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Abstract. Let G be a finite group, and p a prime. We say that a p-regular

element g of G is p-nonvanishing if no irreducible p-Brauer character of G takes

the value 0 on g. The main result of this paper shows that if G is solvable
and g ∈ G is a p-regular element which is p-nonvanishing, then g lies in a

normal subgroup of G whose p-length and p′-length are both at most 2 (with

possible exceptions for p ≤ 7), the bound being best possible. This result is
obtained through the analysis of one particular orbit condition in linear actions

of solvable groups on finite vector spaces, and it generalizes (for p > 7) some
results in [3].

Introduction and preliminaries

An element g of a finite group G is called a nonvanishing element if χ(g) 6= 0 for
every irreducible complex character χ ∈ Irr(G); in other words, g is nonvanishing if
the column corresponding to g in the character table of G contains no zero entries.
In [7] M. Isaacs, G. Navarro and T. Wolf prove that if G is a finite solvable group and
g ∈ G is a nonvanishing element of odd order, then g lies in the Fitting subgroup
F(G) of G. Moreover, in [4] it is shown that if G is any finite group and g ∈ G is a
nonvanishing element of order coprime to 6, then again g ∈ F(G).

In this spirit, given a prime number p, we consider elements corresponding to
columns with no zero entries in the table of Brauer characters in characteristic p.
We say that a p-regular element g ∈ G is a p-nonvanishing element if φ(g) 6= 0 for
every irreducible p-Brauer character φ ∈ IBrp(G).

In [3] it is proved that if, for a prime p > 3, all p-regular elements of a finite
group G are p-nonvanishing (a condition that implies the solvability of G), then G
has p′-length at most 2. Assuming (as we may, since every p-Brauer character of
G contains Op(G) in its kernel) that Op(G) = 1, this implies that every p-regular
element of G lies in Op′pp′(G).

The main theorem of the present paper extends this result, in the case p > 7.

Theorem A. Let p be a prime number greater than 3, let G be a finite solvable
group with Op(G) = 1, and let g be a p-regular element of G that is p-nonvanishing.
Then g lies in Op′pp′(G), unless p ∈ {5, 7} and the order of g is divisible by 2 or 3.

Example 4.1 shows that the above statement is “optimal” in some sense. Our
approach to Theorem A consists in studying a related problem about linear actions
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on modules. A key tool for our analysis is in fact Theorem 2.6, which deals with
solvable groups acting irreducibly on modules over prime fields, and satisfying one
particular orbit condition. As shown by Example 4.2, Theorem 2.6 is false in general
when p is 5 or 7 and the order of g is divisible by 2 or 3, but we don’t know whether
exceptions to Theorem A really exist in this case. At any rate, different methods
should take over in order to extend Theorem A (possibly for p ∈ {2, 3} as well),
and this is left as open problem.

Every group considered in this paper is assumed to be a finite group. The only
non-standard preliminary concept that needs to be introduced, and that will be
central in our discussion, is the following.

Definition. Let Ω be a finite nonempty set, and let G be a subgroup of Sym(Ω).
Given an orbit O for the action of G on Ω, and an element g of G, we say that O
is g-deranged if g does not fix any element in O.

Observe that a regular orbit is clearly g-deranged for every nontrivial g ∈ G.

1. Deranged orbits on the power set

Definition 1.1. Let Ω be a finite nonempty set. Given a positive integer t, we
define Pt(Ω) to be the set of ordered (t + 1)-tuples (Ω1,Ω2, . . . ,Ωt+1), where the
Ωj are (possibly empty) subsets of Ω such that Ωj ∩ Ωl = ∅ whenever j 6= l, and⋃t+1
j=1 Ωj = Ω. We shall write P(Ω) rather than P1(Ω). (Note that P(Ω) can be

identified with the power set of Ω.)

Observe that, if G is a subgroup of Sym(Ω), then G also embeds into Sym(Pt(Ω))
in a natural way (under the convention that the empty set is fixed by every element
of G). Moreover, there is an obvious bijection between Pt(Ω) and the subset of
Pt+1(Ω) consisting of the elements (Ω1,Ω2, . . . ,Ωt+2) such that Ωt+2 = ∅; this
subset is clearly G-invariant, and the action of G on it is equivalent to that on
Pt(Ω). For g ∈ G, we shall freely use the obvious fact that, whenever there exists
a g-deranged orbit for the action of G on Sym(Pt(Ω)), the same happens for the
action of G on Sym(Pt+1(Ω)).

Notation 1.2. Let Ω be a finite set with |Ω| > 1, let G be a transitive subgroup of
Sym(Ω), and ∆ a minimal nontrivial block for the action of G on Ω (i.e., |∆| > 1,
but we allow ∆ = Ω). Denoting by G∆ the stabilizer of ∆ in G, and by L the
pointwise stabilizer of ∆ in G, set H = G∆/L. In this situation, H can be identified
with a primitive subgroup of Sym(∆). Also, let Σ be a right transversal for G∆ in
G; in view of Remarks 2.1 and 2.2 of [3], G can be identified with a subgroup of
H o K , where K ≤ Sym(Σ) is a homomorphic image of G acting transitively on
Σ. Furthermore, the group H oK (thus G, as well) acts naturally on the cartesian
product ∆ × Σ, and the G-sets Ω and ∆ × Σ are equivalent. If |Σ| = s, then we
identify Σ with {1, 2, ..., s} ⊆ N. Finally, we write B for the base group of H oK.

Lemma 1.3. Assuming the setting of Notation 1.2, consider an element g =
(h1, h2, ..., hs)k of G. Then, for every positive integer t, the following conclusions
hold.

(a) Let g be in G ∩B (i.e., let k = 1). If, for a given i ∈ {1, ..., s}, there exists an
hi-deranged orbit for the action of H on Pt(∆), then there exists a g-deranged
orbit for the action of G on Pt(Ω).
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(b) If there exists a k-deranged orbit for the action of K on Pt(Σ), then there exists
a g-deranged orbit for the action of G on Pt(Ω).

Proof. We start by proving part (a) of the statement. Let (∆1,∆2, . . . ,∆t+1) be
an element lying in an hi-deranged orbit for the action of H on Pt(∆). We define
an ordered (t+ 1)-tuple of subsets of ∆× Σ, setting

Ωj = {(δ, i) | δ ∈ ∆j , i ∈ {1, . . . , s}}

for every j ∈ {1, . . . , t+1}. We claim that g does not fix any element in the G-orbit
of (Ω1,Ω2, . . . ,Ωt+1).

In fact, for a proof by contradiction, assume that there exists x ∈ G such that g
fixes (Ω1,Ω2, . . . ,Ωt+1) · x. Write x = (l1, . . . , ls)z for suitable li ∈ H and z ∈ K,
whence xg = (l1h1·z, l2h2·z, ..., lshs·z)z. For j ∈ {1, . . . , t + 1} and δ ∈ ∆j , take
r ∈ {1, ..., s} and ε ∈ ∆ such that

(δ, i · z−1) · xg = (ε, r) · x

holds. Note that r = i · z−1, and observe also that ε lies in ∆j , because gx
−1

fixes
(Ω1,Ω2, . . . ,Ωt+1). Moreover, δ · li·z−1hi = ε · li·z−1 holds; thus, setting u = li·z−1 ∈
H, we have that δ · hu−1

i lies in ∆j . Since this holds for every δ ∈ ∆j , we conclude

that hu
−1

i fixes ∆j and, as this happens for every j ∈ {1, ..., t + 1}, we get that hi
fixes (∆1,∆2, . . . ,∆t+1) · u, contradicting the fact that (∆1,∆2, . . . ,∆t+1) lies in
an hi-deranged orbit for the action of H on Pt(∆).

We move now to part (b). Let (Σ1,Σ2, ...,Σt+1) be an element of Pt(Σ) lying in
a k-deranged orbit. Setting

Ωj = {(δ, i) | δ ∈ ∆, i ∈ Σj}

for j ∈ {1, ..., t + 1}, we claim that (Ω1,Ω2, ...,Ωt+1) lies in a g-deranged orbit
for the action of G on Pt(Ω). In fact, as above, let x ∈ G be such that g fixes
(Ω1,Ω2, . . . ,Ωt+1) · x. Write x = (l1, . . . , ls)z, with li ∈ H and z ∈ K, whence

gx
−1

= (y1, y2, ..., ys)k
z−1

for suitable yi ∈ H. For δ ∈ ∆ and i ∈ Σj , we get

(δ, i)·gx−1

= (δ ·yi, i·kz
−1

): as gx
−1

stabilizes Ωj , we have i·kz−1 ∈ Σj and therefore

kz
−1

stabilizes Σj . As this happens for every j ∈ {1, ..., t+ 1}, this contradicts our
choice of (Σ1,Σ2, ...,Σt+1) as an element of Pt(Σ) lying in a k-deranged orbit, and
the proof is complete.

Theorem 1.4. Let Ω be a finite nonempty set, G a transitive solvable subgroup of
Sym(Ω), and g a nontrivial element of G. Then the following conclusions hold.

(a) There exists a G-regular orbit in P4(Ω).
(b) There exists a g-deranged orbit in P3(Ω).
(c) If there does not exist any g-deranged orbit in P2(Ω), then g lies in O{2,3}(G).
(d) If there does not exist any g-deranged orbit in P(Ω), then g is a {2, 3}-element

of G lying either in O{2,3,5}(G) or in O{2,3,7}(G).

Proof. Conclusion (a) is Theorem 1.2 of [10]. We will start by proving parts (b), (c)
and (d) under the additional assumption that G is a primitive subgroup of Sym(Ω).

In this case, Lemma 1 of [2] guarantees the existence of a G-regular orbit on
P2(Ω) unless |Ω| = 4 and G is Sym(4), so (c) is proved; moreover, the G-orbit on
P3(Ω) containing ({1}, {2}, {3}, {4}) is regular, thus (b) holds too. As regards the
action of G on P(Ω), we can clearly assume that G does not have any regular orbit
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on P(Ω), so we are in a position to apply Theorem 5.6 of [8]. As we can also assume
that G is not a {2, 3}-group, we have to consider the following cases.

(1) Ω = {1, 2, 3, 4, 5} and G ' D10. Then the G-orbit of ({1, 2}, {3, 4, 5}) in P(Ω)
is g-deranged for any g ∈ G which is not an involution.

(2) Ω = {1, 2, 3, 4, 5} and G is the Frobenius group of order 20. Then the G-orbit
on P(Ω) containing ({1, 2}, {3, 4, 5}) is g-deranged for any g ∈ G that is not an
involution.

(3) Ω = {1, 2, 3, 4, 5, 6, 7} and G is the Frobenius group of order 42. Then the
G-orbit on P(Ω) containing ({1, 2}, {3, 4, 5, 6, 7}) is g-deranged for any g ∈ G
that is not an involution.

(4) Ω = {1, 2, 3, 4, 5, 6, 7, 8} and G = AΓ(23) is the affine semilinear group on the
field GF(23) (see [8, page 38]). Now, the stabilizer inG of ({1}, {2, 3, 4, 5, 6, 7, 8})
has odd order and the stabilizer of ({1, 2}, {3, 4, 5, 6, 7, 8}) has order coprime
to 7, so there exists a g-deranged orbit in P(Ω) for any g ∈ G which is not of
order 3.

The analysis of the primitive case is complete, and we will henceforth assume
that the action of G on Ω is imprimitive. In what follows we will make use of
Notation 1.2. Observe that, taking into account part (a) of Lemma 1.3, conclusions
(b), (c) and (d) are easily extended from the primitive to the imprimitive case
whenever g lies in G ∩B.

Consider first the case ∆ = {δ1, ..., δd} with d ≥ 4. Set ∆0 = ∅ and, for
i ∈ {1, ..., 4}, set ∆i = {δ1, ..., δi}. Now, by part (a) we can choose an element
(Σ0, ...,Σ4) lying in a regular K-orbit for the action of K on P4(Σ), and we can
define

Ω1 =

4⋃
j=0

{(δ, i) | δ ∈ ∆j , i ∈ Σj}.

Writing g = (h1, ..., hs)k, assume that the G-orbit of (Ω1,Ω \ Ω1) in P(Ω) is not
g-deranged, i.e., there exists x = (l1, . . . , ls)z ∈ G such that g fixes (Ω1,Ω \Ω1) · x.

Then gx
−1

, which we write (y1, y2, ..., ys)k
z−1

for suitable yi ∈ H, fixes (Ω1,Ω\Ω1),

and therefore kz
−1

fixes (Ω1,Ω\Ω1) · (y1, y2, ..., ys). It is not hard to check that this

forces kz
−1

to fix (Σ0, ...,Σ4), so that k is trivial and g lies in G ∩ B. As observed
in the paragraph above, we are done in this case.

It remains to treat the situation when |∆| ≤ 3, which implies that H is a {2, 3}-
group. Write g = (h1, ..., hs)k. If k = 1, then again we are done; if k 6= 1 then,
by induction on the cardinality of the permuted set, conclusions (b), (c), (d) of the
statement hold with respect to the action of K on Σ and to the element k, and an
application of part (b) of Lemma 1.3 concludes the proof.

2. Deranged orbits in linear actions

The structure of primitive solvable groups of linear transformations is quite well
understood. In the following proposition we collect some well-known facts (see for
instance [11, Theorem 2.2 and Lemma 2.4], [8, Lemma 0.5 and Theorem 1.9]) and,
after that, we will be ready to describe some features of these groups that will be
relevant for our purposes.



NONVANISHING ELEMENTS FOR BRAUER CHARACTERS 5

Proposition 2.1. Let G be a solvable group, and V a faithful primitive G-module
over a finite field. Then there exist subgroups Z ≤ U ≤ F ≤ A, and E, all normal
in G, with the following properties.

(a) U is cyclic, and E is a product of subgroups Ei / G of pairwise coprime orders,
such that, for every i, Ei is cyclic of prime order pi or an extraspecial pi-group
(of exponent pi if pi 6= 2, and of order p2ni+1

i for a suitable integer ni). Also,
F = EU is a central product, Z = E ∩ U = Z(E) and CG(F ) ≤ F .

(b) F/U ' E/Z is a direct sum of completely reducible G/F -modules.
(c) A = CG(U), so that G/A embeds into the abelian group Aut(U).
(d) A/F acts faithfully on E/Z, and A/CA(Ei/Z(Ei)) embeds into the symplectic

group Sp(2ni, pi).
(e) If W an irreducible submodule of VU , then U acts fixed-point freely on W (hence
|U | divides |W | − 1) and |G : A| is a divisor of dim(W ).

(f) Setting e =
√
|E : Z|, we have |V | = |W |eb for some integer b.

(g) Let g be an element of prime order r in G. Then |CV (g)| ≤ |V |1/2, unless
g lies in A \ F and either r = 2 or r divides |E|. In any case, we have
|CV (g)| ≤ |V |3/4.

Theorem 2.2. Let G be a solvable group, p a prime number greater than 3, and
V a faithful primitive G-module over a prime field. If there exists a nontrivial p-
regular element g of G such that there do not exist g-deranged orbits in V , then the
p-length of G is at most 1.

Proof. Let g be an element of G as in the statement. Since G acts faithfully and
primitively on V , we can use Proposition 2.1 and the notation introduced therein.
Observe that, since there are not g-deranged orbits for the action of G on V , by
Theorem 4.1 of [11] we have e ∈ {2, 3, 4, 8, 9, 16}. Hence, E is an extraspecial r-
group with r ∈ {2, 3} (so r 6= p). Write A = CG(U), and notice that U contains
Op(A), which is therefore central in A. If A/F is a p′-group, then clearly Op′p(A) =
A and, as G/A is abelian, G = Op′pp′(G). In view of that, in what follows we will
assume that p divides |A/F | (thus, in particular, A/F is not a {2, 3}-group).

If e ∈ {2, 3}, then A/F embeds into GL(2, 2) or GL(2, 3) respectively. In any
case, A/F is a {2, 3}-group against our assumption.

Thus, we have e ∈ {4, 8, 9, 16}; in the following discussion we will refer to the
analysis carried out in Lemma 3.2 and Lemma 3.3 of [1], and our aim will be to
show at first that A = Op′pp′(A).

If e = 4 , then A/F embeds in Sp(4, 2) ' Sym(6), which is a {2, 3, 5}-group;
moreover, either A/F ≤ GL(2, 2) o Sym(2), or A/F ≤ Γ(24), the semilinear group
on the field with 24 elements. As Sym(6) has no elements of order 15, we see that
A/F is a {2, 5}-group of order at most 20 and that if 5 divides the order of A/F ,
then A/F has cyclic Sylow 2-subgroups. In this case A/F has a normal Sylow
p-subgroup. Hence, A/F = Opp′(A/F ) and it follows that A = Op′pp′(A).

If e = 8, then A/F embeds in Sp(6, 2), and we get either A/F ≤ GL(2, 2)×Γ(24)
(with the projection on the second factor of order at most 20) or A/F ≤ GL(2, 2)×
Γ(23), or A/F ≤ Γ(26) with |A/F | ≤ 42. Thus p = 5 or p = 7, and in any case
A/F has a normal Sylow p-subgroup. Again it follows A/F = Opp′(A/F ) and thus
A = Op′pp′(A).

If e = 9, then A/F ≤ Sp(4, 3) and we have to consider two possibilities.
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(i) A/F ≤ 2.Sym(6). Then, looking at the solvable subgroups of 2.Sym(6), we
deduce that A/F has order at most 40, so that p = 5 and A/F has a normal
Sylow p-subgroup. Hence, A/F = Opp′(A/F ) and A = Op′pp′(A).

(ii) A/F ≤ (D8 � Q8).Alt(5). Then, looking at the solvable subgroups of (D8 �
Q8).Alt(5), we see that A/F ≤ (D8 �Q8).D10, whence |A/F | ≤ 320 and p = 5.
Moreover, setting L/F = O2(A/F ), we get that L has a normal p-complement
because Op(F ) lies in Z(A), and A/L has a normal Sylow p-subgroup. It follows
that A = Op′pp′(A).

Finally we consider the case e = 16, so that A/F embeds in Sp(8, 2), and we
have the following possibilities.

(i) A/F ≤ L, where L is a group among (GL(2, 2) oSym(2))×Γ(24), Γ(24)× Γ(24),
Γ(24) oSym(2) and Γ(24).2. It can be checked that p = 5 and A/F has a normal
Sylow 5-subgroup.

(ii) A/F ≤ L, where L is a group among (GL(2, 2) o Sym(2)) × Γ(23), GL(2, 2) ×
Γ(23)×Γ(23), GL(2, 2)× (Γ(23) ·2) or GL(2, 2)×Γ(26). In this case, p = 7 and
A/F has a normal Sylow 7-subgroup.

(iii) A/F ≤ Γ(23) × Γ(24). In this case p ∈ {5, 7}, and A/F has a normal Sylow
p-subgroup.

(iv) A/F ≤ Γ(28). Here p ∈ {5, 51}, and A/F has a normal Sylow p-subgroup.

(Note that, in any case, |A/F | ≤ 7200.)

Our conclusion so far is that A = Op′pp′(A) and, in order to conclude the proof,
it will be enough to show that G/A is a p′-group whenever there exists g ∈ G \ {1}
such that there are no g-deranged orbits in V . Aiming at a contradiction, we will
assume that G has p-length bigger that 1; so p divides |G/A| and, in particular,
|G/A| ≥ 5.

Observe that the lack of g-deranged orbits in G implies⋃
x∈G

CV (gx) = V.

As there are clearly no deranged orbits in V for any power of g, we can assume
that g is an element of prime order r. Hence we get |CV (g)| ≤ |V |α, where α takes
the value 1/2 or 3/4 according to part (g) of Proposition 2.1, and thus

(1) |V | ≤ |G : NG(〈g〉)| · |V |α.
Since the number of G-conjugates of 〈g〉 is easily seen to be at most |A|, we get

(2) |V |1−α ≤ |A/F | · |U | · |E/Z|.
However, recall that U lies in Z(A); therefore, if g is in A, the number of G-
conjugates of 〈g〉 is also bounded by |G/A| · |A/F | · |E/Z|, and we have

(3) |V |1−α ≤ |G/A| · |A/F | · |E/Z|.
In what follows, using the notation of Proposition 2.1, we set |W | = qa where

q is a suitable prime; thus part (f) of that proposition yields |V | = qeab, whereas
part (e) yields |U | < qa and a = k|G/A| for some k ∈ Z.

Let us consider first the case e = 4. looking at the discussion in the first part of
this proof, we see that |A/F | ≤ 20 and p = 5, so a is a multiple of 5. Note also that
|U | is an even divisor of qa− 1, so that q is an odd prime. If g 6∈ A, then inequality
(2) yields

q2ab < 20 · qa · 24,
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whence qa < 26 · 5. This forces q = 3 and a = |G/A| = 5. Now 5 is a divisor of
the order of g, contradicting the fact that g is a p′-element. Therefore g lies in A
and we can use inequality (3); if g is not an involution in A \ F , then we obtain
310 ≤ 5 · 20 · 24, which is false. We conclude that g is an involution in A \ F , and
at any rate inequality (3) yields

qk|G/A|b ≤ |G/A| · 20 · 24.

It is easy to see that this implies q = 3, a = |G/A| = 5 and b = 1. Moreover, |U |
divides 35 − 1 = 2 · 112. By inequality (1), |V | = 320 ≤ |G : NG(〈g〉)| · |V |3/4; so
|G : NG(〈g〉)| ≥ 35. Moreover, |A/F | is divisible by 5 (as otherwise G has p-length
1), so A/F can be identified with a subgroup of order 10 or 20 of Γ(24), acting
on F/U . It follows that A/U contains 20 involutions and hence A contains 40
involutions (besides the involution of U , that is central in A and certainly not a
conjugate of g), against |G : NG(〈g〉)| ≥ 35.

Assume next e = 8; in this case, we know that |A/F | ≤ 2 · 32 · 7. Inequality (2)
yields qa < 27 · 32 · 7 (with a ≥ 5), thus forcing q ∈ {3, 5} and a = |G/A| ∈ {5, 7}.
In any case we get p = |G/A|, therefore, g being a p′-element, we get g ∈ A. Using
now inequality (3), we obtain 310 ≤ 27 · 32 · 72, which is false. Therefore e cannot
be 8 under our assumptions.

As for the case e = 9, we have |A/F | ≤ 320 and p = 5, thus a is a multiple
of 5. Assume first g 6∈ A; then we can use inequality (2) with α = 1/2, obtaining
q9a/2 < 320 · qa · 34. Hence, we have q35/2 < 320 · 34, which is false for every prime
q. On the other hand, assume g ∈ A. Now we can use inequality (3), which yields

q9k|G/A|b/4 ≤ |G/A| · 320 · 34.

Even setting b = 1, this forces q = 2 and a = |G/A| = 5. But |U | is a multiple of
3 in this case, and |U | should divide 25 − 1 = 31, a clear contradiction. Thus also
the value 9 for e is impossible.

Finally, consider the case e = 16, thus |A/F | ≤ 7200. Inequality (2) yields

q4ab < 7200 · qa · 28,

that is q3a < 7200 · 28. This implies q = 2, a contradiction.
The proof is now complete.

The conclusion of the above theorem also holds for solvable groups inducing few
orbits in primitive linear actions.

Lemma 2.3. Let G be a solvable group, p a prime number greater than 3, and V a
faithful primitive G-module over a prime field. If the elements of V are partitioned
in at most three orbits under the action of G, then the p-length of G is at most 1.

Proof. By [8, Theorem 6.8] and [5, Theorem 1.1] (which deal with the case when
the number of G-orbits on V \ {0} is 1 or 2, respectively), it is easily checked that
either G is a group of semilinear maps on V , or G belongs to a list of groups whose
orders are not divisible by p2 whenever p is a prime greater than 3. Therefore, the
desired conclusion follows.

In order to investigate imprimitive linear actions from the relevant point of view,
in the spirit of Notation 1.2 we establish the following setting.
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Notation 2.4. Let G be a group, and V an irreducible G-module. Choosing a
subgroup T of G and a primitive submodule W of VT such that V = WG (possibly
T = G), we set H = T/CT (W ). Also, we denote by Σ a right transversal for T
in G and, if s = |Σ|, we identify Σ with {1, 2, ..., s} ⊆ N. As already mentioned in
Notation 1.2, G can be identified with a subgroup of H oK, where K is a transitive
subgroup of Sym(Σ); moreover, H oK (thus G) acts naturally on the direct sum W⊕s

of s copies of W , and the G-modules V and W⊕s are isomorphic (see Remark 2.3
of [3]). Finally, we denote by B the base group of H oK.

Next, we gather the analogue of Lemma 1.3 in the context of linear actions.

Lemma 2.5. Assuming the setting of Notation 2.4, consider an element g =
(h1, h2, ..., hs)k of G. Then the following conclusions hold.

(a) Let g be in G ∩ B (i.e., let k = 1). If, for a given i ∈ {1, ..., s}, there exists
an hi-deranged orbit for the action of H on W , then there exists a g-deranged
orbit for the action of G on V .

(b) Let t be a positive integer. If there exists a k-deranged orbit for the action of
K on Pt(Σ), and W is partitioned in at least t + 1 orbits under the action of
H, then there exists a g-deranged orbit for the action of G on V .

Proof. In order to prove (a), let us choose an element w ofW lying in an hi-deranged
orbit for the action of H, and consider the element v ∈W⊕s whose ith component
is w for every i ∈ {1, ..., s}. We claim that v lies in a g-deranged orbit for the
action of G. In fact, assume that there exists x ∈ G such that vxg = vx. Write x =
(l1, . . . , ls)z for suitable li ∈ H and z ∈ K, whence xg = (l1h1·z, l2h2·z, ..., lshs·z)z.
We have

vxg = (wl1h1·z + · · ·+ wlshs·z )z = wl1·z−1h1 + · · ·+ wls·z−1hs ,

whereas vx = wl1·z−1 + · · · + wls·z−1 ; setting u = li·z−1 ∈ H, we deduce that
wuhi = wu, a contradiction that proves our claim.

As regards (b), take (Σ1,Σ2, ...,Σt+1) in a k-deranged orbit for the action of K
on Pt(Σ), and choose r1, r2, ..., rt+1 ∈W in pairwise distinct H-orbits; considering
the element v = w1 + · · ·+ws ∈W⊕s such that wi = rj if i lies in Σj , we claim that
v lies in a g-deranged orbit for the action of G on V . In fact, let x ∈ G be such that

vxgx
−1

= v. Writing x = (l1, . . . , ls)z as in part (a), we get gx
−1

= (y1, y2, ..., ys)k
z−1

for suitable yi ∈ H, whence, setting b = kz
−1

,

w
y1·b−1

1·b−1 + · · ·+ w
ys·b−1

s·b−1 = w1 + · · ·+ ws.

It is not hard to deduce that, in this situation, b = kz
−1

is forced to stabilize Σj
for every j ∈ {1, ..., t+ 1}, thus contradicting the choice of (Σ1,Σ2, ...,Σt+1) as an
element of Pt(Σ) lying in a k-deranged orbit, and the proof is complete.

Finally, we consider irreducible linear actions of solvable groups.

Theorem 2.6. Let G be a solvable group, p a prime number greater than 3, and
V a faithful irreducible G-module over a prime field. Let g be a p-regular element
of G such that there do not exist g-deranged orbits in V . Then g lies in Op′pp′(G),
unless p ∈ {5, 7} and the order of g is divisible by 2 or 3.

Proof. We can clearly assume g 6= 1. Since Theorem 2.2 settles the primitive
case, we can assume that the action of G on V is imprimitive, and we will use
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Notation 2.4. So, let us write g = (h1, h2, ..., hs)k. If k = 1, then Lemma 2.5(a)
yields that, for every i ∈ {1, ..., s}, there does not exist any hi-deranged orbit for
the action of H on W ; as g is nontrivial, there certainly exists i ∈ {1, ..., s} such
that hi is nontrivial, therefore Theorem 2.2 yields H = Op′pp′(H) and the desired
conclusion easily follows. In view of this, we will henceforth assume k 6= 1.

Observe that, by Theorem 1.4(b), there exists a k-deranged orbit for the action
of K on P3(Σ); as a consequence of this fact together with Lemma 2.5(b), we
get that W is partitioned in at most three orbits under the action of H, hence
Lemma 2.3 yields H = Op′pp′(H). Now we look at the action of K on P(Σ): the
existence of k-deranged orbits for this action would imply, again by Lemma 2.5(b),
the existence of a g-deranged orbit for the action of G on V . As this is not the case
by our assumptions, in view of Theorem 1.4(d) we can hence conclude that k is a
{2, 3}-element of K (so the order of g is divisible by 2 or 3) and that k lies either
in O{2,3,5}(G) or in O{2,3,7}(G). It is then clear that g lies in Op′pp′(G) unless p is
either 5 or 7, and the proof is complete.

3. Proof of Theorem A

We are ready to prove Theorem A, that was stated in the Introduction. The
argument is essentially the same as in Theorem A of [3], but of course here we will
be using Theorem 2.6, instead of Theorem C of that paper.

Proof of Theorem A. Assume either p > 7, or p > 3 with the order of g coprime
to 6, and observe that the hypotheses of the theorem are inherited by the element
gΦ(G) of the factor group G/Φ(G) (where Φ(G) denotes the Frattini subgroup of
G). In view of this fact, it will be enough to prove Theorem A in the case when
Φ(G) = 1; this extra assumption ensures that F := F(G) is a completely reducible
G-module (possibly in “mixed characteristic”).

Let V be a minimal normal subgroup of G. Then V̂ = Irr(V ) = IBrp(V ) (recall

that p does not divide |V |) is a faithful irreducible G/CG(V ) module. Take µ ∈ V̂
and let φ ∈ IBrp(G) lying over µ. By Clifford correspondence (see for instance [9,
(8.9)]), φ is induced by an irreducible Brauer character of IG(µ), and therefore it
vanishes on every p-regular element of G not belonging to the set S =

⋃
x∈G IG(µx).

Since the Brauer character φ does not vanish on g, we get g ∈ S, and hence we
conclude that there are no gCG(V )-deranged orbits for the action of G/CG(V ) on

V̂ . We can now apply Theorem 2.6, getting that gCG(V ) lies in Op′pp′(G/CG(V )).
Writing F = V1×· · ·×Vn where the Vi are minimal normal subgroups of G, and

observing that F =
⋂n
i=1 CG(Vi), the result now follows because G/F can be re-

garded as a subgroup of G/CG(V1)×· · ·×G/CG(Vn), hence gF lies in Op′pp′(G/F ),
and finally g lies in Op′pp′(G) because p does not divide the order of F .

4. Examples

In order to round out our understanding of the subject, we devote the last section
to some examples. The first of them shows that Theorem A is somewhat “optimal”.

Example 4.1. Let G = AΓ(27) be the affine semilinear group on GF(27). Then,
for p = 127, Op(G) = 1 and the p-Brauer character table of G contains no zeros.
In particular, every element of order 7 of G is a p-nonvanishing element of G not
belonging to Op′p(G).



10 S. DOLFI, E. PACIFICI, AND L. SANUS

Next, we see that Theorem 2.6 is false in general when p ∈ {5, 7} and the order
of g is not coprime with 6.

Example 4.2. Let H = Γ(24), acting on its natural module W = GF(24)+, and
let K be a subgroup of S5 with K ' D10. Consider G = H o K acting on the
irreducible module V = ⊕5

i=1Wi, where |Wi| = |W | = 24 for i ∈ Σ = {1, . . . , 5}.
Let g be an involution of K, let v =

∑5
i=1 wi ∈ V (where wi ∈ Wi), and set

Iv = {i | wi 6= 0} ∈ P(Σ). Now, as g is in the stabilizer of a K-conjugate of
Iv, taking into account that H is transitive on W \ {0}, it is not hard to see that
g centralizes a G-conjugate of v. Thus, there are no g-deranged orbits under the
action of G on V and, for p = 5, g is a p-regular element not lying in Op′pp′(G).

A similar example can be made for p = 7, with the element g having order 3.
Let H = Γ(23) act on its natural module W of order 23, and let K = AΓ(23) act
naturally on 8 elements. Consider the corresponding action of G = H o K on V
with |V | = 224. If g is an element of order 3 of K, then there are no g-deranged
orbits under the action of G on V and, for p = 7, g is a p-regular element not lying
in Op′pp′(G).
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