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ABSTRACT  

Microbial adhesion is an essential step of infections and is mediated primarily by protein-

carbohydrate interactions.  Antagonists of such interactions have become a promising target for 

antiadhesive therapy in a number of infective diseases. Monovalent protein-sugar interactions are 

often weak, and most successful antiadhesive materials consist of multivalent glycoconjugates. 

Although often very effective in hampering microbial adhesion, natural epitopes often show 

limited resistance to enzymatic degradation. The use of carbohydrate mimics (glycomimetics) as a 

replacement for natural sugars potentially allows to achieve higher metabolic stability and also 

higher selectivity towards the desired protein target. In this review we will describe the state of 

the art on the design and synthesis of glycoconjugates and glycomimetics employed for the 

construction of antiadhesive biomaterials.  
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Microbial adhesion and carbohydrates 

Bacterial adhesion to host cells is essential for microbial pathogenesis and is initiated by molecular 

recognition events at the host-guest interface.  Efficient adhesion allows the pathogen to escape 

the natural cleansing mechanisms of the host and provides a means for access to nutrients, 

delivery of toxins and ultimately colonization and invasion of the host, including biofilm 

formation [1].  In most cases, molecular recognition is triggered by specific carbohydrate-protein 

interactions involving glycoconjugates and sugar-binding protein (lectins).  The lectin involved can 

be displayed either on the bacteria or on the host surface. Bacterial adhesins (see Glossary), 

located on the bacterial surface or on pili and fimbriae, interact with specific glycans on host 

tissues to initiate colonization.  Bacteria also use adhesins to adhere to other microbial cells as a 

prerequisite for biofilm formation.  Conversely, specific host lectins, particularly in the immune 

system, recognize pathogens by interaction with their surface glycans.  This step, designed for 

productive pathogen processing and clearance, is often exploited by the pathogen to colonize the 

host.  Thus, it has been proposed that appropriate neo-glycoconjugates able to interfere with 

carbohydrate-protein recognition could be used to inhibit microbial adhesion in the very early 

stages of an infection.  This approach strives to prevent colonization and possibly even to reverse 

biofilm formation, but it does not aim to kill the invading pathogen, so it should not exert selective 

pressure leading to resistance [2].  As bacterial resistance to antibiotic treatment is increasing and 

becoming a pressing public-health concern, anti-adhesive therapies are emerging as a valuable 

alternative or complementary approach.  

Individual interactions between proteins and sugars are usually very weak, a flaw often 

overcome in living systems by multivalency on both the glycan and the lectin side, so that high 

avidity is reached.  This effect, often referred to as “the glycan cluster effect” or “the velcro effect” 

largely depends on the specific features of lectin binding sites, which tend to be flat, large and 
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exposed to the solvent.  Effective antiadhesive therapy requires either high affinity monovalent 

lectin ligands capable of outperforming glycan clusters, or multivalent structures incorporating 

several copies of ligands of moderate affinity on a polyvalent scaffold (dendrimer, polymer, 

nanoparticle).  Depending on the nature of the lectin involved, a large number of glycomimetic 

and neo-glycoconjugate structures have been proposed as antagonists of sugar-protein interaction 

events initiating bacterial and viral infections and recent comprehensive reviews are available [3-

6].  Among the many reported examples, in this paper we will focus on two applications of the 

antiadhesive approach targeting the recognition of host glycans by a bacterial adhesin or the 

recognition of microbial glycans by a human lectin.  These two examples, that have been 

thoroughly investigates in recent years, illustrate how an antiadhesive approach can be used 

against different types of pathogens exploiting the same fundamental (bio)chemical mechanism 

and targeting either host or microbial sugar receptors.  In the first case, the development of 

inhibitors of adherent-invasive (AIEC) and uropathogenic (UPEC) E. coli represents an alternative 

and/or a complementary antibacterial strategy against widespread and difficult-to-treat infections, 

which are increasingly becoming resistant to classical antibiotic therapies.  With the second 

paradigmatic example we aim to illustrate the progress made towards prophylactic antiviral 

agents targeting DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin), a receptor of the 

human immune system that, although discovered only 15 years ago, is rapidly becoming and 

established target for microbial infections.  

 

Inhibitors of adherent-invasive and uropathogenic E. coli 

Infections of the urinary tract are most frequently caused by UPEC adhering to α-

mannopyranosyl ligands on the surface of host’s urothelial cells.  The adhesin involved is called 

FimH and is located on the tip of bacterial type-1 fimbriae, rod-like fibers 1–2 μm long and 7 nm 
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thick, that protrude from the bacterium body.  FimH contains a mannose-specific lectin domain, 

which adheres to terminal mannosides of two glycoproteins, uroplakin and α3β1 integrin, 

abundantly expressed by urothelial cells.  FimH also appears to control adhesion of adherent-

invasive E. coli (AIEC) isolated from Crohn’s disease patients.  

It was established early on that mannosides bearing aromatic aglycones can be used as 

antagonists of FimH mediated bacterial adhesion [7].  Crystallographic studies [8] (pdb: 1UWF, 

1TR7) showed that the lectin domain of the adhesin contains a relatively deep sugar-binding 

pocket lined by aromatic lipophylic residues at the rim (the tyrosine gate, formed by Tyr48, Tyr137 

and Ile52) and established butyl α-D-mannoside 1 (Figure 1a) as a strong antagonist.  Optimization 

of the aglycone chain length led to the discovery of n-heptyl α-D-mannoside (α-D-HM, 2, Figure 1a) 

as a nanomolar FimH antagonist [9].  Recent structural studies [10] have called into question the 

importance of the tyrosine gate in the recognition process of mannosides by the full FimH protein.  

Indeed, NMR relaxation analysis and small-angle scattering X-ray studies revealed that α-D-HM 2 

promotes dimerization of FimH CRD, a process that may lead to overestimation of its binding 

affinity in in vitro studies. Additionally, a Y48A mutant of FimH was found to possess binding 

properties very similar to the wild type protein.  However, the selectivity of aryl mannosides for 

FimH and against a panel of human mannose-binding lectins, a key element for in vivo 

applications, was shown to be determined by the structure of the aglycone [11, 12]. 

Dissociation constants in the nM range have been routinely achieved with both polyvalent 

and monovalent compounds, and, depending on the application, both monovalent mannosides 

and mannosylated high-valency materials are being developed as FImH antagonists.  Prevention 

and treatment of urinary tract infection by UPEC requires orally active FimH antagonists, absorbed 

in the intestine and renally excreted, with finely tuned pharmacokinetic properties, so as to 

achieve an optimal balance between affinity and duration of the therapeutic effect in the bladder.  
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This is typically pursued with monovalent aryl mannosides [13-17] targeted to the FimH binding 

site by their mannose component and carrying extended aromatic aglycones that establish high 

affinity interaction with the tyrosine gate (3-5, Figure 1a).  Extensive medicinal chemistry programs 

are under way, including the use of prodrugs and bioisosters to achieve optimal pharmacological 

profile of these structures [18].  These studies recapitulate the challenges faced by development 

of “traditional” drugs starting from carbohydrates structures, with specific problems and 

difficulties that are not encountered in other medicinal chemistry areas.  

A large number of multivalent structures targeting FimH have been reported for 

applications where intestinal absorption is not required (e.g. against gut-colonizing AIEC), or when 

FimH adhesion is exploited to achieve bacterial aggregation and biofilm disruption.  They vary 

from medium-sized scaffolds [19-23], to dendrimers [3, 24], polymers [25] and nanoparticles [26-

29].  Despite the spacing between fimbriae can vary between strains and depends on growth 

conditions [30], only the largest of these materials are likely to engage more than one protein at 

the time, because the FimH binding site can interact with only one mannose residue at the time 

and each of the fimbriae carries only a single copy of FimH.  In most other systems, the 

multivalency effects observed are not likely to depend on chelation, but rather on increased local 

concentration of the ligand (statistical rebinding).  Affinity improvements have been measured 

also for materials of moderate valency (up to 12 mannose units) in inhibition experiments with 

isolated FimH  

E. coli aggregation in water solution, using large polyvmannosylated constructs is under 

active examination for detection and removal from polluted water [27] and as a model system for 

anti-infective studies in vivo [21] or ex vivo [25, 29].  Glyconanodiamonds (GNDs) have been used 

towards this end.  The surface of nanodiamonds (NDs) [31] 7 (ca. 5 nm in diameter) was 

functionalized by a Diels-Alder reaction with a ortho-quinodimethide generated in situ from 1,2-
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dibromomethylbenzene (Figure 1b).  Sulfonation and partial reduction of the sulfonic acid groups 

yielded nanoparticles that are stable as colloids in water solution (due to the charges of the 

residual sulfonic acid moieties) and can be linked to allyl mannoside 10 by thiol-ene reaction [34].  

Alternatively, the trivalent mannoside cluster 13 was grafted to diamonds carrying carboxy groups 

by amide synthesis with the amino group at its focal point (Figure 1c).  The glycosylated NDs were 

shown to perform as mimics of host cells surface, and mannosylated samples were found to 

specifically adhere to fimbriated bacteria, agglutinating them from polluted water samples. Some 

aspecific effects of the diamond were also observed.  However, only the mannosylated particles 

gave rise to stable aggregates that could not be dispersed by shaking and could be filtered away 

with commercial filters with pore size 10 µM (too large to retain bacteria themselves).  This type of 

materials can be regenerated by concentrated mannose solutions and therefore should be 

appropriate to build continuous filtration cartridges.  The NDs 14, that carry the trivalent mannose 

cluster, displayed higher activity in the aggregation assay, likely as an effect of the increased local 

concentration of the ligands, which should reduce the off rate of the protein from the surface.  

Nonetheless, NDs 11, which are synthetically more accessible, were used for most of the reported 

applications [27].  

Figure 1 
 

The use of GNDs as potent and specific anti-adhesives against E. coli adhesion to human 

bladder cells and their interference with biofilm formation was recently reported [29].  

Functionalization of surface hydroxyl groups of commercial NDs followed by sugar grafting yielded 

particles that were coated either with mannose itself or with a trivalent cluster of a mannose 

mimic (α-thiomannoside) (Figure 1e).  The latter construct, besides increasing the local density of 

mannose residues, is more stable against glycosidase-mediated hydrolysis.  Both types of particles 

did not display toxicity against eukaryotic cells and showed marked anti-adhesive activity in cell-

based assays.  In addition, they were also able to inhibit E. coli induced biofilm formation on 
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polyvinylchloride (PVC) surfaces in a concentration dependent and time-dependent manner.  

Strikingly, the trimannoside cluster 20 was also very active in this assay (only a factor of 2 less 

active than the full ND construct, 21), an unexpected finding because low-valency mannosides 

have rarely been reported to disrupt E. coli biofilms. 

While this paper was under review, an E. coli capture device built on graphene sheets was 

reported [80].  The device self-assembles treating adamantyl-functionalized graphene with 

heptamannosylated β-cyclodextrin (ManCD) and it captures E. coli wrapping it up in the graphene 

sheet in a reversible fashion.  Interestingly, the thermal IR-absorption properties of graphene 

allows to exploit IR-laser irradiation to kill the captured bacteria, thus providing a new strategy 

towards disinfection.  

AIEC eradication from the intestinal tract also does not require adsorption and monovalent 

mannosides have been reported as effective agents in this application [32].  Recently [25], 

polymers of different size and topology were synthesized by co-polymeraztion of N-(α-

mannopyranosyloxy)heptyl]methacrylamide (HMM) with different monomers, to obtain a set of 

defined linear or star glycopolymers carrying from 31 to 269 copies of α-D-HM 2.  Interaction of 

the polymers with FimH adhesin was studied by DLS and AFM, revealing the formation of large 

(1400 nm length x 210 nm diameter) cylindrical aggregates, showing the ability of each 

glycopolymer to accommodate multiple copies of the adhesin.  Consistently, the polymers were 

powerful agglutinators of piliated E. coli, yielding clusters whose size increases with the 

concentration of the glycopolymer chains.  The antiadhesive properties of the polymers were 

tested both in pre- and post-incubation assays of AIEC to T84 intestinal epithelial cells, as a model 

for AIEC adhesion to intestinal host cells in Crohn’s disease patients.  Compared to the monovalent 

counterparts, the polymers produced a significant decrease of residual bacterial adhesion that was 

optimal for linear glycopolymers over the star-shaped ones and improved with the length of the 
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polymer (see Figure 1f for the most active linear glycopolymer L188, 22).  Control experiments 

with similar polymers carrying ethyl mannoside rather than 2 showed no activity and confirmed 

the requirement for optimization of the individual ligands and/or of their spacing from the bulk of 

the polymer chain.  The best polymer 22 was tested in an ex vivo experiment and was shown to 

prevent AIEC adhesion to a model of Crohn’s disease colonic loop (61% decrease of bacteria 

adhering to colonic mucosa).  One of the most interesting conclusions of this study is that the anti-

adhesive and cell aggregation properties of the polymers did not correlate with dissociation 

constants measured in classical interaction studies between FimH and the glycopolymers.  Indeed, 

ELISA assays measuring inhibition of FimH binding to a highly mannosylated protein (RNAseB) 

showed the highest level of inhibition for monovalent α-D-HM 2 and no gain of affinity was 

observed with the polymeric ligands.  Whether this depends on the pathogen scavenging ability of 

the polymers or on the protein dimerization ability of 2 [10], this result suggests that many factors 

beyond ligand affinity need to be taken into account when designing anti-adhesive therapeutic 

strategies. 

Prophylactic antiviral agents targeting DC-SIGN. 

DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin), or CD209, is a tetrameric 

transmembrane protein expressed by immature dendritic cells as a pathogen recognition receptor 

(PRR).  It belongs to the family of calcium dependent (C-type) lectins and binds to pathogens by 

specifically recognizing highly-glycosylated structures displayed at their surface [36-39].  PRR are 

used by dendritic cells to internalize invading pathogens and degrade them in lysosomal 

compartments.  The resulting fragments are exposed on their surface bound to the Major 

Histocompatibility Complex (MHC) and presented to CD4+ T lymphocytes to initiate the specific 

immune response.  In a seminal paper [36], it was shown that HIV takes advantage of DC-SIGN to 

invade the host immune system: after the initial interaction, HIV escapes the normal degradation 



9 

pathway so that whole virus particles are transmitted to CD4+ T cells, a process called infection in 

trans.  The detailed molecular mechanisms by which this occurs have not been fully elucidated, 

however it has also been repeatedly shown that blocking HIV recognition by DC-SIGN effectively 

abrogates in trans infection.  Other pathogens have been shown to similarly hijack DC-SIGN, 

among them the Ebola and Dengue viruses [39].   

The natural ligand of DC-SIGN on HIV surface is the high mannose glycan, (Man)9(GlcNAc)2 

(Man9, Figure 2), a branched glycan from the gp120 envelope protein.  The protein also recognizes 

fucose residues in oligosaccharides of the Lewis antigen type (Figure 2).  The glycans interact 

primarily with a Ca2+ ion exposed at the surface of DC-SIGN carbohydrate recognition domain 

(CRD).  X-ray data are available for complexes of DC-SIGN CRD with mannose oligosaccharides, and 

with the fucosylated oligosaccharide LewisX [40-43].  

Figure 2 

 

Dermal dendritic cells in vaginal, cervical and rectal mucosae express DC-SIGN and are 

among the first cells encountered by HIV.  Hence, a number of groups are working to design DC-

SIGN antagonists [44-50] as topical “microbicides” (or, more appropriately, ‘virustats’ [51]) 

blocking viral adhesion and entry in sexually transmitted HIV infection.  To this end, two additional 

issues need to be taken into account.  First, the antagonists ought to be selective for DC-SIGN and 

against the other numerous mannose specific human lectins operating in the immune system.  In 

particular, attention has been drawn to selectivity against Langerin, a mannose specific C-lectin 

found in Langerhans cells that captures HIV and mediates its internalization into Birbeck granules, 

which results in rapid degradation of the virus.  Arguably, a successful topical inhibitor of HIV 

infection should avoid Langerin and efficiently block recognition by DC-SIGN on the underlying 

mucosal DCs [52].  A more subtle issue is represented by the dual function of DC-SIGN, which 

appears to mediate both tolerance and immunity, depending on the context of the initial 
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interaction [53, 54].  Thus, the downstream effects of engaging DC-SIGN with CRD-targeted ligands 

are still not fully predictable and should be carefully analyzed. 

Multivalency is a key feature of DC-SIGN HIV interaction, since the DC-SIGN tetramers 

presents 4 CRDs to the highly glycosylated gp120 protein.  Although small molecules have also 

been reported as efficient DC-SIGN antagonists [55], the vast majority of the reported antiviral 

agents are based on a multivalent presentation of mannose-based or fucose-based carbohydrates 

or carbohydrate mimics on appropriate multimeric scaffolds.  

 

Mannose-based materials 

Proof of concept was initially achieved using mannose monosaccharides as the active 

ligand on high-valency constructs, able to compensate for the low affinity of mannose itself.  The 

first polyvalent DC-SIGN antagonists, reported a few years ago, consisted of polydisperse Boltorn 

type dendritic polyester platforms functionalized with 16 or 32 copies of mannose.  The inhibitory 

activity of these compounds was initially studied in a pseudo-typed Ebola viral particle infection 

model.  The third generation dendrimer (32 mannose units) was able to inhibit the direct (in cis) 

and trans infection process in a dose-dependent manner (IC50 337 nM), by blocking the interaction 

of DC-SIGN with the envelope viral glycoprotein of Ebola, GP1 [56].  For comparison, an IC50 

1.3 mM was measured for the monovalent ligand α-methyl-D-mannopyranoside in the same 

experiment.  The dendrimer was also found to inhibit the interaction between DC-SIGN and gp120 

immobilized on an SPR sensor with an IC50 in the micromolar range (IC50 50 µM) [57].  To the same 

end, also water-soluble manno-fullerenes [58], and virus-like manno-dendronanoparticles capable 

of mimicking pathogens both in size and in their highly glycosylated surfaces [59], were explored 

(Figure 3a).  The latter were built using as platform Qβ, a recombinant capsid protein derived from 

the bacteriophage Qβ that spontaneously self-assemble to give icosahedral virus-like particles of 
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25 nm ca. in diameter [60].  The particle size is ideal to mimic the interaction of viruses with 

dendritic cells, achieving at the same time a high control over the geometry of the polyvalent 

carbohydrates display.  With a “tag-and-modify” strategy [61] a non-natural aminoacid (L-

homopropargylglycine, Hpg) was introduced as a “tag” at position 16 of the Qβ protein monomer, 

ideally pointing outwards the assembled particle (Qβ-Hpg16180).  Modification of the same 

position by conjugation of tri- or nonavalent manno-dendrons (23 and 24 respectively, Figure 3a) 

bearing an azido functionality at the focal point, allowed the controlled display at a very high 

valency of the mannosylated dendrons.  The final constructs 25 and 26 bear up to 1,620 units of 

mannose and were found to be active in low nM (25) or high pM (26) concentration in the Ebola 

model infection test.  

 

Figure 3 

 

Mannosylated glycopolymers of moderate size were also prepared [49, 62] and were 

shown to inhibit DC-SIGN binding to immobilized gp120 (SPR) in the nanomolar range.  Dynamic 

micelles of manno-glycolipids (27, Figure 3b) have been recently reported [63] to inhibit HIV-1 

trans-infection mediated by human DCs with IC50 in the low micromolar range and more efficiently 

than corresponding covalent, polymeric constructs.  The authors suggest that the high ligand 

density and the dynamic properties of the micelles may allow the structure to adjust upon 

contacting the lectin CRD, in order to establish optimal interactions. 

Displaying more complex oligomannosides (Man9 or fragments thereof), which have a 

higher intrinsic affinity than mannose itself for DC-SIGN, proved worthwhile to a certain extent, 

but at the cost of increased synthetic complexity of the ligand.  Glycodendrons displaying 9 copies 

of Man4 and Man9 instead of mannose led inhibitory activity against gp120 binding to DC-SIGN in 

the low μM range (ELISA assay) [64].  Oligomannoside-functionalized gold nanoparticles were 
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tested in DC-SIGN-mediated trans infection of T cells and showed activity at nanomolar 

concentration [65].  Interestingly, the presentation of simple linear di-, tri-, and tetra- 

oligosaccharides on the particles afforded results similar to those observed for complex branched 

penta- and heptamannosides, suggesting that the increased complexity of the active ligand is not 

required for efficient blockade of the infection.  

Efforts toward ligand optimization have been more rewarding when aimed to replacing 

natural sugars with monovalent glycomimetic structures and/or to designing the multivalent 

constructs for optimal presentation to the DC-SIGN CRD tetramer.  In general, glycomimetics can 

be designed to be higher affinity ligands than mannose or fucose themselves, without excessively 

increasing the synthetic complexity. Additionally, they should be more stable against the action of 

glycosidases, therefore providing longer half-life of the antiadhesive materials in vivo.  To this end, 

a modified shikimic acid derivative 28 was used as a mannose mimic (Figure 4) supported on a 

polymer carefully designed to feature the appropriate size (degree of polymerization 29) and 

ligand density (seven glycomimetics per polymer, 29, Figure 4) to engage multiple copies of DC-

SIGN [66].  With this design, a low micromolar inhibitor of DC-SIGN binding to mannosylated BSA 

was obtained, corresponding to a 1000-fold increase in potency relative to the monomeric 

inhibitor.  

 

Figure 4 

 

Another class of mannose-based glycomimetic antagonists are 30 and 31, mimics of 1,2-

mannobioside and of the linear Man-α-1,2-Man-α-1,6-Man trisaccharide, respectively.  They both 

contain a terminal mannose residue connected to a conformationally locked cyclohexanediol [67] 

that mimics a mannose unit -α-1,2-substituted.  Both 30 and 31 bind to the Ca++ ion in DC-SIGN 

binding site using the non-reducing end residue (X-ray: [68, 69]), inhibit DC-SIGN binding to 
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mannosylated BSA [70], display a measurable selectivity [68, 71] against Langerin, are not 

cyototoxic and are active in the Ebola infection model.  The pseudo-trisaccharide 31 was the first 

of these antagonists to be formulated in polyvalent presentations: the tetravalent-Boltorn-type 

dendron 32 in low micromolar concentrations was shown to block DC-SIGN mediated HIV infection 

both in cellular and cervical explant models [70, 71].  Infection of cervical explants by different 

HIV-1 R5-topic strains was strongly reduced by 32 and, at higher doses, X-4 topic virus was also 

blocked.  The dendron was also found to induce immune activation and proinflammatory 

responses, which contribute to its antiviral activity. 

 

Figure 5 

 

Ligand optimization led to a group of bis-benzylamido derivatives of 30 that approach the 

activity of 31 and display similar or better selectivity against Langerin [72], at a fraction of the 

synthetic cost.  Compound 33 (Figure 5) was selected among them for the synthesis of dendrimers 

based on an erythritol core, that were tested for DC-SIGN binding (SPR inhibition assay) and 

compared to the corresponding versions bearing mannose or 30 [73].  Dendrimers up to the 

valency of 18 were synthesized; representative structures are shown in Figure 5 (34-36).  This 

represents one of the few reported cases where the activity of similar materials decorated with 

lectin ligands of different potencies has been studied in a systematic fashion.  The results show 

that even small affinity differences at the monovalent level are amplified by multivalent 

presentation, as clearly shown by the IC50 values of similar dendrimers of equal valency carrying 

different monovalent ligands.  While IC50 in the low micromolar range are achieved already for 

hexavalent constructs using the most powerful ligand 33, the other mannosylated and pseudo-

mannosylated dendrimers are significanty less effective, even at higher valency.  The hexavalent 
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presentation of 33 in dendrimer 36 provided 100% inhibition of trans HIV infection at 10 µM 

concentration in a cellular model [73] and stimulated early immune response from DCs [74].   

Additionally, 36 also blocked DC-SIGN mediated uptake of Dengue virus (DV) by Raji cells with a 

low micromolar IC50. [74] 

Molecular modelling studies showed that 36 is actually too small to bridge two adjacent 

binding sites on the DC-SIGN tetramer, which are separated by about 4 nm.  Inclusion of a rigid 

spacer of appropriate length at the dendrimer core resulted in a significant improvement of 

activity, presumably by exploiting chelation mechanisms.  The rod-like structure 37 with an IC50 in 

the nanomolar range (Figure 5) was found to be 40 times more active than 36 in HIV trans-

infection studies [75] and has a very interesting potential for actual applications as antiadhesive 

antiviral agent for topical use.  

 

Fucose-based materials 

As opposed to DC-SIGN, Langerin does not bind fucosylated oligosaccharides.  Thus fucose-

based materials were pursued mostly to achieve selective DC-SIGN antagonists.  Complex 

fucosylated Lewis-type antigens supported on PAMAM dendrimers (average of 14-16 copies) [52] 

were analyzed for specificity against Langerin and were indeed found to bind DC-SIGN selectively.  

Glycodendrimers with larger molecular diameter performed better in solid-phase based and 

cellular-binding assays and were more efficient in inhibiting gp120 binding to DC-SIGN, despite 

carrying a similar amount of active ligand.  Glycan spacing may be a logical explanation for these 

findings, but alternative rationales include differences in dendrimer charge, or shape.  

Interestingly, no signs of activation or maturation on DCs exposed to these glycodendrimers were 

observed, suggesting that their immunogenicity may be minimal. 
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Figure 6 

 

Extensive work on the design of fucose-based glycomimetics has been reported [76]; these 

molecules are characterized by the presence of an unnatural α-fucosylamide anchor and bind DC-

SIGN with an affinity similar to that of the LewisX oligosaccharide.  The simplest of these mimics, 

an α-fucosyl-β-alanyl amide, loaded on a gold nanoparticle platform, gave rise to a potent DC-SIGN 

targeting device (38, Figure 6) that did not induce dendritic cell maturation and IL-10 production, 

thus suggesting a possible use as targeted imaging or antigen delivery tool [77]. 

 

Concluding remarks and future perspectives 

Almost ten years have passed since the seminal review [2] suggesting the feasibility of 

antiadhesive therapy of infectious diseases and the potential of polyvalent carbohydrates in this 

context.  The body of research has significantly increased and many potent antiadhesive molecules 

and materials have been proposed.  Here we have highlighted two well-researched examples 

where a bacterial adhesin (FimH) or a human Pathogen Recognition Receptor (DC-SIGN) have been 

targeted with the aim of disrupting their interaction with host or viral glycans, respectively.  A 

handful of other examples have been reported in the literature and recently reviewed, most 

notably for the control of P. aeruginosa adhesion and biofilm formation [78, 79].  Although FimH-

mediated adhesion seems to be effectively controlled also by monomannosides of extended 

aromatic aglycones, most of the current antiadhesive technologies employ high-valency 

glycoclusters.  The platforms involved range from micelles to dendrimers, polymers and 

nanoparticles (gold nanoparticles, nanodiamonds), which has created the very active field of glyco-

nanotechnology.  Glycomimetic ligands used in this context can improve both the stability and the 

activity of the constructs.  The field seems to be ripe for translation of these results into clinical 
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studies, particularly on the FimH target.  Sugar-protein interactions control bacterial adhesion also 

for a number of other pathogens that have not been targeted for antiadhesion therapy, yet.  The 

biochemical and structural data that have been accumulating on sugar-protein interactions, and 

the current ability to decipher the sequence and function of cell-associated glycans, will surely 

offer in the near future the possibility of developing novel tools to interfere in the infection 

process using materials that mimic the natural presentation of adhesion oligosaccharides. 
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Glossary Box 

Adhesin:  Components of bacterial surface that facilitate adhesion to other cells or surfaces. 

Adhesins are generally proteins in Gram-negative bacteria and polysaccharides in Gram-positive 

ones. 

AIEC: Adherent Invasive E. coli, bacteria found in the small intestine of patients with Crohn’s 

disease 

CD209: Alternative name of DC-SIGN 

C-lectins: or C-type lectins, are Ca++-dependent glycan-binding proteins that share structural 

homology in their Carbohydrate Recognition Domain.   

CRD: Carbohydrate Recognition Domain, in a lectin, contains the sugar binding site 

DC-SIGN: Dendritic Cell-Specific ICAM-3 Grabbing Non-integrin, also called CD209. It is a PRR 

membrane receptor of dendritic cells with specificity for mannosylated and fucosylated 

oligosaccharides. 

DLS: Dynamic Light Scattering, is a photophysical technique that allows to determine the 

hydrodynamic radius of a particle  

AFM: Atomic Force Microscopy, is a scanning probe microscopy with very high resolution 

(fractions of nanometers), that can measure local properties of sample surfaces  

ND: NanoDiamonds, carbon-based nanoparticles obtained by detonation that are available in large 

quantities at reasonable price.  

PRR: Pattern Recognizing Receptors, protein receptors expressed by cells of the innate immune 

system. They recognize invading pathogens binding to so-called Pathogen Associated Molecular 

Patterns that are often glycans displayed at the pathogen surface. 

GND: Glyco NanoDiamonds, are nanodiamonds modified on their surface with carbohydrates or 

glycomimetics 

gp120: Glycoprotein of the HIV envelope. It is recognized by DC-SIGN through interaction with its 

high-mannose glycans  

FimH: Bacterial adhesin located on the tip of bacterial fimbriae and responsible for mannose-

mediated adhesion 

ICAM3: A member of the intercellular adhesion molecule (ICAM) family 

Langerin: transmembrane C-type lectin, specifically expressed on Langheran cells. It is also called 

CD207 
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Qβ: recombinant capsid protein derived from the bacteriophage Qβ, it self-assembles to give 

icosahedral virus-like particles 

UPEC: Uropathogenic E. coli, strains of E. coli that are the most common cause of urinary tract 

infections 
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Figure Legends 

Figure 1. Monovalent and polyvalent FimH antagonists. a) Monovalent FimH ligands butyl α-D-

mannoside 1 [8], heptyl α-D-mannoside (α-D-HM) 2 [9], 3 [13], 4 [15] and 5 [17] for antiadhesion 

therapy of urinary tract infections; FimH antagonist 6 [32, 33] was developed for antiadhesion of 

AIEC to intestinal cells; b) Surface functionalization of small NDs 5 by Diels-Alder reaction of an in 

situ generated o-quinodimethide [27].  The sugar 10 is grafted using a thiol-ene reaction [34]; c) 

NDs surface functionalization as in [35].  The trivalent mannoside cluster 13 is grafted by amide 

bond formation [27]; d) and e) Functionalization of NDs 15 by esterification of surface hydroxyl 

groups to yield an azide or alkyne coating (in 16 and 19, respectively).  The sugar (either mannose 

17 or the trivalent cluster of α-thiomannosides 20) is grafted by click reaction to the modified 

surface [28, 29]; f) N-(α-mannopyranosyloxy)heptyl]methacrylamide (HMM) co-polymers 22 are 

powerful agglutinators of piliated E. coli. [25]. 

 
Figure 2. Naturally occurring oligosaccharides that are active DC-SIGN ligands. Mannose 

oligosaccharides Man9 and Man4 and the fucosylated trisaccharide LewisX. 

 

Figure 3. High valency mannosides are powerful antagonists of viral recognition by DC-SIGN. a) 

Hypermannosylated glycodendriprotein [59].  Using nested levels of multivalency this construct 

has the size and shape of a viral capsid and carries up to 1620 mannose units b) Dynamic micelles 

of manno-glycolipids (27) inhibit HIV-1 trans-infection mediated by DC-SIGN expressing human 

dendritic cells [63]. 

 

Figure 4. Multivalent presentation of glycomimetics targeted against DC-SIGN. A modified 

shikimic acid 28 stands for mannose in glycopolymer 29, which antagonizes DC-SIGN binding to a 

highly mannosylated surface [66]. 

 

Figure 5. Mono- and multivalent mannose-based DC-SIGN ligands. Monovalent 

pseudomannobioside 30 and bis-benzylamido derivative 33.  Pseudomannotrioside 31 and its 

tetravalent presentation on a Boltorn type dendron 32. Dendrimers 34-37: representative 

structures of dendrimers with valencies ranging from 3 to 18 prepared bearing either mannose or 
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glycomimetics 30 or 33.  The elongated hexavalent dendrimer 37, carrying 6 copies of 33 is a 

nanomolar inhibitor of HIV trans infection. 

 

Figure 6. Fucose-based glycomimetic gold nanoparticles targeting DC-SIGN. An α-fucosyl-β-alanyl 

amide mimics the LewisX oligosaccharide in the coating of gold nanoparticles 38, that are potent 

DC-SIGN targeting tools [77]. 
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