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bTif lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano,

Via Celoria 16, I-20133 Milano, Italy

E-mail: emanuele.bagnaschi@desy.de, alessandro.vicini@mi.infn.it

Abstract: We consider Higgs production in gluon fusion and in particular the prediction

of the Higgs transverse momentum distribution. We discuss the ambiguities affecting the

matching procedure between fixed order matrix elements and the resummation to all orders

of the terms enhanced by log(pHT /mH) factors. Following a recent proposal [1], we argue

that the gluon fusion process, computed considering two active quark flavors, is a multiscale

problem from the point of view of the resummation of the collinear singular terms. We

perform an analysis at parton level of the collinear behavior of the O(αs) real emission

amplitudes; relying on the collinear singularities structure of the latter, we derive an upper

limit to the range of transverse momenta where the collinear approximation is valid. This

scale is then used as the value of the resummation scale in the analytic resummation

framework or as the value of the h parameter in the POWHEG-BOX code. A variation of this

scale can be used to generate an uncertainty band associated to the matching procedure.

Finally, we provide a phenomenological analysis in the Standard Model, in the Two Higgs

Doublet Model and in the Minimal Supersymmetric Standard Model. In the two latter

cases, we provide an ansatz for the central value of the matching parameters not only for

a Standard Model-like Higgs boson, but also for heavy scalars and in scenarios where the

bottom quark may play the dominant role.

Keywords: QCD Phenomenology, Monte Carlo Simulations

ArXiv ePrint: 1505.00735

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2016)056

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187949113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emanuele.bagnaschi@desy.de
mailto:alessandro.vicini@mi.infn.it
http://arxiv.org/abs/1505.00735
http://dx.doi.org/10.1007/JHEP01(2016)056


J
H
E
P
0
1
(
2
0
1
6
)
0
5
6

Contents

1 Introduction 1

2 Remarks on the computation of the Higgs pH
⊥ distribution 4

2.1 Analytic resummation and the collinear limit 4

2.2 Numerical resummation in the NLO+PS framework 5

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework 6

2.3 The value of the SCALUP variable 8

3 Collinear approximation of partonic squared matrix elements 9

3.1 Helicity amplitudes and kinematic variables 9

3.2 Partonic analysis 10

3.2.1 Scalar Higgs 10

3.2.2 Pseudoscalar Higgs 14

3.3 Dependence on auxiliary parameters 14

4 Standard Model phenomenology 15

4.1 Comparison of POWHEG and HRes 16

5 Beyond SM phenomenology 19

5.1 2HDM phenomenology 20

5.2 MSSM phenomenology 22

6 Conclusions 23

A Scan over the Higgs mass of the scales wt,b,i 26

1 Introduction

A new state with a mass of approximately 125 GeV has been observed at the LHC [2, 3].

Many investigations are under way to determine its properties and to test its compatibility

with the Higgs scalar boson of the Standard Model (SM). The precise measurements of

the total production cross section and of the branching ratios in the different allowed decay

channels [4, 5] have shown that the new state couples to the known fermions and gauge

bosons following the SM predictions. Other studies target the kinematics of the decay

products to distinguish among the various spin-parity combinations [6]. Finally, further

work will be necessary to clarify the structure of the scalar potential.

In the SM the main production mode of the Higgs boson at hadron colliders is through

the gluon fusion mechanism. The coupling of the Higgs boson to the gluons is mediated

by a loop of colored particles, with the largest contribution to the process given by the
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top quark. The gluon fusion cross section is very well approximated by a Heavy Quark

Effective Field Theory (HQEFT), where the Higgs mass is considered very small with

respect to the one of the top quark. The coupling of the Higgs boson to gluons is then

proportional to the Fermi constant and to the strong coupling, but it is independent of the

top Yukawa coupling. In this approach the very large NLO and NNLO-QCD corrections

to the LO process (+100% and +30% of the LO result respectively) have been evaluated

in refs. [7–9] and in refs. [10–15]. Recently, expressions for the N3LO corrections have

been published in refs. [16–21]. The calculation using the complete SM Lagrangian was

done up to NLO-QCD [22–25]. The exact treatment of the quark loops (mostly from top,

bottom and charm) at NLO-QCD yields an O(−1%) correction, for an Higgs with a mass

of mH ' 125 GeV and a collision energy
√
S = 14 TeV. Moreover finite top-mass effects at

NNLO-QCD have been estimated and found to be of O(1%) [26–31]. Beyond fixed-order

QCD corrections, also soft-gluon resummation effects are available [32–36]. Moreover,

the first-order electroweak (EW) contributions have been evaluated in refs. [37–44] and an

estimate of the mixed QCD-EW contributions has been presented in ref. [45]. The PDF and

αs uncertainties on the total Higgs production cross section have been studied in ref. [46].

The production cross section of a Higgs boson at large transverse momentum has

been computed at LO-QCD, retaining the full quark-mass dependence, in refs. [47, 48].

The NLO-EW corrections to this observable have been considered in refs. [49, 50] in the

HQEFT limit. The NLO-QCD corrections, in the HQEFT, have been computed [51–53].

An estimation of top-mass effects at NLO-QCD has been presented in ref. [54]. The first

results towards the determination of the Higgs production at large transverse momentum,

in the HQEFT, with NNLO-QCD accuracy, have been presented in ref. [55].

In this paper we want to reconsider the uncertainties that affect the theoretical predic-

tion for the Higgs boson transverse momentum pH⊥ . The transverse momentum distribution

is an observable generated by QCD radiation. In the region of small pH⊥ the presence of

terms enhanced by large log(pH⊥/mH) factors spoils the accuracy of the fixed-order re-

sults; in order to obtain a physically meaningful prediction these logarithms have to be

resummed. Various techniques are available to perform the resummation. Once the latter

is achieved, the resummed result has to be matched to the fixed-order one. Particular care

is required to avoid the double counting of those logarithmic contributions that are present

in both computations. The matching procedure introduces additional unphysical variables,

the matching parameters, that define how the spectrum is divided into a soft region, where

the resummed result is indeed applied, and a hard region where the fixed-order result is

instead considered as the correct description of the spectrum.

In the HQEFT framework, the corrections up to NLO-QCD for the Higgs transverse

momentum distribution have been analytically computed and matched with the transverse

momentum resummation at NNLL accuracy. The results have been originally implemented

in the code HqT [56–58] and later in the parton Monte Carlo program HRes [59]. A similar

discussion, in the Soft Collinear Effective Theory (SCET) approach, has been presented

in refs. [60–62]. In the context of matched NLO+Parton Shower (PS) Monte Carlo event

generators, which implement the resummation algorithmically in the computer code, the

results in the HQEFT, for Higgs production via gluon fusion, have been presented in
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refs. [63, 64]. Two shower Monte Carlo codes that retain the NNLO-QCD accuracy on the

inclusive observables, in the HQEFT, have been presented in refs. [65, 66].

Despite the fact that the exact matrix elements retaining the full dependence on the

quark masses were available for quite some time, they have been implemented in a NLO+PS

Monte Carlo for the first time in ref. [67], in the POWHEG approach, and later in MC@NLO [68].

A similar study, in the framework of analytic resummation, has been presented in ref. [69]

and later in ref. [1]. Recently, these effects have been implemented in the NNLOPS code [70].

Quark mass effects have also been discussed for observables like the jet veto distribution

in refs. [71, 72]. Moreover, in ref. [71], the structure of the collinear singularities and of the

regular terms present in gluon fusion at O(αs) is analyzed in detail.

In ref. [1] it has been pointed out that the matched computation of the Higgs transverse

momentum distribution is a problem with three scales, namely the Higgs mass, the internal

quark mass and the transverse momentum of the Higgs boson. The matching prescription

between fixed-order and resummed results should account for all these scales, to avoid, as

far as possible, the inclusion of spuriously large higher-order terms in the final result. It

should be noted that the presence of non-negligible interference effects between the top

and the bottom quarks assigns a simultaneous active role to both internal quarks present

in the scattering amplitude.

In the framework of SCET, the separation between the singular regions where a resum-

mation is needed and the corresponding regular parts has been discussed in refs. [73, 74]

with the introduction of appropriate profile functions at the level of the hadronic cross

section; this approach has been applied to Higgs studies in ref. [75]. The problem of the

determination of a sensible value for the scale that separates the two transverse momentum

regions, the one where the resummation is needed and the one where a fixed-order descrip-

tion is reliable, has been discussed in QCD, at the level of the partonic cross section, in

ref. [76]. Recently, in ref. [77], the determination of these scales has been realized in QCD,

with an approach that exploits some general properties of the Higgs transverse momentum

distribution at hadron level, to derive the largest interval of transverse momenta where the

resummed expression can be applied.

In this paper we elaborate the approach of ref. [76], and present a derivation at par-

ton level of the interval of transverse momenta where the collinear approximation of the

squared matrix element is accurate and the transverse momentum resummation can be

safely applied. A comparison of the present results against those of refs. [77, 78] is cur-

rently ongoing [79].

Higgs production via gluon fusion may provide interesting information about possi-

ble signals of physics beyond the Standard Model (BSM), like those possible in the Two

Higgs Doublets Model (2HDM) or those predicted in the Minimal Supersymmetric Stan-

dard Model (MSSM), thanks to the possible exchange in the loop of new colored particle

that act as mediators of the interaction between the gluons and the Higgs boson. The

total cross section for Higgs production (see ref. [80] for a recent review) and the Higgs

transverse momentum distributions provide complementary information (see e.g. ref. [67])

to disentangle the SM from MSSM. The possibility of extracting sensible information from

the data depends on the accuracy of the prediction of the pH⊥ distribution, and, among

others, on the choice of the matching parameters.
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The outline of the paper is the following. In section 2 we recall the basic elements

needed to formulate the transverse momentum resummation and to match the correspond-

ing expression with fixed order results; we make some comments on the analytic procedure

and discuss in more detail the NLO+PS Monte Carlo formulation. In particular we discuss

in both cases the role of the scales associated to the matching and we describe the differ-

ences between the two approaches. In section 3 we discuss in detail the gg → gH and the

qg → qH processes, with respect to their collinear behavior. The latter is used to identify

an interval of transverse momenta where the collinear approximation of the squared matrix

element is accurate and where it is thus safe to apply the resummation procedure; we intro-

duce a scale w that represents the upper bound of this interval. We discuss both scalar and

pseudoscalar Higgs boson production and determine, as a function of the Higgs and the

quark masses, in a model independent way, the scale w, which constitutes our main result.

In section 4 we perform a phenomenological analysis in the SM: the numerical results of

the previous section are applied in the analytic resummation context, with the code HRes,

and in the NLO+PS Monte Carlo framework, with the code gg H quark-mass-effects

present in the POWHEG-BOX; the corresponding Higgs pH⊥ distributions are eventually com-

pared. Finally, in section 5 we discuss the implications of the determination of the scale

w in the MSSM and in the 2HDM, with the possible production of new heavy states with

masses of several hundred GeV and with a possible strong coupling of the Higgs to the

bottom quark, enhanced with respect to the SM case. For this study we use the generators

gg H MSSM and gg H 2HDM, also present in the POWHEG-BOX.

2 Remarks on the computation of the Higgs pH
⊥ distribution

2.1 Analytic resummation and the collinear limit

The Higgs boson acquires a transverse momentum pH⊥ because of its recoil against QCD

radiation. In fixed-order perturbation theory the emission of initial state massless partons

yields, in the collinear limit, a logarithmic divergence of the Higgs transverse momentum

distribution, signaling a breakdown of the perturbative approach, with an effective expan-

sion parameter αs(p
H
⊥ ) log(pH⊥/mH) ∼ 1 in the phase space region of vanishing pH⊥ . The

analytic resummation to all orders of the terms
(
αs(p

H
⊥ ) log(pH⊥/mH)

)n
is performed by

exploiting the universal properties of QCD radiation in the collinear limit and restores an

acceptable physical behavior (the Sudakov suppression) of the Higgs transverse momentum

distribution in the limit pH⊥ → 0 [81–90].

In the collinear limit pH⊥ → 0 the amplitude for the real emission processes gg → gH

and qg → qH diverge and can be written, via a Laurent expansion, asMexact =Mdiv/p
H
⊥+

Mreg. In this limit, the second term can be neglected with respect to the first one and it is

possible to recognize thatMdiv is proportional to the Born amplitude times the appropriate

radiation term. This factorized structure of the amplitude, neglecting the contribution

coming fromMreg which is assumed to be small, can be extended to all orders and it forms

the basis of the resummation procedure. Indeed, we can iterate this factorization in the

case of the amplitude for the emission of n additional partons. In impact parameter space,

this procedure leads to a factorized expression with n divergent emission factors times a
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term proportional to the Born amplitude. The expression for the approximated amplitude

describing the emission of up to n partons can be cast in the form of an exponential series,

which can thus be summed to all orders. The relative contribution of Mreg to the full

amplitude can be used to assess the accuracy of the collinear approximation and of the

factorization hypothesis.

The resummed partonic cross section has a factorized structure given by the product of

a universal exponential factor, which accounts for the resummation to all orders of the log-

arithmically divergent terms, multiplied by a process dependent function, which describes

the details of the hard scattering process. This factorization requires the introduction of

a scale µres, called resummation scale [56]. The latter defines the region where the resum-

mation is applied and it is usually set to a value between 0 and the hard-scattering scale.

A customary choice in the literature, for inclusive Higgs production, is to set the central

value µ̄res = mH/2 [56]. The precise choice of this value is one of the main topics of this

paper and will be further discussed in the next sections. Analogously to what happens with

the renormalization and factorization scales, the physical observables should not depend

upon µres, but the truncation at a fixed order of the logarithmic expansion leaves a resid-

ual dependence on it, which can be used to estimate the uncertainty due to the missing

higher-order logarithmic terms; a variation of the scale µres in the interval [µ̄res/2, 2µ̄res] is

customarily adopted.

The matching procedure requires to fix the integral of the Higgs transverse momentum

distribution to a constant, which is conventionally set to the value of the fixed order total

cross section [56]. This constraint holds exactly for any choice of µres, so that any variation

of the resummation scale modifies the shape of the distribution but not its integral and

yields thus a correlation between low- and intermediate-pH⊥ regions.

2.2 Numerical resummation in the NLO+PS framework

Another approach to the resummation of terms enhanced by the factor log(pH⊥/mH) is the

one obtained in the context of PS Monte Carlo, where the multiple emission of partons is

numerically simulated via the PS algorithm. The matching between the fixed order NLO-

QCD results and the PS has been discussed in refs. [63, 91, 92] and it is implemented in

several tools regularly used in the experimental analyses.

In a sufficiently general way we can write the matching formula as

dσ = B̄s(ΦB)dΦB

{
∆s
t0 + ∆s

t

Rs(Φ)

B(ΦB)
dΦr

}
+RfdΦ +RregdΦ. (2.1)

The phase space is factorized into the product of the Born and the real emission compo-

nents, dΦ = dΦBdΦr. The Born squared matrix element is denoted by B while B̄ is the

NLO normalization factor. The latter is defined as

B̄s(ΦB) = B(ΦB) + V̂fin(ΦB) +

∫
R̂s(ΦB,Φr)dΦr . (2.2)

In this formula V̂fin represents the UV- and IR-regularized virtual contribution. We use

the hat to indicate that an amplitude has been IR-regularized. The partonic subprocesses
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with the emission of an additional real parton can be split into two groups: those that

are divergent in the limit of collinear emission, called Rdiv, and the ones that are instead

regular, Rreg. We can further subdivide the squared matrix elements of the divergent

subprocesses in two parts:

Rdiv = Rs +Rf . (2.3)

The term Rs contains the collinear singularity of Rdiv, while Rf is a finite remainder.

Finally, we use the symbol ∆s
t for the Sudakov form factor, with t as the shower ordering

variable:

∆s
t = e−

∫
dt′
t′

Rs

B
dΦrθ(t′−t) . (2.4)

The splitting of Rdiv in eq. (2.3) is defined up to a finite part which can be reabsorbed in

Rs. In the literature two different choices have been adopted: in POWHEG Rs = Rdiv, while

in MC@NLO Rs ∝ αsPijB is proportional to the product of the Born matrix elements times

the relevant Altarelli-Parisi splitting functions.

It is interesting to observe that different definitions for Rs generate higher-order effects

in the matched differential cross section. The possibility of defining the finite part Rf in an

arbitrary way can be exploited to parameterize the uncertainties related to the matching

procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between Rs and Rf can be achieved in a

dynamical way using the damping factor Dh, defined as

Dh =
h2

h2 + (pH⊥ )2
. (2.5)

The divergent and the regular part of Rdiv = Rs +Rf are then defined as:

Rs = Dh Rdiv , Rf = (1−Dh) Rdiv . (2.6)

The role of the scale h is to separate the low and the high transverse-momentum regions and

it therefore specifies the range of momenta for which the Sudakov form factor is possibly

different from 1. In the limit pH⊥ � h we obtain Rs → Rdiv and Rf → 0. In this limit

the Higgs pH⊥ distribution is suppressed by the Sudakov form factor. On the other hand,

when pH⊥ � h we have Rs → 0 and Rf → Rdiv and the Sudakov form factor tends to 1.

In this latter regime the emission of a real parton is described at fixed order by the matrix

elements Rf = Rdiv.

The differential distribution generated according to eq. (2.1) contains higher order

terms, beyond the claimed accuracy of the calculation, due to the product of B̄ × Rs.
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R
Figure 1. Left: effect of the damping factor Dh for different values of the scale h on the transverse

momentum distribution of a SM Higgs of mass equal to 125 GeV. The red dashed line is obtained

with h = mH/1.2 GeV, the green dot-dashed one with h = mH/2 GeV and the indigo dashed one

with h = 30 GeV. The blue continuous line corresponds to no damping. For the no damping case

and for h = 30 GeV we also show the results at the level of Les Houches Event File (LHEF). For

reference we show the NLO curve in gray. Right: ratio of the POWHEG prediction for the transverse

momentum over the NLO result. The color coding is the same as in left figure.

Indeed in the large pH⊥ region we have

dσ = B̄(ΦB)dΦB

{
∆t0 + ∆t

Rs(Φ)

B(ΦB)
dΦr

}
+RfdΦ +RregdΦ

≈ B̄(ΦB)
Rs(Φ)

B(ΦB)
dΦ +RfdΦ +RregdΦ

≡ K(ΦB)Rs(Φ)dΦ +RfdΦ +RregdΦ,

K(ΦB) ≡ B̄(ΦB)

B(ΦB)
= 1 +O(αs) . (2.7)

Originally the factor Dh was introduced to damp the Rs contribution at large pH⊥ and to

recover the exact fixed order result in this kinematic region, at the level of the first emission

handled by POWHEG.

By varying the scale h, it is possible to check how well the fixed order distribution is

recovered for large values of pH⊥ , as can be seen from figure 1.

We observe that, while at the level of the first emission generated by POWHEG (ob-

tained at the level of Les Houches Event File (LHEF)) the NLO result is fully recovered,

the showering of the events causes the high-pH⊥ tail of the distribution to rise over the

NLO prediction.

The total NLO cross section is always preserved for any value of h, as can be checked

by integrating eq. (2.1) over the whole phase space. This property implies in turn that the

low- and high-pH⊥ regions of the differential cross section are correlated. Any increase of

the distribution at low-pH⊥ translates in a decrease of the high-pH⊥ tail and vice versa.
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The role effectively played by the scale h has some similarities with the one described

in section 2.1 for the resummation scale µres: indeed, for pH⊥ < h or for pH⊥ < µres the

Sudakov suppression yields a regular behavior of the Higgs transverse momentum distri-

bution, whereas for pH⊥ larger than these scales the fixed-order description is recovered, at

the level of description given by POWHEG. It should however be remarked that µres and h

have a completely different origin. The scale µres is introduced as the scale at which the

resummation is defined and the factorization of the partonic cross section implemented.

It necessarily appears in the arguments of the logarithmic terms that are resummed. The

damping factor Dh is instead a convenient pH⊥ -dependent parameterization of the ambigu-

ity in the definition of Rs. In a different perspective, the scale h controls the range of pH⊥
over which the first term in eq. ( 2.1) is active in the generation of the first real emission.

Since this term contains the normalization factor B̄, the scale h in turn controls also how

the total NLO cross section is spread over the pH⊥ distribution.

2.3 The value of the SCALUP variable

The emission of the radiation in the POWHEG approach is described by eq. (2.1). Neglecting

the contribution coming from the term Rreg (negligible in the case of the Higgs production

in gluon fusion), we have two different categories of events. One corresponds to the terms

in curly brackets (B̄-events), while the second one is described by the term Rf (remnant

events). The latter is present only if the damping factor Dh is used.

To avoid double counting of the emissions, in the POWHEG approach the PS is required to

emit radiation at transverse-momentum scale lower than the one of the parton emitted by

the POWHEG-BOX. More in detail, in the case of B̄ events the PS should start to consider the

possibility of an emission exactly at the scale at which the POWHEG parton was radiated.

In the default POWHEG-BOX implementation the same choice is applied, for a reason of

uniformity, also to the remnant events. This information is therefore computed on an event-

by-event basis and the passed to the PS using the SCALUP field in the LHE event record.

It might happen that the value of SCALUP is large and that the description by the PS of

real radiation at large transverse momenta is not accurate, since this approach is based on

the soft/collinear approximation. It is then natural to consider as an option the possibility

of setting an upper bound to the value of the SCALUP variable, close or equal to the one

adopted for the h parameter.1 This choice is applied only to the events generated by the

Rf part of the real matrix elements, in order to respect the POWHEG accuracy given by the

first term in eq. (2.1) and account for a higher-order effect. Since these events are relevant

only for the description of the high-pH⊥ region (in turn defined by the scale choice h), we do

not expect a modification of the shape of the distribution in the low-pH⊥ region. Indeed, in

this way the action of the PS is restricted to the lower part of the pH⊥ spectrum, whereas the

large-pH⊥ tail is described purely by the LO matrix elements. In section 4 we will compare

the description of the Higgs high-pH⊥ tail with the default and with the modified SCALUP

values, in the case of the SM.

1More precisely, we take min(pH⊥ , h).
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3 Collinear approximation of partonic squared matrix elements

In the previous section we have recalled that the resummation to all orders of the terms

enhanced by a log(pH⊥/mH) factor is possible thanks to the factorization of the squared

matrix element in the collinear limit pH⊥ → 0. Based upon those considerations, we now

explain our procedure to determine the accuracy of the collinear approximation of the

full squared matrix element with respect to pH⊥ , focusing for simplicity on the channel

gg → gH. We then derive numerically the value w of the upper limit of the pH⊥ range

where the collinear approximation is accurate, for the scalar and the pseudoscalar final

states, considering both the gg → gH and the qg → qH channels.

3.1 Helicity amplitudes and kinematic variables

We consider the helicity amplitudes2 Mλ1,λ2,λ3(s, pH⊥ ,m
2
H) for the process gg → gH, whose

complete expressions can be found for example in ref. [48]. We reorganize them, via a

Laurent expansion, as follows:

Mλ1,λ2,λ3(s, pH⊥ ,m
2
H) =Mλ1,λ2,λ3

div (s,m2
H)/pH⊥ +Mλ1,λ2,λ3

reg (s, pH⊥ ,m
2
H) (3.1)

and we use this decomposition to compute the unpolarized squared matrix element exactly,

|M|2, or its collinearly divergent part |Mdiv/p
H
⊥ |2.

We define the ratio C:

C(s, pH⊥ ,m
2
H) =

|M(s, pH⊥ ,m
2
H)|2

|Mdiv(s,m2
H)/pH⊥ |2

, (3.2)

which quantifies how the unpolarized exact squared matrix element differs from its

collinear approximation as a function of pH⊥ . We observe that by construction we have

limpH⊥→0C(s, pH⊥ ,m
2
H) = 1. In our study we also consider the behavior of the interfer-

ence term between the top and the bottom quark. For this specific case we redefine the

parameter C as

Cint(s, p
H
⊥ ,m

2
H) =

2Re
(
Mt(s, p

H
⊥ ,m

2
H)M∗b(s, pH⊥ ,m2

H)
)

2Re
(
Mdiv,t(s, p

H
⊥ ,m

2
H)M∗div,b(s, p

H
⊥ ,m

2
H)
)
/
(
pH⊥
)2 . (3.3)

We introduce the following practical criterion: the regular part of the amplitude be-

comes non-negligible with respect to its collinear counterpart for a value w of pH⊥ such that∣∣C(s, w,m2
H)− 1

∣∣ > C̄ . (3.4)

To fix the setup of our study we choose C̄ = 0.1. This value is arbitrary, but its order of

magnitude can be justified in the framework of a QCD calculation, since the size of the

terms without a collinear logarithmic enhancement is αs/π times a coefficient of order 1.

We do not assign any special meaning to the scale that will be found with our analysis but

we rather consider it as a starting point to compute an uncertainty band. At the end of

the section we analyze the dependence on the specific value of C̄.

2λ1 = ±1, λ2 = ±1 are the helicities of the two incoming gluons and λ3 = ±1 is the helicity of the

outgoing one.
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The amplitude of the process gg → Hg is a function of two independent kinematic

variables, e.g. s and pH⊥ . The production of a final state with a definite pH⊥ requires a

minimum value for s:

smin = m2
H + 2(pH⊥ )2 + 2pH⊥

√
(pH⊥ )2 +m2

H . (3.5)

We study the behavior of the amplitude as a function of pH⊥ for s = smin + ssoft, where

ssoft is necessary to avoid the soft divergence and focus only on the collinear behavior. The

choice of a value of s close to smin is phenomenologically motivated by the strong PDF

suppression in the hadronic cross section for increasing partonic s.

An analogous procedure is used to determine the scale w for the qg → qH subprocess,

with the analytic expressions of ref. [25] and in the case of pseudoscalar production using

the formulae in ref. [93].

3.2 Partonic analysis

We assume that the full amplitude is the sum of a top and a bottom contribution, neglecting

the light quark generations. Furthermore, we do not consider the possibility of additional

colored particles running in the loop, since the current LHC results hint to the fact that,

if these states exist, their mass is probably much larger than the top mass. Therefore they

would not affect the shape of the Higgs transverse momentum distribution for values of pH⊥
that are phenomenologically interesting.

Under the assumption that the coupling of the gluons to the quarks is the one dictated

by QCD and that all the details about the coupling of the Higgs to the quarks can be

factorized from the rest of the amplitude, we can consider the value of the scales wt, wb
and wi, that we respectively find in the case of squared matrix elements with only top quark

diagrams, only bottom diagrams or for the top-bottom interference, as model independent.

As a consequence, the determination of the scales depends only on the quark and the

Higgs masses.

While the scales computed with only one quark might have a physical interpretation in

the BSM scenarios where that quark yields the dominant contribution to the cross section,

the scale of the interference terms, while unphysical, is a necessary tool to treat accurately

the full theory in scenarios where both top and bottom quarks are equally important. Since

the full squared matrix element, including top and bottom quarks, factorizes in the collinear

limit, the same pattern should be followed not only by the terms with the squared amplitude

of one single quark, but also by the interference terms, making our treatment viable.

In sections 4 and 5 we will discuss how these results can be exploited in a model specific

framework.

3.2.1 Scalar Higgs

To exemplify the outcomes of our procedure, we show the results for the variable

C(s, pH⊥ ,m
2
H) for a Higgs boson with mH = 125 GeV and mH = 500 GeV in figure 2,

in the case of the gg → gH subprocess. We plot in red and blue the behavior of the

squared matrix elements computed including only the top or only the bottom diagrams,

in green we show the behavior of the interference of the top and bottom amplitudes. In
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Figure 2. Relative effect of the regular part of the amplitude compared to the collinear approxi-

mation, for a light Higgs (left, mH = 125 GeV) and for a heavy Higgs (right, mH = 500 GeV), in

the gg channel. In red we show the results for the squared top quark amplitude, in blue the ones

for squared bottom amplitude and in green the ones for the interference. For comparison, in the

case of mH = 125 GeV, we also plot the curve for the HQEFT in orange.

the same figure, for mH = 125 GeV, we plot in orange the results obtained by applying the

same procedure to the HQEFT matrix elements.

We first discuss the impact of the regular terms in the case of a light Higgs. We

compare the results obtained with the exact matrix elements including only the top quark

with the ones in the HQEFT; we observe that in both models a deviation by more than

10% from the collinear approximation occurs for pH⊥ > 55 GeV. Since it is present in both

cases, this effect should thus not be interpreted as a top mass effect; the latter becomes

visible for pH⊥ > 150 GeV. From the analysis of the helicity amplitudes, we observe that

this deviation from the collinear approximation stems fromM−+−. For the bottom quark,

the deviation from the collinear approximation starts from pH⊥ > 19 GeV. In the case of

the interference terms, we observe that the determination of the scale wi is dominated by

the behavior of the bottom amplitude; the corresponding value, wi = 9 GeV, is smaller

than the ones obtained in the other two cases.

In the case of a heavy Higgs, with mH > mt,mb, the scale of the process is set by the

mass of the boson (e.g. mH = 500 GeV) and the HQEFT approximation of the amplitude is

not valid. We observe that the amplitude that includes only the top-quark diagrams devi-

ates from its collinear approximation3 for pH⊥ > 111 GeV. Instead, the squared matrix ele-

ment that includes only the bottom-quark diagrams deviates from its collinear approxima-

tion for pH⊥ > 63 GeV. Finally, for the interference terms we find the bound pH⊥ > 18 GeV.

In the left section of table 1 and in figure 3 we present the values of the scales w, derived

from the study of scalar Higgs production for different choices of mH ∈ [125, 800] GeV,

separately in the case of squared matrix elements computed including only the top, only

3We remark that the collinear regime is not defined by a given value pH⊥ of the variable pH⊥ , defined as

the value at which the deviation from the collinear behavior is equal to C̄, but it is better characterized in

terms of the ratio r = pH⊥/mH ; in the case under discussion (only top diagrams) we find r ' 1/4 whereas

for mH = 125 GeV we have r ' 1/2.
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Scalar, collinear deviation scale w (GeV)

mH (GeV) wggt wggb wggi wqgt wqgb wqgi wgg+qgt wgg+qgb wgg+qgi

125 55 19 9 24 7 5 48 18 9
200 85 29 16 21 5 5 71 27 14
300 132 41 25 17 4 4 111 38 23
350 102 47 28 15 4 4 87 43 26
400 94 52 26 14 4 3 81 49 23
500 111 63 18 13 3 2 96 58 17
600 133 73 6 13 3 0 113 68 6
700 157 83 25 9 2 2 137 78 24
800 181 93 46 8 2 36 158 87 46

Table 1. Value of the scales wt,b,i for a scalar Higgs. The scales are reported both as deter-

mined separately in the two partonic subprocess (left) and after their combination according to

eq. (3.8) (right).

100 200 300 400 500 600 700 800
mH (GeV)

0

50

100

150

200

w
(G

eV
)

wgg+qg
t

wgg+qg
b

wgg+qg
i

mH/2

mH/1.2

Figure 3. Combination of the scales wgg and wqg according to eq. (3.8). In red we show the result

for the top quark, in blue the one for the bottom and in green the one for the interference term.

The dashed style represents the scales obtained in the gg channel, the dot-dashed style the ones in

the qg channel. Continuous lines are used for the merged scales. We also show as a dotted line the

scale choices mH/2 [56] and mH/1.2 [5]. In orange we show the results for the HQEFT.

the bottom diagrams or for the interference of the top and bottom amplitudes; the results

are presented separately for the two partonic subprocesses, gg → gH and qg → qH.

We observe that in the gg → gH channel both scales wt,b increase with the Higgs

mass, with the exception of the region of real top-pair production threshold, where the

effect on wt of additional terms that induce a deviation from the collinear approximation

is visible. In the bottom-quark case such phenomenon does not show up, because for

realistic values of mH the process scale is always well above the bottom-pair production

threshold. The interference scale wi has a peculiar behavior: in fact, it shows a growth with

mH until the top-pair production threshold and then it decreases for larger mH , until it

vanishes for mH = 589 GeV, with our mt and mb choices; for even larger mH values it grows
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again. In order to explain why wi vanishes, we should recall that the interference terms,

as a function of mH and for fixed mt and mb, are not positive definite and may change

sign for a specific value of mH ; in particular, when the underlying LO (i.e. of the process

gg → H) interference terms vanish, also the collinear approximation does. In this point

the interference terms of the processes gg → gH and qg → qH are thus collinear finite, the

function C(s, pH⊥ ,mH) diverges for all pH⊥ and the scale wi is equal to zero, indicating that

the pH⊥ distribution is regular and a LL resummation is not needed. It should be noted

that, for this specific configuration, the importance of the interference term is in any case

small, since it vanishes at LO.

We observe that in the qg → qH channel the scales are lower than in the previous

case and that they decrease for increasing values of the Higgs mass. The basic argument

to explain this different behavior can be found analytically in the HQEFT: we expand the

ratio C(s, pH⊥ ,m
2
H) in powers of pH⊥ around pH⊥ = 0 and we find

CHQEFT
qg = 1−m2

H

(pH⊥ )2

s2
soft

(
1 + ssoft

m2
H

)(
1 + 2 ssoft

m2
H

+ 4
s2soft
m4

H

)
(

1 + 2 ssoft
m2

H
+ 2

s2soft
m4

H

) +O((pH⊥ )3) (3.6)

CHQEFT
gg = 1− 2

(pH⊥ )2 s2
soft

m6
H

1 + ssoft
m2

H(
1 + ssoft

m2
H

+
s2soft
m4

H

)2 +O((pH⊥ )3) (3.7)

The different behavior with respect to mH of the scale w is due, in the gg case, to the

fact that the function C receives corrections with negative powers of mH , so that for heavy

Higgs masses there is a larger interval of pH⊥ where the collinear limit provides a good

approximation of the full result; in the qg case instead, there are corrections quadratic in

mH , such that the deviation of C from 1, for large mH , occurs at smaller pH⊥ values. A

numerical analysis with the full dependence on the top and bottom masses confirms the

explanation derived above in the HQEFT.

The interference scale vanishes, as expected, for the same mH value in the gg → gH

and the qg → qH channel, since they factorize to the same LO term.

The different values of the scales wt,b obtained in the two partonic channels gg and qg

give rise to a practical problem, in case one wants to use at hadron level one single scale to

control the effects of multiple parton emissions; given that the w value from the gg channel

is always larger than the one from the qg channel, we can expect that the final value will

lie in between; we evaluate it with a weighted average, with the relative contributions of

the two channels in each bin, further adjusted to account for the shape of the physical

distribution. We define

wgg+qg(mH) ≡
∫ wgg

wqg

dpH⊥

wgg dσgg

dpH⊥
dσgg+qg

dpH⊥

+ wqg
dσqg

dpH⊥
dσgg+qg

dpH⊥

× dσgg+qg

dpH⊥

σinterval
, (3.8)

where

σinterval =

∫ wgg

wqg

dpH⊥
dσgg+qg

dpH⊥
. (3.9)
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Pseudoscalar, collinear deviation scale w (GeV)

mA (GeV) wggt wggb wggi wqgt wqgb wqgi wgg+qgt wgg+qgb wgg+qgi

125 60 19 11 24 7 6 52 18 10
200 126 29 18 22 5 5 102 27 16
300 122 41 28 18 4 4 103 38 25
350 82 47 25 15 4 4 70 43 23
400 99 52 15 14 4 2 86 49 14
500 127 63 15 12 3 2 109 58 14
600 155 73 36 11 3 51 132 68 39
700 184 83 69 10 2 18 160 77 60
800 212 92 277 9 2 10 184 86 239

Table 2. Value of the scales wt,b,i for a pseudoscalar Higgs. The scales are reported both as

determined separately in the two partonic subprocess (left) and after their combination according

to eq. (3.8) (right).

In figure 3, and in table 1, in the last three columns to the right, we show the results

of this combination, which are our best determination for the scales to be used in the

simulation of the hadronic differential cross section.4 We have used the code SusHi [94],

with
√
S = 13 TeV, to compute the weights used in eq. (3.8). Since this procedure requires

the evaluation of the hadronic cross section, the combined scales are dependent on the
√
S

value used and on the other hadronic parameters. In particular this is true for the choice

of the renormalization and factorization scale, that we have assumed to be µr = µf = mH .

However we have verified that the effect on the channel-combined value for the scales is

only at the of few GeVs, well within the uncertainty band that we are considering. A finer

scan in the Higgs mass, is provided in tables 4 and 5, in appendix A.

3.2.2 Pseudoscalar Higgs

In table 2 we present a sample of the results, analogous to the ones of the previous subsec-

tion, for the case of pseudoscalar Higgs production.

The general behavior of the two partonic channels is similar to the one observed for

scalar production. One difference can be observed at the top-pair threshold, where a cusp

appears in the wt prediction, reflecting the analogous feature of the total cross section. The

scale wi vanishes for a different value of the pseudoscalar mass, mA = 445 GeV, because of

the different LO dependence on mA, mt and mb. As for the scalar case, a more detailed

scan as a function of mA is available in tables 4 and 5, in appendix A.

3.3 Dependence on auxiliary parameters

The value of the resummation scale has been determined with an analysis of the partonic

squared matrix element, for fixed value of the partonic invariant s. For a given final state

configuration and in particular for a given value of pH⊥ , the hadronic distribution receives

contributions from all the partonic cross sections with smin ≤ s ≤ S, where S is the

4The relative weight of the two partonic channels, as a function of the Higgs mass, is slowly varying, so

that we can approximate the result of equation (3.8) with the simpler relations wt = 0.2wqg
t + 0.8wgg

t and

wb = 0.1wqg
b + 0.9wgg

b . These relations approximate the exact combination at the 5% level.
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Figure 4. Auxiliary parameter sensitivity for the merged gg-qg scales. On the left, dependence of

the scale determination on the choice of the value of the cut-off ssoft; on the right dependence of

the scale determination on the choice of the value C̄ ∈ [0.05, 0.2]. The dashed curves represent the

values obtained by enlarging the parameter whose dependence is under study while the dot-dashed

curves are obtained by the rescaling of the parameter to a smaller value.

hadronic Mandelstam invariant. To make an educated guess of the resummation scale,

we have studied the partonic configuration which has the largest weight at hadron level;

due to the PDF suppression at large x, this happens to be the smallest possible value of

s. The choice s = smin satisfies this requirement but introduces an additional technical

problem, namely the presence of soft divergences in the amplitude. To avoid this issue

when computing the curves in figure 2 we have set s = smin + ssoft with ssoft = (100 GeV)2.

We have verified that the results are weakly dependent on the specific value of ssoft, as

shown in figure 4 (left plot) where the bands describe the results, as a function of the Higgs

mass, obtained with a variation of ssoft in a range [1/10, 10] with respect to the central

choice. In particular we remark that the scale prediction is stable for small values of ssoft,

i.e. in the soft-emission region, phenomenologically the most relevant.

In figure 4 (right plot) we show the dependence of the scale determination on the value

assigned to C̄. The bands describe the results, as a function of the Higgs mass, obtained by

varying the parameter in the interval C̄ ∈ [0.05, 0.2]. As expected, e.g. from the inspection

of figure 2, there is a direct proportionality between the value of C̄ and the resulting scale w.

Due to the assumptions used in our procedure, we stress that the determination of

the central value for w does not have an absolute meaning. It is rather the starting point

to define an interval of reasonable values for the scale w that in turn should be used to

compute an uncertainty band for the transverse momentum distribution.

4 Standard Model phenomenology

We consider now the evaluation of the Higgs transverse momentum distribution in proton-

proton collisions at the LHC in the SM. We use the analytic results of [95] implemented

in the public code HRes and the shower Monte Carlo implemented in the POWHEG-BOX [67].

For the former, we study the impact of different choices of the resummation scale µres,
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while with the latter we vary the value h which enters the damping factor Dh. In both

cases we consider the possibility of a separate treatment of the top and of the bottom quark

contributions. In the numerical analysis we use mt = 172.5 GeV, mb = 4.75 GeV, the PDF

sets MSTW2008nlo68cl and MSTW2008nnlo68cl [96] with their corresponding values of

αs(mZ). We chose µR = µF = mH as the renormalization and factorization scales. We use

PYTHIA8 [97, 98] with the tune AU-CT10 to shower the POWHEG events. This specific tune

was chosen since it is the same used by the ATLAS collaboration for their Higgs analyses.

The center of mass energy at the LHC has been assumed to be
√
S = 13 TeV.

4.1 Comparison of POWHEG and HRes

The gluon fusion process, including the top and the bottom quark diagrams in the scattering

amplitude, is a three-scale problem, as was already stressed in ref. [1] and as we have seen

in the previous sections: the Higgs mass, the value of pH⊥ and the mass of the quark. The

bottom quark contributions spoil the validity of the factorization hypothesis for pH⊥ values

smaller than in the top quark case and require a dedicated treatment. In order to make

explicit the role of the top and of the bottom quarks, the squared matrix elements can be

rearranged as

|M(top + bot)|2 = |M(top)|2 +
[
|M(top + bot)|2 − |M(top)|2

]
, (4.1)

where we have put in round bracket the quarks that run in the loops of the diagrams. The

square brackets contain the top-bottom interference terms and the square of the modulus

of the bottom amplitude. The rationale behind this rearrangement is that in the SM the

dominant contribution to the gluon fusion is due to the top quark diagrams, while the

bottom quark diagrams yield a correction to the former; it is thus reasonable to make one

dedicated scale choice for the top quark and a second scale choice for all the other terms,

even if they still include top quark diagrams via interference terms. We recall that by

construction the total cross section does not depend on the value of the resummation scale

in HRes (or equivalently of the scale h in POWHEG). This fact allows us to write the following

identity

σ(top + bot) = σ(top, µt) + [σ(top + bot, µb)− σ(top, µb)] , (4.2)

where here and after, with a slight abuse of notation, we have introduced the symbol σ(q, µ)

to indicate the total cross section evaluated with the quark q in the loops, using, in the

numerical code, the matching parameter at the scale µ. The latter is the resummation

scale Qi in HRes and the scale h in POWHEG.

This equation is trivial for the total cross section, and represents a possible recipe

for the evaluation of differential observables, specifically the Higgs boson transverse

momentum.5

For our phenomenological analysis we use two scales, one for the squared matrix ele-

ment with only the top quark and one for the other contributions, to allow a comparison

5In POWHEG, at the differential level, the extraction of a specific contribution by subtraction is bound to

introduce spurious terms due to the fact that the Sudakov form factor is non-universal. However, due to

our specific scale choices that guarantee a good accuracy of the collinear approximation in the pH⊥ range

where the Sudakov form factor has its major effect, we can argue that in this region the argument in the

exponent of the Sudakov factor is well approximated by the relevant universal expression R/B ' αsPij/t,

limiting the impact of the spurious terms.
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with the results presented in ref. [1]; we use a combination analogous to the one of eq. (4.2)

to evaluate also the differential distributions.

In section 3.3 we have given an estimation of the uncertainty in the determination of

the scales w by varying the auxiliary parameters that we have used in our computation. In

theory it is possible to use the range of scales obtained with such a procedure as the range of

values to be used for the matching parameter to estimate the uncertainty on the prediction

for the transverse momentum distribution. However these values depend in a non-trivial

manner on the Higgs mass considered. We observe that a variation by a factor of 2 of the

central value widely covers the range of scales that we find with our explicit computation,

thus yielding a conservative assessment of the uncertainty. To simplify the uncertainty-

estimation procedure we have then decided to compute the uncertainty bands using the

following standard prescription: we consider the 9 combinations of the pairs (µt, µb) of

the two matching parameters, which can be obtained from the sets (µ̄t/2, µ̄t, 2µ̄t) and

(µ̄b/2, µ̄b, 2µ̄b), where we called µ̄t and µ̄b the respective central values, and we take the

envelope of all the predictions.

We consider the three following cases and, in each of them, we compute the uncertainty

band according to the rule described above:

1. we use POWHEG and we set the scale of the top quark diagrams ht = mH/2 and the

scale of the bottom quark contributions hb = mb

2. we use POWHEG and follow the analysis described in section 3 and in particular the

values of table 1: we set ht = wt = 48 GeV and hb = wi = 9 GeV. The wi is chosen

over wb since the interference terms yield a larger contribution to the process than

the bottom quark squared matrix elements.

3. we use HRes at LO+NLL accuracy and set the resummation scale of the top quark

diagrams Q1 = mH/2 and the resummation scale of the bottom quark contributions

Q2 = mb, following the choices of ref. [1];

The distributions obtained with HRes and POWHEG share the same matrix elements

that describe at NLO-QCD the inclusive Higgs boson production, and differ by subleading

NNLO and by higher order terms, which might nevertheless be numerically relevant.

The comparison of the shape6 of the pH⊥ distribution, in figure 5, of the results of item

1 (blue dot line) and 3 (dashed red line) is meant to expose the differences of the two codes

taken with their default setup, when they are run with the same accuracy for the total cross

section, NLO-QCD, and with the same value for the matching parameters. On the left we

show the absolute comparison of the results, while on the right we show the ratio of the

different predictions over the one obtained with POWHEG and the HRes scale choice (item 1).

As discussed in section 2 the two basic formulae used to generate the Higgs pH⊥ spectrum

differ by subleading O(α2
s) and higher-order terms, part of which are controlled by the

resummation scale in HRes or by the h scale in POWHEG. For the above reason, even if

we assign the same numerical values to the scales Q and h, we expect a certain level of

discrepancy for the central predictions.

6With the term shape we mean that we have normalized the differential distribution to 1.
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Figure 5. Shape of the transverse momentum distribution for a SM Higgs boson of mH = 125 GeV

as computed by HRes and POWHEG , for different values of the scales. On the left we show the

absolute value of the shape, while on the right we normalize the results to the one obtained with

our ht = mH/2 and hb = mb. In dotted blue we show the result obtained with ht = mH/2

and hb = mb; with a continuous green we show the prediction obtained with ht = wt = 48 GeV

and hb = wi = 9 GeV; the dashed red line is prediction obtained with HRES at LO+NLL, with

Q1 = mH/2 and Q2 = mb. For all the three curves we show the corresponding uncertainty bands

using the same colors. With a continuous gray line we show the results obtained at NLO.

Indeed we see that in the region where resummation effects are relevant, the two

codes behave differently, with HRes giving a softer distribution than POWHEG. Specifically,

the shape of the distribution produced by HRes is larger than the one from POWHEG for

pH⊥ ≤ 50 GeV, while for higher pH⊥ the behavior is the opposite. In the high-pH⊥ region,

for pH⊥ ≥ mH , we see that the HRes result coincides with the fixed-order distribution: in

fact, the code HRes uses the full matched expression for pH⊥ values smaller than mH and

implements a smooth transition to the pure fixed-order expression, which is used in the

high-pH⊥ tail; for this same reason, the HRes resummation scale uncertainty band vanishes

in this part of the spectrum.

In the high-pH⊥ range POWHEG shows a distribution harder than the fixed-order one,

because of the showering effects applied on top of the POWHEG formula for the first emission.

Since HRes does not include non-perturbative effects, which are present in the selected

tune of the PYTHIA shower, an additional problem in the comparison emerges: the non-

perturbative effects are relevant at small transverse momenta of the radiated partons. In

addition, in the low-pH⊥ region, the different expression of the HRes and POWHEG Sudakov

form factors (for the latter see equation (2.4)) has a role to determine the precise shape

of the distribution. By construction, the unitarity constraint, that forces the total cross

section to be always preserved, implies an anti-correlation between the low-pH⊥ and the

high-pH⊥ parts of the spectrum.

The comparison in figure 5 of the results of approximations 1 and 2 shows the sensi-

tivity, within the POWHEG formulation of the matching, to the h scale variations. The two
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Figure 6. Comparison of the pH⊥ spectrum of the Higgs boson in the SM, with our scale choices,

using the default POWHEG-BOX implementation (blue) and the one with the modified SCALUP pre-

scription for the remnant events (orange).

central values lie in the uncertainty bands obtained with the other scale choice. The main

difference can be observed at small pH⊥ , whereas the deviation for 50 ≤ pH⊥ ≤ 150 GeV can

be interpreted as a consequence of the unitarity constraint.

We observe, by using ht = wt and hb = wi, an accidental improvement of the agreement

between HRes and POWHEG in the region of pH⊥ < 100 GeV, where the two central values lie

close to each other.

In figure 6 we present the impact in POWHEG of a different choice of the variable SCALUP,

as discussed in section 2.3. We set SCALUP=ht, a constant value, while we keep unchanged

all the other parameters and in particular the value of the scales ht,b in the damping factor

D(h). The choice for the SCALUP value is in accordance with the dominant role played

by the top-quark loop in the SM. We observe that the central prediction of this modified

POWHEG version is lower than the default one for pH⊥ ≥ 200GeV and tends to recover the

fixed-order distribution at large transverse momenta. We interpret the reduction of the

differential cross section at large pH⊥ as due to the missing contribution in this region from

the PS emissions. The accuracy of the latter is questionable, since the PS is based on the

soft/collinear approximation and might be inadequate to describe large-pH⊥ radiation.

5 Beyond SM phenomenology

The description of the Higgs transverse momentum distribution in the SM, with mH =

125 GeV, is characterized by the dominant role played by the top-quark contribution, such

that the bottom-quark effects can be treated as a correction. Moreover, with a light scalar

Higgs, the HQEFT limit is a good approximation of the full SM, and the determination of
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the scale of validity of the collinear approximation (and hence of the applicability range of

the resummation techniques) reduces to a problem involving only mH and pH⊥ .

At variance with the previous case, and still in the SM, we know that with a heavy Higgs

boson, the description of the pH⊥ distribution is a multiscale problem; indeed, the minimal

energy scale necessary to produce the final state immediately probes the top-quark loop.

In a generic BSM scenario it is possible to consider enhanced couplings of the bottom

quarks to a relatively heavy Higgs boson, scalar or pseudoscalar. In these configurations,

our intuition, accustomed to a light SM-like Higgs phenomenology, may fail in the deter-

mination of the correct regime where the resummation techniques can be safely applied.

Since a priori we do not know exactly how the contributions from the different quarks

interplay in the full result, following ref. [77], we can generalize eq. (4.2) to

σ(top + bot) = σ(top, µt) + σ(bot, µb)

+ [σ(top + bot, µi)− σ(top, µi)− σ(bot, µi)] , (5.1)

where the last term allows us to use a separate scale for the top-bottom interference term.

As before, the parton level analyses discussed in section 3 provide a model independent

ansatz for the three relevant scales, µt,b,i: these are the scales wt,wb and wi, listed in

tables 1 and 2 as a function of the Higgs boson mass.

In order to illustrate the phenomenological consequences of our study, we show our

predictions in the 2HDM and in the MSSM7 and we compute the uncertainty bands with

an extension of the procedure described in section 4: we consider all the 27 combinations

of the three matching scales and then take their envelope. The range of scales spanned

represents again a conservative choice to assess the matching uncertainty.

5.1 2HDM phenomenology

We consider the type-II 2HDM. We adopt a purely heuristic approach to show the impact

of our study, choosing the 2HDM parameters that are relevant for the gluon fusion process

by following only the requirement that they represent three different scenarios: one where

the cross section is dominated by the top-quark; one where the contribution of the top

and the bottom quark are of the same order of magnitude; and one where the process is

dominated by the bottom quark matrix elements. The explicit values for the parameters

are reported in table 3 for all the three scenarios. In all three cases we choose to study a

heavy Higgs of mH = 500 GeV. The corresponding values for the scales are wt = 96 GeV,

wb = 58 GeV and wi = 17 GeV. For the simulation we adopt the Monte Carlo generator

gg H 2HDM available in the POWHEG-BOX.

We now present our best predictions obtained with the three-scale procedure and check

how well they are approximated by a one-scale approach.

In figure 7 we show the results for the first scenario. In this case we have that the

process is dominated by top quark contribution. Indeed we notice that the three scales

result is well approximated by the one scale result with the scale taken equal to the top scale.

7A detailed comparison with the approach of ref. [77] is currently ongoing [79].
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Figure 7. Shape of the transverse momentum distribution for the heavy CP-even scalar H, as

computed by the gg H 2HDM generator in the 2HDM scenario A. On the left we show the absolute

value of the shape, while on the right we normalize the results to the one obtained with the scales

determined by our procedure, ht = wt = 96 GeV,hb = wb = 58 GeV and hi = wi = 17 GeV. In

dotted blue we show the result obtained with our scale choice, its uncertainty band drawn in lighter

blue; with a continuous green (dashed red line) we show the prediction obtained with h = mh/2

(h = mh/1.2). In dashed black we show the results obtained with a single run with the scale h set

to wt. Finally in gray we show the NLO prediction.

2HDM scenarios

Parameter Scenario A Scenario B Scenario C

mH (GeV) 500 500 500

tanβ 1 12 50

sin(β − α) 1 1 1

Table 3. Values of the relevant 2HDM parameters for the three type-II scenarios considered in

the text.

On the other hand, in the second case shown in figure 8, we have that the contributions

coming from the two quarks are of the same order of magnitude. In this case we observe

that the result obtained by using three scales is not recovered by simulations with just a

single scale, with either the top or the bottom one.

Finally, in figure 9 we see that in the bottom dominated scenario, we have a similar

situation as in the top dominated case, though the scale to be used in a one scale run is

wb instead of wt.

In all three cases we stress that the using values of the order of mH/2 or mH/1.2

for the matching parameter h yields results that are in the best case at the limit of the

uncertainty band.
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Figure 8. Same as in figure 7 but for 2HDM scenario B. Here the dashed black line is obtained

with a single run with h = wt while the continuous black line corresponds to h = wb.
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Figure 9. Same as in figure 7 but for 2HDM scenario C. Here the dashed black line is obtained

with a single run with h = wb.

5.2 MSSM phenomenology

We consider an explicit example in the MSSM by taking, in its parameter space, a point

still allowed by the most recent available data, according to the analysis of ref. [99], and to

the results of the code HiggsBounds [100–103]. The same point has been considered also in

ref. [77]. We choose the so called mmod+
h scenario defined in ref. [99] and set MA = 500 GeV

and tan β = 17 to fully specify our input parameters; as a result we obtain that the

masses of the two CP-even Higgses are respectively mh = 125.6 GeV and mH = 499.9 GeV.

The corresponding values of the w scales are: wt = 96 (109) GeV, wb = 58 (58) GeV and

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
0
5
6

wi = 17 (14) GeV, for a scalar (pseudoscalar) boson. We use these values to set the µt,b,i
parameters that enter eq. (5.1). For the simulation we adopt the Monte Carlo generator

gg H MSSM available in the POWHEG-BOX. In the simulation we include the full particle content

of the MSSM. We do not expect an important contribution from the squarks because in

this point of the MSSM parameter space their masses are, respectively, mt̃1
= 876 GeV,

mt̃2
= 1134 GeV, mb̃1

= 1007 GeV and mb̃2
= 999 GeV.

With this specific parameter choice, the light CP-even Higgs is similar to the SM

scalar, not only for the total cross section, but also for the shape of the pH⊥ distribution.

The heavy CP-even scalar and the pseudoscalar bosons have instead different properties,

because of the different coupling strength to the top and to the bottom quarks.

In figures 10 and 11 we show the results for the shape of the transverse momentum

distribution in the case of the light CP-even Higgs (top plot) and of the heavy CP-even

Higgs (bottom plot). We do not show the plot for the pseudoscalar since we expect a

behavior similar to the one of the heavy Higgs. Besides plotting the central values and

the uncertainty band corresponding to our scale choice, we also show the results obtained

with only one matching scale, with the commonly used prescriptions h = mh,H/2 and

h = mh,H/1.2. We observe that the three choices yield a different shape of the distribution

in the soft region where resummation effects are important: the scale choices h = mh,H/2

and h = mh,H/1.2 give a suppression in the first bins and an enhancement for pH⊥ larger

than 40 GeV with respect to the distribution obtained following eq. (5.1). In the case

of a light Higgs, we see that the central value obtained with h = mh/2 is contained in

the uncertainty band of the prediction computed by using three scales, while the result

corresponding to h = mh/1.2 is at the edge of the same uncertainty band. In the case of

the heavy CP-even Higgs, the h = mH/2 and h = mH/1.2 curves lie outside the uncertainty

band of the three-scale result; they deviate from its central value by O(40%), both in the

low- and in the high-pH⊥ tails.

6 Conclusions

The study of the Higgs transverse momentum distribution may provide important insights

about the properties of the recently discovered scalar resonance. The theoretical prediction

of this observable requires, in the region of small pH⊥ values, the resummation to all orders

of terms enhanced by powers of log(pH⊥/mH), while at large values of pH⊥ , fixed-order

calculations provide the most accurate description available. The consistent matching of

the two approaches requires the introduction of a momentum scale, that separates the soft

and the hard pH⊥ regions.

Since the validity of the resummation formalism relies on the collinear factorization of

the squared matrix elements describing real parton emissions, we investigated the accuracy

of the collinear approximation in the gluon fusion process, in the presence of an exact

description of the top and bottom quarks running in the virtual loop. The discussion

involves three scales, namely the Higgs mass, the Higgs transverse momentum and the

quark masses.

Relying on the collinear singularities structure of the O(αs) real matrix elements, we

determined, in a model independent way, as a function only of the Higgs and the quark
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Figure 10. Shape of the transverse momentum distribution for light CP-even scalar h, as computed

by the gg H MSSM generator for tan β = 17 and mA = 500 GeV in the mmod+
h scenario. On the left

we show the absolute value of the shape, while on the right we normalize the results to the one

obtained with our scale choice. In dotted blue we show the result obtained with our scale choice,

its uncertainty band drawn in lighter blue; with a continuous green (dashed red line, we show) the

prediction obtained with h = mh/2 (h = mh/1.2).
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Figure 11. Same as in figure 10, but now for the heavy CP-even scalar H.

masses, three scales, wt, wb and wi, associated to the terms in the full squared matrix

elements containing only the top-, only the bottom-quark contributions or the top-bottom

interference terms. Their values, presented in tables 1 and 2 and, with a finer scan of the

Higgs mass, in appendix A, represent our main result. These scales are derived from a
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parton-level analysis and can be eventually used in any hadron-level computation (analytic

or Monte Carlo) of the Higgs pH⊥ distribution, following eq. (5.1). They indicate the upper

limit of the pH⊥ range where the resummed part of the cross section can be evaluated in a

reliable way, because of the good accuracy of the collinear approximation of the full squared

matrix elements. They represent an ansatz for the matching scales, whose values do not

have an absolute meaning, but are rather the starting points to build an uncertainty band.

The procedure to compute an uncertainty band is described in section 4 and offers a

simple but quite conservative recipe to derive this band. A more aggressive approach would

exploit the scales obtained with a variation of the parameter C̄ ∈ [0.05, 0.2], as discussed

in section 3.

Our analysis is relevant for an accurate prediction of the Higgs pH⊥ distribution, both in

the SM and in BSM scenarios. In the latter case, our approach allows us to decompose the

different contributions to the pH⊥ distribution, also in the presence of a non trivial interplay

between the Higgs transverse momentum and the Higgs, top and bottom masses, for any

generic ratio between the strength of the couplings of the Higgs boson to the top and to

the bottom quarks.

The description of the Higgs transverse momentum distribution, based on the use of

three different scales for the matching parameter, represents our best ansatz for this observ-

able. We remark, however, that in various cases this result can be accurately approximated

with only one run that uses one single scale, the one associated to the dominant contribu-

tion to the scattering amplitude. This conclusion is obviously possible only a posteriori.

We stress the impact of the matching scale determination with one final comment,

relevant in the context of the searches for new heavy scalars, referring to the results shown

in figures 10 and 11. Our procedure defines the scales wt,b,i, whose variation in a given range

is then exploited to compute an uncertainty band of the distribution. The results presented

in section 5 are obtained with a conservative choice for the range of scale variation, as

described at the beginning of the same section. The use of a single-scale simulation,

with the matching scale set equal to the commonly adopted SM value mH/2, can lead to

predictions that lie outside of this most conservative uncertainty band described above and

that can differ with respect to our best central value by 30-40% both in the low- and in

the high-pH⊥ tails of the distribution.
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A Scan over the Higgs mass of the scales wt,b,i

In the appendix we include two tables with the values of the combined gg-qg collinear-

deviation scales, for scalar and pseudoscalar masses between 100 GeV and 500 GeV, sep-

arately for the top, the bottom and the interference contribution. The top pole mass

has been set to 172.5 GeV, while the bottom pole mass is equal 4.75 GeV, following the

prescription by the Higgs Cross section Working Group (HXSWG).

The merging of the scales was implemented by using the information on the relative

importance of the two partonic subprocess as given by the code SusHi[94]. The latter was

run at
√
S = 13 TeV using the MSTW2008nlo68cl PDF set and setting µr = µf = mH .

Scalar and pseudoscalar collinear deviation scale w (GeV)

mH (GeV) wgg+qgt wgg+qgb wgg+qgi mA (GeV) wgg+qgt wgg+qgb wgg+qgi

100 42 14 7 100 43 14 8
110 44 16 8 110 46 16 9
120 47 17 8 120 50 17 10
125 48 18 9 125 52 18 10
130 50 18 9 130 53 18 10
140 52 19 10 140 57 19 11
150 55 21 11 150 61 21 12
160 58 22 11 160 65 22 13
170 61 23 12 170 70 23 14
180 64 24 13 180 75 24 14
190 67 26 14 190 82 26 15
200 71 27 14 200 102 27 16
210 75 28 15 210 107 28 17
220 80 29 16 220 109 29 18
230 92 30 17 230 110 30 18
240 103 31 18 240 112 31 19
250 108 32 18 250 112 33 20
260 111 34 19 260 111 34 21
270 112 35 20 270 110 35 22
280 112 36 21 280 108 36 23
290 112 37 22 290 106 37 24
300 111 38 23 300 103 38 25
310 108 39 23 310 99 39 26
320 105 40 24 320 94 40 26
330 101 41 25 330 87 41 26
340 95 42 26 340 77 43 26
350 87 43 26 350 70 43 23
360 82 44 25 360 74 44 20
370 82 46 25 370 78 46 19
380 81 47 24 380 81 47 17
390 81 48 24 390 83 48 15

Table 4. Values of the scales wgg+qg
t,b,i as a function of the scalar and pseudoscalar Higgs mass.
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Scalar and pseudoscalar collinear deviation scale w (GeV)

mH (GeV) wgg+qgt wgg+qgb wgg+qgi mA (GeV) wgg+qgt wgg+qgb wgg+qgi

400 81 49 23 400 86 49 14
410 82 50 23 410 88 50 12
420 83 51 23 420 91 51 11
430 85 52 22 430 93 52 9
440 86 53 21 440 95 53 6
450 87 53 21 450 98 53 2
460 89 54 20 460 100 54 6
470 91 55 19 470 102 55 8
480 92 56 19 480 105 56 10
490 94 57 18 490 107 57 12
500 96 58 17 500 109 58 14
510 97 59 16 510 112 59 16
520 99 60 15 520 114 60 18
530 101 61 14 530 116 61 20
540 102 62 12 540 118 62 21
550 104 63 11 550 120 63 23
560 106 64 10 560 122 64 25
570 107 65 8 570 125 65 27
580 109 66 5 580 127 66 29
590 111 67 2 590 129 67 38
600 113 68 6 600 132 68 39
610 115 69 8 610 134 69 40
620 117 70 10 620 136 70 41
630 119 71 12 630 138 71 43
640 121 72 14 640 140 72 44
650 127 73 16 650 143 73 46
660 129 74 17 660 145 74 48
670 131 75 19 670 153 75 51
680 133 76 21 680 155 76 54
690 135 77 22 690 157 77 57
700 137 78 24 700 160 77 60
710 139 79 25 710 162 78 64
720 141 79 27 720 165 79 68
730 143 80 28 730 167 80 74
740 146 81 30 740 170 81 81
750 148 82 32 750 172 82 91
760 150 83 33 760 174 83 235
770 152 84 35 770 177 84 234
780 154 85 44 780 179 84 233
790 156 86 45 790 181 85 232
800 158 87 46 800 184 86 239

Table 5. Values of the scales wgg+qg
t,b,i as a function of the scalar and pseudoscalar Higgs mass.
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