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During my Ph.D. I worked on two distinct research projects. The first one has been related 

to conclude an ongoing work that began during my Master Degree internship under the 

supervision of Prof. Franco Cotelli and in collaboration with the research group directed by 

Prof. Paola Riva (Department of Medical Biotechnology and Translational Medicine, 

University of Milan). The project concerns the analysis of cardiac defects caused by the 

functional inactivation of Adap2 (protein involved in Neurofibromatosis type 1 microdeletion 

syndrome), during zebrafish development. 

 

The second project is related to the main research topic that I wanted to address during 

the three years of my Ph.D. In fact, I was interested in analyzing the expression and 

function of the haspin gene during zebrafish embryonic development. This work represents 

a collaboration between Proff. Plevani and Muzi-Falconi group and the zebrafish unit led 

by Prof. Franco Cotelli at the Department of Biosciences, University of Milan. Part of the 

work related to this project was performed at Temple University, Philadelphia (USA) in 

collaboration with Dr. Gianfranco Bellipanni. 

 

PROJECT 1 
This project concerns the analysis of adap2 gene expression and function during zebrafish 

embryonic development focusing, in particular, on cardiogenesis. The study of the adap2 

gene was of particular interest for me, as it had been previously reported to be potentially 

involved in Neurofibromatosis type 1 (NF1) microdeletion syndrome (Venturin et al., 2005; 

data previously obtained at our collaborator’s laboratory). 

NF1 is an autosomal dominant pathology with an incidence of 1/3500 individuals. It is 

characterized by an increased risk of developing tumors, café-au-lait spots and multiple 

dermal neuro-fibromas (Huson and Hughes, 1994). This disease is caused by 

constitutional mutations of the NF1 gene on chromosome 17 (17q11.2), which encodes a 

protein with a tumor suppressor function. 5-20% of NF1 patients carry a heterozygous 

deletion of 1,5 Mb (Mega base pairs) involving NF1 and contiguous genes lying in its 

flanking regions (Jenne et al., 2001; Venturin et al., 2004). These patients are called 

microdeleted patients and present a more severe phenotype compared to the classic NF1 

symptoms, probably caused by haploinsufficiency of one or more genes located in the 

deleted region. In particular, they show facial dysmorphisms, mental retardation and 

cardiovascular malformations (Venturin et al., 2004; Venturin et al., 2005). By genotype-

phenotype correlation analysis it was possible to identify the potential genes involved in 
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the characteristic phenotypes of NF1 microdeletion syndrome. Particularly, the research 

group directed by Prof. Paola Riva (Department of Medical Biotechnology and 

Translational Medicine, University of Milan), with whom we collaborated, had identified 

ADAP2 (ArfGAP with dual PH domains 2) as a possible candidate for the onset of 

cardiovascular malformations in microdeleted patients. In fact, this gene is located in the 

deletion interval of 1,5 Mb flanking NF1 and it is characterized by high levels of expression 

in human and mouse fetal heart, particularly during fundamental stages of cardiac 

morphogenesis (Venturin et al., 2005). 

ADAP2 encodes a protein belonging to the GAPs (GTPase Activating Proteins) family, 

involved in membrane trafficking, cytoskeletal actin reorganization and cell motility (Hanck 

et al., 2004; Venkateswarlu et al., 2007). 

Before our work, there were no studies about its function during embryonic development, 

and therefore we found particularly interesting to investigate in vivo the Adap2 role. We 

decided to use zebrafish (Danio rerio, Teleostea), a model system for the study of 

embryonic development in Teleostea and, in general, in Vertebrates. This little fish, thanks 

to its natural features, is also an excellent model for the analysis of cardiovascular system 

development (Weinstein et al., 1995; Kimmel et al., 1995). Our work aimed to verify an 

involvement of Adap2 during cardiac morphogenesis in zebrafish in order to verify the 

hypothesis that this gene could be considered a candidate gene for the onset of 

cardiovascular malformations in NF1 microdeleted patients. Our findings have been 

published in the Journal of Medical Genetics in 2014, during my second year of Ph.D (part 

2). 

 

PROJECT 2 
The study of the function of Haspin during zebrafish embryonic development represents 

my main Ph.D. project. We are still terminating the last experiments in order to write and 

submit the manuscript possibly on a high impact scientific Journal. I will develop in details 

the rationale and the results obtained on this research topic in the introduction of my thesis 

(Abstract, State of the art, Aim of the Project, Main results, Conclusions and future 

prospects, References). 
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Abstract 

ABSTRACT 
 
The Haspin gene encodes an atypical serine/threonine mitotic kinase first discovered in 

mouse spermatocytes and preferentially expressed in tissues with a high rate of 

proliferating cells. Haspin acts at metaphase by phosphorylating threonine 3 of histone H3 

(H3Thr3PH) and this modification allows the recruitment of the chromosomal passenger 

complex, a key factor required to orchestrate different steps of mitosis. In human cells, 

HASPIN depletion causes a decrease in H3Thr3 levels, resulting in premature loss of 

sister chromatid cohesion and in defects in chromosome alignment at metaphase. Haspin 

has been found in all eukaryotic organisms; however, up to know, its role during animal 

embryonic development has never been investigated. We decided to investigate its 

function and expression during zebrafish embryonic development and, to this aim, we took 

advantage of a morpholino (MO)-mediated knockdown approach and of the CRISPR-Cas9 

knockout strategy. 

We identified and cloned the zebrafish haspin ortholog, together with a previously 

unknown splicing isoform, and we clarified its expression pattern during embryogenesis 

and in some adult tissues. We demonstrated a relevant maternal contribution for the 

haspin transcript and important levels of zygotic expression in tissues with a high rate of 

proliferating cells, such as the developing brain and hematopoietic tissues. We also 

detected haspin transcript in the adult gonads and found that its expression is significantly 

switched on after injury during adult fin tissue regeneration. 

Interestingly, after Haspin functional inactivation using two different MOs, a translation 

blocking (ATG MO) and a splicing one, we demonstrated that Haspin is involved in 

H3Thr3PH also in zebrafish. Moreover, microinjection of the haspin ATG MO results in 

high embryo mortality and severe defects during epiboly stages, indicating important 

alterations in cellular rearrangements and movements. 

A haspin stable mutant line was generated by using the CRISPR-Cas9 technology: we 

isolated three different mutant haspin alleles, all causing the formation of premature stop 

codons. Although they do not show evident phenotypic alterations during embryogenesis, 

embryos carrying a homozygous genotype for these mutations are not able to reach the 

adulthood stage, showing a high rate of mortality in the first three weeks of larval 

development, indicating that Haspin is fundamental for larval survival and growth. 
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To conclude, we clarified various aspects of haspin expression pattern during zebrafish 

development and in adult organs. Even though we were not able yet to unambiguously 

define the phenotypic effect of Haspin functional inactivation by using a MO-mediated 

approach, we paved the way for the analysis of the effect of a complete haspin gene 

knockout during zebrafish development by generating a haspin stable KO line and by 

showing that this null mutant allele significantly affects larval survival and growth. 
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STATE OF THE ART 
 

Cell cycle regulation during development 

During embryogenesis, the process by which the embryo forms and develops, a proper 

control of the cell cycle is critical in many ways. Most importantly, there must be an 

accurate balance of both the steps that play a role during normal growth: cell division and 

cell differentiation. It is fundamental to ensure that adequate stem cell pools are 

maintained and, at the same time, that populations of cells start to acquire a specific fate, 

thus differentiating in the various types that will constitute all different tissues and organs.  

To this end, a proper establishment of asymmetric cell divisions, depending on the correct 

distribution of polarization factors within the cell, is essential. Interestingly, epigenetics 

modifications, namely heritable changes in gene expression or function that do not alter 

primary DNA sequences, are one of the ways in which cells with identical genomes can be 

directed to either remain in an undifferentiated state or become specialized to acquire a 

particular function (Reik, 2007; Bonasio et al., 2010). 

Disruption in the regulation of cell division and differentiation may lead to cancer 

development and contribute to other pathologies such as birth defects, degenerative 

diseases, tissue dystrophy and infertility (Gonzalez, 2007; Knoblich, 2010; Wodarz and 

Näthke, 2007). 

Another very important aspect of cell cycle regulation is the equal partition of the genetic 

material of the mother cells between the two daughter cells, that must both receive the 

correct complement of chromosomes. This may appear as a simple process, but the way 

this goal is actually accomplished is very complicated. A lot of different steps must take 

place in a coordinated manner, such as DNA replication, chromatin condensation and 

compaction, the establishment of a properly oriented mitotic spindles and the presence of 

control mechanisms, the so called cell cycle checkpoints, that monitor the ongoing of 

cellular division, arresting it if some abnormalities are detected (Clevers, 2005; Quyn et al., 

2010; Gray et al., 2010). A key set of mitotic kinases is essential to orchestrate all these 

processes, as well as a balance with the competing action of protein phosphatases. 

Changes in many other cellular events also take place, including secretion patterns, 

organelle migration, cytoskeletal rearrangements and the disassembly and assembly of 

the nuclear membrane. The most critical problem for the cell is to coordinate a large 

number of processes in both space and time, with different activities being switched on 

and off at precise times and locations (Siller and Doe, 2009; Gönczy, 2008). 
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Finally, an accurate regulation of cell division is also fundamental in the adult organism, as 

there remains are a lot of tissues with a high rate of proliferating cells. In particular, a very 

critical event for the reproductive biology of an individual is the accuracy of meiosis, the 

cellular process that takes place in the gonads and generates haploid gametes from 

diploid precursors. A proper meiotic regulation is crucial, since errors occurring during this 

event, in particular during chromosome segregation in meiosis I, may lead to genetic 

problems and aneuploidy in the resulting egg and embryo (Hunt and Hassold, 2002). 

Among all the molecules orchestrating the cell cycle identified so far, the Chromosomal 

Passenger Complex certainly plays a pivotal role in mitosis (Carmena et al., 2012a). 

 

The Chromosomal Passenger Complex-actors in play 

The Chromosomal Passenger Complex (CPC) is considered as one of the master 

regulators of the cell cycle. It is able to control key mitotic events during almost every 

phase of cellular division, ensuring that two daughter cells can correctly be generated 

following the accurate distribution of the genetic material of the mother (Carmena et al., 

2012a). 

The CPC can be ideally separated into two modules: a catalytic module and a 

chromosome-localization module. The first one comprises Aurora-B kinase and the highly 

conserved C-terminal domain of the INCENP protein (IN box), while the second one is 

composed of Survivin, Borealin and the INCENP amino terminus (Ruchaud et al., 2007). 

A proper coordination between all these different components is crucial for the beginning 

and the ongoing of mitosis. First of all, the INCENP protein has a structural role, 

constituting a scaffold on which the CPC is then assembled; it interacts with the three 

other members of the complex, thus providing the link between its two modules. Both 

Survivin and Borealin, indeed, bind the N-terminal portion of INCENP, forming a triple 

coiled-coil, while Aurora-B binds its C-terminal domain (Carmena et al., 2012a). 

Survivin, member of the inhibitor of apoptosis (IAP family) proteins, possesses a single 

baculovirus IAP repeat (BIR) domain, is able to bind the other three complex members and 

is phosphorylated by Aurora-B. It is mainly a chaperone protein, in fact, its most relevant 

activity is to contribute to the localization of the CPC on mitotic centromeres (Ruchaud et 

al., 2007). 

Borealin, also named Dasra-B, is a protein that was isolated in a proteomic study 

performed to identify components of the mitotic chromosome scaffold. It helps to stabilize 

the interactions between the other components of the CPC, participating in the three-helix 
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bundle that constitutes the CPC localization module with its N-terminal alpha helices. 

Moreover, like Survivin, also Borealin plays a role in the centromere targeting of the CPC. 

Aurora-B is a Ser/Thr kinase protein very highly conserved from yeast to mammals and it 

is one of the most important coordinator of all the different processes occurring during cell 

division. The binding between Aurora-B and the C terminus domain of INCENP is 

important for the initial activation of the kinase; moreover, Aurora-B phosphorylates 

INCENP, thus creating a positive feedback activation loop (Carmena et al., 2012a). 

 

The Chromosomal Passenger Complex-activity during mitosis 

During late S phase, the CPC initially localizes on pericentromeric heterochromatin (Cooke 

et al., 1987; Hayashi-Takanaka et al., 2009; Monier et al., 2007). The initial step required 

for the activation of the CPC is the phosphorylation of the threonine 3 of histone H3 carried 

out by the serine/threonine kinase Haspin (Wang et al., 2010). This particular 

phosphorylation is mainly observed at the inner centromeres region during prometaphase, 

and this residue is then recognized and bound by the BIR domain of the Survivin subunit, 

thus providing a binding site for CPC recruitment on mitotic centromeres (Niedzialkowska 

et al., 2012; Kelly et al., 2010). Another phosphorylation also contributes to the 

accumulation of the complex on the chromosomes: the kinase Bub1 phosphorylates 

histone H2A on threonine 120, thus leading to the recruitment of Shugoshins Sgo1 and 

Sgo2. After this process, this protein complex is able to interact with CDK1-phosphorylated 

Borealin, thus promoting an accumulation of CPC at centromeres (Yamagishi et al., 2010; 

Wang et al., 2011; Kaur et al., 2010). 

The complex is thereby recruited on mitotic chromosomes, making feasible its cell division 

controller role, via its kinase module, initially activated by INCENP binding (Honda et al., 

2003; Kang et al., 2001; Sessa et al., 2005). First of all, Aurora-B phosphorylates H3 at 

serine 10; this modification is the most characteristic epigenetic marker for mitotic 

chromosomes and it is detectable all over the entire chromosome, as they start to 

condense during prophase (Hendzel et al., 1997; Hsu et al., 2000; Adams et al., 2001). 

During mitosis, the most critical task carried out by Aurora-B is to monitor the correct 

kinetochore-microtubule attachments in the contest of a bipolar spindle thus identifying 

and correcting chromosomes that are not properly oriented (Lampson et al., 2004). To this 

end, Aurora B controls different regulatory pathways: one of the most important acts by 

phosphorylating the microtubule depolymerase protein MCAK, whose main role is to 

mediate the disassembly and destabilization of microtubules attached to maloriented 
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chromosomes to allow a correct re-orientation (Lan et al., 2004; Ohi et al., 2004). Aurora-B 

is also involved in the regulation of the SAC (Spindle assembly checkpoint), namely the 

mechanism preventing separation of sister chromatids until each chromosome is properly 

attached to the microtubules of the mitotic spindle. The role of Aurora-B in regulating SAC 

activity has been demonstrated in different models, from fission yeast to human cells 

(Petersen et al., 2003; Kallio et al., 2002). The CPC also plays an important role during 

late mitosis, when it re-localizes first to the central spindle microtubules, and then also to 

the equatorial complex, the area where the cleavage furrow is assembled to start 

cytokinesis (Ruchaud et al., 2007; Carmena et al., 2012a). It has been demonstrated that 

the CPC is fundamental for the regulation and completion of many processes taking place 

in this phase: anaphase chromatid compaction, anaphase spindle stabilization and 

cytokinesis. During this last process, CPC is required for contractile ring formation and 

abscission required for the separation of daughter cells during cytokinesis (Carmena et al., 

2012a; Kitagawa and Lee, 2015). 

Several studies addressed the role played by some of the CPC proteins during animal 

embryonic development, also using zebrafish (Danio rerio, Teleostea), a little teleost fish 

whose use as a model to study embryogenesis has become crucial in the last 15 years. 

 

Zebrafish as a model for the analysis of cell cycle and proliferation during development 

Zebrafish is one of the most important models to study vertebrate developmental biology in 

general, but also for understanding the molecular mechanisms involved in several human 

diseases. The main advantages of this biological system are that this Teleost can be easily 

bred, has a short generation time and its embryos, generated by external fertilization, are 

transparent (Kimmel et al., 1995; Westerfield, 1995). Moreover, zebrafish embryos, that 

are available in large numbers on a daily basis year round, develop outside the mother 

and thus allow the direct observation of all stages of embryonic development in vivo. 

The first cellular divisions during zebrafish development are very rapid (15 minutes), as the 

cycle is biphasic (S-M); the divisions occur metasynchronously until the midblastula 

transition at the tenth cycle, which is approximately 3 hpf (hours post-fertilization). At this 

crucial stage, the cell cycle switches from the “embryonic” to the “adult” form: it lengthens, 

as zygotic transcription is activated, the cells become motile and the divisions begin to 

occur in an asynchronous manner (Kimmel et al., 1995; Kane et al., 1992; Kane and 

Kimmel, 1993). Moreover, the cell-cycle checkpoints become functional after this particular 

stage (Ikegami et al., 1997a; Ikegami et al., 1997b). 
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Zebrafish turned out to be a very good model not only to study cell cycle regulation, but 

also to address relevant issues about early vertebrate development in general. Indeed, 

studies of the developing zebrafish embryo have revealed important similarities to early 

cell divisions in other vertebrates such as Xenopus (Kimmel et al., 1995). Moreover, the 

molecular pathways that regulate cell division are evolutionarily conserved in all 

eukaryotes. Finally, the finding that alterations in the mechanisms controlling cell cycle 

progression are linked to cancerogenesis and several degenerative diseases supports the 

importance to analyze in depth cell cycle progression in non-mammalian organisms to gain 

insights into many processes underlying human development and diseases. 

Another reason to stress the relevance of zebrafish in studying early vertebrate 

development lies in the peculiar segregation of localized maternal determinants taking 

place during the very first cellular divisions. At these early stages, some determinants are 

already specified and localized, contributing to cell fate diversification. For instance, one of 

the earliest decisions involves a subset of maternal mRNAs and protein products, that are 

specifically segregated in a particular zone of the zebrafish oocyte cytoplasm, the germ 

plasm. Cells inheriting these determinants will give rise to the germ cell lineage, migrating 

finally to the gonads (Lesch and Page, 2012; Seervai and Wessel, 2013). 

 

The CPC in the zebrafish model 

The function and expression of the CPC components have been largely studied in different 

models. It has been reported that, surprisingly, Aurora B-null mouse embryos develop 

normally during the early cell divisions, but they die after implantation. It is believed that 

Aurora-C, highly expressed during early cell divisions, is responsible for CPC functions at 

pre-implantation stages (Fernandez-Miranda et al., 2011). Incenp, survivin or borealin-

deficient embryos display instead an earlier lethality (Cutts et al., 1999; Uren et al., 2000; 

Yamanaka et al., 2008). 

For what is concerning the zebrafish model, two of the CPC components have already 

been well characterized: Survivin and Aurora-B (Nair et al., 2013; Yabe et al., 2009). 

Several research groups demonstrated the existence of two different zebrafish survivin 

paralogs, named birc5a and birc5b (Ma et al., 2007; Ma et al., 2009; Delvaeye et al., 

2009). These studies demonstrated that birc5a is expressed both maternally and 

zygotically throughout development and a morpholino-mediated knockdown approach 

elucidated its role during late embryogenesis. In particular, birc5a morphants display 

evident defects concerning angiogenesis, neurodevelopment, cardiogenesis and 
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hematopoiesis (Delvaeye et al., 2009). More recently, during a ENU-induced mutagenesis 

screening, a mutant for the motley allele was recovered, which was then found to 

correspond to birc5b (Nair et al., 2013). birc5b is expressed exclusively maternally and, 

consistently, the motley mutation shows a precise maternal effect. Indeed, homozygous 

motley females develop into viable and fertile adults, but embryos from such females show 

a completely penetrant cell division defect, namely the complete absence of the cleavage 

furrow and abnormal mitotic spindle elongation with consequent death within 4hpf. birc5b 

mutants mature oocytes exhibit important defects during the completion of meiosis II and 

the cytoskeletal rearrangements involving astral microtubules and F-actin; these events 

are essential for the aggregation and reorganization of the germ plasm components 

occurring immediately after fertilization. Therefore, Birc5b is considered to be involved in 

the typical cell-cycle CPC activities, consistently with what observed in other model 

organisms (Nair et al., 2013). 

Studies on Aurora-B function during zebrafish development have also been carried out: a 

mutant model has been successfully characterized by Yabe and collegues, who were able 

to recover a mutation in the gene cellular island (cei), encoding the zebrafish Aurora-B 

kinase homologue (Yabe et al., 2009). This mutation turned out to have a maternal-effect: 

even though homozygous females are viable and develop normally to the adulthood stage, 

all embryos deriving from such mutant females are unviable, exhibiting a strong phenotype 

since the very early cellular divisions, namely the total lack of organized cleavage furrows 

and of furrow associated structures, thus resulting in the presence of an abnormally 

expanded syncytial region. The zebrafish Aurora-B kinase appears also to play an 

important role in germ plasm recruitment to the forming furrow, consistent with the lack of 

distal furrows (the region where the germ plasm granules accumulate) in cei mutant 

embryos (Yabe et al., 2009). 

 

The HASPIN gene and its discovery 

 

The haspin gene was first isolated by Tanaka H. and collegues in 1998 after a functional 

screening performed using various germ cell-specific cDNAs from a cDNA library of mouse 

testis (Tanaka et al., 1994; Tanaka et al., 1999). Indeed, it was first identified as a haploid 

germ cell-specific nuclear protein expressed in spermatids and possessing an intrinsic 

Ser/Thr kinase activity, and the name of haspin stands for: haploid germ cell-specific 

nuclear protein kinase (Tanaka et al., 1999). The gene encoding this protein in mouse was 
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first named Gsg2 (Germ cell specific gene 2), and, given their first evidences, the authors 

suggested a role for it in cell cycle cessation and differentiation of haploid germ cells 

(Tanaka et al., 1999). 

 A few years after, J.M.G. Higgins identified the human HASPIN ortholog, located within an 

intron of the integrin αE gene (Higgins, 2001a). This very important discovery was 

subsequently followed by the isolation of haspin family members in all eukaryotic 

organisms. 

 

HASPIN in human cells 

As anticipated above, the human HASPIN gene was identified while studying the different 

transcriptional mechanisms of the integrin αE gene based on the evidence of an 

alternative αE-derived transcript abundantly present particularly in the testis. Indeed, this 

transcript turned out to derive from a previously uncharacterized human HASPIN gene, 

included within an intron of the conventional integrin αE gene (Higgins, 2001a). 

Interestingly, human HASPIN is a peculiar gene as it lacks introns. Its coding sequence is 

composed of a single exon and the encoded protein shows 83% identity with the murine 

homologue for what is concerning the C-terminal region, while the level of conservation in 

the N-terminal region drops to 53% (Higgins, 2001b). 

Northern blot analysis indicated that human HASPIN is expressed in a particularly 

abundant way in testis, but its transcript is detectable also in many other tissues, such as 

thymus, bone marrow, fetal liver and more weakly in spleen, intestine and lung (Higgins, 

2001a). HASPIN is thus most abundantly expressed in gonads and in all tissues 

characterized by relevant levels of cellular proliferation and differentiation. 

The protein encoded by HASPIN presents a serine/threonine C-terminal kinase domain; 

nevertheless, this particular HASPIN domain significantly differs from the one of classical 

eukaryotic kinases. In fact, for this reason, HASPIN kinases have been grouped in a 

divergent eukaryotic protein kinase superfamily, distinct from the Cdk family and other 

common sub-groups (Higgins, 2001b). 

The structure of HASPIN serine/threonine kinase domain has been studied by 

crystallographic analysis by several groups. It presents a bi-lobed structure, common 

feature of a high number of eukaryotic protein kinase domains, but with some significant 

structural changes. Its peculiarity lies in the fact that it contains a certain number of 

specific-inserts, including additional β-hairpin, β-strand and α-helices possibly acting 

through the stabilization of structural elements which are usually mobile in other kinases 
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(Eswaran et al., 2009; Villa et al., 2009). In particular, one β-strand, together with other 

elements, appear to be important to stabilize the active conformation of the small lobe. 

Due to these observations, HASPIN was first believed to present a constitutively active 

kinase conformation, even in the absence of any activation loop phosphorylation (Villa et 

al., 2009; Higgins, 2010). Moreover, it was demonstrated that its isolated kinase domain is 

active in vitro (Dai et al., 2005; Eswaran et al., 2009). Moreover, HASPIN substrate 

recognition (and thus H3Thr3 phosphorylation) is strongly influenced by the methylation 

level of the neighboring lysine residue (H3-K4), with decreasing enzymatic activity on 

peptides with increasing methylation of H3-K4 (Eswaran et al., 2009). 

 

HASPIN function during cell cycle 

HASPIN has been mostly studied for what is concerning its role as a kinase. As already 

mentioned, HASPIN displays a Ser/Thr kinase activity and its best characterized and 

conserved function is to phosphorylate, other than itself, threonine 3 of histone H3 (Dai 

and Higgins, 2005; Dai et al., 2005). 

The post-translational modifications of histones dynamically occur during the cell cycle and 

are mostly confined within the N-terminal regions of the nucleosomal octamers, thus 

producing epigenetic modifications. Such modifications represent the so called “histone 

code”, which can be interpreted by effector proteins to play various roles in the control of 

the chromatin structure and in regulating gene expression (Sims and Reinberg, 2008; 

Koster et al., 2015). Among such modifications, phosphorylation of threonine 3 of histone 

H3 (H3Thr3PH) plays a pivotal role in the regulation of cell cycle. As described previously, 

such phosphorylation event is essential for the recruitment and the correct positioning of 

Aurora-B and of the other components of the CPC, a key player for the correct progression 

of mitosis (Wang et al., 2010). H3Thr3PH is first observed at late G2 or prometaphase on 

chromosome arms; during prometaphase, it becomes most concentrated at inner 

centromeres, while it can still be detected on chromosome arms as well. It then declines 

during anaphase and cannot be detected anymore in telophase cells (Dai et al., 2006; 

Markaki et al., 2009). The most classical mitotic marker and the best characterized histone 

phosphorylation event is the phosphorylation of serine 10 in Histone H3 by the mitotic 

kinase Aurora-B. This modification is detected in pericentromeric chromatin and on 

chromosome arms between late phase G2 and anaphase (Adams et al., 2001; Crosio et 

al., 2002). Unlike H3Thr3 phosphorylation, it is never observed at inner centromeres 
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(Hendzel et al., 1997), indicating that these two fundamental histone modifications have 

distinct distributions throughout mitosis, although they overlap to some extent. 

HASPIN role during mitosis has been deeply investigated in mitotically dividing tissue 

culture cell lines using RNAi or chemical inhibition. It was observed that HASPIN depleted 

cells display a defect in chromosome congression and a delay in exit from mitosis (Dai et 

al., 2005; Dai et al., 2006; Markaki et al., 2009). HASPIN knock-down or inhibition results 

in chromosome misalignment at metaphase and consequently in the activation of the 

spindle assembly checkpoint (Fig. 1; Dai and Higgins, 2005; Dai et al., 2005); HASPIN 

indeed appears to be involved in the positive regulation of centromeric cohesion (Dai et al., 

2009) and also in the establishment of a bipolar spindle (Dai et al., 2009). On the other 

hand, HASPIN overexpression is able to prevent the normal dissociation of sister 

chromatids, thus causing mitotic delay (Dai et al., 2006; Yamagishi et al., 2010; Huertas et 

al., 2012). 

 

             

                                           
 
Fig. 1: RNAi experiments in human cell lines show Haspin role during cell division. Haspin depletion 
causes a decrease in the phosphorylation of H3Thr3 and leads to chromosome misalignment during mitosis. 
After Haspin depletion, the chromosomes are not correctly aligned at the metaphase plate but they are 
detectable also at spindle poles. Green: microtubules; blue: DNA; red: H3 phosphorylated at Thr3. (From 
Higgins, 2010). 
 
 
 
Using a combination of biochemical, pharmacological and mass spectrometric 

approaches, it was recently discovered that HASPIN very likely has other direct substrates 
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in human cells, other than H3Thr3 and itself. In particular, another validated target of 

HASPIN kinase activity seems to be Ser137 of the histone variant macroH2A, a particular 

site involved in the stabilization of extranucleosomal DNA and in the activation or inhibition 

of transcription, suggesting that HASPIN might influence the phosphorylation state of 

proteins involved in regulating  gene expression and splicing (Maiolica et al., 2014). 

Another bona fide HASPIN substrate isolated by this screening is Threonine 57 of CENP-T 

(Maiolica et al., 2014), namely a component of the CCAN (constitutive centromere 

associated network), which plays a pivotal role in kinetochore assembly, mitotic 

progression and chromosome segregation (Gascoigne et al., 2011). 

 

Regulation of HASPIN activity during cell cycle 

Two recent publications shed some light on how HASPIN activity is finely regulated during 

mitosis, deciphering, in particular, how the protein is kept inactive during interphase 

(Moutinho-Santos T. and Maiato H., 2014). Indeed, from previous information derived from 

the crystal structure of the protein, its kinase domain appeared to be in a constitutive 

active state. It has been recently discovered that HASPIN possesses an evolutionary 

conserved stretch of basic amino acid residues (named HBIS, Haspin basic inhibitory 

segment) located immediately upstream of the C-terminal kinase domain, which is able to 

inhibit HASPIN kinase activity. HBIS inhibition very likely acts through an allosteric, rather 

than competitive, mechanism and the multiple basic residues in the segment suggest a 

charge-based interaction with the kinase domain (Ghenoiu et al., 2013). 

This interaction is able to keep HASPIN in a completely inactive state during interphase, 

and the result of HASPIN activation, that is the accumulation of H3 phosphorylated at 

Thr3, is first detectable at the beginning of prophase. Particular sites, namely conserved 

consensus motifs of Cyclin-dependent kinase 1 (Cdk1) and Polo-like kinase-1 (Plk1), 

present in the N-terminal region of HASPIN, are involved in its initial activation (Zhou et al., 

2014). During prophase, the Cdk1/cyclinB complex specifically phosphorylates the 

corresponding N-terminal consensus site, thus generating a Plk1 recognition site (Fig. 2). 

Plk1 can then recognize and bind this site through its Polo Box domain (PDB), resulting in 

the phosphorylation of HASPIN at the particular motif S-T128-P in the human protein 

(Zhou et al., 2014). This heavy N-terminal Plk1-dependent phosphorylation is able to 

relieve HASPIN inhibition; in fact, the HBIS loses affinity for the C-terminal kinase domain 

leading to an active conformation (Moutinho-Santos T. and Maiato H., 2014). Thus, 

HASPIN activity only starts when both active Cdk1 and Plk1 are present (Zhou et al., 
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2014; fig. 2). Proceeding through mitosis, during prometaphase and metaphase, Aurora-B 

kinase also plays a major role in full HASPIN activation (Fig. 2). In fact, by phosphorylating 

HASPIN, Aurora B establishes a positive feedback loop ensuring that HASPIN is kept 

phosphorylated throughout mitosis, promoting the accumulation of H3Thr3 

phosphorylation and, consequently, its own targeting, together with the other components 

of the CPC, at the centromeres (Carmena et al., 2012a; Wang et al., 2011; fig. 2). This 

positive feedback loop amplifies the initial HASPIN activation signal carried out by Cdk1 

and Plk1 and it is essential for CPC recruitment and for the achievement of all its mitotic 

related functions, such as the activation of the spindle assembly checkpoint and the 

regulation of kinetochore-microtubule attachments (Wang et al., 2010; De Antoni et al., 

2012). An additional positive feedback loop is also present; in fact, Aurora-B kinase 

contributes to Plk1 activation by phosphorylating its activation loop (Carmena et al., 

2012b). 

 

 

                    
 
Fig. 2: Regulation of Haspin activity during mitosis. During interphase, HASPIN is kept inactive by 
interaction of HBIS with the kinase domain. At M-transition Cdk1/cyclin B complex phosphorylates HASPIN, 
generating a polo-box domain recognition site. At prophase Plk1 phosphorylates and activates HASPIN. 
Since prometaphase HASPIN is also phosphorylated by Aurora b (positive fedback loop). (Adapted from 
Moutinho-Santos and Maiato, 2014). 
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Haspin in mouse 

As already mentioned, the mouse model is that in which the Haspin gene was initially 

discovered, thanks to a functional screening performed using a cDNA library prepared 

from male germ cells (Tanaka et al., 1994, Tanaka et al., 1999). 

Similarly to the human orthologue, the murine Haspin gene is located in intron 26 of the 

mouse integrin αE gene and the encoded protein shows 66% amino acid identity overall, 

while it increases to 83% identity in coincidence with the conserved protein kinase domain 

(Higgins, 2001b). The expression pattern of murine Haspin gene also correlates with the 

human one, its mRNA being significantly represented in all tissues with relevant rates of 

cellular proliferation and differentiation (such as thymus, bone marrow, fetal liver, spleen), 

even if the highest levels of expression are still detectable in testis (Higgins, 2001a). 

Even if no work is present in the literature describing genetic murine models with the aim 

to evaluate Haspin role during animal embryogenesis, recent studies analyzed Haspin 

function during mouse oocytes maturation. Using chemical inhibition and overexpression 

approaches in mouse oocytes, the authors demonstrated that Haspin is involved in the 

regulation of meiosis in this model system (Nguyen et al., 2014). Indeed, Haspin inhibition 

in oocytes causes a significant delay in the occurrence of meiotic resumption and 

maturation and important chromatin defects during metaphase I, namely misalignment and 

improper kinetochore-microtubule attachments at metaphase I, thus resulting in 

aneuploidy at metaphase II (Nguyen et al., 2014). Moreover, Haspin depletion and, 

consequently, the alteration of H3Thr3PH levels, was shown to down-regulate the 

physiological accumulation of Aurora-C kinase, a CPC component of meiotic cells, along 

chromosomes, but not at kinetochores, during Metaphase I. Also the other components of 

the CPC were found to be mislocalized after Haspin depletion. This altered distribution 

was correlated with improper kinetochore-microtubule attachments and subsequent 

aneuploidy, suggesting that Haspin dependent Aurora-C localization along chromosomes 

arms could be involved in the correction of improper kinetochore-microtubule attachments 

during meiosis, unlike during mitosis, a process in which most of the regulation mechanism 

relies upon Aurora B-CPC (Nguyen et al., 2014). 

Additional work by Wang and colleagues further contributed to elucidate the characteristic 

protein expression pattern of H3Thr3PH and its function in mouse oocytes during meiotic 

maturation. It was demonstrated that in this model system, H3Thr3PH starts being 

detectable after germinal vesicle breakdown and then reaches a peak at Metaphase I; its 

localization was found to be dynamically aggregated between chromosome arms (Wang et 
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al., 2016). By inhibiting Haspin, and thus H3Thr3 phosphorylation, a delay in the 

resumption of meiosis and in chromatin condensation was observed. Moreover, the 

decrease in H3Thr3PH levels also compromised the spindle assembly checkpoint, causing 

the meiotic transition from pro-MI oocytes to MII oocytes even in the presence of non-

aligned chromosomes, hence resulting in the aberrant segregation of genetic material 

(Wang et al., 2016). According to this model, Haspin activity is essential for chromatin 

condensation and for the regulation of meiotic resumption and transition from meiosis I to 

meiosis II in mouse oocytes. 

 

Haspin in budding yeast 

Two Haspin paralogues, ALK1 and ALK2, have been discovered in the Saccharomyces 

cerevisiae (Sc) yeast genome by a two-hybrid screen (Nespoli et al., 2006). It was 

discovered that the levels of the proteins coded by these two genes peak in mitosis and in 

late S/G2, respectively, and their phosphorylation is maximal in mitosis. Moreover, both 

proteins are hyperphosphorylated in response to DNA damage and overexpression of 

ALK2 causes a mitotic arrest (Nespoli et al., 2006). 

Further studies were then perfomed in this experimental model, demonstrating that 

budding yeast cells lacking both ALK1 and ALK2 homologues are sensitive to microtubule 

depolymerizing drugs such as benomyl or nocodazole (Panigada et al., 2013). In fact, it 

has been observed that deletion of ALK1 and ALK2 causes strong defects in the 

reorganization of polarization factors after a mitotic arrest. In particular, the authors found 

that cells lacking both ALK1 and ALK2 are characterized by an overly polarized actin 

distribution in the bud. Since the organization of the mitotic spindle is governed by actin, its 

altered distribution causes a defect in the orientation of the spindle, which is pulled in the 

bud, where it elongates in an aberrant way generating anucleated mothers and 

binucleated daughters (Fig. 3; Panigada et al., 2013). These results suggest an important 

involvement of Haspin kinase in maintaining the correct localization of polarity factors 

during cell cycle. It is important to mention that in Sc yeast cells Thr3 of histone H3 is not 

phosphorylated. This assumption supports the notion that the phenotypes summarized 

above seem to be independent on histone phosphorylation and other targets need to be 

identified. Moreover, it will be extremely relevant to verify whether the polarization defects 

observed in yeast cells lacking Haspin activity can be extended to other eukaryotic 

organisms. 
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Fig. 3: Mitotic spindle orientation visualization during Sc yeast cells division (tubulin-GFP expressing 
strains). In the double ALK1 and ALK2 mutant (lane below), the mitotic spindle aberrantly elongates only in 
the bud cell, thus generating anucleated mothers and binucleated daughters. The time point of each 
photogram is indicated. (From Panigada et al., 2013). 
 

Haspin in Arabidopsis thaliana 

Haspin role has been investigated also in the plant model Arabidopsis thaliana. The A. 

thaliana haspin ortholog was identified as a mitotic histone H3 threonine kinase, and it was 

shown to phosphorylate H3 at both Thr3 and Thr11 in vitro (Kurihara et al., 2011).  

It was then found that AtHaspin also plays an important role during plant embryonic 

patterning: indeed, AtHaspin mutant embryos often show alterations in the orientation of 

the division planes during the earliest cell divisions and AtHaspin depletion also causes 

pleiotropic phenotypes and defects in floral organs and vascular tissue at the whole plant 

level (Fig. 4; Ashtiyani et al., 2011). 

 

                 
 
Fig. 4: Whole-mount analysis of embryo in wild type plants (b1–b6) and Athaspin mutants (c1–c6). 
Athaspin mutation causes defects during early cellular divisions. White arrows: abnormal cell divisions. White 
arrowhead: extra cell division. (From Ashtiyani et al., 2011). 
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Further studies in plants showed that chemical inhibition of AtHaspin by using the 5-ITU 

molecule delays chromosome alignment and also alters the correct localization and activity 

of Aurora-3 kinase in Bright Yellow-2 cells, suggesting its involvement in Aurora-3 

positioning at centromeres. Moreover, AtHaspin depletion also results in cytokinesis 

defects in these cell lines, resulting in binuclear cells with a partially formed cell plate and 

in alterations in the distribution of actin filaments (Kozgunova et al., 2016). 

 

Role of H3Thr3 phosphorylation in the Drosophila Male Germline 

A very recent work highlighted a new and very interesting role of Haspin-dependent 

H3Thr3 phosphorylation during Drosophila male germline differentiation. In this system it 

has been shown that H3Thr3 phosphorylation by the Haspin kinase represents a transient 

mitotic mark able to distinguish sister chromatids carrying different epigenetic information, 

in this case pre-existing H3 instead of newly synthesized H3 (Xie et al., 2015). The authors 

were able to distinguish between these two different modifications and they found that the 

phosphorylation of H3Thr3 can discriminate between pre-existing versus newly 

synthesized H3. This epigenetic modification occurs with different temporal patterns in 

these two histone populations, and according to this model it represents the mark by which 

asymmetric segregation of sister chromatids, one enriched in new histones and the other 

in the pre-existent ones, takes place during stem cell divisions (Xie et al., 2015). 

This work might open new interesting perspectives also in other models on the role of 

Haspin in the epigenetic regulation of germline differentiation, shading some light on the 

mechanisms controlling asymmetrical stem cells division. 
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AIM OF THE PROJECT 
 

During my Ph.D. I focused my research work on the analysis of the function of the CPC 

related protein Haspin using zebrafish as a model system.  

With our work, we aimed to address these main issues: 

-How many haspin orthologs are present in zebrafish? Are the functional domains 

conserved compared to the human gene? 

-What is the haspin expression pattern during zebrafish embryonic development? Is it 

maternal, zygotic or both? 

-What is the role played by Haspin during embryo patterning in zebrafish? Does it have a 

maternal or a zygotic effect? 

-Is its function similar to that described for other models in literature or is there a new 

different role during animal embryogenesis? 

To our knowledge, this work represents the first attempt to characterize in vivo Haspin 

function and expression during zebrafish development. This aim is particularly interesting 

as, to our knowledge, no studies are currently underway on Haspin role during zebrafish 

embryogenesis, nor has its function during animal embryogenesis ever been investigated. 
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MAIN RESULTS 
 

IDENTIFICATION OF THE haspin GENE IN ZEBRAFISH 

 

First of all, we tried to identify the haspin ortholog in zebrafish by bioinformatics analysis of 

the genome database. Only one putative ortholog gene, previously annotated as gsg2 on 

chromosome 1, was found. The corresponding transcript is 3525 bp long, including the un-

translated regions; it is structured in 18 exons and encodes a protein composed of 1092 

amino acids. A global alignment with the human protein shows 29% amino acidic identity 

and 40% similarity; however, in correspondence with the catalytic domain, it hits the 

highest local similarity score at 74% (Fig. 1A). 

Even if the similarity score is apparently quite low, all the different functional domains 

appear to be present and highly conserved also in the zebafish protein: the STP motif, 

constituting the PBD (Polo Box domain) important for the activation of the protein and the 

HBIS auto-inhibitory segment as well as the C-terminal ser/thr kinase domain are all highly 

conserved (Fig. 1A,B). 

Considering the fact that a lot of genes are duplicated in the zebrafish genome, we tried to 

look for other putative haspin isoforms by multiple alignments, using both the human and 

the zebrafish sequence as reference (we used both the full length protein coding sequence 

and the kinase domain only). As a result, we failed to detect in zebrafish any haspin 

paralog for this gene with a significative value of similarity; hence, to our knowledge, only 

one zebrafish haspin ortholog is present and annotated in the genomic browser. In this 

work, we will refer to this gene as haspin. 

 

haspin EXPRESSION PATTERN ANALYSIS 

 

One of our main goals is to understand the haspin spatio-temporal expression pattern 

during zebrafish development. Hence, we first carried out semi quantitative RT-PCR 

assays on RNAs extracted from pools of wild type embryos at different stages of 

embryonic development to test the presence of the endogenous transcript at different time 

points. We designed specific haspin primers in order to amplify a fragment of 202 base 

pairs inside the coding sequence (Fig. 2A), and these primers were also tested on the 

whole zebrafish transcriptome to ensure that they would not give rise to possible aspecific          
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Fig. 1: Schematic representation of the zebrafish haspin sequence. (A) Table indicating amino acidic 
similarity between zebrafish and human protein and between zebrafish, human and mouse kinase domains. 
(B) Scheme of the different domains and conserved motifs within the zebrafish haspin ortholog. PBD: Polo 
box domain; HBIS: Haspin basic inhibitory segment. In red: exons; in blue: introns (not to scale).  
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amplification products. Using this approach, we assessed the temporal haspin expression 

pattern, and we found that the transcript is present at all developmental stages analyzed, 

starting from the very first cleavage stages (2-4 cells) to 3 dpf (days post-fertilization; Fig. 

2B), showing both zygotic and maternal expression. 

Next, to obtain a spatial expression pattern, we in vitro transcribed a specific haspin mRNA 

probe and carried out in situ hybridization assays. These experiments revealed a very 

intense and widespread haspin expression signal all over the embryo from the beginning 

of development to early segmentation stages, suggesting a significant maternal 

contribution (Fig. 2C-M). At later stages, namely late segmentation, the signal was still 

diffused, but began to preferentially localize in the developing dorsal neural tube at a 

periventricular level (Fig. 3A-D). At 24 hpf (hours post-fertilization) haspin was 

preferentially expressed in the cephalic region and in the caudal region of the ICM 

(Intermediate Cell Mass; Fig. 3E). In particular, histological sections of hybridized embryos 

and flat mount preparations showed probe labeling in correspondence with some particular 

anatomical districts such as retina, otic vesicles, and the periventricular portions of the 

developing brain structures (Fig. 3F,G). 

At 2 dpf, the labeling was less intense, indicating a decreased level of expression, but we 

could still detect haspin signals in the cephalic region of the embryos and also in other 

tissues, such as the fin buds and the gut (Fig. 3H-L). We also conducted parallel assays at 

all stages analyzed using a sense probe, to make sure the labeling we were looking at was 

not due to probe trapping, and it turned out that our negative controls didn’t show any 

staining in the tissues where we detected haspin expression signal (supplemental fig. 1A-

E). 

In general, we can conclude that haspin hybridization signal was preferentially detected in 

tissues with a high rate of proliferating cells (Fig. 2-3). 

 

haspin SEQUENCING AND CLONING 

 

An essential step to define the in vivo function of Haspin was to clone its full length DNA 

sequence in a zebrafish expression vector with the aims to confirm the sequence we found 

annotated in the genomic browser and to in vitro transcribe the corresponding mRNA for 

overexpression studies. 

In an the attempt to isolate the full length fragment by PCR performed on a tailbud stage 

cDNA, we were able to detected also an unexpected smaller DNA fragment. Cloning and  
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Fig. 2: Spatio-temporal expression pattern of zebrafish haspin. (A) Scheme of haspin sequence: the 
regions where we designed our probe for in situ hybridization (ISH) experiments (shown in C-M) and our 
primers for sqRT-PCR (shown in B), are indicated. In red: exons; in blue: introns (not to scale). (B) sqRT-
PCR performed on total RNAs extracted from embryos at various stages of development, indicated in the 
figure. Negative control is shown in the right-most line. (C-M) Analysis of haspin early spatial expression 
pattern at early developmental stages, indicated in the figures. Hybridization signal is very widespread at 
these stages. (C, L, M) Dorsal view of the embryos. (D-I) Lateral view of the embryos.  
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Fig. 3: Spatial expression pattern of zebrafish haspin at different developmental stages, indicated in 
the figures. (A-D) Late somitogenesis haspin expression pattern. (A) Lateral view of the embryo (B) Dorsal 
view of the embryo (C,D) Dorsal magnification from a flat mount preparation of hybridized embryos, showing 
expression in the developing dorsal neural tube. (E) Lateral view of a 24 hpf embryo oriented with the 
cephalic region to the left, showing expression in the nervous tissues and ICM. (F) Dorsal view of a flat 
mounted embryo oriented with the cephalic region, showing the stained neuromeres structures of the 
developing brain. (G) Histological section conducted according to the plane shown in figure E. (H) Lateral 
view of a 2 dpf embryo oriented with the cephalic region to the left. (I) Histological section conducted 
according to the plane showed in figure H, showing expression in the fin buds. (L) Histological section 
conducted according to the plane showed in figure H, showing expression in the gut. Black arrow: ICM 
(intermediate cell mass); FB: forebrain; MB: midbrain; HB: hindbrain; red arrow: otic vesicle; asterisk: 
periventricular portion of neural tube; white arrow: fin buds; yellow arrow: gut; black arrowheads: expression 
signal in the dorsal neural tube. Embryo developmental stage is indicated in each picture.  
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sequencing of this band revealed the presence of a new splicing variant, not previously 

annotated, lacking approximately 600 base pairs and corresponding to exon 6. The 

remaining DNA sequence of this clone was identical to the canonical one. Interestingly, 

exon 6, missing in the splicing isoform, contains the Polo box domain required for 

activation of the Haspin protein (Fig. 4A). We cloned and sequenced the full length coding 

fragments for both forms and found few differences respect to the sequences annotated in 

the genomic browser. These new sequences will be soon deposited in the appropriate 

DNA databank. 

Next, we analyzed the temporal expression pattern of this newly identified splicing isoform 

variant at different developmental stages and also in adult organs, wondering if it could 

have a different temporal activation pattern with respect to the canonical one. To this end, 

we designed specific primers, a forward primer on exon 4 and a reverse primer on exon 7 

(primers: zhaspsplscreen frw and rev; Fig. 4A), able to produce different amplification 

products in order to discriminate between the two isoforms (795 bp versus 201 bp). Even if 

the amplification obtained with these primers was not optimal, in this way we were able to 

detect the presence of the haspin splicing isoform at all developmental stages analyzed 

(from 2-4 cells to 3 dpf), except for the 5-8 somite stage, although in some of these stages 

we found a very faint band (Fig. 4B). The expression of the splicing isoform seems to be 

mostly zygotic. 

For what concerns the expression analysis in adult organs, we tested the presence of both 

transcripts in eyes, ovary, testis and brain. For this particular experiment, we ordered a 

new set of primers, one forward on exon 5 and one reverse on exon 7 (zhaspsplscreenbis 

frw and rev; Fig. 5A), that turned out to work better than the previous ones, but we still 

need to repeat the same PCR experiments on cDNAs from the different embryonic 

developmental stages using these new oligonucleotides in order to obtain clearer results. 

We failed to identify either of the two forms in the eyes or in the brain, while the canonical 

transcript was present in both the ovary and the testis; in the latter, we also detected the 

presence of the haspin splicing variant (Fig. 5B). 

Finally, we tested whether haspin might be overexpressed during tissue regeneration. In 

fact some zebrafish tissues, such as the heart and the fins, are able to regenerate in 

response to injuries. We thus performed sqPCR with haspin specific primers on cDNA 

retro-transcribed from total RNAs from a fin clipped from a wild type adult fish compared to 

a cDNA from the clipped growing blastema tissues 2 days after the first cut. Interestingly, 

haspin transcript appears to be strongly up-regulated during tissue regeneration (Fig. 5C). 
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Fig. 4: Schematic representation of the newly identified zebrafish haspin splicing isoform and 
temporal expression pattern of both forms during embryogenesis. (A) The newly identified splicing 
isoform is identical to the canonical one except that it completely lacks exon 6, the one containing the polo 
box domain required for activation of the Haspin protein. PBD: Polo box domain; HBIS: Haspin basic 
inhibitory segment. In red: exons; in blue: introns (not to scale). (B) sqRT-PCR performed on total RNAs 
extracted from embryos at various stages of development, indicated in the figure. Primers used are indicated 
in figure 4A: they amplify a 795-bp fragment for the haspin canonical form and a 201-bp fragment for the 
splicing variant. Negative control is shown in the right-most line.  
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Fig. 5: Expression pattern of both haspin splicing forms in adult organs. (A) Representation of the 
newly identified splicing isoform with indication of the primers used for sqRT-PCR in fig. 5 B,C. PBD: Polo 
box domain; HBIS: Haspin basic inhibitory segment. In red: exons; in blue: introns (not to scale). (B) sqRT-
PCR performed on total RNAs extracted from adult organs, indicated in the figure. Primers used are 
indicated in figure 5A: they amplify a 838-bp fragment for the haspin canonical form and a 244-bp fragment 
for the splicing variant. Primers for gapdh were used as a control to check cDNA quality. Expression of the 
canonical form is detected in ovary and testis; the splicing isoform is present only in the testis, even if a very 
faint band is detectable in the ovary as well. (C) sqRT-PCR performed on total RNAs extracted from a fin 
clipped from a wild type adult fish compared, in the second lane, to total RNAs from the clipped growing 
blastema tissues 2 days after the first cut; overexpression of both haspin forms was detected in the 
regenerating tissue. Primers for gapdh were used as a control to check cDNA quality. A negative control 
without cDNA is shown for every PCR mix. 
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Haspin FUNCTIONAL ANALYSIS 

 

Given the encouraging and strong expression pattern of the gene during early 

embryogenesis and in different adult tissues, especially in those with high proliferation 

rates, we tried to evaluate the possible role played by Haspin during development and, to 

this end, we took advantage of both knockdown and knockout approaches. 

As for the former approach, we used a morpholino (MO)-mediated functional inactivation 

while, to completely knockout the gene product, we generated a zebrafish haspin KO 

mutant using the CRISPR-Cas9 genome editing technique. This KO zebrafish line was 

generated at Temple University, Philadelphia (USA) thanks to the fruitful collaboration with 

Dr. Gianfranco Bellipanni. 

 

MO-mediated knockdown analysis 

 

We began our functional haspin analysis during zebrafish embryogenesis using the 

morpholino-mediated knockdown approach. Morpholino is a specific antisense 

oligonucleotide capable either of binding a region around the start codon of the 

endogenous mRNA of interest and thus blocking the correct translational process (ATG 

MO), or interfering with the physiological splicing event at a particular exon-intron junction, 

causing an exon skipping or an intron retention (Ekker, 2000; Nasevicius and Ekker, 

2000). The former is able to target both maternal and zygotic transcripts, while the latter 

only affects zygotic mRNAs (that are synthesized after the midblastula transition stage), 

since maternal mRNAs are already mature upon fertilization of the embryos. 

In parallel, a standard morpholino was always injected as a control (std-MO): this 

oligonucleotide has no target in zebrafish, and it is useful for discerning any aspecific 

effect on embryo development that may result from the injection technique itself. 

Morpholino-injected embryos are routinely identified as morphants. 

For our analysis, we designed and tested two different types of MO: one ATG morpholino 

(haspin ATG MO) against the translation start codon, and one splicing morpholino (haspin 

spl MO) directed against the junction between exon 5 and intron 5/6, predicted to cause 

the skipping of the fifth exon and thus to alter the open reading frame of the mRNA. The 

localization of our morpholino targets on haspin coding sequence are shown in fig. 6. 
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Fig. 6: Schematic representation of zebrafish haspin sequence with annotation of the targets 
designed for knockdown and knockout approaches. Features indicated in this figure: target sites of 
haspin ATG MO (translation blocking morpholino), haspin spl MO (predicted to alter canonical splicing thus 
resulting in skipping of exon 5), haspin CRISPR ATG and haspin CRISPR E6 (See section “zebrafish haspin 
mutagenesis”). PBD: Polo box domain; HBIS: Haspin basic inhibitory segment. In red: exons; in blue: introns 
(not to scale).  
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1. Analysis of the effect of haspin ATG MO 

 

We started our functional analysis by microinjecting 1-2 cells wild type embryos of the AB 

line with haspin ATG MO. First, we were interested in verifying whether Haspin was 

required for the phosphorylation of threonine 3 of histone H3 (H3Thr3PH) also in zebrafish 

model system. Hence, we prepared total protein extracts from std-MO and morphant 

embryos at 30% epiboly stage and analyzed them by western blotting to test the levels of 

H3Thr3PH with a specific antibody. The morpholino effects are dose-dependent and thus 

we analyzed their effect at various concentrations, namely 0.01 pmol/E (pmol/embryo), 

0.05 pmol/E and 0.1 pmol/E. Even at the lowest dose, we observed a significant reduction 

in the phosphorylation signal of H3thr3 in morphants compared to control embryos and, as 

expected, the effect on this post-translational modification increased according to the MO 

dose injected in the embryos (Fig. 7). As controls, we used an actin antibody (loading 

control), an antibody against the total histone H3 population and another one recognizing 

specifically H3 phosphorylated at Ser10, a residue whose modification is not regulated by 

Haspin; this result was confirmed by 3 different experiments. Our results clearly indicate 

that also in zebrafish Haspin is controlling the modification of threonine 3 of histone H3. 

Next, we asked whether haspin inactivation may cause some alterations at a phenotypic 

level during zebrafish early embryonic development, as we could expect by knocking down 

a protein known to be involved in the progression of cell cycle in other model systems and 

also considering the strong haspin expression levels at early stages of development. 

At the low MO doses used to evaluate H3thr3PH levels we failed to identify any relevant 

effect during early development of morphants since their phenotype was comparable to 

that of controls in almost 100% of embryos. Therefore, we decided to increase the dose of 

injected morpholino up to to 0.5-1.0 pmol/E. Both doses caused a high rate of mortality 

during embryo development: almost 100% of the embryos failed to reach the 24 hpf stage. 

This high mortality rate is expected as a consequence of functional inactivation of a protein 

possibly involved in the regulation of the cell cycle, which is obviously crucial during the 

early stages of embryonic development. 

We concluded that ATG MO has a very severe effect during the first hours of embryonic 

development and we decided to focus our attention on the analysis of epiboly and 

gastrulation stages in morphants injected with 0.5 pmol/E. We thus injected wild type AB 

embryos with 0.5 pmol/E haspin ATG MO, transferred them at their optimal temperature 

(28 °C) and monitored their development in comparison with std-morphants. We found that 
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Fig. 7: Western blot assays performed on protein extracts from pools of embryos injected with 
haspin ATG MO at different doses (indicated on the different lanes as pmol/E) compared to std-MO 
embryos and uninjected. We observe a significant dose-dependent decrease in the signal of H3Thr3PH 
after haspin ATG MO injection. All pools of embryos processed in these experiments are at 30% epiboly 
stage. 
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haspin ATG morphants developed normally until the sphere stage; at the transition to 

dome stage, a very significant percentage of these embryos started exhibiting alterations 

in the normal processes of cell rearrangements and migration: the cells of the blastoderm 

appear less compact and start to lose adherence to the yolk below (Fig. 8C,E). The defect 

became more severe with the proceeding of epiboly: an irregular structure of the whole 

blastula was detected, cells appeared disorganized and lose more and more adherence to 

the yolk; they didn’t manage to correctly and completely envelop it, as it happens during 

physiological epiboly, but they kept migrating in an anomalous way, generating a very 

severe epiboly phenotype (Fig. 8D,F). These embryos do not succeed to proceed during 

epiboly, and sometimes they remain arrested in gastrulation, showing evident gaps and 

spaces between the cells (Fig. 8G). 

In an attempt to better characterize these early defects observed, we also performed in 

situ hybridization experiments with some classical epiboly markers in haspin morphants 

compared to control embryos. In particular, we evaluated the spatial expression pattern of 

otx3, fgf8, goosecoid (gsc) and chordin (chd) at 30-40% epiboly. We found important 

alterations in the expression pattern of all these markers, suggesting alterations in cellular 

rearrangements and movements occurring during epiboly: otx3 and chd showed an 

ectopically expanded signal, while gsc and fgf8 appeared to be decreased and, for gsc, 

more diffused (Fig. 9). These are the percentages of embryos exhibiting defects for each 

epiboly marker: 87% for fgf8 (40/46), 84% for otx3 (26/31), 91% for gsc (48/53), 76% for 

chd (19/25). 

 

2. Analysis of the effect of haspin spl MO 

 

Next, we were interested in evaluating the effect of haspin spl MO microinjection during 

embryonic development. In fact, with such morpholino, we had the chance to target 

exclusively zygotic transcripts. 

First of all, we evaluated the efficiency of this morpholino by extracting RNA from haspin 

spl morphants. After retro-transcription, we were able to demonstrate by PCR amplification 

the presence of a shorter aberrant transcript; indeed, its length was compatible with the 

one expected after skipping of exon 5 of the ORF. Sanger sequencing confirmed this 

aberrant splicing event, and from the sequence we could conclude that it alters the correct 

reading frame of the coding sequence, generating a premature stop codon and, 

consequently, a truncated and therefore non-functional protein (supplemental fig. 2A,B). 
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Fig. 8: Phenotypic effect of haspin ATG MO microinjection at early stages. (A,B) Lateral view of std-MO 
embryos at sphere/dome and 50% epiboly stages. (C,D) Lateral view of morphant embryos exhibiting a mild 
phenotype at the two different developmental stages. (E,F) Lateral view of morphant embryos exhibiting a 
more severe phenotype at the two different developmental stages. (G) Morphant embryo arrested in 
gastrulation, showing evident spaces between the cells. Red arrowheads: irregular structure of 
blastula/gastrula; black arrowheads: detachment of the blastoderm cells from the yolk below. All embryos 
were injected with 0.5 pmol/E for both MOs. (H) Percentages of embryos exhibiting epiboly defects at the two 
developmental stages analyzed. 
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Fig. 9: Analysis of the expression pattern of some epiboly markers in haspin ATG morphants. (A,B): 
lateral view of group of haspin morphants and std-MO embryos hybridized with fgf8 marker: the signal 
appears decreased in haspin morphants. (C,D) Dorsal view of embryos hybridized with otx3: in haspin 
morphants the signal is ectopically expanded. (E, F) Dorsal view of embryos hybridized with gsc: haspin 
morphants exhibit a weaker and more diffused signal. (G, H) Dorsal view of embryos hybridized with chd: in 
haspin morphants the signal appears ectopically expanded. Markers are indicated to the left; developmental 
stages are indicated to the right; the number of embryos exhibiting the expression pattern shown in each 
picture is indicated in the same picture. 
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We injected haspin spl MO in wild type AB embryos at different concentrations (starting 

from 0.5 pmol/E to 2 pmol/E) and monitored embryonic development at a phenotypic level. 

We did not find any alteration during the development of morphant embryos compared to 

controls. Spl morphants developed normally, even at the highest dose injected, and their 

survival rate in the first days after fertilization was not affected. The body axes were 

correctly formed, blood circulation was normal, somites were correctly patterned and the 

cephalic structured appeared normal (data not shown). 

We then verified whether some molecular marker could be altered in these embryos, 

concentrating on the nervous system and the hematopoioetic tissues (where we found 

haspin to be preferentially expressed). Concerning the nervous system, we performed in 

situ hybridization experiments on morphants (1.5 pmol/E) compared to control embryos at 

2 dpf using fgf8 probe. At this stage, this probe labels a lot of different nervous structures, 

such as the midbrain-hindbrain boundary, the optic stalks, the retina, a part of the 

telencephalon and the anterior part of the ear. We could not detect any difference between 

morphants and controls concerning the expression pattern of this marker (data not shown). 

We also tried to inject haspin spl MO at various doses, from 1.2 to 2 pmol/E, in the 

transgenic line islet-1 EGFP, expressing EGFP under the promoter of islet-1, specific for 

the motor neurons of the hindbrain. We monitored morphants at 3 dpf and we failed to find 

any difference concerning the patterning of this neuronal population comparing them to 

control embryos (supplemental fig. 3A,B). 

Since by in situ hybridization assays we found expression of haspin in the caudal region of 

the ICM, which is important for the hematopoiesis process, we asked whether haspin spl-

MO could cause a decrease in the total number of blood cells. Hence, we stained 2 dpf 

morphants and control embryos with O-dianisidine in order to visualize hemoglobin and 

observe the amount of circulating erythrocytes. Also with this staining procedure we could 

not detect any difference between morphants and controls, as the levels of erythrocytes 

were comparable in both samples (supplemental fig. 3C,D). 

Finally, we performed western blots with protein extracts from embryos injected with 

haspin spl MO (1 pmol/E) compared to control embryos, and we found out that also this 

MO caused a significant decrease in the signal of H3Thr3PH, at all developmental stages 

analyzed (from 50% epiboly to 24 hpf; supplemental fig. 2C). 

We thus conclude that haspin spl MO microinjection does not cause any phenotypic defect 

during zebrafish embryonic development, even at the highest doses tested, but, as the 

ATG MO, it affects H3Thr3 phosphorylation levels. 
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Zebrafish haspin mutagenesis 

 

In order to confirm the results of the MO-mediated knockdown approach, we generated a 

zebrafish stable mutant haspin line using the CRISPR-Cas9 system, a recent and very 

efficient mutagenesis technique that, nowadays, has made zebrafish gene targeting more 

affordable and has allowed many advanced genome engineering applications in this 

teleost fish (Blackburn et al., 2013; Hwang et al., 2013). The CRISPR-Cas9 system takes 

advantage of a nucleic acid-based adaptive immune system very common in bacteria and 

archea to target and cleave foreign and potentially infective genetic material through a 

specific nuclease (Cas9). In zebrafish, as well as in other models, it is possible to target a 

desired sequence in the genome just by designing specific single guide RNAs (sgRNA) 

complementary to the target and co-injecting them with the cas9 nuclease mRNA or 

protein. The sgRNAs will direct the nuclease to specifically cleave the sequence of 

interest, just using standard base-pairing rules, thus inducing a double strand break in the 

DNA filament. This DNA damage during zebrafish early development is usually repaired by 

the error prone non-homologous end joining (NHEJ) mechanism, that is very likely 

accompanied by small insertions or deletions (INDELs) of nucleotides at the targeted 

region, leading consequently to mutations (Hwang et al., 2013; Gagnon et al., 2014; Auer 

and Del Bene, 2014). The only requirement for the Cas9 nuclease to properly cleave its 

target is that the genomic target DNA sequence must be adjacent to a 3’ NGG sequence, 

the so called PAM (protospacer adjacent motif): the cut usually occurs 3 base pairs 

upstream of the PAM site. 

With this approach, our aim was to try to verify the results obtained by loss of function 

assays using MOs, and then to deepen our analysis, gaining more precise and specific 

insights into the Haspin role since the beginning of embryonic development by completely 

knocking out its gene. 

We decided to target the genomic haspin sequence at two different sites: thus, we 

designed and in vitro synthesized two different sgRNAs: the first one is complementary to 

the ATG region of the gene (we will refer to it as CRISPR ATG), and the second one is 

more downstream, in correspondence to exon 6 (we will refer to it as CRISPR E6). We 

also synthesized in vitro the cas9 mRNA (in particular the zebrafish optimized version with 

nuclear localization signals; Jao et al., 2013) and co-injected it into 1 cell stage embryos 

together with our sgRNAs, doing parallel injections with both CRISPRs (F0 generation). 

The doses that we eventually used were 90 pgr/E cas9 mRNA together with 150 pgr/E 
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sgRNA: we found that these concentrations were not toxic for the embryos and did not 

cause any significant mortality rate or severe phenotypes. 

Our CRISPRs target sequences are illustrated in fig. 6 while the pipeline that we followed 

for mutagenesis and fish raising and screening for mutations is shown in details in fig. 10. 

We injected F0 embryos from AB and Tubingen long-fin strains with the sgRNAs and cas9 

mRNA, thus generating genetically mosaic fish. We raised them to adulthood and 

consequently performed in-crosses of these fish to test for germline transmission, namely, 

to identify F0 founder fish carrying mutations in the germline and thus able to transmit it to 

their progeny. In order to do this, pools of about 15 dpf larvae from each F0 in-cross were 

processed for genomic DNA extraction. To detect the presence of possible INDELs, we 

performed PCR on genomic DNA using specific primers amplifying the region we targeted 

with our CRISPRs. The PCR products were then processed using the SURVEYOR 

Mutation Detection kit, a very useful method for mutation screening taking advantage of a 

particular nuclease that recognizes and cleaves mismatches due to the presence of single 

nucleotide polymorphisms or small insertions or deletions in heterozygosity (Fig. 10). For 

the positive PCR products, we always confirmed the result by direct Sanger sequencing, 

evaluating evidences of INDELs at the correct site, namely 3 base pairs upstream of the 

PAM motif. 

After having isolated positive F0 founder fish, we kept in-crossing them in order to grow 

only clutches of embryos positive for our desired mutation (F1 generation). For the next 

step, namely the genotyping and isolation of adult F1 heterozygous fish, we extracted 

genomic DNA from their fins and then performed a screening in the same way we did for 

the F0 larvae (Surveyor kit and sequencing, after cloning of the PCR products of Surveyor 

positive samples). Once a heterozygous female and a heterozygous male were identified, 

they were in-crossed in order to generate the 25% of homozygous mutants in their 

progeny. This procedure allows us to assess the effect of the complete knockout of the 

gene of interest, to look for phenotypes, and to make clear genotype/phenotype 

correlations (Fig. 10). 

We followed this pipeline for both CRISPRs injections. Unfortunately, for the CRISPR ATG 

we were not able to recover any mutant in the F1. However, we found some positive 

Surveyor results from the F0 germ-line transmission screening, but we could never confirm 

our results due to problems during Sanger sequencing. When we in-crossed those positive 

clutches to grow F1 adult fish, we could not find any heterozygous, even if we still had 

some positive results with the Surveyor mutation kit. We thus concluded that this CRISPR 
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Fig. 10: Schematic representation of the pipeline we followed for mutagenesis by CRISPR-Cas9 
system. F0 embryos injected with CRISPRs are genetically mosaic. They are grown to F0 adults and then 
different in-crosses are performed in order to test germline transmission of the mutation. Genomic DNA is 
extracted from pools of larvae from different clutches and PCR is performed using specific primers to amplify 
the region targeted by the CRISPR. PCR amplicons are tested with the Surveyor Mutation Detection kit, 
looking for mismatch-derived multiple bands, and positive results are then confirmed by Sanger sequencing, 
performed to detect evidences of insertions or deletions at the right target sites. Clutches positive for 
mutations are the grown to adults F1. Single F1 are tail-clipped and their genomic DNA is tested again with 
Surveyor Mutation Detection kit and then confirmed by Sanger Sequencing to identify heterozygous. Once a 
heterozygous female and a heterozygous male were identified, they were in-crossed in order to generate the 
25% of homozygous mutants in their progeny (F2). Modified from Lawson and Wolfe, 2011. 
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targeting was not enough efficient to allow genome editing and eventually we discovered 

that the surveyor positive results we obtained from the F1 adult fin clips were caused by a 

polymorphism present in the CRISPR target region in the fish line we were using. 

For what is concerning the CRISPR E6 instead, we managed to obtain a high efficiency of 

mutagenesis that allowed us to recover a good number of mutants, enough for our 

analysis. 

We raised our F0 CRISPR injected mosaic fish to adulthood, and screened a total of 11 

different in-crosses for germline transmission to the progeny. Sequencing results of 3 out 

of 5 total surveyor positive clutches of embryos derived from these in-crosses showed 

evidence of an INDEL at the target site (Fig. 11A,B). We thus identified 3 couples of 

founder F0 fish, able to transmit their mutation to the offspring. Next, we kept in-crossing 

these fishes in order to grow F1 generation to adulthood. For what is concerning the F1 

screening, we analyzed 16 samples deriving from fin clips of single fish, and found in total 

12 surveyor positive results (Fig. 12A). We proceeded with the sub-cloning and 

sequencing of 10 among those positive PCR products, and we were finally able to recover 

8 heterozygous mutants, carrying mostly small INDELs (Fig. 12B). 2 of these turned out to 

have in frame insertions or deletions, while the other 6 (4 males and 1 female) carried 

small insertions or deletions all leading to frameshift mutations and, consequently, to a 

premature stop codon. Among these 6 fish, we found 3 different types of small INDELS, 

and we named these 3 different alleles haspE6-1, haspE6-2 and haspE6-3 (Fig. 12B). 

We then tried all different possibilities of in-crosses of these fish carrying the mutations of 

interest in order to generate 25% of homozygous mutants in the offspring, thus trying to 

evaluate the effect of a complete genetic knockout since the beginning of embryonic 

development. None of these in-crosses gave evident phenotypes during zygotic and larval 

development of the F2 offspring (first 5 days), and also the survival rate of embryos was 

not affected. To be sure that among the embryos we were monitoring there were actually 

homozygous mutants, we genotyped single F2 larvae at 5 dpf deriving from one of these 

in-crosses. From the sequences we found 4 homozygous mutants (-/-) out of 15 larvae: 

they were alive and phenotypically unaffected before lysis and genomic DNA extraction. 

This result proves that homozygous mutant embryos are viable and normal until, at least, 

the fifth day after fertilization. After that day, larvae cannot be kept in a petri dish in the 

embryo incubator anymore, but must be raised in the main system of the facility and they 

start to be fed. Hence, we decided to monitor larval development for all these in-crosses, 

to evaluate the occurrence of late defects in the homozygous mutants, that might cause a     
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Fig. 11. Screening for mutation germline transmission in mosaic haspin CRISPRE6 F0 injected fish. 
(A) 2% agarose-gel electrophoresis conducted after surveyor nuclease processing of PCR samples 
performed on genomic DNA extracted from pools of F1 embryos (that derive from different in-crosses of the 
F0 mosaic generation). For each in-cross, a sample of undigested DNA is always loaded first as control. As 
negative control, wild type DNA is always digested as well. Samples containing mismatches derived from 
small insertions or deletions are cleaved by surveyor nuclease, thus resulting in multiple bands (highlited in 
red). The length of the digested fragments is compatible with a cleavage occurring 3 base pairs upstream of 
the PAM sequence. (B) Snapshot of the sequence obtained by a pool of F1 embryos positive for the 
SURVEYOR assay, compaired to the WT sequence. Blue arrow indicates the presence of an INDEL. Top 
blue line indicates the sgRNA, PAM sequence is in red. 
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Fig. 12: Screening for heterozygous mutants among haspin CRISPR E6 adult F1 fish. (A) 2% agarose-
gel electrophoresis conducted after surveyor nuclease processing of PCR samples amplified from genomic 
DNA of adult F1 fish fin clip samples (as described in fig. 11). Positive samples are highlited in red. (B) Out of 
12 surveyor positive fin clips, we genotyped 10 samples and recovered 8 heterozygous mutants among 
these. Their sequence is shown in comparison to the wt sequence. Asterisks mark INDELs not multiple of 3 
and thus leading to frameshift mutations; we verified they all resulted in premature stop codons and we 
named the different alleles as indicated in figure, grouping same mutations together. Underlined sequence: 
sgRNA; blue: PAM sequence; yellow: insertions. 
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different mortality rate compared to wild type or heterozygous situations. Everyday we 

collected any dead larva we could find in each tank, annotating the day of the death, and 

freezed it. When a reasonable number of dead larvae was collected from each tank, we 

proceeded with the lysis and genomic DNA extraction, in order to genotype each of them 

and verify if the dying fish were actually the homozygous mutants. 

The results of these analysis are shown in fig. 13: in the different tanks we observed a 

trend of mortality from approximately 10% to 25% in the first three weeks of development, 

starting from 10 dpf. So far, for a group of dead fish collected from one of these in-crosses, 

we were able to genotype 5 dead larvae between 13 and 20 dpf, and we discovered that 4 

out of 5 were homozygous mutants for haspin (Fig. 13). This is a first evidence indicating a 

differential survival rate between wild type fish and homozygous, suggesting that vey likely 

haspin knockout by CRISPR E6 results in mortality within the first month of development.  

Moreover, we grew a F2 generation deriving from one of these in-crosses of two 

heterozygous fish to adulthood (around 3 months after fertilization). Our aim was to verify 

whether some of the homozygous fish deriving from that in-cross were able to reach the 

adult stage. Hence we tail clipped and genotyped 30 adult fish, from which we were not 

able to recover any adult homozygous mutant, but only wild type or heterozygous. This 

finding further indicates that none of the fish carrying a homozygous genotype for this 

mutation is able to reach the adulthood stage and that, interestingly, all of them die during 

the first weeks of development. 
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Fig. 13: Table showing the mortality rate of larvae deriving from 3 different in-crosses of haspin 
heterozygous F1 adult fish. In this table we reported the initial number of alive larvae that are put in the 
main system of the facility starting from 5 dpf, their ortality rate in the first 3 weeks and the number of 
homozygous mutants, indicated as (-/-), that we recovered from the collected dead larvae. The heterozygous 
fish are named according to the mutated allele they carry (based on the nomenclature explained in fig. 12). 
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CONCLUSIONS AND FUTURE PROSPECTS 
 

The Haspin gene, first discovered in male germ mice cells, encodes an atypical mitotic 

kinase which is important for the maintenance of chromosome cohesion (Dai and Higgins, 

2005; Dai et al., 2006). In mammalian cells, Haspin acts at metaphase as a 

serine/threonine kinase by phosphorylating threonine 3 of histone H3; this process allows 

the recruitment of the chromosomal passenger complex, which is required to regulate the 

metaphase to anaphase transition (Dai et al., 2005). In human cells, HASPIN depletion 

causes premature loss of sister chromatid cohesion and defects in chromosome alignment 

at metaphase (Higgins, 2010; Wang et al., 2010). In Arabidopsis thaliana, Haspin is 

involved in the embryonic patterning of the plant (Ashtiyani et al., 2011). Recently, it has 

been shown that Haspin activity is fundamental for meiosis I in mouse oocytes: in this 

model, indeed, its inhibition causes abnormalities in chromosome morphology and 

alignment, thus resulting in aneuploidy problems during metaphase II; Haspin kinase is 

also essential for chromatin condensation and for the regulation of meiotic resumption and 

transition from meiosis I to meiosis II (Nguyen et al., 2014; Wang et al., 2016). 

Two haspin paralogs, ALK1 and ALK2, have also been discovered in the budding yeast 

(Nespoli et al., 2006). It was demonstrated that ALK1 and ALK2 do not appear to act 

through H3Thr3 phosphorylation, and their role is to organize actin cytoskeleton 

polarization in mitosis and to control mitotic spindle orientation (Panigada et al., 2013). 

During mitosis, a positive feedback loop in which Aurora B is involved ensures that 

HASPIN is kept phosphorylated and that its activity is restricted to this phase of the cell 

cycle (Wang et al., 2011). Moreover, it has been demonstrated that Polo-like kinase 1 is 

required for initial activation of HASPIN in early mitosis (Zhou et al., 2014). Interestingly, a 

recent work presents new possible HASPIN substrates in human cells, suggesting that its 

kinase activity might influence proteins involved in the regulation of gene expression 

(Maiolica et al., 2014). 

Summarizing, the atypical protein kinase Haspin has been found in all eukaryotic 

organisms, including vertebrates, arthropods, fungi and plants (Ashtiyani et al., 2011; 

Higgins, 2010), suggesting a fundamental function. However, up to know, its role during 

animal embryonic development has never been investigated. 

For this reason, in an effort between Proff. Paolo Plevani and Marco Muzi Falconi lab and 

the zebrafish unit of the University of Milan led by Prof. Franco Cotelli, we decided to 

investigate Haspin expression and its in vivo function during embryonic development using 
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zebrafish (Danio rerio, Teleostea), a little freshwater fish that has emerged in the past 

years as an ideal animal model to study basic events leading to embryo development and 

in modeling human diseases. Its embryos are translucent and fast growing and suitable for 

classical embryological studies as well as for more complex approaches. These 

characteristics make zebrafish one of the best models for genetic studies, suitable for both 

direct and reverse genetic experiments. 

First of all, we managed to identify the zebrafish haspin ortholog on chromosome 1. Only 

one annotated gene encoding for haspin was detected in the genomic browser. 

Since a lot of genes are duplicated in the zebrafish genome, in order to look for other 

possible haspin or haspin-like genes we carried out some bioinformatics research: in 

particular, we performed multiple alignments trying to use different reference sequences, 

such as the human HASPIN protein, the zebrafish Haspin protein and also the kinase 

domain only, but we could not find any other candidate haspin gene with a significant 

value of similarity. Hence, we conclude that, as far as we know now, only one form exists 

in the zebrafish genome. 

The similarity score between human and zebrafish Haspin is overall quite low but, 

significantly, all the different functional domains and regulatory motifs are present in both 

organisms. More specifically, the STP motif constituting the PBD (Polo Box domain), 

important for the activation of the protein, the HBIS auto-inhibitory segment and the C-

terminal ser/thr kinase domain are present in the fish protein and share a significant 

similarity with the human ortholog. This indicates that the functional and regulatory motifs 

are well conserved, thus suggesting relevant parallelisms on the importance of Haspin 

function in different eukaryotic organisms. 

Moreover, while we were trying to clone the zebrafish full length DNA fragment isolated by 

PCR, we identified a smaller DNA fragment corresponding to an alternative, shorter 

transcript. We then cloned and sequenced this fragment and discovered the presence of a 

new a splicing variant that was not previously annotated in the genomic browser. 

Sequencing of this fragment revealed that is identical to the canonical gene, except that it 

is lacking a portion of ~600 base pairs constituting the sixth exon of the coding sequence. 

Looking at the schematic representation of the different domains in the zebrafish haspin 

sequence, it was clear that the missing portion in this splicing variant corresponds exactly 

to the exon containing the STP motif constituting the PBD (Polo Box domain). The PBD is 

first phosphorylated by the Cdk1/cyclinB complex, thus creating a recognition site for Plk1, 

that binds and carries out the N-terminal phosphorylation of Haspin. This modification is 
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responsible for Haspin catalytic domain activation since, once Haspin is phosphorylated by 

Plk1, it loses its affinity for the auto-inhibitory domain (Moutinho-Santos T. and Maiato H., 

2014). Therefore, Plk1 Haspin phosphorylation is fundamental for the activation of the 

protein and, as far as we know, a Haspin form lacking the PBD should be constitutive 

inactive, because the C-terminal kinase domain will be kept inactive by allosteric 

interaction with the auto-inhibitory segment (Ghenoiu et al., 2013). Although we do not 

have yet any evidence about a possible role of this newly identified splicing isoform, we 

can speculate that it may act as a sort of “dominant negative”, since a constitutively 

inactive Haspin form could compete with the canonical one in the context of other 

activation processes, such as the phosphorylation carried out by Aurora B and the 

consequent positive feedback loop, thus decreasing and limiting the physiological levels of 

Haspin activity. In this scenario, this new Haspin form might play a role in some specific 

tissues in which high levels of Haspin activity may not be required, such as in non-

proliferative tissues. 

However, we cannot exclude the possibility that this splicing Haspin variant might be 

activated by different and still unknown regulatory mechanisms, and have different 

functions other than the canonical ones. This is a new open field and we are currently 

planning additional experiments to clarify the function of this new splicing isoform. 

Concerning the temporal spatial expression of the haspin forms, we found that both of 

them display both a maternal and zygotic expression, as we were expecting given the data 

present in literature about the function of this protein during the regulation of the cell cycle 

in other models. The canonic haspin transcript is present in all developmental stages 

analyzed, starting from the 2-4 cells stage up to 3 dpf, and we were able to detect the 

shorter splicing variant in all stages except the 5-8 somites stage. The intensity of the band 

corresponding to the splicing variant was very faint in some stages, probably due to non 

optimal amplification of the shorter product; anyway, we are now repeating this experiment 

with a new set of primers. In any case, the expression of the splicing isoform appears to be 

mostly zygotic rather than maternal, showing an opposite trend compared to that of the 

canonical haspin form. 

We then performed in situ hybridization experiments to clarify the spatial pattern of 

expression of the haspin gene at different stages of development. We found  that the 

haspin hybridization signal was really intense and widespread all over the developing 

embryo, starting from the very first stages of cleavage (namely the 2-4 cells stage), 

proving a significantly abundant maternal contribution in the total level of this transcript. In 
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fact, during the first stages of zebrafish development, namely until the midblastula 

transition (at approximately 3 hpf), the zygotic transcription has not yet started and the 

embryo relies completely upon the maternally inherited mRNAs and proteins (Kimmel et 

al., 1995). We then noticed that the expression level of haspin slightly decreases while 

progressing in the developmental program, but the transcript is present during all stages 

analyzed, namely up to 3 dpf. In particular, haspin expression is detectable is some 

specific tissues of the embryo, such as the caudal region of the ICM, the retina, the otic 

vesicles and the periventricular portions of the developing brain structures. At 2 dpf we 

could also detect a relevant presence of the transcript in the fin buds. This spatial 

expression pattern is interesting because all these regions exhibit high levels of 

proliferating cells, which is consistent with the literature data about haspin expression in 

other models (Higgins, 2001a), where the transcription of this gene is significantly 

enhanced in tissues with high proliferating rates. 

Cellular divisions and proliferation are processes playing important roles also in some 

adult tissues. We thus wondered whether haspin transcript was also present in organs 

extracted from adult zebrafish individuals, trying to understand if it could be expressed 

either in adult tissues with high proliferation levels or in the gonads, where meiotic 

processes take place. We could not detect haspin transcript by sqRT-PCR assays either in 

the eyes or in the brain, but it was present in both ovary and testis, while the band 

corresponding to the shorter splicing variant was only found in the testis. Interestingly, 

Haspin has been shown to play an important role during oocytes maturation and meiotic 

resumption in mouse oocytes (Nguyen et al., 2014; Wang et al., 2016), and it is possible 

that this function may be conserved in the zebrafish gonads as well. 

Furthermore, we demonstrated that haspin is overexpressed after injury during tissue 

regeneration; in fact, haspin expression is clearly detectable by performing sqRT-PCR on 

a growing blastema tissue sample cut from a previously clipped adult fin. This is a further 

demonstration that haspin transcription is significantly turned on in tissues with high 

proliferation rates, such as during regeneration. 

Altogether, the particular haspin expression data in the zebrafish model system suggest a 

potential involvement of the protein in the regulation of cell cycle and proliferation, as well 

as during meiotic processes. 

Concerning the Haspin functional characterization, we started our analysis taking 

advantage of a MO-mediated knockdown approach, by designing and testing both an ATG 

and a spl MOs. 
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By performing western blot assays using a specific antibody against H3Thr3PH on 

morphant embryos compared to controls, we were able to conclude that the microinjection 

of both MOs results in a significant decrease of the phosphorylation levels of threonine 3 of 

Histone H3, the most known Haspin substrate identified so far. We observed that MOs-

dependent decrease of H3Thr3PH levels starts from the first stages of epiboly and, hence, 

we conclude that Haspin involvement in H3Thr3PH is conserved in the zebrafish model. 

However, until now, we cannot unambiguously explain the phenotypic effects of Haspin 

inactivation during zebrafish embryonic development and we are testing various 

hypothesis. 

The microinjection of the specific haspin ATG MO has a very severe phenotypic effect, 

because it interferes with epiboly and gastrulation processes and does not allow embryos 

to survive and to develop the organogenesis steps. Starting from the beginning of epiboly, 

haspin ATG morphants display a significant percentage of irregular blastoderm margin, 

cells are less compact and in some cases a gap between the blastoderm and the yolk is 

detectable. The morphants are not able to complete the epiboly process in a normal way 

and, being epiboly a crucial event during early embryogenesis, the mortality rate of these 

morphants almost reaches 100% within the first day of development. 

This very dramatic effect of MO microinjection led us to hypothesize that the loss or a 

strong reduction of Haspin could somehow affect cellular adhesion and motility. In fact, 

morphants cells are not able to correctly migrate and envelope the yolk below during 

epiboly, and sometimes gaps between the cells and between the blastoderm and the yolk 

are detectable. Moreover, we also carried out in situ hybridization experiments in ATG 

morphants compared to std-MO control embryos using classical epiboly markers: we could 

demonstrate that the expression pattern of markers such as otx3, fgf8, gsc and chd is 

strongly altered after Haspin knockdown, confirming significant alterations in cellular 

rearrangements and movements during epiboly. 

During our functional analysis, we also tested the effect of a splicing MO able to target the 

junction between exon 5 and intron 5/6, which is predicted to cause the skipping of the fifth 

exon thus altering the open reading frame of the mRNA. By RT-PCR performed on cDNA 

retro-transcribed from haspin splicing morphants we were able to clearly visualize the 

aberrant transcript, demonstrating that the exon 5 was skipped as expected, and Sanger 

sequencing of this amplicon demonstrated that, after this non-physiological splicing event, 

a frameshift event gives rise to a premature stop codon. Furthermore, we failed to detect 

any wild type transcript suggesting that, at the dose of spl-MO used for that assay (that 
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was equal or even lower than that used to evaluate possible phenotypic defects in the 

morphants), almost all or at least the great majority of the endogenous mRNA undergoes 

aberrant splicing, resulting in a very efficient knockdown. With this morpholino, also the 

shorter splicing isoform that we identified is targeted, as the exon/intron junction bound by 

the morpholino is present in both forms (exon 5-intron 5/6). Microinjection of the splicing 

MO, however, fails to cause any phenotypic alteration, and the nervous and hematopoietic 

markers analyzed were not altered in the morphants. Their survival rate was unaffected, 

also at high doses, although we were able to detect a decrease in the level of 

phosphorylation of threonine 3 of histone H3. 

One hypothesis that very likely explains this discrepancy is that the particular and severe 

phenotype observed during epiboly might be due to loss or strong reduction of the 

maternally inherited haspin mRNA component. Indeed, this can be an interesting 

possibility, given the very relevant maternal expression of haspin during the early stages of 

zebrafish development documented both by RT-PCR and in situ hybridization assays, and 

the fact that splicing MO is not able to target mRNAs that are already mature. In any case, 

it appears that the decrease observed in the phosphorylation level of H3Thr3 and the 

epiboly phenotype resulting from haspin ATG MO microinjection are two distinct and 

separate effects. In fact, a decrease in the signal of H3Thr3PH is observed with haspin 

splicing MO, while embryos do not show any evident alteration during development. 

Haspin depletion, after all, has been already shown to have an effect not directly linked to 

histone modification in other models, such as in budding yeast. Indeed, in this system,  

haspin orthologs play a role in organizing actin cytoskeleton polarization during mitosis 

and in affecting mitotic spindle orientation, but in yeast cells Thr3 of histone H3 does not 

appear to be phosphorylated (Panigada et al., 2013). However, we cannot formally 

exclude the hypothesis that the phenotype observed with the haspin ATG MO may be due 

to an aspecific MO-mediated effect. Indeed, it has been previously reported that MOs can 

in some cases lead to artifacts due to non-specific binding to some off-targets (Eisen and 

Smith, 2008; Schulte-Merker and Stainier, 2014). 

We have not yet been able to rescue the ATG MO phenotype by co-injecting the 

morpholino and the in vitro synthesized mRNA encoding the zebrafish haspin canonical 

form, even if we are still performing trials in order to test the optimal dose of transcript to 

inject. Our rescue assays might not be simple to plan, as it usually is when dealing with 

long transcripts (like the 3279-bp full length zebrafish haspin mRNA), but we intend to 
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increase the dose of injected mRNA aiming to verify a rescue of the epiboly phenotype 

observed with haspin ATG MO. 

To date, the most known and reported MO off-target effect is related to the activation of a 

non-physiological p53 isoform-mediated apoptosis cascade (Robu et al., 2007). To 

exclude such possibility, we performed sqRT-PCR experiments on cDNAs retro-

transcribed from ATG morphants at different doses, including the highest dose used for 

the phenotypic analysis, using specific primers for amplifying the non physiological p53 

isoform, and using as internal controls also β-actin and the p53 canonical form. Even if this 

was not a strictly quantitative assay, we did not detect any significant increase in the 

intensity of the bands for the non-physiological p53 isoform in morphant samples, that 

would have been compatible with possible overexpression of this non-specific target, even 

in those injected with the highest doses (data not shown). This result strongly suggests 

that microinjection of the ATG MO does not result in the activation of this apoptotic 

pathway. However, we cannot formally exclude that haspin ATG MO may have other 

unpredictable off-target effects. 

The hypothesis that the ATG MO phenotype may be specific and related to the depletion 

of maternal haspin transcripts, however, is also supported by the analysis of haspin 

mutants generated by CRISPR-Cas9 technology. We have been able to obtain six mutant 

fish carrying an heterozygous mutation in exon 6, in all cases leading to a frameshift 

mutations and thus to a premature stop codon. The homozygous mutant embryos, 

confirmed by sequencing and derived from in-crosses of these fish, did not exhibit any 

phenotype during early embryonic and larval development, similarly to what was observed 

after haspin spl-MO microinjection. In terms of maternal and zygotic contribution, the 

mutants that we analyzed reflect a condition comparable to that occurring after a spl MO 

microinjection; indeed, we generated a zygotic mutant in which the heterozygous mother 

carries one wild type copy of the haspin allele, thus the maternal contribution of 

determinants for embryos early development is not affected; this might be sufficient for 

them to normally proceed through the first stages of epiboly. However, we observed that 

homozygous haspin mutant embryos are not able to reach the adulthood stage, although 

they do not show any evident alteration during embryogenesis. It is very likely that all of 

them (or almost all of them) die within the first 3 weeks of development, starting from ~9 

dpf. 

This important evidence clearly indicates that haspin does play a role during larval or late 

embryogenesis stages. The first month of development is indeed the most critical for larval 
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survival rate, in particular around 14 and 30 dpf, and it is possible that haspin mutants will 

suffer from defects linked to previous mild problems during organogenesis that do not 

allow them to grow to the adulthood stage. 

At 5 dpf zebrafish larvae have completed their morphogenesis, the swim bladder is inflated 

and the swimming is active, as well as other behaviours such as the seeking of prey and 

the feeding (Kimmel et al., 1995). It is possible that haspin mutants exhibit some defects 

compromising their motility and thus their capacity of swimming and seeking of prey and, 

for this reason, they may be able to reach less food and progressively starve to death. 

They might also have mild defects in jaw joints movements, and this could result in feeding 

problems as well, or in some internal organs such as the gut, pancreas or kidney, that 

could affect their metabolism and nutrients assimilation, not allowing them to grow and 

reach the adulthood stage as their wild type and heterozygous siblings. 

 

The work described in this Ph.D. thesis can be considered as the first in vivo haspin 

characterization using the zebrafish model and, in general, during animal embryonic 

development. We identified and cloned the zebrafish haspin ortholog, together with a new 

previously unknown splicing isoform, and we clarified its expression pattern during 

embryogenesis and in some adult tissues. To begin understanding the role played by this 

mitotic kinase during development, we generated a haspin stable mutant line, and also 

took advantage of a MO-mediated knockdown approach. However, we still have to 

address some open questions that will allow us to unequivocally shed light on Haspin 

function during zebrafish development. 

To definitely exclude that the phenotype observed with the haspin ATG MO may be linked 

to off-target effects, we will design another ATG MO at a different, more downstream site, 

and/or we will target only the 5’UTR sequence and we will verify whether the same effect 

during epiboly will be observed. If we succeed in obtaining the same phenotype, possibly 

even at a difference degree of penetrance, we will be more confident about the specificity 

of the functional inactivation assays described here. So far, we have not been able to 

rescue the epiboly phenotype by coinjecting the haspin canonic mRNA  together with the 

morpholino, but we are planning to try again increasing the dose of mRNA injected. We 

also plan to verify by western blotting at least a rescue of the H3Thr3 phosphorylation level 

by coinjecting the transcript with both of our MOs since they both cause a similar decrease 

in H3Thr3 phosphorylation. 
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We wish to clarify the function of the newly identified splicing isoform as well: to this aim, 

we will perform functional assays such as overexpression trials. With respect to the 

canonical haspin form, we will verify the rescue of the epiboly phenotype and that of the 

decreased H3Thr3 phosphorylation levels by coinjecting its transcript together with the 

MOs in parallel experiments. 

To complete our work, we will also need to fully characterize our KO mutants. We need to 

perform western blot assays on protein extracts derived from single embryos among the 

offspring of two of our heterozygous fish, followed by genotyping of all of these embryos, 

to evaluate if the ones carrying a -/- genotype also show a decrease in H3Thr3PH levels. 

This result would also further confirm what we observed by MOs microinjection. 

Our next aim will be then to clarify why the larvae carrying a -/- genotype start to die at ~9-

10 dpf and cannot reach the adulthood stage. As I mentioned above, it is possible that 

they go through some mild alterations during organogenesis taking place in the first days 

of development, that might later lead to a significant decrease in the survival rate. To this 

end, we will perform in situ hybridization assays at 5 dpf using molecular markers to 

visualize possible alterations in some internal organs fundamental for larval growth and 

survival, such as liver, kidney, gut and pancreas, as well as specific markers for different 

specific neuronal populations, considering the haspin expression pattern during 

development. 
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ABSTRACT
Background Cardiovascular malformations have a
higher incidence in patients with NF1 microdeletion
syndrome compared to NF1 patients with intragenic
mutation, presumably owing to haploinsufficiency of one
or more genes included in the deletion interval and
involved in heart development. In order to identify which
genes could be responsible for cardiovascular
malformations in the deleted patients, we carried out
expression studies in mouse embryos and functional
studies in zebrafish.
Methods and results The expression analysis of three
candidate genes included in the NF1 deletion interval,
ADAP2, SUZ12 and UTP6, performed by in situ
hybridisation, showed the expression of ADAP2 murine
ortholog in heart during fundamental phases of cardiac
morphogenesis. In order to investigate the role of
ADAP2 in cardiac development, we performed
loss-of-function experiments of zebrafish ADAP2
ortholog, adap2, by injecting two different morpholino
oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-
injected embryos (morphants) displayed in vivo
circulatory and heart shape defects. The molecular
characterisation of morphants with cardiac specific
markers showed that the injection of adap2-MOs causes
defects in heart jogging and looping. Additionally,
morphological and molecular analysis of adap2
morphants demonstrated that the loss of adap2 function
leads to defective valvulogenesis, suggesting a
correlation between ADAP2 haploinsufficiency and the
occurrence of valve defects in NF1-microdeleted patients.
Conclusions Overall, our findings indicate that ADAP2
has a role in heart development, and might be a reliable
candidate gene for the occurrence of cardiovascular
malformations in patients with NF1 microdeletion and,
more generally, for the occurrence of a subset of
congenital heart defects.

INTRODUCTION
NF1 microdeletion syndrome (MIM 613675) is a
rare disorder caused by the haploinsufficiency of NF1
and contiguous genes. NF1-microdeleted patients
carry a heterozygous deletion of 17q11.2 region typ-
ically spanning about 1–1.4 Mb.1 2 NF1 microdele-
tion syndrome is often characterised by a more severe
phenotype compared to the one observed in NF1
with intragenic mutation.3 Comparing the clinical
phenotype between NF1-microdeleted patients and
the whole NF1 population, we found that cardiovas-
cular malformations (CVM) are significantly more

frequent in NF1 patients with microdeletion syn-
drome than in those with neurofibromatosis caused
by intragenic mutation.4 The CMVs found in the
NF1-deleted patients include pulmonic stenosis,
atrial/ventricular septal defects and valve defects, and
show an incidence of 18% versus 2.1% displayed by
NF1 patients with intragenic mutation.4 5

The higher incidence of CVMs in
NF1-microdeleted patients is most likely dependent
on the haploinsufficiency of genes lying in the dele-
tion interval, presumably involved in heart morpho-
genesis. Our previous search for candidate genes by
northern blotting and RT-PCR analysis evidenced
that three genes encompassed by NF1 microdele-
tion, SUZ12, ADAP2 (formerly CENTA2) and UTP6
(formerly C17ORF40) are highly expressed in
human fetal heart and during the early developmen-
tal stages of mouse embryonic heart,6 thus deserving
further analysis.
SUZ12 (Suppressor of Zeste 12 Homolog

(Drosophila)) is the human ortholog of the
Drosophila Su(z)12 polycomb gene, encoding a
protein which is implicated in developmental
mechanisms in Drosophila.7 Mice lacking Suz12
are not viable and die around 7.5 days post-coitum
(dpc), displaying severe developmental and prolif-
erative defects.8

ADAP2 (ArfGAP with Dual PH domains 2)
encodes a protein named Centaurin-α-2, which
belongs to the centaurins protein family.
Centaurin-α-2 is recruited to the plasma membrane
where it specifically regulates actin cytoskeleton
remodelling via ARF6, indicating an important role
in exocytosis and cell motility.9 Moreover, it was
recently shown to interact with microtubules and
to increase their stability.10

UTP6 (small subunit (SSU) processome compo-
nent, homologue (yeast)) is the human homologue
of yeast SSU processome component. The UTP6
gene is essential for efficient pre-rRNA processing11

and seems to be involved in the positive regulation
of apoptosis.12

Here, we investigated the spatio-temporal expres-
sion profile of ADAP2, SUZ12 and UTP6 murine
orthologs during mouse embryonic and fetal develop-
ment by in situ hybridisation. Based on this analysis,
we held ADAP2 the most interesting candidate gene
for CVMs occurrence and used zebrafish as a model
organism to investigate in vivo the role of adap2, the
ADAP2 zebrafish ortholog, during vertebrate heart
development by loss-of-function experiments.
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RESULTS
Expression analysis of Suz12, Utp6 and Adap2 genes in
mouse reveals that Adap2 is expressed during key stages
of heart development
In order to elucidate the expression pattern of Suz12, Utp6 and
Adap2 genes in mouse, we performed in situ hybridisations
using whole mounts at different stages of development, ranging
from 7.5 to 11.5 dpc.

The gene which revealed the most interesting expression
pattern was Adap2, since it was visible in heart between 9 and
10.5 dpc (figure 1) during fundamental phases of cardiac mor-
phogenesis, namely heart looping (beginning at 8 dpc), endocar-
dial cushion formation (10 dpc), and septation of the outflow
tract, atria, and ventricles (10.5 dpc). In particular, the strongest
Adap2 mRNA hybridisation signal was seen in the heart atria
and ventricles at 9.5 dpc (figure 1E), but its expression in the
heart was visible as of 9 dpc (figure 1C) and was still present in
the atria and ventricles at 10.5 dpc (figure 1F). We also per-
formed in situ hybridisations on cryosections of 15.5 dpc
embryos in order to assess if Adap2 transcript is also present in
the heart during the later stages of fetal cardiac development.
Our experiments demonstrated that the expression of Adap2 in
the heart continues to be maintained at least until 15.5 dpc, in
the ventricles and atria (figure 1H).

Conversely, Suz12 evidenced a more spatially and temporally
restricted expression in heart, with a clear hybridisation signal
only at 10.5 dpc in the atrium, while Utp6 revealed no expres-
sion in heart at any analysed stages (see online supplementary
figure S1).

Based on this evidence, we held ADAP2 the most interesting
candidate gene for CVMs occurrence, and we used zebrafish as
a model organism to investigate in vivo its role during vertebrate
heart development.

adap2, the ADAP2 zebrafish ortholog, is required for proper
cardiac morphogenesis
In order to explore the spatio-temporal expression pattern of
adap2, the ADAP2 zebrafish ortholog (Ensembl Gene ID:
ENSDARG00000070565), we performed RT-PCR and whole-
mount in situ hybridisation assays. adap2 transcript was detected
by RT-PCR at all analysed stages, from cleavage up to 120 hpf
(hours post-fertilisation), as well as in the oocytes, indicating
that the gene is maternally and zygotically expressed.
Furthermore, adap2 mRNA was present in all analysed adult
tissues, including heart (see online supplementary figure S2).
Whole-mount in situ hybridisation (WISH) revealed that adap2
transcript was present in the heart at 2 dpf (days post-
fertilisation) and 3 dpf stages, in the region corresponding to
bulbus arteriosus (see online supplementary figure S2).

In order to investigate the potential role of adap2 during zeb-
rafish heart development in vivo, we performed loss-of-function
experiments by injecting two independent translation-blocking
morpholinos (adap2-MO and UTR-adap2-MO) which target
the region surrounding adap2 translation start codon and the
50-UTR region, respectively. The injection of a control morpho-
lino (std-MO) with no targets in zebrafish was used as control
of the microinjection. At 2 dpf, most of embryos injected with
0.3 pmol of adap2-MO (morphants), unlike std-MO injected
embryos, displayed blood circulation defects and curved tail
(figure 2). Lower doses caused no circulatory defects. For the
analysis of injected embryos, we focused our attention on 2 dpf,
stage at which the circulation is surely started and the cardiac
looping occurred in control embryos. At this stage, 61% (n=94)

of embryos injected with 0.3 pmol/embryo of adap2-MO
showed one or more blood circulatory defects, such as the total
loss of circulation (21%), accumulation of blood cells in the
trunk and/or tail region (48%) and blood stases in the head
(13%) (figure 2D–F,G). All these circulatory defects were
noticed in both adap2 morphants which showed a body axis
comparable with that of control embryos and morphants which
displayed a bent tail phenotype (71%, n=94). The injection of
the second translation-blocking MO, UTR-adap2-MO, caused in
vivo qualitatively similar defects to the first injected MO,
though with a different penetrance (see online supplementary
figure S3).

To rule out that circulation defects could be caused by altera-
tions of vascular development, we carried out adap2
loss-of-function experiments in the tg(flk1:EGFP) zebrafish
transgenic line,13 where EGFP expression is controlled by the
endothelial-specific flk1 promoter (see online supplementary
figures S4 and S5). At 2 dpf, adap2 knocked-down embryos
revealed no gross defects in vascular development, with correct
development of main axial vessels, dorsal aorta (DA) and car-
dinal vein (CV), indicating a normal vasculogenesis. Weak
defects in intersomitic vessels (Se) were observed only in those
embryos with a marked curved tail, suggesting that these altera-
tions were likely caused by structural defects of body axis rather
than by angiogenesis abnormalities.

The evidence that two independent morpholinos gave the
same in vivo phenotypes confirmed the specificity of the adap2
morpholinos. Consequently, we present here data obtained on
embryos injected with the adap2-MO, which we indicate as
adap2 morphants.

The evidence that circulatory defects in adap2 morphants
were not caused by vascular defects suggested that they were
most likely derived from an abnormal heart development and
functionality. To test this hypothesis, we injected adap2-MO or
std-MO in embryos belonging to the tg(gata1:dsRed)sd2;tg(flk1:
EGFP)S843 double transgenic line,14 in which erythrocytes are
labelled in red and endothelial cells are labelled in green; we
observed the injected embryos under a confocal microscope
(figure 3). At 2 dpf, control embryos displayed a normal heart
morphology (figure 3A), while adap2 morphants showed a
reduction of atrioventricular (AV) canal bending, a partial lack
of atrium and ventricle separation, as well as a reduced ventricle
size (figure 3B,C). All analysed embryos displayed blood
circulation.

The in vivo analysis of adap2 phenotype in morphants
prompted us to investigate their heart morphology by a molecu-
lar approach, through whole-mount in situ hybridisation assays
with the cardiac-specific marker cmlc2 (cardiac myosin light
chain 2) (figure 4, see online supplementary tables S1 and S2).
At 26 hpf, std-MO-injected embryos showed the linear cardiac
tube correctly positioned ventrally in the left region of the
embryo (left jog) (figure 4A). On the contrary, only 39%
(n=59) of adap2-MO-injected embryos displayed, at the same
stage, the correct leftward cardiac jogging (figure 4B), while
another 39% showed no jog, with the heart tube situated cen-
trally along the midline of the embryo (figure 4C). Finally, the
remaining 22% of adap2 morphants was characterised by an
inverted cardiac jogging (right jog) (figure 4D). At 2 dpf,
std-MO-injected embryos hybridised with the cmlc2-specific
probe presented a normal S-shaped heart with the ventricle
positioned on the right of the atrium, indicating a correct
D-looping process (figure 4E). Differently, only 22% (n=49) of
adap2 morphants showed a heart morphology comparable to
control embryos (figure 4F). The remaining adap2-injected

2 Venturin M, et al. J Med Genet 2014;0:1–8. doi:10.1136/jmedgenet-2013-102240

Genotype-phenotype correlations

 group.bmj.com on April 8, 2014 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://jmg.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


embryos displayed either an intermediate phenotype with
reduced looping (18%), or absence of looping with a completely
linear heart tube (47%), or a reversed heart looping with the
ventricle on the left of the atrium (12%) (figure 4G–I).
Moreover, whole-mount in situ hybridisation assays with the
ventricle-specific marker vmhc (ventricular myosin heavy chain)
evidenced, at 2 dpf, a marked reduction of ventricle size in 64%
(n=39) of adap2 morphants, confirming the in vivo observa-
tions (see online supplementary figure S6). The reduction of
ventricle size was observed regardless of the heart looping
phenotype (D-loop, no loop or reversed loop). Notably, the per-
centage of embryos showing reduced ventricle size was similar
in adap2 morphants with or without blood circulation, 65%
(n=29) and 60% (n=10) respectively, suggesting no relation
between this defect and circulatory complications.

adap2 loss-of-function affects AV valve development
In order to shed light on the effect of adap2 knockdown on
cardiac functionality, we analysed AV valve formation in zebra-
fish by carrying out histological sections of AV valve in std-MO
and adap2-MO-injected embryos at different developmental
stages. At 3 dpf stage, control embryos displayed correctly
formed endocardial cushions in the AV canal connecting the
two cardiac chambers (figure 5A). The adap2 morphants mor-
phologically more similar to std-MO-injected embryos still
showed proper heart morphology with normal endocardial
cushions, the only evident defect being a mild reduction of ven-
tricle size, as already evidenced (figure 5B). In adap2-injected
embryos which in vivo showed an intermediate phenotype (bent
tail and presence of blood circulation), a visible alteration of the
endocardial cushions was observed, with a marked disorganisa-
tion of the cellular elements that will be forming the mature AV
valve (figure 5C). Embryos with severe phenotype, that is,
curved tail and absent circulation, showed serious alterations in

the heart morphology, making impossible any consideration on
endocardial cushion formation (figure 5D). The histological
analysis of std-MO-injected embryos at 5 dpf evidenced a prop-
erly developed mature valve, recognisable as two flap-like struc-
tures in correspondence to the AV canal (figure 5E). At this
stage, adap2-MO-injected embryos showing an in vivo mild
phenotype were already characterised by evident defects of
mature AV valve, whose cells resulted disorganised and poorly
compact (figure 5F). The morphology of mature valves in mor-
phants with curved phenotype and with blood circulation
appeared more compromised, structurally disorganised, without
the typical valvular shape and with cells irregularly disposed
(figure 5G). Finally, the most affected adap2 morphants showed
severe cardiac malformations: the heart appeared essentially as a
linear-shaped structure, without a clear separation between the
two chambers, and consequently it was impossible to analyse
mature cardiac valve conformation (figure 5H). Moreover, lon-
gitudinal histological sections of adap2 morphants at 5 dpf evi-
denced an endocardial detachment from the myocardial layer
notably in the atrial chamber (figure 5F,G).

To characterise at molecular level the cardiac AV valve defects
displayed by embryos as a consequence of adap2 functional
inactivation, we analysed, by means of in situ hybridisation
experiments, the expression pattern of two markers, bmp4
(bone morphogenetic protein 4) and notch1b (notch homolog
1b), which at 2 dpf are specifically expressed within the myocar-
dial and endocardial component of AV canal, respectively
(figure 6A,E). At 2 dpf stage, 91% (n=46) of control embryos
showed a bmp4-specific hybridisation signal precisely marking
the myocardial component of AV canal, as expected (figure 6B).
Differently, 51% (n=41) of adap2-MO-injected embryos dis-
played a disorganised and ectopically expanded bmp4-specific
expression domain, notably as the ventricular chamber is con-
cerned (figure 6C,D). These defects were observed in all the

Figure 1 Expression of Adap2 in whole-mount mouse embryos and mouse cryosections. (A–G) Whole-mount in situ hybridisation on embryos from
8.25 dpc to 11.5 dpc with an Adap2 specific probe. (A) 8.25 dpc, expression at the midbrain/hindbrain boundary. (B) 8.5 dpc, expression in the gut
tube. (C) 9 dpc, expression in forebrain, midbrain, hindbrain, heart (arrow), otic vesicles, gut tube. (D) 9.25 dpc, expression in forebrain, midbrain,
hindbrain, otic vesicles, heart (arrow), posterior part of the gut tube. (E) 9.5 dpc, expression in forebrain, midbrain, hindbrain, otic vesicles, heart
(arrow), gut tube. (F) 10.5 dpc, expression in forebrain, midbrain, hindbrain, otic vesicles, heart (arrow), gut tube. (G) 11.5 dpc expression in
midbrain, inner ear, forelimbs, weakly in hindlimbs. (H) In situ hybridisation on cryosection of a 15.5 dpc embryo showing Adap2 expression in heart
atrium (a) and ventricle (v).
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Figure 2 adap2 knockdown causes circulation defects in zebrafish. (A) Lateral view and (B) detailed image of the trunk-tail region of
std-MO-injected embryos at 2 dpf. (C, E and F) Lateral view and (D) detailed image of the trunk-tail region of adap2-MO-injected embryos at 2 dpf.
Anterior to the left. Black arrows: blood stases in the tail region; arrowhead: blood stasis in the head. (G) Percentage of circulation defects in adap2
morphants at 2 dpf (n=94): 21% of the adap2 morphants displayed no blood circulation, 48% blood stases in the trunk-tail region and 13% blood
stases in the cephalic region.

Figure 3 adap2 loss-of-function affects normal heart morphogenesis in zebrafish. The hearts of double transgenic tg(gata1:dsRed)sd2;tg(flk1:
EGFP)S843 embryos injected with std-MO or adap2-MO were examined in vivo by confocal microscopy at 2 dpf. Erythrocytes and endocardium are
labelled in red and green, respectively. Confocal images of the heart in (A) std-MO-injected embryo, in (B) adap2 morphant displaying normal
morphology and in (C) adap2-MO-injected embryo with bent tail. All analysed embryos presented blood circulation.
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phenotypic classes of heart development. Similar results were
obtained from the analysis of notch1b marker at the same stage,
with 49% (n=43) of adap2-MO-injected embryos displaying an
expanded and disorganised notch1b expression pattern
(figure 6G,H). All these data highlight adap2 function in funda-
mental processes of zebrafish cardiac morphogenesis, notably
heart jogging, heart looping, determination of ventricular size
and AV valve formation.

Overall, our findings provide compelling evidence that
ADAP2 is involved in heart development, pointing to it as the
most plausible candidate gene for the occurrence of congenital

CVMs in NF1 microdeletion syndrome and, more generally, for
the occurrence of sporadic and familial congenital CVMs.

DISCUSSION
Microdeletion syndromes are a group of disorders characterised
by the deletion of a chromosomal segment spanning multiple
disease genes, each potentially contributing to the phenotype
independently. Microdeletion syndromes are often characterised
by a complex clinical and behavioural phenotype resulting from
the imbalance of normal dosage of genes located in that particu-
lar chromosomal segment.15

Figure 4 adap2 loss-of-function experiments perturb zebrafish heart jogging and heart looping. Analysis of cmlc2 expression by in situ
hybridisation was performed on std-MO and adap2-MO-injected embryos at 26 hpf and 2 dpf. The heart position in injected embryos was scored as
left jog (normal; A and B), no jog (C) and right (reversed) jog (D) at 26 hpf and as D-loop (normal; E and F), reduced loop (G), no loop (H) and
reversed loop (I) at 2 dpf. V: ventricle; A: atrium. (A–D) Dorsal views through the head, anterior to the bottom; (E–I) frontal views, head to the top.

Figure 5 adap2 knockdown impairs the normal endocardial cushions and mature valve formation. Histological sections of std-MO and
adap2-MO-injected embryos at 3 dpf (transversal sections) and 5 dpf (longitudinal sections) stained with haematoxylin and eosin. (A and E) Heart
sections of control embryos at 3 dpf (A) and 5 dpf, with magnification of the valve region (E). (B and F) Heart sections of adap2 morphants with
blood circulation and morphology comparable to controls at 3 dpf (B) and 5 dpf, with magnification of the valve region (F). (C and G) Heart sections
of adap2 morphants with blood circulation and bent tail at 3 dpf (C) and 5 dpf, with magnification of the valve region (G). (D and H) Heart sections
of adap2 morphants with no blood circulation and curved tail at 3 dpf (D) and 5 dpf, with magnification of the valve region (H). Arrowheads:
endocardial cushions; double arrows: extracellular matrix (cardiac jelly) located between myocardium and endocardium.
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NF1 microdeletion syndrome is caused by heterozygous dele-
tions involving the NF1 gene and, in the most common 1.4 Mb
deletion, other 14 genes.2 A more severe clinical phenotype has
often been reported in NF1 patients carrying the microdeletion
compared to patients with intragenic NF1 mutations.3 By
reviewing the phenotype of 92 patients with NF1 microdele-
tion, we found that CVMs occurred at a significantly higher
incidence in this patient population as compared to NF1
patients with intragenic mutations,4 suggesting that the whole-
gene deletion segment encompasses important genes involved in
heart development. Subsequent expression studies indicated
three possible candidate genes for CVMs that warranted further
studies: ADAP2 (formerly known as CENTA2), SUZ12 and
UTP6 (previously called C17ORF40).6

Here, we analysed the spatio-temporal expression profile of
the above mentioned genes during mouse embryonic and fetal
development. Based on this analysis, Adap2 seems to be
expressed in heart starting from 9 dpc, during key phases of
cardiac development, that is when the heart tube is elongating
and looping, and atrial and ventricular septa, as well as AV
valves, are forming.16 Moreover, Adap2 expression in heart con-
tinues even in the later stages of development, at least until
15.5 dpc. Of note, Adap2 expression is not restricted to a par-
ticular cardiac compartment or structure, but rather seems to
localise in atria and ventricles. Suz12 was also detected in heart
during mouse development, but its expression seems to be
restricted to a short period around 10.5 dpc and to the heart
atria. Differently, Utp6 showed no expression in the developing
heart at all.

Since the expression of ADAP2 mouse ortholog in heart
during fundamental stages of cardiac morphogenesis was sug-
gestive of a role in heart development, we studied the possible
role of ADAP2 in heart development by employing zebrafish as
a model system. Over the recent years, zebrafish has proven to
be a valid model for studying cardiovascular development.
Despite its apparent simplicity, the zebrafish heart shares

common structural, developmental and genetics features with
avian and mammalian heart.17–19 Additionally, because of their
small size, embryos receive enough oxygen by passive diffusion
from external medium to survive and continue to develop in a
relatively normal fashion for several days even in the complete
absence of blood circulation, allowing a detailed phenotypic
analysis of animals with severe cardiovascular defects that would
be lethal in other organisms.20

The functional inactivation of adap2, the ADAP2 zebrafish
ortholog, obtained by the injection of two MO oligos targeting
different adap2 mRNA regions (translation start site and
50-UTR), caused the same circulatory defects, proving the specifi-
city of the phenotypes. We also designed a splice-blocking MO,
which was predicted to cause exon 2 skipping, and to produce an
altered form of adap2 transcript with the generation of a prema-
ture stop codon. However, the injection of this MO at different
doses did not cause any evident phenotypic defects. RT-PCR ana-
lysis, performed to test the efficacy of the splice-blocking MO,
showed that only a fraction of adap2 mRNA was incorrectly
spliced. Consequently, we reason that the partial expression of
the wild-type protein could be enough to prevent the occurrence
of the phenotypic defects. This evidence, along with the presence
in the embryo of the maternal transcript, which is targeted only
by translation-blocking MOs, might explain the absence of
alterations following the injection of this MO.

Our molecular results suggested adap2 involvement in the
cardiac jogging process, the morphogenetic process in which the
heart cone is displaced to the left with respect to the anterior-
posterior axis, which is one of the first evident breaks in left-
right symmetry of the primitive zebrafish heart tube.21

Moreover, adap2 also appeared fundamental for the subsequent
D-looping process, the bend of the heart tube to the right,
which, by 36 hpf leads to the typical S-shaped heart, with the
ventricle positioned on the right of the atrium. This was sup-
ported by the high number of adap2 morphants, which at 2 dpf,
when D-looping is normally completed, showed a linear heart,

Figure 6 The expression of atrio-ventricular boundary markers is affected in adap2 morphants. The analysis of bmp4 and notch1b expression by in
situ hybridisation was performed on std-MO and adap2-MO injected embryos at 2 dpf. (A and E) Schematic representation of bmp4 and notch1b
expression domain in zebrafish heart at 2 dpf. The myocardium and endocardium-specific territories of bmp4 and notch1b expression are depicted in
magenta. (B and F) Embryos injected with std-MO displaying a normal hybridisation signal. (C, D and G, H) Embryos injected with adap2-MO
displaying expanded and disorganised bmp4 and notch1b expression domains. Frontal views are shown.
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a reduced loop or a reversed loop, all defects ascribable to
alterations of the heart bending taking place during the
D-looping process.

Functional inactivation of adap2 also evidenced its important
role during AV valve morphogenesis, since the earliest stages of
endocardial cushion formation. Our results strongly suggest that
a defective valvulogenesis results in impaired cardiac functional-
ity, therefore, AV valve morphological alterations are most likely
accounting for the in vivo blood circulation defects displayed by
adap2 morphants. Valve defects, including mitral valve prolapse,
pulmonary valve stenosis and aortic valve anomalies, constitute
a significant proportion of CVMs observed in patients with
NF1 microdeletion syndrome.3 4 Taking into account our find-
ings on ADAP2 role in valve morphogenesis, a correlation
between ADAP2 haploinsufficiency and the onset of valvular
defects in NF1-microdeleted patients can be hypothesised.
Additionally, the detachment between endocardium and myocar-
dium observed in adap2 morphants, particularly in the atrial
chamber, could be caused by increased amounts of the extracel-
lular matrix (cardiac jelly) juxtaposed between the two cardiac
layers. Normal valve development involves multiple signalling
pathways and extracellular matrix components take part in this
process. Interestingly, dysregulation of components of the extra-
cellular matrix seems to have a role in the myxomatous degener-
ation, the leaflet thickening and redundancy, typical of valvular
abnormalities, such as mitral valve prolapse.22

ADAP2 is known to regulate microtubule stability10 and the
activity of ARF6, a GTPase involved in cellular motility, adhe-
sion and polarity by regulating cytoskeleton remodelling and
cortical actin formation.9 The alteration of these functions
might impair adhesion and migration properties of AV valve
cells, explaining their disorganisation and the irregular valve
architecture observed in adap2 morphants.

During the early phases of valve morphogenesis, the myocar-
dial component of AV junction is fundamental for the signalling
events leading endocardial cells to begin the formation of cush-
ions, which will be later remodelled to create flap-like valvular
structures.23 The marked alteration of bmp4 myocardial expres-
sion in adap2 morphants suggests a compromised signalling
from myocardium to endocardium, which might result in the
structural valve defects observed at 5 dpf.

Overall, our study points to ADAP2 as a gene involved in
heart development, and as a plausible candidate gene for the
occurrence of CVMs in NF1-microdeleted patients and in the
general population, constituting an advance towards a better
comprehension of the complex phenotypic spectrum of the syn-
drome, as well as of the genetic basis of CVMs.

MATERIALS AND METHODS
Animals
The mice used were of the CD1 strain (Charles River
Laboratories International) and were housed in the pathogen-
free facility at the San Raffaele Scientific Institute (Milano,
Italy). Zebrafish (Danio rerio) embryos, collected by natural
spawning, were raised and maintained according to established
techniques.24 Embryos were staged according to Kimmel and
colleagues,25 and raised at 28°C in fish water (Instant Ocean,
0.1% Methylene Blue) in Petri dishes. Beginning from 24 hpf,
embryos were cultured in fish water containing 0.003% PTU
(1-phenyl-2-thiourea; SIGMA) to prevent pigmentation. The
following lines were used: AB (obtained from the Wilson lab,
University College London, London, UK); tg(flk1:EGFP)13

(from the Stainier lab, University of California at San Francisco,
USA), tg(gata1:dsRed)sd2; tg(flk1:EGFP)S843 14 (from the

Santoro lab, Molecular Biotechnology Center, Università di
Torino, Torino, Italy).

RT-PCR
RT-PCR was performed on total RNA extracted from oocytes,
embryos (about 30 embryos per sample) at different develop-
mental stages and adult organs using the TOTALLY RNA isola-
tion kit (Ambion), treated with RQ1 RNase-Free DNase
(Promega) and oligo(dT)-reverse transcribed using Super-Script
II RT (Invitrogen), according to the manufacturer’s instructions.
The following primers were used for PCR reactions: adap2_fw
50-GCTTAGACTTCTGGGATG-30, adap2_rev 50-CGAGATAA
CGGTTTTCAAGGC-30. PCR products were loaded and
resolved onto 2% agarose gels.

In situ hybridisation
Probes were isolated by RT-PCR using specific primers (see
online supplementary table S3) and cloned into the
pCRII-TOPO vector (Invitrogen). Antisense and sense ribop-
robes were in vitro labelled with modified nucleotides
(digoxigenin-UTP, Roche). WISH was performed on mouse
embryos as described.26 At least eight embryos per stage were
analysed. Prehybridisation was performed in a formamide-
tween20 solution, after which the DIG-labelled riboprobes were
added to the embryos and incubated at 65°. In situ hybridisation
on mouse cryostat sections was performed as described.27

WISH on zebrafish embryos was substantially carried out as
described,28 on embryos fixed for 2 h at room temperature in
4% paraformaldehyde/phosphate buffered saline, then rinsed
with PBS-Tween, dehydrated in 100% methanol and stored at
−20°C until processed for WISH.29 A minimum of 20 embryos/
time point were analysed.

The following probes were synthesised as described in the cor-
responding papers: cmlc2 and vmhc,30 notch1b31 and bmp4.32

Images of stained embryos were taken with a Leica MZFLIII
epifluorescence stereomicroscope equipped with a DFC 480
digital camera and IM50 Leica imaging software (Leica).

For histological sections, stained embryos were refixed in 4%
paraformaldehyde, dehydrated, wax embedded, sectioned (8 μm)
by a microtome (Leitz 1516) and stained with eosin. Images were
taken with an Olympus BH2 microscope, equipped with a Leica
DFC 320 digital camera and the IM50 software (Leica).

Morpholino injections and phenotype analysis
Antisense morpholinos (MOs; Gene Tools) were designed against
the AUG translation start site region and the coding sequence,
adap2-MO (50-TTGTTCTTTTCCCGATTTGCCATAG-30) and
against the 50-UTR region, UTR-adap2-MO (50-AAAACACT
CCTGTCGCGTCAGAATC-30). As a control for unspecific
effects, each experiment was performed in parallel with a
std-MO (standard control oligo) with no target in zebrafish.

All morpholinos were diluted in Danieau solution33 and
injected at the 1–2-cells stage. Rhodamine dextran (Molecular
Probes) was usually coinjected as a tracer. After injection,
embryos were raised in fish water at 28°C and observed up to the
stage of interest. For a better observation, the injected embryos
were anaesthetised using 0.016% tricaine (Ethyl
3-aminobenzoate methanesulfonate salt, SIGMA) in fish water.

Images were acquired by using a Leica MZ FLIII epifluores-
cence microscope equipped with a Leica DCF 480 digital
camera and the IM50 software (Leica). Confocal microscopy
was performed with a Leica TCSNT confocal microscope
equipped with an Ar/Kr laser (blocking filter BP 530/30 for
EGFP and blocking filter LP 590 for ds Red).
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For histological analysis 3 and 5 dpf zebrafish early larvae
were fixed overnight at 4°C with bouin fixative. The samples
were then dehydrated in a graded ethanol series, wax embed-
ded, sectioned (8 μm) by a microtome (Leitz 1516) and stained
with haematoxylin/eosin. Images were taken with a Leica
DM6000 B microscope equipped with a Leica DCF480 digital
camera and the LAS software.
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TABLES 

 

Table S1: heart jogging defects in std-MO and adap2-MO injected embryos at 26 hpf as shown by 

cmlc2 expression pattern analysis (Figure 4). n. = total number of injected embryos. 

 

  Heart jog (%) 

Injected morpholino n. Left jog No jog Right jog Total heart jogging defects 

      
std-MO 53  98 2 0 2 

adap2-MO 59 39 39 22 61 

 

 

Table S2: heart looping defects in std-MO and adap2-MO injected embryos at 2 dpf as shown by 

cmlc2 expression pattern analysis (Figure 4). n. = total number of injected embryos. 

 

  Heart loop (%) 

Injected 

morpholino n. D-loop Reduced loop No loop 

Reversed 

loop 

Total heart  

looping defects 

       
std-MO 53  96 0 4 0 4 

adap2-MO 49 22 18 47 12 77 

 

 

Table S3: Primers Used to Generate the Probes for Whole-Mount In Situ Hybridization 

Experiments. 

 

Name Sequence (5’-3’) Tm 

  
 

Adap2P_fw CTCGTGCCTCTCATCACCAG 64°C 

Adap2P_rev CCAGTGTAGTCCAGGTTGTC 62°C 

Suz12P_fw AGCATAATGTCAATAGATAAAGC 60°C 

Suz12P_rev CATCTTCTGAATCTCCAACTG 60°C 

Utp6P_fw GCTCCAGGTGCTCATTGACTC 66°C 

Utp6P_rev GGTTGAGGCAGTCCATCCAC 64°C 

adap2P_fw CTTTCCAACTGCTAGTGATGTAG 66°C 

adap2P_rev CGCCAGACAGAGACAAGACTC 66°C 
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Methods 

METHODS 
 
ZEBRAFISH LINES AND MAINTENANCE 

Zebrafish (Danio rerio) embryos were raised and maintained under standard conditions 

and national guidelines (Italian decree 4th March 2014, n.26). All experimental procedures 

were approved by IACUC (Institutional Animal Care and Use Committee). 

Zebrafish AB wild-type strains were obtained from the Wilson lab, University College 

London, London, United Kingdom and the transgenic line tg(islet1:EGFP) was kindly 

provided by Dr. Deflorian (IFOM, Istituto FIRC di Oncologia Molecolare, Milan). 

Regarding the generation of the mutant lines performed at Temple University, 

Philadelphia, PA (USA) at Dr. Gianfranco Bellipanni’s lab, we used AB and Tubingen long-

fin strains originally obtained from EkkWill Waterlife Resources (Gibbonston, FL, USA) and 

from ZIRC (Zebrafish International Resource Center; University of Oregon, Eugene, OR, 

USA). All procedures involving zebrafish were conducted in accordance with Institutional 

Animal Care and Use Committee (IACUC) policies. 

Embryos were staged according to morphological criteria (Kimmel et al., 1995) and 

embryonic ages are expressed in hours post-fertilization (hpf) and days post-fertilization 

(dpf). 

 

ZEBRAFISH haspin ORTHOLOG IDENTIFICATION 

The human haspin amino acid sequence was used as a query to identify in silico the 

zebrafish haspin gene. NCBI (http://www.ncbi.nlm.nih.gov/BLAST/), ClustalW 

(http://www.ebi.ac.uk/Tools/clustalw/) and SMART (http://smart.embl-heidelberg.de/) tools 

were used for basic handling and analysis of the nucleotide and protein sequences. 

 

ZEBRAFISH haspin EXPRESSION ANALYSIS: RT-PCR AND IN SITU HYBRIDIZATION 

ASSAYS 

Total RNA was isolated from embryos at different developmental stages and from different 

adult organs using the “SV Total RNA isolation System” (Promega, Madison, Wisconsin, 

USA). 

After treatment with DNase I RNase-free (Roche, Basel, Switzerland) to avoid possible 

genomic contamination, 1 µg of RNA was reverse-transcribed using the “ImProm-IITM 

Reverse Transcription System” (Promega) and random primers according to the 

manufacturer’s instructions. 
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Methods 

According to the sequence information gained from bioinformatic analysis, we used 

different sets of primers for temporal expression analysis at different stages of 

development and in adult organs (see list of primers below) and performed cDNA 

amplification for detecting the expected bands using GoTaq polymerase (Promega), 

following the manufacturer’s instructions. For a spatial expression pattern, we amplified a 

fragment of the zebrafish haspin coding sequence in order to use it as template to in vitro 

synthesize a RNA probe for in situ hybridization assays. We used GoTaq polymerase 

(Promega) following the manufacturer’s instructions. Specific gapdh primers (see list of 

primers below) were used to check cDNA quality. For probe synthesis, we used as 

template an amplicon of 1166 base pairs, not including the conserved C-terminal kinase 

domain. Reaction products were analyzed by 1% agarose-gel electrophoresis. Amplicons 

were cloned in the pGEM-T vector system (Promega) according to manufacturer’s 

instructions. These clones were then sent out for sequencing (Eurofins_Genomics-DNA 

sequencing service) and electropherograms were analyzed with ChromasPro software 

1.42 (Technelysium Pty Ltd, Tewantin QLD, Australia) using the ENSEMBL sequence 

ENSDART00000134576 as reference. Sense and antisense RNA probes were 

respectively transcribed using T7 and SP6 RNA polymerase (Roche) on templates 

linearized with SalI or NcoI (New England Biolabs Inc, Ipswich, Massachusetts, USA). 

Probes were labeled with digoxigenin using the “DIG-RNA Labelling Kit” (Roche). 

For all in situ hybridization experiments, embryos beyond 24 hpf were cultured in fish 

water containing 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich, Saint Louis, Missouri, USA) 

before fixation to prevent pigmentation. When reaching the desired developmental stage, 

embryos were fixed overnight in 4% paraformaldehyde (Sigma-Aldrich) in PBS at 4°C, 

then dehydrated stepwise to methanol and stored at -20 °C. 

Whole mount in situ hybridizations were essentially performed as described (Thisse and 

Thisse, 2014). Controls with sense ribo-probes were performed in parallel with antisense 

probes. 

Images of stained embryos were taken on a Leica MZFLIII epifluorescence 

stereomicroscope equipped with a DFC 480 digital camera and LAS Leica imaging 

software (Leica, Wetzlar, Germany). 

Some of the hybridized embryos were then embedded in paraffin (Paraplast plus, Bio 

Optica) and sectioned (8µm) on a microtome (Leitz 1516). The slides were mounted with 

Eukitt (Bio Optica) and all sections were observed using a Leica DM6000B microscope 
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equipped with a DFC 480 digital camera and LAS Leica imaging software (Leica, Wetzlar, 

Germany). 

 

ZEBRAFISH haspin FULL LENGTH CLONING AND SEQUENCING, mRNA SYNTHESIS 

AND RESCUE EXPERIMENTS 

Total RNA was isolated from a pool of embryos of the AB strain at tailbud stage using 

“TRIzol Reagent” (Ambion, Austin, Texas, USA) according to the manufacturer’s 

instructions. Next, reverse-transcription was performed as described above. According to 

the sequence information gained from bioinformatic analysis, we amplified the full coding 

sequence of zebrafish haspin to confirm the sequence and to in vitro synthesize the 

corresponding transcript for rescue experiments. For amplification, we used a mixture of 

Taq DNA Polymerase (Thermo Fisher Scientific) and Pfu DNA Polymerase (Agilent 

Technologies, Santa Clara, CA, USA) to ensure accuracy during DNA synthesis. Reaction 

products were analyzed by 1% agarose-gel electrophoresis. All amplicons were first sub-

cloned in the pJET 1.2 vector using the “CloneJET PCR Cloning Kit” (Thermo Fisher 

Scientific) and sequenced, to verify the absence of amplification errors, (Genewiz-DNA 

sequencing service). Next, they were cloned into the pCS2+ poly(A) vector, a commonly 

used zebrafish expression system, using the double restriction sites that we previously 

added to the primers used for amplification (BamHI, XhoI; New England Biolabs Inc). The 

obtained plasmids where then sent again for sequencing (Genewiz-DNA sequencing 

service) and used as template for generating sense mRNA, in vitro synthesized using the 

“mMessage mMachine kit” (Ambion) according to the manufacturer’s instructions. The 

mRNA was then purified by phenol:chloroform extraction (Sigma-Aldrich), quantified and 

stored at -80°C. For rescue experiments, the synthesized mRNA, diluted in RNase-free 

water, was injected into one-or two-cell-stage embryos, separately from the ATG 

morpholino, to avoid in vitro hybridization of the two molecules prior to injection. 

 

MOs-MEDIATED KNOCKDOWN, PHENOTYPE CHARACTERIZATION 

Antisense morpholinos (GeneTools, Philomath, Oregon, USA) were designed against the 

AUG region of the zebrafish haspin coding sequence (haspin ATG MO, 5’-

TTTTCCTCTTGCGTTCATCTTGGAC-3’) and against the junction between exon 5 and 

intron 5/6 (haspin spl MO, 5’-GCATAATTACTTACAATTTGCTTGG-3’). A standard control 

oligo (Std-MO, 5’-CCTCTTACCTCAGTTACAATTTATA-3’, against human β-globin gene) 
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with no target in zebrafish embryos, was also used, to check for non-specific effects due to 

the injection procedure. 

All morpholinos were diluted in Danieau solution (Nasevicius and Ekker, 2000) and 

pressure-injected into 1-to-2 cell-stage embryos using Eppendorf FemtoJet 

Micromanipulator 5171. Rhodamine dextran (Molecular Probes, Life technology) was 

always co-injected as dye tracer. 

For in vivo observations and imaging, embryos beyond 24 hpf were washed, 

dechorionated and anaesthetized with 0.016% tricaine (ethyl 3-aminobenzoate 

methanesulfonate salt; Sigma-Aldrich) before observations and picture acquisition. 

For in vivo imaging of injected embryos we used a Leica MZFLIII epifluorescence 

stereomicroscope equipped with a DFC 480 digital camera and LAS Leica imaging 

software (Leica, Wetzlar, Germany). 

RT-PCR analysis to determine efficacy of haspin spl MO was carried out on RNA isolated 

from 24 hpf morphant embryos using Go Taq polymerase (Promega) and specific primers, 

namely haspinspMOfor and haspinspMOrev (see list below). Amplicons were verified by 

agarose-gel electrophoresis and sequenced (Eurofins_Genomics-DNA sequencing 

service), to verify the expected exon skipping. 

Antisense RNAs were in vitro transcribed for otx3, fgf8, goosecoid (gsc) and chordin (chd) 

ribo-probe synthesis. We used stock vectors present in our lab; these were linearized 

using the appropriate restriction enzymes and probes were in vitro transcribed using T7 or 

SP6 RNA polymerase (Roche). Probes were then labeled with digoxigenin using the “DIG-

RNA Labelling Kit” (Roche). In situ hybridization assays were performed as mentioned 

above. 

O-dianisidine staining was performed as described (Detrich et al., 1995); pictures of the 

stained embryos were taken as mentioned above. 

 

WESTERN BLOT EXPERIMENTS 

All western blot experiments were essentially carried out as previously described 

(Bellipanni et al., 2000). We used, as primary antibodies: rabbit antiH3Thr3PH (Merck 

Millipore) at 1/2500 dilution, mouse antiH3ser10PH (Abcam) at 1/5000 dilution, rabbit 

antiH3TOT (Merck Millipore) at 1/5000 dilution and rabbit antiαactin (Abcam) at 1/1500 

dilution. Anti-mouse and anti-rabbit peroxidase-conjugated (Abcam) were used as 

secondary antibodies (1/10000 dilution). 

 
82 

 



Methods 

ZEBRAFISH haspin MUTAGENESIS BY CRISPR-CAS9 SYSTEM 

• Target selection 

As described by (Hwang et al., 2013) and as already verified by Dr. Gianfranco Bellipanni 

and Dr. Darius Balciunas (Temple University, Philadelphia, USA; personal 

communication), the only requirement to be strictly followed for CRISPR target selection is 

the presence of a 5’-NGG-3’ PAM site. 

 

• sgRNAs synthesis 

The sgRNAs were synthesized after a two steps PCR using the DR274 guide RNA 

expression vector as template (Addgene plasmid # 42250). DR274 was a gift from Keith 

Joung (Hwang et al., 2013). To synthesize our sgRNAs we designed specific short guide 

primers (see list below) containing, in addition to the sequence complementary to the 

target, a T7 promoter for in vitro transcription and a homology sequence to the sgRNA 

component of the DR274 vector. sgRNAs were in vitro transcribed using “MegaShortscript 

T7” kit (Thermo Fisher Scientific), according to manufacturer’s instructions. 

 

• cas9 mRNA synthesis 

We in vitro transcribed zebrafish-optimized ncas9n mRNA using pT3TS-nCas9n vector as 

template (Addgene plasmid # 46757). pT3TS-nCas9n was a gift from Wenbiao Chen (Jao 

et al., 2013). 

The vector was linearized using XbaI enzyme (New England Biolabs Inc.) and the mRNA 

was then in vitro transcribed using the “mMessage mMachine kit” (Ambion) according to 

the manufacturer’s instructions. The mRNA was purified by phenol:chloroform extraction 

(Sigma-Aldrich), quantified and stored at -80°C. 

 

• CRISPRS microinjection 

The solution to inject was prepared by mixing sgRNAs together with the cas9mRNA and 

rhodamine dextran (Molecular Probes, Life technology) as a tracer, diluted in RNase-free 

water. This injection mix was pressure-injected into 1-to-2 cell-stage embryos using a 

Narishige micromanipulator. The optimal dose for each CRISPR was selected based on 

the evaluation of the toxicity and the phenotypic alterations resulting in the embryos, as 

well as the mortality rate. 
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• Mutations detection and screening 

To extract genomic DNA from pools of embryos from adult fin clips for mutation detection, 

DNA extraction buffer (prepared as described by ZFIN community, see 

“https://zfin.org/zf_info/zfbook/chapt9/9.3.html”, following “Large sample number”) was 

added to the samples, that were then digested with Proteinase K (Sigma-Aldrich) at 65°C. 

Potassium acetate 8M was then used to remove proteins from DNA; after transfer of the 

supernatant phase to new clean tubes, DNA was precipitated using isopropanol and 

washed with 70% cold ethanol. Genomic DNA was resuspended in nuclease free water. 

PCR was then performed on genomic DNA using specific primers amplifying the region we 

targeted with our CRISPRs (see primers list below) and Taq DNA Polymerase (Thermo 

Fisher Scientific). To screen for mutations, PCR products were first of all processed using 

the “Surveyor Mutation Detection Kit” (IDT Technologies) according to manufacturer’s 

instructions. After digestion with Surveyor nuclease, samples were analyzed by 2% 

agarose-gel electrophoresis to detect multiple bands derived from mismatches-directed 

cleavage. Surveyor-positive PCR samples from F1 pools of embryos that needed to be 

confirmed by Sanger sequencing were then purified using “DNA Clean-Up & 

Concentration Kit” (Zymo Research) according to manufacturer’s instructions, and sent out 

for sequencing (Genewiz-DNA sequencing service). When screening for heterozygous F1 

adult fish, surveyor-positive PCR amplicons derived from fin clips were first cloned in the 

pJET 1.2 vector using the “CloneJET PCR Cloning Kit” (Thermo Fisher Scientific) and then 

sequenced. 

While screening for homozygous larvae or adult fish, PCR samples from F2 samples were 

directly purified as mentioned above and sent for sequencing (Genewiz-DNA sequencing 

service). All electropherograms were analyzed as mentioned above. 

 

PRIMER SEQUENCES 

For the sequences of primers used in our work, please refer to the list below. 

 

-Primers for haspin probe synthesis: 

Haspinishprobefor: 5’-AGTTGGAGCCTTGGATCTCC-3’ 

Haspinishproberev: 5’-GGCAGTCCTCTCTTCCTGTT-3’ 

 

-Primers for haspin temporal expression pattern on embryonic stages: 

Haspseq2: 5’-AAGAGGATTCTCAGAGGCCA-3’ 
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Haspinishproberev: 5’-GGCAGTCCTCTCTTCCTGTT-3’ 

 

-Primers for haspin full length amplification and cloning: 

zFLHaspBamHIfrw:  

5’-TGTCATGGATCCGTCCAAGATGAACGCAAGAGGAAAAAACGGG-3’ 

zFLHaspXhoIrev: 

5’- TGTCATCTCGAGTCACTGAAAGAAACTGCACT-3’ 

 

-Primers for discerning both haspin isoforms temporal expression pattern on embryonic 

stages (first set of primers): 

zhaspsplscreen frw: 5’-GCTGCTAATGAATGTGCTGG-3’ 

zhaspsplscreen rev: 5’-CTCTTCCTGTTTCTTGCTGC-3’ 

 

-Primers for discerning both haspin isoforms temporal expression pattern on adult organs 

(second set of primers): 

zhaspsplscreenbis frw: 5’-TTGTCACAAGTCGCAGAAGACC-3’ 

zhaspsplscreenbis rev: 5’-GATGCTTTCGATGGTGTAGAGC-3’ 

 

-Primers for RT-PCR analysis to determine efficacy of haspin spl MO: 

haspinspMOfor: 5’-AAGCCTCGAACCACAAAGAG-3’ 

haspinspMOrev: 5’-AACCTGTGTGTGTCTGAGCA-3’ 

 

-Short guide primers for sgRNAs CRISPR synthesis (composed of: T7 promoter; 

underlined sgRNA sequence, complementary to the target; homology to DR274): 

sgRNAhaspinCRISPRE6:  

5’-
CGCTAGCTAATACGACTCACTATAGGAGGAGATCTCACTGATGGGTTTTAGAGCTAG 
AAATAG-3’ 
sgRNAhaspinCRISPRATG: 
5’-
CGCTAGCTAATACGACTCACTATAGGTTTTCCTCTTGCGTTCATCTGTTTTAGAGCTAG
AAATAG-3’ 
 
-Primers for amplifying region targeted by CRISPR ATG (for mutation detection): 

haspcrispATGscreenfrw: 5’-CTCAATTGCAGATTAGCAGAGC-3’ 

haspcrispATGscreenrev: 5’-CATCACTTTGGTCTTAGCAGTGC-3’ 
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-Primers for amplifying region targeted by CRISPR E6 (for mutation detection): 

haspcrispE6screenfrw: 5’-CTTTGTTCTAGGCTGTTCTTCACC-3’ 

haspcrispE6screenrev: 5’-CCCTCTTTCAGTTCTATGACTCTC-3’ 

 

-Primers for gapdh amplification: 

gapdhfrw: 5’-GTGTAGGCGTGGACTGTGGT-3’ 

gapdhrev: 5’-TGGGAGTCAACCAGGACAAATA-3’ 
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SUPPLEMENTARY FIGURES 
 
 
 

 
 
Suppl. fig. 1: in situ hybridization experiments conducted with haspin sense probe. No staining is 
detectable by hybridization with haspin sense probe. (A, B) Lateral view of embryos at somitogenesis stages 
with the cephalic region to the left. (C) Lateral view of a 24 hpf embryo with the cephalic region to the left. (D) 
Dorsal view of the cephalic region of a 24 hpf embryo from above. (E) Lateral view of a 2 dpf embryo with the 
cephalic region to the left.  
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Suppl. figure 2: Effect of haspin spl MO microinjection. (A) RT-PCR analysis carried out on RNA isolated 
from haspin splicing morphant and std-morphants at 24hpf. Embryos were injected with 1.5 pmol/E for both 
MOs. The presence of a shorter aberrant transcript, compatible with the skipping of exon 5, is detectable in 
haspin morphants. Sanger sequencing of these bands confirmed this data. Negative control is shown in the 
right-most line. (B) Simulation of the translation of haspin coding sequence lacking exon 5 leads to the 
production of a truncated protein (only 154 aa) in which the functional C-term kinase domain is not included 
(analysis conducted with SMART tool). (C) Western blot assays performed on protein extracts from pools of 
embryos injected with haspin spl MO (1 pmol/E) at two different developmental stages. H3Thr3PH levels 
decrease in both stages analyzed after haspin spl MO micro-injection. 
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Suppl. figure 3: Phenotypic effect of haspin spl MO microinjection. (A,B) Dorsal view of 3 dpf embryos, 
with the cephalic region to the left, of the transgenic line islet-1 EGFP, showing the patterning of the motor 
neurons of the hindbrain. No differences are detectable between controls (std-MO) and haspin spl 
morphants. Embryos were injected with 2 pmol/E for both MOs. (C,D) Lateral view of 2 dpf embryos, with the 
cephalic region to the left, stained with O-dianisidine in order to visualize hemoglobin. No differences are 
detectable between controls (std-MO) and haspin spl morphants. Embryos were injected with 2 pmol/E for 
both MOs.  
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APPENDIX 
 
 
EMBRYONIC DEVELOPMENT OF ZEBRAFISH 

The zebrafish eggs are small (400-500 µm), with a very large yolk mass. After the 

fertilization, several cytoplasmic rearrangements occur, and these events lead to the 

segregation of the cytoplasm to the animal pole, and the yolk mass to the vegetal pole. 

The segmentation (cleavage) is meroblastic and relative to the cytoplasm of the animal 

pole only. In this way, the formation of the “blastula” is observed. The blastula starts the 

gastrulation period, which is characterized by different cellular movements. Kimmel et al., 

(1995), distinguished the following developmental stages: zygote period (0-3/4 hpf), 

cleavage period (3/4-21/4 hpf), blastula period (21/4-51/4 hpf), gastrula period (51/4-10 hpf), 

segmentation period (10-24 hpf), pharingula period (24-48 hpf) and hatching period (48-72 

hpf). 

 

Zygote Period  
The newly fertilized egg is in the zygote period until the first cleavage occurs, about 40 

minutes after fertilization. The chorion swells and lifts away from the newly fertilized egg. 

Fertilization also activates cytoplasmic movements, easily evident within about 10 minutes. 

Nonyolky cytoplasm begins to stream toward the animal pole, segregating the blastodisc 

from the clearer yolk granule-rich vegetal cytoplasm. This segregation continues during 

early cleavage stages.  

 
Cleavage Period  

After the first cleavage the blastomeres divide at about 15-minute intervals. The 

cytoplasmic divisions are meroblastic; they only incompletely undercut the blastodisc, and 

the blastomeres, or a specific subset of them according to the stage, remain 

interconnected by cytoplasmic bridges. The six cleavages that comprise this period 

frequently occur at regular orientations and are synchronous. The cleavage period ends at 

64-cell stage (2 hpf).  

 

Blastula Period 

We use the term blastula to refer to the period when the blastodisc begins to look ball-like, 

at the 128-cell stage, or eight zygotic cell cycle, and until the time of onset of gastrulation, 
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about cycle 14. Important processes occur during this blastula period; the embryo enters 

midblastula transition (MBT), the yolk syncytial layer (YSL) forms, and epiboly begins. 

Epiboly continues during the gastrulation period. Three different phases can be observed.  

-Early-blastula: the marginal blastomeres lie against the yolk cell and remain 

cytoplasmatically connected to it throughout cleavage. Beginning during cycle 10, the 

marginal cells undergo a collapse, releasing their cytoplasm and nuclei together into the 

immediately adjoining cytoplasm of the yolk cell and forming the Yolk Syncytial Layer 

(YSL). After the YSL forms, the enveloping layer cells (EVL) that were in the second 

blastodisc tier, now lie at the marginal position and they are nonsyncytial.  

-Mid-blastula: the YSL nuclei continue to undergo mitotic divisions in the midblastula, but 

the nuclear divisions are unaccompanied by cytoplasmic ones, and the yolk remains 

uncleaved and syncytial. After about three cycles, and coinciding with the beginning of 

epiboly, the YSL divisions abruptly cease. The YSL nuclei now begin to enlarge, possibly 

meaning that they are actively transcribing RNA. The YSL, an organ unique to teleosts, 

may be extraembryonic, making no direct contribution to the body of the embryo. At first 

the YSL has the form of a narrow ring around the blastodisc edge, but soon it spreads 

underneath the blastodisc, forming a complete “internal” syncytium (I-YSL), that persists 

throughout embryogenesis. In this position, the I-YSL might be presumed to be playing a 

nutritive role. Another portion of it, the E-YSL, is transiently “external” to the blastodisc 

edge, and appears to be a major motor for epiboly.  

-Late-blastula: epiboly beginning in the late blastula is the thinning and spreading of both 

the YSL and the blastodisc over the yolk cell. During the early stages of this 

morphogenetic movement the blastodisc thins considerably, changing from a high-piled 

cell mound to a cup-shaped cell multiplayer of nearly uniform thickness. This is 

accomplished by the streaming outward, toward the surface, of the deepest blastomeres. 

As they move, they mix fairly indiscriminately among more superficial cells along their way, 

except for the EVL and the marginal blastomeres. These nonmixing marginal blastomeres 

will give rise to the mesoderm, and suggest the existence of a pattern established during 

early development. At 30% epiboly stage, the proper blastoderm begins to develop: it is 

uniform and formed by the EVL monolayer and a deep cells multilayer (Deep Enveloping 

Layer, DEL).  
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Gastrula Period 
The beginning of involution defines the onset of gastrulation, and, so far as we have been 

able to tell, this occurs at 50%-epiboly. As a consequence, within minutes of reaching 

50%-epiboly a thickened marginal region termed the "germ ring" appears, nearly 

simultaneously all around the blastoderm rim. Convergence movements then, nearly as 

rapidly, produce a local accumulation of cells at one position along the germ ring, the so-

called embryonic shield. During these events, epiboly temporarily arrests, but after the 

shield forms, epiboly continues; the margin of the blastoderm advances around the yolk 

cell to cover it completely. The advance occurs at a nearly constant rate, over an 

additional 15% of the yolk cell each hour, and providing a useful staging index during most 

of gastrulation. Just as there was no blastocoele during the blastula period, there is no 

archenteron in the gastrula. Neither is there a blastopore; DEL cells involute at the 

blastoderm margin, which thus plays the role of the blastopore. Involution produces the 

germ ring by folding the blastoderm back upon itself. Hence, within the germ ring there are 

two germ layers: the upper, the epiblast, continues to feed cells into the lower, the 

hypoblast, throughout gastrulation. Between the two layers a fissure, termed "Brachet's 

cleft" is observed. Cells in the two layers are streaming in different directions. Except for 

the dorsal region, the epiblast cells generally stream toward the margin, and those 

reaching the margin move inward to enter the hypoblast. Then, as hypoblast cells, they 

stream away from the margin. The cells remaining in the epiblast when gastrulation ends 

correspond to the definitive ectoderm and will give rise to such tissues as epidermis, the 

central nervous system, neural crest, and sensory placodes. The hypoblast gives rise to 

derivatives classically ascribed to both the mesoderm and endoderm. At tail-bud stage (10 

hpf), cell specifications processes are ending while cell differentiation mechanisms are 

turned on.  
 

Segmentation Period 
A wonderful variety of morphogenetic movements now occur, the somites develop, the 

rudiments of the primary organs become visible, the tail bud becomes more prominent and 

the embryo elongates. The AP and DV axes are unambiguous. The first cells differentiate 

morphologically, and the first body movements appear. Somites develop sequentially in 

the trunk and tail, and provide the most useful staging index. Anterior somites develop first 

and posterior ones last. Pronephric kidneys appear bilaterally deep to the third somite pair. 
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The notochord differentiates, also in an AP sequence. Some of its cells vacuolate and 

swell to become the structural elements of this organ, and others later form a notochord 

sheath, an epithelial monolayer that surrounds the organ. Endoderm develops on only the 

dorsal side of the embryo, beneath the axial and paraxial mesoderm. The epiblast, now 

exclusively ectodermal, undergoes extensive morphogenesis during the segmentation 

period. As gastrulation ends, the primordium of the central nervous system, the neural 

plate, is already fairly well delineated, because of its prominent thickness. The anterior 

region where the brain will form is particularly thick. Formation of the neural tube then 

occurs by a process known as "secondary neurulation". Secondary neurulation contrasts 

with "primary" neurulation, the version in vertebrates where a hollow tube forms from the 

neural plate by an uplifting and meeting together of neural folds. In teleosts the lumen of 

the neural tube, the neurocoele, forms by a late process of cavitation.  

 

 

 

 

 

 

 

 

 

An intermediate and transient condensed primordium with no lumen, the neural keel, forms 

first. Because the times of neurulation and segmentation overlap so extensively the 

zebrafish does not have a distinct "neurula period" of development, such as occurs largely 

before segmentation in amphibian embryos.  
 

Pharyngula Period 
The pharyngula period (24-48 hpf) begins with the formation of the last somites (30/34 

somites). At this time, the notochord is completely formed, and the brain is constituted by 

three lobes, which develop in an AP direction: forebrain, midbrain and hindbrain.  
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Hatching Period 
During the last period, termed "hatching" (48-72 hpf), individuals within a single developing 

clutch hatch sporadically during the whole third day of development (at standard 

temperature), and occasionally later. At this time, we call these embryos "larvae"; 

morphogenesis of many organ rudiments is completing, and the embryo continues to grow 

at about the same rate.  
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