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Abstract: Botulinum neurotoxin has revolutionized the treatment of spasticity and is now
administered worldwide. There are currently three leading botulinum neurotoxin type A products
available in the Western Hemisphere: onabotulinum toxin-A (ONA) Botox®, abobotulinum toxin-A
(ABO), Dysport®, and incobotulinum toxin A (INCO, Xeomin®). Although the efficacies are similar,
there is an intense debate regarding the comparability of various preparations. Here we will address
the clinical issues of potency and conversion ratios, as well as safety issues such as toxin spread and
immunogenicity, to provide guidance for BoNT-A use in clinical practice. INCO was shown to be as
effective as ONA with a comparable adverse event profile when a clinical conversion ratio of 1:1 was
used. The available clinical and preclinical data suggest that a conversion ratio ABO:ONA of 3:1—or
even lower—could be appropriate for treating spasticity, cervical dystonia, and blepharospasm or
hemifacial spasm. A higher conversion ratio may lead to an overdosing of ABO. While uncommon,
distant spread may occur; however, several factors other than the pharmaceutical preparation are
thought to affect spread. Finally, whereas the three products have similar efficacy when properly
dosed, ABO has a better cost-efficacy profile.

Keywords: botulinum neurotoxin; onabotulinum toxin-A; abobotulinum toxin-A; incobotulinum
toxin A

1. Introduction

Botulinum neurotoxin injections are a valuable treatment for many therapeutic indications and
have revolutionized the treatment of spasticity and dystonia. Botulinum toxin is produced by anaerobic
fermentation of the bacterium Clostridium botulinum. A number of different C. botulinum strains have
been identified; they produce eight immunologically distinct serotypes (type A–H) and consist of the
botulinum neurotoxin complexed with a number of associated proteins.

Neurotoxin type A preparations are the most widely used for therapeutic application. There
are currently three leading botulinum neurotoxin type A (BoNT/A) products on the market in the
Western Hemisphere: onabotulinumtoxinA (ONA; Botox/Vistabel, Allergan Inc., Irvine, CA, USA),
abobotulinum toxin A (ABO; Dysport/Ipsen Limited, Slough Berkshire, UK), and incobotulinum toxin
A (INCO; Xeomin/Bocouture, Merz Pharmaceuticals GmbH, Frankfurt, Germany).

In nature, BoNT-A is synthesized as macromolecular protein complexes [1]. These protein
complexes are referred to as progenitor toxins and consist of nontoxic accessory proteins (NAPs)
bonded to the 150-kD active neurotoxin. The BoNT-A progenitor toxins vary in molecular weight
(300–900 kD) depending on the composition of NAPs and the manufacturing process [2]. The 150-kD
neurotoxin must dissociate from NAPs to exert its pharmacologic effects. Dissociation occurs in
physiologic pH conditions.

Although there are no clear differences in effectiveness between the various formulations, their
comparability is intensely debated. The present study was not intended to be a systematic analysis
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of the effectiveness and safety of various preparations. Rather, we focused on their comparability. In
particular, we examined the clinical issues of potency and conversion ratios, as well as safety issues
such as toxin spread and immunogenicity, to provide information about BoNT-A use in clinical practice.

2. Potency

Although the various BoNT-A products differ in NAP composition, the 150-kD neurotoxin is the
active moiety that ultimately inhibits acetylcholine release. Since the toxin moiety is the same in all
pharmaceutical preparations, differences in potency depend of the amount of active toxin available. To
become fully activated, the single chain 150-kD neurotoxin must be cleaved from the protein complex.
All of the commercially available BoNT-A formulations are composed of the 150-kD neurotoxin
with NAPs with the exception of INCO, which contains only the 150-kD neurotoxin. However, the
manufacturing process may affect the amount of active toxin; for instance, enzymes added to increase
the percentage of cleaved active toxin may denature the neurotoxic protein itself.

Therapeutically available BoNT-A formulations contain variable percentages of inactive toxin
that contribute to the overall protein load without contributing to efficacy. For this reason, the potency
is expressed in biological units. Potency is related to the quantity of toxin (in ng of protein content,
i.e., 150 kD neurotoxin including NAPs) required to achieve a median lethal dose (LD50) unit [3,4].
However, many factors affect the mouse LD50 bioassay including mouse strain, sex, age, volume and
route of injection, time of examination after injection, and delivery vehicle or reconstituting buffer.
Moreover, the LD50 units of BoNT products are not standardized across manufacturers. Due to
the lack of LD50 bioassay harmonization, the unit potencies of BoNT formulations cannot easily be
compared. For this reason, physicians should consider that although the active molecule is botulinum
neurotoxin type A, different forms of the complex can affect the potency and therapeutic profiles.
It is important to consider that this review is only based on small non-controlled clinical trials (not
head-to-head comparison), and any switch of the products should be based on the approved product
information. More importantly, physicians could put patients at risk if they incorrectly establish the
dose equivalence.

Despite the difficulties related to the biologic units, the most informative comparisons of BoNT-A
containing products have been made in clinical studies.

3. Dose Equivalence

Although there are some difficulties establishing the comparative potencies, the equivalence ratio
of the dose should be established. The reasons for identifying a conversion factor are medical (i.e.,
patients may need to switch to another formulation) as well as economical (an incorrect conversion
factor may negatively impact the real cost of treatment), since each BoNT-A formulation contains
different amounts of the 150-kD toxin (and NAPs)/LD50 unit (Table 1).

Table 1. Botulinum toxin products and protein content/100 units [5,6].

Nonproprietary Name 150-kD Protein
Content (ng)

Total Protein (150 kD
and NAP) Content (ng)

Dose Equivalent
Units

Onabotulinumtoxin A 0.73 5.00 1
Incobotulinumtoxin A 0.44 0.44 1
Abobotulinumtoxin A 0.65 0.87 2–3

NAP = nontoxic accessory proteins.

INCO was shown to be as effective as ONA with a comparable adverse event profile when a
clinical conversion ratio of 1:1 or 1:1.2 was used [7–11]. Clinical data are consistent with preclinical
comparability data [2,12]. Thus, both clinical and preclinical analyses have demonstrated a clinical
conversion ratio between ONA and INCO very close to 1:1.
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In contrast, the conversion ratio between ONA (or INCO, consequently) and ABO is hotly debated.
Even if the most commonly quoted conversion ratios are 1:3 or 1:4 [13], they ranged from 1:1 [14] to
as high as 1:11 [15]. This wide conversion ratio range reflects real-life clinical practice; the treating
physician determines the number of muscles to be treated and the empiric dose based on each patient’s
disease condition, their impairment pattern, and treatment objectives.

Although the various BoNT products differ with regard to NAP composition, the toxins ultimately
inhibit acetylcholine release. Since the active toxin content is established for each product, a
conversion rate should be defined. More precise estimation of conversion ratios should also ensure
the development of comparable clinical data on the efficacy and safety of currently available BoNT-A
formulations since they have qualitatively and quantitatively similar clinical efficacies and side effects
at equipotent doses.

A large number of studies have reported an ONA:ABO conversion factor of 1:3. In order to
establish an appropriate conversion factor, we evaluated the efficacy and safety in studies using a
conversion factor >1:3.

All relevant studies using an ONA:ABO conversion factor ď1:3 reported clinical equivalence
(Table 2) [16–20]. Moreover, when the conversion factor is close to 1:3, ABO shows higher
efficacy [21–23], indicating that the conversion factor is rather lower than equal to 1:3. Even more
interesting are the studies where the conversion ratio was higher than 1:3. In these studies, it is
clear that ABO showed higher efficacy and longer duration of action compared to ONA, but with
more adverse events, by demonstrating that the conversion ratio >1:3 determines an overdose of
ABO [24–28].

Table 2. Studies using an ONA:ABO conversion factor ď1:3.

Authors Study Authors‘ Conclusions

Marion et al.,
1995 [16]

Open study of 74 pts, 37 with
idiopathic blepharospasm and 37
with hemifacial spasm switched

from ONA to ABO 1:3 ratio

Correct ONA:ABO conversion ratio is 1:3

Whurr et al.,
1995 [17]

Open study 16 pts with spasmodic
dysphonia Correct conversion ratio ONA:ABO is 1:3

Sampaio et al.,
1997 [24]

RCT 91 pts with blepharospasm
and hemifacial conversion ratio

ONA:ABO 1:4

ABO groups, in the conditions applied in the
included trials, tend to have a higher efficacy, longer
duration of action, and higher frequency of adverse

reactions; A 1:4 ONA:ABO ratio is too high

Odergren et al.,
1998 [19]

RCT of 73 patients with CD ABO
(n = 38) vs. ONA (n = 35)

Conversion ratio 3:1

Efficacy and tolerability equivalent with an
ABO:ONA ratio of 3:1

Tidswell and
King, 2001 [26]

Open study 35 pts with CD
switched from ONA to ABO

conversion ratio 1:5

1:5 is too high; proposed 1:3. The authors report with
insufficient efficacy and duration of action with

ONA, suggesting that an ONA:ABO conversion ratio
of 1:3 is more appropriate

Ranoux et al.,
2002 [27]

RCT, cross-over 54 pts with CD
Conversion ratio ABO:ONA 3:1 or

4:1

Both with a ratio 3:1 and 4:1, they observed a higher
and longer clinical efficacy of ABO vs. ONA with a
higher risk of side effects; This suggests that the 3:1

conversion ratio is more appropriate

Poewe, 2002
[29]

RCT 54 pts with CD Conversion
ratio ABO:ONA 3:1 or 4:1

The author comment on Ranoux1s paper confirming
its conclusions: the ABO:ONA conversion ratio

should not be >3:1

Sampaio et al.,
2004 [30]

Systematic review Blepharospasm
CD/hemifacial spasm

The ABO:ONA 4:1 ratio is clearly too high, and even
with a ratio of 3:1, ABO continues to have a longer

duration of action
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Table 2. Cont.

Authors Study Authors‘ Conclusions

Wohlfarth et al.,
2008 [21] 79 healthy volunteers ABO:ONA ratio 3:1 too high Equivalence ratio of

1.57:1 (95% CI: 0.77–3.2) To investigate the 2:1 ratio

Van den Berg
et al., 1998 [31]

Open study 10 pts with DC 10 pts
with blepharospasm switched to
ABO from ONA Conversion ratio

2.36:1

Dose equivalence ABO:ONA = 2.36:1

Rosales et al.,
2006 [32]

Review of preclinical and clinical
studies

Appropriate conversion ratio ABO:ONA equal to
2.5–3:1 or lower

Wohlfarth et al.,
2009 [33] Review of clinical studies Dose equivalence ABO:ONA 2–2.5:1. Conversion

ratios ě4:1 should be considered overdosed for ABO

Shin et al., 2009
[20]

Open study of 48 pts with
blepharospasm switched to ABO
from ONA; conversion ratio 2.5:1

Clinical and safety equivalence

Mohammadi
et al., (2009) [22]

Retrospective study 137 patients
with spasticity, conversion ratio

ABO:ONA 2 to 3:1
Clinical and safety equivalence

Kollewe et al.,
2010 [18]

97 pts with hemifacial spasm
treated with ABO or ONA

Clinical and safety equivalence at conversion
ratio of 2.56:1

Karen-Capelovitch
et al., 2010 [34]

16 pts with cerebral spastic palsy
treated with ONA 12 U/kg or

ABO 30 U/kg (ratio 1:2.5)
Clinical equivalence

Rystedt et al.,
2012 [23]

Retrospective study of 75 pts with
CD

1.7:1 is the more appropriate ABO:ONA
conversion ratio

Brockmann
et al., 2012 [35]

Retrospective study of 51 pts with
Cervical CD

Dose equivalence ABO:ONA 3:1; Conversion ratios
ě of 4:1 or superior should be considered overdosed

for ABO

Kollewe et al.,
2014 [36]

Retrospective study of 288 patients
with blepharospasm Conversion

ratio ONA:ABO 1:2.3

No significant differences with regard to safety
or efficacy

Rystedt et al.,
2015 [37]

RCT compares ONA and ABO in
two different dose conversion

ratios (1:3 and 1:1.7) when diluted
to the same concentration (100
U/mL) for 46 patients with CD

No significant differences were seen between ONA
and ABO (1:1.7); At week 12, a statistically significant
difference in efficacy between ONA and ABO (1:3)

was observed, suggesting a shorter duration of effect
for ONA when this ratio (low dose) was used

Yun, 2015 [38] 103 patients with CD in a
two-period crossover RCT

With regard to safety and efficacy, ABO was not
inferior to ONA in patients with CD at a conversion

factor of 2.5:1

ABO = abobotulinumtoxinA, CD = cervical dystonia; CI = confidence interval; ONA = onabotulinumtoxin A;
RCT = randomized controlled trial.

These clinical data are consistent with preclinical data where a conversion ratio for ONA/ABO of
1:3 or lower has been found [31,39].

An ONA:ABO conversion ratio of 1:4 or higher was adopted empirically in clinical practice before
the availability of substantial clinical data. The current data suggest that a conversion ratio of 1:3—or
even lower—could be appropriate for treating spasticity, cervical dystonia, and blepharospasm or
hemifacial spasm. A higher conversion ratio may lead to an excessive ABO dose and the potential for
an increased incidence of adverse events or under-dosing when switching ABO to ONA.
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4. Toxin Spread

Toxin spread (also called diffusion and field of effect) describes the toxin’s effect on areas
away from the injection site. Toxin spread to contiguous areas could be undesirable because it may
increase the risk of adverse effects. For example, spread from injections in the cervical or craniofacial
musculature may induce diplopia, dysarthria, or dysphagia.

Although uncommon, distant spread can cause unintended neuromuscular blockade at anatomic
structures remote to the injection site. For example, systemic botulism symptoms such as dysphagia
can occur when the toxin is injected at a distant site (e.g., lower extremities for spasticity). The potential
risk for adverse effects due to toxin spread is described in the labeling for each BoNT-A product [40–42].
The mechanism of this phenomenon remains unknown.

Any potential differences in toxin spread characteristics and field of denervation among the
BoNT products would be clinically relevant. Differences in the potential for contiguous spread
among the BoNT products have been studied, but there is no evidence to date that differentiates the
various products. There is a belief that diffusion of neurotoxin into adjacent tissue is slower with the
high molecular weight complex compared with the lower molecular weight or free neurotoxin [12].
Theoretically, ONA with the highest complex size of 900 kD should be less diffusible, whereas INCO
containing only the 150-kD neurotoxin (without NAPs) should be the most diffusible with a higher
rate of side effects related to toxin spread, but this has not been proven. Progenitor toxin size may
be irrelevant with regard to toxin diffusion because all BoNT progenitor complexes immediately
dissociate following injection into a physiologic environment [43]. In fact, dissociation probably occurs
in the vial on reconstitution with normal saline [44]. This is consistent with data from an animal
model, in which there were no significant differences in the field of effect among ABO, INCO, and
ONA [45]. Several factors other than the pharmaceutical preparation, such as clinical dose, solution
concentration, injection technique, type of target site, location of injection within the muscle, level of
muscle hyperactivity, depth of injection, and use of post-injection massage are thought to affect the
potential for contiguous spread [46–48].

5. Immunogenicity

An important reason for secondary treatment failure of any therapeutic protein is its
neutralization [49]. Antibodies that block its pharmacological effects are termed neutralizing or
blocking antibodies and are addressed against the active toxin. The clinical effect may wane gradually,
eventually leading to complete treatment failure.

In a study of 27 patients with complete treatment failure due to neutralizing antibodies, the
majority (81%) of patients had previously experienced partial antibody-induced treatment failure [50].
Most patients in this study developed complete treatment failure within 40 months of starting
botulinum toxin treatment. However, a more recent study reported a high mean clinical benefit,
based on a 0–3 scale (0 = no effect, 1 = slight, 2 = moderate, and 3 = marked improvement) similar for
ABO (2.5 ˘ 0.3) and ONA (2.2 ˘ 0.4), and <2% of the patients developed neutralizing antibodies [22].
In another investigation, BoNT-A antibodies were not detected in any of the study patients [51].

The debate regarding immunogenicity includes the role of the non-toxic clostridia proteins,
collectively referred to as complexing proteins or neurotoxin-associated proteins (NAPs). Under
physiological pH conditions, the complexing proteins dissociate almost completely from the neurotoxin
following constitution with saline and even before injection into the target tissue [44,52]. Therefore,
complexing proteins are not expected to modify clinical outcomes, and specific antibodies generated
against the complexing proteins are termed non-neutralizing and should not affect the secondary
response. However, it has been argued that complexing proteins may increase the bacterial protein
load and can potentially increase the immunogenic risk of neutralizing antibody formation [53].
Although several studies have been performed, there are no clear demonstrations that NAPs may
modify the immunogenicity of the active toxin [54–56]. However, these studies revealed that the toxoid
complex is more immunogenic than the purified neurotoxin. This could be relevant considering that
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cross-reactivity may occur between the toxoid and toxin. The immunogenicity of toxoid components
is of relevance since toxoid components (i.e., inactive neurotoxin, albeit not through formaldehyde
inactivation) are in some commercial botulinum toxin products. ONA is unique among the BoNT-A
formulations in that it is vacuum-dried by a process involving sodium chloride, which may have a
detrimental effect on neurotoxin activity [57] and may be responsible for its higher toxoid (inactive
neurotoxin) content Despite the considerations mentioned above, the risk of immunogenicity of ONA
is very low in clinical practice as reported by a large data review [58].

6. Pharmacoeconomic Considerations

The costs of treating patients with upper motor neuron lesions and spasticity are estimated
to be four times greater than for those without spasticity or dystonia [59]. Spasticity-related costs
generally include the costs of conventional treatment including hospitalization, rehabilitative therapy,
and pharmacotherapy.

The use of BoNT-A is considered an effective [60,61] and potentially cost-effective [62–64]
antispastic pharmaceutical treatment as an adjunct to conventional treatment. As mentioned above,
there are variations in the composition, properties, and cost of the three BoNT-As being used to
manage spasticity.

Some studies have assessed the cost per patient of the three BoNT-As. Roze et al. [65] compared
the cost per patient per injection for Dysport and Botox in 19 countries. The recommended dosages in
the summary of product characteristics are 1000 U and 300 U per patient, respectively. The cost per
patient per injection for upper limb spasticity was less for Dysport than for Botox in 18 (95%) of the
19 countries (mean 17% less across countries). The difference was 20% or higher in nearly half (47%)
of the countries. Sensitivity analyses considering available “real-world” dosing showed consistent
results, with Dysport being less costly than Botox in all 19 countries. The authors concluded that
substantial savings could be realized by using Dysport to treat upper limb spasticity.

Abogunrin et al. [66] recently developed a budget impact model to assess the effect of changing
market shares of different BoNT-A formulations (ABO, ONA, and INCO) and the best supportive care
from the UK payer perspective. The results demonstrate that BoNT-A treatment costs less than the
best supportive care per patient per year, although treating a patient with ONA (£20,861) and INCO
(£20,717) cost more per patient annually than ABO (£19,800). The authors concluded that increased
use of ABO for upper limb spasticity could potentially reduce the total upper limb spasticity cost for
the health system and society.

With regard to dystonia, botulinum toxin is considered an expensive drug with good effects [11].
From a societal perspective, the costs may well be worth the regained quality of life. However, the
available literature concerning costs, health-related quality of life, and labor participation is very
limited. Two recent reports evaluated the comparative costs of botulinum toxin type A. One evaluated
a cost-utility analysis of BONT-A products for the treatment of cervical dystonia [67]. All three
botulinum toxin type A agents were cost-effective at a willingness-to-pay threshold of $100,000 per
quality-adjusted life year (QALY). Xeomin was the most cost-effective with a cost-effectiveness ratio of
$27,548 per QALY. Dysport had the second-lowest cost-effectiveness ratio ($36,678), followed by Botox
($49,337). On the other hand, in a retrospective study [68] including patients with blepharospasm
(n = 19), cervical dystonia (n = 122), hemifacial spasm (n = 91), and segmental/generalized dystonia
(n = 19), switching from ABO to INCO reduced treatment costs. Although no exact dose conversion is
available, both studies reported a 4:1 dosing equivalency between Botox/Xeomin and Dysport. Finally,
in another recent study, INCO administered at flexible treatment intervals determined by the needs of
the patient was found to be a cost-effective treatment option when compared to the administration of
ONA in the Australian health care system [69].
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7. Conclusions

BoNT therapy is considered a first-line therapy for a number of overactive muscle conditions such
as upper and lower limb spasticity, focal dystonias such as cervical dystonia and blepharospasm, and
hemifacial spasm. It has superior efficacy and safety compared with standard medical therapies (e.g.,
antispasmodics, muscle relaxants, neurolytics) or surgical interventions. The pharmacologic potency,
high specificity, and long duration of BoNT-A make these toxins remarkably effective therapeutic agents
for managing disorders characterized by muscle hyperactivity. There are three BoNT-A containing
products on the market: Botox, Dysport, and Xeomin. All three preparations have similar mechanisms
of action. The major difference between them relates to potency and the presence or absence of
complexing proteins; therefore, the dose equivalence is important in clinical practice. ONA and INCO
have comparable efficacies with a 1:1 conversion ratio and have demonstrated therapeutic equivalence
in different indications including cervical dystonia and blepharospasm. An ONA to ABO conversion
ratioď1:3 should be considered the most appropriate. Immunogenicity is another factor that may affect
clinical efficacy after repeated injections. Finally, whereas the three BONT-A have similar efficacies
when dosed properly, ABO has a better cost-efficacy profile.

In conclusion, it seems important to reiterate that comparability between the various BONT-A
preparations was determined with indirect methods and since there is no standardized potency test
among all three products, clinical trials are needed to establish the exact conversion ratio.
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