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Abstract. Crystalline plasticity is strongly interlinked with dislocation mechanics

and nowadays is relatively well understood. Concepts and physical models of plastic

deformation in amorphous materials on the other hand — where the concept of linear

lattice defects is not applicable — still are lagging behind. We introduce an eigenstrain-

based finite element lattice model for simulations of shear band formation and strain

avalanches. Our model allows us to study the influence of surfaces and finite size effects

on the statistics of avalanches. We find that even with relatively complex loading

conditions and open boundary conditions, critical exponents describing avalanche

statistics are unchanged, which validates the use of simpler scalar lattice-based models

to study these phenomena.

1. Introduction

Under mechanical loading, amorphous materials such as bulk metallic glasses (BMG)

and binary particle mixtures exhibit a rich variety of collective phenomena such

as strain localization into shear bands and power-law distributed strain avalanches.

Although at the particle level amorphous materials have a disordered structure

like a fluid, they nonetheless show a distinct solid-like yielding behaviour. A key

challenge for understanding the deformation behaviour of such systems is the link

between the microscopic and the macroscale behaviour: on the atomic length scale,

deformations of BMGs have been widely studied by means of molecular dynamic

simulations [1, 2, 3, 4, 5]. However, molecular dynamic simulations are severely limited

in terms of size and time scale, in particular if predictions are to be compared with

experimental results on larger length and time scales together with realistic strain rates.
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A different class of models are mesoscopic models which operate with resolutions

well above atomic distances but still aim to capture relevant features of the

microstructure and its evolution. Among such models [6, 7, 8, 9, 10], a common

approach is to represent an amorphous solid undergoing plastic deformation through

two competing mechanisms: (i) mutual interaction of localized regions of plastic

rearrangements (shear transformations; hereafter STs) through long-range stress fields,

and (ii) disorder in form of a fluctuating distribution of local yield stresses. An advantage

of this approach is that the same two competing mechanisms can be found also in

interface depinning problems for which a number of solution and analysis strategies

are available. In this spirit, plastic yielding can be understood as a depinning phase

transition for which the universality class can be determined through the exponents of

power-laws that characterize the distribution of avalanche sizes.

Determining the universality class has proved to be non-trivial: although the

interactions are long-range and thus one would näıvely expect mean field behaviour

(e.g., in analogy to dislocation systems [11]), behaviour inconsistent with the mean

field universality class has been observed as a consequence of the anisotropy of

interactions [8, 10, 12]. To date, studies of depinning models have focused mainly on

minimalistic models which treat localized plastic rearrangements essentially as a point-

like phenomenon; periodic boundary conditions (PBCs) are employed for obtaining the

resulting stress fields since other boundary conditions drastically increase the complexity

of evaluating elastic interaction kernel functions. While such models are well able to

capture many qualitative features of experimentally obtained results, it is in particular

the use of PBCs that prevents a detailed comparison with small-scale samples where

surface effects become more pronounced. Indeed, it is not a priori clear that surface

effects, which include spatial nonuniformity in external loading, should not affect the

universality of the model.

We therefore take an alternative approach: our mesoscopic model for athermal

amorphous plasticity mimics the dynamics of lattice-based models [8, 10] but is based

on the finite element method (FEM) for calculations of externally applied as well

as resulting internal stresses. This allows us to examine how general boundary and

surface/loading conditions affect plastic deformation in this class of depinning models,

in addition to studying avalanche statistics. FEM models have previously been used

to study the evolution of STs at finite temperature [13, 14, 15, 16]; with our FEM

model we try to close the gap between FEM models rather used from the engineering

community and modelling approaches which have their roots in the statistical mechanics

community, and to this end we present a detailed benchmark of our FEM model with

the aforementioned lattice model [10]. The key results of this work are from our study

of size- and surface effects in non-periodic situations and their impact on the scaling

behaviour. We find that while surfaces have a dramatic effect on observed plastic strain

patterns, they do not affect the universal behaviour of amorphous plasticity and we

measure critical exponents in agreement with those previously observed in lattice-based

models.
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This paper is organized as follows: in Section 2, we recapitulate the main features

of the reference model and introduce the FEM approach taken in our model. As a

fundamental comparison of the two models in a static situation we study in Section 3 the

resulting stresses for an Eshelby inclusion-type of problem. Subsequently, in Section 4

we study how both models perform in complex, time-dependent situations in terms of

avalanches and scaling behaviour and investigate finite size effects for both models in

periodic configurations, as well as size effects and surface effects for the FEM model in

non-periodic situations.

2. The models

The essential approach taken in mesoscale descriptions of amorphous plasticity is to

consider plastic activity in localized units, known as shear transformations (STs), see

e.g., [17, 18]. Microscopically, a ST corresponds to a rearrangement of atoms within

the bulk as a consequence of local shear stress. It represents, however, no unique or

well-defined volume on an atomic scale. This atomic rearrangement in turn induces a

stress state in which the local shear stress again is driving the local deformation. In

the following we introduce the two models used for our comparisons: the lattice-based

model and the finite element model.

2.1. The reference model

A common modelling approach is to idealize STs as point-like objects and divide the

material into a regular lattice-like structure. The properties of each of the cells are then

represented by the point-like STs (as sketched in Fig. 1(a)). This fixed structure makes

it possible to examine how strain localizations result from elastic interactions between

STs [6, 19, 20, 8, 7, 10]. Such lattice-based models typically use periodic boundary

conditions, as in general the Green’s function describing the elastic interaction stresses

is tractable only in infinite or periodic media. Additionally, almost all these models are

scalar models in the sense that they do not consider the full stress/strain tensor but

rather only the (scalar) shear component.

As a reference model we use the two-dimensional lattice model used by Budrikis

and Zapperi [10] to simulate quasi-static loading of a specimen in a shear deformation

situation. This model is essentially the same as that developed by Talamali et al [8, 9],

but operates with an adiabatically-increasing external drive rather than using extremal

dynamics. An important consequence of adiabatic driving is that the reference model

is well-suited to study sizes and durations of strain avalanches, which can be uniquely

identified from the evolution of plastic activity.

In the reference model, the stress acting on each site is the sum of the externally

applied uniform shear stress and the internal shear stresses resulting from the plastic

deformation of every other site in the system. The evolution proceeds as follows: (i) the

system is initialized with the yield stress at each point drawn from a uniform random
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distribution; (ii) the external shear stress is increased so that a single site yields as

consequence of the local shear stress; (iii) the system relaxes by simultaneously shear-

transforming the sites for which the local shear stress is higher than the randomly

prescribed yield stress (new yield stresses are given to these positions); (iv) the changes

in stresses due to plastic shear strain increments are taken to occur instantaneously, and

the local shear stress is recalculated at every point; (v) steps (iii)-(iv) are repeated until

the system reaches the equilibrium (i.e., nothing transforms) and then the algorithm

returns to step (ii). In the simulations presented in Ref. [10], local plastic strains were

only allowed to increase (that is, negative stresses had no effect). In the simulations

presented here, negative plastic shear strain increments are allowed if the local shear

stress is sufficiently negative. In practice, avalanches of net negative shear strain only

occur at early times in the simulation as the external drive biases the stresses to be

positive, and little difference is seen between the two yielding conditions.

In this model, the stress redistribution mentioned in step (iii) is carried out by a

pre-calculated Green’s function. In an infinite system, the Green’s function is given

by K(r) ∝ cos(4θ)/r2. In order to use this kernel in a finite-size simulation, periodic

boundary conditions are imposed. Two possible methods for achieving this are summing

over images, or discretizing the Green’s function in Fourier space and obtaining the real

space kernel by discrete Fourier transform [8]. Regardless of the used periodization

method, the resulting interaction kernel deviates from its infinite-system behaviour

close to the system boundaries. Furthermore, although the ‘image sum’ periodizing

approach retains the short-range behaviour of the infinite system quite well, it was

previously found that small variations in short-range interactions on the lattice can

have strong effects on strain localization and the size distribution of avalanches for

small external stresses. However, it should be emphasized that for the purposes of

determining the properties of the depinning phase transition, the kernels are equivalent

since the universality class of the transition does not depend on short-range interactions.

2.2. The finite element model

Finite element simulations of STs take a different approach. STs within a deforming

material are approximated as two-dimensional elements of finite size. A plastic event

is introduced into the system by adding a shear eigenstrain [21] increment to the

element undergoing a ST, where eigenstrain denotes the stress-free strain that arises

as a consequence of inelastic deformation such as a plastic displacement, thermal

expansion etc. We refer to inclusion as a subset – in our model, coinciding with a

single element – of the system, that is undergoing such a deformation. The actual

strain state of an inclusion within the system is different from the eigenstrain due to the

constricting effects of the surrounding. This mismatch introduces a stress field, which is

the direct consequence of this localized inelastic deformation and which may again cause

plastic deformation. Such simulations are able to replicate the mechanical behaviour

of BMGs at relevant temperature and stress conditions (hundreds of Kelvin and MPa)
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[13, 14, 16]. FEM models have also allowed for studying mechanical properties based on

surface effects and external stress gradients such as indentation [22] or surface roughness

under deformation [23] and are applicable in situations with non-trivial boundary

conditions. Our eigenstrain-based FEM model implements the same algorithm as the

scalar (reference) model and is set up in the spirit of continuum modelling of internal

stresses of dislocation systems [24, 25]. As a preparation we now briefly introduce

relevant equations and notations for the general FEM solution of a solid mechanical

problem with eigenstrains.

(a) (b) (c)

Figure 1. Sketch of the three investigated systems, each of which represents an

Eshelby inclusion: (a) shows the regular lattice of points for the reference model; (b)

shows the optimized FEM mesh, which is refined around the small, circular inclusion

and which for r0 → 0 approaches the analytical Eshelby inclusion solution; (c) shows

the coarser discretization used in the simulations in Section 4; each ST is associated

with one quadratic element of size ∆h, and the stress is averaged over each element.

2.3. The finite element method for solving linear elasticity boundary value problems.

Linear elastic behaviour of a specimen V ⊂ R2 undergoing mechanical deformations can

be described by the following set of equations: given a displacement field u(r) = ui(r),

where r ∈ V is a point belonging to the specimen and ui=1,2 are the components of the

displacement field u(r), we obtain the infinitesimal strain tensor ε(r) = εij(r) as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1)

For brevity, we drop the point of evaluation r, and assume that the Einstein summation

convention is applied for double indices. Equilibrium of the solid body V in the presence

of eigenstrains ε∗ and without body forces is governed by the balance of momentum

equation

∂σij
∂xj

+
∂

∂xj
Cijklε

∗
kl = 0, (2)
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where σij are the components of the Cauchy stress tensor and Cijkl are the components

of the elasticity tensor. Material behaviour is described by the constitutive equation

which relates stresses and strains

σij = Cijklεkl, (3)

where in our model we assume the tensor of isotropic homogeneous media. Using

these equations together with the symmetry of C one can derive an expression in which

only the ui are unknown:

Cijkluk,li +
∂

∂xj
Cijklε

∗
kl = 0 (4)

In general these equations need to be complemented by boundary conditions (BCs),

which are prescribed on the surface ∂V of the body. Those can be either displacement

(‘Dirichlet’) BCs or traction (‘Neumann’) BCs. FEM numerically approximates the

solution of (4) under consideration of those BCs by discretizing the whole domain into

finite-sized non-overlapping elements defined by a set of interconnected nodes. The

solution is based on the so-called weak form which mathematically relaxes the point-

wise exact validity of (4) and the BCs. Finally, the discretized weak form can be solved

as a linear system of equations yielding as solution the displacements of the nodes that

define the elements. Stresses and strains can be obtained at arbitrary points r in a

postprocessing step from (1) and (3) together with a suitable interpolation scheme, the

’shape functions’.

Additional care is required with periodic FEM systems: because periodic FEM

systems identify the displacements of nodes of opposite surfaces with each other and

not strains, the strains obtained from the solution of the eigenstrain problem need to be

corrected [26]. The strain εFEM obtained from the FEM solver must be modified with

the average of the prescribed average eigenstrain 〈ε∗〉,

ε12(r) = εFEM12 (r) + 〈ε∗12〉, where 〈ε∗12〉 =
1

|V|

∫
V

ε∗12(r) dV . (5)

For a shear eigenstrain the normal components εii are not affected.

3. A static benchmark of the two models: the Eshelby inclusion

One cornerstone of the two models is the correct representation of internal shear stresses

τ int and internal shear strains εint which are caused by STs (where we denote by τ int and

εint the resulting shear stress/strain from solution of an eigenstrain problem). Thus, our

first test is concerned with the correct representation of a single Eshelby inclusion that

we position in the center of our computational domain. In a dynamic model with stress

redistribution as investigated later, one of course has to calculate the resulting stresses

and strains for a large number of STs simultaneously. For benchmarking purposes,

though, we compare the result for only one inclusion. Since the problem is linear the

result can simply be transferred to more complex systems by superposition.
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(a) Plots of τ int along the horizontal y = 0 and

diagonal x = y direction

(b) Absolute value of the difference between τ int

for the systems of Fig. 1(a) and 1(c) (showing a

symmetric quarter of the system)

Figure 2. Comparison of shear stress of an Eshelby inclusion for different numerically

approximated systems (see Fig. 1). The main differences arise in the nearest neighbours

of the inclusion and at the corners with a very small parasitic stress as a consequence

of the FEM periodic boundary implementation.

In the reference model a ST is a point-like inclusion (Fig. 1(a)) for which a Green’s

function yields the resulting internal stress for all lattice points. The FEM model, on the

other hand, relies on the approximate computation of the strain field around an inclusion

of finite size. We study the effect of two different FEM discretization approaches on the

elastic interactions and additionally a non-periodic FEM system:

(i) The FEM mesh is locally refined (Fig. 1(b)) consisting of triangular elements using

quadratic shape functions. In the limit case of a vanishing inclusion size r0, the

resulting stress and strain field should converge to the Green’s function for a point

inclusion.

(ii) The FEM mesh is significantly coarser and very regular (Fig. 1(c)) with quadratic

elements, size ∆h and linear shape functions. The value of stress is averaged over

each element and therefore it has the same geometry as the lattice structure of the

reference model.

(iii) The FEM mesh is the same as in (ii) but now we leave the surfaces free, i.e., the

system can deform non-periodically and surfaces alter the internal stress state.

Fig. 2(a) shows τ int plotted along y = 0 and x = y. Obviously, a smaller inclusion

results in a more accurate strain field in the vicinity of the inclusion. In the long

range, all FEM stresses perfectly match the reference solution, whereas without the

PBC correction (5) large deviations would occur. In the short range close to the center
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of the inclusion, however, the stress obtained from FEM is significantly smaller. This

effect is more pronounced for the coarser mesh and is more obvious for the plot along

the horizontal direction y = 0. Additionally, for the coarse square mesh we averaged

the stress for each cell while for the triangular mesh we used the quadratic FEM

shape functions for interpolation giving a higher accuracy but at the price of a high

computational cost.

The absolute differences between the Green’s function for the reference model and

the coarse mesh FEM kernel are shown in Fig. 2(b). The main differences are found

close to the inclusion and in the corners of the system. The latter is an artifact arising

as a consequence of parasitic stresses introduced by the specific implementation of PBCs

in FEM (we have to pin one node to obtain a unique solution). However, this difference

is of the order of 10−6 and is not expected to introduce any appreciable bias in the

emerging statistical properties of the system. The difference in the short range, i.e., the

nearest neighbours, are larger and can affect the pattern of strain localization [10].

Finally, using again the mesh shown in Fig. 1(c), we take a look at a system with

free surfaces with an inclusion in the center, also plotted in Fig. 2(a). The short-range

interactions are unchanged (with respect to the same mesh under PBCs) but the long-

range is dramatically changed by the free surfaces as compared to the periodic systems:

the stress drops to zero because the balance equation (divσ = 0) must be fulfilled for

the (traction-free) surface as well as for the bulk. In the next section we will study

dynamically evolving systems and will see if this affects the nature of the depinning

transition.

4. Avalanches, strain localizations and finite size effects

We now study the evolution of the FEM model with the coarse, quadratic mesh,

Fig. 1(c), and compare it with the reference model. We start with a FEM model that

mimics the reference model as closely as possible (PBCs with a constant external stress)

and proceed towards models that better represent realistic physical systems (surfaces

together with external stress obtained from FEM, see table 1).

The driving force of the time-dependent deformation of the reference model is a

spatially homogeneous, external stress τ ext. In physical terms, this would be equivalent

to a specimen of finite size that has distributed tangential forces of the same magnitude

along each of its surfaces: the forces of opposite surfaces are of opposite directions such

that a pure shear state (Fig. 3(a)) is produced. These forces could then be applied as

Neumann BCs to the FEM model. The magnitude of τ ext is quasi-statically increased

throughout the simulation. To make the system more realistic we will then in model C

obtain τ ext directly from physical boundary conditions that are applied to the specimen.

Concerning the computation of internal stress we consider two types of boundary

conditions that directly affect the elastic interactions of STs: PBCs (model A) and

surfaces (model B and C). As seen in Fig. 2(a) free surfaces force the stresses of the

interaction kernel towards zero close to the surface. This is a direct consequence of the
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external stress internal stress

reference model pure shear periodic Green’s function

model A pure shear periodic FEM

model B pure shear FEM with surfaces

model C FEM simple shear FEM with surfaces

Table 1. Overview over the models and our approaches for computing external

(Fig. 3) and internal stresses.

(a) Pure shear (τ ext = const)

0.00

0.25

0.50

0.75

1.00

(b) Simple shear (τ ext decreases

towards the surfaces)

Figure 3. Deformed state and scaled external elastic stress field under pure shear and

simple shear boundary conditions. The arrows represent the distributed forces that

are responsible for the respective shear deformation state.

governing equations for elasticity (compare the balance equation (2)). As a consequence,

local effects of the external stress become more pronounced, while the influence of non-

local interactions becomes weaker.

The algorithmic set-up of the FEM model is — apart from computing the internal

strains and stresses — identical to the set-up of the reference model, which guarantees

that deviations can easily be analysed. In particular, our yield criterion consists of

comparing the norm of the local shear stress with the local yield stress; we do not

use any tensor-based yield criterion as e.g., based on the Mises yield stress. The yield

stresses are taken for each element from a random uniform distribution between 0 and

1. Upon yielding a plastic increment (i.e., eigenstrain) of magnitude 0.2 is added to

the respective element (the shear transformation of the element). The simulations are

run until a strain of 4.0 is reached, which is the value when the system begins to

flow on average. Note that all values are dimensionless scaled quantities. We assume

throughout that all systems are stress-driven and deform in plane-stress mode (i.e., the

two-dimensional specimen is assumed to be thin as compared to the other directions).

4.1. System behaviour under idealized, pure shear conditions (model A and B)

We now consider only models A and B (Table 1), subjected to the homogeneous

external shear stress (Fig. 3(a)), and compare the finite size scaling, the avalanche

size distribution and plastic shear patterns with the reference model.
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10-2 10-1

1/L

10-3

10-2

f̄ c
−
f
∞ c

ref. model  ν=1.000±0.006

model A  ν=1.040±0.03

model B  ν=1.180±0.01

model C  ν=0.966±0.02

(a) Mean yield stress

10-2 10-1

1/L

10-3

10-2

st
d
(f
c)

ref. model  ν=1.050±0.02

model A  ν=1.010±0.03

model B  ν=1.130±0.01

model C ν=1.200±0.01

(b) Standard deviation of yield stress

Figure 4. Finite size scaling for the mean yield stress f̄c(L) and its standard deviation

std(fc(L)). L denotes the system size and the lines indicate the fit to the data.

Finite size scaling As all phase transitions, the depinning transition is subject to finite

size scaling. The measured yield stress and its standard deviation scale as:

f̄c(L) = f∞c + aL−1/ν (6)

std(fc(L)) ∝ L−1/ν (7)

where f̄c(L) is the mean yield stress of all simulations measured in a system of linear

size L, f∞c denotes the yield stress in an infinite system and std(fc(L)) is the standard

deviation of the obtained yield values. Fig. 4 shows the mean yield stress for system

sizes of L = 16, 32, 64, 128, 256. We observe that similar to the reference model (blue

rectangles) the finite size scaling holds for both pure shear FEM models — the periodic

model A (green triangles) as well as for model B with free surfaces (black circles) —

and as the system becomes larger yielding occurs on average at lower stresses and

simultaneously the variance decreases. Fitting the data with (6) and (7) gives the finite

size exponent ν. If we average the exponents for mean and for standard deviation,

as both should be the same, we find ν = 1.004 ± 0.006 for the reference model,

ν = 1.03 ± 0.02 for the periodic model A and ν = 1.16 ± 0.07 for model B with

free surfaces. The values found for the critical yield stress, i.e., the interpolation of the

mean yield stress for a system of infinite size, are f∞c ≈ 0.722 for both FEM models and

f∞c ≈ 0.709 for the reference model. The values for the reference model and model A

ideally would be identical. We attribute the small difference between the latter models

to the different numerical implementations of the model.

Avalanche size distributions We now compare statistics of avalanche size distributions

for the two pure shear FEM models A and B with the reference model. Initially, the

system is in equilibrium until the necessary stress to trigger a first plastic event (ST)

is reached. This causes an avalanche of further plastic events together with a stress
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redistribution until the system reaches stress equilibrium again. The size of an avalanche

is defined as the accumulation of plastic strain in between two successive equilibrium

states. Analysing FEM simulations near the critical point we find that the avalanches

show a power-law distribution with a cut-off that features a distinct ’bump’ (Fig. 5(a)).

The distributions appear to be independent of the boundary conditions (differences seen

for the L = 256 systems are likely a result of the relatively small number (∼ 200) of

realizations for that system size, rather than a real difference).

10-1 100 101 102 103 104 105

S

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(S

)

model B
model B fit
model A
model A fit

(a) FEM model under pure shear with PBCs (A)

and free surfaces (B)

10-1 100 101 102 103 104 105

S

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(S

)

model B
model B fit
model C
model C fit

(b) FEM model with surfaces under pure shear (B)

and simple shear (C)

Figure 5. FEM avalanche size distributions and respective fits, near plastic yield as

a function of system size (16, 32, 64, 128, 256 starting from the left most pair of curves)

and for all three FEM models (shown as data points). The distribution is fitted to (8)

from which the exponents τ and D are obtained.

As in Ref [10], we fit these distributions with the functional form:

P (S) = c1S
−τ exp(c2S − c3S2) (8)

For a system size of 256 × 256, the pure shear FEM models A and B both yield an

exponent of τ = 1.36± 0.01 (Fig. 5(a)), which agrees with the value τ = 1.342± 0.004

found for the reference model in [10]. The upper tail of the avalanche size distribution

can be characterized by a cutoff S0, which scales with distance from the critical point

as

S0 ∝ (fc − f)−1/σ. (9)

We measure 1/σ by measuring the integrated exponent of the avalanche size distribution,

that is, the exponent describing the power law part of the distribution when all

avalanches are counted, rather than at criticality, which is given by τ + σ. We find

1/σ = 2.6± 0.1 for FEM models A and B (Fig. 6(a)), which is slightly larger than the

value 1/σ ≈ 2.3 found previously for the reference model [10]. However, as noted in

that work, the measured value of 1/σ can depend quite strongly on the exact details of

localization of plastic strain.
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10-6 10-5 10-4 10-3 10-2 10-1

S(fc−f)
2.6

10-2

10-1
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P
(S

)(
f c
−
f)
−

2.
6τ

fc−f

0.01

0.02

0.03

0.04

0.05

0.06

(a)

10-6 10-5 10-4 10-3 10-2 10-1 100

S(fc−f)
2.6

10-3

10-2

10-1

100

101

102

103

104

105

106

107

P
(S

)(
f c
−
f)
−

2.
6τ

fc−f

0.01

0.02

0.03

0.04

0.05

0.06

(b)

Figure 6. Collapsed avalanche distributions according to Eq. 9 for a system of size

256 × 256 for different stress values near plastic yield. The cutoff of the distribution,

S0, scales as S0 ∝ (fc−f)−2.6 under pure shear (model B) (a) and as S0 ∝ (fc−f)−2.6

under simple shear (model C) (b).

At the yield point, the cutoff of the avalanche size distribution depends on system

size L as

S0 ∝ LD. (10)

In our FEM simulations, we measure D by taking S0 =
√
c3, where c3 is the fitting

parameter of (8). We find D = 1.87 ± 0.01 for model A and D = 1.89 ± 0.02 for

model B. Data collapse for this scaling is shown in Fig. 7. These values are broadly in

agreement with the value D ≈ 2.0 ± 0.1 obtained by scaling collapse for the reference

model, as shown in Fig. 8.

Localization of plastic strain As a consequence of the elastic interaction between the

STs, we can observe how shear bands appear, as shown in Fig. 9. To analyse the effect

of free surfaces on plastic strain localization we ensemble average the plastic strain map

of approximately 60000 simulations. We observe that for the periodic pure shear model

A (Fig. 9(b)) the average strain map is constant. The average plastic strain value of 4.0

corresponds to the plastic strain at which we terminate our simulations. If we compare

to the non-periodic pure shear model B, we observe that the strain distribution is no

longer constant but rather decays towards the surfaces (Fig. 9(d)). In particular, the

value near the surfaces is lower than the average of 4.0, and towards the center the value

is above the average. Since the surfaces can deform more freely the surface stresses are

reduced. Hence, the plastic strain is lower which is compensated by an increase in the

inner region. On the other hand, the free surface boundary conditions do not have a

visible effect on the strain patterns within the bulk. For example, the typical width of

strain localizations remains the same in Fig. 9(a) and (c), indicating that the localization

width is governed by short-range interactions, which is in agreement with Ref. [10].
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Figure 7. Collapsed avalanche distributions according to (10) near plastic yield.

The cutoff of the distribution, S0, scales as S0 ∝ L1.89 under pure shear (model B) (a)

and as S0 ∝ L1.90 under simple shear (model C) (b).

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

S/L2

10-3
10-2
10-1
100
101
102
103
104
105
106
107
108
109

P
(S

)L
2τ

16×16

32×32

64×64

128×128

1024×1024

Figure 8. Reference model: near plastic yield, the cutoff S0 of the avalanche size

distribution scales as S0 ∝ L2, as evidenced by scaling collapse of the distributions.

4.2. System behaviour under heterogeneous, simple shear conditions (model C)

So far we have only utilized the FEM for computing the resulting stress that are caused

by an eigenstrain distribution. As introduced above, FEM can easily handle loading

situations that are more realistic than the uniform pure shear loading that we used

in the previous section. Therefore, we now use FEM to compute both the internal

and external stresses (Table 1). The external stresses arise from simple shear boundary

conditions (Fig. 3(b)), in which the bottom edge of the system is fixed stationary and the

top is fixed vertically but can move horizontally under the effect of an applied lateral

traction force. The left and right surfaces remain free of tractions or constrictions

(free surfaces as in models A and B). The resulting external stress field is shown in
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Figure 9. Plastic strain patterns for the pure shear models A and B. The average

strain maps (b) and (d) were obtained as ensemble averages over 6000 realizations.

Fig. 10(a) when the applied force is 0.6, a value at which a typical system yields; all

other parameters of the simulations remain the same as those used for the pure shear

simulations in Section 4. Obviously, the external stress resulting from the simple shear

situation exhibits significant deviations from the constant, pure shear stress field. Most

notably, the stress field has strong gradients, as a result of the continuum mechanical

balance equation at a free surface. We emphasize that the stress field regardless the

size of the system never exhibits a plateau of constant stress. How this impacts the

scaling and shear banding behaviour as compared to our previously studied models will

be analysed subsequently.

Finite size scaling Analysing the yield stress distributions under simple shear loading,

we obtain again the mean yield stress and standard deviation. Both quantities follow

a power law (Fig. 4) similar to that found for the pure shear models. Averaging the

exponents for the mean and for the standard deviation, we find values of ν = 1.15±0.09

for the simple shear model C and ν = 1.16 ± 0.07 for the pure shear model B. The

values found for the critical yield stress are f∞c ≈ 0.662 for model C, compared to

f∞c ≈ 0.722 for the system under pure shear as seen in Section 4.1. The difference is

large and suggests that the macroscopic yield stress is strongly dependent on the loading

condition. This is in accordance to what is known from experimentally tested samples

and which motivated the introduction of different measures for the ‘equivalent stress’ as

e.g., the von Mises stress.

Avalanche size distributions Analysing the avalanche distributions in the same way as

in Section 4.1, we observe that both systems exhibit an avalanche distributions with

approximately the same slope in the power law regime, as shown in Fig. 5(b), with

measured exponent τ = 1.32 ± 0.02. However, the stress dependence of the cutoff

of the avalanche distributions has a clear dependence on loading conditions, and for

simple shear we measure 1/σ ≈ 2.6. Furthermore, the cutoff is also found to scale with

system size as LD with D = 1.90± 0.01 (shown in Fig. 7). These exponents should be
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compared to the pure shear values τ = 1.36± 0.01, 1/σ = 2.6± 0.1 and D = 1.89± 0.02

(cf. Section 4.1). In other words, the exponents are unaffected by the loading conditions.

Localization of plastic strain The plastic strain localization under simple shear loading,

shown in Fig. 10, exhibits a non trivial localization pattern. In this case, the system

is affected simultaneously by the effects of the free surfaces at the left and right faces

and by prescribed vertical displacements at the top and bottom, which all affect the

internal stresses. Additionally, the strongly heterogeneous external stress field resulting

from the lateral forces together with the aforementioned boundary conditions promotes

plastic activity in only some regions of the system. From the symmetry of the external

shear stress field (Fig. 10(a)), a higher strain localization would be expected at the

center of the system. However, this is in contrast with the obtained strain patterns.

Additionally, from the average plastic strain pattern (Fig. 10(a)(c)), two maxima can

be observed near the left and right vertical faces. The rest of the system behaves as

expected: small plastic activity at the top and bottom regions (where the external stress

is small and the interaction of the STs tends to zero), and almost zero plastic activity

at the left and right surfaces (where both the external stress and STs interaction tends

to zero).

1.52

1.34

1.12

1.01

0.84

0.67

0.51

0.34

0.17

0.00

(a) Simple shear external

stress field

(b) Typical plastic

strain pattern (model

C)

(c) Averaged plastic

strain pattern (model C)

0

1

2

3

4

5

6

7

8

9

10

Figure 10. Strain patterns for the simple shear simulation (model C) where the

system is loaded by a lateral force on the top face. The average plastic strain pattern

are obtained from ≈ 20000 realizations.

5. Discussion and Conclusions

The effect of boundary conditions on strain avalanches and localization is an important

problem that must be addressed to make rigorous links between statistical models

and experiments on amorphous materials. While some progress has been made with

analytical calculations [27, 28], it is clear that numerical methods are also needed to fill

the gap. Along these lines, we have presented simulations that take advantage of finite

element tools to tackle these problems. Our finite element simulations reproduce the

behaviour of the reference system when we assume appropriate boundary conditions,
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which is confirmed by comparing model A (PBCs for the internal and a pure shear

stress state from the external stresses) with the reference model. By changing boundary

and loading conditions, we extend the model beyond what is possible in a simple lattice

model.

ν τ D 1/σ

ref. model 1.004± 0.006 1.342± 0.004, ∼ 2± 0.1 2.3± 0.05,

cf. Ref.[10] cf. Ref. [10]

model A 1.03± 0.02 1.36± 0.01 1.87± 0.01 2.6± 0.1

model B 1.16± 0.07 1.36± 0.01 1.89± 0.02 2.6± 0.1

model C 1.15± 0.09 1.32± 0.02 1.90± 0.02 2.6± 0.1

Table 2. Critical exponents for the reference model, model A (PBCs and pure

shear deformation), model B (free surfaces and pure shear deformation) and model C

(surfaces and simple shear deformation).

Boundary conditions affect the long range part of stress fields generated by

inclusions, in particular, how they deviate from power-laws (as illustrated in Fig. 2).

Our models A and B differ only in boundary conditions — periodic and free surfaces,

respectively — and can therefore be compared to examine the effects of changing

boundary conditions. Free surfaces require the stresses to drop to zero on the system

boundary, which leads to a decrease in plastic deformation near the edges (Fig. 9(d)),

while the deformation in the bulk shows the same characteristic patterns as for PBCs

(Fig. 9(a) and Fig. 9(c)). This behaviour is even more pronounced for the simple shear

system (model C) due to the superposition with the non-homogeneous external stress

field.

We have also examined the effect of boundary conditions on critical exponents. In

the transition from periodic systems (reference model and model A) to systems with

surfaces (model B and C), we find that changing only boundary conditions has little

effect on critical exponents, as seen in Table 2. We can observe a small increase in the

value of the exponent ν associated with the different interaction kernels for periodic and

non-periodic systems (Fig. 2(a)).

Changing loading conditions while keeping surface boundary conditions does not

affect the interaction kernel, so a comparison of model B (pure shear loading) and model

C (simple shear loading) can be used to test whether external shear stress distribution

has an effect on critical exponents. As with changes in boundary conditions, we find

little effect. We conclude therefore that universal behaviour measured in periodic

lattice models such as our reference model can be expected also in more realistic

loading conditions, except for a small change in the exponent ν related to the existence

of surfaces. On the other hand, the localization of plastic strain is determined not

only by the range and anisotropy of interactions [29], but also boundary and loading

conditions. Therefore, care should be taken before drawing strong conclusions from

strain localization observed in simulations with a set up similar to the reference model.
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