see that the automorphism given by ς−1ψς is an element of G2.
We can then define an action of G1 on G2, by sending (ς, ψ) ∈ G1×G2

to ς−1ψς ∈ G2. Let G1 n G2 denote the semidirect product of G1 and
G2, with G1 acting on G2 as described above. It is easy to see that
G = G1 nG2.

With the following results we give a description of G1, G2, and G
as abstract groups. Let Σ ⊂ µ3

6 be the subgroup of µ3
6 = µ6 × µ6 × µ6

defined by

Σ := {(ζ, ξ, θ) ∈ µ3
6 : ζξθ = ±1}.

Remark 3.2.3. The group Σ is isomorphic to Z/6Z×Z/6Z×{0, 3}. To
see this, let (ζ, ξ, θ) be an element of Σ. Since ζ, ξ, θ ∈ µ6, there are
i, j, k ∈ {0, 1, ..., 5} such that ζ = ζi6, ξ = ζj6 , θ = ζk6 ; since ζξθ = ±1, we
have that i+ j + k ∈ {0, 3}. Then the map Σ→ Z/6Z× Z/6Z× {0, 3}
given by

(ζ, ξ, θ)→ (i, j, i+ j + k)

is well defined and in fact it is an isomorphism of groups.

Let ∆: µ3 ↪→ µ3
6 be the embedding defined by

∆: ζ → (ζ, ζ, ζ).

It is easy to see that the image of ∆ is a normal subgroup of Σ. Let H
denote the quotient group

H := Σ/ im(∆). (3.5)

Remark 3.2.4. As an easy exercise in group theory, one can show that
the group H is isomorphic to the group C2

2 × C6.

Lemma 3.2.5. The following statements hold:

i) G1 is isomorphic to the symmetric group S3;
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ii) G2 is isomorphic to the group H defined in (3.5);

iii) G is isomorphic to S3 nH, where the action of S3 on H is given
by permuting the coordinates of the elements of H.

Proof. i) Trivial from the definition of G1. In fact, recalling the defi-
nition of σ̄, the map

σ̄ 7→ σ

gives an isomorphism between G1 and S3.

ii) Let (ζ, ξ, θ) be an element of Σ and let i, j, k be defined as in Re-
mark 3.2.3. Then i+ j+k ∈ {0, 3} or, equivalently, 2(i+ j+k) ≡ 0
mod 6. We can then consider the map Σ→ G2 given by

(ζ, ξ, θ) 7→ ψi,j,k.

The map is clearly surjective; by Remark 3.2.2, it follows that the
kernel is the subgroup {(0, 0, 0), (2, 2, 2), (4, 4, 4)}; so

G2
∼= Σ/{(0, 0, 0), (2, 2, 2), (4, 4, 4)} = H,

concluding the proof.

iii) The statement trivially follows by recalling that G = G1 nG2 and
then applying the isomorphisms used to prove points i) and ii).

Corollary 3.2.6. The group G has cardinality 24 32.

Proof. By Lemma 3.2.5.(i), G1
∼= S3 and so #G1 = 3! = 6.

By Lemma 3.2.5.(ii), G2
∼= H, with H = Σ/ im(∆). The group

Σ has cardinality 62 2 (cf. Remark 3.2.3); H is a quotient of Σ by a
subgroup of order 3, hence #H = 62 2/3 = 6 ·22. Alternatively, one can
use Remark 3.2.4.

Since G = G1 nG2, it follows that #G = #G1 ·#G2 = 6 · (6 · 22),
proving the statement.

Lemma 3.2.7. All the elements of G fix the surface Xη.

Proof. To prove the statement it is enough to check that the automor-
phisms of G fix the equation defining Xη.
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Using Lemma 3.2.7, we can define the map resη : G → Aut(Xη),
sending an element of G to the automorphism of Xη it induces.

Lemma 3.2.8. The map resη : G→ Aut(Xη) is injective.

Proof. The statement is equivalent to saying that every element of G
induces a non-trivial automorphism of Xη. The fixed subspace of a non-
trivial element of G is a subspace defined by n linear equations, with
n ∈ {1, 2, 3}, and therefore it cannot contain the surface Xη.

With abuse of notation, we will use the symbols σ̄, ψi,j,k both for
the automorphisms of PK and Xη; we will also use G to indicate both
the subgroup of Aut(PK) and the image of resη.

Remark 3.2.9. Since π : Xη → P2 is a double cover of P2, one can
consider the involution ι of Xη given by switching the elements inside
the fibers of π. Keeping in mind the equation of Xη, we have that ι is
given by

ι : (x : y : z : w) 7→ (x : y : z : −w).

Then it follows that ι = ψ3,3,3 ∈ G.

Corollary 3.2.10. Let P be a (not necessarily closed) point of A1
Q,

and let XP be the K3 surface corresponding to the fiber of X over P .
Assume that its geometric Picard group has odd rank and discriminant
not a power of 2. Then the group G acts faithfully on PicXP .

Proof. From Proposition 1.2.47, it follows thatG embeds intoO(PicXP ).

Let Gs ⊂ G denote the subgroup of G given by the symplectic
automorphisms of Xη in G.

Lemma 3.2.11. The subgroup Gs has cardinality 72 and it is generated
by ψ3,3,3 ◦ σ(12), σ(123), ψ2,4,0, ψ0,3,3, and ψ3,0,3.

Proof. First notice that the involution ψ3,3,3 fixes infinitely many points
of X (in fact, it fixes the ramification locus R), and so, by Proposi-
tion 1.2.49, it is not symplectic; it follows that Gs has index at least 2
inside G, and so #Gs ≤ 72.

Again using Proposition 1.2.49, one can check that all the automor-
phisms listed in the statement are symplectic. Then, by easy computa-
tions, one sees that they generate a subgroup of order 72.
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Remark 3.2.12. Using MAGMA, one can easily check that Gs is isomorphic
to the group A4,3; this group is called SmallGroup(72,43) in MAGMA and
GAP. See [Fes16] for these computations. We refer to [Has12, Appendix:
computations using GAP] and [GAP16] for more details about groups
database in GAP.

Remark 3.2.13. The elements of Gs have either order 2 or 3. So, by
Proposition 1.2.49, it follows that ρ(Xη) ≥ 13.

3.3 Some divisors on Xη

In this section we will explain how we found some divisors on Xη gen-
erating a rank 19 sublattice of PicXη.

We have three main tools to find divisors on Xη:

1. the structure on Xη of double cover of P2 (cf. Subsection 3.3.1);

2. the structure on Xη of double cover of a del Pezzo surface of
degree 1 (cf. Subsection 3.3.2);

3. the automorphisms of Xη (cf. Section 3.2).

3.3.1 Xη as double cover of P2

Let π : Xη → P2
K be the map defined by

π : (x : y : z : w)→ (x : y : z).

Let Bη ⊂ P2
K be the smooth sextic plane curve defined by

x6 + y6 + z6 + tx2y2z2 = 0. (3.6)

Lemma 3.3.1. The map π is a 2-to-1 map ramified above Bη.

Proof. Let P = (x0 : y0 : z0) be a point of P2
K . Then it is easy to see

that π−1(P ) = {(x0 : y0 : z0 : w0), (x0 : y0 : z0 : −w0)}, where w0 ∈ K
is a square root of the quantity x6

0 + y6
0 + z6

0 + tx2
0y

2
0z

2
0 .

The ramification points of π are then the points whose coordinates
make that quantity vanish, that is, the points (x : y : z) ∈ P2 lying on
the curve defined in (3.6). This concludes the proof.
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Recalling the notation introduced in Subsection 1.2.3, the curve Bη
is the branch locus of π, and its pre-image Rη on Xη is the ramification
locus. If no confusion arises, later we might drop the index η to denote
Bη and Rη, writing just B and R.

Proposition 3.3.2. Let C ⊂ P2 be an irreducible plane curve of degree
d 6= 6, and let D = π∗(C) be its pull-back via π. Assume that D splits
into two irreducible components, say D = D1 + D2. Then neither D1

nor D2 is equal to a multiple of the hyperplane section in PicXη.

Proof. Since π is a 2-to-1 map, the components D1 and D2 are both
isomorphic to C, and they are switched by the involution ψ3,3,3 (cf.
Remark 3.2.9). This means that D2

1 = D2
2 and D1 ·H = D2 ·H, with

H being the hyperplane section class. Since C has degree d and D is a
double cover of C, we have that D ·H = 2d and, by D1 ·H = D2 ·H,
it follows that D1 ·H = D2 ·H = d.

The intersection D1 ·D2 is given by the points lying above the points
of C ∩ B. Recall that B is the branch locus, it has degree 6, and C
intersects B with even multiplicity everywhere. Then D1 · D2 = 3d.
Combining this with

2d2 = 2C2

= π∗π
∗(C)2

= π∗(D)2

= D2

= (D1 +D2)2

= D2
1 + 2D1 ·D2 +D2

2

= 2D2
1 + 6d,

and, therefore, D2
2 = D2

1 = d2 − 3d.

Finally, recall that the hyperplane class H is the pull-back of the
class of the line, and therefore H2 = 2.

Then we can see that H and Di, for any i = 1, 2, generate a lattice
whose intersection matrix is(

2 d
d d2 − 3d

)
. (3.7)
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The discriminant of the intersection matrix is d(d−6). The integer d is
the degree of a curve, so d > 0, and by hypotheses d 6= 6; therefore the
discriminant is different from 0 and this proves that Di, for i = 1, 2, is
not linearly equivalent to any multiple of H.

Remark 3.3.3. With the computations used to prove Proposition 3.3.2
one can also show that D1 and D2 are linearly independent: in fact,
they generate a sublattice of PicXη with Gram matrix(

d2 − 3d 3d
3d d2 − 3d

)
. (3.8)

The determinant of (3.8) is d3(d− 6), and so, if d 6= 0, 6, it is non-zero
and it shows that D1 and D2 are linearly independent.

A sublattice of rank 2 is the most we can get from D1, D2 and H,
even though these three divisor are pairwise linearly independent: recall
that D1 +D2 = D = dH.

Remark 3.3.4. Combining Corollary 1.2.27 and Proposition 3.3.2 we
have a useful criterion to find irreducible plane curves C such that the
irreducible components C1, C2 of its pull-back on Xη are not linearly
equivalent to the hyperplane section, and that therefore generate a sub-
lattice of the geometric Picard lattice of rank 2. In order to find such
a curve, we look for genus 0 plane curves intersecting Bη with even
multiplicity everywhere.

The first try was given by looking for tri-tangent lines. We found
that such lines do not exist. Then we started looking for plane conics.
Looking for all the plane conics intersecting Bη with even intersection
everywhere is complicated so, using the fact that Bη is given by a sym-
metric equation, we first looked for conics with symmetric equations
too; in particular, we looked for diagonal conics and we found that all
the diagonal conics with third roots of unity as coefficients intersect Bη
with even multiplicity everywhere (cf. Proposition 3.3.13).

Remark 3.3.5. Even though it turned out that there exist no plane lines
that are tri-tangent to Bη, it might happen that such lines exist for some
special value of t. Indeed, we found that the branch locus Bt0 admits a
tri-tangent line if and only if

t0 = 0,−33

2
ζ,−5ζ, (3.9)
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with ζ ∈ µ3. For the computations see [Fes16].

3.3.2 Xη as double cover of a del Pezzo surface of degree 1

Let PK(1, 1, 2, 3) be the weighted projective space over K = Q(t) with
coordinates x′, y′, z′ and w′.

Let πz : PK → PK(1, 1, 2, 3) be the map defined by

πz : (x : y : z : w) 7→ (x : y : z2 : w).

It is easy to see that the map πz is a 2-to-1 map ramified along the
plane {z = 0} ⊆ PK .

Let X ′η ⊂ PK(1, 1, 2, 3) be the surface defined by

X ′η : w′2 = x′6 + y′6 + z′3 + tx′2y′2z′.

Lemma 3.3.6. The surface X ′η ⊂ PK(1, 1, 2, 3) is a del Pezzo surface
of degree 1.

Proof. From Proposition 1.2.59.

Proposition 3.3.7. The map πz : PK → PK(1, 1, 2, 3) induces a 2-to-1
morphism Xη → X ′η, that is, πz |Xη : Xη → X ′η is a double cover of X ′η.

Proof. First notice that the map πz : (x : y : z : w) → (x : y : z2 : w)
sends points of Xη to points of X ′η. Then notice that πz is defined every-
where on P, hence it is defined everywhere on Xη. Let (x′ : y′ : z′ : w′)
be a point of X ′η, and denote it by Q. It is easy to see that its preimage
π−1
z (Q) in Xη is the set {(x′ : y′ : ±ζ : w′)}, where ζ is an element in
K such that ζ2 = z′.

Remark 3.3.8. In fact, X ′η is not the only del Pezzo doubly covered
by Xη. Exploiting the symmetry of Xη it easy to see, using the same
argument as for X ′η, that the morphisms

πx : (x : y : z : w) 7→ (x2 : y : z : w),

πy : (x : y : z : w) 7→ (x : y2 : z : w),
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from PK to P(2, 1, 1, 3)K and P(1, 2, 1, 3)K respectively, induce on Xη a
double cover structure of the del Pezzo surfaces of degree 1

X ′′η : w′′2 = x′′3 + y′′6 + z′′6 + tx′′y′′2z′′2

and

X ′′′η : w′′′2 = x′′′6 + y′′′3 + z′′′6 + tx′′′2y′′′z′′′2.

Remark 3.3.9. The structure of double cover of a del Pezzo surface
of degree 1 on Xη can be used to obtain more divisors that are lin-
early independent. In fact, the Picard lattice of a del Pezzo surface
of degree 1 over an algebraically closed field has rank 9 (cf. Corol-
lary 1.2.58). Let E1, ..., E9 be generators of PicX ′η. Then their pull-

backs π∗(E1), ..., π∗(E9) are nine linearly independent divisors on Xη.
Pulling back also nine generators of PicX ′′η and PicX ′′′η (see the defini-
tion of these surfaces in Remark 3.3.8) or, equivalently, considering the
orbits of π∗(E1), ..., π∗(E9) under the action of G1, one gets 9× 3 = 27
divisors on Xη, generating a sublattice of PicXη of rank 13.

3.3.3 Explicit divisors

We have seen thatXη can be endowed with two structures: the structure
of double cover of the plane, and the structure of double cover of a del
Pezzo surface of degree 1. Using these two structures we have been able
to explicitly compute some divisors on Xη. Some of these divisors are
not defined over K = Q(t), but only over some algebraic extension of
K. In order to define them, we need to introduce some elements of K.

Let ζ12, ζ6 and ζ3 be defined as before (cf. 3.2), and define ζ4 := ζ3
12.

Remark 3.3.10. The element ζ4 ∈ K is a primitive 4-th root of unity.

Consider the elements t + 3ζi3 ∈ K(ζ3) for i ∈ {0, 1, 2}, and let
βi ∈ K be a square root of t+ 3ζi3, i.e. β2

i = t+ 3ζi3 for i ∈ {0, 1, 2}.
We denote by K1 the field K(ζ12, β0, β1, β2).

Let h(v) ∈ K[v] be the polynomial h := v3 + tv2 + 4 and let
c0, c1 and c2 be its roots in K. The polynomial h has discriminant
∆ = −16(t3 + 27) = (4ζ4β0β1β2)2. Let δ denote the element 4ζ4β0β1β2

inside K1; one can easily check that δ is a square root of ∆. Let K2

be the field obtained by adjoining c0 to K1, that is, K2 is the field
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K2

K(ζ12, δ, c0) K1

K(ζ12, δ) K(ζ12, β0) K(ζ12, β1) K(ζ12, β2)

K(ζ12)

K = Q(t)

Figure 3.1: The field-diagram showing the construction of K2 stated
above.

K(ζ12, β0, β1, β2, c0). We will see later (cf. Lemma 3.4.2) that also c1

and c2 are contained in K2.

Let D′ = {D′1, ..., D′4} be the set of divisors on Xη given by

D′1 :

{
x2 + y2 + ζ3z

2 = 0

w − β1xyz = 0

D′2 :

{
x2 + ζ3y

2 + ζ2
3z

2 = 0

w − β0xyz = 0

D′3 :

{
c0δx

2 − 2(9c2
0 + 3tc0 − 2t2)xy + 2δy2 − δz2 = 0

(x3 + a3x
2y + b3xy

2 + c3y
3)(c2

0c1 + 2)− 2w = 0

D′4 :

{
x2 + y2 + ζ2

3z
2 = 0

w − β2xyz = 0
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3.3. Some divisors on Xη

where

a3 =
9c0 + 6t

4(t3 + 27)
δ,

b3 = −c2
0 − tc0,

c3 =
18− 3t2c0 − 3tc2

0

8(t3 + 27)
.

Remark 3.3.11. One can easily check that the curves D′1, ..., D
′
4 ⊆ P lie

on Xη.

Remark 3.3.12. Although all the divisors listed above look like the pull-
back of a plane conic, divisor D′3 was originally found as the pull-back
of a generator of PicX ′η.

For every i = 1, ..., 4, the divisor D′i ⊂ Xη is defined by two equa-
tions, namely fi = w − gi = 0, where fi and gi are two homogeneous
polynomials in x, y, z of degree 2 and 3 respectively. Since the polyno-
mial fi has no w-term, we denote by Ci the conic of P2

K it defines.

Proposition 3.3.13. For every i ∈ {1, ..., 4}, the following statements
hold:

1. the conic Ci ⊂ P2
K intersects the branch locus Bη of π with even

multiplicity everywhere;

2. the divisor D′i of Xη is an irreducible component of the pull-back
of Ci via π;

3. the curve D′i ⊂ Xη is isomorphic to the conic Ci.

Proof. 3. The restriction of π to D′i induces an isomorphism to Ci.
The inverse is given by the map Ci → D′i sending (x : y : z) to
(x : y : z : gi(x, y, z)).

2. It follows from 3.

1. The curve D′i maps 1-to-1 to Ci, so it is not the only component.
The statement follows from Corollary 1.2.27.
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Let GD′ denote the set { sD′i : s ∈ G, i ∈ {1, 2, 3, 4} }, obtained
by letting the automorphisms of G act on the elements of D′.

Let Λ′ be the sublattice of PicXη generated by the elements of GD′.

Proposition 3.3.14. The lattice Λ′ is an even lattice of rank 19, sig-
nature (1, 19), discriminant 22133 and discriminant group isomorphic
to C16

2 × C6 × C2
12.

Before presenting the proof, we introduce some notations that will
be useful in the proof and later in this chapter too.

Let k be any field, let A be the polynomial ring k[v] and let F be
the field of fractions of A, that is, F = FracA = k(v). Fix an algebraic
closure F of F , and let v0 be an element inside F . We define the
specialization of the field F to v0, denoted by Fv0 , the field Frac k[v0].
Note that Fv0 is a finite algebraic extension of k.

Example 3.3.15. Let t0 be an element of Q. Then the specialization of
K = Q(t) at t0 is the number field Q(t0).

Let t0 ∈ Z be an integer, fix an integral model Ξt0 for the surface
Xt0 . Let p ∈ Z be a prime of good reduction for Ξt0 , and let Fp denote
the field with p elements.

Let K2,t0 be the number field obtained by specializing

K2 = Q(ζ12, β0, β1, β2, c0)(t)

to t = t0, let Ot0 denote the ring of integers of K2,t0 , and let p be a
prime of Ot0 lying above p. Let κ(p) be the residue field Ot0/p. The
field κ(p) is isomorphic to Fpm , for some m ∈ Z>0.

LetXt0,p/Fp be denote the reduction of Ξt0 modulo p. LetBt0,p ⊆ P2
Fp

denote the branch locus of Xt0,p.
Let D be one of the divisors of Xη in GD′, and let D denote its

Zariski closure inside X. Then D is a divisor of X. We define Dt0 to
be the specialization of D at t0, that is, the divisor on Xt0 obtained by
taking the fiber of D above t0. Note that not all the divisors of GD′
can be specialized to any t0 ∈ Q : in fact, for example, D′3 cannot be
specialized to t = −3. Assume that D can be specialized to t0 and that
p ∈ Ot0 is a prime of good reduction for Ξt0 . Then let Dt0 be the Zariski
closure of Dt0 inside Ξt0 . We define Dt0,p to be the reduction modulo
p of Dt0 . The curve Dt0,p is a divisor on Xt0,p/Fp that can be defined
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over Fpm . Notice that the procedure of going from a divisor of Xη to
a divisor of Xt0,p consists of the same step, repeated twice: taking the
closure of a divisor of the generic fiber of a family and specialising it to
a special fiber.

Proof of Proposition 3.3.14. The main step in order to prove the state-
ment is to compute the intersection matrix [D ·D′]D,D′∈GD′ , that is, the
intersection numbers D ·D′ for all the elements D,D′ in the set GD′. In
doing so, it is helpful to recall that: the intersection form is symmetric,
and so D ·D′ = D′ ·D; the surface Xη is a K3 surface and then, from
the adjunction formula, it follows that if D is the divisor given by an
irreducible curve with arithmetic genus g then D2 = 2g − 2. Let D
be any divisor in GD′. From Proposition 3.3.13, D is isomorphic to a
plane conic C and, therefore, it has genus g = 0. From this it follows
that D2 = −2, that is, all the divisors in GD′ have self intersection −2.

Computing the intersection number of two divisors defined over a
function field is an expensive computation for a computer, this is why
we reduce our computations to computations over finite fields. Fix an
integer t0 ∈ Z, and an integral model for Xt0 . Let p be a prime of good
reduction for the fixed integral model of Xt0 and, recalling the notation
introduced before starting the proof, let K2,t0 be the specialization of
K2 to t0, Ot0 be the ring of integers of K2,t0 and p be a prime of Ot0
lying above p. Using lemmas 1.2.51 and 1.2.52, if D,D′ are two divisors
on Xη, then D ·D′ = Dt0,p ·D′t0,p. Since all divisors D ∈ GD′ are defined
over K2, all the divisors Dt0,p are defined over the finite field Fpm , for
some m ∈ Z>0.

If Dt0,p and D′t0,p have no components in common, then the in-
tersection Dt0,p ∩ D′t0,p is a zero-dimensional scheme over Fpm . Using
MAGMA (cf. [BCP97]) it is possible to compute its degree. Since we
are considering divisors on a smooth surface, the degree of the zero-
dimensional scheme given by the intersection of the two divisors equals
the sum of the intersection multiplicities of the points of intersection of
the two divisors (see [HS00, A.2.3]), and so the degree of Dt0,p ∩D′t0,p
is the intersection number Dt0,p ·D′t0,p = D ·D′. In this way we get the
intersection matrix of the lattice Λ′ generated by D ∈ GD′. Using the
intersection matrix of the generators of a lattice, one is able to compute
the rank, the signature, the determinant, and the discriminant group of
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the lattice. One can find the MAGMA code used to perform these com-
putations, and that led to the results in the statement, in [Fes16].

Remark 3.3.16. Let X be a surface over a field k. In Theorem 1.2.4,
we state that there is a unique integral pairing of DivX satisfying the
intuitive conditions that an intersection pairing should satisfy. Such
intersection pairing can be explicitly defined as the alternating sum of
the length of the Tor groups of the two divisors. On smooth surfaces,
the only non-zero term of this sum is the first term, that coincides with
the degree of zero-dimensional scheme defined by the intersection of two
divisors; this is what we used in proving Proposition 3.3.14, in order to
compute the intersection numbers of the divisors.

The above definition of the intersection pairing can be generalised
to schemes of higher dimension, and in general it is not true that the
intersection number equals the degree of scheme defined by the inter-
section of the two divisors. Also notice that in higher dimension, the
intersection of the two divisors does not need to be zero-dimensional.

For the explicit definition of the intersection pairing and more details
about this topic, see [Har77, Appendix A].

Remark 3.3.17. The divisors D′1, ..., D
′
4 are only some of the divisors we

found using the methods described in subsections 3.3.1 and 3.3.2. They
have been presented here because they form a minimal set of indepen-
dent divisors such that their orbits under the action of G generate a
rank 19 sublattice of PicXη. In fact, for any j ∈ {1, ..., 4} the set

G(D′ − {D′j}) = {sDi : s ∈ G, i ∈ {1, ..., 4} − {j}}

generates a sublattice of PicXη of rank at most 17 (see [Fes16] for the
computations).

Having a finite-index sublattice has been very important in order
to saturate Λ′ and obtain the full geometric Picard lattice: in fact, it
tells us which field all the classes of PicXη are defined over (cf. Propo-
sition 3.4.8), helping us in finding more divisors with computational
methods (see Remark 3.5.1).

Proposition 3.3.14 tells us that the geometric Picard number of the
generic fiber of X is at least 19. A priori the rank of PicXη could
be also 20. In order to prove that this is not the case, that is, in
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order to prove Proposition 3.1.3, we need to show that the family X is
non-isotrivial. So we will show that there are two smooth fibers with
different geometric Picard number (cf. Lemma 3.3.21). In fact, on the
one hand it is possible to show that 19 is an upper bound for ρ(Xt0),
for several values of t0 ∈ Q (cf. Remark 3.3.18); on the other hand, it
is possible to exhibit a concrete example of a fiber Xt0 with geometric
Picard number equal to 20 (cf. Example 3.3.20).

Remark 3.3.18. As we have seen in the introduction of this section, there
are several methods to give an upper-bound for the Picard number of
a K3 surface. During the Arizona Winter school 2015, using methods
described in [vL07], [EJ08b], [EJ08a], and [Har15], Stephan Elsenhans
computed an upper bound for ρ(Xt0), for every t0 ∈ Q with näıve
height at most 104. For such a t0 ∈ Q, let `(t0) denote the upper bound
computed by Elsenhans. Then `(t0) = 19 for all the values considered,
except for

t0 = −255/4,−33/2,−5, 0, 8, 15/4, 24, 240, 1320. (3.10)

For these values of t0 the upper-bound trivially turns out to be 20.
These computations, together with Proposition 3.3.14, show that if

t0 ∈ Q is a number for which `(t0) has been computed and equals 19,
then ρ(Xt0) = 19.

Remark 3.3.19. Notice that the rational values of t0 for which Bt0 ad-
mits a tri-tangent line, i.e., the real values listed in (3.9), Remark 3.3.5,
are contained in the values listed in (3.10).

Example 3.3.20. Let t0 = 0 and consider the K3 surface X0 = Xt0 . The
ramification locus

B0 : x6 + y6 + z6 = 0

of X0 admits tri-tangent lines, for example the line L : y = ζ12z. The
pull-back π∗L of L on X0 via π splits into two irreducible components:

Li =

{
y − ζ12z = 0

w + (−1)ix3 = 0

for i = 1, 2.
Let D0 ⊂ PicX0 be the set of classes of divisors of X0 given by the

specialisation of the classes inside D′ to t0 = 0, and the class [L1]. Let
GD0 be the union of the G-orbits of the elements of D0.
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Using the same technique used to prove Proposition 3.3.14, one
can prove that the elements of GD0 generate a sublattice of PicX0 of
rank 20. See [Fes16] for the explicit computations. To our knowledge,
Masahiro Nakahara, a graduate student of Anthony Várilly-Alvarado,
has been the first to point out that X0 is a singular K3 surface.

Lemma 3.3.21. The family X is not isotrivial, that is, not all the
smooth fibers are isomorphic.

Proof. Remark 3.3.18 shows that there are many smooth fibers with
geometric Picard number 19; Example 3.3.20 shows that the fiber p−1(0)
is smooth and has geometric Picard number equal to 20. Then X has
at least two smooth fibers that are not isomorphic.

We are now able to prove Proposition 3.1.3, that says that the geo-
metric Picard number of Xη is at most 19.

Proof of Proposition 3.1.3. The family X is parametrised by the affine
line A1, which has dimension 1. Lemma 3.3.21 shows that X is not
isotrivial and so, by Theorem 1.2.50, the geometric Picard number of
Xη can be at most 19.

On the other hand, the Picard lattice PicXη contains the lattice Λ′,
that has rank 19, therefore PicXη has rank at least 19.

The statement follows.

Remark 3.3.22. It is possible to prove that ρ(Xη) ≥ 19 also without
using the explicit divisors listed above. In fact we will show that there
is a dominant rational map from Xη to a surface having geometric
Picard number at least 19. From this, using Proposition 1.2.36.(4), it
follows that also the geometric Picard number of Xη is at least 19.

Consider the dominant rational morphism φ : P 99K P defined by

(x : y : z : w) 7→ ((yz)2 : (xz)2 : (xy)2 : (xyz)3w).

It is easy to see that φ maps the surface X to

X ′ : w2 = (yz)3 + (xz)3 + (xy)3 + t(xyz)2.

The surface X ′ ⊂ P is not smooth: it has three D4-singularities at
(0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (1 : 0 : 0 : 0). Blowing up X ′ at
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Q = (0 : 0 : 1 : 0) we obtain the surface X ′′ = BlQX
′ ⊂ P × P1(s1, s2)

defined by {
s1y = s2x

w2 = (yz)3 + (xz)3 + (xy)3 + t(xyz)2.

Consider the affine patch X ′′ ∩{x 6= 0, s1 6= 0}, defined by the equation

W 2 = s3Z3 + Z3 + s3 + ts2Z2,

where W = w/x3, Z = z/x and s = s2/s1. Eventually, after the change
of variables {

W ′ = (s3 + 1)W

Z ′ = (s3 + 1)Z

one can see that X ′′ ∩ {x 6= 0, s1 6= 0} is birational to the surface given
by

W ′2 = Z ′3 + ts2Z ′2 + s3(s3 + 1)2,

that is a cubic base-change of the surface

E : W 2 = Z3 + ts2Z2 + s5(s+ 1)2,

obtained by sending s to s3.
One can easily notice that the natural projection of E ⊆ A2 × A1

onto A1, defined by
πs : ((Z,W ), s) 7→ s,

induces an elliptic fibration E → A1. The generic fiber Eε of E has
j-invariant

j(Eε) = −28 t6s2

(s+ 1)2(27s2 + (4t3 + 54)s+ 27)

and discriminant

∆(Eε) = −24s10(s+ 1)2(27s2 + (4t3 + 54)s+ 27).

It follows that the fibers above the points s = 0,−1, γ1, γ2, with γi such
that γ2

i + (4t3/27 + 2)γi + 1 = 0, for i = 1, 2, are singular. Doing
analogous computations on the affine patch X ′′ ∩ {x 6= 0, s2 6= 0} one
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can see that also the fiber above the point ∞ = (0 : 1) is singular. So
E has five singular fibers, namely the fibers above the points

(0 : 1), (1 : 0), (1 : −1), (1 : γ1), (1 : γ2).

Using the characterisation of singular fibers (for example, see [Sil94,
Table IV.9.4.1]), the fibers above these points are of type II ∗, II ∗, I2, I1,
and I1, respectively (here we use Kodaira’s notation for singular fibers,
see [Kod64]) and hence they have 9, 9, 2, 1, and 1 irreducible compo-
nents, respectively. From Tate-Shioda formula (see [Shi90, Theorem
1.3 and Corollary 5.3]), it follows that ρ(X ′′) ≥ 19.

X
φ // X ′

blQ // // X ′′

πs
��

P1

Since the composition blQ ◦φ is a dominant rational map, ρ(X) = ρ(X ′′)
(cf. Proposition 1.2.36.(4)), and so ρ(X) ≥ 19.

Corollary 3.3.23. The lattice Λ′ is a proper finite-index sublattice of
PicXη.

Proof. By construction, the lattice Λ′ is contained in PicXη, and they
both have rank 19. Hence Λ′ is a finite-index sublattice of PicXη.

Then all we need to show is that Λ is not equal to PicXη. Assume,
by contradiction, that Λ′ = PicXη. Then the transcendental lattice
T (Xη) = (PicXη)

⊥ ⊂ H2(Xη,Z) has rank 3 = 22− 19 and the discrim-
inant lattice AT is isomorphic to the discriminant lattice AP of PicXη

(see Proposition 1.1.12). By Proposition 3.3.14 the discriminant group
AP is isomorphic to C16

2 × C6 × C2
12, implying that it cannot be gen-

erated by fewer than 19 elements, i.e., `(AP ) = 19. Since AP and AT
are isomorphic, `(AT ) = 19. From Lemma 1.1.11 it then follows that
19 = `(AT ) ≤ rk(T (Xη)) = 3, getting a contradiction.

Corollary 3.3.24. The automorphism group Aut(Xη) embeds into the
group of isometries of PicXη.

Proof. By Proposition 1.2.47, the statement is true if PicXη is a lattice
of odd rank with discriminant not a power of 2. From Corollary 3.3.23
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we know that PicXη has rank 19 and that Λ′ is a finite-index sublattice
of PicXη. The lattice Λ′ has discriminant 221 33 (cf. Proposition 3.3.14)
and therefore, using Lemma 1.1.5, the discriminant PicXη is congruent
to 6 up to square factors. Hence, it cannot be a power of 2.

3.4 The field of definition of PicXη

Even though we know that Λ′ cannot be the full geometric Picard lattice
of Xη (see Corollary 3.3.23), the fact that Λ′ has finite index inside
PicXη allows us to say something about the field of definition of PicXη

(cf. Proposition 3.4.8).

Let us recall the notation introduced in Subsection 3.3.3. K is the
field Q(t), we fixed an algebraic closure K of K such that Q ⊂ K. The
element ζn ∈ Q is a n-th root of unity, for n ∈ {3, 4, 6, 12}, such that

ζn = ζ
12/n
12 . For i = 0, 1, 2, the element βi ∈ K is such that β2

i = t+3ζi3.
The field K1 is the field K = K(ζ12, β0, β1, β2).

Remark 3.4.1. The elements t+ 3, t+ 3ζ3, and t+ 3ζ2
3 generate a sub-

group B of order 8 inside K(ζ12)×/(K(ζ12)×)2. By Kummer theory
(cf. Theorem [Mil15, Theorem 5.28]), the subgroup B corresponds to
the extension of K(ζ12) obtained by adjoining the square roots of all
the elements of B. The field we obtain adjoining these square roots is
K1 = K(ζ12, β0, β1, β2). Then, by Theorem [Mil15, Theorem 5.28], the
extension K1/K(ζ12) has degree 8 and exponent 2.

We defined ci ∈ K, for i = 0, 1, 2, to be the roots of the poly-
nomial h(v) := v3 + tv2 + 4 ∈ K[v]. The polynomial h has discrim-
inant ∆ = −16(t3 + 27) = (4ζ4β0β1β2)2, and δ denotes the element
4ζ4β0β1β2 ∈ K1, a square root of ∆. The field K2 is the field obtained
by adjoining c0 to K1, that is, K2 := K(ζ12, β0, β1, β2, c0).

Lemma 3.4.2. The polynomial h splits completely over K2, that is,
c0, c1, c2 are elements of K2.

Proof. By definition of K2 we have that c0 is in there. The discriminant
of h is ∆ = −16(D3 + 27) = (4ζ4β0β1β2)2, that is, ∆ is a square inside
K1 and δ = 4ζ4β0β1β2 is one of its square roots. This means that
adjoining a root of h to K1 we get a splitting field for h.
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Remark 3.4.3. It is possible to explicitly write the roots c1, c2 in terms
of the generators of K2, the elements ζ12, β0, β1, β2, c0. Namely, one can
then see that the other two roots of h are

−t− c0 ± ε
2

,

where ε = δ
c0(3c0+2t) and δ = 4ζ4β0β1β2, the square root of the discrim-

inant ∆ of h.

Let E := K(δ, c0) ⊂ K2 be the field obtained by adjoining the
elements δ, c0 ∈ K2 to K.

Let F := K(β0) ⊂ K2 be the field obtained by adjoining β0 ∈ K2

to K.
Let L := K(β1, β2) ⊂ K2 be the field given by adjoining β1, β2 ∈ K2

to K.

Lemma 3.4.4. The following statements hold.

1. The extension E/K is a Galois extension of degree 6 with Galois
group Gal(E/K) ∼= S3.

2. The extension F/K is a Galois extension of degree 2 with Galois
group Gal(F/K) ∼= C2.

3. The extension L/K is a Galois extension of degree 8 with Galois
group Gal(L/K) ∼= D4.

4. The fields E,F, and L intersects pairwise trivially, that is, the
intersection of any two of them equals K.

5. The compositum field E · F · L equals K2.

Proof. 1. By construction, the field E is the splitting field of the
cubic polynomial h = v3 + tv2 + 4, that is irreducible over K and
whose discriminant is not a square in K. The statement follows.

2. The field F is the splitting field of the second degree polynomial
v2 − (3 + t). The statement trivially follows.

3. The field L is the splitting field of the polynomial

l = v4 + (−2t+ 3)v2 + t2 − 3t+ 9,

90



3.4. The field of definition of PicXη

and so L/K is a Galois extension. The roots of l are ±β1,±β2,
therefore the Galois group Gal(L/K) is generated by γ1, γ2, γ,
where γ1 changes the sign of β1, γ2 changes the sign of β2, and γ
switches β1 and β2. Since L/K is Galois, we have the following
chain of equalities: # Gal(L/K) = [L : K] = 8. One can easily
check that γγ1 6= γ1γ, and that these two are the only elements of
order 4 of Gal(L/K). Summarising, Gal(L/K) is a non-abelian
group of order 8 with exactly two elements of order 4. Then
Gal(L/K) must be isomorphic to D4.

4. By explicit computations.

5. The compositum field E · F · L is by construction contained in
K2, since E,F, and L are all defined as subsets of K2. Then, we
only need to show that other inclusion. The field K2 is obtained
by adjoining ζ12, β0, β1, β2, c0 to K. From the definition of E,F ,
and L, the elements β0, β1, β2, c0 are inside E · F · L, as well as
4ζ4β0β1β2 = δ ∈ E (see Remark 3.4.3) and 1

3(β2
1 − t) = ζ3 ∈ L.

Then the element

α =
4ζ3β0β1β2

4ζ4β0β1β2
=
ζ3

ζ4

is also inside E · F · L. Recall that ζ3 = ζ4
12 and ζ4 = ζ3

12, then

α =
ζ3

ζ4
=
ζ4

12

ζ3
12

= ζ12.

This proves that K2 ⊆ E · F · L and, therefore, K2 = E · F · L.

Theorem 3.4.5. The field extension K2/K is a Galois extension of
degree 25 · 3. The Galois group Gal(K2/K) is isomorphic to the group

S3 × C2 ×D4.

Proof. By Lemma 3.4.4.(5) and (4) we have that K2 = E · F · L and
that E,F, and L intersect pairwise trivially. It follows that

Gal(K2/K) ∼= Gal(E/K)×Gal(F/K)×Gal(L/K).
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E · F · L = K2

E = K(δ, c0) L = K(β1, β2)

K(β1) K(β2)

K(δ) F = K(β0) K(ζ3)

K = Q(t)

Figure 3.2: An alternative description of K2.

From Lemma 3.4.4.(1)–(3) we know that

Gal(E/K) ∼= S3,

Gal(F/K) ∼= C2,

Gal(L/K) ∼= D4.

The statement follows.

Remark 3.4.6. Let t0 be an element of Q, and let Kt0 and K2,t0 the
specializations to t0 of K and K2, respectively. Trivially, we have that
[K2,t0 : Kt0 ] ≤ [K2 : K]; sometimes, this inequality can be strict. This
is the case, for example, if t0 = ζ12: in this case, in fact, we have that
[K2,t0 : Kt0 ] = 23 3.

One might then ask whether there exists a t0 such that K2,t0 is
exactly Kt0 . The answer to this question is positive: with the help of
Maarten Derickx, we have been able to find an element α ∈ Q, living
in a number field of degree 64, such that [K2,α : Kα] = 1. See [Fes16]
for the explicit computations.

Remark 3.4.7. For future reference it can be useful to explicitly de-
scribe an isomorphism between Gal(K2/K) and S3×C2×D4. In order
to do so, we will present five automorphisms τi ∈ Gal(K2/K), with
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3.4. The field of definition of PicXη

i = 1, 2, 3, 4, 5, such that:

Gal(E/K) = 〈τ1, τ2〉 ∼= S3;

Gal(F/K) = 〈τ3〉 ∼= C2;

Gal(L/K) = 〈τ4, τ5〉 ∼= D4.

The field K2 is generated by c0, ζ12, β0, β1, β2 over K, so to describe
an element τ ∈ Gal(K2/K) it is enough to describe its action on those
elements. The action of τi on those generators of K2 over K is listed in
the table below. For the convenience of the reader, the table also lists
the action of τi, for i = 1, ..., 5, on other interesting elements of K2.

c0 c1 c2 δ ζ12 ζ4 ζ3 β0 β1 β2

τ1 c0 c2 c1 −δ ζ7
12 −ζ4 ζ3 β0 β1 β2

τ2 c1 c2 c0 δ ζ12 ζ4 ζ3 β0 β1 β2

τ3 c0 c1 c2 δ ζ7
12 −ζ4 ζ3 −β0 β1 β2

τ4 c0 c1 c2 δ ζ11
12 −ζ4 ζ2

3 β0 −β2 β1

τ5 c0 c1 c2 δ ζ7
12 −ζ4 ζ3 β0 β1 −β2

Recalling the notation introduced in Section 1.2, we say that K2 is
the field of definition of a class D ∈ PicXη if Gal(K/K2) is the stabilizer
of D inside GK := Gal(K/K); we say that D ∈ PicXη can be defined
over K2 if Gal(K/K2) is contained in the stabilizer of D inside GK .

We say that K2 is the field of definition of PicXη if Gal(K2/K)
acts freely on PicXη; we say that PicXη can be defined over K2 if all
the elements of PicXη can be defined over K2.

Proposition 3.4.8. The lattice PicXη can be defined over K2.

Proof. First we claim that the lattice Λ′ can be defined overK2. In order
to see this just notice that all the divisors in D′ can be defined over K2,
as well as the automorphisms in G. Therefore we can conclude that all
the divisors in GD′ are fixed by Gal(K/K2) and hence, the lattice Λ′

can be defined over K2.
By Corollary 3.3.23, we know that Λ′ is a finite-index sublattice

in PicXη. Let m ≥ 1 be the index [PicXη : Λ′]. Now let N be an
element of PicXη. Then mN is in Λ′, that is, it can be written as
linear combination of elements of GD′. It follows that mN can be
defined over K2 and so Gal(K/K2) fixes mN . Since the Galois action
is linear and PicXη is torsion-free, it follows that Gal(K/K2) fixes N
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too, i.e., N can be defined over K2. The statement follows from the
generality of N .

Remark 3.4.9. The natural action of the absolute Galois group GK on
the geometric Picard group induces a map from GK to the group of
isometries of PicXη. Let HK be the kernel of this map.

0→ HK → GK → O(PicXη)

Then Proposition 3.4.8 can be rephrased by saying that Gal(K/K2) is
contained in HK . Later we will see that in fact HK = Gal(K/K2), that
is, K2 is the field of definition of PicXη. (cf. Remark 3.7.4).

3.5 More divisors

By Corollary 3.3.23 we know that Λ′ is not the full geometric Picard
lattice of Xη. In order to generate PicXη we then need more divisors
on Xη. Combining different techniques (cf. Remark 3.5.1) we managed
to find more plane conics with splitting pull-back on Xη.

Remark 3.5.1. If we add all the divisors coming from the del Pezzo
surfaces of degree 1 of which Xη is a double cover (cf. Subsection 3.3.2)
to the ones in the set D′, and we take the union of their G-orbits, then
this set generates a sublattice of PicXη that is bigger than Λ′, but that
can still be proven not to be the full geometric Picard lattice, using an
argument as in Corollary 3.3.23.

Failing in finding other six-tangent conics with particular symmetric
equations, we decided to go for an extensive search. A generic conic
inside P2

K is given by a linear combination of the six monomials of
degree 2 in x, y, z. The field K is a function field over an infinite field,
and performing computations on K or over some algebraic extension
of K, like K2, requires a lot of computational power. Therefore an
extensive search for six-tangent plane conics, running through all the
possible 6-tuples of coefficients, looks infeasible over K2 or K. This is
why, once again, we reduced our computations to a finite field.

Fix an integer t0 ∈ Z, and an integral model for Xt0 . Let p be a
prime of good reduction for the fixed integral model of Xt0 and recall
the notation introduced after stating Proposition 3.3.14. Let K2,t0 be
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the number field obtained by specializing K2 to t0, and let p be a prime
of Ot0 above p. Let GD′t0,p := {(D)t0,p : D ∈ GD′} be the set given
by first specializing to t0 and then reducing modulo p the divisors in
D′. Let Λ0 be the sublattice generated by the divisors of GD′t0,p. Notice
that using the specialization and the reduction maps, we get an isometry
between Λ′ and Λ0. From Proposition 3.4.8, it follows that Λ0 can be
defined over κ(p).

Let m be the positive integer for which κ(p) = Fpm . Then we run
through all the 6-tuples a = (a0, ..., a5) ∈ (Fpm)6 such that the conic

Ca : a0x
2 + a1y

2 + a2z
2 + a3xy + a4xz + a5yz = 0

intersects Bt0,p with even multiplicity everywhere. Notice that in this
case we have a finite number of 6-tuples to run through, ‘only’ p6m (or
6 p5m, if we assume at least one coefficient to always be non-zero), and
that for a computer performing computations over a finite field is much
easier than performing computations over (an algebraic extension of) a
function field.

For each conic Ca found in this way, we compute the lattice Λa inside
PicXt0,p, generated by the irreducible components of the pull-back of
Ca on Xt0,p and the divisors of GD′t0,p.

Then the rank of Λa is greater than or equal to the rank of Λ0 and,
if equality holds, then det(Λa) ≤ det(Λ0). Since the specialization map
and the reduction map are both injective and both have torsion-free
cokernel (cf. Propositions 1.2.51 and 1.2.52), if rk Λa = rk(Λ0) and
det(Λa) < det(Λ0) then we know that Ca lifts to a curve C ⊂ P2

K
such

that: the pull-back D of C on Xη splits into two irreducible components
(by Proposition 1.2.27); the classes inside PicXη of the two irreducible
components of D are not in Λ′. Then the components D, together
with the divisors on Xη we already have, generate a bigger sublattice
of PicXη.

Lifting the conic Ca ⊂ P2
Fpm to a conic C ⊂ P2

K2
was hard, since the

coefficients of the equation defining C are roots of polynomials over K
to be computed inside K2. We divided this process into two steps:

1. first we lift Ca to a conic Ct0 defined over some number field;

2. then we lift Ct0 to a conic C defined over K2.
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The first step is the hardest one, and we accomplished it by looking
at the equation of Ca, looking for symmetries and vanishing coefficients,
hoping that these phenomena would reflect a symmetry or a vanishing
coefficient also in characteristic 0 (this was not always the case). Such
assumption would make the computations over K2 easier, possibly easy
enough for a computer to be handled.

The second step was accomplished by considering the coefficients
of Ct0 for different values of t0, and then interpolating these values in
terms of t.

Let D = {D1, ..., D5} be the set of divisors on Xη given by

D1 = D′1, D2 = D′2, D3 = D′3,

and

D4 :

{
2xy − c1z

2 = 0

x3 − y3 − w = 0

D5 :

{
a5x

2 + c5(y2 + z2) + yz = 0

r5x
3 + v5xyz − w = 0

where

a5 =
ζ12(−ζ6 + 2)

9
(β0β1 + β0β2 + β1β2 + t),

c5 =
ζ12(ζ6 − 2)

3
,

r5 =
ζ12(ζ6 − 2)

9
(2β0β1β2 + (2t− 3)β0 + (2t− 3ζ3)β1 + (2t+ 3ζ6)β2),

v5 = −β0 − β1 − β2.

Remark 3.5.2. The divisor D4 was obtained by considering the genera-
tors of the geometric Picard lattice of a del Pezzo surface of which Xη

is a double cover (see Subsection 3.3.2).
The divisor D5 was found using the technique described in Re-

mark 3.5.1.

For every i = 1, ..., 5, the divisor Di ⊂ Xη is defined by two equa-
tions, namely fi = w − gi = 0, where fi and gi are two homogeneous
polynomial in x, y, z of degree 2 and 3 respectively. Since the polynomial
fi has no w-term, we denote by Ci the conic of P2

K it defines.
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Proposition 3.5.3. For every i ∈ {1, ..., 5}, the following statements
hold:

1. the conic Ci ⊂ P2
K intersects the branch locus Bη of π with even

multiplicity everywhere;

2. the divisor Di on Xη is an irreducible component of the pull-back
of Ci via π;

3. the curve Di ⊂ Xη is isomorphic to the conic Ci.

Proof. Analogous to Proposition 3.3.13.

Let GD := { sDi : s ∈ G, i ∈ {1, ..., 5} } denote the set obtained
by letting the automorphisms of G act on the elements of D and let Λ
be the sublattice of PicXη generated by the elements of GD.

Proposition 3.5.4. The lattice Λ is an even lattice of rank 19, sig-
nature (1, 19), discriminant 2533 and discriminant group isomorphic to
C6 × C2

12.

Proof. The proof goes as the proof of Proposition 3.3.14. See [Fes16].

Remark 3.5.5. The set D is minimal in order to obtain a lattice of rank
19 and discriminant 25 33. For any j ∈ {1, ..., 5}, the set

G(D − {Dj}) = {sDi : s ∈ G, i ∈ {1, ..., 5} − {j}}

generates either a lattice of rank less than 19 or a lattice with rank 19
and discriminant at least 25 35. See [Fes16] for the explicit computations
in MAGMA.

Corollary 3.5.6. The lattice Λ is isometric to the lattice (3.4) in The-
orem 3.1.4.

Proof. Let Σ be the lattice given in (3.4). Notice that both Λ and
Σ are indefinite even lattices. From Proposition 3.5.4 we know that
`(AΛ) = 3 < 17 = rk(Λ)−2. Then, by Proposition 1.1.15, we have that
Λ and Σ are isometric if and only if they have the same rank, signature,
and discriminant group. One can easily see that these invariants of Σ
are the same as the invariants of Λ given in Proposition 3.5.4.
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Corollary 3.5.7. The lattice Λ is a finite-index sublattice of PicXη.
The index [PicXη : Λ] divides 12.

Proof. In order to show that Λ is a finite-index sublattice it is enough
to recall that the rank of PicXη is 19 (cf. Corollary 3.3.23) and that Λ
has indeed rank 19.

The second statement follows from Lemma 1.1.5, recalling that
det Λ = 25 33.

3.6 The proof of the main theorem

In this section we show the proof of Theorem 3.1.4. The strategy of
the proof is the same used by Michael Stoll and Damiano Testa in
proving [ST10, Theorem 7].

Using the same notation as before, let Λ ⊆ PicXη be the sublattice
of PicXη generated by the divisors insideGD := {sD : s ∈ G, D ∈ D}.
In what follows, for the sake of easy notation, we will denote the geo-
metric Picard lattice of Xη by simply P .

In the first part of the section we restate some results proved in
Section 1.1, keeping in mind that P = PicXη is an even lattice and Λ
is a finite-index sublattice of P (cf. Corollary 3.5.7).

Let p ∈ Z be a prime and consider the quotient groups Λ/pΛ and
P/pP . They also have the structure of Fp-vector spaces. As in Sec-
tion 1.1, if x is an element of Λ, we denote by [x]Λ and [x]P its class
inside Λ/pΛ and P/pP respectively.

The inclusion map Λ ↪→ P induces the group homomorphism

ιp : Λ/pΛ→ P/pP

defined by [x]Λ → [x]P .

Let Λp denote the kernel of ιp.

Lemma 3.6.1. The following equality holds:

Λp =
Λ ∩ pP
pΛ

.

Proof. Lemma 1.1.17.
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Let [x]P be an element of P/pP , and define the homomorphism

[x]∗ : Λ/pΛ→ Z/pZ

by sending [y]Λ ∈ Λ/pΛ to bP,p([x]P , [y]P ), where bP,p is defined as in
Section 1.1. By lemmas 1.1.18 and 1.1.19 we can define the following
morphism:

φP,p : P/pP → Hom(Λ/pΛ,Z/pZ),

defined by sending [x]P to [x]∗. In the same way, we define the morphism

φΛ,p : Λ/pΛ→ Hom(Λ/pΛ,Z/pZ).

Let kp denote the kernel of φΛ,p.

Lemma 3.6.2. Let p be any prime. The following diagram is commu-
tative.

0 // Λp
� � //
� _

��

Λ/pΛ
ιp // P/pP

φP,p
��

0 // kp
� � // Λ/pΛ

φΛ,p

// Hom(Λ,Z/pZ)

Proof. See Lemma 1.1.21.

Since Λ is an even lattice, we can define k′p to be the subset of kp
given by

{[λ]Λ ∈ kp | λ2 ≡ 0 mod 2p2}.

Lemma 3.6.3. Then k′p contains Λp and it is fixed by all the isometries
of Λ.

Proof. See Lemma 1.1.23.

Remark 3.6.4. Notice that while Λp also depends on PicXη, the sets kp
and k′p depend only on Λ.

Lemma 3.6.5. The sublattice Λ ⊆ PicXη is equal to PicXη if and only
if the map ιp is injective for every prime p whose square divides det Λ.

Proof. See Proposition 1.1.24 and Remark 1.1.29.
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In Section 3.2 we provided the subgroup G of automorphisms of Xη

and we showed that it embeds into the isometry group of PicXη. In
Section 3.4 we computed the Galois group Gal(K2/K), where K2 is the
splitting field of PicXη. The group Gal(K2/K) acts on the classes of
PicXη, by acting on the coefficients of a representative of a class inside
PicXη. This action induces a group homomorphism

Gal(K2/K)→ O(PicXη).

Let G̃ be the group generated by G and the image of Gal(K2/K) inside
O(PicXη), and let D̃ be the set of divisors obtained by letting G̃ act
on D, namely

D̃ := { sDi : s ∈ G̃, i ∈ {1, ..., 5} }.

Let Λ̃ be the sublattice of PicXη generated by the divisors inside D̃.

Proposition 3.6.6. The following equality holds:

Λ = Λ̃.

Proof. Since the group G embeds inside G̃, the lattice Λ is a sublattice
of Λ̃. As in Proposition 3.3.14, one can see that Λ̃ has same rank
and determinant as Λ. See [Fes16] for the explicit computations. The
statement follows.

Corollary 3.6.7. The action of G̃ on PicXη induces an action on Λ.

Proof. The lattice Λ is the lattice generated by the divisors inside D̃,
and D̃ is stable under the action of G̃.

We now have all the ingredients to prove Theorem 3.1.4. The proof
consists of two main steps. Let p be either 2 or 3. First we explicitly
compute k′p, a subset of Λ/pΛ that contains Λp but that is independent

of PicXη; then we show that every non-zero element inside k′p is not an
element of Λp.

Proof of Theorem 3.1.4. By Corollary 3.5.7 we know that the lattice Λ
is of finite index inside PicXη. We want to show that Λ is the full
geometric Picard lattice.
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By Lemma 3.6.5 we have that to prove the statement it is enough to
prove that the map ιp is injective for every prime p whose square divides
det Λ. By Proposition 3.5.4 we have that Λ has discriminant 25 33 and,
therefore, to prove the statement it suffices to prove the injectivity of
ιp for p = 2, 3.

Let p be equal to 2 or 3. From Corollary 3.6.7 we know that G̃
acts on Λ. Since the Fp-vector space Λp is the kernel of a G̃-equivariant
homomorphism, it is G̃-invariant. So if an element [x] is in Λp, its whole
G̃-orbit G̃[x] is contained in Λp. Since the discriminant of Λ is 25 33,
by Proposition 1.1.28, the Fp-vector space Λp can have dimension at
most 2 and 1, for p = 2, 3 respectively. Since Λp is stable under the
action of G̃, it follows that the G̃-orbit of every element in Λp spans an
Fp-vector space of dimension at most 2 or 1, for p = 2, 3 respectively.

Analogous statements hold if we consider the action of just G, in-
stead of the whole G̃.

Let p = 2. In [Fes16] we computed the subset k′p. Inside k′p we found
only one non-trivial G-orbit spanning a vector subspace of dimension at
most 2. Let W denote this subspace. The subspace W has dimension
2, and it admits a basis {w1, w2} such that

w1 = [E1]Λ

w2 = [E2]Λ,

where E1 := ψ0,3,0D4 − D4 and E2 := τ2
2 σ̄(x,y)(ψ0,3,0D3 − D3). Using

the same technique used in Proposition 3.3.14 one is able to check that
E2

1 = E2
2 = −8. Assume w1 is an element of Λp, then E1 is an element

of Λ that is 2-divisible in P , say E1 = 2C, for some C ∈ P . Since
E2

1 = −8, the class C is a −2-class, and then either C ′ or −C ′ is ef-
fective (cf. Lemma 1.2.35). By construction E1 = E1,1 − E1,2, where
E1,1 = ψ0,3,0D4 and E1,2 = D4. Note that both E1,1 and E1,2 are ele-
ments of G̃D, so E2

1,1 = E2
1,2 = −2. Let H be the hyperplane class in

PicXη, and notice that it is ample (in fact 3H is very ample). Since
E1 = 2C with C a −2-class and H is ample, we have that the intersec-
tion number H · E1 = 2H · C is either positive or negative (according
to whether C or −C is effective); on the other hand, E1 = E1,1 − E1,2,
and so H ·E1 = H ·E1,1−H ·E1,2 = 2−2 = 0, yielding a contradiction.
Therefore E1 cannot be 2-divisible. The same argument holds for E2

as well as for any other element of W , since the orbit of every element
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of W spans the whole W , as in k′p there are no 1-dimensional subspaces

generated by G̃-orbits. So we have shown that ι2 is injective.
Let p = 3. We computed the subset k′p. Among the vectors in

k′p, we looked for those whose orbit under G̃ spans a 1-dimensional F3-
vector space. There are no such vectors. See [Fes16] for the explicit
computations.

In this way we proved that ι3 is also injective, and therefore the
injective morphism

ι : Λ→ PicXη

is an isomorphism.

3.7 Some consequences

Theorem 3.1.4 can be useful for gaining additional information about
the geometric Picard lattice of every fiber of X. Also, using the com-
putations done to generate the lattice Λ̃, it is possible to compute the
Galois module structure of PicXη.

Corollary 3.7.1. Let t0 ∈ Q be an algebraic number. Then the surface
Xt0 has either geometric Picard lattice isomorphic to (3.4) or geometric
Picard number 20.

Proof. By Lemma 1.2.51 we know that the specialization map

spt0 : PicXη → PicXt0

is injective and has torsion free cokernel.
This implies that the rank of PicXt0 is greater than or equal to 19

and that

PicXt0/PicXη = coker(spt0) ∼= Zρ(Xt0 )−ρ(Xη).

Since Xt0 is a K3 surface, the rank of PicXt0 can be at most 20. So
ρ(Xt0) ∈ {19, 20}.

Assume that ρ(Xt0) = 19. Then

coker(spt0) = PicXt0/PicXη
∼= Z19−19 = {1}

and therefore PicXη
∼= PicXt0 .
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This result gives us some information about the rational points on
each smooth fiber of X. Recall that if X is a K3 surface defined over
a number field K, we say that X has potentially dense rational points
if there is a finite field extension K ′/K such that the set X(K ′) of
K ′-rational points is Zariski dense inside X(C).

Corollary 3.7.2. Let t0 ∈ Q be an algebraic number such that Xt0 is
smooth. Then the K3 surface Xt0 defined over the number field Q(t0)
admits an elliptic fibration. Also, Xt0 has potentially dense rational
points.

Proof. By Corollary 3.7.1 we have that ρ(Xt0) ≥ 19 > 5. Then, by
[Huy15, Proposition 11.1.3.(ii)], Xt0 admits an elliptic fibration. The
second statement immediately follows from [BT00, Theorem 1.1] or
[BT00, Theorem 1.4 and Remark 1.5].

Proposition 3.7.3. The Galois group Gal(K2/K) acts faithfully on
PicXη, that is, K2 is the field of definition of PicXη.

Proof. By definition, the list D̃ of divisors on Xη is stable under the
action of G̃, and so it is stable under the action of Gal(K2/K). Com-
bining Proposition 3.6.6 and Theorem 3.1.4, the lattice generated by Λ̃
is PicXη. Using the action of Gal(K2/K) on Λ̃, in [Fes16] we explicitly
computed the 19×19 matrices representing the action of Gal(K2/K) on
PicXη. One can then check that none of these matrices is the identity
matrix.

Remark 3.7.4. Let GK denote the absolute Galois group of K, and let
HK be the kernel of the map from GK to O(Xη) induced by the action
of GK on PicXη.

0→ HK → GK → O(PicXη)

In Remark 3.4.9 we have seen that Gal(K/K2) is contained in HK .
Then from Proposition 3.7.3 it follows that Gal(K/K2) = HK . From
this we also get that Gal(K2/K) embeds into O(PicXη), in fact

Gal(K2/K) ∼= Gal(K/K)/Gal(K/K2) ∼= GK/HK ↪→ O(PicXη).

Theorem 3.7.5. Considering the action of Gal(K2/K) on PicXη, the
following statements hold.
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1. H0(Gal(K2/K),PicXη) is isomorphic to Z and it is generated by
the class of the hyperplane section of Xη;

2. H1(Gal(K2/K),PicXη) is isomorphic to C3
2 ;

3. for every non-trivial subgroup H ⊆ Gal(K2/K), we have

H1(H,PicXη) ∼= Ci2,

with i ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10, 12};

4. there are 49 normal subgroups N of Gal(K2/K) for which the
group H1(N,PicXη) is trivial;

5. there are 47 normal subgroups N of Gal(K2/K) for which the
group H1(N,PicXη) is non-trivial.

Proof. By explicit computations. See [Fes16].

Using Theorem 3.1.4, it is also possible to deduce information about
the transcendental lattice.

Proposition 3.7.6. The transcendental lattice T (Xη) is isometric to a
sublattice of U(3)⊕A2(4) of rank 3, signature (2, 1), determinant 25 33,
and discriminant group isomorphic to Z/6Z× Z/12Z× Z/12Z.

Proof. The lattice T (Xη) is the orthogonal complement of PicXη inside
H2(X,Z). Then from Theorem 3.1.4 and Proposition 1.2.36 it immedi-
ately follows that T (Xη) has rank 3 and signature (2, 1).

From Theorem 3.1.4 and Proposition 1.1.12 it follows that T (Xη)
has determinant 25 33, and discriminant group Z/6Z×Z/12Z×Z/12Z.

We only need to show that T (Xη) embeds into U(3) ⊕ A2(4). In
order to see this, recall that at the end of Section 3.2 we have seen
that there is a subgroup Gs acting symplectically (and faithfully) on
H2(Xη,Z). Then, by Lemma 1.2.48, we have that T (Xη) is contained in
H2(Xη,Z)Gs , the sublattice ofH2(Xη,Z) invariant underGs. In [Has12],
Hashimoto gives a complete list of abstract groups acting symplectically
on the second cohomology group of a K3 surface. For each such group,
he also computes the sublattice fixed by the group, that depends only
on the abstract group and not on the surface. Keeping in mind that
Gs is isomorphic to the group A4,3 (cf. Remark 3.2.12), the statement
follows from the tables in [Has12, Subsections 10.2 and 10.3].

104



Chapter 4

A determinantal quartic
K3 surface with prescribed
Picard lattice

In this chapter we present a determinantal quartic K3 surface whose
Picard lattice is isomorphic to a particular lattice of rank 2. This con-
struction is made interesting by Oguiso in [Ogu15], where he showed
that K3 surfaces with such a Picard lattice admit a fixed point free au-
tomorphism of positive entropy and can be embedded into P3 as quartic
surfaces. In [FGvGvL13], it is shown that in fact such surfaces can be
embedded as determinantal quartic surfaces, and an explicit example of
such a surface is provided, giving also an explicit description of the au-
tomorphism predicted by Oguiso. Here the contribution of the author
of this thesis to that paper is presented, except for Proposition 4.2.2
and Remark 4.2.3, due to Bert van Geemen and Alice Garbagnati. All
the material presented here is part of a joint work with Alice Garbag-
nati, Bert van Geemen, and Ronald van Luijk, and it can be found
in [FGvGvL13].

4.1 The main result

Let k be any field, and let x0, x1, x2, x3 denote the coordinates of P3
k.

Let X ⊂ P3 be a surface. We say that X is determinantal if it is defined
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Chapter 4. A determinantal quartic K3 surface

by an equation of the form

X : detM = 0,

where M is a square matrix whose entries are linear homogeneous poly-
nomials in x0, x1, x2, x3.

Let L = L(4,2,−4) be the rank 2 lattice with Gram matrix(
4 2
2 −4

)
. (4.1)

The following is the main result of this chapter.

Theorem 4.1.1. Let R = Z[x0, x1, x2, x3] and let M ∈ M4(R) be any
4×4 matrix whose entries are homogeneous polynomials of degree 1 and
such that M is congruent modulo 2 to the matrix

M0 =


x0 x2 x1 + x2 x2 + x3

x1 x2 + x3 x0 + x1 + x2 + x3 x0 + x3

x0 + x2 x0 + x1 + x2 + x3 x0 + x1 x2

x0 + x1 + x3 x0 + x2 x3 x2

 .

(4.2)
Denote by X the complex surface in P3 given by detM = 0. Then X is
a K3 surface and its Picard lattice is isometric to L.

Remark 4.1.2. Let ϕ ∈ R be the real number given by

ϕ :=
1 +
√

5

2
,

and let K := Q(ϕ) be the number field obtained by adjoining ϕ to Q;
Notice that K = Q(

√
5). Let OK be the ring of integers of K. Then

OK = Z[ϕ]. The ring OK has the structure of a Z-module of rank 2,
and (1, ϕ) is a basis. If x = a+ bϕ is an element of OK , denote by x the
Galois conjugate of x. So, if x = r + s

√
5, then x = r − s

√
5; it follows

that ϕ = 1− ϕ, and hence

a+ bϕ = a+ b− bϕ.

We define the bilinear form b : OK ×OK → Z by

(x, y) 7→ 2(xy + xy).
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4.2. Proof of the main result

It is easy to see that b is a symmetric, non-degenerate bilinear form of
OK . Then (OK , b) is an integral lattice of rank 2. If we consider the
basis (1, ϕ), we immediately see that (OK , b) is isometric to the lattice
L defined in 4.1.

4.2 Proof of the main result

In this section we give a proof of Theorem 4.1.1. Let L be the lattice
defined in 4.1, and let R = Z[x0, x1, x2, x3] and let M ∈M4(R) be any
4 × 4 matrix whose entries are homogeneous polynomials of degree 1
and such that M is congruent modulo 2 to the matrix M0 given in (4.2).
From now until the end of the section, let X be the complex surface
defined by detM = 0.

We will first show that X is a K3 surface with a Picard lattice
admitting L as sublattice. Then we will show that X has Picard number
at most 2, and finally we will prove that L is the whole Picard lattice
of X, hence proving Theorem 4.1.1.

Lemma 4.2.1. Let X be defined as before; then X is smooth.

Proof. Let X2 be the surface over F2 defined by detM0 = 0 mod 2.
Using a computer, one can check that X2 is smooth. Notice that X
equals the reduction of X modulo 2. Then it follows that X is smooth.

Proposition 4.2.2. Let X be defined as before. Then X is a complex
K3 surface and L can be embedded into PicX.

Proof. It immediately follows from [FGvGvL13, Proposition 2.2].

Remark 4.2.3. As shown in the proof of [FGvGvL13, Proposition 2.2],
it is easy to find two divisors of X generating inside PicX a sublattice
isometric to L. By [Bea00, Proposition 6.2], the surface X admits a
projective normal curve of degree 6 and genus 3; let C ∈ PicX be the
class of that curve and let H ∈ PicX be the hyperplane class. Then
the sublattice 〈H,C〉 ⊆ PicX has Gram matrix(

4 6
6 4

)
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Chapter 4. A determinantal quartic K3 surface

and it is isometric to L.

The previous proposition implies that 2 is a lower bound for ρ(X).
To show that 2 is also an upper bound for ρ(X), we follow [FGvGvL13,
Section 5] and we use a method described in [vL07]. For the definition of
the étale cohomology groups H i

ét(S,Q`) and H i
ét(S,Q`(1)) for a scheme

S, with values in Q` or its Tate twist Q`(1), we refer to [Tat65] and
[Mil80, p. 163–165] .

Recall the definition of the étale cohomology groups given in 1.2.37.
The following results show how to give an upper bound for the geometric
Picard number of S.

Proposition 4.2.4. Let K be a number field with ring of integers O,
let p be a prime of OK with residue field k, and let Op be the localiza-
tion of O at p. Let S be a smooth projective surface over Op and set
S = S×OpK and Sk = S×Op k. Let ` be a prime not dividing q = #k.
Let F ∗q denote the automorphism of H2

ét(Sk,Q`(1)) induced by the q-th

power Frobenius Fq ∈ Gal(k/k).

The rank of PicS is at most the number of eigenvalues of F ∗q that
are roots of unity, counted with multiplicity.

Proof. Combining Lemma 1.2.52 and Remark 1.2.37 we get a chain of
primitive embeddings of lattices

PicS ⊗Z Q` ↪→ PicSk ⊗Z Q` ↪→ H2
ét(Sk,Q`(1)) ,

and hence an upper bound for the rank of PicSk ⊗Z Q` is an upper
bound for the rank of PicS too.

Let c be an element of PicXk; then c is represented by a divisor of
Xk, say c = [C], for some C ∈ DivXk. Since PicSk

∼= NSSk is finitely
generated (cf. Theorem 1.2.7), it follows that some power of Frobenius
acts as the identity on Pic k. This means that the rank of PicSk is at
most the number of eigenvalues of F ∗q that are roots of unity, counted

with multiplicity, and therefore the rank of PicS is so too.

See also [FGvGvL13, Proposition 5.2] and/or [vL07, Proposition 6.2
and Corollary 6.4].

Proposition 4.2.5. Let S be a K3 surface over a finite field k ∼= Fq. As
in Proposition 4.2.4, let F ∗q denote the automorphism of H2

ét(Sk,Q`(1))
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induced by the q-th power Frobenius Fq ∈ Gal(k/k), and for any n, let
Tr((F ∗q )n) denote the trace of (F ∗q )n. Then we have

Tr
(
(F ∗q )n

)
=

#S(Fqn)− 1− q2n

qn
.

Furthermore, the characteristic polynomial f(t) = det(t−F ∗q ) ∈ Q[t] of
F ∗q has degree 22 and satisfies the functional equation

t22f(t−1) = ±f(t).

Proof. Let FS be the q-th power absolute Frobenius of S, which acts
as the identity on the k-rational points of S and by raising to the q-th
power on the coordinate rings of affine open subsets ofX. The geometric
Frobenius ϕ = FS×1 on S×kk = S is an endomorphism of S over k (cf.
[Mil80, proof of V.2.6 and pages 290–291]). The set of fixed points of ϕn

is S(Fqn). The Weil conjectures (see [Mil80, Section VI.12 ], recall that
these were proven by Deligne) state that the eigenvalues of ϕ∗ acting
on H i

ét(S,Q`) have absolute value qi/2. Since S is a K3 surface, we
have dimH i

ét(S,Q`) = 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4, respectively (see
1.2.37), so the Lefschetz trace formula for ϕn (see [Mil80, Theorems
VI.12.3 and VI.12.4]) yields

#S(Fqn) =
4∑
i=0

(−1)i Tr
(
(ϕ∗)n|H i

ét(S,Q`)
)

=

= 1 + Tr
(
(ϕ∗)n|H2

ét(S,Q`)
)

+ q2n.

(4.3)

For the remainder of this proof we restrict our attention to the middle
cohomology, so H i

ét with i = 2. By the (proven) Weil conjectures, the
characteristic polynomial fϕ(t) = det(t − ϕ∗|H2

ét(S,Q`)) is a polyno-
mial in Z[t] satisfying the functional equation t22fϕ(q2/t) = ±q22fϕ(t)
(note that the polynomial P2(X, t) = det(1−ϕ∗t|H2

ét(S,Q`)) of [Mil80,
Section VI.12], is the reverse of fϕ). Let ϕ∗(1) denote the action on
H2

ét(S,Q`(1)) (with a Tate twist) induced by ϕ. Note that the fact that
ϕ∗(1) acts on the middle cohomology is not reflected in the notation.
The eigenvalues of ϕ∗(1) differ from those of ϕ∗ on H2

ét(S,Q`) by a
factor q (see [Tat65]), so we have

Tr
(
(ϕ∗)n|H2

ét(S,Q`)
)

= q · Tr
(
ϕ∗(1)n

)
, (4.4)
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and the characteristic polynomial f
(1)
ϕ ∈ Q[t] of ϕ∗(1) satisfies the

functional equation q22f
(1)
ϕ (t) = fϕ(qt), and thus also the equation

t22f
(1)
ϕ (1/t) = ±f (1)

ϕ (t). It follows that the eigenvalues, and hence the
characteristic polynomials, of ϕ∗(1) and ϕ∗(1)−1 coincide. Finally, the
product of the geometric Frobenius ϕ = FS × 1 and the Galois auto-
morphism 1 × Fq on S ×k k = S is the absolute Frobenius FS , which
acts as the identity on the cohomology groups, so the maps ϕ∗(1) and
F ∗q act as inverses of each other (see [Mil80, Lemma VI.13.2 and Re-

mark VI.13.5,] and [Tat65, Chapter 3]). We conclude f = f
(1)
ϕ and

Tr
(
(F ∗q )n

)
= Tr(ϕ∗(1)−n) = Tr(ϕ∗(1)n), which, together with (4.3)

and (4.4), implies the proposition.

Proposition 4.2.6. Let X be defined as at the beginning of the section
Then ρ(X) ≤ 2.

Proof. Let S denote the surface over the localization Z(2) of Z at the

prime 2 given by detM = 0, and write S′ and S′ for the reductions
SF2 and SF2

, respectively. One checks that S′ is smooth and S is
reduced, for instance with MAGMA [BCP97]. Since SpecZ(2) is integral
and regular of dimension 1, the scheme S is integral, and the map
S→ SpecZ(2) is dominant, it follows from [Har77, Proposition III.9.7],
that S is flat over SpecZ(2). Since the fiber over the closed point is
smooth, it follows from [Liu02, Definition 4.3.35], that S is smooth
over SpecZ(2). Therefore, S = SC is smooth as well, so S and S′ are

K3 surfaces. Let F ∗2 denote the automorphism of H2
ét(S

′,Q`(1)) induced
by Frobenius F2 ∈ Gal(F2/F2).

The divisor classes in H2
ét(S

′,Q`(1)) defined by the hyperplane class
and the curve C as in Remark 4.2.3 span a two-dimensional subspace
V on which F ∗2 acts as the identity. We denote the linear map in-
duced by F ∗2 on the quotient W := H2

ét(S2,Q`(1))/V by F ∗2 |W , so that
Tr(F ∗2 )n = Tr(F ∗2 |V )n + Tr(F ∗2 |W )n = 2 + Tr(F ∗2 |W )n for every integer
n. From Proposition 4.2.4, we obtain

Tr(F ∗2 |W )n = −2 +
#S′(F2n)− 1− 22n

2n
.

We counted the number of points in S′(F2n) for n = 1, . . . , 10 with
MAGMA. The results are in the table below.
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4.2. Proof of the main result

n 1 2 3 4 5 6 7 8 9 10

#S′(F2n) 6 26 90 258 1146 4178 17002 64962 260442 1044786

Tr(F ∗2 |W )n −3
2

1
4

9
8 −31

16
57
32 −47

64
361
128 −1087

256 −2727
512 −5839

1024

If λ1, . . . , λ20 denote the eigenvalues of F ∗2 |W , then the trace of
(F ∗2 |W )n equals

Tr(F ∗2 |W )n = λn1 + . . .+ λn20 ,

i.e., it is the n-th power sum symmetric polynomial in the eigenvalues
of F ∗2 |W . Let en denote the elementary symmetric polynomial of degree
n in the eigenvalues of F ∗2 |W for n ≥ 0. Using Newton’s identities

nen =
n∑
i=1

(−1)i−1en−i · Tr(F ∗2 |W )i

and e0 = 1, we compute the values of en for n = 1, . . . , 10. They are
listed in the following table.

n 1 2 3 4 5 6 7 8 9 10

en −3
2 1 0 0 0 0 1

2 0 −1 2

We denote the characteristic polynomial of a linear operator T by
fT , so that

fF ∗2 = fF ∗2 |V · fF ∗2 |W = (t− 1)2fF ∗2 |W .

Because fF ∗2 satisfies the functional equation of Proposition 4.2.5, the
polynomial fF ∗2 |W satisfies t20fF ∗2 |W (t−1) = ±fF ∗2 |W (t). Since the middle

coefficient e10 = 2 of t10 in fF ∗2 |W is nonzero, the sign in this functional
equation is +1, so fF ∗2 |W is palindromic and we get

fF ∗2 |W = t20 − e1t
19 + e2t

18 − · · ·+ e10t
10 − e9t

9 + · · · − e1t+ 1

= t20 + 3
2 t

19 + t18 − 1
2 t

13 + t11 + 2t10 + t9 − 1
2 t

7 + t2 + 3
2 t+ 1.

With MAGMA, one checks that this polynomial is irreducible over Q, and
as it is not integral, its roots are not algebraic integers, so none of its
roots is a root of unity. Hence, the polynomial fF ∗2 = (t− 1)2fF ∗2 |W has
exactly two roots that are a root of unity. This implies that F ∗2 has only
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Chapter 4. A determinantal quartic K3 surface

two eigenvalues (counted with multiplicity) that are roots of unity, and
so, by Proposition 4.2.4, it follows that the rank of the Picard group
PicS ∼= PicSQ) is bounded by two from above.

We have now all the elements to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. By Proposition 4.2.2 we have ρ(X) ≥ 2 and L
can be embedded into PicX.

By Proposition 4.2.6 we have that ρ(X) ≤ 2. It follows that ρ(X) = 2
and L is a finite index sublattice of PicX.

Since detL = −20, from Lemma 1.1.5 it follows that the index
[PicX : L] can only be 1 or 2. Assume [PicX : L] = 2, and let
D be an element of PicX that is not in L. Let H,C be defined as
in Remark 4.2.3, (namely the hyerplane section class and the class of
a curve of degree 6 and degree 3), then (H,C) is a basis of L and
D = aH+bC

2 It follows that D2 = a2 + 3ab + b2. Since L is an even

lattice, D2 is even and so a and b are both even. Then D = a
2H + b

2C
is inside L, getting a contradiction. The contradiction comes from the
assumption that [PicX : L] = 2. So [PicX : L] = 1 and this concludes
the proof.
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4.2. Proof of the main result

Figure 4.1: A visual rendition of the real points of an affine patch of
the complex K3 surface given by detM0 = 0.
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[Sch13] M. Schütt. Two lectures on the arithmetic of K3 surfaces.
In Arithmetic and geometry of K3 surfaces and Calabi-
Yau threefolds, volume 67 of Fields Inst. Commun., pages
71–99. Springer, New York, 2013.

[Seg43] B. Segre. A note on arithmetical properties of cubic sur-
faces. J. London Math. Soc, 18:24–31, 1943.

[Seg51] B. Segre. On the rational solutions of homogeneous cubic
equations in four variables. Math. Notae, 11:1–68, 1951.
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Summary

In the thesis titled “Topics in the arithmetic of del Pezzo and K3 sur-
faces”, the author presents the results he achieved during his PhD. Some
of these results have already been published, or are anyway available
online, see [FGvGvL13], [FvL15] and [FvL16].

The thesis consists of four chapters: the first one is meant to in-
troduce the notation and the basic results that are needed in order to
address the problems treated in the rest of the thesis; each of the other
three chapters deals with a different problem.

In [STVA14], C. Salgado, D. Testa, and A. Várilly-Alvarado show
that all del Pezzo surfaces of degree 2 over a finite field are unira-
tional, except possibly for three isomorphism classes of surfaces. In
2015, Ronald van Luijk and the author of the thesis show that the
statement holds also for the remaining three cases. This result is pre-
sented in the second chapter.

During the Arizona Winter School 2015, A. Varilly-Alvarado, one of
the lecturer of the winter school, asked to compute the Galois module
structure of the Picard lattice of the K3 surfaces in a given 1-dimensional
family. Chapter 3 provides an answer to that question. The whole
chapter is joint work with F. Bouyer, E. Costa, C. Nicholls, and M.
West.

In [Ogu15], K. Oguiso proved that if a K3 surface S has Picard
lattice isometric to a particular rank 2 lattice, then S admits a fixed
point free automorphism of positive entropy and can be embedded into
P3 as a quartic surface. In the same paper, Oguiso remarks that “it
seems extremely hard but highly interesting to write down explicitly the
equation of S and the action of g in terms of the global homogeneous
coordinates of P3, for at least one of such pairs” (cf. [Ogu15, Remark
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4.2]). In [FGvGvL13], A. Garbagnati, B. van Geemen, R. van Luijk,
and the author of the thesis provide an explicit example of such S
and g, described using the global homogeneous coordinates of P3. The
contribution of the author of the thesis to the paper is presented in the
fourth and last chapter.
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Samenvatting

In dit proefschrift, getiteld “Topics in the arithmetic of del Pezzo and
K3 surfaces”, beschrijft de auteur zijn resultaten behaald tijdens zijn
doctoraalonderzoek. Een gedeelte van deze resultaten is reeds gepu-
bliceerd, of is online beschikbaar, zie [FGvGvL13], [FvL15] and [FvL16].

Het proefschrift is onderverdeeld in vier hoofdstukken: het eerste
hoofdstuk biedt een introductie tot de notatie en de resultaten die ten
grondslag liggen aan de latere hoofdstukken; ieder van de drie volgende
hoofdstukken behandelt een op zichzelf staand probleem.

In [STVA14] laten C. Salgado, D. Testa en A. Várilly-Alvarado zien
dat alle del Pezzo oppervlakken van graad 2 over een eindig lichaam
unirationeel zijn, afgezien van mogelijk drie isomorfieklassen van zulke
oppervlakken. In 2015, hebben Ronald van Luijk en de auteur van dit
proefschrift laten zien dat het resultaat ook waar is voor deze overige
drie isomorfieklassen. Dit resultaat is het hoofdresultaat van hoofdstuk
twee.

Tijdens de Arizona Winter School 2015 werd door een van de spre-
kers, A. Várilly-Alvarado, de vraag gesteld hoe de Galois moduulstruc-
tuur van het Picard rooster van de K3-oppervlakken in een gegeven
1-dimensionale familie te bepalen. Het antwoord op deze vraag is een
gevolg van samenwerking met F. Bouyer, E. Costa, C. Nicholls en M.
West en is te vinden in hoofdstuk drie.

In [Ogu15] bewijst K. Oguiso dat als het Picard rooster van een
K3-oppervlak S isometrisch is aan een specifiek rooster van rang 2, dat
er dan een automorfisme van S van positieve entropie bestaat dat geen
dekpunten heeft. Bovendien kan S in dit geval worden ingebed in P3

als een vierdegraads oppervlak. In ditzelfde artikel, merkt Oguiso op
dat het zeer interessant en heel moeilijk lijkt om de vergelijking van S
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en de actie van g in termen van globale homogene coordinaten op P3

expliciet op te schrijven, voor tenminste een van zulke paren (cf. [Ogu15,
Remark 4.2]). In [FGvGvL13] geven A. Garbagnati, B. van Geemen,
R. van Luijk en de auteur van dit proefschrift een expliciet voorbeeld
hiervan. De bijdrage van de auteur van dit proefschrift aan dat artikel
staat in hoofdstuk vier.
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Sommario

Nella tesi intitolata “Topics in the arithmetic of del Pezzo and K3 sur-
faces”, l’autore espone i risultati da lui raggiunti durante gli anni del
dottorato. Alcuni di questi risultati sono già stati pubblicati, o sono co-
munque disponibili online, si veda [FGvGvL13], [FvL15] and [FvL16].

La tesi consiste di quattro capitoli: il primo è dedicato all’introduzio-
ne di nozioni e risultati basilari, necessari alla trattazione dei problemi
considerati nel resto della tesi; ognuno dei successivi capitoli è dunque
dedicato a un diverso problema.

In [STVA14], C. Salgado, D. Testa, e A. Várilly-Alvarado dimostrano
che tutte le superfici di del Pezzo di grado 2 su un campo finito sono
unirazionali, con l’eventuale eccezione di tre superfici, a meno di isomor-
fismi. Nel 2015, Ronald van Luijk e l’autore della tesi hanno dimostrato
l’unirazionalità anche di questi tre casi rimanenti. Questo risultato è
esposto nel secondo capitolo.

Durante l’Arizona Winter School 2015, A. Várilly-Alvarado, uno dei
lecturer della scuola invernale, chiese di calcolare la struttura di modulo
di Galois del reticolo di Picard delle superfici K3 appartenenti a una
particolare famiglia unidimensionale. Nel terzo capitolo viene fornita
una risposta a tale domanda. L’intero capitolo è un lavoro congiunto
con F. Bouyer, E. Costa, C. Nicholls, e M. West.

In [Ogu15], K. Oguiso dimostra che se S è una superficie K3 con
reticolo di Picard isometrico a un particolare reticolo di rango 2, al-
lora S ammette un automorfismo g con entropia positiva e senza punti
fissi e può essere immersa in P3 come superficie quartica. Nello stesso
articolo, Oguiso commenta che “sembra estremamente difficile ma alta-
mente interessante descrivere esplicitamente l’equazione di S e l’azione
di g usando le coordinate di P3” (cf. [Ogu15, Remark 4.2], tradotto
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dall’inglese).
In [FGvGvL13], A. Garbagnati, B. van Geemen, R. van Luijk, e

l’autore della tesi forniscono un esempio esplicito di tali S e g, descritto
usando le coordinate di P3. Il contributo dell’autore della tesi all’articolo
è presentato nel quarto e ultimo capitolo.
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