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Introduction

In this dissertation we present research conducted in collaboration with AMAT1

for more e�ciently exploiting the available resources in terms of public trans-
portation means and taxis. The aim is to increase, qualitatively and quantita-
tively, public mobility services in order to reduce the private motorized mobility
and related externalities in the urban context.

In order to increase the e�ciency of the taxi service and Local Public Trans-
portation (LPT) network we:

• evaluate whether an urban massive transportation on-demand service,
named Taxi Sharing, could be an opportunity for the city of Milan ac-
cording to the level of service for citizens and revenues of taxi drivers;

• explore the possibility of planning, in presence of Taxi Sharing, a rapid
LPT optimized for users without movement impairments according to
users traveling and walking time.

Taxi Sharing allows users to move directly from departure point to �nal des-
tination like with an individual taxi service, but sharing the vehicle with other
users [1]. In Taxi Sharing systems users send a ride request to the operating sta-
tion, which processes it with a dedicated software and informs them about ride
conditions. The operating station, according to incoming user requests, con-
tinuously forwards to taxi drivers routing instructions, in order to serve users
optimally.

Taxi Sharing rides take a few minutes more than individual taxi rides, but
sharing the taxi results in lower fees. The Taxi Sharing service could satisfy the
needs of:

• people desiring a sustainable transportation service that is faster and more
comfortable than traditional public transportation and, at the same time,
cheaper than the individual taxi service;

• night commuters, who need a means of transport when the public trans-
portation service is reduced or absent, as an alternative to car use or
individual taxis;

1Urban Mobility Agency of Milan.

4



• the elderly population, who could bene�t from this service thanks to its
convenience (door-to-door commute, seat assured, help in weights carry-
ing) and to its lower price. By increasing elders' mobility, social isolation
could be reduced [2];

• people su�ering from motor impairment, who face problems using the
traditional public transportation system. By assuring a simple, fast and
low-cost moving method, their social integration would be supported, both
in working and recreational perspectives.

The optimization problem related to Taxi Sharing service is referred to in
literature as Dial-a-Ride Problem (DARP). The DARP includes two main sub-
problems called allocation and routing ; Allocation refers to the partition of
requests between the available vehicles, while routing concerns routing of ve-
hicles to serve the allocated requests. DARP is an extension of the Traveling
Salesman Problem (TSP) and is a NP-hard problem [3] from the point of view
of computational complexity theory.

Algorithms to solve the Dial-a-Ride Problem (DARP) have been developed in
the last decades [4, 5] in order to optimize door-to-door transportation services.
Most of the developed algorithms are heuristics like tabu search [6, 7, 8] and
genetic algorithms [9, 10].

On demand services have mainly been developed for low demand regions or
time periods, for speci�c categories of users [11, 12, 13] or as a feeder service
[14, 15]. These systems are usually based on few vehicles, typically mini-buses;
they allow for rather wide time windows on departure and arrival and sometimes
they are forced to use a limited set of prede�ned origins and destinations. The
potential of on demand services as a spread urban means of transport has not
been extensively studied in literature, with only some papers assessing this
possibility using heuristics [20, 21].

We developed a new technique to optimize a high quality spread Taxi Sharing
service in an urban context starting from state-of-the-art DARP optimization
algorithms. In the Taxi Sharing system, time windows on pick-up and delivery
times are narrow, the service is provided by many small vehicles (the exist-
ing �eet of taxis) and each point in the road network can be an origin or a
destination.

These features allow an enumeration of all possible subsets of incoming users'
requests for each vehicle and to compute in real time an optimal set of routes
by solving a large set partitioning problem with state-of-the-art integer linear
programming solvers. Owing to this fast global optimization capability, the
system allows for a high quality service without any need of booking the ride in
advance. In appendix B we classify our problem in the framework of Dynamic
Vehicle Routing Problems (DVRPs).

Taxi Sharing is linked to the mobility system of the city in which it is de-
veloped. On the one hand, the conditions of the road network in�uence the
performances of Taxi Sharing service; on the other the implementation of Taxi
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Sharing allows new possibilities in planning rapid Local Public Transportation
(LPT). Rapid LPT is achieved through optimal stop spacing [22], that:

• is in�uenced by the presence of Taxi Sharing, that o�er an alternative to
people with movement impairments;

• can decrease total passenger journey time, even though the walking time
is longer;

• can increase the commercial speed2 which a�ects transit time, operating
costs and o�er level.

The dissertation is divided in two parts:

• in part I we describe in detail the Taxi Sharing service, the new optimiza-
tion method and the developed simulator (chapter 1, 2, 3);

• in part II we present the feasibility study for the city of Milan, according
to three development scenarios for Taxi Sharing service, its integration
with a rapid LPT and an informal related survey (chapter 4, 5, 6);

In chapter 1 we explain the characteristics of Taxi Sharing and we analyze the
users and taxi drivers experiences according to main basic assumptions related
to the service.

In chapter 2 we present the optimization method with respect to users' cases
and taxi drivers' cases presented in chapter 1. We detail the three processes
with a focus on the optimizer that relies upon a circular repetition of routes
generation and set partitioning.

In chapter 3 we present an agent based Taxi Sharing simulator that enables
to forecast how the service works from a quantitative perspective. We detail
which inputs are needed to run the simulation, and which statistics are obtained
on the quality, e�ectiveness, and e�ciency of the service.

In chapter 4 we present three development scenarios according to demand
level. For each analyzed scenario:

• we present the used data and parameters;

• we discuss the performance of the service in terms of number of requests
serviced per hour, the average travel time and waiting time, the number
of taxis simultaneously on duty, the ride fare and the taxi revenue;

• we show the details concerning the time and size of the optimization meth-
ods.

2The commercial speed is de�ned as the total distance traveled divided by total time taken
(including scheduled holding).
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In chapter 5 we present new possibilities in planning rapid Local Public
Transportation (LPT) related to the realization of Taxi Sharing. We explore
this possibility with a case study on tram line 9 concerning the e�ects in terms of
total variation in user traveling time and increase of commercial speed achievable
with the optimal stops spacing.

In chapter 6 we present the results of a survey related to rapid LPT and Taxi
Sharing. We describe the sample who answered the questionnaire, and then we
illustrate the interesting results that we gathered on more than 700 answers,
about optimal stop spacing and use of Taxi Sharing.
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Part I

Taxi Sharing
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Chapter 1

Service speci�cations

Taxi Sharing is a dynamic on demand service provided by a taxi �eet in which
the interaction between users and taxi drivers is handled by an operating station
that processes the data regarding users and taxi drivers to optimize the service
as shown in Figure 4.1.

Figure 1.1: Taxi Sharing actors.
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The operative station relies on three main processes, detailed in chapter 2,
to optimize the service:

• the answerer responds to users asking for ride conditions;

• the optimizer manages the �eet of active taxis, i.e. those taxis already on
duty;

• the �nder tries to activate new taxis when needed, looking within the
available taxis.

In this chapter we detail the user and taxi driver cases and the interaction
among them, as well as with the three processes of the operative station. In
section 1.1 the user cases are detailed: asking for ride conditions, sending the
request, canceling the request and interrupting the ride. In section 1.2 the taxi
driver cases are detailed: becoming available mode, available mode, becoming
active mode, navigation mode, boarding user mode, disembarking user mode,
interrupting ride mode, waiting mode and end of ride mode.

1.1 The user experience

The user communicates with the operative station using one of the most popular
technologies (APP, WEB, telephone with query's voice recognition software,
telephone).

Figure 1.2 shows the �owchart of the request from when the request reaches
the service until it is serviced.

In the next paragraphs we will detail the user cases and the requests states,
in relation with the taxi driver cases and the optimization processes.

Case u1: asking for ride conditions

The user asks for a ride when he needs it, without booking it in advance. A
user that wants to ask for a Taxi Sharing ride sends the request in which he
must specify departure address, destination address, number of customers. At
this point, the request is in the state of new request.

The answerer processes the query and informs the customer about the op-
erational details of the ride: maximum arrival time to destination and trip cost.
Now the request is in the state to be con�rmed.

The maximum arrival time takes into account that some detours might be
done to pick up or deliver other clients. A detour that would cause to reach the
destination after the maximum arrival time will not be carried out. In section
2.2 it is detailed how the maximum arrival time is computed considering the time
of the day, and the departure and arrival addresses. In section 2.3 it is detailed
how the system evaluates the possibility to service together di�erent requests by
the same taxi according to the maximum arrival times communicated to users.

11



Figure 1.2: The �owchart of the request states.
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The cost of the ride depends only on departure and destination addresses,
and number of users, but doesn't depend either on the actual time and length
of the ride or on the actual ride sharing. In section 2.2 the reasons for this key
point are explained and it is detailed how the cost is computed.

Maximum arrival time to destination and trip cost depend only on the re-
quest and do not consider the actual taxi availability, which is checked only
when the user sends the request.1

Case u2: sending the request

Once the user receives the ride details (maximum arrival time to destination
and ride cost), he/she is asked if he/she is interested in the ride. If the user is
not interested in the ride, the request state becomes not con�rmed, otherwise,
if the user is interested in the ride, the request state becomes con�rmed.

At this time the optimizer tries to �nd an active taxi to satisfy the request,
and if the taxi is found the request is accepted, otherwise the request state is set
for available and the �nder has to search for an available taxi that can satisfy
the request. If the �nder does not �nd a suitable available taxi the request
is rejected, otherwise the request state is updated to for in activation. If the
selected taxi accepts the ride (case t2 ), the request becomes accepted, otherwise
it becomes again for available. This cycle is repeated until the request becomes
accepted or rejected. The user is informed only when his/her request becomes
accepted or rejected.2

As shown in Figure 1.2 there are three states of accepted requests:

• the request state is open if the request has been accepted by the service,
but the choice of the taxi that will service it is still pending;

• the state is assigned if the user is still waiting for the taxi, but the taxi
that will satisfy the request is established;

• the state is on board if the user is on board.

For any reason the user can decide to quit the service after his/her request
has been accepted and before he/she has reached his/her destination.

1It is also possible to allow the user to skip the Case U1 and to send the request without
asking for ride conditions. In this case, the user would be informed on ride conditions only if
his/her request is accepted.

2To avoid rejecting requests, it could be possible to increase maximum arrival time to
destination. It could be done o� line using di�erent parameters or online to guarantee the
acceptability of the request. We have however decided to consider the possibility to reject a
request if the quality of service would be to low. Furthermore, since the system is dynamic,
as the taxis �eet providing the service the user can resend the request after some time and it
would likely be accepted.
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Case u3: canceling the request

Before getting on board, the user can cancel his/her own request by communi-
cating to the service the request details and his/her intention to cancel it. If
the service recognizes the request, it communicates to the user that the request
has been deleted, and the state becomes canceled.

Case u4: interrupting the ride

When the user is on board, he/she can decide to end his/her ride before reaching
the destination. In this case the user must communicate his/her intention to
the driver who will let him leave the car: the state of the request becomes
interrupted. The interaction between the user and the taxi driver in this case is
not mediated by the operating station but it is direct. The taxi driver informs
the operative station as detailed in section 1.2.

1.2 The taxi driver experience

The taxi driver that provides the Taxi Sharing service is an individual taxi driver
who enrolled in the service and can provide both individual service and Taxi
Sharing service. The taxi driver communicates with the operative station using
a smart phone or a tablet with an APP that relies on the gps function of the
device.

Figure 1.3 shows the �owchart of states related to taxis. In the next para-
graphs we will detail the taxi drivers' cases and states, in relation with the users'
cases and the optimization processes.

A taxi driver who wants to o�er the Taxi Sharing service must enroll in the
service. The service knows the users' capacity of each enrolled taxi.

Case t1: becoming available mode

When an enrolled taxi driver is waiting for a new ride, he/she can decide whether
to become available for the Taxi Sharing service. The taxi driver who decides to
become available, has to communicate until when he/she is available to service
taxi sharing requests; we refer to this datum as maximum working time. In
section 2.3 we will detail that maximum working time is used by the operative
station in order to assign requests to the selected taxi, only if the request can
be satis�ed by the taxi driver before his/her maximum working time. When the
taxi becomes available the service queues it in the parking area linked to the
position detected by the gps.

Case t2: available mode

When a taxi is available, it periodically forwards its position to the operative
station; the taxi driver can move in the city, but if he/she changes parking area

14



Figure 1.3: The taxi mode �owchart.

15



it is queued in the new parking area at the last position. An available taxi can
always decide to exit from the available state.

When the service needs a new taxi, the �nder selects an available taxi in
order to make it an active taxi; the request for a new ride is forwarded to the
taxi driver and the taxi state is updated to in activation.

Case t3: becoming active mode

A taxi driver, who receives a call for starting a new ride, has to decide if he/she
wants to accept the ride or not. If the taxi driver does not accept the ride,
the state is reset to enrolled and he/she needs to become available again in
case he/she wishes to be re-queued in the parking. If the driver accepts a Taxi
Sharing ride, then his/her taxi becomes an active taxi and starts moving around
the city, servicing user requests until the end of his/her duty. We underline that
the taxi has to accept a Taxi Sharing ride only at the beginning of his/her ride
and subsequently users requests are assigned as default until the end of his/her
duty. If the taxi driver needs to interrupt his/her ride, he/she has to reset the
maximum working time.

When the taxi accepts the ride, the system forwards the driver an ordered
list of �xed stops to be visited, and the details of the requests assigned to
the taxi. A stop is a position on the road network. The stop is de�ned as
departure if it corresponds to the origin of a request, it is de�ned as destination
if it corresponds to the destination of a request and it is de�ned as check-point
if it corresponds to a position on the road unlinked with any request but in
that direction the taxi is supposed to go3. If the stop is of type departure or
destination, the identi�er of the request associated to this stop is linked to it.
When a stop is communicated to a taxi driver, it is because it has been �xed by
the optimizer, and hence it can not be changed. When a stop of type departure
is �xed, the state of the related request is updated from open to assigned and
hence the taxi that will service it is established. Every active taxi knows the
�xed stops of its program, and has to reach the �rst of the list. In section 2.3 we
will detail how the optimizer, during the active period, forwards the taxi driver
new �xed stops to be visited and the details of the new requests assigned to the
taxi.

The active taxi can be in six di�erent states, as shown in Figure 1.3, related
to the working mode detailed in the next paragraphs.

Case t4: navigation mode

When a taxi driver accepts a new ride he/she enters navigation mode. In
navigation mode the taxi driver has to reach a point that can be the depar-
ture/destination address of a request or a check point. The taxi driver can
decide whether to follow the navigator gps or to take another route to reach

3Check-points are introduced to improve service �exibility as detailed in section 2.3.1.
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the point. In navigation mode the gps device periodically sends the position
detected by the gps to the operative station. This information is used by the
operative station to forecast when the taxi will reach the stop to which is di-
rected.

When the taxi reaches the stop it has to inform the service. If the stop is a
check point, the taxi remains in navigation mode towards next stop (if the stop
is the last stop of the list then the taxi enters waiting mode). If the stop is the
departure address of a request, the taxi enters boarding user mode. If the stop
is the destination address of a request, the taxi enters disembarking user mode.
If during the ride an user on board asks to leave the car before reaching his/her
destination, the taxi enters interrupting ride mode.

Case t5: boarding user mode

When the taxi driver reaches a stop that is the departure address of an user, the
taxi enters boarding user mode. The taxi driver sees all details of the request
(departure/destination addresses, number of users, maximum arrival time and
fare) and asks the user to con�rm these data in person. If all data are con�rmed,
the taxi enters navigation mode towards next stop (if there are any); otherwise
he/she enters waiting mode. If the user does not show up or is not interested in
the booked ride according to destination addresses and number of users, the taxi
driver communicates this exception to the operative station and enters waiting
mode for new instructions4.

Case t6: disembarking user mode

When the taxi driver reaches the stop which is the destination address of an on
board user, the taxi enters disembarking user mode. When the taxi driver is
ready to leave again, he/she informs the operative station and enters navigation
mode towards next stop (if there is); otherwise he enters waiting mode.

Case t7: interrupting ride mode

If an on board user asks to leave the car before reaching his/her destination,
the taxi enters interrupting ride mode. The taxi driver lets the user disembark
the vehicle and communicates this exception to the operative station, signaling
the identifying number of the user who left the taxi. The taxi enters waiting

4Users' delay are not tolerated since it would a�ect level of service for other users as well
as the income of the taxi drivers, which is related to the number of users served each hour.
We consider that, since the service is without reservation, the user is supposed to ask for a
ride when is ready to leave, and hence the ride fee is charged to users also if he/she does not
show up, or if he/she is not interested in the booked ride due to mistakes in the insertion of
destination address or in the number of users. We consider that with these rules the user will
behave in a correct way as a shared service requires: a wrong destination imply a suboptimal
solution in terms of taxi selection, and a delay imply a lost of time for other users and taxi
drivers.

17



mode, awaiting new instructions, since the previous schedule also included the
destination of the user who left the taxi.

Case t8: waiting mode

The taxi driver enters waiting mode if he/she visited its last �xed stop to be
visited, or if an exception arose: the user did not show up at the departure
address, the user did not con�rm the request details, the user interrupted his/her
ride. The taxi driver in this mode must wait for new instructions. The optimizer
handles the exceptions and updates the schedule of the active taxi as described
in section 2.3, and if the optimizer establishes a new stop to be reached, the taxi
enters navigation mode; otherwise, the taxi enters end of ride mode as detailed
in the next paragraph.

Case t9: end of ride mode

The taxi enters end of ride mode if during the waiting mode period, the op-
timizer did not �x any new stops for the taxi. This happens if there are no
users on board and no requests can be serviced by the taxi, depending on its
position and maximum riding time. The details are presented in section 2.3.
When the taxi enters this mode the service gives him/her the details of the ride:
starting time, ending time, number of users serviced, total revenue. The taxi
ride is �nished and the taxi state is updated to enrolled. To start a new ride it
is necessary to enter becoming available mode.

18



Chapter 2

The optimization method

The optimization of the Taxi Sharing service relies on three processes: the
answerer, the optimizer and the �nder. First of all, in section 2.1 we will
describe the graph that represents the road network; it is the base of the Taxi
Sharing service, since the departure and destination of requests are on the road
network, and the taxis are moving on the road network. In section 2.2 we
will detail how the answerer process gives the information about ride cost and
maximum arrival time to destination to users asking for the ride conditions. In
section 2.3 we will describe how the optimizer, the core process, optimizes the
whole service according to the assignment of user requests and routing of taxi
drivers. In section 2.4 we will detail how the �nder decides which available taxi
to activate if the active ones are non su�cient for servicing the con�rmed users
requests. The time schedule of the three processes, shown in Figure 2.1, is the
following:

• the answerer runs every time a new request arrives to the service and
processes one request at a time;

• the optimizer runs continuously during all service, and starts a new cycle
just after the end of the previous cycle;

• the �nder starts a new cycle after the end of the previous cycle only if
there are some requests for available taxi, otherwise it starts a new cycle
when one or more for available requests arrive from the optimizer or from
an in activation taxi driver who refused a new ride.

2.1 The graph

We used a directed weighted graph G(N,A) with N the set of nodes and A ⊂
N × N the set of arcs. Every arc a ∈ A is hence an ordered pair of nodes
a = (nf ;nt) and we say that the arc a goes from node f(a) = nf to node
t(a) = nt, where f : A 7→ N and t : A 7→ N relates an arc respectively to
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Figure 2.1: The time schedule of the three processes.

its starting and its ending node. We use a weight function w : A 7→ R+, in
which the weight of each arc is given by its average travel time. A ordered
couple of arcs (ai; aj) is considered of consecutive arcs if t(ai) = f(aj) and
turn restrictions are considered as a pair of forbidden consecutive arcs (ai, aj).
Common dynamic programming algorithms to compute shortest paths, like the
Dijkstra algorithm, do not explicitly consider the turn restrictions or the fact
that a node could be visited more than once by a shortest path in presence
of turn restrictions. For these reasons, in order to model turn restrictions, we
construct a line graph as shown in [23].

The directed weighted line graphG(ND, AD) with a weight function wd(a) 7→
R+ of a primal directed weighted graph G(N,A), is constructed as follow:

1. The bijective function d : A 7→ ND connects every arc in the primal graph
to a node in the line graph.

2. For every couple of not forbidden consecutive arcs in the primal graph
(ai, aj), there is an arc εt in the line graph from d(ai) to d(aj). The set
of arcs of the line graph is the union of these arcs: AD =

⋃
t εt

3. The cost function wd of the arcs in the line graph is equal to the cost of
the �rst arc in the primal graph: wd(εt) = w(d−1(f(εt))).

The line graph allows the use of the Dijkstra algorithm and its faster vari-
ations [24, 25] to compute the shortest path between each couple of nodes of
the line graph. We refer to cD(ni, nj) as the cost of the optimal path from
node ni ∈ ND to nj ∈ ND. The shortest path between nodes in the line graph
represents the shortest path in the primal graph from the arc connected to the
starting node of the line graph to the arc connected to the ending node in the
line graph. The cost of the shortest path in the primal graph, according to how
we had de�ned the weight function in the line graph, represents the time needed
to move from the beginning of the starting arc to the beginning of the ending
arc.
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We identify a point on the road network with the arc to which the point
belongs, a, and the distance of the point from the beginning of the arc, f . In
this chapter and in the next ones we refer to this information as position:
p = (a, f). In two way roads, the position p = (a, f) is correlated also to the
street sides, since its arc a is oriented. In one way roads, the position p = (a, f)
is unlinked with the street side, it is not relevant in optimization process since
both street side are accessible from arc a.

To compute the traveling time from a position o = (ao, fo) to a position
d = (ad, fd) we use the formula:

T (o, d) = cD(d(ao), d(ad))− fo

vo
+
fd

vd
(2.1.1)

where vo and vd are respectively the average speed on arc ao and ad. We refer
to this function in the subsequent chapters as traveling time, and it represents
the expected traveling time at average speed of the fastest path from position
o to position d.

If we otherwise de�ne the weight function w : A 7→ R+ on the primal graph
G(N,A) to represent the length of each arc, we can compute the distance from
a position o = (ao, fo) to a position d = (ad, fd) with the following formula:

D(o, d) = cD(d(ao), d(ad))− fo + fd (2.1.2)

The length of the shortest path between origin and destination of an user's
request is used to compute the cost of a ride as described in section 2.2.

The optimization method described requires us to calculate a large number
of traveling times between two positions. To this aim two di�erent methods are
possible:

1. to calculate the optimal cost cD(ni, nj) in real time when needed between
a pair of nodes of the line graph and use the function T to calculate the
traveling time between positions. Using this approach it would be possible
use a caching system whenever the shortest path for the same arc pair is
necessary.

2. to calculate in advance all optimal costs cD(ni, nj) within each pair of
nodes of the line graph and use the function T to compute the traveling
time between positions. This approach require to recompute the matrix
periodically to take into account new data on road network speeds.

The main advantage of the second method is the negligible time to compute
T once all optimal costs are precomputed, the drawback is the time needed
to compute all optimal costs and the space needed to store them. The choice
between the two methods is linked to the graph size and to the frequency of data
updating referring to the average speed for each arc. The updating frequency
a�ects the recomputing or the updating optimal frequency of all optimal costs.
In this dissertation we do not examine in depth this aspect, but we underline that
this task is fully parallelizable with both approaches. With the �rst approach
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since the computation of distances needed in processes related to taxi i are
unlinked with computation of distances needed in processes related to taxi j, if
i 6= j. With the second approach since the computation of all distances from
node i is unlinked with the computation of all distances from node j, if i 6= j.
For these reasons the computation of distances is not critical in the development
of the service, but have to be taken into account in order to scale properly the
needed hardware according to the choosen method and the dimension of the
city. For the city of Milan on which we concentrate our research, the second
approach is viable in terms of time and space for managing the service even
with a personal computer1.

In the simulation of the service for the city of Milan presented in the next
chapters we used the second method, since we judge it to be the more suitable
according to the used data in terms of speed on the road network during the
day.

2.2 The answerer module

The answerer processes the queries of users asking for ride conditions as they
reach the service, and computes maximum arrival time to destination and the
ride fare.

The maximum arrival time to destination, mt, is a function of the direct
time, T (o, d), needed to travel from origin o to destination d, and it is computed
according to:

mt = pt+ α+ (1 + β) ∗ T (o, d) (2.2.1)

where pt is the present time, and α and β are parameters that can depend
on the time. This computation does not take into account the actual ability
of the service to accept the ride. To set these parameters it is necessary to
evaluate a trade-o� between the level of service guaranteed to users and the
ratio of e�ective acceptance of users requests from the service. Maximum arrival
time to destination, mt, is not a service guarantee, since road condition can be
unpredictable. This value is used to decide which request can be served by the
same taxi, and hence it guarantees that a detour that would imply reaching the
destination after mt traveling on the road network at expected speed, would not
be done.

The cost of the ride, c, is function of the direct length D(o, d) of the optimal
path between origin o and destination d, and it is computed according to:

c = nu ∗ (γ + δ ∗D(o, d)) (2.2.2)

where nu represents the number of users, γ and δ are parameters that can
depend on the time. We propose to link the cost only to the direct length of the

1Since from each node it is necessary to visit every node (in order to compute the distance
to every node) no speed up techniques to reduce the space of visited nodes is needed, hence
we used Dijkstra algorithm. Data on needed time to compute all the distances and space to
store them are reported in chapter 4.
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ride and the number of users, to allow the user to know the price in advance. In
this way the price is not linked to the route that the taxi will make to service
other users and to the actual sharing of the ride. In this way the variability is
not su�ered by the users but by the taxi driver; however, since the taxi driver
is servicing many users, the variability at the end of the working day is low.

Finally the state of the new request becomes to be con�rmed. At this point
the user is informed of the conditions and, if interested, he/she can forward the
request to the service.

2.3 The optimizer module

The optimizer is the core process of the optimization of Taxi Sharing, since this
process optimizes the whole service according to the assignment of user request
and routing of taxi drivers. The optimizer executes consecutively the following
six steps:

1. The step covering optimally requests updates the programs of the active
taxis according to new con�rmed requests and the updated positions of
taxi drivers.

2. The step closing taxi evaluates if an active taxi does not have any stop to
visit and, in this case, the ride of the taxi will end.

3. The step dealing exceptions updates the schedules of the active taxis ac-
cording to the exceptions thrown by the taxi.

4. The step deleting canceled requests updates the schedules of the active
taxi that services a request that was previously canceled.

5. The step considering visited stops updates the schedules according to the
stops visited by the active taxis.

6. The step �xing new stops evaluates if it is necessary to establish some stops
within their schedule according to taxis positions and their schedule.

The �rst step is the core step and considers all active taxis and all con�rmed
and accepted requests together and it is detailed in section 2.3.1. From the
second to the last step they involve one taxi at a time, these steps are detailed
in section 2.3.2.

2.3.1 Service optimization

This section is divided in four parts:

A) In the �rst part we de�ne the mathematical problem starting from the data
regarding active taxis and con�rmed and accepted requests;

B) In the second part we show how to compute all the possibilities to serve the
users requests;
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C) In the third part we detail the integer linear programming (ILP) model
needed to cover optimally the user requests;

D) In the fourth part we describe how to obtain from the solution of the math-
ematical problem the updated schedules for active taxis.

A) From data to mathematical problem

Every active taxi has a schedule resulting from the previous cycle of the op-
timizer or from the �nder if it is a new active taxi. Its schedule has a sequence
of stops �xed or not �xed. In the process of updating taxi schedules we can
decide only after the last �xed stop. If there is not any �xed stop the taxi is
in waiting mode (in the last visited stop). In any case we have a position from
which we can decide which road the taxi has to follow: we refer to this position
as pd, position of departure. We compute the expected time of departure td
from the position of departure, pd, with the following two formulas:

tr =

{
tp+ T (p, ps1) + t(s1) +

∑n−1
i=1 [T (psi, psi+1) + t(si+1)] if n > 0

tp if n = 0
(2.3.1)

where:

• n is the number of �xed stops to be still visited

• T : P × P 7→ R+ is the function that gives the time needed to move from
the �rst position to the second position

• t : S 7→ R+ is the function that gives the expected time to visit every stop
according to its type: departure, destination or check point.

• tp indicates the time when the latest taxi position update p has been
received

• p is the the position of the taxi according to the latest update received by
the active taxi

• psi is the position of stop number i in the list of �xed stops to be still
visited

• si is the stop number i in the list of �xed stops still to be visited

• tr indicates the time when the taxi will be ready to leave from the last
�xed stop still to be visited

The second formula takes into account the time that the taxi has to wait for
the updated schedules:

td = max(tr, tu) (2.3.2)
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where tu is the expected time to give the taxi the updated schedules, that
takes into account the computational time needed by the processes described in
this chapter.

For every active taxi i we de�ne pdi and tdi as the related position pd
and time td from where we have to decide the updated route for taxi i. The
updated route for each active taxi i is constructed considering pdi, tdi and all
the con�rmed and accepted requests. There are four sets of requests according
to the state of requests:

1. The set C is the set of con�rmed requests. These requests are still not
accepted by the service. The optimizer has to evaluate if the active taxis
can accept these requests or if it is necessary to activate an available taxi.

2. The set O is the set of open requests. These requests have been accepted
by the service. The departure and the destination of an open request
are in the schedule of an active taxi, i.e. the taxi that covers it, but the
related stops are not �xed. For this reason, the taxi that will service these
requests can still change.

3. The set A is the set of assigned requests. For these requests the taxi
that will service them has been decided, since the stops related to their
departure are �xed.

4. The set B is the set of on board requests. The users related to these
requests are on board the taxis that are servicing them.

For each active taxi, i, we de�ne the subsets Oi ⊆ O, Ai ⊆ A and Bi ⊆ B
of requests respectively covered by, assigned to, on board of taxi i. We say that
an open request r is covered by the active taxi i if a departure and a destination
stops (not �xed) of taxi i are related to request r.

If we look forward to position pdi, the taxi i will have visited all �xed stops
of its schedule. We de�ne the set Di ⊆ Ai ∪Bi as the set of request in Ai ∪Bi

with destination following pdi. The routing of stops related to requests in Di

is �xed until pdi and after it can change since the stops after pdi are not �xed.
The requests in the set Ai ∪ Bi \ Di are serviced by taxi i before position pdi

and do not need to be considered in updating the taxi schedules.
The program of taxi i after position pdi contains the destination stops of

requests ∈ Di and departure and destination stops of requests ∈ Oi and some
check point stops. If we remove from this program the stops of type check
point, we obtain the previous optimal permutation of position, poi, related to
destination of requests ∈ Di and position related to departure and destination
of requests ∈ Oi. This permutation can be needed, as detailed in part B) point
6., in case no permutation of taxi i can serve the requests ∈ Di ∪Oi respecting
all the constraints (this can be due to the lateness of taxi i with respect to his
schedule). This permutation can be needed to guarantee the solvability of the
problem, and hence to ensuring to service all the accepted requests.
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Let H and J be sets of requests, we de�ne P (H,J) as the set of all the
permutations of the position related to destination of requests ∈ H and to
departure and to destination of request in J . With this notation we can say
that poi ∈ P (Di, Oi).

For every active taxi i and every set of requests K, we de�ne Fi(Di,K) ⊂
P (Di,K) as the subset of feasible permutations for the taxi i. A permutation
c ∈ P (Di,K) is feasible for the taxi i if taxi i can start from position pdi at
time tdi and visit all the positions in the sequence induced by c before the
maximum visiting time associated to each position and the capacity constraint
of the vehicle is satis�ed. The system is fully dynamic, and hence all requests
are supposed to be sent to the system when the user is ready to leave2. For
this reason there are not lower bound on the visiting time for any stop. For
destination stops there is an upper bound caused by the maximum arrival time
of the user related to the stop. A permutation c ∈ P (Di,K) is feasible for taxi
i, i.e. c ∈ Fi(Di,K), if ∀k ∈ {1, ..., n}, with n = |Di| + 2|K| the number of
positions in the permutation c, the time constraint and the capacity constraint
are satis�ed.

1. Time constraint on user requests:

tdi + T (pdi, c(1)) + t(c(1)) +
k−1∑
h=1

[T (c(h), c(h+ 1)) + t(c(h+ 1))] ≤ u(k)

(2.3.3)

where:

• c(k) is the k-position in the permutation c

• u(k) is the upper bound on the k-position in the permutation c con-
sidering u(k) = +∞ if c(k) is a departure.

2. Time constraint on taxi working time:

tdi+T (pdi, c(1))+t(c(1))+
n−1∑
h=1

[T (c(h), c(h+1))+t(c(h+1))] ≤ wti (2.3.4)

where:

• c(k) is the k-position in the permutation c

2This choice is due to the fact that since the service is not relying on a �xed �eet of
vehicles but on a dynamic �eet of taxis is not possible to ensure the availability of a vehicle
considering the potential high demand for a taxi sharing service. This can be considered as a
future improving of the service, that need to ask the taxi drivers their availability in advance,
or to limit the number of accepted booked requests to a given number, in order to have a high
probability of having enough taxi on duty to serve all the accepted booked requests.
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• wti is the maximum working time of taxi i.

3. Capacity constraint:

usi +
k∑

h=1

x(c(h))us(c(h)) ≤ Ui (2.3.5)

where:

• usi is the number of users related to requests in Di

• x(s) = 1 if the stop s is of type departure and x(s) = −1 if the stop
s is of type destination

• us(s) represents the number of user related to stop s

• Ui represents the capacity of taxi i

We want to select for each active taxi i a set of requests Ki ∈ O ∪ C and a
permutation si ∈ P (Di,Ki) that satisfy:

1. si ∈ Fi(Di,Ki) or it is the previous permutation poi.

2. Ki ∩Kj = ∅ if i 6= j

3. O ⊆
⋃n

i=1Ki

The aim is to minimize an objective function that takes into account the
quality of selected permutations {si} and the number of requests ∈ O ∪ C \⋃n

i=1Ki.
In the �rst point it is necessary to consider the previous permutation, even

if it is not feasible, in order to guarantee the solvability of the problem. The
second point prevents from servicing the same request by more than one taxi.
The third point asks that all open requests are covered by active taxis.

The requests in ∈ O ∪C \
⋃n

i=1Ki are requests that will not be accepted by
the active taxis. The �nder process will try to assign them to an available taxi.

B) Permutation and group generation

In order to generate for every active taxi i all feasible permutations s ∈ Fi(Di,K)
for every set K ∈ O ∪ C we use the following procedure:

1. de�ning the set of set Gi as an empty set.

2. de�ning the set of permutations Si as an empty set.

3. generating all feasible permutations Fi(Di, ∅) allowing to service the on
board and assigned requests of taxi i and adding the feasible permutations
to Si.
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4. if there is at least one feasible permutation we add ∅ to Gi.

5. iterating on all requests r ∈ O ∪ C and:

• for every permutation s ∈ Fi(Di,K) t.c. K ∈ Gi, we verify the
possibility to insert the departure and the destination of r in all the
possible ways in s.

• we add all obtained feasible permutations, Fi(Di,K ∪ r), to Si

• if |Fi(Di,K ∪ r)| ≥ 1 we add the set Ki ∪ r to Gi.

6. if Oi 6∈ Gi, we add Oi to Gi and poi to Si.

Gi is the set of set K ⊂ O∪C t.c. |Fi(Di,K)| ≥ 1, we refer to Gi as the set
of groups of requests that taxi i can cover.

Theoretically this procedure can lead to an exponential number of requests
groups and associated feasible permutations. However, since all requests are
imminent (due to the fact that there is no reservation), the probability that two
di�erent requests in C ∪O can be serviced by the same taxi i is low, considering
also the on board and assigned requests in Di and, hence, the number of groups
does not explode, as shown in chapter 4. Furthermore, from an application
perspective, since these computations are independent from taxi i to taxi j the
process is fully parallelizable.

C) Set partitioning

We have to assign to every permutation s a cost that takes into account the
time needed by the taxi to service the requests and the quality of the service
for the users. To compute the cost, we use the following formula:

c(s) = T (s)− η ∗M(s) (2.3.6)

where:

1. T (s) represents the time needed by the taxi to service permutation s;

2. M(s) is the sum, on all the destinations included in s, of the di�erence
between the maximum arrival time to destination (according to user re-
quests) and the expected arrival time of the taxi;

3. η is a positive parameter.

For every group K of requests, covered by a taxi i, we assign the cost ac-
cording to the following formula:

c(K) = min
s∈Fi(Di,K)

c(s) (2.3.7)

and we de�ne the permutation s that realizes the minimum as the active
permutation associated to group K.

28



We de�ne the cost of not accepting a con�rmed request r ∈ C with the
following formula:

q(r) = θ ∗ length(r) (2.3.8)

where θ is a parameter and length(r) is the time needed to travel from the
departure to destination of request r.

We introduce the ILP model that has to be solved in order to choose the
optimal permutation for each active taxi.

Sets:

• O: open requests

• C: con�rmed requests

• R = O ∪ C
• T : active taxis

• Gi: groups ∀i ∈ T

Parameters:

• argi =

{
1 if group g ∈ Gi, of taxi i ∈ T , cover r ∈ R
0 otherwise

• cgi = group cost g ∈ Gi, of taxi i ∈ T
• qr = cost of do not cover r ∈ C

Variables:

• xgi =

{
1 if group g ∈ Gi, of taxi i ∈ T is selected

0 otherwise

• yr =

{
1 if requested r ∈ C is refused

0 if requested r ∈ C is accepted

Objective function:
min

∑
i∈T

∑
g∈Gi

cgixgi +
∑
r∈C

qryr (2.3.9)

Constraints: ∑
g∈Gi

xgi = 1, ∀i ∈ T (2.3.10)

∑
i∈T

∑
g∈Gi

argixgi = 1, ∀r ∈ O (2.3.11)

∑
i∈T

∑
g∈Gi

argixgi + yr = 1, ∀r ∈ C (2.3.12)
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The �rst constraint ensures that exactly one group is selected for each taxi.
The second constraint ensures that every open request is covered by an active
taxi. The third constraint ensures that every con�rmed request is either covered
by an active taxi or it is refused.

The set partitioning is a NPhard problem [26] and, hence, the time to solve
the problem to optimality can be extremely large if the number of variables
is high. However, from an application perspective, it is possible to start the
optimization from an initial feasible solution selecting Ki = Oi ∀i ∈ T and
to give to the optimizer a time limit for the optimization. If the time limit
is reached before having found the optimal solution, the incumbent solution is
accepted. In the analyzed scenarios, presented in chapter 4, even though the
number of variables reaches 17268, it has not been necessary to set a time limit,
since the optimal solution was always found in few seconds due to the fact that
the ratio of argi = 1 is low, since the problem is highly constrained as detailed
in chapter 4.

The requests r ∈ C are not accepted by active taxis if in the solution yr = 1,
and in this case their state is updated to for available. The requests r ∈ C
are accepted by active taxis if in the solution yr = 0, and in this case their
state is updated to open. For every open request we update the associated taxi
according to the group covering it.

For each active taxi i we have selected a group Ki for which xgi = 1, and
to this group is associated an active permutation si that realizes the minimum
cost: we call it as the chosen permutation of taxi i. In the next paragraph we
describe how to obtain from the chosen permutations the updated schedules for
each active taxi.

D) Construction of new schedules

In order to generate new groups and permutations, it is necessary to know
where the taxi will be in the short future, since the present position of a taxi
would be out of date during the time needed by the processes presented in this
chapter, and hence the new schedule may not be feasible according to the new
position. To know where the taxi would be in the future, a �rst option could
be to consider the �rst departure/destination position in its schedule, and to
construct from there new permutation. However the �rst departure/destination
position can also be not closed in time and space to the present position, and
this would imply to �x the schedule of the taxi for a long time, loosing the pos-
sibility to serve other users on the way. For these reasons, in order to improve
the �exibility of the service, if two consecutive positions in the chosen permuta-
tion of some taxi are too far away, one or more check points are inserted in the
middle.

We want two consecutive stops in the schedule to have a distance of max-
imum Tmax time within them. We compute the number of check points to be
inserted within two consecutive positions of the chosen permutation according
to the formula:
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Ncp = bT (pi, pi+1)
Tmax

c (2.3.13)

and the time distance between two stops is computed with:

tcp =
T (pi, pi+1)

Ncp
(2.3.14)

Once we have the number of check points Ncp and the time distance between
two consecutive stops tcp, we generate the stops in the middle with position on
the shortest path respecting the computed time distance between stops.

This process is done for every pair of consecutive positions in the chosen
permutation si of every active taxi in order to obtain updated schedules for
every active taxi.

2.3.2 Taxi management

In this section we present from the second to the last step of the optimizer.
Di�erently from the �rst step, they involve one taxi at a time.

2) Closing taxis This process evaluates whether, after the schedules updat-
ing, there are some active taxis without any stop to visit. In this case, it means
that in the optimal solution, computed in the last optimization cycle, this taxi
has no role in servicing open and con�rmed requests. This happens because
there are not suitable requests for the taxi, according to its position, or because
the taxi is close to its maximum working time and the taxi driver can not satisfy
any request before the end of his/her working shift. Regardless of the reason,
this process ends the ride of every active taxi without any stop in its schedule,
and the taxi enters the end of the ride mode.

3) Dealing exceptions If some active taxi has thrown some exceptions of
type interrupted or no-show, as described in details in section 1, this process
manages them. The aim of this process is to update their schedules taking into
account that one or more stops are not necessary to be visited any more. The
needed steps are the following:

1. we consider the actual position of the taxi and the actual time and we
generate the set Pf of all the feasible permutations of the positions related
to requests on board, assigned or covered by the taxi.

2. we choose the permutation in Pf with the minimum cost computed as
described in section 2.3.1.

3. once we have the chosen permutation, we add in the middle some check
points, if necessary, as described in section 2.3.1, and update their sched-
ules; hence those taxis exit the waiting mode and enter the navigation
mode if their schedule has at least one stop or, otherwise, they enter the
end of ride mode.
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4) Deleting canceled requests If a request had been canceled by users we
need to update the schedule of the active taxi covering it. We can change the
schedule of the taxi only after the last �xed stop. For �xed stops that are referred
to the canceled request, we change their type into check point. To update the
schedule we execute the following steps:

1. we consider the positions of departure Pd and the time of departure td as
described in section 2.3.1;

2. we generate the feasible permutation Fi(Di, Oi) removing the canceled
request from the assigned or from the covered requests;

3. we choose the permutation s ∈ Fi(Di, Oi) with the minimum cost com-
puted, as described in section 2.3.1;

4. once we have the chosen permutation, we add in the middle some check
points if necessary, as described in section 2.3.1, and we update the sched-
ule and the request state to canceled.

5) Considering visited stops This process updates the state of requests
related to stops that were visited by some active taxis. We can have the following
cases:

1. if the visited stop is of departure type, we update the state of the respective
request to on board ;

2. if the visited stop is of destination type, we update the state of the re-
spective request to serviced ;

3. if the visited stop is of check point type, we do nothing.

Once a stop has been considered, it is removed from the schedule of the taxi.

6) Fixing new stops This process establishes the stops within the schedules
of active taxis in order to prevent the taxi from visiting the last �xed stop,
since, in this case, the taxi would enter the waiting mode and so losing time.
At once, it is important to avoid to �x too many stops, otherwise the �exibility
of the service, in updating the optimal strategy to service the requests, would
be reduced. To �x new stops we use the following procedure:

1. we compute the maximum time related to the next optimization cycle in
which the optimizer will �x new stops as: Tnext = pt + mc, where pt is
the present time and mc is the maximum cycle time3.

2. we compute for every stop s in the schedule the earliest arrival time of
the taxi to stop s: ES considering the taxi moving at speed limit from the
latest updated position to the stops in the order speci�ed by the schedule.

3In the simulator described in section 3, every cycle has the same length and hence mc =
dt = 30 seconds in every cycle.
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3. we �x the stops s for which: Es ≤ Tnext.

4. if a �xed stop is of departure type we update the status of the related
request from open to assigned.

In this way we are reasonably sure that the taxi will not visit the last �xed
stop before the time in which the process of the next optimization cycle will �x
other stops. The �xed stops are forwarded to the taxi drivers with the details
of the possible new requests assigned to the taxi.

2.4 The �nder module

In this section we describe the third process involved in �nding available taxis
for the requests that have not been accepted by active taxis.

The output of this process is:

• to select available taxis to send the request of starting a new ride;

• to produce the schedules that allow selected taxis to service the related
requests.

The structure of this section is similar to section 2.3.1, since the aim of both
is to construct schedules. The main di�erences with the optimizer result from
the fact that the available taxis have not on board and assigned requests and
that schedules have to be constructed only for the selected available taxis. This
section is divided in four steps:

A) In the �rst part we de�ne the mathematical problem starting from the data
about available taxis and for available requests;

B) In the second part we show how to compute all the possibilities to service
the requests for available taxis;

C) In the third part we detail the ILP model needed to cover optimally the
requests for available taxis;

D) In the fourth part we describe how to obtain, from the solution of the
mathematical problem, the schedules for the selected available taxis.

A) From data to mathematical problem

For every available taxi the position, the parking area in which the taxi is
queued and the time when the taxi had been queued are known.

Taxis can start their ride at time t, which represents the expected time to
give taxis their schedules. For each taxi i, we de�ne pi and t as the information
about position and time from where we have to construct their routes.

Let K be a set of requests, we de�ne P (K) as the set of all the permutations
of the position related to the departure and destination of requests in K. We
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say that a permutation c ∈ P (K) is feasible for taxi i, and we write c ∈ Fi(K),
if taxi i can start from position pi at time t and visits all stops in the sequence
c before the maximum visiting time associated to each stop and the capacity
constraint of the vehicles is respected.

We de�ne the set V as the set of requests with state for available, indicating
the requests that the �nder has to assign to available taxis. The problem
consists in selecting which available taxi is to activate and in selecting for every
activated taxi i a set of requests Ki ∈ V and a permutation si ∈ Fi(Ki) that
satisfy:

1. Ki ∩Kj = ∅ if i 6= j

in order to minimize an objective function that takes into account the quality
of selected permutations {si} and the number of requests in V \

⋃n
i=1Ki.

The requests in V \
⋃n

i=1Ki are requests that can not be accepted by available
taxis and, hence, are rejected by the service.

B) Permutation and group generation

In order to generate for every available taxi i all feasible permutations s ∈ Fi(K)
for every set K ∈ V , we use the following procedure:

1. de�ne the set of set Gi as an empty set;

2. de�ne the set of permutations Si as an empty set;

3. we add ∅ to Gi and the trivial permutation with zero positions to Si.

4. iterate on all the requests r ∈ V and:

• for every permutation s ∈ Fi(K) t.c. K ∈ Gi, we verify the possibility
to insert the departure and the destination of r in all the possible ways
in s.

• we add all the obtained feasible permutations, Fi(K ∪ r) to Si

• if |Fi(K ∪ r)| ≥ 1 we add the set K ∪ r to Gi.

5. we remove ∅ from Gi and the trivial permutation with zero positions from
Si.

Gi is the set of set K ⊂ V t.c. |Fi(K)| ≥ 1; we refer to Gi as the set of groups
of requests that taxi i can cover.

C) Set partitioning

We have to assign to every permutation s a cost that takes into account the
time needed by the taxi to serve the requests and the quality of the service for
the users. We compute the cost with the same formula de�ned in 2.3.1.
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c(s) = T (s)− η ∗M(s) (2.4.1)

For every group K of requests covered by a taxi i, we assign the cost accord-
ing to the following formula:

c(K) = min
s∈Fi(K)

c(s) (2.4.2)

and we de�ne the permutation s that realizes the minimum as active per-
mutation associated to group K.

We de�ne the cost of not accepting a con�rmed request r ∈ V with the
following formula:

q(r) = δ ∗ length(r) (2.4.3)

where δ is a parameter and length(r) is the time needed to travel from the
departure to destination of request r. We underline that the parameter δ is a
di�erent parameter from θ which is used by the optimizer to compute the cost
of not accepting a request with the active taxis; each of them have to be set
independently.

We introduce the ILP model that it is necessary to solve in order to choose
which taxi has to be activated and the optimal permutation for each activated
taxi.

Sets:

• V : requests for available taxis

• T : available taxis

• Gi: groups ∀i ∈ T

Parameters:

• argi =

{
1 if group g ∈ Gi, of taxi i ∈ T , cover r ∈ V
0 otherwise

• cgi = group cost g ∈ Gi, of taxi i ∈ T
• qr: the cost of not accepting request r ∈ V
• pi: identify the parking area of taxi i ∈ T
• ni: identify the position of taxi i ∈ T in the parking area pi

Variables:

• xgi =

{
1 if group g ∈ Gi, of taxi i ∈ T is selected

0 otherwise

• yr =

{
1 if request r ∈ V is refused

0 if request r ∈ V is accepted
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• zi =

{
1 if taxi i ∈ T is activated

0 otherwise

Objective function:
min

∑
i∈T

∑
g∈Gi

cgixgi +
∑
r∈V

qryr (2.4.4)

Constraints: ∑
g∈Gi

xgi = zi, ∀i ∈ T (2.4.5)

∑
i∈T

∑
g∈Gi

argixgi + yr = 1, ∀r ∈ V (2.4.6)

zi ≤ zj , ∀i, j ∈ T t.c. pi = pj and nj < ni (2.4.7)

The �rst constraint ensures that at most a group can be selected for every
taxi, and that the taxi is activated if and only if one of its groups is selected.
The second constraint ensures that every request is either covered by a taxi or
refused. The third constraint ensures that the queued time is respected at each
parking area.

Taxis i ∈ T are chosen to be activated if in the solution zi = 1, and in this
case their state is updated to in activation. The requests r ∈ V are not accepted
by the service and hence are rejected if in the solution yr = 1. The requests
r ∈ V are covered by some selected available taxi if in the solution yr = 0, and
in this case their state is updated to for in activation.

D) Construction of new programs

From the optimal permutation of the selected groups of in activation taxi the
schedules for taxi drivers are constructed according to the procedure described
in section 2.3.1, with the di�erence that the �rst stop of each schedule is �xed
as default.

At this point the request of starting a ride is forwarded to the chosen available
taxis. If a available taxi accepts the ride its state becomes active, the covered
requests are accepted, and their state is set to open (or to assigned if the stop
related to the departure is �xed). If an available taxi does not accept the ride,
its state is updated to enrolled and the request state is reset to for available.
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Chapter 3

Agent-based simulation

In this chapter we describe the Taxi Sharing simulator which allows to forecast
how the Taxi Sharing service will work taking into account citizens, taxi drivers
and the municipality. For the client what it is important is how much time
he/she will have to wait for the taxi, how much time the detours to serve other
clients on the same vehicle will take, and how much the fare is. For the taxi
driver what is important is how many clients the taxi will serve each hour and
how much he/she will earn from the Taxi Sharing activity. For the municipality,
it is important to know which proportion of the transportation demand can be
serviced by the service, how much it can help in reducing the use of private cars
in urban context, and whether the service needs to be subsidized. To answer
these questions, we developed an agent based Taxi Sharing simulator; we refer to
[27, 28, 29] as examples of agent based simulation methods in the transportation
�eld.

The developed simulator enables the authority of cities to forecast how Taxi
Sharing could work from a quantitative perspective, with respect to users, taxi
drivers and to the municipality. The simulator needs all the data which are
necessary to run the service mentioned in the previous chapter: road network,
taxi features and parameters; furthermore, the simulator needs some data to
simulate the behavior of users and taxi drivers agents. In section 3.1 we present
the main features of the simulator. In sections 3.2 and 3.3 we detail respectively
how the interaction of users and taxi drivers with the service is simulated. In
section 3.4 we present how the simulator can be used to have a trial of the service
and, �nally, in section 3.5 we detail which statistics the simulator provides on
the quality, e�ectiveness, and e�ciency of the service.

3.1 Characteristics

The simulator is designed to run simulations of the service for 24 hours, in order
to have a complete overview of the performance of the service in the di�erent
periods of the day. To enable the simulator to run the simulations of 24 hours of
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service in less then 24 hours, the simulator runs in cycle the following processes:

1. answerer process

2. optimizer process

3. �nder process

One cycle simulates dt = 30 seconds of service and, hence, it is enough to
run n = 24∗3600

30 = 2880 cycles to simulate 24 hours of service.

All data about the road network and parameters are supposed to be constant
within each hour of the day and potentially di�erent among di�erent hours, as
it is presented in chapter 4.

3.2 Simulation of customers

According to the user cases presented in section 1.1, the user behavior is sim-
pli�ed:

• we simulate Case U1: asking for the ride conditions;

• we suppose the user always sends the request according to Case U2: send-
ing the request ;

• we do not simulate Case U3: deleting the request ;

• we do not simulate Case U4: interrupting the ride.

In Case U2 we suppose that user always sends the request. This is equivalent
to simulate only the con�rmed requests, i.e. those that have to be serviced by
taxi sharing. We do not simulate the process of con�rming/not con�rming a
ride according to maximum arrival time to destination and price, since we have
not developed a elasticity model of user's con�rmation ratio with respect to
price and time.

Case U3 is not simulated since it is supposed to be rare cases, because the
service is without reservation.

Case U4 is not simulated, but we underline that from a service performance
perspective it will increase the e�ciency of the service, and the quality for other
users, since the ride is already paid and the taxi is free from the task to visit
the destination of the user when he/she interrupts the ride.

The expected number of requests Eh[nr] for every hour of the day has to be
given as an input to generate the number of requests arriving to the service every
cycle, dt = 30 seconds, according to a Poisson distribution with λ = Eh[nr]∗dt

3600
that represents the expected number of requests that arrives every dt seconds.

For every request it is necessary to generate the departure point and the
destination point. To this aim, it is necessary to upload in the simulator the
following data1:

1In chapter 4 we present the details of the data used for the feasibility study for the city
of Milan.
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• a set of zones that cover the road network;

• for every hour of the day t, a origin/destination matrix ODt, where
ODt[i, j] rapresents the probability that the request has the departure
in zone i and the destination in zone j.

According to the hour of the day, t, the departure and destination zones of
the request are generated with matrix ODt. Once the zones are selected, in
order to generate the departure and destination points, they are sampled with
uniform distribution within all the point of the arcs assigned2 to the selected
zones.

Finally we generate the number of users for every request according to a
discrete distribution with probability pi ∈ [0; 1] ∀i ∈ {1, ..., nmax}, where pi

represents the probability that the request is for i users and nmax represents
the maximum number of users allowed by the service.

3.3 Simulation of taxis

According to the taxi cases presented in section 1.2, also the taxi behavior is
simpli�ed:

• we simulate Case T1: becoming available mode as it is;

• we simulate Case T2: becoming active mode supposing that taxis always
accept the ride3;

• we simulate Case T3: navigation mode supposing that on board users
never ask to leave the car before arriving to destination and, hence, we do
not consider Case T6: ride interrupting mode;

• we simulate Case T4: boarding user mode supposing that users are always
present and con�rm the details of the ride4;

• we simulate Case T5: disembarking user mode, Case T7: waiting mode
and Case T8: end of the ride mode as they are described in section 1.2.

It is possible to enhance the simulator to consider additional cases, if it
is necessary to test the impact on the performance of the service following
possible exceptions, but we didn't explore these possibilities for the reasons
above presented.

2Each arc is assigned to the zone containing the longest part of the arc.
3If a taxi driver do not accept a ride, this mean that he forgot to remove his availability,

and hence he is not really available. We simulate only taxi that are really available and hence
ready to accept a ride.

4We suggest that the fee of the ride is paid by the user also in case of no show or wrong
information that lead the user to be uninterested to the booked ride. With this assumption
the e�ciency of the service increase if some user does not show up, or is not interested in the
ride, since the revenue is the same, but the taxi has not to visit the destination of the user
request.
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The number of taxis ntaxih for every hour of the day has to be given as an
input, in order to generate new available taxis when the sum of the number of
active taxis and available taxis is less than ntaxih. When a new available taxi
is generated it is chosen randomly among the taxis that are enrolled but are not
already available neither active. The taxi position is selected randomly on the
arcs of the network and the maximum time for ending the taxi ride is set to be
tmax after the actual time.

To simulate taxi movement on the road network during navigation mode,
we suppose that the taxi moves on the road network at the average speed of the
arc on which the taxi is. Tra�c lights and other cars on the network are not
explicitly considered since both aspects are included in the average speed. In
this way the actual position of the active taxi is updated following the shortest
path in the direction of the �rst stop that has to be visited.

To simulate the boarding and disembarking user mode a �xed time bt is
supposed to be needed for servicing the users. After bt seconds that the taxi
has reached a stop associated to a departure or a destination, this stop is marked
as visited.

3.4 Interactive simulation of requests

The simulation can run in real time in order to monitor on the screen the ongoing
simulation, visualizing the waiting people and the moving taxis, the positions
of which are updated every second, in Figure 3.1 it is reported a screenshoot.

It is possible to zoom in and out to focus the attention on a speci�c area or
to have an overview of the service. The users requests, the taxis' availability
and the speed of taxis on the network are simulated according to uploaded data.

To see how the service reacts to a speci�c request, it is possible to insert a
request selecting on the monitor the desired departure and destination point.
The simulator answers with the maximum arrival time to destination, and with
the fare of the ride. If the request is accepted by the service, it is possible to
monitor on the screen when the taxi arrives to the departure point to pick up
the user, which route it follows to pick up or deliver other users, and when it
reaches the destination. This real time functionality of the simulator allows to
have a trial of the service.

3.5 Results

While a simulation is executed, relevant data about users and taxi drivers are
recorded. For each user ride during the simulation the number of users, the
positions of departure and destination, when the taxi ride is asked, when the
taxi arrive, when the destination is reached, the detour time and the fare of the
ride is recorded. An estimation of travel time from origin to destination with
an individual taxi, compared to the travel time with Taxi Sharing allows to
compute how much time has been lost due to detours done for servicing other
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Figure 3.1: Taxi Sharing vehicles are presented as square, with a color depending
on the number of users on board; waiting users are blue circles.

clients on board. For each taxi ride, the simulator records from which parking
and when it starts, when it �nishes, how many clients it services and the revenue
for the driver.

These data for all users rides and all taxis rides allow to compute statistics
with respect to users and taxi drivers. With respect to users, the simulator
reports the number of serviced users, the average waiting time and the average
detour time. This information is provided in an aggregate form and splits spa-
tially and temporally, since the quality of the service can depend on the area
of the city or on the hour of the day. With respect to taxi drivers, simulator
reports: the number of taxi rides, the average number of serviced users per
hour, the relevant average revenue per hour and the average length of the taxi
ride. This information is provided in an aggregate form and splits spatially and
temporally, since the e�ciency of the service can depend on the area of the city
or on the hour of the day.

To compare the e�ciency of Taxi Sharing in di�erent scenarios and with that
of individual taxi, the simulator computes an e�ciency index that we de�ne with
the following formula:

e =
Rs

Rt
(3.5.1)

where:
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• Rs =
∑

r∈S D(or, dr) represents the sum of the length of all the serviced
requests;

• Rt =
∑

t∈T d(t) represents the total sum of traveled distance of all taxis;

The e�ciency is a index related to the amount of served request per unit of
traveled distance. Traveled distance re�ects use of resources in terms of human
work and energy used, as well as pollution produced.

In chapter 4 we report details about the data utilized and the results obtained
from three di�erent simulations executed for the Municipality of Milan using the
simulator presented in this chapter.
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Part II

A feasibility study for Milan
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Chapter 4

Development scenarios for

Taxi Sharing

The feasibility study for the city of Milan has been done in collaboration with
the mobility agency of the Municipality of Milan, AMAT, in order to evaluate
how Taxi Sharing could work. The interest of the Municipality for this service
is to increase the sustainable mobility service in order to reduce the dependency
on private cars and to enhance the o�er of public transportation.

The city of Milan has a surface of 182 Km2, the population is 1.263.000,
with a commuting population of about 850.000. In the age structure of the
population of the city, the pyramid reaches its peak for the age range 40-44 years,
both males and females. These data must be considered in a general frame of
aging of the Italian population. Along with Germany, Italy is worldwide second
only to Japan in the increase rate of population aged 65 years or more [36].

Taxi Sharing service can be suitable to the city of Milan for the following
reasons: the aging society, the high price of individual taxis, the aim of reducing
the use of car within the city and, at the same time, to enhance the o�er of
mobility services. The current taxi �eet, consisting of 4855 taxis, it is not fully
exploited, since taxi drivers often lose time at the parking areas waiting for a
client and, on the other hand, during special events the demand is high and the
�eet is not able to service all requests. These aspects are ine�cient both for
taxi drivers and users and have an answer in Taxi Sharing. The e�ciency of the
individual taxi, as de�ned in section 3.5, has been computed, from data about
individual taxi ride in Milan to be 42% and, hence, quite low.

The Municipality of Milan is facing the challenge of reducing by 50% the
use of private cars in the city of Milan, according to the referendum about
urban mobility approved, with 79% of consent, on June 13th, 2011. To enhance
the mobility services it is crucial to use in the most e�cient way all available
resources.

In the executed simulations Taxi Sharing can be used to go from every point
to every point of the city of Milan 24 hours a day. In section 4.1 we present a
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simulation with a level of demand for the Taxi Sharing around 0.5% of the total
mobility, which represents the use of car sharing system in the city of Milan1. In
section 4.2 we present a simulation with a level of demand for the Taxi Sharing
around 2% of the total mobility, which represents the use of individual taxi in
the city of Milan2. In section 4.3 we present a simulation with a level of demand
for the Taxi Sharing around 10% of the total mobility; this scenario represents
the potentiality of the service.

In the next paragraphs we present the data used in the simulations and the
parameters set to the same values in all scenarios according to the optimization
algorithm and the simulator.

Data

The road network graph is the base on which the simulation is executed, since
the departure and destination points of requests are on the road network, and
the taxis are waiting and moving on the road network. We use a graph3 of the
city of Milan with all the information detailed in section 2.1. Based on size of
the graph, |N | = 14021 and |E| = 26873 we decide to compute in advance all
traveling times between all pairs of arcs4.

To simulate Taxi Sharing requests we use an origin destination matrix, re-
lated to a division of the municipality of Milan in 373 zones. For every hour
t, the matrix of the total demand of mobility, TODt, made by the munici-
pality of Milan in 2005 and successively updated, speci�es on statistical base
how many trips are made from each zone to any other zone. To obtain the
origin/destination probability matrix for taxi sharing requests, as detailed in
section 3.2, we use the following formula5:

ODt[i, j] =
TODt[i, j]∑

i

∑
j TODt[i, j]

(4.0.1)

In Figure 4.1 we present the level of total mobility inside the city of Milan
according to the hour of the day.

The use of Taxi Sharing, in respect of the total demand, has been estimated
to change during the day, being subject to di�erent levels of traditional public
transportation o�er, as shown in details in the next sections. The spatial dis-
tributions of requests of the Taxi Sharing in di�erent areas of the city, has been
supposed to be as the total mobility6.

The number of taxi working in each di�erent hour of the day has been
computed according to the working shift of each taxi driver of the city of Milan.

1AMAT elaboration on Car Sharing data
2AMAT elaboration on Taxi data
3AMAT road network graph elaboration
4The space needed to store all the distance is equal to 2.9 GB, and the time needed to

compute all the distances using 8 process in parallel mode is 33 minutes.
5With this approach we suppose the demand for Taxi Sharing to be a ratio of the total

mobility demand but having the same origin/destination distribution.
6According to the matrix ODt
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Figure 4.1: Number of movements within the city of Milan according to the
hour of the day.

In Figure 4.2 we present these data. The number of taxi driver o�ering Taxi
Sharing service in the di�erent hour of the day had been computed as a ratio
of the number of taxi drivers as shown in the next sections.

The average speed of the taxi on the road network has been computed from
gps data of taxi drivers in an aggregated form. We use the computed average
speed of every hour on all the road network. It would be a problem to run
the service using this type of data, since the prediction of travel time of each
arc it is important to the optimization of the service. For simulation purpose,
since the aim is to test average performance of the service, we judge that the
drawback of this assumption is negligible. The Figure 4.3 presents the average
speed (Km/h) in each hour of the day.

We suppose all the taxis to have capacity = 3, considering one user on the
front seat and two user on the rear seats, to allow each user to have his/her own
space, and board and alight the vehicle from his/her own car door without the
need to bother other users.

Parameters

In this section we report the parameters that we have set to the same value in all
the simulations according to the optimization algorithm and to the simulator.
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Figure 4.2: Number of working taxis in the city of Milan according to the hour
of the day.

Figure 4.3: Average speed Km/h in the city of Milan according to the hour of
the day.
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According to the simulator we set:

• the parameters used to generate the number of users of each request7:

pi =

{
0.8 if i = 1
0.2 if i = 2

(4.0.2)

• the parameters used to set the working shift of taxi drivers8: tmax =
3 hours

• the parameters used to simulate the boarding and disembarking times9:
bt = 30 seconds

According to the algorithm we set:

• the function that gives the needed time at each stop, coherently with the
respective function used in the simulator:

t(s) =

{
30 seconds if s is a departure or a destination

0 if s is a checkpoint
(4.0.3)

• the parameter used to compute the cost of each permutation: η = 0.5

• the parameter used to compute the cost of not accepting a request with
the active taxis: θ = 2

• the parameter used to compute the cost of refusing a request: δ = 4

• the parameter used to compute the number of checkpoints to be inserted
between two stops: Tmax = 120 seconds

We set these parameters, to �x value in every hour of the day, in all the
presented, simulation since we found experimentally that they are averagely
e�ective. A further research step is the dynamic adaption of parameters ac-
cording to service conditions. This can improve sligthly the e�ciency of the
service, since we found little change in service performances, according to these
parameters calibration. What in�uence strongly the e�ciency of the service is
the speed on the road network, the demand level, and parameters α and β.

7This value as been set coherently with the assumption that most of the ride are individual
trip, and considering that three people can not book taxi sharing since the capacity has been
set to three and hence would not be possible to share the ride with other users. We consider
that an option could be to allow groups of three people to use taxi sharing with the rule that
them would use rear seat, letting the front seat free for another user. In this way three people
would occupy the place that normally is occupied by maximum two users.

8This value come from conversations engaged with some taxi drivers about the maximum
time of a taxi sharing ride.

9This time has been estimated considering that as a urban mobility system most of the
ride are without luggage, and the assumption that the payment method is cashless.
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The e�ects on the service of these value are assessed in the three scenarios pre-
sented in the next sections and in appendix A where we present a focus on the
calibration parameter β.

In each one of the next sections we detail the values of parameters that
depend on the simulation and we present the obtained results.

4.1 Low demand scenario

In this scenario we test the performance of Taxi Sharing supposing the lowest
level of demand of the three presented scenarios. In the next sections we present
the additional parameter used for this scenario, the results obtained concerning
the performances of the service and the details on the computational e�ort
needed to optimize the service.

4.1.1 Parameters

The use of Taxi Sharing, in respect to the total demand, has been estimated to
change during the day according to di�erent levels of traditional public trans-
portation o�er, as shown in Figure 4.4.

Figure 4.4: Use of Taxi Sharing in respect of the total mobility according to the
hour of the day.

The total demand of mobility inside the city of Milan, presented in Fig-
ure 4.1, has been multiplied by the proportion of Taxi Sharing use to obtain
the number of Taxi Sharing users per hour according to the hour of the day
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as shown in Figure 4.5. The daily number of expected users is 13811 which
corresponds to 0.5% of the daily mobility inside the city of Milan.

Figure 4.5: Taxi Sharing demand according to the hour of the day.

We suppose that each hour 10% of taxi drivers on duty o�ers Taxi Sharing
service. With this assumption and the data about the number of taxi drivers
listed in Figure 4.2, we compute the number of taxi drivers o�ering Taxi Sharing
service according to each hour of the day, as presented in Figure 4.6.

The parameters α and β, used to compute the maximum arrival time to
destination, as described in section 2.2, are set to have the values represented
respectively in Figure 4.7 and in Figure 4.8. These parameters are quite high,
hence in the worst cases the time of the ride can be high in respect to the direct
trip. Nevertheless they have to be high, since the level of demand is quite low,
in order to likely combine di�erent users requests together. We present in ap-
pendix A a focus on the calibration of β on service quality and on computational
complexity.

We set the parameters used to compute the cost of each ride, as presented
in section 2.2, as follows: γ = 3 and δ = 0.8. The cost of a ride for one user,
according to the length of the ride in Km, is presented in Figure 4.9.

4.1.2 Service performances

Using the data presented in the previous section, we run a 24 hours simulation
of Taxi Sharing within Milan. In the next paragraphs we present the obtained
results of the simulation of the service according to users and to taxi drivers.

The number of serviced users is 13724 and the number of refused users is
127. This value represents 1% of the total demand; hence it is really low also
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Figure 4.6: Number of taxi drivers o�ering Taxi Sharing service according to
the hour of the day.

Figure 4.7: The value of α in minutes according to the hour of the day.
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Figure 4.8: The value of β according to the hour of the day.

Figure 4.9: The cost of a ride for one user according to the distance between
his/her departure and his/her destination.
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considering that, since it is a dynamic service, the refused users can forward the
request some time later and likely they are accepted.

The average waiting time is 6 minutes and 46 seconds, while the average
detour time is 4 minutes and 43 seconds. These results show that the quality
of Taxi Sharing is high enough to be considered a good service even though the
worst cases can be a bit long, as mentioned in section 4.1.1. In Figure 4.10
and in Figure 4.11 we present respectively how waiting and detour times change
according to the hour of the day.

Figure 4.10: The average waiting time in minutes according to the hour of the
day.

The waiting time keeps quite constant during the day, while according to
the detour time we underline that it is slightly higher in the rush hours due to
the higher possibility to share the ride with other users.

As per taxi drivers, the number of taxi rides is 1569 and the average length
of a taxi ride is 1 hours and 33 minutes. These data show that, when a taxi
starts a Taxi Sharing ride, even if hypothetically it can satisfy just a request,
this does not happen since other requests are continuously assigned to the taxi
and the ride is prolonged forward for more than one hour in average. The
average number of serviced users per hour is 5.6410, and the average revenue
per hour with the taxi fare presented above is 34 Euros/hour. The e�ciency
in servicing requests, how de�ned in section 3.5, is 94%, more than twice the
value of individual taxi.

In Figure 4.12 we present the average number of active taxis used to serve

10In a normal taxi service, according to conversations with some taxi drivers in Milan, a
taxi serves on average two ride, of one or more users, each hour. There are no o�cial report
on this datum, since a taxi driver do not have to declare when he/she serves a request.
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Figure 4.11: The average detour time in minutes according to the hour of the
day.

the requests, according to the hour of the day.

4.1.3 Computational details

In this section we focus on the dimensions and the time needed to solve the set
partitioning embedded in the optimizer process described in section 2.3, since
it is NP hard. The time needed to generate the groups and permutation is
not critical because it can be done in parallel mode concerning di�erent taxis,
furthermore the needed time is negligible as presented in appendix A.

To solve the ILP model we used CPLEX ILOG in parallel mode with 8
threads.

We de�ne:

• h = #{R} = #{O∪C} as the number of the union of open and con�rmed
requests;

• m =
∑

i∈T #{Gi} as the total number of groups;

• n =
∑

i∈T

∑
Ki∈Gi

#{Perm(Di,Ki)} as the total number of permutations
associated to m groups;

• u = #{argi = 1|r ∈ R, i ∈ T, g ∈ Gi} as the number of not null coe�cient
in the set partitioning matrix;

• z as the time in seconds needed to solve the set partitioning.
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Figure 4.12: Active taxis according to the hour of the day.

How described in Section 3.1, the simulator runs a cycle of processes every
dt = 30 seconds; in Table 4.1 we report the minimum, maximum and average
value, on all cycles of 24 hour simulation, of h, m, n, u and z. About data
reported in Table 4.1, we can notice that:

• the size of the problem does not explode according to permutations and
groups and it is always solvable in few seconds;

• the matrix of the set partitioning is extremely sparse, having in average
less elements di�erent from zero than columns;

• in average u < m since there are also groups that do not cover any open
or con�rmed request;

• the average number of requests and groups it is su�ciently high, this is
the reason of the quality of service.

In Figure 4.13 we report the average number of open and con�rmed requests
(h) according to the hour of the day; we underline that during night hours the
number of h is low, nevertheless in these hours the parameters α and β used to
compute the time windows are higher as shown in Figure 4.7 and in Figure 4.8.

In Figure 4.14 we report average number of groups (m), permutations (n)
and not null coe�cients (u) according to the hour of the day; we notice that
highest number of permutations is at hour = 0 when the level of demand is
not the highest, but it is still quite high and the parameters α and β used to
compute the time windows are already higher as shown in Figure 4.7 and in
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Data minimum maximum average

h 1 85 39.5
m 7 927 297.8
n 8 1684 366.4
u 1 1573 240.1
z 0.02 2.47 0.65

Table 4.1: Minimum, maximum and average of h, m, n, u and z

Figure 4.13: Average number of open and con�rmed requests (h) according to
the hour of the day.
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Figure 4.14: Average number of groups (m), permutations (n) and not null
coe�cients (u) according to the hour of the day.

Figure 4.8. This shows how the number of groups and permutations is strictly
dependent on the parameters used to compute the maximum arrival time.

In Figure 4.15 we report the number of groups (m) according to the number
of open and con�rmed requests (h); these are not average values, but every dot
represents the values of a cycle. We notice how the relation is linear if we omit
the cloud of dots in the region [25; 45]× [400; 1000] that coincide with the values
of cycles in hour = 0.

In Figure 4.16 we report the time needed to solve the set partitioning (z)
according to the number of groups (m); these are not average values, but every
dot represents the values of a cycle. We notice that in most optimization cycles,
the set partitioning needs less than 1.5 seconds to be solved.

4.2 Medium demand scenario

In this scenario we test the performance of Taxi Sharing supposing a level of
demand higher than the previous and similar to the demand of individual taxi.
In this condition it is easier to combine di�erent requests together and hence the
quality and e�ciency of the service could be higher and the fare of the service
could be lower. In the next sections we present the additional parameters used
for this scenario, the results obtained concerning the performances of the service,
and the details on the computational e�ort needed to optimize the service.
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Figure 4.15: Number of groups (m) according to the number of open and con-
�rmed requests (h).

Figure 4.16: Time needed to solve the set partitioning (z) according to the
number of groups (m).
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4.2.1 Parameters

The use of Taxi Sharing, in respect to the total demand, has been estimated to
change during the day according to di�erent levels of traditional public trans-
portation o�er, as shown in Figure 4.17.

Figure 4.17: Use of Taxi Sharing in respect of the total mobility according to
the hour of the day

The total demand of mobility inside the city of Milan, presented in Fig-
ure 4.1, has been multiplied by the proportion of Taxi Sharing use to obtain
the number of Taxi Sharing users per hour according to the hour of the day
as shown in Figure 4.18. The daily number of expected users is 60216 which
corresponds to 2.18% of the daily mobility inside the city of Milan.

We suppose that each hour 40% of taxi drivers on duty o�ers Taxi Sharing
service. With this assumption and the data about the number of taxi drivers
presented in Figure 4.2, we compute the number of taxi drivers o�ering Taxi
Sharing service according to each hour of the day, as presented in Figure 4.19.

The parameters α and β used to compute the maximum arrival time to
destination, as described in section 2.2, are set to have the values represented
respectively in Figure 4.20 and in Figure 4.21. Thanks to the higher demand
these parameters are lower with respect of the previous scenario, and, hence,
the travel time in the worst case is lower especially in day hours. It is possible
to use lower value for α and β since the higher demand increase the probability
to have requests that can be served by the same taxi with short detour. We
present in appendix A a focus on the calibration of β on service quality and on
computational complexity.
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Figure 4.18: Taxi Sharing demand according to the hour of the day.

Figure 4.19: Number of taxi drivers o�ering Taxi Sharing service according to
the hour of the day.
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Figure 4.20: The value of α in minutes according to the hour of the day.

Figure 4.21: The value of β according to the hour of the day.
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We set the parameters used to compute the cost of each ride as presented
in section 2.2 as follows: γ = 3 and δ = 0.6. These values let users save
0.20 Euros/Km with respect of the scenario with lower demand. The cost of
a ride for one user, according to the length of the ride in Km, is presented in
Figure 4.22.

Figure 4.22: The cost of a ride for one user according to the distance between
his/her departure and his/her destination.

4.2.2 Service performances

Using the data presented in the previous section, we run a 24 hours simulation
of Taxi Sharing within Milan. In the next paragraphs we present the obtained
results of the simulation of the service according to users and to taxi drivers.

The number of serviced users is 59508 and the number of refused users is
733. This value as in the previous scenario represents 1% of the total demand;
hence it is really low also considering that, since it is a dynamic service, the
refused users can forward the request some time later and likely are accepted.

The average waiting time is 5 minutes and 33 seconds, while the average
detour time is 4 minutes and 5 seconds. These results, in respect of the results
presented in the previous scenario, show how in average the user time is around
2 minutes lower considering both waiting and detour time. In Figure 4.23 and
in Figure 4.24 we present respectively how waiting and detour times change
according the hour of the day.

The waiting time is quite constant during the day, while according to the
detour time we underline that it is slightly higher in the rush hours due to the
higher possibility to share the ride with other users.
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Figure 4.23: The average waiting time in minutes according to the hour of the
day.

Figure 4.24: The average detour time in minutes according to the hour of the
day.

65



As per taxi drivers, the number of taxi rides is 5127 and the average length
of a taxi ride is 1 hours and 48 minutes. These data show that in this scenario
the taxi rides are in average 15 minutes longer than in the previous scenario
according to the higher level of demand that decrease the possibility to end a
ride before the maximum working time. The average number of serviced users
per hour is 6.42, this is 0.8 higher than in the previous scenario, and for this the
average revenue per hour with the taxi fare presented above is 34 Euros/hour as
in the previous scenario, even if the fares are lower. The e�ciency in satisfying
the requests, as de�ned in section 3.5, is 1.08%, this is a value 157% higher
than individual taxi e�ciency. In Figure 4.25 we present the average number of
active taxis used to serve the requests, according to the hour of the day.

Figure 4.25: Active taxis according to the hour of the day.

4.2.3 Computational details

In this section our focus is on the dimensions and the time needed to solve the
set partitioning embedded in the optimizer process described in section 2.3. We
refer to h, m, n, u and z how they are de�ned in section 4.1.3.

In Table 4.3 we report the minimum, maximum and average value, on all
cycles of 24 hour simulation, of h, m, n, u and z. As per data reported in
Table 4.3 we can notice that:

• also with a higher demand the size of the problem does not explode, ac-
cording to permutations and groups and it is always solvable in few sec-
onds; this is related to stricter parameters α and β. We underline how
with a higher demand it is possible to decrease the values of α and β to
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guarantee a better service and this is also functional to the solvability of
the problem as discussed in appendix A;

• the matrix of the set partitioning is extremely sparse also in this scenario;
this is mainly dependent on the fact that every request is imminent.

Data minimum maximum average

h 1 308 130.5
m 11 3755 1263.6
n 14 5084 1488.7
u 3 4106 1082.1
z 0.06 2.66 1.0

Table 4.2: Minimum, maximum and average of h, m, n, u and z

In Figure 4.26 we report the average number of open and con�rmed requests
(h) according to the hour of the day; we underline that during night hours the
number of h is low; nevertheless in these hours the parameters α and β, used
to compute the time windows, are higher as presented in Figure 4.20 and in
Figure 4.21.

Figure 4.26: Average number of open and con�rmed requests (h) according to
the hour of the day.

In Figure 4.27 we report average number of groups (m), permutations (n)
and not null coe�cients (u) according to the hour of the day; we notice that
at 0 ≤ hour ≤ 5 we have u > m when the level of demand is not the highest,
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but the parameters α and β, used to compute the time windows, are higher,
as presented in Figure 4.20 and in Figure 4.21. This shows how the number of
groups and not null coe�cients is strictly dependent on the parameters used to
compute the maximum arrival time.

Figure 4.27: Average number of groups (m), permutations (n) and not null
coe�cients (u) according to the hour of the day.

In Figure 4.28 we report the number of groups (m) according to the number
of open and con�rmed requests (h); these are not average values, but every dot
represents the values of a cycle. We notice how the relation is linear if we omit
the cloud of dots in the region [50; 80]×[1000; 2000] that coincide with the values
of cycles in hour = 0.

In Figure 4.29 we report the time needed to solve the set partitioning (z)
according to the number of groups (m); these are not average values, but every
dot represents the values of a cycle. We notice that with m ≥ 1000 the relation
is strictly linear. This can be due to the fact that the number of groups is above
1000 mainly in the day hours, as shown in �gure 4.27, and in these hours the
parameters α and β are stricter, as shown in �gure 4.20 and 4.21. For this
reasons even tough the number of groups is higher due to the higher number of
requests and active taxis the set partitioning is highly constrained.

4.3 Car-free scenario

In this scenario we test the performance of Taxi Sharing supposing a revolution
in the mobility of the city of Milan to see which are the potentiality of the taxi
�eet. We test the performances of Taxi Sharing in a mobility system with a
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Figure 4.28: Number of groups (m) according to the number of open and con-
�rmed requests (h).

Figure 4.29: Time needed to solve the set partitioning (z) according to the
number of groups (m).
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low level of use of private motorized vehicles, and a high use other means of
transport within the city.

In the next sections we present the additional parameter used for this sce-
nario, the results obtained concerning the performances of the service and the
details on the computational e�ort needed to optimize the service.

4.3.1 Parameters

The use of Taxi Sharing, in respect to the total demand, has been estimated to
change during the day according to di�erent levels of traditional public trans-
portation o�er, as shown in Figure 4.30.

Figure 4.30: Use of Taxi Sharing in respect of the total mobility according to
the hour of the day.

The total demand of mobility inside the city of Milan, presented in Fig-
ure 4.1, has been multiplied by the proportion of Taxi Sharing use to obtain
the number of Taxi Sharing users per hour according to the hour of the day
as shown in Figure 4.31. The daily number of expected users is 290061 which
corresponds to 10.51% of the daily mobility inside the city of Milan.

We suppose that all the taxi drivers o�er Taxi Sharing service. Since the
number of taxi drivers presented in Figure 4.2, have not the same pattern of
the demand presented in Figure 4.31, we suppose the number of taxi driver to
be always 3328 that is the maximum number of taxi driver in working shift at
the same time. In the section related to the performance of the service we will
present the number of active taxis needed to satisfy the demand.
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Figure 4.31: Taxi Sharing demand according to the hour of the day.

We suppose the average speed on the road network to be higher than the
actual speed, as presented in Figure 4.32, as a consequence of the low level of
private motorized mobility.

To compute the maximum arrival time to destination, as described in section
2.2, we set the parameter α = 5 in all the hours of the day and the parameter
β to have the value represented in Figure 4.33. Thanks to the higher demand
these parameters can be extremely low with respect of the previous scenario and
in absolute and hence the travel time of the worst case is also good. For example
during the day (α = 5 min, β = 0.3, vel = 24Km

h ), considering a waiting time
of 4 minutes, on a ride's request long 4 Km the detour time to serve other
users could be maximum 4 minutes. We present in appendix A a focus on the
calibration of β on service quality and on computational complexity.

We set the parameters used to compute the cost of each ride as presented in
section 2.2 as follows: γ = 2 and δ = 0.5. These low values are possible since
the higher demand and the higher speed increase the e�ciency of the service.
The cost of a ride for one user, according to the length of the ride in Km, is
presented in Figure 4.34.

4.3.2 Service performances

Using the data presented in the previous section, we run a 24 hours simulation
of Taxi Sharing within Milan. In the next paragraphs we present the obtained
results of the simulation of the service according to users and to taxi drivers.

The number of serviced users is 285873 and the number of refused users is
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Figure 4.32: Average speed on the road network according the hour of the day,
supposing a low level of private motorized vehicles.

Figure 4.33: The value of β according to the hour of the day.
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Figure 4.34: The cost of a ride for one user according to the distance between
his/her departure and his/her destination.

4012. This value as in the previous scenario represents 1% of the total demand,
hence it is really low also considering that, since it is a dynamic service, the
refused users can forward the request some time later and likely are accepted.

The average waiting time is 3 minutes and 48 seconds, while the average
detour time is 2 minutes and 9 seconds. These results are impressive, and they
show how Taxi Sharing in a car-free city can o�er lower waiting time and driving
time than those of an individual taxi today. In fact the time lost due to sharing
the ride (2 : 09) is less that what it is saved thanks to the higher speed on the
road network.

In Figure 4.35 and in Figure 4.36 we present respectively how waiting and
detour times change according the hour of the day. We underline how the
waiting time and the detour time are low also during night hours.

As per taxi drivers, the number of taxi rides is 19641 and the average length
of a taxi ride is 1 hours and 38 minutes. The total working time of taxi drivers
is 32160 hours; this means that the actual taxi �eet of 4855 taxis could serve the
10.5% of the mobility in the city of Milan if every taxi driver works on average
6 hours and 40 minutes per day.

The average number of serviced users per hour is 8.87, this is 2.5 higher than
the previous scenario, and for this the average revenue per hour with the taxi
fare presented above is again 34 Euros/hour, even if the fares are consistently
lower. This result is due both to the higher speed and to the higher demand.
The e�ciency in satisfying the requests, as de�ned in section 3.5, is 1.15%, this
is a value 173% higher than individual taxi. This datum re�ects the increase

73



Figure 4.35: The average waiting time in minutes according to the hour of the
day.

Figure 4.36: The average detour time in minutes according to the hour of the
day.
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of served user request for each traveled Km, and hence it does not consider the
increase in e�ciency due to the higher speed. Computing the index regarding
increase of served user request for each worked hour we obtain for individual
taxi in the actual scenario 0.42 ∗ 20Km/h = 8.4 served km/hour, while for
the Taxi Sharing in the car free city scenario we obtain 1.15 ∗ 24Km/h =
27.6 served km/hour11. This shows that the e�ciency that taxis �eet can
obtain providing Taxi Sharing service in a car free city context it is more than
three time the actual e�ciency.

This shows that Taxi Sharing could represent an important service in and for
an urban mobility with a low rate of motorized individual mobility. Indeed Taxi
Sharing works at the best in a city without congestion, and can represents a
tool to reach this aim since it can improve and di�erentiate the o�er of mobility
service providing a pool of choices to citizens.

In Figure 4.37 we present the average number of active taxis needed to
provide Taxi Sharing compared with the number of available taxis in the city
of Milan according to the hour of the day.

Figure 4.37: Active taxis according to the hour of the day compared with work-
ing taxi

4.3.3 Computational details

In this section our focus is on the dimensions and the time needed to solve the
set partitioning embedded in the optimizer process described in section 2.3. We

11This is consistent with the number of served users/hour that is 8.87 considering that each
request involve in average 1.2 users, and that the requests length is in average around 4 Km.
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refer to h, m, n, u and z how them are de�ned in section 4.1.3.
In Table 4.3 we report the minimum, maximum and average value, on all

cycles of 24 hour simulation, of h, m, n, u and z. As per data reported in
Table 4.3 we can notice that:

• also with a higher demand the size of the problem does not explode accord-
ing to permutations and groups and it is always solvable in few seconds,
this is related to stricter parameters α and β. We underline how with a
higher demand it is possible to decrease the values of α and β to guar-
antee a better service and this is also functional to the solvability of the
problem;

• the matrix of the set partitioning is extremely sparse also in this scenario,
it is mainly dependent on the fact that every request is imminent.

Data minimum maximum average

h 6 908 351.8
m 40 15609 4764.9
n 49 17268 5246.5
u 8 15664 4075.1
z 0.11 6.01 1.7

Table 4.3: Minimum, maximum and average of h, m, n, u and z

In Figure 4.38 we report the average number of open and con�rmed requests
(h) according to the hour of the day; we underline that during night hours the
number of h is low, nevertheless in these hour the parameters β used to compute
the time windows are higher as presented in Figure 4.33.

In Figure 4.39 we report average number of groups (m), permutations (n)
and not null coe�cients (u) according to the hour of the day; we notice that
u < m also at 0 ≤ hour ≤ 5 di�erently from what reported in the previous
scenario. This is due to the fact, that in this scenario, also in the night hours
the parameters α and β are lower and hence less groups can accommodate more
that one open request at the same time.

In Figure 4.40 we report the number of groups (m) according to the number
of open and con�rmed requests (h); these are not average values, but every dot
represents the values of a cycle. We evidence that also in the peak hour the
number of groups and permutations does not explode.

In Figure 4.41 we report the time needed to solve the set partitioning (z)
according to the number of groups (m); these are not average values, but every
dot represents the values of a cycle. We notice that with 1500 ≤ m ≤ 8000 the
relation seems to be linear.
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Figure 4.38: Average number of open and con�rmed requests (h) according to
the hour of the day.

Figure 4.39: Average number of groups (m), permutations (n) and not null
coe�cients (u) according to the hour of the day.
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Figure 4.40: Number of groups (m) according to the number of open and con-
�rmed requests (h).

Figure 4.41: Time needed to solve the set partitioning (z) according to the
number of groups (m).
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In all the three analyzed scenarios the computational e�orts needed to op-
timize the service are negligible, and hence this aspect is not critical for the
development of Taxi Sharing. Concerning the quality of the service the results
show that the Taxi Sharing's level of service is acceptable in the scenario with
low demand and that it increases in the scenarios with higher demand, because
of the higher possibility to share the ride with negligible detours. In the car
free city scenario Taxi Sharing can serve up to 10% of the total mobility de-
mand with the current taxis �eet, guaranteeing a shorter traveling time than
individual taxis in the actual scenario.

Taxi Sharing induces a win-win-win situation since the advantages for users,
taxi drivers and municipality derive from the higher e�ciency of the Taxi Shar-
ing service, which can rise up to more than three times the e�ciency of individ-
ual taxis. According to the presented results, for the developing of Taxi Sharing
service, we judge the mobility system in which it is planned concerning both
the demand for Taxi Sharing and the congestion level of the road network to be
determinant.

In turn a more e�cient LPT network can reduce the number of owned and
used cars and as a consequences it can reduce the congestion and increase the
demand for mobility service, both aspects important for Taxi Sharing service.
To summarize, Taxi Sharing is a service that:

• works in the most e�cient way in a car-free scenario;

• can help to reach this result, not only because of the provided service
itself, but also thanks to its integration with LPT.

In the next chapter we assess new possibilities in planning rapid Local Public
Transportation related to the realization of Taxi Sharing service.
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Chapter 5

Rapid LPT planning in

presence of a taxi sharing

service

In this chapter we present new possibilities in planning rapid Local Public Trans-
portation (LPT) related to the realization of Taxi Sharing. The integration of
LPT with on demand services can lead to a bimodal service [30]. The literature
on Network Design Problem is wide [31, 32, 33, 34] and range from routes to
stops planning. We limit in this dissertation to the speci�c problem of optimal
stop spacing for a single line, and we access it with a case study on a tram line.

In planning a local public transportation service, a crucial aspect is to es-
tablish optimal stop spacing, since it a�ects passengers walking time and the
operating speed of a route, which in turn a�ects both transit time and operating
costs. Densely spaced public transport stations obviously decrease the walking
distance, but also increase in-vehicle time and supply costs [22]. On the other
hand, eliminating service stops, entails a longer walking distance, but speeds up
the system and reduces the operating costs. It is, therefore, necessary to eval-
uate an optimal trade o� between con�icting advantages, in which the optimal
solution is in�uenced by both walking speed and the cost of walking time with
respect to in-vehicle time.

The actual distance between stops in the city of Milan is quite short, since
LPT needs to serve every type of user, and hence also people with movement
impairments. Taxi Sharing as a door-to-door transportation means represents
a comfortable solution to people with movements impairments;1 therefore, in
presence of Taxi Sharing the stop spacing can be reoptimized considering as users
of LPT only people without movements impairments and hence establishing a

1Considering the highest price of Taxi Sharing in respects of LTP, it is possible to provide
economical bene�ts to people with movement impairments in case of Taxi Sharing service use.
The resources could derive from the higher e�cinecy of LPT.
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longer distance between stops2.
In this chapter we present an analysis of the e�ects in terms of total variation

in user traveling time and increase of commercial speed achievable with the
suppression of some stops. The case study is tram line 9, which spans from
Stazione Centrale to Stazione di Porta Genova. The analysis has been carried
out with the support of AMAT, in relation to the project �Linee T� that aims
to enslave tra�c lights.

This chapter is composed of three parts: in section 5.1 we detail the used
data, in section 5.2 we analyze the e�ects of the suppression of each stop on
the total traveling time for users and in section 5.3 we present the increase of
commercial speed in relation to the suppressed stops.

5.1 Data

To perform the analysis presented in this section we used data collected by
AMAT, in a monitoring activity of LPT service. The data were collected in
a survey campaign that took place between 12/03/2014 and 19/11/2014, and
monitored 51 races for tram line 9. The collected data concern:

• the number of people boarded and alighted at every stop;

• the number of people on board departing from each stop.

With additional on board monitoring which took place between 28/10/2014
and 07/11/2014, the geographic coordinates of the tram were being detected
every second with a gps device. With the monitoring of 12 races, we determined
the following average data:

• average waiting time for each red: tr = 16 seconds

• average time required to make each stop: ts = 18 seconds

• average time lost due to the deceleration and acceleration: tda = 14 sec-
onds

• average commercial speed excluding the phase of deceleration, stop and
acceleration due to tra�c lights and stops: vf = 7m/s

The time that the tram requires to perform a stop depends on the number of
users boarded and alighted. The time necessary to perform a stop was estimated
with a linear regression on the data collected in the monitoring campaign as:

T = 11 + 0.36 ∗N seconds (5.1.1)

whereN is the number of users boarded and alighted. This function indicates
that the average base time required for each station is: tb = 11 seconds with an
additional time for every user that boards and alights of 0.36 seconds.

2The survay presented in chapter 6 shows a high availability to walk longer in exchange of
a faster transportation network.
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Assuming that the total number of users that use the tram does not increase
or decrease with the suppression of some stops, the contribution of the second
term of the sum remains unchanged3. The time that would be saved for each
suppressed stop is therefore attributable to the average base time needed for each
station tb = 11 plus the time lost in the phase of deceleration and acceleration
tda = 14, so it totals 25 seconds.

5.2 Users traveling time

We de�ne the total users journey time as the sum on all users of the journey
time given by the walking time needed to reach the closest station, the in-vehicle
time needed to reach the destination stop and the on foot time needed to reach
the destination.

We evaluate the utility u(j), of a stop j, as the e�ect on the total users
journey time of the suppression of stop j, by comparing:

1. the time l(j) that would be lost by those who currently use stop j, because
of the greater distance required to reach the earlier or later stop;

2. the time s(j) that would be saved by those on board due to stop j sup-
pression.

For each stop j on line 9 we determine the utility of stop j with the following
formula:

u(j) = l(j)− s(j) (5.2.1)

and we note that utility of stop j is positive, u(j) ≥ 0, if l(j) ≥ s(j) and,
hence, as a consequence of the suppression of stop j, the time lost by users that
were using stop j is higher of the time saved by users that are on board during
stop j. Conversely the utility of stop j is negative, u(j) ≤ 0, if l(j) ≤ s(j) and
hence as a consequence of the suppression of stop j, the time lost by users that
were served by stop j is smaller than the time saved by users that are on board
during stop j.

We considered as catchment area of a line the set of all buildings located
less than 500 meters on the road graph from a bus stop of that line. Assuming
the suppression of stop j, we compute the new distance from the nearest stop
for every building in the catchment area of stop j. Assuming that the demand
generated and attracted to stop j is distributed uniformly between the building
in the catchment area of stop j, we compute the average increase of the walking
distance if stop j is suppressed.

To compute the average increase in walking time from the average increase
of the walking distance we used a walking speed of 80 meters/minute. The

3Even though we access a case study on tram line 9, it is has to be consider in a optimization
of the entire LPT network. The users' choice of which line to use is correlated to the LPT
network, for this reasons we do not consider the variation in the number of users, since it is
not accessible considering only a line.
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value obtained for each stop j re�ects the distance from the nearest adjacent
stops and the topography of the road network in the catchment area of the stop.
The value of l(j) is then determined by multiplying the average time to walk to
the former or following stop, for users using stop j, by the average number of
boarded and alighted users at stop j.

To determine the saved time s(j) of on board users (if stop j is suppressed)
we multiply the time lost by the tram to make the stop by the average number
of users on board the tram during stop j (that would have an advantage in
traveling time from the suppression of stop j).

In Figure 5.1 we report the utility u(j) of each stop j of line 9 from Central
Station to Porta Genova expressed in minutes. We de�ne the set of stops C =
{j|u(j) ≤ 0} as the set of candidate stops to be suppressed due to having
negative overall utility. We have |C| = 13 that represents 48% of the stops in
B.

Figure 5.1: The utility u(j) of each stop j of line 9 from Central Station to
Porta Genova expressed in minutes.

We introduce an ILP model used to maximize the total users utility, de�ned
as the sum on stops j of u(j).

Sets:

• B: the the ordered set of all the stops

Parameters:

• uj the utility of stop j ∈ B
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Variables:

• xj =

{
1 if stop j ∈ B is mantained

0 if stop j ∈ B is suppressed

Objective function:
max

∑
j∈B

ujxj

Constraint:

• xj + xj+1 ≥ 1 ∀j ∈ B

The constraint excludes the possibility that two subsequent stops are both
suppressed, since the calculation of the increased walking distance, l(j), is based
on the assumption that there are contiguous stops. In this case the instance is
trivial. In the optimal solution

∑
j∈B(1−xj) = 11, which represent the number

of stops to be suppressed is 40% of the stops. According to the distances between
consecutive stops, in the actual scenario the average distance is 292 meters and
the maximum distance is 456 meters, while in optimal stops suppression scenario
the average distance is 506 meters and maximum distance is 775 meters.

In Figure 5.2 we present the map of the stops in relation to optimal solution.
The color represents the utility, green for stops j with u(j) > 0 and red for
stops j with u(j) < 0. Suppressed stops are marked with X, stops with a
green annulus are stops with negative utility that are not suppressed due to the
constraint on subsequent stops.

In the optimal solution the overall utility is
∑

j∈B xjuj = 337 minutes while
without any suppression the overall utility is

∑
j∈B uj = 250 minutes and hence

with the optimal stops suppression the users save in total 87 minutes considering
both walking and in vehicle time. In the next section we assess the impact of
optimal stop suppression on commercial speed.

5.3 Commercial speed

In the previous section we have considered the e�ects of the suppression of some
stop on the user traveling time. In this section we estimate the e�ects caused
on the commercial speed of the suppression of some stops with and without the
enslavement of tra�c lights. We consider the average time expected for each
intersection with tra�c light, the time required to perform the stops and the
time lost due to the deceleration and acceleration up to commercial speed.

We estimate the commercial speed as a function of the number of red tra�c
lights nr and the number of stops ns with the following function:

v(nr, ns) =
∆S

∆S
vf

+ (tr + tda)nr + (ts + tda)ns

(5.3.1)

where:
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Figure 5.2: Optimal stops suppression on line 9.

• ∆S is the length of the line;

• vf , tr, ts, tda are parameters de�ned in section 5.1

According to the optimal solution found to minimize the total users traveling
time for tram line 9, presented in section 5.2, we analyze the commercial speed
computed with the previous formula �xing ns = 27 to represent the actual
scenario and ns = 16 to present the optimal scenario based on to the suppression
of 11 stops. In Figure 5.3 we present the graph of a(x) = v((1 − x) ∗ 26, 27)
that represents the commercial speed as function of the percentage of green
tra�c lights with all stops, and b(x) = v((1 − x) ∗ 26, 16) that represents the
commercial speed as function of the percentage of green tra�c lights with the
optimal number of stops.

We report in Table 5.1 the obtained values of absolute and in percentage
increase of commercial speed with the suppression of the optimal number of
stops in the scenario without and with the enslavement of tra�c lights. We
note that the increase of commercial speed is higher both in absolute and in
percentage in presence of tra�c lights enslavement. This occurs because, with
the priority at tra�c lights, the incidence of the time used for the stops in
percentage is more relevant on the overall journey time and therefore on the
commercial speed.

In addition to tra�c lights priority and optimal stop spacing can be imple-
mented other side measures as:

• physical protection of paths;
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Figure 5.3: The commercial speed as function of the percentage of green traf-
�c lights in the actual scenario, a(x), and in the optimal scenario with stops
suppression, b(x)

Scenario x a(x) b(x) b(x)− a(x) b(x)−a(x)
a(x)

Without priority 30% 11.0 12.3 1.3 12%
With priority 90% 13.5 15.6 2.1 16%

Table 5.1: Absolute and in percentage increment of commercial speed with the
suppression of the optimal number of stops in the scenario without and with
enslavement of tra�c lights.
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• mitigation of interferences;

• reorganization of the intersections.

If we suppose that the overall results of these actions allow the increase of the
average cruise speed (excluding the phase of deceleration, stop and acceleration
due to tra�c lights and stops) by 10%, the cruise speed would increase from
vf = 7m/s to vf = 7.7m/s.

With this increase of commercial speed of vehicles, the e�ect of the stops
would become more relevant with respect to the total journey time and therefore
the e�ects on the commercial speed of the optimal stops suppression should
increase.

We report in Table 5.2 the obtained values of absolute and percentage in-
crement of commercial speed with the suppression of the optimal number of
stops in the scenario without and with enslavement of tra�c lights supposing
vf = 7.7m/s.

Scenario x a(x) b(x) b(x)− a(x) b(x)−a(x)
a(x)

Without priority 30% 11.4 12.9 1.5 13%
With priority 90% 14.2 16.5 2.4 17%

Table 5.2: Absolute and in percentage increment of commercial speed with the
suppression of the optimal number of stops in the scenario without and with
enslavement of tra�c lights supposing the implementation of side measures of
protection.

We compare in Table 5.3 commercial speed without (v0) and with (v1) the
implementation of side measures ( with vf = 7m/s and vf = 7.7m/s respec-
tively) in the following cases:

• in the actual scenario;

• in the scenario with the suppression of the optimal number of stops;

• in the scenario with the enslavement of tra�c lights;

• in the scenario with the suppression of the optimal number of stops and
the enslavement of tra�c lights.

We note that the increase of commercial speed obtained with the implemen-
tation of measures of protection is more relevant in absolute and in percentage if
the measure of optimal stop suppression and priority tra�c lights are also imple-
mented. We note that the commercial speed with protection measures, optimal
stops suppression and priority tra�c lights could increase from 11 Km/h to
16.5 Km/h and hence by 50%.
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Optimal stops Priority
suppression tra�c lights v0 v1 v1 − v0

v1−v0
v0

no no 11.0 11.4 0.4 3.6%
yes no 12.3 13.9 0.6 4.9%
no yes 13.5 14.2 0.7 5.2%
yes yes 15.6 16.5 0.9 5.8%

Table 5.3: Absolute and in percentage increment of commercial speed with
measures of protection in di�erent scenarios based on optimal stops suppression
and priority tra�c lights.
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Chapter 6

Questionnaire on rapid LPT

and Taxi Sharing

In this section we present the results of a survey related to rapid LPT and Taxi
Sharing in which we gathered interesting results from more than 700 answerers.
A short questionnaire was spread mainly through social networks, collecting
more than 500 answers in 4 days showing a great interest of citizen in mobility
choices. Composed by 7 closed questions and an open space for opinions, the
questionnaire was developed to be answered quickly. The �rst �ve questions
aimed to identify the user (age, sex, residence, reasons for traveling in Milan,
used means of transport). The last two questions were the core questions: the
�rst to measure the inclination to walk more to reach the tram/bus stop in
exchange for a shorter traveling time; the second to assess the inclination to use
Taxi Sharing, given a fare of 3,50 Euro.

In section 6.1 we describe the sample that answered the questionnaire, in
section 6.2 we illustrate the answers to the question about stops reduction, and
in section 6.3 we illustrate the answers to the question about the use of Taxi
Sharing.

6.1 Sample

We want to state beforehand that the questionnaire does not have a statistical
value, due to the way the survey has been conducted. For this reason, we
describe the answers without doing any statistical inference. As a further step,
improving the reliability of the survey sample would allow for more accurate
evaluations.

The �rst question is about age; Figure 6.1 represents the age ranges of the
people answering the survey.

The second question is about gender; 60% are females and 40% are males.
The third question is about the relation with the city of Milan; 77% of the

sample lives in Milan, 14% are commuters and 9% visits the town occasionally.
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Figure 6.1: The age ranges of the sample

In the fourth question we investigate the main reasons of movement; it is
possible to give more than one answer: work, study, shopping and leisure; in
Figure 6.2 we present the answers.

In the �fth question we investigate the most used means of transportation;
as in the previous case, it is possible to give more than one answer, choosing
among: LPT, car, taxi, motorbike, bike and foot; in Figure 6.3 we present the
answers.

6.2 Rapid LPT

In this section we present and discuss the results obtained from question 6, which
regards the users availability to walk more in return for a faster surface service.
In section 5.3 we have shown a case study on tram line 9, were we obtained that
the commercial speed could increase by 50% with enslavement of tra�c lights,
protection measures and optimal stop suppression. Optimal stop suppression
can increase commercial speed in the analyzed case up to 17% and hence can
proportionally increase the capacity of the line. For this reason optimal stop
suppression can support a higher demand of LPT and a correlated lower use
of private motorized vehicle and hence, indirectly, facilitate the realization of
priority tra�c lights and protection measures. The increase by 50% in the
commercial speed would not be a direct consequence of the sole optimal stop
suppression, but adopting this measure would make this result more achievable.

If commercial speed increases by 50%, a saving of 33% in the traveling time
can be obtained, according to the following formula:
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Figure 6.2: The reasons of movement for the sample

Figure 6.3: The means of transportation used by the sample
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T1 =
S

v1
(6.2.1)

v2 = 1.5 v1 (6.2.2)

T2 =
S

v2
=

S

1.5 v1
=

1
1.5

T1 = 0.66 T1 (6.2.3)

where S is the length of the line, T1 and v1 are time and speed in the actual
scenario, and T2 and v2 are time and speed in the optimized scenario.

For these reasons, we have asked the users the question: �How much longer
would you walk to reach the stop, if the Public Transport higher speed will allow
you to save 10 minutes on a bus/tram ride which currently takes 30 minutes?�.

In Figure 6.4 we show the answers.

Figure 6.4: Answers to question: �How much longer would you walk to reach
the stop, if the Public Transport higher speed will allow you to save 10 minutes
on a bus/tram ride which currently takes 30 minutes?�

The data presented in Figure 6.4 show a high users availability to walk some
more minutes in exchange for a faster service; we point out that:

• 90% are willing to walk 1− 3 minutes or more.

• 64% are willing to walk 3− 5 minutes or more.

In the case study on tram line 9, presented in section 5.2, in the optimal
solution according to stops suppression, the average time necessary to reach the
next stop, for users that were using a suppressed stop to board or alight the
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tram, is 86 seconds in average. Therefore, in average, even if the departure and
destination stops are both suppressed, the longer walking distance in total is
less than 3 minutes.

In Figure 6.5 we present the answers of residents and commuters, and we
notice that the commuters are more willing to walk more in exchange for a faster
trip. This can be due to the fact that their trips are longer and that they are
used to longer distances between stops.

Figure 6.5: Answers to question: �How long would you walk more to reach the
stop, if the Public Transport higher speed will allow you to save 10 minutes on
a bus/tram ride which currently takes 30 minutes?�. according to residence.

6.3 Taxi Sharing

In this section we present and discuss the answers to the question about the
possible frequency of utilizing Taxi Sharing service. In section 4 we have shown
three di�erent scenarios of Taxi Sharing service according to the demand level
and the conditions on the road network in relation to the average speed. The
question in the survey refers to the car-free city scenario presented in section
4.3.

We asked the users the question: �If the Taxi Sharing fare for a ride is 3,50
Euros, how often would you use it?�. In Figure 6.6 we show the answers.

The data presented in Figure 6.6 show a high potential interest towards Taxi
Sharing; we underline that:

• 12% of the sample declared that they would use Taxi Sharing 3-5 times a
week or more.
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Figure 6.6: Answers to question: �If the Taxi Sharing fare for a ride is 3,50
Euros, how often would you use it?�

• 34% of the sample declared that they would use Taxi Sharing 1-2 times a
week or more.

The answers presented in Figure 6.6 could be used to assess the daily de-
mand for Taxi Sharing service as presented in Table 6.1. In the �rst column
we report the options, in the second column we report the percentage of the
sample that selected the corresponding option, in the third column we multi-
plied this percentage by the overall number of potential frequent users, given
by the sum of residents (1250000) and commuters (850000) and hence in total
2100000. In the fourth column we converted the options of frequency of use,
which were expressed in words, in numbers of daily expected ride per person,
in column �fth we multiplied these values by the respective number of users of
each group, obtaining the daily expected requests for each group. With the de-
scribed procedure we estimated the daily number of rides to be in total 288543,
that represents 10.5% of the mobility in the city of Milan.

In Figure 6.7 we present the answers of car users and others, and we note
that car users declare they would use Taxi Sharing more frequently. This can be
due to them being more used to a higher budget, considering congestion charge
and parking fee. We underline that 15% of car users declare they would use
Taxi Sharing 3− 5 times a week or almost daily.
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Options Answers Number Expected Expected
percentage of daily rides daily

persons per person rides

Never 7% 137956 0 0
Occasionally 34% 711241 0.01 7112

1-2 times/month 13% 263650 0.05 13182
1-2 times/15 days 13% 275912 0.1 27591
1-2 times/week 22% 465985 0.2 93197
3-5 times/week 8% 162482 0.5 81240
Almost daily 4% 82774 0.8 66218

Table 6.1: Computation of daily Taxi Sharing rides, based on the results of the
survey.

Figure 6.7: Answers to question: �If the Taxi Sharing fare for a ride is 3,50
Euros, how often would you use it?� according to car using.
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Conclusion

In this dissertation we assess Taxi Sharing as an urban massive mobility system
as well as a correlated rapid transportation network for exploiting the avail-
able urban transportation resources, by way of a case study of Milan. The
research conducted in collaboration with AMAT has shown a huge possibility
for qualitatively and quantitatively increasing public mobility services by using
the available resources in the most e�cient way, considering both transportation
means and human drivers with respect to taxis and LPT.

A new technique for optimizing a high quality spread Taxi Sharing service
in an urban context, provided by the existing taxis �eet, is presented. The
service is designed to have a high quality, ensured by narrow time windows on
pick-up and delivery time. These features allowed us to cyclically enumerate
all possible subsets of incoming users requests for each vehicle, and to compute
an optimal set of routes in real time by solving, in a few seconds, a large set
partitioning problem, with state-of-the-art integer linear programming solvers.
Owing to this fast global optimization capability, the system guarantees a high
quality service without any need of booking the ride in advance.

The algorithm has been embedded in an agent based simulator of the Taxi
Sharing service. The developed simulator enables the authorities of cities to
forecast how the service could work with respect to users and taxi drivers.
With regard to users, the simulator reports the number of serviced users, the
average waiting time and the average detour time. With regard to taxi drivers,
the simulator reports the number of taxi rides, the average number of serviced
users per hour, the relevant average revenue per hour and the average length of
the taxi ride.

The simulator was used to conduct a feasibility study for the city of Milan
regarding three development scenarios, according to demand level. The results
show that Taxi Sharing level of service is acceptable in the scenario with low
demand and it increases markedly in the scenarios with higher demand according
to the higher possibility to share the ride with negligible detours.

In the car free city scenario Taxi Sharing can serve up to 10% of the total
mobility demand with the current taxis �eet, guaranteeing a shorter traveling
time with respect to individual taxi in the actual scenario. Taxi Sharing in-
duces a win-win-win situation since the advantages for users, taxi drivers and
municipality derive from the higher e�ciency of Taxi Sharing service, that can
rise up to more than three time the e�ciency of individual taxi. We consider
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these results the main scienti�c contribution of this dissertation, since they show
that the development of Taxi Sharing could have great social, economical and
environmental impacts1.

Afterward we analyzed new possibilities for planning rapid Local Public
Transportation (LPT) resulting from the realization of Taxi Sharing. We as-
sessed this possibility with a case study on tram line 9 concerning the e�ects in
terms of total variation in the traveling time of users and increase in commer-
cial speed achievable with the optimal suppression of stops. The results show
that in the optimal solution 40% of the stops have to be suppressed in order to
minimize the traveling time of users, and that the optimal suppression of stop,
with protection measures and priority tra�c lights, can lead to an increase in
commercial speed by 50%.

Finally, we included the results of an informal survey conducted through
social networks to assess opinions of citizens on the studied measures. The
high and spontaneous participation in the survey shows people's high interest
in mobility choices. The answers of the sample, that we recall to be without
statistical consistence, show that 90% of the sample would be willing to walk
up to 1-3 minutes or longer to save traveling time, and show a high potential
demand for Taxi Sharing, in a quantity of about 300.000 daily rides.

In conclusion, we state that Taxi Sharing might have an important role in
urban mobility, since its implementation allows for achieving a more sustainable
and e�cient mobility:

1. With the existing taxis �eet, Taxi Sharing can satisfy 10% of the total
mobility, providing a high level of service, also to people with movements
impairments;

2. A rapid Local Public Transportation (LPT) can be planned if Taxi Sharing
take care of people with movements impairments, and, with an increase
in the commercial speed up to 50%, the LPT level of service can improve;

3. In a low congested scenario, that can be achieved thanks to a more e�cient
public mobility system with regards to Taxi Sharing and rapid LPT, the
role of soft mobility would increase, entailing positive impacts.

With regards to Taxi Sharing, a further research step is the dynamic adap-
tion of parameters according to service conditions. On the other hand, in this
dissertation we assessed the possibility to plan a rapid LPT with respect to a
line, considering the rest of the network as a datum. Presuming the presence of
Taxi Sharing, a further research step in this direction would be to investigate
the problem of an optimal network design.

1The results obtained for the city of Milan are not linked with any peculiarity of Milan
and, hence, similar results are likely to be obtained in others cities.
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Appendix A

Parameter β calibration

In this appendix we assess the e�ects of parameter β1 on the quality and e�-
ciency of the service, and on the computational complexity. For every one of
these areas of interest we do a focus on the three analyzed scenarios: low de-
mand, medium demand and car-free. For every scenario we focus our analysis
on hour = 14, to avoid the e�ects due to di�erent levels of demand, and di�er-
ent origin/destination matrix in di�erent hours of day. For every scenario we
present the results of 10 di�erent simulations according to the value of β ranging
from βmin to βmax. In order to limit the aleatory e�ects, the results presented in
the next sections refer to average values of a 5 hours long simulation, supposing
all the conditions and parameters equal those of hour = 14, as presented in the
chapter 4, with the exception of parameter β that ranges in [βmin, βmax]. The
value of β used at hour = 14 in the scenario low demand, presented in section
4.1, is β = 0.8. For this scenario we considered 10 values of β ∈ [0.2, 2]. The
value of β used at hour = 14 in the scenario medium demand, presented in
section 4.2, is β = 0.6. For this scenario we considered 10 values of β ∈ [0.1, 1].
The value of β used at hour = 14 in the scenario car free, presented in section
4.3, is β = 0.3. For this scenario we considered 10 values of β ∈ [0.05, 0.5].

Quality of the service

We access the e�ect of β on the quality of the service through three main
indicators: the number of refused requests, the average waiting time and the
average detour time. In Figure A.1, Figure A.2, Figure A.3 we present the
percentages of refused requests in the three scenarios. We underline that the
percentages of refused requests are decreasing more than linearly according to
β.

In Figure A.4, Figure A.5, Figure A.6 we present the average waiting and
detour time in the three scenarios. We notice that both waiting and detour time

1The average e�ects of parameter α are the same of parameter β, the only di�erence is that
a higher α mainly penalizes short requests while a higher β mainly penalizes long requests.
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Figure A.1: Percentage of refused requests according to the value β, in low
demand scenario.

Figure A.2: Percentage of refused requests according to the value β, in medium
demand scenario.
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Figure A.3: Percentage of refused requests according to the value β, in car free
scenario.

are increasing linearly according to β, as a consequence of the higher maximum
arrival time to destination. In the next section we access the e�ects of β on the
e�ciency of the service.

E�ciency of the service

We access the e�ect of β on the e�ciency of the service through the average
number of served users per hour by each taxi. In Figure A.7, Figure A.8,
Figure A.9 we present the average number of served users per hour in the three
scenarios. We notice that the number of served users per hour increases steeply
in the beginning and tends to stabilize for higher values of β. We underline
the di�erence with the service quality according to waiting and detour times
that instead increase linearly. This brings to the conclusion that for high values
of β, the further increase of β entails a reduction in the quality of the service
with little gain in the e�ciency of the service. In the next section we access the
e�ects of β on the computational complexity.

Computational complexity

We access the e�ect of β on the computational complexity through �ve main
indicators: the number of open and con�rmed requests, the number of groups
and permutations, the time needed to generate all the groups and permutations
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Figure A.4: Average waiting and detour time in seconds according to the value
β, in low demand scenario.

Figure A.5: Average waiting and detour time in seconds according to the value
β, in medium demand scenario.
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Figure A.6: Average waiting and detour time in seconds according to the value
β, in car-free scenario.

Figure A.7: Average number of served users per hour according to the value β,
in low demand scenario.
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Figure A.8: Average number of served users per hour according to the value β,
in medium demand scenario.

and the time needed to solve the set partitioning problem. In Figure A.10,
Figure A.11, Figure A.12 we present the number of open and con�rmed requests.
We notice that the number of open and con�rmed requests is increasing linearly
according to β, as a consequence2 of the higher waiting time that also increases
linearly as presented in the previous section.

In Figure A.13, Figure A.14, Figure A.15 we present the number of groups
and permutations in the three scenarios. We notice that the number of groups
and permutations is increasing more then linearly according to β as a conse-
quence of the higher number of open and con�rmed requests and the higher
marginal times. We notice that the number of groups and permutation would
explode for higher values of β, and this would bring computational issues.

In Figure A.16, Figure A.17, Figure A.18 we present the time in milliseconds
needed to generate groups and permutations in the three scenarios. We notice
that the time is increasing more then linearly according to β. However even in
the scenario where the time is the highest, the time is below 0.5 seconds.

In Figure A.19, Figure A.20, Figure A.21 we present the time in milliseconds
needed to solve the set partitioning problem in the three scenarios. We notice
that the time is increasing more then linearly according to β. However even in

2A request is �xed by the optimizer when its departure is going to be visited by the taxi
soon. For this reason, longer waiting time imply the requests to remain open longer resulting
in a higher number of open requests.
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Figure A.9: Average number of served users per hour according to the value β,
in car free scenario.

Figure A.10: Average number of open and con�rmed requests according to the
value of β, in low demand scenario.
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Figure A.11: Average number of open and con�rmed requests according to the
value of β, in medium demand scenario.

the scenario where the time is the highest, the time is below 2.5 seconds.

To conclude, we underline that for values of β higher than those used in the
presented simulation, the number of groups and permutations would explode.
This would lead to a huge time needed to generate groups and permutations and
to solve the set partitioning problem and, hence, the proposed method would
not be suitable.

Though for value higher than those used in the presented simulation the
e�ciency of the service would increase marginally at the cost of a linear de-
creasing of the service quality and, hence, they can be excluded from the range
of suitable values of β, with respects to the quality and e�ciency of the service
in all the analyzed scenarios.

The fact that the values of β that lead to optimal service are the same that
are in the range of solvability of the problem with the proposed method, is
related to the fact that the service works properly with an adequate number of
groups. A huge number of groups, that would be unmanageable, would imply
little gain in the e�ciency at the cost of a consistent decrease in the service
quality.
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Figure A.12: Average number of open and con�rmed requests according to the
value of β, in car free scenario.

Figure A.13: Average number of groups and permutation according to the value
of β, in low demand scenario.
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Figure A.14: Average number of groups and permutation according to the value
of β, in medium demand scenario.

Figure A.15: Average number of groups and permutation according to the value
of β, in car free scenario.
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Figure A.16: Average time in milliseconds needed to generate groups and per-
mutations according to the value of β, in low demand scenario.

Figure A.17: Average time in milliseconds needed to generate groups and per-
mutations according to the value of β, in medium demand scenario.
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Figure A.18: Average time in milliseconds needed to generate groups and per-
mutations according to the value of β, in car free scenario.

Figure A.19: Average time in milliseconds needed to solve the set partitioning
problem according to the value of β, in low demand scenario.
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Figure A.20: Average time in milliseconds needed to solve the set partitioning
problem according to the value of β, in medium demand scenario.

Figure A.21: Average time in milliseconds needed to solve the set partitioning
problem according to the value of β, in car free scenario.
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Appendix B

Dynamic Vehicle Routing

Problems framework

In this appendix we collocate the developed Taxi Sharing optimization method
in the framework of Dynamic Vehicle Routing Problems (DVRPs). With regards
to recent published survey papers on this topic in the last decades the research
had been abundant: the surveys [38, 39, 40] report respectively 154, 161 and
166 articles.

In the next �gure, on page 113, we classify our problem according to the
taxonomy presented in the most recent survey paper on the topic [40]. The
taxonomy is based on the following 11 criteria: (1) type of problem, (2) logistical
context, (3) transportation mode, (4) objective function, (5) �eet size, (6) time
constraints, (7) vehicle capacity constraints, (8) the ability to reject customers,
(9) the nature of the dynamic element, (10) the nature of the stochasticity (if
any), and (11) the solution method.

Regarding the nature of dynamism the main source in our problem are re-
quests. The degree of dynamism δ can be de�ned, as in [41], as the ratio
between the number of dynamic requests nd and the total number of requests
ntot as follows:

δ =
nd

ntot
(B.0.1)

in our problem we have a degree of dynamism δ = 100%, since all the requests
are dynamic and, furthermore, all requests are imminent.

Also taxi availability and road condition are dynamic. The frequency for
updating taxi availability is every few seconds, i.e. every reoptimization cycle.
The frequency for updating the matrix of traveling time, since the computa-
tion is fully parallelizable, is only limited by the available hardware and the
availability of updated information on the road conditions. According with the
data presented in chapter 4, with 64 dedicated parallel processes, the distances
matrix related to the city of Milan, can be updated with a frequency higher
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than once every 5 minute1.
We do not take into account stochasticity related to no show in our problem,

since all the request are forwarded only when the taxi is desired, and hence the
probability that they are canceled is low. As a service implementation detail,
we consider that the fee is paid when the ride is call and, hence, this implies
an even lower probability of canceled requests. From a service performance
perspective, the fact that the higher the number of already paid rides canceled
the higher the quality of the service, means that the presented results represent
a lower bound on the e�ective quality of the service. Concerning travel time we
do not consider stochasticity, but we consider to update periodically the road
traveling time, and the entire service is reoptimized every few seconds with the
last updated distances matrix.

Regarding the �eet size, that is related to the number of requests to be
serviced, the survey [40] reports that �most of the papers we have reviewed
belong to the multiple and limited number of vehicles category�. Concerning the
few articles reported in the survey, related to the category of �eet size �Multiple
and su�ciently large number�, the research on DARP presented in [42] reports
a number of 762 requests in 10 hours of service for an hospital service. The
number of requests, related to other articles in this category, are of the same
order of magnitude.

In the car free scenario, presented in section 4.3, the number of handled
requests is 289.885, and hence three order of magnitude higher than that pre-
sented in [42]. For this reasons we had considered stating that our problem
stand out, according to �eet size, the three categories introduced in the survey
[40] and, hence, we add the category �Large�. This is due to the fact that, while
most of the articles related to DARP focus the attention on special category of
users, we assess an urban massive transportation service.

The �Solution Method� is �Other� with respects to those listed in the taxon-
omy presented in [40], since it is possible to enumerate all possibles groups and
permutation. This is an indirect consequence of the high number of requests and
vehicles that allow no-booking polices and strict time windows on arrival time.
This approach had been designed to optimize a massive on demand service with
the described characteristics, and it has showed itself to work e�ciently in all
the analyzed scenarios.

1We underline that according to distances computation also other approaches can be fol-
lowed, and the more e�cient depends on the frequency in travel times data updating.
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