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Abstract

Models of groundwater systems help to integrate knowledge about the natural

and human system covering different spatial and temporal scales, often from

multiple disciplines, in order to address a range of issues of concern to various

stakeholders. A model is simply a tool to express what we think we know.

Uncertainty, due to lack of knowledge or natural variability, means that there are

always alternative models that may need to be considered. This chapter provides

an overview of uncertainty in models and in the definition of a problem to model,

highlights approaches to communicating and using predictions of uncertain

outcomes and summarises commonly used methods to explore uncertainty in

groundwater management predictions. It is intended to raise awareness of how

alternative models and hence uncertainty can be explored in order to facilitate

the integration of these techniques with groundwater management.
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28.1 Introduction

“Elementary,” said he. “It is one of those instances where the reasoner can produce an effect

which seems remarkable to his neighbour, because the latter has missed the one little point
which is the basis of the deduction.” – Sherlock Holmes in “The Crooked Man”,

The Memoirs of Sherlock Holmes (1893)

“How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth?” – Sherlock Holmes, The Sign of the
Four, ch. 6 (1890)

“You know my methods, Watson. There was not one of them which I did not apply to
the inquiry. And it ended by my discovering traces, but very different ones from those

which I had expected.” – Sherlock Holmes in “The Crooked Man”, The Memoirs of
Sherlock Holmes (1893, Doubleday p. 416)’

The issue of exploring uncertainty in model-based prediction can be described

through three quotes by Sherlock Holmes. Firstly, any particular model may fail to

capture a crucial characteristic of a problem. Hence, prediction needs to involve

exploration of ‘alternative’ models in the hope that one may include the one little

point which is important for obtaining a sufficiently accurate prediction. Secondly,

because the scientific method cannot prove correctness, prediction of uncertain

outcomes needs to focus on eliminating the impossible and incorrect. Thirdly, it is

often necessary to use multiple methods – because groundwater management

involves a hidden and poorly characterized subsurface, there is no definite way of

determining which of many methods will provide the necessary information.

Although the world of all possible methods are only within reach of experts like

Sherlock Holmes, anybody who deals with prediction of uncertain outcomes will

benefit from becoming aware of the approaches available and the principles under-

lying them. This is the purpose of this chapter.

Addressing uncertainty is an indispensable part of prediction. Groundwater

management faces uncertainty on many fronts, in understanding the behaviour of

the groundwater system, anticipating possible future climatic, economic or geo-

political conditions, prioritising objectives, all combining to add ambiguity in the
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Cicognara 7, Milan 20129, Italy

e-mail: alessandro.comunian@unimi.it

R.S. Blakers

National Centre for Groundwater Research and Training & Integrated Catchment Assessment

and Management (ICAM) Centre, Fenner School of Environment and Society, Australian National

University, Building 48A, Linnaeus Way, Canberra, ACT 0200, Australia

B. Fu

National Centre for Groundwater Research and Training & Integrated Catchment Assessment and

Management (ICAM) Centre, Fenner School of Environment and Society, Australian National

University, Building 48A, Linnaeus Way, Canberra, ACT 0200, Australia

712 J.H.A. Guillaume et al.

mailto:alessandro.comunian@unimi.it


evaluation of management options. Focussing on the first, it is apparent that

scientific research has achieved relative success in reducing this uncertainty,

culminating in the ability to approximate the behaviour of a groundwater system

using a ‘model’. There are, however, limits to the ability of science. Far from being

all-knowing, there will always be recognised and unrecognised unknowns that

mean that a model will always be a simplification of reality, and the predictions it

makes will always be uncertain (Hunt and Welter 2010; Guillaume et al. 2012).

A model is simply a tool to encapsulate and transparently express what we think

we know and illuminate what we do not (Doherty 2011). It is only as good as the

conceptualization that was put in it, and when misused can easily result in ‘garbage-

in’ producing ‘garbage-out’. In interpreting results, the end-user should only weight

their assessment of a model’s prediction by the confidence they have in the model

itself. Given the open system being modelled, an end-user and modeller likely will

have sufficient confidence in a family of possible models, each of which makes a

different prediction (Barnett et al. 2012). Creating an ensemble of predictions of an

uncertain outcome ultimately amounts to using many models and their associated

confidence to produce a probability distribution, a confidence interval, or simply a

set of scenarios which are believed to have utility for the modelling purpose.

This chapter provides an overview of commonly used methods to explore

uncertainty in groundwater management predictions. Their common element is

that they help produce ‘alternative’ models in which the end-user may have

sufficient confidence, even though there may be other models which appear better.

The presentation is aimed at end-users of groundwater management predictions,

including managers and water users, to help them become aware of the methods

available to generate alternative models and hence relate to prediction uncertainty.

It may therefore also be of use to modellers to help explain how a technique helps

address uncertainty. It is generally accepted amongst modellers that stakeholders

ultimately decide whether the accuracy of a prediction is acceptable (Refsgaard and

Henriksen 2004). Evaluating prediction accuracy requires understanding how it

was produced. In a modelling context, this means being able to critique the reasons

why a given model(s) was selected. We encourage all end-users, particularly

groundwater managers, to be aware of the different reasoning underlying these

methods. We do not expect the reader of this chapter to become an expert. We focus

primarily on uncertainty in groundwater models, as a fundamental tool for

expressing uncertainty in groundwater management. However, many of the

methods can be used with other types of models. We expect the reader may gain

an understanding of how modellers can ‘dance’ with a model to explore

alternatives. They may be better prepared to participate in judging the value of

the information that was put in the modelling, and hence enhance their confidence

in the predictions of uncertain outcomes produced. We hope this will consequently

help dispel the magical aura and unassailable authority that model predictions often

seem to carry, while giving a language for relating the uncertainty that surrounds all

predictions.

In order to describe methods to explore uncertainty in a groundwater model, the

chapter initially sets the scene by discussing the construction of a clear modelling
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problem definition, and options for using and communicating predictions of uncer-

tain outcomes. The methods covered include creating alternative models with

different input values and different structures (in terms of both conceptualisation

and implementation). Other methods select different parameters using statistical

properties of data as well as fitting observations of (multiple) predicted variables, or

by aiming to test a hypothesis, or estimate the importance of variables. We finish

with methods to anticipate surprise by supporting adaptation and exploring the

‘known unknowns’ of Hunt and Welter (2010). For each method, the general

principles tend to be broadly applicable to other types of models, but are illustrated

with cases specific to groundwater modelling.

28.2 Starting from a Clear Problem Definition

The methods described later in the chapter assume that the scope of the problem has

been defined. In particular, this means that there are clear predictions to make

(Barnett et al. 2012). Models are a simplification of reality, and therefore do not

represent all aspects of reality, but modelling needs to adequately capture the salient

behaviour of the system of interest for a given purpose (Jakeman et al. 2006).

Knowing how predictions will be used should directly inform the modelling

approach because it forms the basis for deciding which simplifications and simula-

tion processes are required in the model, and which can be omitted. For example,

prediction of groundwater head is a fundamentally different (and easier) problem

than prediction of groundwater transport.

Once a clear set of predictions is identified, the problem is expressed in

modelling terms. A model, by definition, is a simplification of a system. As

shown in Fig. 28.1, it produces outputs from given inputs, such as rainfall and

pumping. The response of the model to these inputs can be modified by changing

the value of so-called parameters, such as properties of the modelled aquifer. We

need to know what inputs are needed and what outputs are expected. An alternative

view of a model is the XLRM framework (Lempert et al. 2003). An end-user may

be interested in investigating the effect of different exogenous uncertainties (X) and

policy levers (L), and will be expecting that the relationship (R) captured by a

model and its parameters will produce certain measures (M) to evaluate them by.

Figure 28.2 shows a more detailed example of the use of a groundwater model as

part of a broader integrated model aimed at assessing the impacts of changes in

climate conditions and water allocation policies on surface and groundwater-

Exogeneous uncertainties
Policy Levers Outputs

Inputs

Parameters
Model

]

Relationship

Measures

Fig. 28.1 Diagram of a model
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dependent economic and ecological systems (Jakeman et al. 2014). At the core of

the integrated model is the hydrological component. The hydrological model takes

historical climate data, or future climate projections, as inputs and produces

estimates of natural surface-water flows and groundwater levels as outputs. A

Water Extraction Limits Model uses the estimated water availability and selected

water policy options to calculate the allocations available to landholders. A Farm

Decision Model then calculates actual water usage and farm profit based on the

pre-extraction water availability, crop characteristics and the modelled decision-

making behaviour of landholders. The landholder behaviour is simulated by a social

model, which considers levels of compliance and adoption of various land manage-

ment practices. Finally, the model uses post-extraction surface water flows and

groundwater levels to assess ecological impacts.

Problem definitions may however be uncertain. They may be affected by

constraints on the modelling exercise, such as on cost, time, availability and quality

of data and expertise, not all of which may be apparent from the start. Different

users may have different conflicting objectives or contradictory understandings of

the problem (Brugnach et al. 2008). There may be linguistic ambiguity, with

multiple conflicting interpretations of a statement, particularly where people of

different professional or disciplinary backgrounds are involved. Even if a problem

statement seems qualitatively quite clear, it may be difficult to translate it into

quantitative terms. For example, a groundwater well may be considered unusable or

“dry” before the bore itself becomes dry (e.g. if the water level falls below the pump

intake or if the remaining saturated thickness is insufficient to meet a water need).

Moreover, as more is learned, the predictions required may also evolve. Preliminary

Fig. 28.2 Diagram of an integrated model (Adapted from Jakeman et al. 2014)
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results might show that other scenarios or policies need to be considered, or it might

become apparent that an accurate prediction is simply not possible given the

available knowledge, but alternative predictions might still be possible.

In each case, failure to address uncertainty may result in useless predictions. We

will limit our discussion of uncertainty in problem definition to a few basic

principles:

• Modellers and stakeholders need to work together to define a problem, in a

manner cognisant of the uncertainty involved. All parties should avoid oversim-

plification of defining the problem; guidelines on this issue are available else-

where (e.g. Johnson 2008; Voinov and Bousquet 2010)

• Modellers and stakeholders need to actively seek out different perspectives of

the problem. Casting a wide net for views will help ensure that they encompass

not only those views important now, but also those that may become important

later. This may involve drawing on multidisciplinary teams, considering differ-

ent parts of a system or seeking out contrasting world views (van Asselt and

Rotmans 2002). For example, creating policy and administering may have

different requirements. Modelling techniques allow for multiple objectives to

be included (e.g. Reed and Minsker 2004; Mantoglou and Kourakos 2007), so it

is better to avoid narrowing down prematurely.

• Be prepared to iterate – do not expect it to be correct the first time. Even as the

modelling exercise progresses, remain open to the potential for the problem

definition and conceptual models to change dramatically (Bredehoeft 2005).

This corresponds to a Bayesian view of the world, wherein data are used to

progressively update prior understanding.

In traditional management literature, decision processes are considered to have

three main stages: identifying a problem, developing possible courses of action, and

selecting a course of action (Janssen 1992). However, it is also possible that in

highly complex and deeply uncertain problems, the definition of the problem may

be dependent on one’s idea for solving it (Rittel and Webber 1973). Feasible

objectives of groundwater management can be limited by practical constraints

and uncertainties in how a system will respond to different management

interventions. For example, the objective of groundwater management can be

restoring groundwater storage to a specified level, or improving groundwater

storage relative to the current level. We may find the uncertainty is too high to

allow us to predict the actual groundwater storage, but we can predict the direction

of change (e.g. improve from current) with higher level of certainty. This finding

may trigger us to reconsider what type of management objectives are likely to be

achievable given uncertainties and thus what indicators/predictions we want to

include in the models.

Therefore, in the context of modelling for decision making, an iterative discov-

ery method designed for co-development of management targets (reflected by the

indicators/predictions and model produces) and interventions (reflected by the

drivers and scenarios used in the model) can be useful for exploring feasible
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management targets under deep uncertainties (Fu et al. 2015). As shown in

Fig. 28.3, the method starts by evaluating a scenario describing the current best

solution, for instance the current groundwater policy. Using visualizations of the

solution and its impacts, the user is prompted to identify desirable or undesirable

outcomes of the current best scenario. This provides the starting point for three

cycles, focusing on model assumptions, alternative groundwater management

interventions, and management targets such as maintaining or improving or restor-

ing groundwater storage or the health of groundwater dependent ecosystems. The

outcome of this method is a list of management targets that can and cannot be

achieved, the potential interventions that correspond to these targets, and the

assumptions and uncertainties associated with these interventions. These outcomes

can then be used as inputs for trade-off or cost-benefit analysis of different

interventions to select a suitable course of action.

This iterative discovery method highlights the importance of using models for

capacity building in groundwater decision making under uncertainties. Rather than

simply providing ‘the’ answer, the method and models are used to build a knowl-

edge partnership between modelers and decision makers. This kind of method is

therefore most useful to analysts preparing recommendations rather than decision

makers receiving them.

Fig. 28.3 The iterative discovery method. Starting from the current best scenario, potential

desirable and undesirable outcomes are identified which prompt the three cycles (assumption,

intervention and management target) in order to identify achievable and specific management

targets and alternative interventions under uncertainty (From Fu et al. 2015)
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28.3 Communicating and Using Predictions of Uncertain
Outcomes

The selection of methods to explore uncertainty in predictions depends not just on

the problem, but also on how predictions will be used. This in turn depends on why
uncertainty needs to be addressed. Notwithstanding earlier discussion, there may be

times when uncertainty does not need to be addressed in detail, such as if a wrong

prediction will have no impact, impacts are entirely reversible at little cost, or

adverse effects of omission can be effectively handled by other aspects of decision

making such as engineering safety factors. By way of contrast, we can identify six

reasons that uncertainty in predictions may need to be addressed:

(a) Testing whether a conclusion may be wrong. Model predictions form the

basis for expecting a result – a conclusion that might later turn out to be wrong.

In groundwater management terms, this might include that a project satisfies

regulatory requirements on impacts to groundwater, that an extraction limit

will prevent drawdown, or that a contaminant will not reach a well. The

simplest means of communicating uncertainty in this case is to present a

model(s) that cannot be rejected as implausible and in which a conclusion is

not guaranteed, for example, describing a potential preferential flow pathway

that would be consistent with collected data.

(b) Identifying plans that are robust given uncertainty. Predictions are frequently

used within a planning or decision-making framework. Decision-making

frameworks based on the concept of robustness aim to identify plans that

perform well in a set of models that includes potential unfavourable conditions.

The “min-max” and “min-max regret” optimisation methods find a single

‘robust’ solution that respectively provides the best performance in the worst

model scenario, or minimises regret if the future turns out to be described by a

different model than expected (Kouvelis and Yu 1997). Extensions to this

concept include considering multiple solutions that are close to the best one or

considering more than just the worst case (Kalai et al. 2012). Optimisation under

uncertainty also includes a number of methods that use sets of models with

names such as ‘chance constraints’, ‘stochastic programming’, and ‘probabilistic

ranking’ (Wagner and Gorelick 1989; Gorelick 1990; Chan 1993; Morgan

et al. 1993; Bayer et al. 2008). For example, Feyen and Gorelick (2004) ensure

that water-table elevations in sensitive wetland areas are not excessively lowered

by the withdrawal of groundwater by verifying that constraints on hydraulic head

are satisfied by all model realisations in a ‘stack’ of alternative models. Commu-

nication of uncertainty consists of describing the characteristics of models over

which a plan has been tested.

(c) Identifying uncertain factors that have the greatest influence. The field of

sensitivity analysis examines “how the variation in the output of a model . . .
can be apportioned . . . to different sources of variation” (Saltelli et al. 2004;
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Matott et al. 2009; Saltelli and Annoni 2010). This is typically done by

comparing outputs of large sets of alternative models with known differences

and calculating statistics developed for the purpose (e.g. Doherty and Hunt

2009). This can help to identify dominant and insignificant drivers of system

behaviour, e.g. comparing the effect of pumping in multiple wells on draw-

down or comparing the effect of parameters on a prediction. Understanding

uncertainty in dominant drivers will facilitate associated reductions in uncer-

tainty in model outputs. Communication focuses on providing a ranking of

factors, often with some quantitative measure of significance. Note that a

ranking will likely itself be uncertain because estimates of uncertainty are

themselves uncertain, in which case it may be necessary to test whether the

resulting conclusion may be wrong (See item a in this list).

(d) Prompting changes to models or knowledge.Model uncertainty is related to

a model’s limitations. Understanding the source and nature of that uncertainty

can help improve modelling. This includes lack of knowledge, variability and

contradiction (Refsgaard et al. 2007; Brugnach et al. 2008; Guillaume

et al. 2012). Identifying a knowledge gap may prompt changes that could

reduce uncertainty in predictions, such as collecting additional monitoring

data. Not all uncertainties are equal – identifying important sources of uncer-

tainty and knowledge gaps in models helps to prioritise research efforts

(Fu and Guillaume 2014). Understanding the causes of variability may allow

them to be explicitly modelled. Identifying the existence of contradictory

views may allow the design of experiments to resolve the debate. For example:

model construction itself is a means of dealing with uncertainty, as “the

model-construction process organizes and formalizes potential conceptual

models of a ground water system” (Hunt and Welter 2010). The field of

identifiability analysis aims “to expose inadequacies in the data or suggest

improvements in the model structure” (Matott et al. 2009). Data acquisition

planning aims to inform what data should be collected (Beven 1993; James

and Gorelick 1994; Dausman et al. 2010; Fienen et al. 2010, 2011). Each of

these involves exploring and improving the state of inherently imperfect

models. Communication of uncertain predictions focuses on its implications

for later analyses, or on helping to justify why changes to a model have

been made.

(e) Providing quantitative estimates of uncertainty to other users. The ‘need’

to provide an estimate of uncertainty is among the most commonly cited

reason for using techniques to explore uncertainty in predictions. As the

previous four points indicate, the need reflects a larger context, where uncer-

tainty is a means to a decision-making end. In many cases, information about

uncertainty can be communicated and used without necessarily expressing it in

quantitative form. A more quantitative characterization of uncertainty may

however be used in other processes, such as for risk management and decision

theory (Freeze et al. 1990), and may be required by law in some countries as
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part of cost-benefit analyses or impact assessments. It may also be necessary to

pass uncertainty information on to users without knowing how they will use

it. In these cases, it is considered good practice to present “the modeller’s

estimate of the representative uncertainty given what is known about the

system, the type of prediction(s), and the modeller’s experience with the

model and model calibration” (Hunt 2012).

Estimates of uncertainty can be represented at various levels of detail, as

illustrated in Fig. 28.4 (Walker et al. 2003; Guillaume et al. 2010). For a

given source of uncertainty, there may only be enough information to represent

it as bounds or scenarios, rather than probabilities. For example, it might be

more appropriate to use best-case and worst-case scenarios (Renard 2007;

Paté-Cornell 1996). Where there are many sources of uncertainty, they may

need to be represented at multiple different levels, for example variability of

rainfall as a distribution, future prices of irrigated crops as bounds, and

possible groundwater policies or irrigator pumping patterns as scenarios

(Guillaume et al. 2012). Uncertainties that are known at a high level of detail

can also be represented at lower levels of detail. For example, probabilities can

be represented not just as probability distributions or cumulative distribution

functions, but also using means and standard-deviations, confidence intervals

and an ensemble of samples from a distribution.

In all cases, the consumers of the uncertainty estimate become the primary

focus of how best to relate estimates to others. A groundwater scientist cannot

expect that those needing to use the estimates will understand the academic

terms and metrics (Hunt 2012). Therefore, translation of estimates into formats

of direct use to the decision-making process should be used when possible

(e.g. Hunt et al. 2001). Care needs to be taken when communicating estimates

of uncertainty, particularly in the case of probabilities. Interpretation of

Level:
A continuum of detail of 
knowledge of uncertainty

Certainty

Distribution
Bounds
Incl. extreme case scenarios
Scenario
Where not all possible 
outcomes are known
Recognised ignorance

Unrecognised unknowns

Fig. 28.4 Levels of detail to

represent quantitative

estimates of uncertainty

(Modified after Walker

et al. 2003; Guillaume

et al. 2010)
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probabilities tends to be biased, such that it is better to communicate them as

frequencies, even if the probability refers to the likelihood of a one-off event

(Anderson 1998). Rather than providing tables of probabilities, they may be

better visualised (Barnett et al. 2012) by using maps or graphs. Where possi-

ble, expressing probability with its consequence allows it to be interpreted in

terms of risk, reliability or probabilities of exceedance (Paté-Cornell 1996),

and therefore provides a closer tie to its implications. Crucially, because of the

potential for unrecognised unknowns, presentation of uncertain predictions

should avoid stating uncertainty estimates in isolation. It is preferable to

instead list the specific aspects of uncertainty that have been considered in

producing an estimate, with the understanding that some may have been

overlooked (Hunt and Welter 2010; Roy 2010; Guillaume et al. 2012). There

is an extensive literature on the presentation and interpretation of uncertainty

estimates (Wardekker et al. 2008; Kloprogge et al. 2007), even in the case of

scenarios (Alcamo 2008).

(f) Passing on qualitative information about uncertainty. In a strict theoretical

sense, the presence of unknowable model structure error means that true

uncertainty cannot be characterized (e.g. Beven 2009), and true quantitative

estimates are unattainable. Moreover, where a prediction is used only as a

scenario to prompt discussion, a qualitative approach may be sufficient. The

emphasis in this case may be on how the prediction was produced, and the

limitations involved in doing so. For example, modelling of limits to growth

was deliberately aimed to open a debate (Meadows et al. 1972), and uncer-

tainty primarily needs to be addressed to convince the audience to take the

arguments made by the model seriously. One way of approaching this is

through quality assurance of the modelling process and its constituent

assumptions (Refsgaard et al. 2005; Guillaume 2011). Another is to include

qualitative judgements about the information and how it is produced

(Funtowicz and Ravetz 1990; Kloprogge et al. 2011; Van Der Sluijs

et al. 2005).

28.4 Methods for Generating Alternative Models

The preceding section described multiple ways of using uncertainty information.

Alternative models often form an important construct within them for expressing

uncertainty, where the uncertainty is represented by using a combination, or

ensemble, of model realisations. Each model realisation can consist of different

parameter values, inputs and/or model structures, as described in Fig. 28.1. The

remainder of this chapter briefly presents a variety of methods for generating

alternative models. Each section describes how the method produces models and
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key underlying assumptions with reference to examples. The methods are

summarised in Box 28.1.

Box 28.1 Types of Methods for Generating Alternative Models

28.4.1 Models with different input values

28.4.2 Models with different ‘structures’

• Models with different conceptualisations

• Models with different mathematical and computational implemen-

tations

28.4.3 Models with different parameter values

• Geostatistics: models satisfying statistical properties of data

• Parameter estimation: sampling models that fit data

• Multi-objective parameter estimation: sampling models that fit

contrasting data

• Hypothesis testing: searching for models that fit data and satisfy a

hypothesis

• Sensitivity analysis: selecting models to understand influence of

drivers

28.4.4 Models to anticipate surprise

• Models to support adaptation

• Models that explore the unknown

28.4.1 Models with Different Input Values

Model results depend on the inputs of sources, sinks and system properties and

initial and boundary conditions. Hydraulic heads are given as initial and boundary

conditions at the start of the modelled period and at boundaries of the modelled

aquifer, such as water levels in lakes, rivers or the ocean. Flows are given as

conditions to capture inflows or outflows, whether above ground (e.g. pumping,

streamflow or rainfall), or under-ground to and from outside the model area

(e.g. regional groundwater flow).

Inputs and boundary conditions are approximate, can be expected to contain

errors, and can be expected to change over time. Alternative models can therefore

be created by changing the values of these inputs. We give some examples, but any

model input could be altered. Values can be set based on expectations in the future

(e.g. sea level rise, development of irrigation). Values can be randomly sampled

722 J.H.A. Guillaume et al.



from a feasible range of distribution in what is referred to as a Monte Carlo

procedure. To capture historical variability, observations can be sampled from

existing time series (e.g. Guillaume et al. 2012). Time series can be generated by

using a statistical model, for example a weather generator. Outputs can be used

from other studies, for example climate scenarios. Groundwater models can also be

coupled or integrated with other models, such as ones that models surface water

flows and levels (e.g. Graham and Butts 2005; Kollet and Maxwell 2006; Brunner

and Simmons 2012), water flows and temperature (Hunt et al. 2013), or irrigator

decision making and pumping (Hanson et al. 2010; Guillaume et al. 2012).

Corrections to time series can also be made by using parameters that can be

estimated along with other parts of the model (Vrugt et al. 2008).

These methods assume that it is sufficiently easy to modify the data used in the

modelling software, and that input scenarios chosen are meaningful. It is not cost-

effective or useful to produce many scenarios unless there is a clear way of

summarising and understanding them, whether as a statistical distribution of a

phenomenon, or as standalone scenarios.

28.4.2 Models with Different ‘Structures’

As discussed with reference to Fig. 28.1, modellers distinguish the model proper

from its parameters and inputs. The model proper is referred to as its ‘structure’, and

can differ both in how it is conceptualised, which processes are included or

excluded, and how it is implemented in mathematical and computational terms

(Gupta et al. 2012).

28.4.2.1 Models with Different Conceptualisations
A model’s conceptualisation includes both its physical structure, such as the layout

of an aquifer or catchment, and process structure, including recharge, aquifer flow

and discharge mechanisms (Gupta et al. 2012). In groundwater flow modelling,

physical structure tends to be a greater issue because the subsurface environment is

observed by sampling, which is necessarily incomplete. Surprises in conceptua-

lisation of the physical structure have included (Bredehoeft 2005) flow of brine

within salt, faster flow through unknown factures, lack of evidence of whether a

fault is or is not permeable, and lack of understanding of the connection of surface

and groundwater, at surface seeps or in river bed. Although groundwater processes

are generally well understood, there may still be unanticipated recharge events,

unexpected effects of land subsidence, and overlooked chemical reactions.

There are several ways to provide diverse model conceptualisations, each with

their own assumptions. A simple approach is to use a set of models pre-determined

by hydrogeologists and modellers. However, it cannot be assumed that it is possible

to identify all possibilities (Bredehoeft 2005).

An alternative is to approach modelling iteratively, building on previous effort

(Haitjema 1995, p. 245; Bredehoeft 2005). This involves starting from an initial

simple model, then using a stepwise process to identify limitations and refining
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models to include additional processes or physical structures. For example, there

might be changes in system properties such as subsidence due to potential changes

in human operations, such that indirect factors that influence pumping

(e.g. economic considerations) should be included as part of a model rather than

as a separate input (e.g. Hanson et al. 2010).

Using all possible models can however be overwhelming. Professional judge-

ment or statistical criteria (e.g. Singh et al. 2010) can be used to rank the models or

filter some out to know where to focus. However, this risks eliminating models that

might turn out to better represent the unknowable future, so it is worth treating such

a decision as provisional, and keeping an open mind about returning to the models

excluded.

Fortunately for decision-making, it is often not necessary for the model to

describe precisely what is occurring in the groundwater system. Instead, conserva-

tive estimates can be used that can inform decisions regarding margins of safety

(e.g. in Bredehoeft 1983; Tiedeman and Gorelick 1993). In practice, the best one

can hope for is to identify models that bracket the true value (Doherty 2011), from

which safety factors can be derived from model results even if deliberately over-

and under-estimated (Guillaume et al. 2012). This approach however assumes that

there is a known bad thing to avoid (Freeze et al. 1990) and costs of being overly

conservative are formally recognized.

28.4.2.2 Models with Different Computational Implementations
Modelling requires that conceptualisations be made explicit in mathematical and

computational form. Achieving this level of precision typically requires additional

assumptions, regarding spatial variability, equations and their computational solu-

tion (Gupta et al. 2012).

Most numerical groundwater models discretize space into piecewise-constant

quantities with a nodal grid or mesh. This discretization process raises the question

of appropriate scale, and how the trade-off of computational burden and model

resolution is decided. It is also possible to vary the resolution, and to use a

combination of fine and coarse resolutions (Mehl et al. 2006). No grid or set of

elements will fully capture a conceptual model, so the trade-off is subjective in that

a modeller and end-user have discretion to select a variety of alternative scales

based on practical considerations, such as computational cost. The objective of the

model is of primary importance; models used to determine regional trends in

groundwater level will require a different resolution than those used to evaluate

the local flow of a contaminant.

28.4.3 Models with Different Parameter Values

Parameters play a key role in easily generating alternative models. In the context of

groundwater modelling, Bredehoeft (2005) observed that “in many cases

hydrogeologists were not sufficiently informed to imagine what is the entire set

of possible conceptual models.” In most cases, detailed properties of specific
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groundwater systems would be even more difficult to specify a priori. Instead, the

modeller uses a general structure and defines parameters that when varied will

encompass a variety of specific system properties. Multiple sets of parameter values

can then be specified, or can be estimated or constrained by observations from the

field. A strength of these methods is that hydrogeologists’ knowledge of the broad

scale system, and its effect on local scale properties that result, can be tested and

evaluated; and vice-versa, hydrogeologists’ knowledge can be used to evaluate the

quality of data.

28.4.3.1 Geostatistics: Models Satisfying Statistical Properties of Data
Geostatistics provides a systematic means of using statistical properties of observed

spatial data to generate alternative conceptualisations of physical properties. It

interpolates given data points while satisfying observed heterogeneity and connec-

tivity, which is particularly important for flow of contaminants (Renard 2007).

Data are used to generate a statistical model of heterogeneity (Marsily

et al. 2005). The statistical model is in most cases a ‘variogram’, which captures

the probabilistic degree of dependence between any two points in space

(Delhomme 1979). More advanced techniques, like multiple-point statistics,

adopt a richer model of heterogeneity where the relationship between complex

patterns of points is enclosed in a so called training image (e.g. Mariethoz and Caers

2014), complementing data with additional geological ‘soft’ knowledge (Strebelle

2002; Hu and Chugunova 2008; Meerschman et al. 2013). Both these geostatistical

methods are stochastic, in the sense that once a model of heterogeneity is selected

(variogram or training image), an infinite number of equally probable realisations of

geological heterogeneity can be generated, allowing the exploration of the

corresponding uncertainties.

Four realisations of a multiple-point statistics conditional simulation are

illustrated in Fig. 28.5, together with observed data points. Noting that a sand

channel is observed at points 2, 4 and 3, one might ask: what is the probability

that the points are connected by the same sand channel? In three of the four

realisations presented here the three points belong to the same sand channel

(realisations #1, #2, and #4) while in the other (realisation #3) the point 2 belongs

to a different sand channel. The statistical techniques by which these realisations

are generated allow probabilities to be calculated, given a sufficiently large number

of realisations, if necessary assumptions are satisfied.

Geostatistical methods require dedicated tools and training to be used. They can

require significant computer time, and depending on complexity of the problem, not

all physical relationships in structure can yet be captured by theory. In addition, the

choice of the model of heterogeneity in itself represents a source of uncertainty,

closely related to the conceptualization of the geological model (see Sect. 28.4.2.1).

Notwithstanding these drawbacks, geostatistical techniques are expanding from the

mining and oil industries into the groundwater sector as they represent an important

tool to explore uncertainty-related problems.
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28.4.3.2 Parameter Estimation: Sampling Models That Fit Data
Parameters within a model can be easily manipulated, yielding a family of model

realisations that can be explored, each with the same site geometry or structure

(Barnett et al. 2012). So, for example, many models with different hydraulic

conductivity and storativity in parts of an aquifer might fit the data relatively

well, even if the overall structure of the aquifer is kept constant.

However, groundwater models typically carry sufficient resolution to represent

hydraulic conductivity and storativity at a fine spatial and temporal scale, and it is

often not possible to directly estimate parameters at that level of detail (Barnett

et al. 2012), due to computational difficulties or expense of data collection. Instead,

parameters are estimated for ‘zones’ or ‘pilot points’ from which all the more

detailed parameters are calculated. The use of zones, also known as parameter

lumping, involves subdividing the model based on geological boundaries or other

reasons into regions that will be given the same hydraulic properties. Although this

approach is conceptually simple, disadvantages include that it can be difficult to

define such zones ahead of time, it may become apparent that geological properties

do vary within a zone, and the abrupt changes in hydraulic properties at the edges of

zones may not seem natural. Moreover, such a traditional zonation approach can

reduce the effectiveness of the model to extract information from the field data in

ways that cannot be quantified (Hunt et al. 2007; Doherty and Hunt 2010a). The

pilot points approach involves setting parameter values at a fixed set of points and

Fig. 28.5 Conditioning data and four realizations of a multiple-point statistics simulation of a

sand channel system (The training image used for the simulation is taken from Strebelle 2002)
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then interpolating across the model, using some of the geostatistical techniques

described above (de Marsily 1978; Doherty 2003; Doherty et al. 2010a). This

results in a more automated process generating a smooth variation of hydraulic

properties.

Values of parameters can be estimated with a number of different approaches. A

first aim is to identify a single model that best fits the observed data and the soft-

knowledge of the system, to form a single construct for decision-making purposes.

This initially involves a process of trial and error, trying different parameter values

to progressively minimise the difference between the model outputs and data. This

history matching is then typically automated using formal nonlinear regression

methods, which automate the trial and error testing of parameters to minimise an

‘objective function’ that provides a measure of difference between model outputs

and data. A variety of approaches are available for the design of the optimisation

algorithm (Duan et al. 1992; Vrugt et al. 2003) parameterization approach (Doherty

and Hunt 2010b), and selection of objective functions (Renard 2007; Schoups and

Vrugt 2010; Bennett et al. 2013). Problems can prevent automated parameter

estimation from consistently identifying a unique set of parameters (Sorooshian

and Gupta 1983; Doherty and Hunt 2010b; Barnett et al. 2012). Most notably, all

models simplify the world and leverage additional soft-knowledge to ensure the

complexity of the model does not exceed the information available in the data

(Jakeman and Hornberger 1993; Moore and Doherty 2005; Hunt et al. 2007; Barnett

et al. 2012). This allows a single set of parameters to be identified, in a process

known as regularisation (Moore and Doherty 2006), whether done ad hoc as in trial

and error history matching, or with advanced algorithms (Hunt et al. 2007).

The second type of method does not seek to identify a single best parameter set

but instead identifies realisations, or a set of models, that fit the data well enough by

either statistical or less formal ‘acceptable performance’ criteria. Statistical criteria

make assumptions about the distribution of errors (Schoups and Vrugt 2010),

which, if correct, allow estimation of probability distributions of parameters. All

models are in principle retained, but for a given output (e.g. hydraulic head at a

point in time and space), models that yield extreme output values can be ignored.

For example, by accepting that one in every 100 identical predictions could be

wrong, a 99 % confidence interval can be calculated for the model output.

Depending on the mathematical form of the model, ‘linear methods’ can be used

to provide quick estimates (e.g. Doherty et al. 2010b). Even computationally more

demanding techniques (e.g. when few parameters are used, Markov Chain Monte

Carlo, Keating et al. 2010; Laloy and Vrugt 2012) are still approximate in that all

estimates of uncertainty will be lacking in some regard (Barnett et al. 2012).

Approaches that use less formal ‘acceptable performance’ criteria can be quite

diverse. Set membership methods identify parameters when the error in data is

assumed to be bounded (Walter and Piet-Lahanier 1990). Generalised Likelihood

Uncertainty Estimation (GLUE) extends this idea by defining limits of acceptability

(Beven 2006, 2009) against which randomly sampled models are tested. Similarly

Null Space Monte Carlo (Tonkin and Doherty 2009) uses theory about parameter
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estimation to randomly sample other parameters that satisfy a minimum perfor-

mance requirement.

Many of these techniques that rely on random sampling may require a long time

or many computers to run. This is particularly the case if the model is slow (takes

longer than a few minutes), or if the method requires a large number of model runs

(i.e. highly parameterized models). In these cases, it may be advantageous to use a

‘surrogate model’ (e.g. Keating et al. 2010; Doherty and Christensen 2011; Asher

et al. 2015). A surrogate model uses a smaller number of model runs to then

mathematically approximate a complex model using a simpler function. They

therefore run faster and allow the more complex techniques to still be used.

28.4.3.3 Multi-objective Parameter Estimation: Sampling Models That
Fit Contrasting Data

The methods discussed in the preceding section can be extended to evaluate models

against multiple types of data. As models are necessarily a simplification of reality,

even if a model fits one type of data well, such as a local pumping test, it may not

make accurate predictions of other outputs, such as regional flows. It is known that

information about hydraulic head alone does not allow both recharge and transmis-

sivity to be simultaneously estimated in some conditions (Haitjema 1995, 2006). It

is therefore desirable to use a variety of data sources to determine in which

alternative models we might have sufficient confidence (Kim et al. 1999; Schoups

et al. 2005; Hunt et al. 2006; Renard 2007). Groundwater models in particular can

potentially predict a number of different outputs, for which data can often be

obtained. Flow data can be compared to predicted spring flows and leakage to

and from a river. Temperature data can be compared to temperature resulting from

mixing, e.g. of surface water and groundwater. Salinity or concentrations of some

contaminants measured in the field can be compared to predicted concentrations of

these substances. Use of tracer substances, either introduced or naturally occurring

in the aquifer, can be compared to predicted flow paths, travel time and groundwa-

ter age (time since water entered the aquifer). Recent ecohydrological tracers such

as viruses (e.g. Hunt et al. 2014) allow characterization of very short time of travel

(<3 years) – ages not well characterized by traditional tracers.

It can also commonly occur that a model with a single parameter set is not able to

simulate every prediction equally well. Instead, there is a trade-off between fitting

different datasets that may or may not inform parameters important for prediction,

and the prediction of interest. Therefore, it is recognized that multiple alternative

models may be required to provide better predictions for when there is more than

one prediction of interest (Moore and Doherty 2005).

Where the uncertainty in predictions is too great, models can be used to optimize

data collection to cost-effectively reduce the uncertainty associated with a given

prediction. For example, existing models can be used to estimate the effect of

establishing a new monitoring borehole at particular locations (Dausman

et al. 2010), though results may be affected by the existing assumptions in the

models used (Fienen et al. 2011). New data collection often consists of extensions

of existing head and flux monitoring networks, but can also encompass estimates of
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model parameters obtained from dedicated tests, such as from soil properties of

geological drilling logs, lab tests and from measuring the response in groundwater

level during aquifer tests (Illman et al. 2008).

28.4.3.4 Hypothesis Testing: Searching for Models That Fit Data
and Satisfy a Hypothesis

Alternative models can be explicitly identified that seek to test a hypothesis, rather

than just focussing on fitting data, as is the case with all the previous methods to

obtain models with different parameters. The idea is that communicating uncer-

tainty will involve assessing the probability that something bad might happen

(Freeze et al. 1990; Doherty 2011), for example, a contaminant reaches the drinking

water well, or an ecosystem dies from lack of water. Knowing this ahead of time,

we can explicitly search for a plausible model that might return such a prediction.

One approach is to define criteria by which to test whether alternative models are

acceptable and to find the model that is closest to meeting the hypothesis, for

example the model where the contaminant comes closest to the well, or the

ecosystem has the least volume of water possible. This can be achieved by making

conservative (yet defensible) simplifying assumptions, or by expressing the rele-

vant criteria mathematically and using ‘constrained optimisation’ tools.

Yet, a priori determinations of what is plausible can artificially limit the range of

alternative models evaluated. Moore et al. (2010) remove this limitation by

expressing the problem as a trade-off of predicted value against fit to the observed

data, which in turn allows the user to determine the level of acceptable uncertainty

(Fig. 28.6). Rather than explicitly defining acceptable performance criteria, “Pareto

front” graphs are drawn showing the intrinsic trade-off of the prediction reaching a

Fig. 28.6 Pareto front

defining trade-off between

objective function (lower

numbers indicate better fit)

and predicted particle travel

time (FromMoore et al. 2010)
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societally relevant threshold against the fit given by existing data for the system

simulated. This makes it easy to relate uncertainty in terms of the prediction of

interest, and can be constructed for multiple possible hypotheses and levels of

acceptable criteria.

28.4.3.5 Sensitivity Analysis: Selecting Models to Understand Influence
of Drivers

Purpose-designed methods are also available where the aim is to efficiently identify

uncertain drivers – those that have the greatest influence. These techniques are

commonly referred to as ‘sensitivity analysis’ (Saltelli et al. 2004). These

techniques may be based on local perturbations, where they only provide informa-

tion about the specific model and set of parameters that is perturbed. Local

sensitivity information may not reflect the sensitivity over the full range of plausi-

ble parameters. Therefore, sensitivity methods can also be global, which provides

information about a broader sample of values the different sources of variation can

take. Sensitivity analysis can either provide information about the effect of a factor

keeping all others constant (Saltelli and Annoni 2010), or total effect of a factor

with interactions with other factors (e.g. global sensitivity statistics such as Morris,

Sobol, FAST).

28.4.4 Models to Anticipate Surprise

It is inevitable in all environmental modelling that there might be ‘unknown

unknowns’ and therefore surprises (Bredehoeft 2005; Hunt and Welter 2010).

Model structures are unlikely to serendipitously include processes or structures

that modellers do not know exist. Models that are calibrated by using existing data

are tuned to reflect processes that can be identified from that data. Predictions of

flow of contaminants could be completely underestimated if fractures exist that

were not explicitly incorporated into the model. We discuss two approaches to

creating models that help deal with this surprise: models to support adaptation, and

models to explore the unknown.

28.4.4.1 Models to Support Adaptation
In principle, surprise can be dealt with by adaptive management. Rather than

expecting modelling to anticipate all uncertainty, management plans remain open

to change and plans for an iterative modelling and management process

(Bredehoeft 2005). In the context of groundwater, models are still crucial to this

process. Due to slow response times, when a change is detected, it may already be

too late to do anything about it (Bredehoeft and Durbin 2009). Even if action is

taken immediately, impacts may still worsen before they improve. It is therefore

essential to try to anticipate the delays that might occur within a system. Model

scenarios can also help to predict “sell-by” dates at which current plans might be

expected to fail, to help plan adaptive pathways (Haasnoot et al. 2013). As

discussed earlier, models can be used to help plan the monitoring needed to detect

730 J.H.A. Guillaume et al.



unexpected changes with an understanding of the time until impact. In parallel,

model scenarios can be created to evaluate how future options might be curtailed as

a consequence of short-term choices (Wong and Rosenhead 2000). Methods exist to

allow model parameters to be efficiently updated given new data, and to detect

when the data does not fit the current model (e.g. Cheng et al. 2011). This is

particularly relevant where models are used operationally, such as in mine

dewatering and water supply.

28.4.4.2 Models to Explore the Unknown
Potential surprises can also be anticipated by placing fewer restrictions on what is

considered possible, and using the model prediction as a discussion point. Consid-

ering a larger set of models helps inform adaptation by discussing “what we do if

this situation did occur?” This is even possible if no data are available.

This can be thought of as vulnerability analysis, identifying model properties in

which negative outcomes occur. For example, Nazemi et al. (2013) identify changes

in climate that would result in water scarcity problems, deferring the judgement as to

whether those climate changes could occur. Scenario discovery (Bryant and

Lempert 2010) randomly samples a large number of parameters and then identifies

the values of parameters for which the negative outcome might occur. Break-even

analysis identifies models at tipping points, for example, the infiltration rate or

hydraulic conductivity at which managed aquifer recharge using basin infiltration

is uneconomical (Frey and Patil 2002). Similar techniques have been applied to

identify the circumstances in which two management options are equivalent, i.e. the

point at which a different option becomes superior (Ravalico et al. 2009).

28.5 Conclusions

This chapter discussed a variety of methods for generating alternative models in

order to explore uncertainty in predictions that can be applied to integrated ground-

water management. The methods used depend on how the problem is defined,

resources available, and how it is intended that the predictions of uncertain

outcomes are used. Although many of these methods require hydrogeological,

mathematical and computational expertise, together they provide a broad toolbox

for identifying a more encompassing view of what might happen. Stakeholders are

more likely to be forewarned with a range of plausible alternatives that they may

have to face, which, in turn, can facilitate better decision making.
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