
Chromatographia
 

Determination of thyreostats in bovine urine and thyroid glands by HPLC-MS/MS
--Manuscript Draft--

 
Manuscript Number: CHRO-D-15-00622R2

Full Title: Determination of thyreostats in bovine urine and thyroid glands by HPLC-MS/MS

Article Type: Original

Keywords: thyreostats, bovine urine, bovine thyroid gland, method validation, HPLC-MS/MS

Corresponding Author: Sara Panseri

ITALY

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Luca Maria Chiesa

First Author Secondary Information:

Order of Authors: Luca Maria Chiesa

Giuseppe Federico Labella

Elisa Pasquale

Sara Panseri

Radmila Pavlovic

Francesco Arioli

Order of Authors Secondary Information:

Funding Information:

Abstract: Abstract
The use of thyreostats in livestock is strictly forbidden by European legislation since
1981. The investigation of thyreostats is commonly performed by their detection as
derivatives with 3-iodobenzylbromide. Although it leads advantages, the derivatisation
procedure can generally cause a decrease in analyte concentrations. With the aim of
simplifying the analysis of five thyreostats in both bovine urine and in thyroid glands,
two methods were developed without the derivatisation step. Salting-out assisted
liquid-liquid extraction was carried out for both matrices, followed by high-performance
liquid chromatography coupled with triple-quadrupole mass spectrometry analysis. The
methods were validated in agreement with the guidelines of Commission Decision
2002/657/EC. For all the thyreostats evaluated, satisfactory results were achieved; the
recovery was within 96% to 104% for both the matrices, while precision (coefficient of
variation) was less than 20% for urine and 21% for thyroid glands. The limits of
decision and capacities of detection for all the compounds were lower than the
recommended values of 10 μg L-¹ and 10 μg kg-¹, respectively. In urine, the limits of
decision ranged from 6.9 to 7.3 μg L-¹, and the capacities of detection ranged from 8.5
to 9.7 μg L-¹, while in thyroid glands these values varied from 6.6 μg kg-¹ to 7.4 μg kg-¹
and from 8.0 μg g-¹ to 9.7 μg kg-¹, respectively. The results obtained show that the
methods described are suitable for the direct detection of thyreostats in bovine urine
and thyroid glands.
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 8 
Introduction 9 

Thyreostats are drugs that interfere with the mechanism involved in the synthesis of thyroid hormones and cause a 10 

condition of deficiency of circulating thyroxine (T4) and triiodothyronine (T3) [1, 2], whose production and release are 11 

controlled by the hypothalamus–anterior pituitary axis. The hypothalamus secretes thyrotropin-releasing hormone (TRH), 12 

which in turn stimulates the anterior pituitary gland to release thyroid-stimulating hormone (TSH) that induces the 13 

production of T3 and T4 by the thyroid, which releases them into the bloodstream. These hormones activate the nuclear 14 

transcription of a large number of genes, thus causing the synthesis of enzymes, as well as structural and transport proteins. 15 

This leads to an increase in metabolism and maintains the physical and psychological development of the organism. The 16 

administration of thyreostats causes an improvement in bodyweight gain mainly due to increased absorption and 17 

extracellular retention of water in the edible tissues and in the gastrointestinal tract [3]. Thyreostats are polar amphoteric 18 

thionamides with a heterocyclic tautomeric structure, and are mostly derived from thiouracil and mercapto-imidazole. 19 

The sequence consisting of nitrogen–carbon–sulphur, known as thioamide, is considered responsible for the thyroid-20 

inhibiting activity (Fig. 1). The best known thyreostatic drugs include the very potent thyroid-inhibiting compounds 2-21 

thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6-propyl-2-thiouracil (PTU), 6-phenyl-2-thiouracil (PhTU) and 1-methyl-22 

2-mercapto-imidazole (tapazole, TAP) [4-6]. The chemical structures of these substances are shown in Figure 1. 23 

The fraudulent use of thyreostats produces low quality meat. Moreover, the edible tissues derived from treated 24 

animals might represent a potential risk to the consumer’s health due to the presence of residues and their teratogenic and 25 

carcinogenic effects [7-11]. 26 

In 1981, the European Union banned their use in animal production both as growth promoters and therapeutic 27 

agents [12] and classified them as “substances having anabolic effects and unauthorized substances” belonging to the 28 

group A2 as described by the Council Directive 96/23/CE [13]. However, a relationship between the presence of 29 

Brassicaceae in feed and thiouracil in urine has been demonstrated by Pinel et al. [9], Vanden Bussche et al. [14] and 30 

Kiebooms et al. [15, 16]. The Community Reference Laboratories (CRLs) in 2007 proposed a recommended 31 

concentration of 10 μg L-1 in urine and 10 μg kg-1 in thyroid tissue for the purpose of control, as “low concentrations of 32 

thiouracil have been detected in bovine animals fed with cruciferous plants, however there is scientific evidence showing 33 

that levels above 10 ppb in urine cannot be linked to natural origin due to this contamination” [17]. Recently, Wauters et 34 

al. reported concentrations of up to 18.2 μg L-1 in the 99% percentile from 3894 bovines and they suggested that the 35 

recommended concentration should be increased to 30 μg L-1 [18]. In fact, the 2015 Italian National Residue Plan already 36 

provides this concentration as the limit of detection for thyreostats in urine [19]. 37 
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Thyreostats analyses typically consist of separation methods based on gas or liquid chromatography associated 38 

with a mass spectrometry system of detection. Normally, the extraction of the substances is carried out by using polar 39 

solvents more suitable to the chemical characteristics of the thyreostats, such as methanol, acetonitrile or ethyl acetate. 40 

Further steps of purification or clean-up with different kinds of solid-phase extraction (SPE) have been reported. Due to 41 

the low molecular mass and high polarity of the thyreostats, several authors have proposed a derivatisation step before or 42 

after the clean-up, mainly by using 3-iodobenzylbromide (3-IBBr) in the case of HPLC-MS/MS analysis [6]. In the case 43 

of GC methods, derivatisation is an unavoidable step in order to convert the analytes into volatile compounds. When 44 

HPLC is applied as the separation technique, analytes may be derivatised and, in the analysis of thyreostats, this procedure 45 

induces the stabilisation of the chemical structure of the molecule in a specific and single tautomeric form, the reduction 46 

of the molecular polarity in order to increase the separation characteristics on the reversed-phase column in the case of 47 

HPLC-MS detection, and an increase in the molecular mass [20]. The low molecular mass, particularly, could be disturbed 48 

by the chemical noise. In term of sensitivity, the derivatisation leads to an improvement of the signal to noise ratio, and 49 

subsequently of the detection capabilities [21]. Despite these advantages, the derivatisation procedure can generally cause 50 

a loss in analyte concentrations. Furthermore, removing derivatisation step simplifies, shortens and makes cheaper the 51 

whole analysis procedure [22, 23]. Based on these observations, we developed the extraction without derivatisation of the 52 

five above-mentioned thyreostats in bovine urine and thyroid glands followed by a sensitive, specific and reproducible 53 

HPLC-MS/MS analysis. For the full identification and quantification of the analytes, the criteria established in the 54 

2002/657/EC Commission Decision were followed and the decision limit (CCα) and the detection capability (CCβ) were 55 

calculated according to the matrix calibration curve procedure as clarified in the document SANCO/2004/2726 rev. 4 [24, 56 

25]. 57 

 58 

Materials and Methods 59 

Reagents and chemicals 60 

All solvents were of HPLC-MS grade quality and purchased from Fluka (Sigma-Aldrich, St. Louis, MO, USA). Formic 61 

acid (98–100%) was from Riedel-de Haën (Sigma-Aldrich). Ultrapure water was obtained through a Milli-Q system 62 

(Millipore, Merck KGaA, Darmstadt, Germany). KH2PO4 and NaCl were from Sigma-Aldrich. The analytes 2-thiouracil 63 

(TU), 6-methyl-2-thiouracil (MTU), 6-propyl-2-thiouracil (PTU), 6-phenyl-2-thiouracil (PhTU), 2-64 

mercaptobenzimidazole or tapazole (TAP) were acquired from Sigma-Aldrich, as well as 5,6-dimethyl-2-thiouracil 65 

(DMTU), used as internal standard (I.S.). A stock solution of 1 mg mL-1 was prepared by dissolving the compounds in 66 

methanol. Serial dilutions were prepared by diluting the stock solution in the mobile phase, which were then stored at 67 

−40°C.  68 
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Phosphate buffer, prepared by dissolving 0.25 M KH2PO4 in ultrapure water, was adjusted to pH 7 and then 69 

saturated with 0.1% DL‐ dithiothreitol (DTT; Sigma‐ Aldrich) as in Vanden Bussche et al. [11]. 70 

 71 

Sample collection 72 

Urine and thyroid gland samples from Friesian Cows aged 32 to 63 months were collected in a Lombard abattoir after 73 

slaughtering, immediately frozen and taken to the laboratory for storage at –40°C until analysis.  74 

Sample extraction  75 

Urine  76 

One millilitre of bovine urine was transferred to a 15-mL glass tube and spiked with 10 ng of internal standard (DMTU) 77 

in order to give a final concentration of 10 μg L-1, then vortexed and left for 5 minutes to equilibrate. The samples then 78 

underwent denaturation conditions at 65°C for 30 min, after the addition of 1 mL of PBS buffer with 0.1% DTT at pH 7. 79 

NaCl (2 g) was added to the solution to mixture as a salting-out reagent.  80 

The extraction was performed by twice repeating these steps: addition of 5 mL tert-butyl methyl ether, 81 

centrifugation at 2000 x g for 5 min at 4°C, and collection and transfer of the upper organic layer to a 10-mL polypropylene 82 

tube. The extract was dried under vacuum in a rotary evaporator apparatus (Heidolph Instruments GmbH & Co., 83 

Schwabach, Germany) at a temperature of 40°C. The residue was dissolved in 200 µL of the mobile phase (methanol: 84 

0.1% aqueous formic acid, v/v 50:50) and transferred to vials for HPLC. The injection volume was 10 µL. 85 

Thyroid gland  86 

The thyroid gland samples were minced with surgical scissors and homogenised. The sample (1 g) was weighed in a 87 

polypropylene tube and 10 ng of internal standard (DMTU) were added, and then the sample was vortexed and left for 5 88 

minutes to equilibrate, then 5 mL of methanol was added. The samples were vortexed, placed in an ultrasonic bath for 10 89 

min and then centrifuged at 2000 x g at 4°C for 10 min. The organic liquid supernatant was then filtrated and transferred 90 

to a 15-mL glass tube and 5 mL of PBS buffer with 0.1% DTT at pH 7 were added. The samples underwent denaturation 91 

conditions at 65°C for 30 min. To carry out the extraction of the analytes, 2 x 10 mL of Tert-butyl methyl ether and 4 g 92 

of NaCl (used as a salting-out reagent) were added to the solution. The sample was centrifuged at 2000 x g for 5 min at 93 

4°C. The upper organic layer was collected and transferred to a 50-mL glass evaporating flask. Lastly, the extracts were 94 

combined and dried under vacuum in a rotary evaporator apparatus at 40°C. The residue was dissolved in 200 µL of the 95 

mobile phase and transferred to vials for the autosampler. The injection volume was 10 µL. 96 

 97 

HPLC-MS/MS analysis 98 
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A Synergi Hydro RP reverse-phase HPLC column C18 (150 x 2.0 mm, i.d. 4 µm) with a C18 4 x 3.0 mm guard column 99 

(Phenomenex, Torrance, CA, USA) at a column oven temperature of 30oC was used for the separation, which was 100 

performed by an HPLC system that included a Surveyor MS quaternary pump with a degasser, a Surveyor AS autosampler 101 

with a column oven, and a Rheodyne valve with a 20-μl sample loop (Thermo Fisher Scientific, San Jose, CA, USA). 102 

The mobile phase consisted of 0.1% aqueous formic acid (solvent A) and methanol (solvent B), and the flow rate was set 103 

at 200 L/min. The gradient program is shown in Table 1. The overall run time was 30 minutes. The HPLC system was 104 

connected to a TSQ Quantum (Thermo Fisher Scientific, San Jose, CA, USA) triple-quadrupole mass spectrometer with 105 

an electrospray interface (ESI) set in the positive (ESI+) ionization mode. The acquisition was made in the multiple 106 

reaction-monitoring (MRM) mode. The specific acquisition parameters of all the analytes were optimised by means of 107 

direct infusion of standard solutions of the analytes at a concentration of 1 g mL-1, a flow rate of 50 L min-1 and a flow 108 

rate of the MS pump of 100 μL min-1. The capillary voltage was 3.2 kV; the capillary temperature was 340°C; nitrogen 109 

was used as the sheath and auxiliary gas at 30 and 10 arbitrary units, respectively, and argon as the collision gas at 1.5 110 

mTorr; peak resolution was 0.70 Da FWHM. The parent ions, product ions, and collision energy values for each analyte 111 

are shown in Table 2. The scan time for each monitored transition was 0.1 s and the scan width was 0.5 amu. The mass 112 

spectrometer data acquisition and processing were carried out using Xcalibur™ 2.0.7 SP1 software from Thermo Fisher 113 

Scientific Inc. 114 

 115 

Method validation  116 

The HPLC-MS/MS method was validated according to the guidelines of Commission Decision 2002/657/EC [24]. MS 117 

identification criteria were verified throughout the validation study by monitoring relative retention times, signal-to-noise 118 

ratios (S/N) and ion ratios. The instrumental linearity was evaluated through calibration curves in solvent at six levels, 119 

(1.0, 5.0, 10, 20, 50, 80, 100 μg L-1) and 10 μg L-1 of DMTU as I.S. 120 

The method validation parameters were determined with fortified blank urine and thyroid gland samples at three 121 

concentration levels (5.0, 10, 15 μg L-1  and μg kg-1) in six replicates on three different days (6 samples × 3 concentration 122 

levels × 3 series = 54 analyses). Method recovery and precision were evaluated using the matrix curves; recovery is 123 

calculated as ratio between the measured concentration to fortified concentration, corrected by internal standard and 124 

expressed in percentage; precision is calculated in terms of intra- and inter-day repeatability expressed as the coefficient 125 

of variability (CV). The same data from the matrix calibration curves were used to calculate the decision limit (CCα) and 126 

the detection capability (CCβ) according to the matrix validation curve procedure described in the Commission Decision 127 

2002/657/EC and clarified in the document SANCO/2004/2726-rev. 4 [24, 25].  128 

 129 
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Results and Discussion 130 

Sample preparation 131 

Despite the diversity of the matrices analysed, we carried out two similar methods to prepare urine and thyroid glands in 132 

order to have the same steps for each matrix.  133 

A preliminary denaturation step of matrix proteins was carried out to disrupt the protein–thyreostat interaction, 134 

as reported by Vanden Bussche et al. [11], through the cleavage of the disulfide bonds of the proteins by the addition of 135 

a reducing agent, such as DTT. Differently from the above mentioned study, which considered only urine, we adopted 136 

this step for both urine and thyroid glands, with a ten-time-lower concentration of DTT. 137 

The polarity of the thyreostats requires the use of an organic polar solvent to extract them from the matrices: we 138 

evaluated the applicability of different solvents by several tests using ethyl acetate, chloroform and tert-butyl methyl 139 

ether. Comparing the signal intensity of the analytes extracted with the three different solvents, tert-butyl methyl ether 140 

was chosen as the best solvent for the extraction. The poorest results were obtained by the extraction performed with ethyl 141 

acetate by which we could not extract most of the thyreostats. 142 

In order to facilitate the phase separation and to reduce the miscibility of the analytes in the aqueous phase, this 143 

protocol adopted the approach of salting-out-assisted liquid–liquid extraction (SALLE), adding salt (NaCl) prior to the 144 

liquid–liquid extraction to favour the transfer of the analytes into the organic solvent [26-28]. 145 

 146 

Method validation 147 

The analytical procedures developed were subjected to the validation process according to the Commission Decision 148 

2002/657/EC and clarified in the document SANCO/2004/2726-rev. 4 [24, 25]. 149 

The HPLC–MS/MS-reconstructed chromatograms of the thyreostats in urine and thyroid glands are shown in 150 

Figure 2. DMTU as the internal standard (10 μg L-1) is also reported. The analytes were detected and confirmed based on 151 

their proper relative retention times and their ion ratios. The relative retention times were within a tolerance limit of 2.5% 152 

and the relative ion intensities were within the maximum permitted tolerances [24]. The chromatograms in Figure 3 show 153 

the absence of interference peaks at the expected retention times of the thyreostats, hence illustrating a good specificity 154 

and selectivity of the method. 155 

For the HPLC-MS/MS confirmation of substances listed in Group A of Annex I of Directive 96/23/EC [13], a 156 

minimum of four identification points (IPs) is required [24]. In the present work, we monitored five products ions with 157 

the highest intensity. Each one of the five product ions is equal to 1.5 IPs, making a total of 7.5 IPs. The ion giving the 158 

highest signal-to-noise ratio was selected for the quantification. The MRM transition intensities were compliant with the 159 

maximum tolerances permitted. The parameters obtained for the method validations are given in Tables 3, 4 and 5. 160 
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Linearity was verified by using squared correlation coefficients (r2): The regression coefficients of the curves that were 161 

built to check the instrumental linearity were higher than 0.982, which indicates a satisfactory linearity for all the analytes. 162 

Good linearities were also achieved in urine and in thyroid glands and showed values higher than 0.978 and 0.973, 163 

respectively, thus demonstrating a suitable and adequate correlation between the concentration and the acquired response 164 

in the sample for both matrices. The precision of the method, which was calculated by applying one-way analysis of 165 

variance (ANOVA), was evaluated in terms of intra- and inter-day repeatability, and is expressed as the coefficients of 166 

variation (CV) from the replicate samples. Their values were lower than 23%, as proposed by Thompson [29], 167 

demonstrating an acceptable precision for the method. The recoveries showed good values ranging from 96% to 104% in 168 

urine and from 96% to 104% in thyroid glands. The results regarding the precision, even if similar, are not comparable 169 

with the results obtained by Abuìn et al [22, 30], who developed methods for the detection of underivatised thyreostats in 170 

thyroid, because of the lower concentrations used in this paper. The decision limit (CCα) and detection capability (CCβ) 171 

are very important, debated and decisive points to evaluate. For the estimation of these values, the document of the 172 

Commission Decision 2002/657/EC [24] explains both the definition and procedure. However, the approach proposed in 173 

the document to evaluate these limits – based on the extrapolation of the calibration curve procedure according to ISO 174 

11843 – may lead to an underestimation of the parameters, as already explained by Galarini et al. [31] and other authors 175 

[32-33]. 176 

Therefore, CCα (and, consequently, CCβ) was determined using a parallel extrapolation to the x-axis at the 177 

lowest experimental concentration as clarified in the document SANCO/2004/2726-rev. 4 [25]. Decision limits achieved 178 

with this approach were thus experimentally determined, and therefore not underestimated. A comparison with previously 179 

published data concerning the detection of non-derivatised thyreostats should consider the differences in the method of 180 

CCα determination. Table 5 shows the obtained CCα and CCβ values, which are lower than the minimum required 181 

performance limits (MRPLs) proposed in the CRL guidance document of 2007 in urine and in thyroid glands [17]. 182 

Moreover, the TAP analytical limits are lower than those reported in literature for the two matrices, such as MTU in the 183 

thyroid gland [11, 22, 30, 34]. Finally, it is worth noting that the validation parameters obtained with our method are 184 

comparable between the two different matrices. 185 

 186 

Conclusion 187 

The methods for the simultaneous direct identification and quantification of five thyreostats without derivatisation in both 188 

urine and thyroid gland samples were specific and sensitive. Moreover, the validated methods guarantee a better 189 

performance for TAP in both matrices than those reported in the literature. The choice to develop a method without 190 

derivatisation and clean-up steps was made due to the advantages in terms of costs and the time of analysis. The 191 
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simultaneous determination of five thyreostats in two matrices using similar methods could be useful to make comparative 192 

analyses more reliable, because the process variables are the same for urine and thyroid glands.  193 

Furthermore, the measurement of the endogenous TU in urine and thyroid is possible as the analytical limits are 194 

all below 10 μg L-1 and 10 μg kg-1, and particularly considering that the CCα – which was determined as clarified by the 195 

document SANCO/2004/2726-rev. 4 [25] – is not an estimate, but an experimentally verified concentration with all the 196 

characteristics required by the Commission Decision 2002/657/EC [24] for a substance to be quantified.  197 
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Table 1. Gradient table for HPLC method 313 

 314 

Time (min) Eluent A (%) Eluent B (%) 
Flow rate 

(L min-1) 

0 90 10 200 

2 90 10 200 

20 30 70 200 

24 10 90 200 

27 90 10 200 

30 90 10 200 

A: 0.1% aqueous formic acid; B: methanol  

 315 

  316 
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Table 2. MS/MS conditions for the MRM acquisitions of analytes and the internal standard. Ions for quantification are 317 

in bold.  318 

 319 

Analyte 

Precursor ion 

 [M-H]+ 

(m/z) 

Product ionsCE 

(m/z) 
ESI 

TAP 115 5622, 5720, 7417, 8317, 8816 (+) 

TU 128 5735, 6034, 7017, 8327, 11116 (+) 

MTU 143 6032, 7234, 8417, 8623, 12616 (+) 

PTU 171 6035, 6726, 8627, 11219, 15417 (+) 

PhTU 205 7741, 8627, 10326, 10525, 14619 (+) 

DMTU (I.S.) 157 6035, 7229, 8622, 9818, 14016 (+) 

I.S.: internal standard 

CE (eV): collision energy 

  320 

 321 

  322 



15 
 

Table 3. Analytical performance (method trueness and precision) data for thyreostat determination in urine. 323 

 324 

Analyte 

Concentration level Recovery % Repeatability 

(μg/L) (n = 18) 
intra-day 

(CV; n = 6) 

inter-day 

(CV; n = 18) 

 5 99 8 20 

TAP 10 101 5 19 

 15 100 5 8 

     

 5 104 15 20 

TU 10 98 10 11 

 15 101 5 5 

     

 5 104 6 19 

MTU 10 96 9 20 

 15 101 7 9 

     
 5 104 12 19 

PTU 10 96 7 16 

 15 101 5 7 

     
 5 100 11 16 

PhTU 10 100 5 13 

 15 100 3 5 

     

CV: coefficient of variation 
  325 

  326 
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Table 4. Analytical performance (method trueness and precision) data for thyreostat determination in thyroid glands. 327 

 328 

Analyte 

Concentration level Recovery % Repeatability 

(μg/kg) (n = 18) 
intra-day 

(CV; n = 6) 

inter-day 

(CV; n = 18) 

 5 104 7 19 

TAP 10 96 10 20 

 15 101 8 10 

     
 5 101 15 21 

TU 10 99 9 17 

 15 100 7 9 

     
 5 99 14 17 

MTU 10 103 9 10 

 15 103 9 18 

     
 5 102 12 20 

PTU 10 98 6 17 

 15 101 8 9 

     
 5 100 12 14 

PhTU 10 100 9 12 

 15 100 9 9 

     

CV: coefficient of variation 
  329 

 330 

  331 



17 
 

Table 5. Decision limits (CCα) and detection capabilities (CCβ) calculated for thyreostats in urine and in thyroid glands. 332 

 333 

Analyte CCα  

(μg L-1 and μg kg-1) 

CCβ  

(μg L-1 and μg kg-1) 

 Urine Thyroid gland Urine Thyroid gland 

TAP 7.3 7.3 9.7 9.7 

TU 7.3 7.4 9.2 9.7 

MTU 7.2 7.0 9.5 8.7 

PTU 7.2 7.4 9.2 9.6 

PhTU 6.9 6.6 8.5 8.0 

 

334 
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Fig. 1. Chemical structure of thyreostats. TU (2-thiouracil), MTU (6-methyl-2-thiouracil), PTU (6-propyl-2-thiouracil), 335 

PhTU (6-phenyl-2-thiouracil), TAP (1-methyl-2-mercapto-imidazole; tapazole), DMTU (5,6-dimethyl-2-thiouracil; 336 

internal standard). 337 

Fig. 2. HPLC-MS/MS chromatograms and ion spectra of a blank urine (A) and a thyroid gland (B) sample spiked with 338 

thyreostats at a final concentration of 5 μg L-1 or μg kg-1, respectively. TU (2-thiouracil), MTU (6-methyl-2-thiouracil), 339 

PTU (6-propyl-2-thiouracil), PhTU (6-phenyl-2-thiouracil), TAP (1-methyl-2-mercapto-imidazole; tapazole). The 340 

concentration of DMTU (5,6-dimethyl-2-thiouracil; internal standard) is 10 μg L-1 or μg kg-1, respectively. 341 

Fig. 3. HPLC-MS/MS chromatograms of a blank urine (A) and a thyroid gland (B) sample, showing the absence of 342 

interfering compounds. TU (2-thiouracil), MTU (6-methyl-2-thiouracil), PTU (6-propyl-2-thiouracil), PhTU (6-phenyl-343 

2-thiouracil), TAP (1-methyl-2-mercapto-imidazole; tapazole).  344 

 345 



Figure 1 Click here to download Figure fig 1.tif 

http://www.editorialmanager.com/chro/download.aspx?id=232382&guid=77ba04f2-fde1-4b95-b35e-124078591b2a&scheme=1
http://www.editorialmanager.com/chro/download.aspx?id=232382&guid=77ba04f2-fde1-4b95-b35e-124078591b2a&scheme=1


Figure 2 Click here to download Figure fig 2.tif 

http://www.editorialmanager.com/chro/download.aspx?id=232380&guid=762a45b0-c415-4b2e-a269-0121f0d7d9d6&scheme=1
http://www.editorialmanager.com/chro/download.aspx?id=232380&guid=762a45b0-c415-4b2e-a269-0121f0d7d9d6&scheme=1


Figure 3 Click here to download Figure fig 3.tif 

http://www.editorialmanager.com/chro/download.aspx?id=232381&guid=aa14c948-0064-47b7-aecb-eaec631f6f0e&scheme=1
http://www.editorialmanager.com/chro/download.aspx?id=232381&guid=aa14c948-0064-47b7-aecb-eaec631f6f0e&scheme=1

