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Abstract 

The distribution of the test statistics of homogeneity tests is often unknown, requiring the estimation 

of the critical values through Monte Carlo simulations. The computation of the critical values at low 

α, especially when the distribution of the statistics changes with the series length (sample 

cardinality), requires a considerable number of simulations to achieve a reasonable precision of the 

estimates (i.e., 10
6
 simulations or more for each series length). If, in addition, the test requires a 

noteworthy computational effort, the estimation of the critical values may need unacceptably long 

runtimes. 

To overcome the problem, the paper proposes a regression-based refinement of an initial Monte 

Carlo estimate of the critical values, also allowing an approximation of the achieved improvement. 

Moreover, the paper presents an application of the method to two tests: SNHT (standard normal 

homogeneity test, widely used in climatology), and SNH2T (a version of SNHT showing a squared 

numerical complexity). For both, the paper reports the critical values for α ranging between 0.1 and 

0.0001 (useful for the p-value estimation), and the series length ranging from 10 (widely adopted 

size in climatological change-point detection literature) to 70,000 elements (nearly the length of a 

daily data time series 200 years long), estimated with coefficients of variation within 0.22%. For 

SNHT, a comparison of our results with approximated, theoretically derived, critical values is also 

performed; we suggest adopting those values for the series exceeding 70,000 elements. 
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Abbreviations 

SNHT – Standard normal homogeneity test;  

SNH2T – Standard normal homogeneity test for couples of change-points;  

n - series length (i.e. sample size);  

P - number of considered values of n;  

M - number of Monte Carlo iterations;  

α - significance of the test;  
est

nC , - Monte Carlo estimation of the critical value;  

)(nC - unknown actual critical value;  

)(nR  - estimation given by the regression curve;  
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,ne  - error (unknown) affecting the Monte Carlo estimations;  

2

,ns  - estimated variance of the Monte Carlo error;  

,nr  - regression residual;  

 ,n  - error affecting the estimation given by the regression curve. 

 

1. Introduction 

In climatology it is common to deal with long time-series. It is also common to incur, during the 

time span covered by the series, in changes in the measurement technology or practice, instrument 

substitution, changes in the environment surrounding the station, installation type or site. Those 

changes usually affect the measurement artificially altering the signal, then adding some bias in the 

estimation of the main quantities of interest that consequently reflect on most of the analysis 

performed on the time-series itself (e.g. trend evaluation, monthly mean values and distributions, 

etc.). A number of researchers, and the World Meteorological Organization (WMO), suggest 

applying methods to identify and remove the artificial changes in the mean value of the time-series, 

obtaining homogenized series that are suitable for the analysis purposes (e.g. Peterson et al., 1998; 

Aguilar et al., 2003; Rust et al., 2008; Venema et al., 2012). 

A variety of different homogenization techniques have been developed and usually involve different 

phases, often customized for the application of interest (e.g. Ducré-Robitaille et al., 2003; Beaulieu 

et al., 2008; Venema et al., 2012; Domonkos, 2013). Most of the customization concerns the 

method for obtaining of the work series starting from the available series; the adopted method for 

the definition of the work series is suited to reduce the non-interesting behaviours enhancing the 

change-points (see Menne and Williams, 2005). 

The core of the homogenization methods is typically the application of a homogeneity test to the 

work series (derived in various ways from the original one). Such tests aim at distinguishing if the 

series is homogeneous or includes one or more change-points (or breaks). The homogeneity tests 

are generally suited to apply to series that are the sum of an uncorrelated, zero mean, normal noise 

and a series containing the shifts (that is supposed to keep a constant value between two subsequent 

shifts). However, since the features of the series are often far from complying the conditions the 

tests are based on, the test must be robust to departures from the assumptions. 

The most adopted homogeneity tests are based on the hypothesis that „at the most one change-point‟ 

exists (i.e., the series should be homogeneous or include a single step change), and look for a single 

change-point a time. 

The Standard Normal Homogeneity Test (SNHT – Alexandersson 1986), is a single change-point 

detection test widely adopted in climate time-series analysis for the homogeneity assessment and 

the change-point detection (see Khaliq and Ouarda 2007; Venema et al. 2013). SNHT is known for 

its power, simplicity and robustness (Aguilar et al. 2003; Ducrè-Robitaille et al. 2003; Beaulieu et 

al. 2008; Domonkos 2011; Rienzner and Gandolfi 2011; Venema et al. 2012).  

For identifying further change-points, repeated applications are performed on pieces of the series, 

which is cut according to the identified change-points. As a matter of fact, in most cases „single 

change-point‟ tests applications work fine also in case multiple change-points are included in the 

series (which is the common case), provided that such steps form a so-called hierarchic pattern 

(Hawkings 2001). On the other hand, the single change-point tests lose in reliability (Hawkings 

2001; Rienzner and Gandolfi 2011) in case the steps follow a non-hierarchic pattern, as the 

platform-like inhomogeneity, i.e. two subsequent changes having equal amplitude and opposite 

sign. Therefore, multiple change-point detection methods should be preferred since, in the real 

cases, number and pattern of the change-points are usually unknown.  

Some multiple change-point detection methods were proposed in literature. Among them Caussinus 

and Mestre (2004) minimizes a penalized residual sum of squares, whereas Hannart and Naveau 
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(2009) adopt a Bayesian approach. On the other hand, multiple change-point detection methods are 

computationally cumbersome and their application to time series with many thousands of elements 

is often unfeasible.  

To this aim, Rienzner and Gandolfi (2011) proposed the SNHCM (standard normal homogeneity 

composite method), a composite multiple change-point detection method including SNHT and 

SNH2T (this test is peculiar to identify the platform-like inhomogeneity). Therefore, SNHCM is an 

intermediate point between the complete multiple change-point detection methods and the single 

change-point tests. In case of multiple change-points, SNHCM performance are close to the 

Caussinus and Mestre (2004) ones, while the simplified approach allows its application to long 

series. 

 

SNHCM was developed for the application in a change point detection tool, the MAC-D procedure 

(Multiple Abrupt Changes in Daily time series - Rienzner and Gandolfi 2013), in order to make it 

able to deal with strong seasonal fluctuations, autocorrelation, non-normality and other departures 

from the most common requirements of the homogeneity tests. To do this, MAC-D works in a 

recursive fashion with three filtering phases, eventually giving to SNHCM a work series complying 

with most of its theoretical requirements. However, unpredictable minor features of the work series 

cannot be efficiently removed (e.g. seasonal fluctuation of autocorrelation parameters, variance 

non-stationarity, and chaotic behaviour) producing a relevant increase in the false positive rate. 

MAC-D was then re-parameterized in order to get a reasonable false positive rate (0.01) by further 

reducing the test‟s significance. Through an extensive Monte Carlo analysis, Rienzner and Gandolfi 

(2013) demonstrated the good performance of the whole approach. On the other hand, since the 

significance of both SNHT and SNH2T tests is a calibration parameter inside the MAC-D 

procedure, their critical values had to be obtained up to very low significance (0.0001) for different 

series length (n), say from 10 up to 70,000 elements. The lower limit for n is widely adopted in 

climatological change-point detection (see for example Ducré-Robitaille et al, 2003; Della Marta 

and Wanner, 2006; Reeves et al., 2007) while the higher is nearly the length of a daily data series 

200 years long (which is the span of the longer meteorological series apart from the Antarctic ones). 

 

As it is common for many widely applied homogeneity tests, the critical values of the tests follow 

unknown distributions changing with the series length (i.e. sample size). For this reason, the Monte 

Carlo approach is adopted for their estimation (e.g. Hawkins, 1977; Alexandersson, 1986; Csorgo 

and Horvath, 1997; Reeves et al., 2007). In order to perform such estimates for any series length, a 

large amount of series complying H0 are generated (i.e., uncorrelated random normal numbers free 

from any change-point). Then the tests are performed and the corresponding test statistics are 

collected. The estimation of the critical values is then carried out through the frequency approach, 

i.e., the estimation of the critical value Cn,α is obtained as 100·(1-α) percentile of the set of statistics 

obtained with the series of length n. Obviously, the precision in the estimation of Cn,α is strictly 

related to the number of series processed and to the significance α. 

For SNHT, an estimation of the critical values (thorough an asymptotic and an approximated 

approach) can be also obtained by the results presented in Csorgo and Horvath (1997). However, a 

comparison between those results and an intensive Monte Carlo estimation is still missing.  

 

In order to reach a precise estimation of the critical values using Monte Carlo methods, intensive 

simulations are needed. As an example, Khaliq and Ouarda (2007) used 30x10
6
 iterations, for each 

value of n (n being the length of the time series), reaching good estimations for SNHT with alpha 

up to 0.01. However, SNH2T requires at each step the computation of an nxn matrix, bringing to a 

considerable runtime in case of large n, e.g. 1.2 seconds per iteration with n=70,000. If 1.2 seconds 

is usually considered a short lapse of time, using the same iterations of Khaliq and Ouarda (2007) 

brings to a runtime of 416 days that is clearly unaffordable for the lifespan of any middle term 

research project. 



 4 

Moreover, further decreasing alpha brings the focus on the thin part of the distribution‟s tail, whose 

area is described by a little number of Monte Carlo estimations, i.e. with a higher uncertainty with 

respect to the case considered in the cited paper for SNHT, and a p-fold reduction of the standard 

error of a Monte Carlo simulation needs an increase of p
2
 times in the number of iterations (Kiviet, 

2011). In other words, it is difficult to assess a priori if a suitable precision can be reached for 

SNH2T with alpha = 0.0001 after 416 days of computations. As a matter of fact, to reach a good 

estimation of the critical values with low significance, long series, and a time consuming test, we 

need a computationally efficient approach that is alternative to a mere increase of the Monte Carlo 

iterations. 

Therefore, after an initial Monte Carlo estimation with a limited number of iterations, we performed 

a refinement of the obtained critical values was performed through a regression-based approach, 

also providing a method for the estimation of the precision of the regression based critical values.  

 

This paper presents, after a brief description of the tests (Section 2), the method adopted for the 

critical values estimation and refinement (Section 3), the application of the method to the tests and 

the related optimality conditions assessment (Section 4), also comparing the results with the 

findings of other authors concerning SNHT critical values (i.e. Csorgo and Horvath, 1997; Khaliq 

and Ouarda, 2007). Finally, in Section 5 results are discussed. The parameters of the optimal 

regression curves obtained for the tests adopted as case studies, useful for the application of the 

tests, are included in Appendix B. 

 

All the analyses were carried out in MATLAB
®
 (R2011b, version 7.13), along with the MATLAB 

Optimization Toolbox
®
 (R2011b, version 6.1), the MATLAB Statistics Toolbox

®
 (R2011b, version 

7.6), and the routines implementing SNHT and SNH2T as described in Rienzner and Gandolfi 

(2011). 

2. SNHT and SNH2T 

Since a complete description of the tests and their application details goes beyond the aims of this 

paper, only a brief description is provided here. For further reading concerning SNHT, see Hawkins 

(1977), Alexandersson (1986), Alexandersson and Moberg (1997), Khaliq and Ouarda (2007); for 

those concerned with SNH2T, refer to Rienzner and Gandolfi, (2011). 

The single change-point homogeneity test SNHT is suited to distinguish between a series of 

uncorrelated normal variables with a constant unitary variance and constant mean value   ̅, and two 

different mean values (  ̅    ̅), one for the first part of the series and one for the second. This 

implies the following hypothesis test: H0: no change-point is present vs H1: one change-point is 

present. 

The test is performed by:  

i) computing for each index (a) of the series the statistics described in equation 

(1)(Alexandersson, 1986),  

ii) picking the index a* where the statistics T reaches its maximum (denoted by T*),  

iii) comparing T* with the critical value that depends upon the series length (n) and 

the significance (α). 

 

 2

2

2

1
11

)(max zanzaT
na




  (1) 

where z is the standardized work series of length n, 1z is the mean of the first a elements and 2z  is 

the mean of the remaining n-a ones. If T* exceeds the critical value then the series is not 

homogeneous to the test and a step change occurs, with probability 1-α, between the indices a* and 

a*+1. In the case the series is not homogeneous, it is usually split according to the change-point 

position (i.e. between a* and a*+1) and the test is separately applied to the resulting two series. 
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This “check and split” procedure is repeated until no further change-point is found. A table of high 

quality critical values for SNHT are reported in Khaliq and Ouarda (2007). 

 

SNH2T statistics is derived from equation (1) for the case of two change-points of equal 

amplitude and different sign (i.e. a platform-like inhomogeneity). The double change-point 

homogeneity test SNH2T is suited to distinguish, between  a series of uncorrelated normal variables 

with a constant unitary variance with mean   ̅, and  the same series with two different mean values 

(  ̅    ̅) due to two change-points: the first change-point introduces the new mean value (a change 

from   ̅ to   ̅) and the second restores the mean to the previous value (from   ̅ to   ̅). This implies 

the following hypothesis test: H0: no change-points are present vs H1: two change-points are 

present. SNH2T has 2 running indices, a and b, with 1≤a≤b and a≤b≤n. Without loss of generality, 

we will exclude the meaningless couple (a=1, b=n). The statistics of SNH2T is given by: 

  

)(max ,
1

ba
nba

tT


     with    
  11

,


 
 banab

n
zt

b

at

tba   (2) 

 

Denote (a*, b*) the couple of indices where the maximum is obtained. If T exceeds the critical 

value (depending on n and α), a platform-like inhomogeneity is included in the series from a* to b*, 

at a given significance α. As for SNHT, a tree-splitting recursive application is adopted for SNH2T, 

but with a three-segments split (i.e. one segment with indices from 1 to a-1, one from a to b, and the 

third from b+1 to n; special cases with two segments occur with a=1 or b=n). A list of the SNH2T 

critical values, computed with the method described hereafter, is reported in Rienzner and Gandolfi 

(2011). 

 

3. Estimation of the critical values 

Hereafter, the method for the estimation of the critical values is described, pointing out the 

differences in the application to SNHT and SNH2T according to their features. This Section is 

composed by three parts: the first one concerns the Monte Carlo estimation of the critical values and 

their uncertainty; the second explains the refinement of the estimations via regression approach; the 

third provides tools for estimating the distance between the calibrated curve and the unknown true 

values. 

3.1 Monte Carlo estimations  

As usual in the case of unknown distribution of the test statistic, the critical values for SNHT and 

SNH2T are firstly estimated through Monte Carlo approach (Kiviet, 2011). A number (P) of 

different series lengths, equally spaced on the logarithmic scale, were considered, with length n 

going from 10 to 70,000. Then, for each n, a number (M) of Monte Carlo iterations was performed 

in order to carry out the corresponding critical value of the T statistic.  

Since the SNH2T runtime is proportional to n
2
 (Rienzner and Gandolfi, 2011), whereas SNHT 

complexity is proportional to n (Alexandersson, 1986), different values of M and P were chosen for 

the tests as a compromise between the need of a large dataset and the need of maintaining feasible 

runtimes (e.g. a couple of weeks).  

In particular: PSNHT = 109; MSNHT = 30 x 10
6
; PSNH2T = 50; MSNH2T = 200,000. The choice of 109 

values of n for SNHT was made to match the 108 values used in Khaliq and Ouarda (2007), 

allowing a comparison with their results; while the 109
th

 value (70,000) extends further the 

maximum inspected series length. 

As usual, the Monte Carlo approach was performed under H0 (i.e. no change-points included in the 

series) by using uncorrelated standard normal series (using MATLAB
®

 R2011b normal random 
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number generator). The estimation of the base critical values (
est

nC , ) and their uncertainties (
2

,ns ) 

were performed for the two tests as follows: 

 For SNHT, 
est

nC ,  was estimated as the mean of the (1-α)·100 percentiles of MSNHT = 30 

independent Monte Carlo applications with 10
6
 iterations each (like Khaliq and Ouarda, 

2007). The 6 values of α adopted in Khaliq and Ouarda (2007) are included in the 19 values 

(ranging from 0.1 to 0.0001) considered here. Since the Monte Carlo percentiles have an 

asymptotical normal distribution (Kiviet, 2011), the variance of each estimation 
est

nC ,  (i.e., 

2

,ns ) was computed accordingly. This is also supported by a normality check performed on 

the 109x19=2071 collected samples. The Lilliefors test (Lilliefors 1967), with α = 0.05, 

rejected 5% of the samples as expected under H0 (i.e., the samples are normally distributed). 

 For SNH2T, the estimation of the critical values was obtained by extracting the 

corresponding percentiles. A set of 13 values of α were considered, ranging from 0.1 to 

0.0001, matching a corresponding number of SNHT α values. The variance of the Monte 

Carlo thresholds (
2

,ns ) was computed through the bootstrap approach (Efron and Tibshirani 

1993) with B=500 resamplings.  

 

3.2 Refinement of the critical values 

Without loss of generality, hereafter α is considered as fixed, if not otherwise specified, and the 

values are considered along the n index only. In fact, the same procedure was separately applied for 

each selected value of α. 

Moreover, in the following, in order to distinguish between realizations of random variables and 

values obtained by known deterministic functions, or deterministic values, we included the 

subscript of the latter within brackets. 

Denote ),( nC  the unknown true critical value for a given n, and ,ne  the error affecting the Monte 

Carlo estimation procedure implemented in order to obtain the corresponding estimates 
est

nC , , i.e.,  

 ,),(, nn

est

n eCC    (3) 

According to Kiviet (2011), we assume that  

        (        
 )                  

Where σ
2

(n,α) is the Monte Carlo error, estimated through 
2

,ns . 

 

Furthermore, denote ),( nR  a regression function calibrated on the 
est

nC ,  (according to Baltagi, 

2011), n= 1,…,P. Moreover, denote rn,α the corresponding  regression errors, i.e.,  

 ,),(, nn

est

n rRC  .  (4) 

The following assumptions for the residuals (rn,α) are supposed to hold: 

 

(i) sequentially independent (i.e. rn,α values should be negligibly correlated at increasing n), 

(ii) with zero mean,  

(iii) normally distributed, 

(iv) homoscedastic.  

 

The last assumption may be relaxed if algorithms with proper tools for dealing with 

heteroscedasticity are employed. Since 
2

,ns  increases with increasing series lengths (see fig. 1), i.e., 
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en,α is heteroscedastic, standardization of residuals and proper calibration algorithms were adopted 

(see Baltagi 2011 among others, details are available in Appendix A). 

 

[Figure 1(a) and 1(b) near here] 

 

In particular, the variance of rn,α was reduced by calibrating the regression functions with 

MATLAB
®
 algorithms (Appendix A); root mean square error (RMSE) and R

2
 statistics of the 

calibrated curves are reported in the tables resuming the application results (Sections 4.1 and 4.2).  

 

To check the sequential dependence, it is common to carry out a visual inspection of the residuals 

(plotted versus the independent variable) and/or to apply a non-parametric test. We applied the runs 

test (non-parametric - Bradley, 1968) that gave p-values higher than 0.05 in all the cases. Moreover, 

since we have theoretical reasons supporting a quasi-normality of the residuals (as discussed at the 

end of this Section), and they are nearly evenly spaced along the independent variable, a parametric 

test for autocorrelation can be applied. In the case of interest, we firstly assessed the independence 

of the standardized residuals (rn,α/sn,α – see below), then we run the Ljung-Box autocorrelation test 

(Ljung and Box, 1978), with respect to 3 lags, were applied with a 5% significance level. The 

normality assumption of the standardized residual distribution was checked using the Lilliefors test 

(Lilliefors 1967).  

The application of this parametric test, that is somehow redundant, is aimed to further stress the 

absence of a significant sequential correlation of the residuals. On the other hand, we acknowledge 

that, even if a parametric test can be used, small (undetected) incompliances with the null 

hypothesis of the test may disturb the results, mainly, by increasing the type 1 error (erroneously 

reject H0). On the other hand, despite the non-parametric tests are usually less powerful, they are 

always reliable and may be better in performances under specific circumstances (see Gibbons and 

Chakraborti, 2011 for details). 

 

If independence of the standardized residuals does not hold, this implies that there are ranges of the 

independent variable where the regression curve stays systematically above or below the data points 

instead of laying in the core of the data. In these cases, even if the curve partially improves the base 

estimations in some ranges of the independent variable, the opposite may occur in the areas where 

the curve does not follow the data; therefore, the curve is not optimal and further effort must be 

spent in the choice of the regression function. 

 

Finally, the zero mean condition was matched by simply including an additive parameter into the 

regression function. In the application of interest, the resulting bias was always negligible.  

 

From (3) and (4) we may define εn,α to be the distance between the estimation given by the 

regression curve and the unknown true critical value ( ),(),(,  nnn RC  ), i.e., 

  ,,,),(),(),(,, nnnnnn

est

nn eeRCRCr   (5) 

In so doing, a useful partition of the regression error (as the sum of the Monte Carlo error and the 

difference between regression and the true critical values) is pointed out. In fact, equation (4) may 

be rewritten as 

  ,,),(, nnn

est

n eRC      (6) 

This is useful because highlights the role of an optimal calibration. In fact, the interest lies in 

allowing the term ,ne  to be the greatest part of the global error term ,nr . To this aim, the more 

optimal is the regression function, the smaller  ,n  will be obtained. Indeed, if the rn,αs match the 
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optimality conditions and the function ),( nR  is calibrated accounting for the different variances of 

the estimations 
est

nC , , the distribution of each rn,αs approaches the corresponding distributions of the 

en,αs. In other words, due to the procedure adopted for the estimation of the critical values 
est

nC , , the 

en,αs are sequentially uncorrelated, and normally distributed with zero mean and variances     
 . 

Finally, since the curve was fitted on the actual values of 
est

nC ,  affected by the actual value of the 

errors en,αs, the calibration errors rn,αs are expected to approach asymptotically the corresponding 

values of the en,αs (by increasing the number of data points - P), reducing the distances εn,αs between 

the regression curve and the unknown dotted curve of the true critical values ),( nC . 

 

3.3 Estimation of the error reduction 

Assuming the optimality of the calibration procedure described above, and given the estimate of the 

MC variance, now we would like to quantify the improvement in estimation we can achieve using 

the critical points obtained by the regression approach with respect to the MC simulations. 

 

The estimation proposed below is valid up to some simplifications (discussed and detailed in 

Appendix C); nevertheless, it provides a reasonable insight in terms of Percentage Variance 

Reduction  of the improvements gained by the proposed method in estimating the critical values of 

the T statistics. The achievable Percentage of error Variance Reduction (hereafter PVR) can be 

written as (proof in Appendix C) 





















































,

,
var1

1
11100

n

n

s

r

P
PVR    (7) 

where, rn,α is the regression error in equation (4), sn,α is the standard deviation of the MC error 

included in the corresponding calibration data-point, and P is the number of simulated data-points at 

each given α.  

 

Conditions for the application of equation (7) are:  

(i) a large number (P) of calibration points well distributed along the abscissa 

according to the function curvature (e.g., the greater the curvature of the function, 

the higher the density of data needed in order to guarantee a reliable estimation);  

(ii) a precise  estimate of  uncertainty of the data-points;  

(iii) the regression function must fulfil the optimality conditions.  

 

Once assessed the fulfilment of the conditions above, the estimation of the average coefficient of 

variation of the regression estimates, CVreg, can be obtained as:  

 

 ),(, /ˆ
 nn

n
reg RmeanCV  ;    (8) 

where  

PVRsnn  01.01ˆ
,,  .   (9) 

 

Since (8) focuses on the changes in the CV index, it might be sensitive to the values of different 

CVs obtained for the different values of n. In general, the more CV values are uniform along n, the 

more CVreg is expected to be a reliable measure of the uncertainty affecting the critical values 

estimated through the regression curve. 

 



 9 

Figure 2 shows the CV of the initial Monte Carlo estimations at changing n for some values of α 

(0.1, 0.01, 0.001, 0.0001) for SNHT (panel a) and SNH2T (panel b). Those values of α where 

selected for avoiding a too crowded graph. As it is evident from the graph, after n = 20, the 

behaviour of the CVs is pretty flat, allowing PVR to become a good indicator of the enhancement of 

the critical values for (nearly) all the values of n. 

 

[Figure 2(a) and 2(b) near here] 

 

4. Application  

4.1 SNHT 

The 19 values of α considered for the application are listed in Table B2, Appendix B. As we said 

before, they include the six values considered by Khaliq and Ouarda (2007). For n, 109 values were 

used according to the following criterion: for n ranging from 10 to 100, one value every 2 elements 

was chosen; for n ranging from 100 to 200, one value every 5; for n ranging from 200 to 600, one 

value over 25; for n ranging from 600 to 1000, one value every 50; for n ranging from 1000 to 

1600, one value every 100; for n ranging from 2000 to 5000, one every 500; and finally for the 

concluding values of n = 7500, 10000, 15000, 20000, 50000 and 70000.  

All the reported values of n match with those adopted in Khaliq and Ouarda (2007), apart from the 

last one which is not included in their study. 

As long as n increases, sn,α ranges from 0.00066 to 0.0017 with α = 0.1, and from 0.003 to 0.046 

with α = 0.0001. The coefficient of variation (CVα) of the Monte Carlo estimations range from a 

minimum of 1% to the unacceptable precision of 14%. 

 

We did not find a function family able to follow the Monte Carlo estimations for each α, therefore, 

a two-phase approach was used.  

 

Firstly, an optimal regression function (i.e. obeying at the optimality conditions defined in Section 

3.2 – optimality checks are reported in Table 1) was found, by trial and error (among different 

functional forms), for the critical values of SNHT with α = 0.1: 

      fndbnaR
ec

n  lnlnarctan
1.0,

       (10) 

where: Rn,0.1 is the regression-based estimation of the critical values for α = 0.1, ln is the natural 

logarithm, arctan is the inverse tangent function, and a, b, c, d, e and f are the function parameters 

(calibrated with lsqcurvefit) reported in Table B1 (Appendix B). 

 

Secondly, a polynomial function of Rn,0.1 was found to give optimal regression functions for the 

other values of α (i.e. R(n,α)  = f(Rn,0.1(n), qα) where qα is a set of regression parameters changing with 

α): 

 ,51.0,,4

2

1.0,,3

3

1.0,,2

4

1.0,,1),( qRqRqRqRqR nnnnn 
     (11) 

where ),( nR is the regression estimation of the critical value for SNHT, according to the notation 

introduced in Section 3, and q1,α, q2,α, q3,α, q4,α, q5,α are parameters (calibrated with the lscov) 

reported in Table B2 (Appendix B).  

Fig. 3 shows a clear agreement between 
est

nC ,  points and the regression curves, as confirmed by the 

R
2
 statistics reported in Table 1 together with the statistics concerning the goodness of fit and the 

analysis of the residuals. As expected in a case of optimal regression, the statistical independence 

and the normality assumption were not rejected for the standardized residuals (rn,α/sn,α). Moreover, 
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the bias is negligible, and the RMSE has a value between the minimum and the maximum sn,α for 

every α. Since all the suitability conditions are fulfilled, the proposed regression curves are optimal 

in resuming all the information provided by the Monte Carlo estimations.  

The estimated PVRs (equation (7)) have a mean value close to 50%, i.e., a reduction around 50% of 

the initial error variance can be expected for most of the curves leading the CVreg values to range 

from 0.01% to 0.1%, which are fully reliable even for extremely low significances.  

The calibrated regression curves and Monte Carlo results of Khaliq and Ouarda (2007) show a high 

agreement, since their difference with the calibrated curve have a negligible bias and a standard 

deviation of the same order of the corresponding uncertainties that Khaliq and Ouarda (2007) give 

for their Monte Carlo estimations.  

As an example, fig. 4 illustrates the plot of the normalized residuals of the regression curve with α = 

0.01. In the figure, the squares represent the standardized residuals (rn,α/sn,α) and the circles are the 

normalized differences with respect to the values of Khaliq and Ouarda (2007) (our computed 

standard deviations were used to have a normalization of their estimations). 

 

[Figure 3 near here] 

 

[Figure 4 near here] 

 

[Table 1 near here] 

 

An interesting theoretical work concerning the change-point detection problems is presented in 

Csorgo and Horvath (1997). Their results also include two methods for the estimation of the critical 

values of the ratio-changepoint detection test, written as the square root of T (equation (1)). The first 

method is based on an asymptotic result and provides an asymptotic estimation of the critical points 

given by 

 

   
 

√   (     )
*   (
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))     (     )  

 

 
  (  (     ))    ( (

 

 
))+ 

(12)
 

 

where ln is the natural logarithm, d is the number of changing statistics (here d = 1 since the test is 

looking only for a change in the mean), and Γ is the gamma function and α is the significance.  

According to the authors the estimator u* can suffer from an excessive overestimation of the actual 

value of the statistics, also if n is not that small. Therefore, they provided an approximated result 

leading to a more useful estimation of the critical value. In this case, the resulting equation do not 

allow an analytical forward solution. Indeed, the value of the critical value u, for the given value α, 

have to be computed backward using the following equation: 

 

  
        

          
*  (

          

  
)  

 

     (
          

  
)  

 

  +, with     
 

 
             (13) 

 

Figure 5 shows, for a selection α values (0.1, 0.01 and 0.001), the squares of the estimators    and u 

and the corresponding values of R. In the same graph are also displayed the squares of the values 

given in table 1.3.1 of Csorgo and Horvath (1997), i.e., estimations for some couples n and α arising 

from the theorems and from a Monte Carlo simulations using series of random normal variables 

having the same mean and equal and unknown variance. 

Looking at fig. 5, the asymptotic estimations provided by theorem 1.3.1 (squared to be comparable 

with R) are much higher than the ones provided by equation (11) (and also by our Monte Carlo 

evidences) even for n = 70000, confirming the need of the approximated approach.  

The results u obtained from equation (13), once squared, are higher than our results for low n and 

become lower, but really close to them, for n large.  
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[Figure 5 near here] 

 

 

4.2 SNH2T 

The standard deviation of the SNH2T estimations shows the same behaviour as described for SNHT 

and, as long as n increases, s(n,α) goes from 0.001 to 0.002 with α = 0.1 and from 0.004 to 0.063 with 

α = 0.0001. Due to the limited amount of iterations (200,000), the coefficients of variation of the 

Monte Carlo estimations are quite large, varying from 4% to 62%, and most of them are too high 

for a reliable application of the corresponding critical values. 

In case of SNH2T, a suitable, general regression function was identified:  

      encbnaR
d

n  lnlnarctan
2

),(         (14) 

where ),( nR  is the critical value estimated by the regression function, ln is the natural logarithm, 

arctan is the inverse tangent function, and a, b, c, d, and e are the function parameters (calibrated 

with lsqcurvefit) reported in Table B3 (Appendix B). 

Table 2 reports the performance of the procedure: RMSEs are close to the standard deviation of the 

Monte Carlo estimations; the values of R
2
 are close to one; the p-values of the statistical 

independence and normality tests are always higher than 5%. Moreover, in this case the Ljung-Box 

test is applied also complying the evenly spaced data condition. According to the results, the 

selected curves are optimal regressions of the data points. 

The PVR index, is nearly normally distributed (p-value of the Lilliefors test = 0.5) and shows a 

mean value close to 90%. Due to the statistical error affecting the PVR estimations, some values of 

PVR are higher than 100%. The regressions‟ CV values of Table 2 are computed with the same 

procedure adopted for SNHT, except for the four values higher than 99% that were lowered to that 

value. The final CVs range from 0.02% to 0.22%, i.e., notwithstanding the large error included in 

the original Monte Carlo estimations, the refined estimations are fully reliable even for extremely 

low significances.  

Figure 6 shows the Monte Carlo estimations and the calibrated regression curves. Looking at the 

figure, it can be seen how the agreement between points and curves can be considered high and 

satisfying. 

 

[Table 2 near here] 

 

[Figure 6 near here] 

 

5. Conclusions 

The paper proposes a method for improving the estimation of the critical values of the statistical 

tests adopted for detecting change points in time series analysis. In particular, the methodology is 

focused on those cases where the distribution of the test statistics is both unknown and varying with 

the sample size or the series length. According to the proposed method, critical values are firstly 

obtained by Monte Carlo percentiles, and then refined by calibrating suitable regression models, 

obtaining an estimation of the average precision of the curves in terms of average coefficient of 

variation (CV). 

Two applications, concerning the change-point detection tests, SNHT and SNH2T, are discussed. 

Since the tests have a different computational complexity (SNHT is linear, while SNH2T is 

quadratic in the series length), in order to obtain a reasonable runtime (two weeks for SNHT and 

three for SNH2T on a standard personal computer), different values of Monte Carlo iterations and 
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the series lengths were considered. According to the results, the proposed regression approach 

reduced the standard deviation of the error of the initial Monte Carlo estimations by 1.5 times for 

SNHT, and 3.4 times for SNH2T, achieving average coefficients of variation within 0.2%. 

Therefore, the estimated critical values are fully reliable also at the very low significance of 0.0001, 

allowing their application in the MAC-D package. 

Focusing on SNHT, for a series length (n) higher than 70,000, the estimations given by equation 

(11) lose quickly their precision, as it is expected from any extrapolation on polynomial functions. 

In that cases, we can suggest to adopt the squares of the estimations provided by equation (13) (u
2
, 

theorem 1.3.3 of Csorgo and Horvath, 1997) that behave fairly well for very large n. 

 

Since a reduction of p times in the Monte Carlo standard error implies an increase of p
2
 times in the 

number of iterations, the same improvement obtained as described here could be achieved by 

increasing 2.25 times the iterations of SNHT (4.5 weeks runtime), and 12 times the iterations of 

SNH2T (i.e. 8.4 months). While the first is rather a long runtime, the second is clearly unacceptable 

and/or unaffordable, showing that increasing the Monte Carlo iterations is not an appropriate 

solution for all the cases. 

 

The choice of a suitable regression function is the main difficulty of the method in the real-case 

application, since positive outcomes are expected only in case the optimality conditions are 

fulfilled. Alternative ways, like the two phases adopted for SNHT, or the reduction of the range of n 

in partially overlying parts, adopting different curves for each of them, can help in satisfying all the 

conditions. 

 

In conclusion, the results confirm the proposed approach to be an interesting alternative to a mere 

increase of the Monte Carlo iterations, and leads to a sharp improvement of the critical values in 

terms of reduction of the error on the estimates. Moreover, through the PVR indicator, it is possible 

to measure the average uncertainty (in terms of coefficient of variation) affecting a regression 

curve. 
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Supplemental material (Appendices) 

Appendices A, B, and C are provided as supplemental material: Appendix A gives detailed 

information about the calibration process; Appendix B provides the tables concerning all the sets of 

parameters we calibrated for equations (10), (11), and (14); Appendix C reports the complete proof 

of equation (7). 
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Table 1 Goodness of fit statistics, p-values of the tests and PVR indexes for the regression functions 

and the maximum value of the resulting CVs for Monte Carlo (MC) and regression curves (r) for 

each value of alpha 

Alpha RMSE R
2
 

Runs 

test 

Ljung-Box 

test (3) 

Lilliefors 

test 
PVR 

CVMC 

% 

CVr 

% 

0.1000 0.00129 0.999992 0.51 0.17 0.43 53.3 1.4 0.01 

0.0800 0.00143 0.999995 0.56 0.07 0.50 60.0 1.5 0.01 

0.0750 0.00148 1.000000 0.56 0.11 0.50 54.1 1.5 0.01 

0.0600 0.00183 1.000000 1.00 0.09 0.50 20.7 1.5 0.01 

0.0500 0.00199 0.999997 0.81 0.09 0.22 28.6 1.6 0.01 

0.0250 0.00269 0.999979 0.44 0.22 0.28 56.4 2.0 0.01 

0.0100 0.00419 0.999992 0.56 0.74 0.44 65.0 2.7 0.02 

0.0080 0.00503 0.999965 0.73 0.35 0.50 43.5 2.8 0.02 

0.0075 0.00530 0.999963 1.00 0.29 0.50 42.0 2.9 0.02 

0.0060 0.00540 0.999967 1.00 0.19 0.32 59.5 3.1 0.02 

0.0050 0.00588 0.999956 0.88 0.10 0.30 60.8 3.3 0.02 

0.0025 0.00806 1.000000 0.34 0.25 0.40 60.8 4.2 0.03 

0.0010 0.01304 0.999993 0.43 0.53 0.50 42.8 5.9 0.04 

0.0008 0.01400 0.999961 0.34 0.18 0.45 50.0 6.3 0.04 

0.00075 0.01351 0.999989 0.36 0.24 0.50 63.8 6.4 0.04 

0.0006 0.01579 0.999947 0.12 0.69 0.06 60.8 7.1 0.04 

0.0005 0.01704 0.999890 0.78 0.95 0.05 56.6 7.5 0.05 

0.00025 0.02201 1.000000 0.15 0.08 0.13 81.3 9.8 0.04 

0.0001 0.03849 1.000000 0.08 0.42 0.50 36.9 14.1 0.11 
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Table 2 Goodness of fit statistics, p-values of the tests and PVR indexes for the regression functions 

and the maximum value of the resulting CVs for each value of alpha 

 

Alpha RMSE R
2
 

Runs 

test 

Ljung-Box 

test (3) 

Lilliefors 

test 
PVR 

CVMC 

% 

CVr 

% 

0.1000 0.00170 0.999996 0.36 0.19 0.09 84.6 4.05 0.02 

0.0750 0.00205 0.999989 0.88 0.31 0.50 74.2 4.51 0.02 

0.0500 0.00221 0.999997 0.80 0.09 0.50 90.8 5.12 0.02 

0.0250 0.00317 0.999974 0.92 0.69 0.50 66.9 6.61 0.04 

0.0100 0.00405 0.999929 0.85 0.77 0.50 90.5 9.20 0.03 

0.0075 0.00434 0.999800 0.47 0.45 0.50 99.0 10.4 0.01 

0.0050 0.00494 0.999912 0.44 0.64 0.50 105.4 12.4 0.01 

0.0025 0.00646 0.999771 0.20 0.44 0.50 106.3 16.5 0.02 

0.0010 0.00856 0.999766 0.89 0.31 0.50 104.4 23.6 0.02 

0.00075 0.00952 0.999595 0.20 0.38 0.50 87.9 26.6 0.09 

0.0005 0.01083 0.998969 0.47 0.74 0.10 103.5 31.9 0.03 

0.00025 0.01443 0.998471 0.47 0.50 0.50 77.8 38.8 0.19 

0.0001 0.01872 0.997534 0.88 0.75 0.50 87.8 62.0 0.22 
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Figure captions: 

Fig. 1 Standard deviation estimated for the Monte Carlo critical values (
2

,ns ) for a set of α values 

and SNHT (a panel) and SNH2T (b panel) 

Fig. 2 Behavior of the coefficient of variation (CV) of the initial Monte Carlo estimations along n 

and for some values of α: SNHT (a panel), SNH2T (b panel) 

Fig. 3 Critical values of SNHT: Monte Carlo estimations (dots) and calibrated regression curves 

(gray lines) for the considered values of α (numbers at the right edge of the curves) 

Fig. 4 Regression residuals: normalized differences (residuals) between the estimations of the 

regression curve (α = 0.01) and the calibration points (squares); the same with the estimations of 

Khaliq and Ouarda (2007) (circles) 

Fig. 5 Comparison between the results of R (equation (11), black lines), u*
2
 (equation 12, light grey 

lines), u
2
 (equation (13), dark grey lines), and the squares of the values reported in table 1.3.1 of 

Csorgo and Horvath (1997): the light grey squares refer to estimates obtained with critical values 

like in equation (12),  the dark grey triangles to those obtained like in equation (13), and the black 

circles to those estimated trough Monte Carlo simulations 

Fig. 6 Critical values of SNH2T: Monte Carlo estimations (dots) and calibrated regression curves 

(gray lines) for the considered values of α (numbers at the right edge of the curves) 

 

 

 

 


