
Practical Techniques Building on Encryption
for Protecting and Managing Data in the Cloud

Sabrina De Capitani di Vimercati, Sara Foresti,
Giovanni Livraga, and Pierangela Samarati

Università degli Studi di Milano – 26013 Crema, Italy
firstname.lastname@unimi.it

Abstract. Companies as well as individual users are adopting cloud
solutions at an over-increasing rate for storing data and making them
accessible to others. While migrating data to the cloud brings undeni-
able benefits in terms of data availability, scalability, and reliability, data
protection is still one of the biggest concerns faced by data owners. Guar-
anteeing data protection means ensuring confidentiality and integrity of
data and computations over them, and ensuring data availability to legit-
imate users. In this chapter, we survey some approaches for protecting
data in the cloud that apply basic cryptographic techniques, possibly
complementing them with additional controls, to the aim of producing
efficient and effective solutions that can be used in practice.

1 Introduction

The rapid advancements in Information and Communication Technologies
(ICTs) have encouraged the development and use of storage services based on
public clouds (e.g., Microsoft Azure and Amazon S3). Users as well as compa-
nies have been therefore moving their data to the cloud, thus enjoying several
benefits such as data and service availability, scalability, and reliability at a
relatively low cost. Although there is no doubt that the use of cloud services
brings several benefits, the storage and management of data by external cloud
providers introduce new security and privacy risks that can slow down or af-
fect the widespread acceptance of the cloud (e.g., [29,47,49,65]). A major issue
concerns the fact that moving data to the cloud, data owners lose control over
them and the cloud environment, being not under the direct control of the data
owners, may not be fully trusted. This implies the need to protect confidential-
ity and provide integrity guarantees for data stored or processed in the cloud,
as well as for accesses to such data. In the recent years, the research and de-
velopment communities have dedicated attention to these problems, designing
novel techniques to ensure proper data protection in the cloud. Guaranteeing
data protection in the cloud requires ensuring their confidentiality, integrity,
and availability [36,48,63]. Confidentiality means that data should be accessible
and known only to parties authorized for that. Guaranteeing confidentiality re-
quires then to protect: the data externally stored; the identity and/or personal
information of the users accessing the data; and the actions that users perform

© Springer-Verlag Berlin Heidelberg 2016

over the data. Integrity means that data should be protected against unautho-
rized or improper modifications. Guaranteeing integrity requires ensuring the
authenticity of: the subjects interacting in the cloud; the data stored and main-
tained at cloud providers; the response returned from queries and computations.
Availability means that data should be available upon user requests and that
cloud providers should satisfy requirements expressed in the Service Level Agree-
ments (SLAs) established between data owners/users and the cloud providers.
Guaranteeing availability requires then providing data owners and users with
the required services and enabling them to assess the satisfaction of the SLAs.

Cryptography is one of the key techniques that can be adopted to address
such confidentiality, integrity, and availability problems and to increase the con-
fidence of cloud service users. Cryptography has evolved from ancient science,
mainly dedicated to the design of secret writing codes, to the scientific discipline
of modern cryptography that provides techniques for addressing a wide range
of security issues. While in the past cryptographic techniques were principally
used to protect communications (data in transit), today they are also used to
protect data at rest and data at use (e.g., [5,11,44]). Data at rest are recorded
on a storage device (e.g., a hard drive) and can remain valuable for very long
periods of time. Data at use are processed by applications to respond to queries
or to make computations. In this chapter, we discuss some security problems
related to the protection of data at rest and data at use in cloud environments.
We analyze the relevance of cryptographic techniques to address these problems,
also when they are combined with other solutions to improve protection guaran-
tees and/or to limit the computational overhead, thus making such techniques
applicable in practice. Figure 1 illustrates the reference scenario: a data owner
outsources her data collection to a cloud provider, and different users access
these data through their clients. This scenario is characterized by the following
key security challenges, which will be covered in the remainder of this chapter.

– Storage security : data stored in the cloud should be: protected from unau-
thorized accesses, even by the storing provider (confidentiality), accessible
by authorized users (availability), and correct (integrity).

– Selective access : data stored in the cloud should be selectively accessible by
users as demanded by the access control policy defined by the data owner.

– Fine-grained access : encrypted outsourced data should be used for fine-
grained retrieval and query execution.

– Query confidentiality : the target of accesses to data should be kept private.
– Query integrity : the results of queries and computations should be correct,

complete, and fresh.

Note that cryptographic techniques have an important role in protecting data
in transit also in cloud environments, where data are often transferred from one
cloud provider to another one or within components of the cloud system. In
these cases, classical solutions can be applied (e.g., virtual private networks and
secure socket layers) and therefore we do not further elaborate on them.

The remainder of this chapter is organized as follows. Section 2 describes
solutions for the secure storage of data in the cloud. Section 3 presents some

2

Fig. 1. Reference scenario

approaches enforcing selective access on encrypted data stored in the cloud.
Section 4 illustrates approaches that enable the fine-grained access to encrypted
outsourced data. Section 5 presents solutions for query privacy, focusing on tech-
niques that protect the accesses to data. Section 6 discusses possible approaches
to verify the integrity of query results. Finally, Section 7 gives our conclusions.

2 Protection of data in storage

When data are stored and managed by an external cloud provider, their confiden-
tiality, integrity, and availability become of paramount importance. In this sec-
tion, we illustrate the role of cryptographic techniques to ensure such properties.
For simplicity, in the discussion we assume that outsourced data are organized
in a relational database. We note however that all the approaches illustrated can
be easily adapted to other data models.

2.1 Data confidentiality

When a data collection is outsourced to a cloud provider, its owner loses control
over the data themselves, which should therefore be properly protected. The
problem of protecting data when outsourcing them to external providers has
been under the attention of the research community since the introduction of
the Database-As-a-Service (DAS) paradigm [64]. Different approaches have been
proposed to protect data confidentiality, typically relying on data encryption [64]
to make data unintelligible to subjects who do not know the encryption keys.

Currently, there are two different approaches for dealing with encryption
on the data outsourced to cloud providers: 1) encryption is managed by the
provider itself, which therefore encrypts the data with a key it knows; 2) data
are encrypted before sending them to the cloud provider, which does not know

3

the encryption key. While the first approach allows for enhanced functionality
as data can be easily manipulated and managed by the provider with reduced
overhead for data owners, it also implies granting to the provider full access to
the data. There are however many scenarios where users might not fully trust
cloud providers, which can be chosen based on factors other than security (e.g.,
economic reasons). Aiming at comprehensively protecting data confidentiality,
encryption is typically applied before outsourcing data, so to protect them also
against the cloud provider.

Data encryption can employ either symmetric or asymmetric encryption
schemes. Many proposals adopt symmetric encryption, since it is cheaper than
asymmetric encryption [64]. Regardless of the chosen encryption scheme, it is
possible to encrypt data at different granularity levels: cell (each cell is singu-
larly encrypted), tuple (all cells in a tuple of the relation are encrypted together),
attribute (all cells in a column of the relation are encrypted together), or rela-
tion (the entire relation is encrypted as a single chunk). While the granularity
at which encryption operates does not affect the confidentiality of the data, the
majority of the existing approaches adopt tuple level encryption as it better sup-
ports query evaluation at the cloud provider (see Section 4). In fact, relation-level
and attribute-level encryption require to communicate to the client issuing the
query the entire relation or the subset of attributes involved in the query without
the possibility of filtering at the provider side the encrypted tuples that are not
of interest. On the other hand, cell-level encryption would require an excessive
workload for data owners and clients in encrypting/decrypting data. Tuple-level
encryption represents therefore a good tradeoff between encrypt/decrypt work-
load for clients and data owners, and query execution efficiency [64].

Adopting tuple level encryption, relation r , defined over relation schema
R(a1, . . . , an), is represented at the cloud provider as an encrypted relation
rk defined over schema Rk(tid, enc), with tid the primary key added to the
encrypted relation and enc the encrypted tuple. Each tuple t in r is repre-
sented as an encrypted tuple tk in rk, where tk[tid] is a random identifier and
tk[enc]=Ek(t) is the encrypted tuple content, with E a symmetric encryption
function with key k . Figure 2(a) illustrates relationMedicalData, storing med-
ical information about eight patients of a hospital, and Figure 2(b) illustrates
the corresponding encrypted relation.

The use of encryption to protect data confidentiality is based on the under-
lying assumption that all data are equally sensitive and therefore encryption is a
price to be paid to protect them. However, this assumption can be an overkill in
scenarios where data are not sensitive per se but what is sensitive is their associ-
ation (e.g., the lists of patients’ names and of their diseases in Figure 2(a) might
not be sensitive, but the association of each patient’s name with her disease
should be protected). In these scenarios, encryption can be combined with data
fragmentation to protect sensitive associations among attribute values [9,11].
Fragmentation consists in vertically partitioning the set of attributes in relation
R in different (vertical) fragments, so that attributes forming a sensitive associ-
ation are split among different fragments, and sensitive attributes are possibly

4

MedicalData k

SSN Name ZIP Job Disease

t1 123456789 Alice 94110 nurse asthma
t2 234567891 Bob 94112 farmer asthma
t3 345678912 Carl 94118 teacher gastritis
t4 456789123 David 94110 teacher chest pain
t5 567891234 Eric 94112 surgeon gastritis
t6 678912345 Fred 94117 secretary asthma
t7 789123456 Greg 94115 manager chest pain
t8 891234567 Hal 94110 secretary asthma

(a)

MedicalDatak

tid enc

1 a%g6
2 1p(y
3 Hu8$
4 lR=+
5 kqW
6 nTy&
7 6 R&u
8 fp*r;

(b)

Fig. 2. An example of a relation (a) and corresponding encrypted version (b)

obfuscated (e.g., sensitive attributes are encrypted or not released). Different
solutions have been proposed to define a correct fragmentation that minimizes
query evaluation costs (e.g., [10,11,18]).

2.2 Data integrity and availability

Data integrity and availability are two critical elements that should be guaran-
teed when data are stored at an external cloud provider. Data integrity means
that neither the cloud provider nor unauthorized parties can improperly tam-
per with data in storage without being detected. Like for confidentiality, also
techniques that provide data integrity can operate at different granularity lev-
els: cell, attribute, tuple, or relation level. Verifying integrity at the relation or
at the attribute level, however, would require to access the entire relation (or
column, respectively) for each integrity check. On the other hand, integrity ver-
ification at the cell level would require a considerable overhead for the client. To
find a good tradeoff between integrity guarantees and the additional overhead
for the client, the majority of the existing proposals operate at the tuple level.
In the following, we illustrate some of the most well-known (encryption-based)
techniques for ensuring data integrity and availability.

Digital and aggregate signatures. Data integrity can be ensured
through digital signatures (e.g., [44]). Each data owner has its own pair
⟨private key,public key⟩ of private and public keys. Each tuple is first signed
with the private key of its owner. The signature is then concatenated to the
actual tuple, and this concatenated chunk is encrypted and sent to the cloud
provider for storage. Unauthorized modifications to a tuple can be immediately
detected by checking the signature associated with it. This basic approach, while
effective, has the disadvantage that the cost associated with integrity verification
linearly grows with the number of accessed tuples.

To limit this burden, multiple digital signatures (related to multiple tuples)
can be combined in a single signature by adopting condensed RSA, BGLS, or

5

batch DSA signature aggregation [55]. Condensed RSA is an extension of the tra-
ditional RSA encryption scheme that permits to combine signatures generated
by the same signer (i.e., signatures associated with tuples of the same owner).
BGLS [6] is an encryption scheme based on bilinear mappings that supports
the aggregation of signatures even when they have been generated by differ-
ent signers (i.e., when the signatures have been generated by different owners).
Batch DSA is an extension of traditional DSA signature schema that permits
to combine the signature of different tuples, which can be verified together. The
verification of a batch DSA signature aggregation is based on the multiplicative
homomorphic property of these signatures. The signature verification processes
for condensed RSA and BGLS schemas are more efficient than the verification
process of batch DSA. However, both condensed RSA and BGLS are mutable,
meaning that the knowledge of multiple aggregated signatures allows their com-
position, thus obtaining a valid signature that may correspond to the aggregate
signature of an arbitrary set of tuples. This might represent a threat to the
integrity guarantees of the cloud data collection.

POR-PDP. Encryption is also at the basis of Proof Of Retrievability (POR [50])
and Provable Data Possession (PDP [4]) proposals, which aim at ensuring data
integrity and availability. These techniques allow a verifier (e.g., a requesting
client or the data owner) to obtain a proof that the storage cloud provider is
correctly maintaining a resource of interest (ensuring its integrity) and can there-
fore correctly return it (ensuring its availability). The main difference between
POR and PDP is the mechanism used to obtain the proof. POR is based on the
insertion in the data collection (before outsourcing) of ad-hoc random sentinels
generated by the data owner, which are made indistinguishable from real data
through a layer of encryption. In the verification step, the verifier challenges
the provider by requesting some sentinel values. If the data collection has been
tampered with by the provider or unauthorized parties, then these values will
be incorrect with non-negligible probability, hence signaling that both data in-
tegrity and availability have been compromised. This basic technique has been
extended along several directions to generate compact proofs to be returned to
the data owner (or to an arbitrary verifier) [68]. PDP is based on ad-hoc homo-
morphic verifiable tags. The owner pre-computes a set of tags associated with
the data items in her collection, combines the tags and the collection, and stores
them at the cloud provider. In the verification step, the client challenges the
provider against a randomly selected data item. The provider then generates a
proof of possession for the required data item, using both the requested data
and the corresponding tags, that the client can easily verify. It is interesting to
note that, since tags enjoy the homomorphic property, tags computed for mul-
tiple data items can be combined into a single value [4]. We note that POR,
whose security is based on the impossibility for the cloud provider to recognize
sentinels, can only be employed to guarantee the integrity of encrypted data
collections. On the contrary, PDP is more flexible and can be adopted with both
encrypted and plaintext datasets.

6

Auditing. The aforementioned approaches require the client to check itself the
integrity of a resource of interest. Aiming at reducing the burden at the client
side, in some scenarios it might be desirable to delegate the verification process
to a third party, trusted for enforcing integrity checks and to access the data
content. The solution in [74] relies on the presence of a trusted auditor in charge
of evaluating the integrity of a data collection stored at a cloud provider. Specific
techniques (e.g., homomorphic linear authenticators and random masking) can
be used if the auditor is not trusted to access the outsourced data collection [74].
Another solution relying on public auditing has been proposed in [86], and aims
at increasing the performances of the auditing process.

3 Selective access to data

Data owners outsourcing their data to the cloud may wish to selectively make
them visible/accessible to other users. Such a feature requires the support of
access control correctly enforcing authorizations defined by the data owners
(e.g., [16,24,30,37]). In a cloud scenario, neither the data owners (for performance
reasons), nor the cloud providers (for security reasons) can however enforce such
authorizations. A promising direction for solving this problem consists in making
the outsourced data self-enforce the access restrictions [14,20,21]. In this section,
we present two families of approaches specifically designed to enforce access con-
trol over outsourced data: selective encryption (Section 3.1) and attribute-based
encryption (Section 3.2).

3.1 Selective encryption

Selective encryption consists in using different keys to encrypt different tuples,
and in selectively distributing those keys to authorized users so that each user
can decrypt all and only the tuples she is authorized to access.

Basic technique. The authorization policy, regulating which user in the set U
of users of the system can read which tuple of relation r , can be represented
as an access matrix M with a row for each user u∈U , and a column for each
tuple t∈r , where: M [u ,t]=1 iff u can access t ; M [u ,t]=0 otherwise. The jth

column of an access matrix represents the access control list acl(t j) of tuple
t j, for each j = 1, . . . , |r | (i.e., the set of users who can access it). Figure 3
illustrates an example of access matrix regulating access to the tuples in relation
MedicalData in Figure 2(a) by users A, B, C, and D. According to the access
matrix, acl(t1)=AC.

Enforcing an access control policy with encryption requires to establish keys
for encrypting resources and keys to be distributed to users. Equivalence among
an encryption policy and an access control policy demands that every user should
able to decrypt all and only the tuples she is entitled to access according to the
access control policy.

There are different ways in which an access control policy can be translated
into an equivalent encryption policy. However, this translation should take into

7

t1 t2 t3 t4 t5 t6 t7 t8
A 1 0 1 0 1 0 1 0
B 0 1 0 1 1 1 0 0
C 1 0 0 0 0 0 1 0
D 0 1 1 0 0 0 1 1

Fig. 3. An example of access matrix for the relation in Figure 2

account two main desiderata [21]: i) each user must manage only one key; and
ii) each tuple must be encrypted with only one key (i.e., no tuple is replicated).
These two desiderata are needed to reduce the overhead at user side caused
by key management, and the consistency problems typically caused by data
replication. To obey these two constraints, selective encryption approaches rely
on key derivation techniques , which permit to compute an encryption key k j

starting from the knowledge of another key k i, and of a piece of publicly available
information. These techniques are based on the definition of a key derivation
hierarchy that can be graphically represented as a directed graph with a vertex v i

for each key k i in the system, and an edge (v i,v j) from key k i to key k j iff k j can
be directly derived from k i. Key derivation can be recursively applied, meaning
that a generic key k j can be computed starting from another key k i if there is
a path, of arbitrary length, from vertex v i to vertex v j in the key derivation
hierarchy. Depending on the kind of the key derivation hierarchy, different key
derivation techniques can be applied, as illustrated in the following.

– Chain of vertices (e.g., [66]): the key k j associated with vertex v j is computed
by applying a one-way function to key k i associated with the predecessor
vertex v i of v j in the chain. No public information is needed to derive keys.

– Tree hierarchy (e.g., [67]): the key k j associated with vertex v j is computed
by applying a one-way function to key k i of the direct ancestor of v j , and a
public label l j associated with k j . Public labels are necessary to guarantee
that different children of the same node in the tree have different keys.

– DAG hierarchy (e.g., [2]): vertices in the hierarchy can have more than one
direct ancestor, and each edge in the hierarchy is associated with a public to-
ken [3]. Given two keys k i and k j associated with vertices v i and v j such that
(v i,v j) is an edge in the DAG, and the public label l j of k j , token t i,j permits
to compute k j from k i and l j . Token t i,j is computed as t i,j=k j⊕f(k i,l j),
where ⊕ is the bitwise xor operator, and f is a deterministic cryptographic
function. By means of t i,j, all users who know, or can derive, key k i can also
derive key k j .

A key derivation hierarchy can be defined according to any of the above-
mentioned models. In the following, we consider the most general case of a DAG,
with token-based key derivation [21].

Enforcement of read privileges. A straightforward approach to define a key
derivation hierarchy to enforce an access control policy consists in inserting a

8

ABCD

AB

AC

AD

BC

BD

CD

A

B

C

D

ABC

ABD

ACD

BCD

user key

A kA

B kB

C kC

D kD

tuple key

t1 kAC

t2 kBD

t3 kAD

t4 kB

t5 kAB

t6 kB

t7 kACD

t8 kD

(a) (b)

Fig. 4. An example of encryption policy equivalent to the access control policy in
Figure 3: key derivation hierarchy (a) and user and tuple keys (b)

vertex in the hierarchy for each subset of users in U , and in exploiting the set
containment relationship⊆ among these subsets to connect vertices. Given a pair
of vertices v i and v j , there is a path from v i to v j iff the set of users represented
by v i is a subset of that represented by v j . For instance, Figure 4(a) illustrates
the key derivation hierarchy induced by the set U={A,B,C,D} of users and the
set containment relationship over it. In the figure, vertices are labeled with the
set of users they represent. The encryption policy induced by such a hierarchy is
equivalent to (and thus, correctly enforces) the authorization policy iff: i) each
user ui is provided with the key associated with the vertex representing her; and
ii) each tuple t j is encrypted with the key of the vertex representing acl(t j).
These encryption and key distribution strategies guarantee that each tuple can
be decrypted by all and only the users in its access control list. Moreover, each
user has to manage one key only, and each tuple is encrypted with one key only.
With reference to the key derivation hierarchy in Figure 4(a) and the access
control policy in Figure 3, Figure 4(b) illustrates the keys assigned to users and
those used to encrypt the tuples in relation MedicalData in Figure 2. Note
that the encryption policy in Figure 4 is equivalent to the authorization policy
in Figure 3 as each user can derive, from her own key, the keys of the vertices
representing sets of users including her, and hence can decrypt the tuples she
is authorized to read. For instance, user C can derive the keys used to encrypt
tuples t1 and t7.

While correctly enforcing the given authorization policy, the encryption pol-
icy illustrated above defines more keys and tokens than necessary. Managing
a large set of tokens reduces the efficiency of the derivation process and, ul-
timately, increases the response time to users. In fact, tokens are stored in a
publicly available catalog, maintained at the provider side: when a user u wants
to access a tuple t , she needs to perform a search across the catalog to retrieve a
chain of tokens that, starting from her own key, ends in the one used to encrypt
t . The total number of tokens is therefore a critical factor for the efficiency of

9

AB

AC

AD

BD

A

B

C

D

ACD

user key

A kA

B kB

C kC

D kD

tuple key

t1 kAC

t2 kBD

t3 kAD

t4 kB

t5 kAB

t6 kB

t7 kACD

t8 kD

(a) (b)

Fig. 5. An example of encryption policy equivalent to the access control policy in
Figure 3 with reduced number of tokens: key derivation hierarchy (a) and user and
tuple keys (b)

access to remotely stored data. The problem of minimizing the number of tokens
in the key derivation hierarchy while still guaranteeing equivalence between the
authorization and the encryption policies is NP-hard as it can be reduced to
the set cover problem [21]. In [21], the authors present a heuristic approach to
reduce the number of tokens that is based on the following two observations:

– the vertices necessary to enforce an authorization policy are those vertices,
called material, that represent singleton sets of users (whose keys are com-
municated to users) and the access control lists of the tuples in r (whose
keys are used for encryption);

– when two or more vertices have more than two common direct ancestors, the
insertion of a vertex representing the set of users in these ancestors reduces
the total number of tokens.

Given an authorization policy, the heuristics first identifies the material ver-
tices and, for each vertex v , finds a set of material vertices that form a non-
redundant set covering for v (i.e., the smallest set V of vertices such that, for
each user u represented by v , there is at least a vertex v i in V such that u
appears in v i), which become direct ancestors of v . For each set {v1, . . . , vm}
of vertices that have n > 2 common ancestors v′1, . . . , v

′
n, the algorithm inserts

an intermediate vertex v representing all the users in v′1, . . . , v
′
n, connects each

v′i, i = 1, . . . , n, with v , and v with each v j , j = 1, . . . ,m. In this way, the
encryption policy includes n + m, instead of n · m tokens in the catalog [21].
Figure 5 illustrates an encryption policy equivalent to the authorization policy
in Figure 3 with a reduced number of tokens. Comparing the key derivation hi-
erarchy in Figure 5(a) with the one in Figure 4(a) it is easy to see the reduction
in the number of tokens needed to correctly enforce the access control policy.

Enforcement of write privileges. The approach in [21] assumes outsourced
data to be read-only, meaning that only the data owner can update the content of
her tuples while other parties can only be granted read privileges over them. This

10

assumption is not aligned with current trends in technology (e.g., collaborative
scenarios), where the data owner might want to selectively grant to other users
also write privileges over her resources. The proposal in [17] adopts selective en-
cryption to manage also write authorizations. The basic idea is to associate each
tuple with an encrypted write tag (i.e., a random value chosen independently
from the tuple content), and to allow the update of a tuple t only to users who
know the plaintext value of the write tag of t . Access to write tags is regulated
through selective encryption: the write tag of tuple t is encrypted with a key
derivable only by the users authorized to write t (i.e., the users specified within
its write access control list) and the provider. The provider will accept a write
request on a tuple only if the requesting user proves to know the corresponding
write tag. To this aim, the key derivation hierarchy is extended with the keys
used to encrypt write tags and with key kP , specifically assigned to the provider
P to enable write tags verification.

The keys used to encrypt write tags are defined in such a way that: i) au-
thorized users can compute them applying a secure hash function to a key they
already know (or can derive via a sequence of tokens); and ii) the provider can
directly derive them from key kP through a token specifically added to the key
derivation hierarchy. Note that keys used to encrypt write tags cannot be used
to derive other keys in the hierarchy, because the provider is not trusted to ac-
cess the plaintext content of the tuples in the outsourced relation. For instance,
consider the encryption policy in Figure 5 and suppose that the write privilege
over tuple t1 is granted to user A, over t2 to B and D , over t3 and t8 to D,
over t4, t5, and t6 to B, and over t7 to C. Figure 6 illustrates the key derivation
hierarchy extended with the key kP of the provider and the keys necessary to
encrypt write tags. In the figure, the additional vertices are in gray, and both
additional vertices and edges are dotted. Figure 6(b) reports the keys assigned
to users and to the provider, and the keys used to encrypt the tuples in relation
MedicalData and their write tags.

Updates to the authorization policy. Since the equivalence between the au-
thorization and encryption policies must be always guaranteed to ensure proper
enforcement of authorizations, any change in the access control policy should be
enforced by updating the encryption policy. In fact, the keys used to encrypt
each tuple t and its write tag depend on the set of users who can read and
write it, respectively. To enforce updates to read privileges, it is then necessary
to re-encrypt the tuple involved in a policy update with a different key that
only the users in its new access control list know or can derive. The overhead
for the data owner in executing re-encryption operations is reduced in [21] by
introducing the over-encryption approach to partially delegate to the provider
the management of grant and revoke of read privileges, thus greatly reducing the
overhead at the data owner side. Over-encryption adopts two different layers of
encryption: the Base Encryption Layer (BEL) and the Surface Encryption Layer
(SEL), each of which is characterized by its own encryption policy (i.e., set of
keys, key derivation hierarchy, and key distribution). Each tuple t is protected
with two different layers of encryption, and then a user can access t only if she

11

AB

AC

AD

BD

A

B

C

D

ACD

P

AP

BP

BDP

DP

CP

user key

A kA

B kB

C kC

D kD

P kP

tuple read key write key

t1 kAC kAP
t2 kBD kBDP
t3 kAD kDP
t4 kB kBP
t5 kAB kBP
t6 kB kBP
t7 kACD kCP
t8 kD kDP

(a) (b)

Fig. 6. Encryption policy in Figure 5 extended to enforce write privileges: key deriva-
tion hierarchy (a) and user and tuple keys (b)

knows both the keys used to encrypt t at BEL and SEL. At initialization time,
the encryption policies at BEL and SEL coincide (more precisely, they are both
equivalent to the initial authorization policy). In case of policy updates, BEL is
updated by only inserting tokens (to allow for new key derivations) in the public
catalog. Re-encryption is instead performed at the SEL by the cloud provider.

While effective for updates to the read authorization policy, the over-
encryption approach cannot be adopted in case of updates to write privileges.
In fact, users are not oblivious, and adding a layer of encryption to a write tag
would not prevent a user, whose write privilege on a tuple has been revoked, from
exploiting their previous knowledge of the tag of the tuple to perform unautho-
rized updates. Indeed, to grant user u write access to tuple t , the write tag of
t can be simply re-encrypted with a key known to the provider and the users
authorized to update its content. On the contrary, to revoke from user u write
access to tuple t , it is necessary to associate with t a fresh write tag, with a
new plaintext value independent from the previous one, and to encrypt it with
a key known to the provider and the users in the new write access control list of
the tuple [17]. Note that, since the provider knows the write tag of each tuple
to correctly enforce write privileges, the data owner can delegate to the storing
provider both the generation and re-encryption of the write tag of her tuples [17].

3.2 Attribute-based encryption

Another approach to enforce selective access in cloud scenarios is represented by
Attribute-Based Encryption (ABE [43]).

Basic technique and authorization enforcement. ABE is based on public-
key encryption schemes, and enforces access restrictions according to an autho-

12

!" #$%& '(∧

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐

❈❈
❈❈

❈❈
❈❈!" #$%& '(∨

##
##
##
##
##

❑❑
❑❑

❑❑
❑❑

❑❑ role: doctor

specialty: cardiology specialty: neurology

Fig. 7. Access structure associated with tuple t7 of relation MedicalData in Figure 2
with CP-ABE

rization policy defined on attributes associated with tuples or with users. Based
on how attributes and policies are associated with data and users, it is possible to
implement ABE as either Ciphertext-Policy ABE (CP-ABE [77]) or Key-Policy
ABE (KP-ABE [43]). In the following, we briefly describe these two approaches.

CP-ABE associates each user u with a set of descriptive attributes and a
private key, generated on the basis of these attributes. The attributes associ-
ated with u describe her characteristics considered relevant for access control
enforcement (e.g., her role and department in a company). Each tuple t in a
relation r is instead associated with an access structure modeling the autho-
rization policy regulating accesses to t . Graphically, an access structure is a
tree whose leaves represent basic conditions over attributes, and whose internal
nodes represent logic gates (i.e., conjunctions and disjunctions). For instance,
suppose that the access to tuple t7 in relation MedicalData in Figure 2 should
be granted only to doctors specialized in cardiology or neurology. Figure 7 il-
lustrates the access structure associated with tuple t7, representing the Boolean
formula (role=‘doctor’) ∧ (specialty=‘cardiology’ ∨ specialty=‘neurology’). The
key generation technique adopted by CP-ABE is specifically designed to guar-
antee that the key k of user u can decrypt tuple t iff the set of attributes used
when generating k satisfies the access control policy represented by the access
structure considered when encrypting t .

KP-ABE associates each user u with an access structure and each tuple with
a set of attributes describing its characteristics. The key associated with each
user is then generated on the basis of her access structure, while the key used
to encrypt each tuple depends on its attributes. The key generation technique
adopted by KP-ABE is specifically designed to guarantee that each user u can
decrypt a tuple t iff the attributes associated with t satisfy the access structure
associated with user u .

The support of write privileges is provided by the adoption of Attribute-
Based Signature (ABS) techniques. The proposal in [35] combines CP-ABE and
ABS techniques to enforce read and write access privileges, respectively. This
approach, although effective, has the disadvantage of requiring the presence of a
trusted party for correct policy enforcement. A similar approach, based on the
combined use of ABE and ABS for supporting both read and write privileges, is

13

illustrated in [62]. This solution has the advantage over the approach in [35] of
being applicable also to distributed scenarios.

Updates to the authorization policy. Although CP-ABE effectively and ef-
ficiently enforces access control policies, one of its main drawbacks is related to
the management of attribute revocation. When a user loses one of her attributes,
she should not be able to access tuples that require the revoked attribute for the
access. Attribute revocation is however hard to enforce without causing expen-
sive re-keying and/or re-encryption operations. Solutions to this problem are
presented in [72,82,85]. In [82] the authors illustrate an encryption scheme able
to manage attribute revocation, ensuring the satisfaction of both backward se-
curity (i.e., a user cannot decrypt the tuples requiring the revoked attributes)
and forward security (i.e., a new user can access all the tuples outsourced before
her join, provided her attributes satisfy the access control policy). In [72] the au-
thors propose a hierarchical attribute-based solution that relies on an extended
version of CP-ABE where attributes associated with users are organized in a
recursive set structure. Aiming at enforcing updates in the context of KP-ABE,
the solution in [85] proposes to couple ABE with proxy re-encryption, in such a
way to delegate to the storage provider most of the re-encryption operations nec-
essary to enforce attribute revocation. To reduce the overhead inevitably caused
by the adoption of asymmetric encryption, this approach also proposes to adopt
KP-ABE to protect the symmetric keys used to encrypt tuple contents. By do-
ing so, only authorized users can retrieve the key physically used to protect the
content of the tuples.

4 Fine-grained access to data

Encryption represents an effective means to protect data confidentiality in the
cloud. However, cloud providers cannot directly evaluate users’ queries on the
data they store, as they do not know the encryption keys and therefore cannot
access data content. It is also infeasible to require the client to download the
encrypted data collection and locally evaluate the queries, as this would nullify
the benefits of delegating data storage to cloud providers. Current solutions
addressing this issue are based on the definition of indexes that enable (partial)
query evaluation at the provider side without the need to decrypt data [64], or on
specific encryption schemas that support the execution of operations (Figure 8)
or SQL queries [60] directly over encrypted data. In the remainder of this section,
we describe these two solutions in more details.

4.1 Indexes for query execution

Indexes are metadata whose values depend on the plaintext values of the at-
tributes in the original relation on which they are defined. Indexes are rep-
resented in the encrypted relation as additional attributes. Given a relation r ,
defined over schema R(a1, . . . , an), the corresponding encrypted and indexed re-
lation rk is defined over schema Rk(tid, enc, I i1 , . . . , I ij), where I il , l = 1, . . . , j,

14

Encryption Operations Security Cost
Randomized anything no leakage practical
Deterministic = leaks duplicates practical
OPE ≥ leaks order practical
Pallier + no leakage expensive
El Gamal × no leakage expensive
Fully homomorphic everything no leakage impractical

Fig. 8. Characteristics of some encryption functions

MedicalData k

SSN Name ZIP Job Disease

t1 123456789 Alice 94110 nurse asthma
t2 234567891 Bob 94112 farmer asthma
t3 345678912 Carl 94118 teacher gastritis
t4 456789123 David 94110 teacher chest pain
t5 567891234 Eric 94112 surgeon gastritis
t6 678912345 Fred 94117 secretary asthma
t7 789123456 Greg 94115 manager chest pain
t8 891234567 Hal 94110 secretary asthma

(a)

MedicalDatak

tid enc IZ I J ID

1 a%g6 α η κ
2 1p(y β ζ κ
3 Hu8$ γ θ λ
4 lR=+ α θ λ
5 kqW β θ λ
6 nTy& δ η κ
7 6 R&u ϵ ζ λ
8 fp*r; α η κ

(b)

Fig. 9. Plaintext relation MedicalData (a) and corresponding encrypted and indexed
relation (b)

is the index defined over attribute ail in R . Note that not all the attributes in
R need to have a corresponding index in Rk, but only those that are expected
to be involved in queries. For instance, Figure 9(b) represents the encrypted
version of relation MedicalData in Figure 2(b), reported also in Figure 9(a)
for the reader’s convenience, where attributes ZIP, Job, and Disease have been
associated with indexes IZ , I J , and ID, respectively. Index values are denoted
with Greek letters.

The introduction of indexes allows the cloud provider to (partially) evaluate
a query q submitted by the client. The query evaluation process in presence of
indexes operates as follows.

– Step 1. The user formulates a query q that is sent to the client. Note that,
since encryption must be transparent for final users (which could be unaware
of the fact that the relation is stored in encrypted form at the cloud provider),
q is formulated over the plaintext relation.

– Step 2. Upon receiving q , the client generates two queries: qp, operating on
the encrypted relation at the provider using indexes; and qc, operating on
the result of qp at the client. Query qp is then communicated to the cloud
provider.

– Step 3. Upon receiving qp, the cloud provider executes it on the encrypted
relation. The result is then sent to the client.

15

Fig. 10. Query evaluation process

– Step 4. The client decrypts the result obtained from the provider, and eval-
uates qc on the resulting relation to possibly remove spurious tuples (i.e.,
tuples that satisfy the condition on the index but not the original condition
specified by the user) and returns the query result to the user.

Figure 10 illustrates the query evaluation process. Clearly, the translation
of query q into queries qp and qc depends on the kind of indexes involved in
the query. We now illustrate some of the most well-known indexing techniques,
classified according to the conditions they support.

Equality conditions (e.g., [15,46]). Equality conditions are conditions of the
form a = v, with a an attribute and v a value in the domain of a , and are
supported by three classes of indexes: encryption-based [15], bucket-based [46],
and hash-based [15] indexes.

The encryption-based index for a tuple t over attribute a is computed as
Ek(t [a]), where Ek is a symmetric encryption function and k the encryption
key. An equality condition of the form a=v is then translated as I=Ek(v). For
instance, suppose that index IZ in Figure 9(b) is an encryption-based index of
attribute ZIP. Equality condition ZIP = ‘94110’ on relation MedicalData is
then translated into IZ=‘α’ operating on indexed relation MedicalDatak.

The definition of a bucket-based index over attribute a requires instead to
partition the domain of a into non-overlapping subsets of contiguous values,
and to associate each partition with a label. Given a tuple t in the outsourced
relation r , the value of the index associated with attribute a is the label of
the partition containing value t [a]. An equality condition of the form a=v is
therefore translated as I=l, where l is the label of the partition including v. For
instance, suppose that index I J in Figure 9(b) is a bucket-based index where ζ,
η, and θ are the labels of partitions {farmer,manager}, {nurse,secretary}, and
{surgeon,teacher}, respectively. Equality condition Job = ‘farmer’ on relation

16

MedicalData is then translated as I J = ‘ζ’ operating on indexed relation
MedicalDatak.

The definition of a hash-based index over attribute a is based on the adop-
tion of a deterministic hash function h that generates collisions. Given a tuple t
in r , the value of the index associated with attribute a is computed as h(t [a]).
An equality condition of the form a=v is therefore translated as I=h(v). For in-
stance, suppose that index ID in Figure 9(b) is a hash-based index computed us-
ing function h such that h(asthma)=κ and h(gastritis)=h(chest pain)=λ. Equal-
ity condition Disease = ‘gastritis’ on relation MedicalData is then translated
as ID = ‘λ’ operating on indexed relation MedicalDatak.

Note that, differently from encryption-based indexes, both bucket-based and
hash-based indexes map different plaintext values to the same index value. There-
fore, the result computed by the provider from the evaluation of an equality
condition can include spurious tuples that the client must filter out to obtain
the final query result.

Range conditions (e.g., [1,15,75]). Range conditions are conditions of the form
a in [v1, v2], with a an attribute and [v1, v2] a range in the domain of a . Bucket-
based indexes can support range queries, provided that labels are defined so to
preserve the ordering among attribute values. This solution would however leak
the order of attribute values to the provider. An alternative solution specifically
designed to support equality and range conditions is based on the definition of
a B+-tree index over the indexed attribute [15]. The B+-tree index is built
over the plaintext values of the attribute, and is represented at the provider as
an encrypted relation with two attributes: id, containing the node identifier,
and content, containing the encrypted node content. Pointers to children are
represented through node identifiers.

Figure 11 illustrates an example of a B+-tree built over attribute Name of
relation MedicalData in Figure 2(a). To retrieve the tuples satisfying a range
condition, the client iteratively queries the encrypted relation representing the
B+-tree at the provider. The client will then perform a sequence of queries to
retrieve at each level, starting from the root, the node along the path to the leaf
of interest. For instance, with reference to the example in Figure 11, to retrieve
patients whose name is between E and G, the client accesses tuples 1, 3, 9, and
10, in the order, in the encrypted relation.

An alternative technique for supporting range conditions relies on Order Pre-
serving Encryption Schemas (OPES [1]) or on Order Preserving Encryption with
Splitting and Scaling schemas (OPESS [75]). OPES is an encryption technique
that takes as input a target distribution of index values, and applies an order
preserving transformation guaranteeing that the index values follow the target
distribution. OPESS guarantees instead that the produced index values follow a
flat frequency distribution. This is obtained by mapping the same plaintext value
to multiple index values. Since index values preserve ordering, range conditions
can be directly evaluated by the provider over indexes.

Aggregate operators (e.g., [38,45]). To compute aggregate functions (such as
sum and avg), it is necessary to use indexes that support arithmetic operations,

17

(a)

id node node

1 2, David, 3, Greg, 4
2 5, Bob, 6, Carl, 7
3 8, Eric, 9, Fred, 10
4 11, Hal, 11
5 Alice, 6, t1
6 Bob, 7, t2
7 Carl, 8, t3
8 David, 9, t4
9 Eric, 10, t5
10 Fred, 11, t6
11 Greg, 12, t7
12 Hal, nil, t8

(b)

id content

1 8/*5sym,p
2 mw39wio[
3 gtem945/*c
4 21!p8dq59
5 8dq59wq*d’
6 ue63/)w
7 =wco21!ps
8 oieb5(p8*
9 gte3/)8*
10 rfoi7/(
11 =o54’?c
12 Fer3!-r

(c)

Fig. 11. An example of B+tree index (a), its relational representation (b), and the
corresponding encrypted relation (c)

which are defined adopting homomorphic encryption [61], a particular encryp-
tion scheme that permits the evaluation of basic arithmetic operations (i.e., +,
−, ×). These indexes can therefore be used by the provider to evaluate aggregate
functions, as well as equality and range conditions [45]. A fully homomorphic
encryption scheme (where fully means that the homomorphic property remains
valid for any operation computed over the encrypted data) has been proposed
and studied in [7,38]. This solution allows the computation of an arbitrary func-
tion over encrypted data without the need of decryption. Unfortunately, this
technique suffers from high computational complexity, which makes it not suit-
able for real-world scenarios. In [12,13] the authors propose a fully homomorphic
scheme enforceable with smaller public keys, hence more manageable and effi-
cient than traditional ones.

4.2 CryptDB

CryptDB [60] supports query execution at the cloud provider directly over en-
crypted data, without the need of indexes associated with the outsourced rela-
tion. To this aim, CryptDB adopts for each attribute different kinds of encryp-

18

Fig. 12. An example of encryption layers adopted by CryptDB [60]

tion (i.e., random, deterministic, order-preserving, homomorphic, join, order-
preserving join, and word search [60]), which are dynamically adjusted depend-
ing on the queries that need to be executed. Each cell in the outsourced relation
is then wrapped in multiple encryption layers, forming an onion structure, in
such a way that the same attribute value is encrypted multiple times to obtain
the value stored at the provider. Note that the encryption layers are the same for
all the cells in the same column, but they may vary from an attribute to another
(depending on the kinds of queries to be supported). Figure 12 illustrates an ex-
ample of the onion encryption structure wrapped around a plaintext data item.
The outermost level features the strongest encryption (i.e., random encryption,
a probabilistic scheme where two equal values can be mapped to different cipher-
texts with non-negligible probability [60]), while the innermost level represents
plaintext data. Proceeding through the innermost level, the adopted encryption
scheme provides weaker security guarantees but supports more computations
over the encrypted data.

CryptDB proposes to dynamically regulate the usage of encryption, possibly
removing some of the encryption layers, depending on the operations in the query
to be evaluated. The adjustments in the encryption layers is dynamic, that is,
it depends on the specific query being evaluated. For instance, if the provider
needs to perform a group by on attribute a , then it should be able to determine
which values of a are equal to each other, but without discovering the plaintext
values of a . Since random encryption does not support such a functionality, it
is removed, leaving data encrypted with a deterministic scheme. As this latter
scheme supports grouping operations, it is then not necessary to further peel it
out. Note that once a layer of encryption is removed from an attribute, it cannot
be restored as data have been exposed to the provider.

Query execution with CryptDB assumes a trusted proxy intercepting all com-
munications between users and the cloud provider. The proxy stores a secret
master key k , the database schema, and the current encryption layers of each
attribute in the relation. The query evaluation process operates as follows.

– Step 1. The user formulates a query q that is sent to the proxy, which
rewrites it into an equivalent query q̂ operating over the encrypted version
of the attributes involved. The proxy then, with its own key k , encrypts

19

Fig. 13. Query processing in CryptDB

all constant values in q adopting the encryption scheme that best suits the
operation to be computed.

– Step 2. The proxy checks if the provider should be given keys to remove some
of the encryption layers before executing the query q̂ , and if so, issues an
update query that removes specific layers of encryption for the attributes
of interest. The proxy forwards q̂ to the cloud provider, which executes it.

– Step 3. The provider returns the encrypted result of q̂ to the proxy.
– Step 4. The proxy decrypts the received result of q̂ and sends it to the user.

Figure 13 illustrates the query evaluation process in CryptDB.

5 Protecting query confidentiality

When a user submits a query to a cloud provider, her privacy (and also the
privacy of accessed data) can be put at risk due to the knowledge of the query
itself [25,31,79]. For instance, knowing that a user submitted a query to an out-
sourced medical database looking for the symptoms of liver cancer can implicitly
reveal that either her or a person close to her suffers from such a disease. Also,
it might be possible to analyze the data accesses performed by users to infer the
(private) content of the outsourced data collection. For instance, by monitoring
patterns of frequently accessed tuples, an observer can draw inferences on their
values if she knows how frequently the values in the considered data domain are
accessed. To counteract these privacy risks, query confidentiality must be prop-
erly protected. Protecting query confidentiality requires ensuring both access
and pattern confidentiality, which consist in protecting the target of an access
and the fact that two accesses aim at the same target, respectively.

Traditionally, access and pattern confidentiality have been addressed through
Private Information Retrieval (PIR) techniques. These approaches however do
not protect the confidentiality of accessed data and are characterized by high
computational costs (e.g., [8,56]). Several solutions have been proposed to pro-
tect data and access confidentiality (e.g., [39,59,69,73]), but they fall short in
protecting pattern confidentiality. In the remainder of this section, we illustrate
recent techniques that protect data, access, and pattern confidentiality. The ba-
sic idea behind such solutions is to break the otherwise static association between

20

disk blocks and the information they store, by adopting dynamically allocated
data structures [52,83].

Oblivious RAM (ORAM). The Oblivious RAM (ORAM) [40] data structure
is at the basis of several approaches that aim at protecting access and pattern
confidentiality in encrypted data collections. With ORAM, the encrypted data
are organized as a set of n encrypted blocks, stored in a pyramid-shaped data

structure. Each level l of the ORAM structure stores 4l blocks and is associated
with a Bloom filter and a hash table to determine whether a given block is stored
at level l and, if this is the case, to identify the block where it is stored [79].
During the search process, the ORAM structure is visited level by level from the
top of the pyramid. At each level, one element is extracted (the target of the
access or a random element, if the target does not belong to the visited level)
and placed in a cache. Note that the visit does not terminate when the target
block is found to not reveal any information to the cloud provider. When the
cache is full, it is merged with the first level of the ORAM and all elements are
then shuffled (i.e., allocated to a different physical block on the provider’s disk)
to destroy any correspondence between old and new data items. Analogously,
when the first (i-th in general) level is full, it is merged with the second (i+1-th,
in general) one and their elements are shuffled.

While ORAM effectively guarantees access and pattern confidentiality, the
re-organization of the lower levels of the pyramid is highly expensive. Access
requests submitted during the reordering of lower levels of the database might
therefore suffer from a high response time. To mitigate such cost, the proposal
in [34] limits the shuffling operation to the blocks that store accessed tuples.
Most ORAM solutions rely on the presence of a secure coprocessor operating
at the provider side. This assumption however may not be viable in many real
world scenarios. Alternative solutions for reducing access times are based on
the idea of minimizing the number of interactions between the client and the
provider [41,78], or support concurrent accesses [42,80].

Path-ORAM is a recent enhancement of the traditional ORAM structure,
which reduces the overhead due to the re-organization of lower layers in the
ORAM structure [70,71]. Path-ORAM proposes to organize data in a tree, whose
nodes are buckets storing a fixed number of blocks that can contain either dummy
or real tuples. Each block is mapped to a random leaf, and stored either at the
client side (in a local cache called stash), or in one of the buckets along the
path to the leaf with which it is associated. Read operations download from the
provider and store in the stash all the buckets along the path from the root to
the leaf to which the tuple of interest is mapped. The mapping of the target
tuple is then changed randomly, choosing a new leaf in the tree. The accessed
path is then written back, possibly inserting into the written block some of the
tuples in the local stash. A tuple can be inserted into a block if such a block is
along the path to the leaf to which it is mapped and it is not full. In the insertion
of a tuple into a block, Path-ORAM privileges blocks close to the leaf to which
the tuple is mapped.

21

Abstract index Logical index Physical index

(a) (b) (c)

Fig. 14. An example of abstract (a), logical (b), and physical (c) shuffle index
Legend: ! target, • node in cache, ! cover; blocks read and written: dark gray filling,
blocks written: light gray filling

Shuffle index. An efficient technique recently proposed to protect both access
and pattern confidentiality is based on the definition of a shuffle index [25].
The shuffle index is a privacy-preserving indexing technique used for organizing
data in storage and for efficiently executing users’ queries. It can be seen at
three abstraction levels: abstract, logical, and physical. At the abstract level, the
shuffle index is an unchained B+-tree with fan-out F , built over a candidate key
K of the indexed relation. Each internal node in the tree has q ≥ ⌈F/2⌉ children
(except for the root node, where 1 ≤ q ≤ F), and stores q− 1 ordered key values
val1 ≤ . . . ≤ valq−1. The i-th child of a node represents the root of the subtree
storing all the values between val i and val i+1. The leaves store the actual tuples
together with their key values. Unlike traditional B+-tree structures, leaves are
not connected in a chain (to hide the relative value order). Figure 14(a) illustrates
an example of unchained B+-tree with fan-out 3.

At the logical level, each abstract node n is represented by a pair ⟨id , n⟩
where id is the logical identifier associated with the node and n is its content.
Pointers to children of internal nodes of the abstract data structure are repre-
sented through node identifiers. Figure 14(b) illustrates an example of logical
representation of the abstract index in Figure 14(a). Note that the order of log-
ical identifiers does not necessarily reflect the value-order relationship between
the node contents. For readability, in the figure logical identifier are reported on
the top of each node, and their first digit corresponds to the level of the node in
the tree. Finally, at the physical level, each logical node ⟨id , n⟩ is concatenated
with a random salt, to destroy plaintext distinguishability, and then encrypted
in CBC mode, using a symmetric encryption algorithm. The logical identifier of
the node easily translates into the physical address where the block representing
the encrypted node is stored at the provider. Figure 14(c) illustrates an example
of physical representation of the logical index in Figure 14(b), which corresponds
to the view of the cloud provider.

Protection of access and pattern confidentiality is provided by the combined
adoption of the following three protection techniques.

22

– Cover searches. Cover searches are fake searches, not recognizable as such by
the provider, executed in conjunction with the actual search for the target
value. For each level of the shuffle index (but the root level) the client down-
loads num cover + 1 blocks: one for the node along the path to the target,
and num cover for the nodes along the paths to the covers. Hence, from the
provider point of view, each of the num cover + 1 accessed leaf blocks has
the same probability of storing the target. Cover searches must guarantee
both indistinguishability with respect to target searches (i.e., the provider
should not be able to determine whether an accessed block is a cover or the
target) and block diversity (i.e., paths to covers and to the target must be
disjoint, except for the root).

– Cached searches. Cached searches make repeated accesses to a node con-
tent indistinguishable from non-repeated accesses. The cache is a layered
structure, with a layer for each level in the shuffle index. It is maintained
plaintext at the client side and stores the nodes along the paths to the tar-
gets of the num cache most recent accesses to the shuffle index. Each layer
of the cache is managed according to the Least Recently Used (LRU) policy:
in this way, the parent of each cached node (and hence the path connecting
it to the root of the tree) is also in cache. Whenever the target of an access
is in cache, an additional cover is used during the access, to guarantee that
num cover +1 blocks are downloaded for each level of the tree (but the root
level). The adoption of a local cache prevents short-time intersection attacks,
which could be exploited by the provider to identify repeated accesses when
subsequent searches download non-disjoint sets of blocks.

– Shuffling. Shuffling breaks the relationship between a block and the content
of the node it stores. In this way, accesses to the same physical block may
not correspond to accesses to the same node content. Shuffling consists in
moving the content of accessed (either as target or as covers) and cached
nodes to different blocks. Shuffling then assigns a different block to each ac-
cessed node, choosing among the downloaded blocks. To prevent the provider
from inferring information about shuffling, every time a node is moved to a
different block, it is re-encrypted using a different random salt. The parent
of a shuffled node is updated to preserve the consistency of the structure.

The search process, operating at the client side, visits the B+-tree of the
shuffle index level-by-level, from the root to the leaves. Each access combines the
three protection techniques illustrated above, and the search process is guaran-
teed to protect both access and pattern confidentiality [25]. As an example of
access to the shuffle index in Figure 14, consider a search for z3, and suppose
that the adopted cover is x1, and that the cache contains the path to value y2.
Since the client has the root r in cache, it first downloads from the provider
the blocks at level 1 along the paths to x1 (block 103 storing value x) and to
z3 (block 102 storing value z). It then decrypts and shuffles the accessed and
cached nodes at level 1 allocating, for example, x to block 102, y to 101, and
z to 103. As a consequence of the shuffling, the client updates the root node,
encrypts its content and writes it back at the provider. It then updates the cache

23

at level 1 inserting node z. The client then downloads and decrypts the blocks
at level 2 along the path to z3 and x1 (202 and 207, respectively). It decrypts
these blocks retrieving the target of the search, and shuffles their content along
with node y2 (205) in the cache. The client updates the content of nodes x, y,
and z according to the shuffling, re-encrypts them and writes them back to the
provider. Analogously, it encrypts and writes at the provider blocks 202, 205,
and 207. Also, it inserts node z3 in the cache. Figure 14(c) illustrates the cloud
provider’s view over the access in terms of blocks read and/or written. It is easy
to note that the provider can detect neither which among the accessed leaves is
the target of the access, nor how the block contents have been shuffled [25].

The original shuffle index proposal has been extended to support concurrent
accesses to the data, accesses to attributes different from the key (e.g., [27]), and
to operate in a distributed system (e.g., [26,28]).

6 Protecting query integrity

Another important issue that needs to be considered when storing and processing
data in the cloud is the ability of users to verify the correct behavior of cloud
providers. This implies providing users with techniques that allow them to check
the correctness , completeness , and freshness of query results. Correctness means
that the result has been performed on the original data and the computation
performed correctly. Completeness means that no tuple is missing from the query
result. Freshness means that the query result has been computed on the most
up-to-date version of the data. Two classes of techniques have been proposed to
provide such guarantees: deterministic techniques (Section 6.1) and probabilistic
techniques (Section 6.2).

6.1 Deterministic approaches

Deterministic approaches are typically based on the adoption of authenticated
data structures such as signature chaining, Merkle hash trees, and skip lists
(e.g., [32,51,54,57,58,84]). These solutions build an authenticated data structure
on the outsourced dataset and return, for each query q , a verification object VO
extracted from the structure that can be used for verification. If VO is con-
sistent with the data structure, this guarantees that the query result is correct
and complete. Since they are defined over the whole data collection, authenti-
cated data structures also provide integrity of data in storage, as unauthorized
modifications can be immediately detected when checking the integrity of query
results.

Signature chaining. Signature chaining has been originally proposed to verify
the integrity of the result of range queries [57] operating on an attribute a of the
outsourced relation r, defined over domain D, and characterized by a total order
relationship. These techniques adopt a one-way hash function h, and require
to order the tuples in r according to the values of attribute a . The signature
associated with each tuple t i is computed by signing the string resulting from

24

h1=h(t1) h2=h(t2) h3=h(t3) h4=h(t4) h5=h(t5) h6=h(t6) h7=h(t7) h8=h(t8)

h12=h(h1||h2) h34=h(h3||h4) h56=h(h5||h6) h78=h(h7||h8)

h1234=h(h12||h34) h5678=h(h56||h78)

root=h(h1234||h5678)

Fig. 15. A Merkle hash tree over attribute Name of relation MedicalData in Figure 2

the concatenation of h(t i−1) with h(t i), with t i−1 the tuple preceding t i in the
order. Given a range query q operating on a , incompleteness of the result can
be immediately detected by checking the signature associated with the tuples
in the query result. For instance, suppose that tuple t i has been omitted in the
computation of the query result. While checking the signature of the tuples, the
client would discover that the computed signature of t i+1 (i.e., h(t i−1)||h(t i+1))
is different from the one stored with t i+1, which is h(t i)||h(t i+1).

Since signature chaining guarantees completeness of query results only with
respect to the attribute on which the signature chain has been defined, a signa-
ture chain should be defined for each attribute that may be involved in a range
query. The main limitation of this approach is related to the size of the signature
associated with each tuple, which increases linearly with the number of signature
chains.

Merkle hash trees. Integrity of query computations can be provided also by
using a Merkle hash tree built over the outsourced relation [54]. Given a relation
r, a Merkle hash tree is a binary tree that stores in each leaf the result of
a one-way hash function h over a tuple of r, and in each internal node the
hash of the concatenation of its children. The tuples in the leaves of the tree
are ordered according to the values of an attribute a . The root of the Merkle
hash tree is signed by the data owner and communicated to authorized users.
Figure 15 illustrates an example of a Merkle hash tree defined over attribute Name
of relation MedicalData in Figure 2(a). Given a range query to be evaluated
over attribute a , the result returned to the requesting client includes also a
verification object VO with the values of the nodes needed by the client to
compute the value of the root. To verify the correctness and completeness of
the query result, the client computes the value of the root using the VO and
the tuples in the query result. It then checks if the computed value is the same
as the root initially received from the data owner [32]. The computation of VO
depends on the type of query to be evaluated. For instance, in case of a selection

25

query that returns a specific tuple, the VO contains the values of all the nodes
being sibling of those in the path from the root to the leaf corresponding to
the returned tuple. With reference to relation MedicalData in Figure 2 and
the Merkle hash tree in Figure 15, consider a query returning the patient with
name Fred. The query returns tuple t6 and its VO contains the gray nodes in
the figure.

The original technique illustrated in [32] has been extended to improve the
efficiency of the verification processes (e.g., [51,58]), and to support integrity
verification of join results [84].

Skip lists. Another authenticated structure that can be used to verify the in-
tegrity of queries searching for a key value in a set of elements is represented
by skip lists [33]. A skip list for a set S of distinct key values is a set of lists
S0, S1, . . . , Sk such that: i) S0 contains all keys in S in non-decreasing order,
together with sentinels −∞ and +∞; and ii) list Si, i = 1, . . . , k, contains an
arbitrary subset of the keys included in Si−1 that always includes sentinels −∞
and +∞. Figure 16(a) illustrates a skip list with three levels for S={5,6,8,9,10}.

The search operation for a key value v in a skip list starts from sentinel −∞
in the top list (i.e., Sk) and operates through operations hop forward, moving
right along the current list until the visited key value v i is the largest value lower
than or equal to v , and drop down, moving down a list (i.e., from Sj to Sj−1).
The search iteratively hops forward and drops down until it reaches the bottom
list S0. For instance, with reference to the skip list in Figure 16(a), Figure 16(b)
illustrates a search for value 9, where accessed nodes are denoted in gray.

Skip lists can be efficiently used to verify the integrity of queries searching for
a value v in S. To this aim, the skip list defined for S is authenticated adopting a
commutative and collision-resistant hash function (i.e., a hash function such that
h(x, y)=h(y, x)). Each node in the skip list is associated with a label, computed
through the commutative and collision-resistant hash function, that depends on
the elements on its right and below it. For the nodes in the bottom list S0, the
label f(v, S0) of node v is computed as the hash of its value v and: the value
of the node w on its right, if w also belongs to S1 (i.e., f(v, S0) = h(v, w));
the label f(w, S0) of the node w on its right (i.e., f(v, S0) = h(v, f(w, S0)),
otherwise. For instance, with reference to Figure 16(a), f(9, S0) = h(9, 10) while
f(6, S0) = h(6, f(8, S0)). For the nodes in Si, i > 0, the label f(v, Si) of node
v is: the same as the label of v at Si−1, if the node w on its right also belongs
to Si+1 (i.e., f(v, Si) = f(v, Si−1)); the hash of the labels of the node below v
and on of the node w on the right of v (i.e., f(v, Si) = h(f(v, Si−1), f(w, Si)),
otherwise. For instance, with reference to S1 in Figure 16(a), f(5, S1) = f(5, S0)
while f(6, S1) = h(f(9, S1), f(6, S0)). The label of the starting node s of the skip
list (i.e., the first sentinel node in the top list) is signed by the data owner and
sent to all the authorized users.

If a query searching for element v returns a positive answer (i.e., v ∈ S), the
integrity verification process checks the existence of the value itself. Otherwise, it
verifies the existence of two elements v ′ and v ′′, consecutive in list S0, such that
v ′ < v < v ′′. To this aim, the client receives a verification object that includes

26

(a)

(b)

(c)

Fig. 16. A skip list for set S={5,6,8,9,10} with three levels (a), search process for key
value 9 (b), and verification object for a query searching for value 9 (c)

the label of the nodes on the right and below the nodes forming the path to v ,
which are necessary and sufficient to the client for computing the label of the
received nodes. For instance, consider the skip list in Figure 16(a) and suppose
to search key value 9. Figure 16(c) highlights the visited nodes (gray nodes)
and the node included in the verification object (dashed nodes). The verification
object then corresponds to the list ⟨9, 10, f(6, S0), f(−∞, S1), f(10, S2)⟩. The
client verifies the answer by hashing the values in the verification object and
comparing the result with the label f(s) of the starting node s of the skip list.

A modification to S due to insertion/deletion of a value v translates to
an update, efficiently performed in O(log(|S|)), of the associated skip list for
inserting/deleting v .

27

6.2 Probabilistic approaches

All the techniques described in Section 6.1 can assess the integrity of query re-
sults only for the attribute(s) over which the authenticated structures have been
built. While ensuring integrity with full confidence, no guarantee is provided for
queries operating over other attributes. Probabilistic approaches are not limited
to operate on specific subsets of attributes, but ensure integrity with a certain
degree of confidence. Current probabilistic approaches are based on the insertion
of fake tuples in the outsourced relation, on the controlled replication of a subset
of tuples, or on a combination of these two techniques.

Fake tuples [53,81]. Fake tuples are inserted in the relation before storing it
at the cloud provider, and are built in such way to appear indistinguishable, to
the eyes of the cloud provider, from original tuples. The insertion of fake tuples
is driven by the data owner according to a deterministic function f operating
over the domains of the attributes in the relation. Users authorized to check
query integrity know this function. Given the result of a query q returned to the
requesting client, the client checks whether all the expected fake tuples belong
to the query result. Absence of one or more expected fake tuples satisfying the
query signals incompleteness of the query result. As proved in [81], even a limited
number of fake tuples ensures high probabilistic guarantee of completeness.

Controlled replication [76]. An alternative probabilistic approach to verify
the completeness of selection queries consists in replicating all tuples in the
relation to be outsourced that satisfy a replication condition Cr. The original
tuples in the outsourced relation are then encrypted with a key k1, and the
tuples satisfying the replication condition are duplicated and encrypted with a
different key k2. The relation stored at the provider then includes two copies of
each tuple satisfying Cr , one encrypted with k1 (i.e., Ek1

(t)), and one encrypted

with k2 (i.e., Ek2
(t)). Given a query q formulated by the user over the original

relation, the client transforms it into two queries q1 and q2 equivalent to q .
One of these queries operates on the original data collection (i.e., on tuples
encrypted with k1), while the other operates on replicated tuples only (i.e., on
tuples encrypted with k2). To verify the completeness of the query result, the
client checks the presence of two copies of each tuple in the query result that
satisfy the replication condition Cr. The presence of one copy only of these tuples
signals the incompleteness of the query result.

Combining fake tuples and controlled replication [19,22,23]. These pro-
posals permit to assess the integrity of join queries in a scenario where two
trusted storage providers Sl and Sr store the base relations L and R to be
joined, and a non fully trusted computational provider Cp is in charge of evalu-
ation the join. To verify the correctness and completeness of the join result, the
client collaborates with the storage providers, asking them to insert markers and
twins in their relations before being sent to the computational provider. Markers
are fake tuples, not recognizable as such by the computational provider, dynam-
ically inserted into the operand relations by the storage providers. To ensure the
presence of markers in the result of the join operation, the same set of markers is

28

inserted into both L and R. The client then coordinates the number of markers
and their values of the join attribute. Twins are copies of the original tuples that
satisfy a twinning condition Ctwin defined by the client and communicated to
both the storage providers. The twinning condition regulates the percentage of
twins to be inserted in the operand relations (and hence also in the join result).
To be applicable to both L and R, the twinning condition operates on the join
attribute (which is the only attribute common to the two operand relations).
Note that the values of the join attribute for markers and twins are chosen out-
side the domain of the original join attribute values, to prevent the insertion of
spurious tuples in the result computed by the computational provider. To pro-
tect the confidentiality of the data and to prevent the computational provider
from identifying markers and twins, the operand relations are encrypted (with
a key chosen by the client) before sending them to the computational provider.
Also, the frequency distribution of values of the join attribute of the tuples par-
ticipating in a one-to-many join is flattened by adopting salts and/or buckets .
Salts consist in combining different occurrences of the same join attribute value
in the relationon the side “many” with a different salt, to guarantee that they
map to different encrypted values. At the same time salted replicas are created
at side “one” of the join so to create the corresponding matching. Bucketization
consists instead in making the number of occurrences of each value of the join
attribute at the side many of the join equal by also inserting dummy tuples when
necessary. The client checks whether the tuples in the join result satisfy the join
condition, the presence of the expected markers, and verifies whether the tuples
satisfying the twinning condition are duplicated in the result.

Twins and markers offer complementary controls [22]: twins are twice as ef-
fective as markers, but loose their effectiveness when the computational provider
omits a large fraction of tuples; markers allow detecting extreme behavior (all
tuples omitted) and provide effective when the computational provider omits a
large fraction of tuples. Figure 17 illustrates the computation of a one-to-one
join between L(Id,Name) and R(Id,Premium) with the adoption of twins, mark-
ers, and encryption on-the-fly [22]. The two relations are first extended with
twins (light gray) and markers (dark gray). The resulting extended relations (L∗

and R∗) are then encrypted and sent to the computational provider (in the figure,
encrypted values are denoted by uppercase Greek letters). The encrypted rela-
tions L∗

k and R∗
k have two attributes: Ik, the encrypted join attribute; L∗.Tuplek

and R∗.Tuplek, the encryption of all attributes (including the join attribute).
The computational provider computes the natural join between the received en-
crypted relations and sends the result (J∗

k) to the client. The client projects over
attributes L∗.Tuplek and R∗.Tuplek, decrypts the result of projection (obtain-
ing relation J∗), verifies its completeness and correctness, and if no omission is
detected, removes twins and markers to obtain the join result (J).

The solution in [22] has been extended in [19] to support arbitrary kinds of
joins (i.e., one-to-one, one-to-many, and many-to-many) and join sequences in a
distributed and parallel platform (MapReduce). Also, the work in [23] presents
some optimizations for limiting the overhead to be paid for integrity guarantees.

29

J
Id Name Premium

a Alice 200
b Bob 900

clean up

!!

J∗
L∗.I L∗.Attr R∗.I R∗.Attr

a Alice a 200
b Bob b 900
a Alice a 200
x marker1 x marker2
y marker3 y marker4

project/decrypt

!!

client

J∗
k

Ik L∗.Tuplek R∗.Tuplek

A Λ1 P1

B Λ2 P2

A Λ1 P 1

X M1 M2

Ψ M3 M4

◃▹

!!

""♦♦♦♦♦♦♦

##❖❖❖❖❖❖❖L∗
k

Ik L∗.Tuplek

A Λ1

B Λ2

Γ Λ3

A Λ1

Γ Λ3

X M1

Ψ M3

R∗
k

Ik R∗.Tuplek

A P1

B P2

Θ P3

A P 1

X M2

Ψ M4

encrypt

!!

encrypt

!!
computational
provider Cp

L∗
I Attr

a Alice
b Bob
c Carl
a Alice
c Carl
x marker1
y marker3

R∗
I Attr

a 200
b 900
h 100
a 200
x marker2
y marker4

add twins/markers

!!

add twins/markers

!!

L
Id Name

a Alice
b Bob
c Carl

R
Id Premium

a 200
b 900
h 100

storage provider Sl storage provider Sr

Fig. 17. An example of query evaluation process with twins (light gray) on ‘a’ and ‘c’
and two markers (dark grey)

30

7 Conclusions

In this chapter, we have illustrated some encryption-based approaches for pro-
tecting and managing data in the cloud. In particular, we have discussed the
application of encryption for protecting confidentiality, integrity, and availabil-
ity of externally stored data, and for enforcing access control restrictions over
them. We have also illustrated techniques for evaluating queries over encrypted
data. Finally, we have discussed approaches for protecting the confidentiality of
accesses and for guaranteeing the integrity, in terms of correctness and complete-
ness, of query results.

Acknowledgements. This work was supported in part by: the EC within the
7FP under grant agreement 312797 (ABC4EU) and within the H2020 program
under grant agreement 644579 (ESCUDO-CLOUD), and the Italian Ministry of
Research within PRIN project “GenData 2020” (2010RTFWBH).

References

1. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proc. of SIGMOD 2004. Paris, France (June 2004)

2. Akl, S., Taylor, P.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (August 1983)

3. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-
agement for access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (January 2009)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proc. of CCS 2007 (October–
November 2007)

5. Barni, M., Bianchi, T., Catalano, D., Raimondo, M.D., Labati, R.D., Failla, P.,
Fiore, D., Lazzeretti, R., Piuri, V., Scotti, F., Piva, A.: A privacy-compliant fin-
gerprint recognition system based on homomorphic encryption and fingercode tem-
plates. In: Proc. of BTAS 2010. Washington, D.C., USA (September 2010)

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Proc. of EUROCRYPT 2003. Warsaw, Poland
(May 2003)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM Journal on Computing 43(2), 831–871 (April 2014)

8. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Proc. of EUROCRYPT 1999. Prague,
Czech Republic (May 1999)

9. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage. In:
Proc. of ESORICS 2007. Dresden, Germany (September 2007)

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: Outsourcing data while maintaining confidentiality. In:
Proc. of ESORICS 2009. Saint Malo, France (September 2009)

11. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM TISSEC 13(3), 22:1–22:33 (July 2010)

31

12. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Proc. of CRYPTO 2011. Santa
Barbara, CA, USA (August 2011)

13. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Proc. of EURO-
CRYPT 2012. Cambridge, UK (April 2012)

14. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Selective data encryption in outsourced dynamic environments. In:
Proc. of VODCA 2006. Bertinoro, Italy (September 2006)

15. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of ACM CCS 2003. Washington, DC, USA (October 2003)

16. Damiani, E., De Capitani di Vimercati, S., Samarati, P.: New paradigms for access
control in open environments. In: Proc. of ISSPI 2005. Athens, Greece (December
2005)

17. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Enforcing dynamic write privileges in data outsourcing. Computers
& Security (November 2013)

18. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Fragmentation in presence of data dependencies. IEEE TDSC 11(6),
510–523 (November–December 2014)

19. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi,
S., Samarati, P.: Integrity for distributed queries. In: Proc. of CNS 2014. San
Francisco, CA, USA (October 2014)

20. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Pelosi, G.,
Samarati, P.: Preserving confidentiality of security policies in data outsourcing. In:
Proc. of WPES 2008. Alexandria, Virginia, USA (October 2008)

21. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (April 2010)

22. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE TCC 1(2), 187–200 (July–December
2013)

23. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Optimizing integrity checks for join queries in the cloud. In: Proc. of the 28th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security and
Privacy (DBSec 2014). Vienna, Austria (July 2014)

24. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Samarati, P.: Access control
policies and languages in open environments. In: Yu, T., Jajodia, S. (eds.) Secure
Data Management in Decentralized Systems. Springer-Verlag (2007)

25. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proc. of ICDCS 2011. Min-
neapolis, MN, USA (June 2011)

26. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Distributed shuffling for preserving access confidentiality. In: Proc. of ESORICS
2013. Egham, UK (September 2013)

27. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
JCS 21(3), 425–461 (2013)

32

28. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Protecting access confidentiality with data distribution and swapping. In: Proc. of
BDCloud 2014. Sydney, Australia (December 2014)

29. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proc. of CRiSIS 2012. Cork,
Ireland (October 2012)

30. De Capitani di Vimercati, S., Samarati, P., Jajodia, S.: Policies, models, and lan-
guages for access control. In: Proc. of DNIS 2005. Aizu-Wakamatsu, Japan (March
2005)

31. Delerue Arriaga, A., Tang, Q., Ryan, P.: Trapdoor privacy in asymmetric search-
able encryption schemes. In: Proc. of AFRICACRYPT 2014. Marrakesh, Morocco
(May 2014)

32. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic third-party data
publication. In: Proc. of DBSec 2000. Schoorl, The Netherlands (August 2000)

33. Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated skip
lists. In: Proc. of DBSec 2007. Redondo Beach, CA, USA (July 2007)

34. Ding, X., Yang, Y., Deng, R.: Database access pattern protection without full-
shuffles. IEEE Transactions on Information Forensics and Security 6(1), 189–201
(March 2011)

35. Fangming, Z., Takashi, N., Kouichi, S.: Realizing fine-grained and flexible access
control to outsourced data with attribute-based cryptosystems. In: Proc. of ISPEC
2011. Guangzhou, China (May-June 2011)

36. Foresti, S.: Preserving Privacy in Data Outsourcing. Springer (2011)
37. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access

control. In: Proc. of RoboCare Workshop 2005. Rome, Italy (May 2005)
38. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC

2009. Bethesda, MA, USA (May 2009)
39. Goh, E.J.: Secure indexes. Tech. Rep. 2003/216, Cryptology ePrint Archive (2003),

http://eprint.iacr.org/
40. Goldreich, O., Ostrovsky, R.: Software protection and simulation on Oblivious

RAMs. Journal of the ACM 43(3), 431–473 (May 1996)
41. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Practical oblivious

storage. In: Proc. of CODASPY 2012. San Antonio, TX, USA (February 2012)
42. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving

group data access via stateless Oblivious RAM simulation. In: Proc. of SODA 2012.
Kyoto, Japan (January 2012)

43. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proc. of ACM CCS 2006. Alexandria,
VA, USA (October–November 2006)

44. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases
in database as a service model. In: Proc. of DBSec 2003. Estes Park, CO, USA
(August 2003)

45. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational databases. In: Proc. of DASFAA 2004. Jeju Island, Korea
(March 2004)

46. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI,
USA (June 2002)

47. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proc. of CSE 2012. Paphos, Cyprus (Decem-
ber 2012)

33

48. Jhawar, R., Piuri, V., Santambrogio, M.: A comprehensive conceptual system-
level approach to fault tolerance in cloud computing. In: Proc. of SysCon 2012.
Vancouver, BC, Canada (March 2012)

49. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal 7(2), 288–297 (June
2013)

50. Juels, A., Kaliski Jr, B.S.: PORs: Proofs of retrievability for large files. In: Proc.
of ACM CCS 2007. Alexandria, VA, USA (October–Novermber 2007)

51. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proc. of SIGMOD 2006. Chicago, IL, USA
(June 2006)

52. Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data
stores. In: Proc. of WOSIS 2004. Porto, Portugal (April 2004)

53. Liu, R., Wang, H.: Integrity verification of outsourced XML databases. In: Proc.
of CSE 2009. Vancouver, Canada (August 2009)

54. Merkle, R.: A certified digital signature. In: Proc. of CRYPTO 1989. Santa Bar-
bara, CA, USA (August 1989)

55. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (May 2006)

56. Ostrovsky, R., Skeith, III, W.E.: A survey of single-database private information
retrieval: Techniques and applications. In: Proc. of PKC 2007. Beijing, China (April
2007)

57. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proc. of SIGMOD 2005. Baltimore, MA, USA
(June 2005)

58. Pang, H., Tan, K.: Authenticating query results in edge computing. In: Proc. of
ICDE 2004. Boston, MA, USA (April 2004)

59. Pang, H., Zhang, J., Mouratidis, K.: Enhancing access privacy of range retrievals
over B+-trees. IEEE TKDE 25(7), 1533–1547 (July 2013)

60. Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: Protecting con-
fidentiality with encrypted query processing. In: Proc. of SOSP 2011. Cascais,
Portugal (October 2011)

61. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: DeMillo, R., Lipton, R., Jones, A. (eds.) Foundation of Secure Com-
putations. Academic Press (1978)

62. Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with au-
thentication for securing data in clouds. In: Proc. of CCGrid 2012. Ottawa, Canada
(May 2012)

63. Samarati, P.: Data security and privacy in the cloud. In: Proc. of ISPEC 2014.
Fuzhou, China (May 2014)

64. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing sce-
narios: Issues and directions. In: Proc. of ASIACCS 2010. Beijing, China (April
2010)

65. Samarati, P., De Capitani di Vimercati, S.: Cloud security: Issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley
(2015)

66. Sandhu, R.: On some cryptographic solutions for access control in a tree hierarchy.
In: Proc. of the 1987 Fall Joint Computer Conference on Exploring Technology:
Today and Tomorrow. Dallas, TX, USA (October 1987)

67. Sandhu, R.: Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters 27(2), 95–98 (February 1988)

34

68. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Proc. of ASI-
ACRYPT 2008. Melbourne, Australia (December 2008)

69. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proc. of IEEE S&P 2000. Berkeley, CA, USA (May 2000)

70. Stefanov, E., van M. Dijk, Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: An extremely simple Oblivious RAM protocol. In: Proc of ACM CCS
2013. Berlin, Germany (November 2013)

71. Stefanov, E., Shi, E.: ObliviStore: High performance oblivious cloud storage. In:
Proc. of IEEE S&P 2013. Berkeley, CA, USA (May 2013)

72. Wan, Z., Liu, J., Deng, R.H.: HASBE: A hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE Transactions on
Information Forensics and Security 7(2), 743–754 (April 2012)

73. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE Transactions on Parallel and Distributed
Systems 23(8), 1467–1479 (August 2012)

74. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Transactions on Computers 62(2), 362–
375 (February 2013)

75. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML
databases. In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

76. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proc. of CIKM 2008. Napa Valley, CA, USA (October 2008)

77. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Proc. of PKC 2011. Taormina, Italy (March
2011)

78. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc.
of ACM CCS 2012. Raleigh, NC, USA (October 2012)

79. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access
pattern privacy and correctness on untrusted storage. In: Proc. of ACM CCS 2008.
Alexandria, VA, USA (October 2008)

80. Williams, P., Sion, R., Tomescu, A.: PrivateFS: A parallel oblivious file system.
In: Proc. of ACM CCS 2012. Raleigh, NC, USA (October 2012)

81. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proc. of VLDB 2007. Vienna, Austria (September 2007)

82. Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient
revocation in cloud storage systems. In: Proc. of ASIACCS 2013. Hangzhou, China
(May 2013)

83. Yang, K., Zhang, J., Zhang, W., Qiao, D.: A light-weight solution to preservation
of access pattern privacy in un-trusted clouds. In: Proc. of ESORICS 2011. Leuven,
Belgium (September 2011)

84. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: Proc. of SIGMOD 2009. Providence, RI, USA (June-
July 2009)

85. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proc. of INFOCOM 2010. San Diego,
CA, USA (March 2010)

86. Zhu, Y., Ahn, G.J., Hu, H., Yau, S., An, H., Hu, C.J.: Dynamic audit services
for outsourced storages in clouds. IEEE Transactions on Services Computing 6(2),
227–238 (April 2013)

35

