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A large number of logistic maps are coupled together as a mathematical metaphor for complex
natural systems with hierarchical organization. The elementary maps are first collected into globally
coupled lattices. These lattices are then coupled together in a hierarchical way to form a system with
many degrees of freedom. We summarize the behavior of the individual blocks, and then explore the
dynamics of the hierarchy. We offer some ideas that guide our understanding of this type of

system. ©2002 American Institute of Physic§DOI: 10.1063/1.1502929

Ensembles of low-order dynamical systems are often used hierarchy of interacting elements. To build our metaphor, we
to model the interaction, competition, and synchroniza-  begin at the lowest “level” with a collection of map lattices.
tion among dynamically coupled, but distinct, objects. In  Each lattice is a globally coupled network of maps, and is
this genre, coupled map lattices are one of the simplest independent of the other lattices. The lattices are then
and widely used objects. Despite their simplicity, coupled coupled to maps on a level “above,” which are themselves
maps show a wide range of behavior, both with global organized into further lattices or groups. These groups are
coupling (in which each map is affected by the dynamics coupled to maps on the next higher level, which again are
of all other maps; a mean field interactior) and local cou-  collected into another group. The repetition of this construc-
pling (where each map interacts only with its nearest tion creates a hierarchy of many levels; every level consists
neighbors). This richness is one reason for their popular-  of a lattice of maps, each with connections to the maps on
ity. Another reason is their computational simplicity;  the same level, to the lattices on the level beneath and to a
temporal evolution amounts to a straightforward se-  map above. At the head of the hierarchy is a single presiding
quence of algebraic operations. In the current article, we  map. This leads us to contemplate a system with a very large
take a conceptual step beyond the idea of a simple en- pumper of degrees of freedom; a typical system contaifis 10
semble of maps; we consider ensembles of ensembles of 5y more map elements. We use logistic maps as the funda-
maps, a lattice of lattices, coupled in a hierarchical way. mental elements, and so this translates to as many dimen-
The underlying idea is that our hierarchy is a mathemati-  gjons.
cal metaphor for a complicated entity composed of an Although the mathematical constructions considered
organization with many levels and scales. In the study of ere are motivated by the behavior of natural systems with
this vast dynamical system, we try to make sense of the pigrarchical structure, our considerations are not meant to
possible range of dynamical behavior of which that sys-  rgvide an understanding of those entities. Our goal is more
tem is capable. of a mathematical game—we simply pose the question that,
given such a complicated system, can we make some sys-
| INTRODUCTION tematic deductiop_s conce_rning its dynamical capabilities?
Some more specific questions we address are: How does the

Many natural systems are composed of a large numbdpierarchy bgneath ilnfluence the dynamics of the presiding
of interacting elements, some of which are strongly coupled"@P? Can disorganized behavior at the lower levels be orga-
to each other, while others are only weakly bound together’)ized in the upper levels? Vice versa, can organized motion
Often, these elements are composed of smaller subunit@n the lower levels be destroyed as we go from the bottom to
which are, in turn, composed of still smaller sub-subunitsthe head of the tree? Is the self-similar structure of the hier-
and so on down to a basic, perhaps molecular, level. Thigrchy imprinted on the dynamics? All these questions are
structure can take the form of a hierarchy of basic constitumotivated by the issues that one often faces when consider-
ents wherein a rich network of units acts as a single, albeiing turbulent fluids(with their cascade of motion through an
complex, entity. Classic examples of this type of organizainertial range of length and time scaleinterpreting time
tion include such things as living or social organisms, theseries of physical and biological phenomdmédth the ever-
climate, and pictures of turbulence as a hierarchy of interactpresent sources of noise and error, which are really high-
ing eddies. dimensional deterministic systejnsand in thinking of the

In this work, we explore some of the dynamics of such athermodynamical principles governing vast ensembles of in-
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teracting elementévhere one assumes notions of equiparti-
tion and equilibrium in order to construct statistical en-
sembles
II. FORMULATION
A. The elementary unit T R '
We construct the hierarchy from a basic element. This A — '
element, or building “block” as we shall refer to it, is com- S M Lt
e e e e

posed of a lattice of coupled maps that interact through their
mean field. In addition, the mean field of the lattice is also
channelled into another map, the “node," which does notFlG. 1. (Color online Schematic illustration ofa) the elementary units

influence the underlying lattice.
The equations for the block are

Node: Xp.1=(1-p)f(Xp)+pMy, (1a)
Lattice: x.,,=(1—e)f(x})+eM,, (1b)
where
1 N
Mp=5 2 f(xh) 2
=1

(here consisting of a node connected to a lattice of 9 mapw (b) the
hierarchy constructed from thethere assuminfN=L=5).

1 _
MASI= 2, TOR™9) 5)
is now thegroup mean fieldin the notation used above, the
state of an individual map is indicated by'™9  and it
contributes to the mean fielth['9) , of the group of which it
is a member. The subscript indicates time(or iteration

is the lattice’smean field The coupling strengths are mea- number, since time is an integefThe first superscript,

sured by the parametersand p, which range from zero to
unity, with the additional constraint@e+ p<1; e measures
the strength of the coupling inside the lattice, whilenea-

indicates the level and runs from 1 kg the second super-
script, m, labels individual maps on the same level, with
1=m=N, and the third superscripg, indicates the group to

sures the strength of the coupling between the lattice and thghich the map belongs on a given level, witkegj<N'"2.

node. We further take logistic maps, with
f(x)=1—ax?

and 0<a<2!

)

Thus, the building block is composed of a coupled map

lattice of the kind explored by Kaneko and ottefs(we
refer to the latter article as paperthat is fed into another

For the headl =1, there are no groups and we use the sym-
bol “ —" instead of the group number.

The parametere takes the same meaning as before,
namely the coupling strength among maps within each lattice
or group. Now, howeverp measures the coupling between
levels.

logistic map. An understanding of the dynamics of this sys-
tem is a necessary ingredient in the exploration of the full!l: DYNAMICS OF THE BUILDING BLOCK
hierarchy, so we give a crude summary in the next section.A. The lattice

B. The hierarchy

The system of interest in this study is a lattice &f-(
—1)/(N—1) maps, structured on dnrlevel tree and hierar-

The dynamics of an individual lattice is documented in
earlier papers. We summarize the results of these articles in
Figs. 2—4. Very roughly, the behavior of the lattice falls into
one of three categories: synchronization, clustering, and in-
coherence. In the first category, the lattice evolves into a

chically coupled. The hierarchy begins at the lowest levelcompletely synchronized state in which every element ex-
labeledl =L, then progresses throughstages or levels up ecutes the same trajectofgn orbit of the logistic map In

to the apex, a single map labelée1 (the “head”). On
every levell, N'"* maps are collected iN'~2 groups ofN

the clustering state, the lattice divides itself into synchro-
nized families; within each family, the maps execute the

maps each. Maps in each block are coupled together througtame orbit, but the different families follow different orbits.

their mean fields. The scheme is illustrated in Fig. 1.

In the third state, each element follows an orbit that is almost

The lattice evolution is expressed mathematically by thendependent of the others, and the lattice has little correla-

system,

=1 XLlJiJi;*]:(1_p)f(XLl;l§*])+pML|2§l]’ (4a)

I# 1L G = (1= e=p) f O ™) + Ml
+pMH+1;m+N(gfl)], (4b)

=L XH}ET;Q]:(]-_G)f(XLL;m;g])"‘GMLL;g], (4¢)

where

tion. Figures 2 and 3 show regime diagrams for the three
possible phases, and Fig. 4 provides examples that illustrate
them. In Figs. 2 and 3, the dashed line shows the rough
border between incoherence and clustered lattices, which is
relatively well defined. This border can be constructed using
the mean-field theory described later in Sec. IV, and dis-
cussed also in paper I. The second curve in these pictures is
based on further results from paper I; to the right of this
curve we expect only synchronized lattidg¢lse curve com-
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FIG. 2. (Color) A regime diagram indicating roughly where a single map FIG. 3. (Color) A second regime diagram for the behavior of a single map
lattice synchronizes, clusters or is incoherent. The plot shows the averagittice. The plot now shows the fluctuation level of the mean figh®
leading Lyapunov exponent of the lattice, determined from ten computationaverage standard deviation over an orbit of length 10 000, determined from
with lattices of 100 elements. Each lattice was iterated 11 000 times, and theen computations with lattices of 100 elements; each lattice was iterated
first 1000 iterations were discarded. The dashed line shows the approximafel 000 times, and the first 1000 iterations were discardeslin Fig. 2, the
border between clustering and incoherence, and is constructed using theo curves show the rough border between incoherent and clustered lattices,
mean-field theory of Sec. IV. The border between clustering and synchroniand the rightmost limit of lattices that are not synchronized.

zation is far less well defined and there is significant overlap of the two

regimes. Based on the considerations of pagantl, in particular, Fig. 1 of

that article, we expect that there are only synchronized lattices to the right

of the second curve. leading Lyapunov exponent of the lattice. The onset of inco-

herence is relatively clearly seen in this picture, but there are

regimes in which clustered and synchronized lattices are not
bines the stability boundary of the fully synchronized latticedistinguished.
with that of the most stable cluster state—an equally parti- The transition between synchronization and clustering is
tioned cluster of two families executing an asynchronoudetter highlighted in Fig. 3, which shows the fluctuation level
period-2 orbit—whichever lies furthest to the righHow-  of the mean fieldas given by the standard deviation of a
ever, the boundary between synchrony and clustering is mofdeng time series of the mean field, averaged over ten realiza-
ambiguous and there is substantial overlap of the two phasesons of the lattice Synchronized lattices have fluctuation

Because they follow orbits of the quadratic map, thelevels dictated by that of a single map, andaagicreases,

dynamics of a synchronized lattice is solely a functioraof this level can become quite large. On the other hand, the
and is dictated by the familiar bifurcation diagram of thatfluctuation level is typically the smallest for incoherent lat-
map. Fora<0.75, there is a stable fixed point; if 0Z%3  tices because each map evolves largely independently and so
<a,~1.40115519, there are periodic solutions; and wherthe fluctuations decay likhl~*. A significant fraction of the
a>a,., the orbit is chaotic except inside windowsafon-  clustered lattices also have a reduced fluctuation level. This
taining stable periodic orbits. Cluster states are more oftearises because there are typically a large number of cluster
periodic or quasiperiodic than chaofi¢ and the dynamics of ~states with a wide array of different “partitiongthat is, the
an incoherent lattice is, by definition, high dimensionalnumber of families and the way the maps are distributed
chaos. We bring out these features in Fig. 2, which shows thamongst them By chance alone, clusters that have a more
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FIG. 4. (Color online Evolution of sample blocks witiN=10 anda=1.8. The map index is on the abscissa and time runs on the ordinates. Three pairs of
panels are shown. In each pair, the left-hand picture illustrates the evolution of the (it@idesy to the coloring is given in the color bafhe right-hand

plot in each pair displays the evolution of the corresponding node. In the latter, two computations are shown: the dotteg #r@Ihasnd the solid line
showsp=0.5. Panelda)—(b) are fore=0.1 (an incoherent lattide (c)—(d) are fore=0.2 (a clustered lattice and (e)—(f) are fore=0.4 (a synchronized
lattice).

uniform partition(an equal distribution of maps in the fami- Lyapunov exponent of the node; Fig. 5 displays such expo-
lies) are encountered more often than clusters with very unnents on thed,p) plane. In panela), e=0.1, and(depend-
equal partitions; these more common clusters have reducedg on the value ofa) the underlying lattice is either clus-
mean field fluctuations because families typically evolve outered or incoherent. The exponent is positive for smalhd
of step with one anothdthat is, the mean field contributions a>a.,, implying independent evolution of the node. As
from each cluster tend to offset one anojhék departure increases, the exponent typically decreases and becomes
from this rule of thumb occurs in a strip of Fig. 3 located just negative, whereafter we interpret that the node is slaved to
to the left of the black curve. Here, most of the clusteredthe forcing. Fore=0.1, this passage of the exponent is in-
lattices have unequal partitions and their mean fields areerrupted by sharp transitions through skewed windows of
dominated by the larger family, which renders this field morestable periodic orbits.
like that of a synchronized lattice. These lattices also are  The second panel of the figure shows computations with
usually chaotic, rather than periodic like their more equallye= 0.6, for which the underlying lattice is fully synchronized
partitioned relatives, and for this reason, the strip also apfand so the precise values @andN are irrelevant A simi-
pears in Fig. 2. Thus, the borders suggested in Figs. 2 andlar picture of the node dynamics emerges, although the struc-
do not separate clustering and synchrony but more properliure in panelb) is more complicated. In this case, periodic-
the end of equally partitioned clusters. orbit windows are horizontal and the exponent occasionally
becomes positive even inside these windows. This indicates
that there are parameter regimes in which both the synchro-
B. The node . . -
nized lattice and an uncoupled node are periodic, but the

The dynamics of the node is determined by the compeeoupled node is chaotic.
tition between the intrinsic dynamics of the map and the  The curves also drawn in Fig. 5 are constructed as fol-
mean-field forcing from the underlying lattice. The strengthlows: When the underlying lattice is not synchronized, as
of the forcing is measured by the coupling parametefor illustrated in Fig. 3, the mean field fluctuates at a low level.
smaller values op, coupling is weak and the node evolves Consequently, the main effect of the lattice is to provide a
largely under its own dynamics; depending on the value ohearly constant forcingyi(a,€), and so
a, we then expect periodic or chaotic dynamics. For lagger
on the other hand, the intrinsic dynamics of the node plays Ln+1=(1=p)f(Xn) +pM =(1-p)(1-aX))+pM.  (6)
secondary role, and we expect that the node dynamics reé simple rescaling recasts this equation in the form of the
flects that of the forcing. This effect is obvious in the samplequadratic map with a new parameter,
blocks shown in Fig. 4—the node’s dynamics is largely in-
dependent of (and hence the state in which the underlying & 217 P)(1=pFpM). @)
lattice fally for p=0.1, but not wherp=0.5. For example, In other words, the coupling of the node to the underlying
in panels(c)—(d), the node is chaotic fop=0.1 but has the lattice renormalizesand in fact reducesthe effective map
same periodicity as the lattice fpr=0.5. parametefthe notion of renormalization was used in paper I,

If the uncoupled nodal map is chaotia*a..), the tran-  and will recur later when we consider the hierarchy; see also
sition from independent to slaved dynamics is traced by thdRef. 5. Moreover, becausa., is the value o& for which the
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FIG. 5. (Color) Lyapunov exponent of the node of blocks with varyim@gnd p, for (a) e=0.1 and(b) e=0.6; N=100. The computational length is 6000
iterations, of which the first 1000 are discarded in order to remove transients. The curve is obtainé8);ffompanel(b) the value of the mean field used
is a time average.

Lyapunov exponent of the renormalized map first becomegath through the rich phenomenology: frustration and mean-
positive, the node must become slaved to the underlying laield renormalizatior(in two forms. Rather than embark on

tice whena=a.,, or a detailed and systematic discussion of the dynamical behav-
ior (which would have limited success and utility given the
a,~a(l—p)(1l—p+pM), (8) huge number of degrees of freedom involyede then pro-

pose a number of guiding principles to help organize how we

which, givena, can be solved immediately for This curve  may think of the hierarchy. For illustration, we choolsle
compares well with the numerical resu(see Fig. 5. =10 for the number of maps in each block; many of the

The edges of the skewed windows of periodic orbits inresults are similar on using other valueshf but we offer
Fig. 5(a) can be traced in a similar way. Also, despite the factsome remarks later on how the map-number per block affects
that the underlying lattice is synchronizéahd so the mean the dynamics.
field fluctuations are not smallcurve (8) also provides an
estimate of the location of the transition in parb); the
mean field,M, used in this case is a temporal average over In some ways, the dynamics of the hierarchy can be
the synchronized orbit. thought of as resulting from a persistent frustration. Each
map evolves under the competition between its own dynam-
ics, the synchronizing effect of the mean field of the ele-
ments within the same block, and the forcing field driving
the element from the level below. In certain limits of the

We begin a discussion of the dynamics of the hierarchyparameters, one of these competing effects can dominate, but
by describing two useful concepts that help to navigate ouin many others, the competition frustrates the hierarchy.

A. Frustration

IV. HHERARCHY DYNAMICS
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One solution of the equations is the fully synchronized €
hierarchy,xl " 1=X,,. For a single map lattice, the analog ~ a=a(1—p)(1—p+pu'"), &= —p (11
of this solution plays an important rolesee the previous
section. But the synchronized hierarchy is of secondary in-That is, each group at thith-level behaves as a globally
terest. This is because on any one level, the blocks evolvéoupled map lattice with renormalized map and coupling pa-
independently of one another. Hence, there is no way to syfameters.
chronize the driving signals entering the maps on the level The paramete@ decreases witlp while € increases.
above, and so those maps can never synchronize. True Sy'ﬁhis has the interesting consequence that the lowest level can
chronization can only be achieved if all the driving signals atPe incoherent but the level immediately above can be clus-
each level are identical. This is assured if all the blocks faltered or synchronized, at least in a mean sense, when the
into the same orbit, which would require both stability and aPoint (€,3) falls below the regime of incoherent lattices. The
favorable initial condition. However, it is straightforward to renormalized level can no longer be considered incoherent in
show that fully synchronized hierarchies are linearly stablehis eventuality, and so the nature of the dynamics of the
only if the synchronized orbit is not chaotia<a.., or in-  levels yet higher is unclear.
side windows of stable periodic orbjitsMoreover, with a
large number of levels in the hierarchy and maps within eacltc, complete renormalization
block, the probability that the hierarchy will find a periodic , ) o
synchronized state from an arbitrary initial condition is es- |t iS also possible to make a complete renormalization of
sentially zeroleach map must fall into the same phase of thdhe entire h|erarchy when the mean fields at every level ha_ve
cycle).6 low-level fluctuations. In this instance, the whole system is

. o - . i Ry P

Despite the lack of true synchronization, it is possible tolncoherent, and we fiM, ™~ " at each level. The resul,
achieve a weaker form of synchronization on a level by in-after S|m|_Iar man_lpulatlons is a logistic map describing every
creasing the global coupling The enhanced coupling can €lément in the hierarchy,
fchen counter the desyn.chronizing effect of the varying driv- Zgﬂ:glgl_él(zg:m:gl)zl (12)
ing signals, and the differences between the maps on the (el — o flmi] | i1
level are thereby relegated to small fluctuations. We christeMith zn ™= =Xy "/ (1—e—p+eu +pu"7) and the re-
this kind of dynamics, “imperfect synchronization.” Note nNormalized map parameter,
that, because arbitra'rily small Qesynchronizing pgrturbations a(l—p)(1—p+pu'th) |
can lead to order unity fluctuations around chaotic synchros

1
_ A — 41, 1 |— _
nized state$, chaotic, imperfect synchronous orbits should® ~ al=p=e(l=p ETP'“ tew) 1=2,...L=1
typically undergo episodic desynchronizations. a(l-e)(l-eten) I=L.
For similar reasons, variations in driving signals also (13

prevent true clustering within the hierarchy; “imperfect” This formula ford' can also be obtained from a further re-
clustering arises instead. As for the coupled map latticeduction of (10), and is complicated by the presence  gdf
these latter states are often periodic. In fact, because clugrhich itself depends oa'. We can proceed a little further by
tered states often have reduced mean-field fluctuatiigs  noting that the mean field of the renormalized element is
3), the variations in driving signals can be relatively small. Ingiven by

turn, this means that imperfect clustering can be pronounced,

as we will see in the examples later in this section. zZ(ah=1- Na|z (ZLI,m,g])Z’ (14)
m
and depends upail alone. By expressing, ™9 in terms of
B. Level renormalization xtimal e may write the right-hand side of this expression
in terms ofx'. On eliminating that mean field, we are finally

If the mean fields at one level have low-amplitude fluc-
. . L lead to
tuations, we can extend the ideas of renormalization used in
Sec. Il to the lattice immediately above: We gdt' *19 a[1-p—ez(@)]=a(l—e—p)(1—p+pu'™h), (15

~ 1+ .
~u " the maps on level then evolve according to le[2,L—1], which is an implicit equation fo&'. At the

xhmol < (1— e~ p)[1—a(xl™9)?] lowest Ieyel,é'-[l— eZ(a")]=a(1—e€)?, while the presid-
\ ing map is governed by7).
To solve the implicit equation, we rearrange the expres-
_ [:5;91y2 1+1
,Zl [1-alq ™ ) T+pu™. ©  sion by dividing by the factor + p— eZ(a'). Given an ini-
_ il ] tial first guess fo&', we computeZ(&'), recalculated' from
On making the change of variablg, ™ =x3"™*/[1=p  {he implicit equation, and then iterate until the variatioribf

+

Z| m

I+1 i
+ppu' 1], we recas(9) in the form, is less than about 1@. A sample solution obtained in this
- N _ way for a seven-level hierarchy is shown in Fig. 6. Although,
vt~ (1-g)[1-a(yh ™))+ NE [1-a(yl9)2] the iteration appears to converge up to this tolerance in this
=1 (10 (and many othercalculations, there are hidden problems.

For a generic value of the map parameter, it is known that
with statistical averages such @$a') are not continuous func-
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FIG. 6. Renormalizing the hierarchy |. Par(@ shows the variation of the effective map parameér,with level, |, for a=2, e=0.1, p=0.05 andN
=10. In panelgb) and(c), we show the corresponding mean field$, and Lyapunov exponentthe circles joined by dotted lingsThese are compared with
data computed directly from a single block at each level of a full hierarchy with the same valags ahd p. In panel(b), the hierarchy mean fields are
shown by points connected by solid lines.(&), the dots show the ten Lyapunov expondmistained via Gram-Schmidt orthogonalizatig®ef. 8] for the
selected block; the continuous line connects their average values. The parameters values are the saméedf)Fig. 8

tions because of the windows of stable periodic orbits. More-  Now, for complete renormalization of an incoherent hi-
over, even with regularization by numerical resolutidga') erarchy, all the maps must be chaotic. Heritez a.., or

still varies wildly with &'. Therefore, the implicit equation is 11 |

unlikely to have a unique solution. Of course, if the renor- ~ &(1=p=€)(1—p—etpu""+en)>a., (17)

malized map enters a window of a stable periodic orbit, it everyl e[2,L—1]. This condition is the generalization

cannot be considered incoherent, and so the presence of sughinat used in paper | to locate where a single coupled map

windows signifies an inconsistency in the theory. In reality,;atice desynchronizes. Because the renormalization is typi-
the renormalized map is in a state of continual agitation fror‘q:a"y largest at =L—1, &“ ! is the smallest renormalized

the mean-field fluctuations. This noisiness may well both r®parameter, and the condition that the lattice is incoherent
move the stable periodic orbit windows and regularize thg)ocomes

computation ofd'. However, such considerations require an

extension of the theory, which is beyond our current discus- _ _, a(l— e—p)2(1—p+pul)

sion. Instead we are content to iterate the equatiorifdo a = [1-p—eZ(a' D] & - (18)
the required tolerance and hope all is well. The comparison

of calculations like that shown in Fig. 6 with results from a The limiting condition[in which we replace the inequality by
full hierarchy (see belowgives us some confidence that this an equality and seZ(a"~*)=Z(a..)~0.3761 can be writ-

hope is not completely unfounded. ten as an equation fgs that is straightforward to solve in

In the example of Fig. 6, the renormalized parameteft€rms vff a- [gi\v/?n a- we can  compute MLE(lz
decreases from=L to |=L—1, recovers slightly from  —€)Z(a")/[1-€Z(a)] and a=a7[l—ez(a")]/(1-¢)
=L—1 tol=L—2, and then asymptotes to a common value Without solving any implicit equatiorjs
a'—A, given implicitly by A simpler approximation follows if we only require that

A>a,, . This leads to the limiting condition,
B a(l—e—p)?
A= T (e+ P Z(A)" (16) a.[1—(e+p)Z(a,)]
a= 2 ) (19
(1—€e—p)

Only the mean field of the lowest level contributes for
=L, whereas the elements at any other level experience&hich depends on the coupling parameters solely through
mean fields from both their own level and the one immedi-their sum, and can be solved for that combination. We show
ately below. Consequently, the renormalization is leadt at the two surfaces in thes(p,a) parameter space that describe
=L andl=1, and, in general, is greatestlatL — 1. these conditions in Fig. 7.

_ AlsoI shown in the figure are the corresponding mean s idelines

fields, u', and the Lyapunov exponents of the renormalized

maps. These are compared with data computed directly from We now provide some illustrations of the behavior of the
a single block at each level of a full hierarchy with the samehierarchy. To quantify the dynamics, we use two measures:
base parameters. As indicated by the figure, there is agredhe first is the average squared difference of all the elements
ment between the mean fields, and also the Lyapunov expd? each blockg at thelth level, averaged ovell=1000
nents, once we average the(=10) exponents of a single iterations,

block. This comparison gives support both to the mean-field Lo 1
theory outlined in this section, and also to the idea that theb[|;g]:_ Uil _ yllikigly2 20
hierarchy is incoherent. an‘l N(N—l)Ej: Ek: (Xq no)S (20)
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_ (2 low-level fluctuations into the level above. Consequently, the
""" T upper levels approximately consist of globally coupled map

7

lattices with renormalized parameters. If the renormalization
is sufficient to place€,a) out of the incoherent regime, then
the upper levels show some degree of clustering and/or syn-
chronization. Otherwise the entire hierarchy is incoherent.
Examples are shown in Fig. 8 fa=2 ande=0.1, with
p=0.05 and 0.2. Fop=0.05, according to the theory of
Sec. IV B, the renormalized lattice parameters above the
lowest level remain in the incoherent regirf@e~1.8 andé
: ~0.11 at levelL—1), and the upper levels are incoherent.
~ 02 This is also consistent with the conditions for incoherence
derived in Sec. IV C(see also Fig. 6 For p=0.2, on the
other hand, the renormalized parameters=t — 1 lie in the
02 0 clustering regimd&a~ 1.3 andé=0.125, and the higher lev-
P els begin to organize.
The lower panels of the figure show our quantitative
©) measures of the dynamics. For the incoherent lattice, the
squared difference®!"*9! fall off slightly on moving up the
19 hierarchy, but otherwise remain at a relatively high level,
18 reflecting the lattice disorder. The Lyapunov exponents also
illustrate the chaotic incoherence. In the case with larger ver-
tical coupling, the emergence of some order on the lattice
16 above the lowest level is evident B["*9!, The Lyapunov
exponents show that, at tthe6 level the lattices are slaved

7

\

7
7

1.9

184"

w17

164"

152

© 1.7

15 . T
to the lower-level dynamics fgs=0.2. However, this situa-
14 tion reverses at the levels above. It seems impossible to ex-
0 0.05 0.1 0.15 0.2 . . . .
ctp tract any trend of the dynamics with level in this second
» _ _ case; there is certainly no self-similarity.
FIG. 7. Renormalizing the hierarchy Il. Par@ shows the surface in the (2) (e,a) in the clustering regimelf p is small (<e),

(e,p,a) parameter space corresponding to the condition(1i®, above . .
which we expect the system to be fully incoherent. Pabglshows the 'mperfeCt clusters exist at the lowest levels. For Iarger

simpler condition in(19); this condition, forp=0 is shown earlier in Figs. (> €), the clustering quality degrades because of the increas-
2-3. The continuous lines in pan@ mark the intersections of this second ingly desynchronizing effect of the forcing fields from the
cylinder with the planes =0 andp=0 for comparison with the first sur- oyl helow, At higherp, imperfect cluster states can again
face. The crinkles in the surface (g) result from the appearance of win- . ; .
dows of stable periodic orbits in the renormalized map; as that map shoul@CCU" if the forcing fields from the level below can be
be incoherentand therefore chaoticthere is an inconsistency in the theory grouped into similar signals. True clustering occurs if there
here that must be resolved by explicit consideration of mean-field fluctuagre only a small number of periodic clusters at the lowest
tions. level. Then elements on the next level up can receive iden-
tical forcing mean fields, and cluster together as a result.
True clustering can continue in this way some distance up
This quantity measures the degree of coherence of eadhe hierarchy, but because the number of possible clusters
coupled lattice in two ways. First, the value bf"*9 pro-  and their phases rapidly multiplies on escalating through the
vides an estimate of the uniformity of an individual block; hierarchy, the chance of finding such true clusters quickly
low values indicate a high degree of synchrony, and incoherdeclines.
ent blocks have high values. Second, the spread of values of The dynamics is illustrated in Fig. 9 fa=1.7 ande
D9 on a particular level gives a sense of the range of=0.2. In the case witlp=0.05, we see the degradation of
different kinds of blocks. Closely clustered blocks typically the clustering quality over the lowest level as we escalate
occur with a wide variety, and so the spread of values othrough levels; forp=0.5, persistent clustering occurs
DI"*9! highlights imperfect clusters. through accidental coincidences of the forcing fields. As in-
The other measurement is the leading Lyapunov expodicated by the Lyapunov exponents, there are chaotic signals
nent of each group which, because of the hierarchical struentering the hierarchy at the lowest level for both hierarchies.
ture, can be computed for each group in isolation of theTherefore, despite the appearance of the top picture in the
others. This exponent indicates the degree of temporal consecond case, both presiding maps are chaotic. The apex for
plexity at a particular level; if positive, the level can be con-p=0.5 appears to be nearly periodic because that presiding
sidered to evolve independently of the level below. If negamap receives a chaotic driving signal that has been filtered to
tive, the exponent reveals either periodic motion or a levelow amplitude by the intermediate levels.
slaved to that below. The degradation of the cluster quality is also reflected in
(1) (e,a) in the incoherent regimeThe lowest level is the decline of the squared differenc&"9, with level, |
incoherent and, as a result, feeds a mean field forcing witliroughly speaking, incoherent solutions have the highest
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FIG. 8. (Color online Hierarchies with 7 leveldN= 10 maps in each blocle=2 ande=0.1. The shadings show representative lattices from the lower levels

(the color map is chosen to emphasize differences amongst the elgntkeatsop picture shows time series of the presiding map at the pinnacle of the
hierarchy. The left-hand panels haye=0.05, and those on the right hape=0.2. The two pictures at the bottom of the collage sHawthe normalized

squared difference®)["'9, and(b) the leading Lyapunov exponents for lattices at each ldveThe points show the values of the two quantities for each
group,g, and the lines indicate the average over all groups on the same level. In each of the panels, we show the two cases displayed in the remainder of the
figure, dots are for the case on the left; circles are for that on the right.

squared differences, clusters somewhat smaller, but nevertheentains a variety of both periodic and chaotic clusters. In
less appreciable differences, and nearly synchronized solikhe case with weak vertical coupling, positive exponents fur-
tions have negligible ongsThe Lyapunov exponents high- ther up the hierarchy indicate the independent evolution of
light how the base of the hierarchy at these parameter valugkose levels; the other case, with stronger vertical coupling,
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FIG. 9. (Color online A similar picture to Fig. 8, but fom=1.7 ande=0.2. The left-hand panels haye=0.05, and those on the right hape=0.5.

is, however, slaved to the base level and has “noisy”synchronization degrades somewhat and the episodic desyn-
periodicity—rough periodic motion with low-level noise. chronizations become more frequent.

The spread in the values of bofl"9 and the Lyapunov (4) (e,a) in the periodic synchronization regimat the
exponents reflects the presence of a large number of differetdwest level, the blocks are all synchronized on the periodic
kinds of cluster states at most levels. solution but, in general, have different phases. For fipjte

(3) (e,a) in the chaotic synchronization regimé&or this produces the onset of clustering at the penultimate level
small p, the lowest levels are in a state of imperfect synchro-and thereafter creates clusters of increasing complexity as we
nization; each element follows a similar path interrupted byescalate through the hierarckyntil there are more clusters
episodic desynchronizations. As we rajgsethe amount of than elements in each block
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FIG. 10. (Color online A similar picture to Fig. 8. The left-hand panels hare 1.2, e=0.25, andpo=0.3, and those on the right hage=1.9, e=0.5, and
p=0.1.

These two final cases are illustrated in Fig. 10. The seis some suggestion that the periodic hierarchy converges to a
ries on the left displays a hierarchy with a periodic, synchroself-similar state at the higher levels, despite the pronounced
nized lowest level; clusters are obvious at all levels and thelustering at the lowest levels.
top map is a period-2 orbit. The series on the right shows Note that, because of the constraint &+ p, it is not
imperfect synchronization. The emergence of periodic clusalways possible to sample all the ranges of behavior as we
ters in the first case is clearly revealed by the spread dfix (€,a) and varyp (for example. Also, exceptional cases
non-negligible squared differences at the fifth and sixth lev-occur if there are equally partitioned, period-2, two-cluster
els and the negative Lyapunov exponents. Surprisingly, therstates; such states have constant mean field and so their ef-
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fect on the level immediately above does not fall into thesignals entering a given level from below. Hence, true clus-
standard pattern. tering becomes an even more remote possibility and the
quality of imperfect clusters can degrade as we radise
Nonetheless, the phenomenology we have described remains
E. Discussion the same, and we have verified this numerically by varjing

Given our “rules of thumb” for understanding the dy- " the computations.
namics, we can now return to the questions posed in the Lastly, we stress again that the present results refer to a

Introduction: Disorganization at the lowest level can indeed@!tice where the coupling is unidirectional, from lower to

be organized further up the hierarchy; this is the renormaliz4PPer levels. The breaking of this asymmetry can drastically

ing effect of a constant mean field. The converse is also trugsnange the behavior, leading to full synchronization and, pre-
the complexity arising when levels can cluster and choos§€UMably, to a still richer ensemble of dynamical regimes.

different phases of a periodic orbit destroy the ability of the
hierarchy to continue t_o__c!uster at the h|gher_l_evels. ToV_ CONCLUDING REMARKS
choose among the possibilities, we must be sensitively aware
of the values of the coupling strengths and the map param- Loosely speaking, in biological research an understand-
eter; Secs. IVB and IV C offer criteria indicating whether aing of the workings of living organisms is gradually built up
lattice begins to organize or whether the whole system idy taking molecular units and combining them into larger
incoherent. units, then taking the new, integrated units and combining
Because organization can occur as we transcend levels them into even larger components, and so on to create a rich,
the hierarchy, the temporal complexity need not increaseomplicated hierarchical structure. Jatbballed the entity
with the number of levels. Indeed, only two of our sampleformed via this integrative procedure, an “integron.” More-
hierarchies show leading Lyapunov exponents that becomever, because of the self-similarity of the construction proce-
independent of levelFigs. 8, left, and 10, right These two dure, one can think of the integron as being assembled from
cases are examples of “extensive systems,” in which thantegrons of the level below it, and each integron takes part
degree of complexityas measured, for example, by the in the construction of the integron of the level above.
number of positive Lyapunov exponents in each gjoup The hierarchical integrating process is not bound to bi-
scales with system size, and are therefore hierarchies witblogy but is a metaphor for the organization of many differ-
self-similar dynamics. Curiously, these examples have paent systems. The contexts range from sociology to physics,
rameter values from different extremes of the parametein which smaller entities are put together to build up a bigger
rangesyp ande both small ang ande both(relatively) large,  “organism.” For example, in visions of developed turbu-
respectively. The first case is what one might call “fully lence in the physical sciences, eddies of all scales exist, and
developed incoherence,” and all the maps have a degree aire fed by an energy cascade from the large to the small
independence; the characteristic measures scale with magale. It may be interesting to use a simple model like the
number. In the second case, the maps within each block a@e considered here to explore the reliability of concepts
strongly synchronized, and characteristic scaling occurs witlsuch as eddy viscosity and mean field descriptions, that can
block number, not element number. Hence, only the blockdecome ill-defined when the lower levels are not totally dis-
are independent, and scaling is much weaker. organized. Another example comes from the climate system,
Of the other sample hierarchies, one is purely periodic athat is composed of many interacting units, which are in turn
all levels(Fig. 10, lefy and another has positive exponents atcomposed of smaller subunits, having, in this case, different
only the base levelFig. 9, righ). The lack of an increase in time and space scales. In this framework, an interesting ques-
temporal complexity on escalating through the second hiertion is whether we can approximate the dynamics of the
archy reflects how the higher levels do not evolve indepenhead, or of some of the upper levels, by a coarse-grained
dently. In the chaotic case, the upper levels are almost perdescription complemented by a stochastic process parameter-
odic, and disturbed by a low-level noise that is really theizing the dynamics of the lower levels. Again, organization
high-dimensional signature of the lowest chaotic level. Thusin the lower levels may destroy such an attempt.
such lattices illustrate the vision in which unresolved, high-  Of course, any such application is plagued by the re-
dimensional dynamics can be modeled as noise. Even if thguirement to specialize and complexify for the sake of real-
dynamics is not actually chaotic, but periodic at all levelsism; elements of the hierarchy must be designed to suit the
(a<a.), the hierarchy has a different form of complexity problem and their attributes typically vary with the level of
due to the extreme multiplicity of distinct attractors. This is integration, breaking the self-similarity, and information is
the generalization of the “attractor crowding” described by passed amongst levels in a far more intricate fashion than a
Weisenfeld and HadleY:. directed feed from one level to the one immediately above
We may also use our guidelines to predict how the map{to name but two of an infinitude of possible complications
number per latticeN influences the dynamics of the hierar- Our objectives here have been far more idealistic; our goal
chy. Evidently, when maps in each group lack coherence owas to build one of the simplest mathematical models of a
are closely synchronized there can be little change on varyperfect integron. Maps were our “subjects” and we studied
ing N. However, in hierarchies where organization beginstheir collective behavior within the hierarchically coupled
on escalating through levels, by adding further maps to eaclattice. In this endeavor, we decided to accept some major
group we can multiply the varieties of different driving limitation in the model we used; though it is true that hier-
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archies are typical for biological systems and for many other*Strictly speaking, our fundamental element is a “quadratic map” rather
natural systems, one should not forget that different levels in rha_” the “'OQiStcijC fmaZ"’tht the two are equivalen]ft Uptﬁ a ica"ng- fThe
natural hierarchies are characterized by different time scales.\:):r'iztl';ers“fﬁ '(‘Z ;'zr;‘j (rt_;)’“gﬁ‘::—r;f"_(;)_/fn)w: rz;utmetg t?]’;gzu‘;_
I!’l many instances, thIS property is crucial. The model inves- dratic map. The transformation is continuous and invertibler fef2,4).
“g_ate.d .here |5.‘Ck3 th!S property, and One_ should be a_Ware_ ofk. Kaneko, “Overview of coupled map lattices,” Cha@s 279 (1992.
this limitation in applications and extensions to real biologi- *K. Kaneko, “Clustering, coding, switching, hierarchical ordering, and
cal and sociological systems. A second important limitation ,control if} nftWr?fk of chaotic elements,” PhVSica‘lll 137(1990. -~
comes from the fact that the coupling in the model is unidi- 3" J. Balmforth, A. Jacobson, and A. Provenzale, “Syncronized family
. . . ynamics in globally coupled maps,” Cha8s738(1999.
rectional, and the upper levels In the h'_erarChy Ca_nr'!Ot feed . shibata and K. Kaneko, “Tonguelike bifurcation structures of the
back on the lower levels. Notwithstanding these limits, we mean-field dynamics in a network of chaotic elements,” J. Phy42B
hope that the mathematical game in which we have indulged, 177 (1998.

. . . - :~r_ The lack of true synchronization is related to the purely bottom-up cou-
will prove useful to those dealing with the complicated hier pling of the system considered here. Adding a further top-down coupling

archies encountered in physical and biological applications. from upper to lower levels may lead to true synchronization of the system.
However, we decided not to explore the even more complex dynamics of
a fully coupled hierarchy.
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