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An international data set for CMML validates prognostic
scoring systems and demonstrates a need for novel
prognostication strategies
E Padron1, G Garcia-Manero2, MM Patnaik3, R Itzykson4, T Lasho3, A Nazha5, RK Rampal6, ME Sanchez6, E Jabbour2, NH Al Ali1,
Z Thompson7, S Colla2, P Fenaux8, HM Kantarjian2, S Killick9, MA Sekeres5, AF List1, F Onida10, RS Komrokji1, A Tefferi3 and E Solary11

Since its reclassification as a distinct disease entity, clinical research efforts have attempted to establish baseline characteristics and
prognostic scoring systems for chronic myelomonocytic leukemia (CMML). Although existing data for baseline characteristics and
CMML prognostication have been robustly developed and externally validated, these results have been limited by the small size of
single-institution cohorts. We developed an international CMML data set that included 1832 cases across eight centers to establish
the frequency of key clinical characteristics. Of note, we found that the majority of CMML patients were classified as World Health
Organization CMML-1 and that a 7.5% bone marrow blast cut-point may discriminate prognosis with higher resolution in
comparison with the existing 10%. We additionally interrogated existing CMML prognostic models and found that they are all valid
and have comparable performance but are vulnerable to upstaging. Using random forest survival analysis for variable discovery, we
demonstrated that the prognostic power of clinical variables alone is limited. Last, we confirmed the independent prognostic
relevance of ASXL1 gene mutations and identified the novel adverse prognostic impact imparted by CBL mutations. Our data
suggest that combinations of clinical and molecular information may be required to improve the accuracy of current CMML
prognostication.
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INTRODUCTION
Chronic myelomonocytic leukemia (CMML) is a heterogeneous
malignancy characterized by peripheral blood monocytosis and a
propensity for acute myeloid leukemia transformation.1,2 Its
clinical heterogeneity is broadly captured by the French–
American–British group, which defines myelodysplastic syndrome
(MDS)-CMML and myeloproliferative neoplasm (MPN)-CMML
based on the latter having a white blood cell count 413 × 103

cells per dl.3 The World Health Organization (WHO) reclassified
CMML as a distinct disease entity under the MDS/MPN designation
in 2008.4 This reclassification has been substantiated by recent
advances in the genetic and molecular pathogenesis of CMML,
which has confirmed CMML to be biologically distinct from
MDS.5–8 Since its reclassification, clinical research efforts have
begun to delineate CMML-specific tools and therapeutics. Several
prognostic models derived from smaller data sets have been
developed to stratify CMML patients into groups that are
predictive for overall survival (OS).9–18 However, the validity of
these models in a large international data set has never been
investigated, and a consensus is not yet present that would
standardize risk stratification.

The incidence of CMML is estimated at 0.4 per 100 000 based
on several large epidemiologic studies.19,20 Given the apparent
low incidence of CMML and its broad range complexity, detailed
baseline characteristics describing the clinical heterogeneity have
not been reported in a large data set. To examine CMML baseline
characteristics and test the prognostic significance of clinical and
genetic variables, as well as the relative power of existing
prognostic models with sufficient resolution, we constructed a
large international CMML database that merged CMML registries
from eight tertiary cancer centers across three different countries.
The aims of this study were to establish a large disease-specific

data set capable of discerning independent covariates predictive
of disease behavior. Using this data set, we explored and
annotated the frequencies of clinically relevant disease character-
istics. We additionally attempted to validate prognostic models
used in CMML clinical practice and determined their relative
statistical power within our data set, as well as explored the
possibility of constructing a novel model that would increase
prognostic capacity in CMML. Last, we examined the prognostic
significance of the most frequent mutations in CMML to
determine if their incorporation would better refine disease
prognostication.
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MATERIALS AND METHODS
Participating centers were identified via the International Working Group
for MPNs and the Evans Foundation MDS Clinical Consortium. Data were
abstracted from the first visit at each institution and deposited for central
data review at the Moffitt Cancer Center. Internal Review Board approval
was obtained at each respective institution. Manual central review of cases
was performed to ensure data quality before analysis. Data curation and
merging were performed to ensure that (1) data elements were uniformly
recoded in all spreadsheets for accuracy and consistency; (2) data were
centrally transformed into categorical variables for analysis; (3) descriptive
cytogenetic information was uniformly categorized according to the
International Prognostic Scoring System (IPSS), Revised (R)-IPSS, Mayo and
Spanish prognostic models (CPSS);10–12 (4) calculated scores for the
different prognostic models in CMML were centrally reviewed and
concordant with the methodology in their respective publications; and
(5) baseline data were reflective of CMML that was strictly defined
according to the WHO criteria. The primary objective of this study was to
establish an international CMML data set and validate the above models
calculated at the time of presentation to each center.
We validated and performed a detailed statistical comparison between

the IPSS,11 R-IPSS,10 Global MD Anderson Scoring System,18 MD Anderson
Prognostic Score,17 Dusseldorf Score (DS),13 Mayo,9 and CPSS.12 All
prognostic models were calculated as previously described. The Kaplan–
Meier (KM) method was used to estimate the median OS and leukemia-free
survival (LFS) and the log-rank test was used to compare KM survival
estimates with SPSS version 21.0 (IBM Corp., Armonk, NY, USA). Random
forest survival and receiver operator characteristic (ROC) analyses were
carried out with R. Comparison of relative statistical power was performed
with the Harrell’s concordance index (C-index) and the area under the
curve (AUC) of the ROC. Patients who received allogeneic stem cell
transplant (n= 129) were censored from all survival analysis.
Genetic data were retrospectively collected from each institution.

Although raw data were not centrally acquired, the genetic data merged
in this data set were previously published from their respective cohorts or
generated in a CLIA (Clinical Laboratories Improvement Act of 1988)
environment using next-generation sequencing technology as part of the
patient’s permanent medical record. Published genetic data were
generated by both Sanger and next-generation sequencing with
amplicon-based target enrichment. The methods for sequencing and
bioinformatics analysis have been previously published.7,14–16,21

Role of the funding source
The study sponsors had no role in the study design; no role in the
collection, analysis and interpretation of data; no role in the writing of the
report; and no role in the decision to submit the paper for publication.

RESULTS
Baseline characteristics
Between July 1981 and June 2014, 1832 CMML patients were
captured in the international CMML database. Each deposited
CMML case contained up to 70 discrete data elements that could
include genetic information. The median age at diagnosis was 70
(16–93) years, with a male (67%) predominance. Most patients
were evenly subcategorized as MPN-CMML (49.8%) versus
MDS-CMML (50.2%) by the French–American–British criteria.
Splenomegaly was demonstrable in 25% of all cases. Most
patients had favorable cytogenetics by IPSS (73%), R-IPSS (71%),
CPSS (71%) and Mayo (71%) classification schemas. The mean
bone marrow (BM) blast percentage was 5.6 cellsx103/dl (0–19),
and mean monocyte count was 4.85x103/dl (1–120). Surprisingly,
the majority of patients had CMML-1 (79.9% vs 20.1%) by the
WHO classification schema. Given that the vast majority of
patients were classified under CMML-1, we wondered whether
our data set supported this cut-point as a major discriminator of
prognosis. To test this, we grouped our data according to a BM
blast percentage of o5, 5–9 and ⩾ 10%. Although we were able
to confirm the prognostic significance of a blast percentage of
⩾ 10% by KM survival analysis, we were also able to demonstrate
that those cases with 5–9% BM blasts had a median OS
comparable to those with ⩾ 10% (Supplementary Figure S1a).

We next attempted to identify the most appropriate blast cut-
point using a survival regression tree approach.22 By testing every
possible cut-point between 3% and 15% BM blasts, this method
calculated an estimated relative event rate for each group and
determined that 7.5% is the optimal cut-point based on a
likelihood ratio test splitting criteria.23 To confirm 7.5% as an
optimal cut-point, the log-rank tests were calculated at every
possible cut-point from 3 to 15%. This confirmed that the
cut-point of 7.5% had the highest log-rank test statistic
(Supplementary Figure S1b).
Our data suggest that a cut-point of 7.5% blasts may be a more

appropriate discriminator of prognosis in CMML. The median OS
of the entire data set was 31 (22–64) months. At last follow-up,
1116 deaths (61%) were recorded and 380 leukemia transforma-
tions (21%) were observed. An extended description of baseline
characteristics and their differences among contributing centers
are present in Supplementary Table S1.

Analysis of existing prognostic models
To confirm that existing CMML prognostic models were valid in
our merged database, we calculated the prognostic score for the
IPSS (n= 1599), R-IPSS (n= 1618), MD Anderson Scoring System
(n= 1297), MD Anderson Prognostic Score (n= 1584), Dusseldorf
Score (n= 1234), Mayo (n= 1653) and CPSS (n= 1281) for each
evaluable case. All tested prognostic models were valid and able
to predict OS by the KM method and the log-rank test (Po0.0001)
(Figure 1). Next, we compared the relative model performance
using 1013 complete cases with sufficient data to calculate all risk
models using ROC curves and their AUC. ROC curves were
calculated for OS at 36 months. The C-index, which evaluates
prognostic power across time points, was also used to orthogon-
ally validate the relative prognostic power of each model. The
R-IPSS model had the highest AUC (0.694), whereas the Dusseldorf
Score model had the lowest (0.635). The difference in AUC
between the R-IPSS, IPSS and Dusseldorf Score models was
statistically significant (P= 0.003), whereas there was no significant
difference between any other models tested, suggesting that the
majority of models were comparable (Figure 2). Because there was
a significant survival difference between MDS-CMML and MPN-
CMML, suggesting discordant disease behavior, we parsed our
cases by French–American–British category to determine whether
a specific model would be superior when considering only these
subgroups. However, calculating the AUC of the ROC and the
C-index again could not identify a statistically superior model
(Figure 3).
Last, we reasoned that a fundamental task of cancer prognostic

models is to identify bona fide low-risk disease cases. It is critical
that these cases behave indolently because low-risk cases are
often monitored without therapeutic intervention. We therefore
determined which CMML models were most vulnerable to
reclassification from low risk to higher risk by isolating all
respective low-risk cases and applying competing models to
identify low-risk CMML cases that were ‘upstaged’ to higher risk.
We calculated a vulnerability score defined by the number of
models able to upstage low-risk disease in 415% of cases.
Although the Mayo and MD Anderson Scoring System scores were
least vulnerable to upstaging by other models using this metric,
all low-risk cases were vulnerable to upstaging (Supplementary
Table S2).

Random forest survival analysis
All existing CMML clinical prognostic models tested were
comparable and derived using a Cox proportional hazard
regression and multivariate analyses approach. To determine if a
novel strategy of prognostic variable discovery could yield an
improved model, we performed a random forest survival analysis.
This approach iteratively bifurcates the data set based on each
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variable and, after over 5000 permutations, determines variables
of highest importance based on their ability to successfully
bifurcate CMML cases based on our desired end point of OS and
LFS.24 With this approach, 23 categorical variables were con-
sidered and ranked by importance, as shown in Figure 4. The top
four variables for both OS and LFS were hemoglobin level o11 g/dl,
the presence of circulating blasts, a platelet count of o100×103/dl
and an adverse karyotype as defined by the CPSS. These variables
were each assigned one point, and a new prognostic scoring
system was devised that stratified our CMML cases into low risk
(0 points), intermediate risk (1–2 points) and high risk (3-4 points).
KM survival analysis and log-rank test within our database
demonstrated a significant OS difference among these risk groups
at not reached (95% confidence interval: 53.6–79.2), 35.1 months
(95% confidence interval: 32.6–38.4) and 13.8 months (95%
confidence interval: 11.7–15.4), respectively (Po0.0001). These
results, and the statistically significant differences in LFS among
groups (Po0.0001), are shown in Supplementary Figure S2. Next,
we tested the relative prognostic power of this novel model
against other existing CMML models and found that it had the
highest AUC at 0.714 for OS and second highest AUC for LFS at

0.709 (similar results for C-index). However, the difference in AUC
between our novel model and existing models was not statistically
significant, despite being compared within the data set for which
the new model was developed (Figure 4).

Impact of genetic data on prognosis
The genetic landscape and its prognostic relevance have been
explored in CMML.25–28 It is recognized that nonsense and frame-
shift mutations of ASXL1 are adversely prognostic, and the
presence of these mutations has now been incorporated in two
distinct CMML prognostic models.14,15 As such, we wished to
explore the prognostic significance of ASXL1 and other recurrent
genetic mutations in our data set. Because sequence practice
patterns were different among contributing institutions, we next
confirmed whether our combined data reflected that of published
cohorts in the literature. To address this, we identified two cohorts
of patients across several institutions that were profiled for more
than four clinically significant genes as shown in Figure 5.
Encouragingly as expected, mutational frequencies and mutual
exclusivities in signaling mutations in these representative

Figure 1. KM survival analysis of seven existing CMML prognostic models. KM survival analysis of (a) IPSS, (b) R-IPSS, (c) MD Anderson Scoring
System, (d) MD Anderson Prognostic Score, (e) DUSS, (f) MAYO and (g) CPSS. Number of evaluable cases for each model and P-value from log-
rank test is shown.
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subgroups were similar to those reported from other published
cohorts.7,12,28 After confirming this, we explored the prognostic
relevance of ASXL1 (n= 561), TET2 (n= 369), SRSF2 (n= 487), RUNX1
(n= 377), EZH2 (n= 323), NRAS (n= 367), CBL (n= 374) and JAK2
(n= 789) in all evaluable cases comprising the most frequently

mutated genes in CMML. In the context of 23 clinical variables,
we were able to confirm the known prognosis significance of
ASXL1 (Po0.0001) and additionally demonstrated that CBL
(P= 0.0001) and RUNX1 (P= 0.0001) had similar prognostic
significance in our data set. After correction for hemoglobin,

Figure 2. Relative prognostic power of existing CMML models using the entire cohort. ROC curves of all clinical models tested in 1011
evaluable cases in shown for OS (a) and LFS (b) at 36 months. A comparison between the AUC of the ROC curves and the Harrell’s C-index is
shown in (c). *Po0.05 when comparing AUC of R-IPSS to IPSS.

Figure 3. Relative prognostic power of existing CMML models parsed by MDS-CMML and MPN-CMML. The OS of our international database
parsed by MDS-CMML and MPN-CMML (a). The ROC curves of all clinical models tested for MDS-CMML (b) and MPN-CMML (c) is shown for OS
at 36 months.
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circulating blasts, platelets and karyotype, we identified ASXL1
(P= 0.0114) and CBL (P= 0.003) mutations as independently
prognostic (Supplementary Table S3).
We also explored the relative prognostic power of existing

CMML clinical models compared with those with ASXL1 mutation
using the previously used ROC and C-index approach. We
identified 298 cases for which data on all prognostic models
and ASXL1 mutation were available. These cases were similar in
WHO and French–American–British subtype to the larger CMML
cohort (Supplementary Table S4). However, no statistical differ-
ence in those models containing ASXL1 mutation was identified
compared with models containing clinical variables alone
(Supplementary Figure S3).

DISCUSSION
CMML is a rare hematologic neoplasm that has been confirmed
to be distinctly different from MDS. However, much of standardi-
zation in CMML clinical practice remains based on the MDS
data partially because, unlike MDS, large CMML data sets have
not been available to generate evidence-based clinical recom-
mendations. Our data set represents the largest international
CMML-specific collection. This provided us sufficient resolution to
accurately estimate frequencies of key clinical characteristics and
interrogate the utility of existing CMML prognostic models. Of
particular interest, our data demonstrated that the majority of
CMML cases are CMML-1 (BM blasts o10%) by the WHO

classification schema. We were able to demonstrate that a cut-
point of 7.5% BM blasts may provide improved prognostication, as
cases with 5–9% blasts had a similar OS compared with those with
410% blasts. The adverse prognosis associated with CMML cases
with 5–9% BM blasts has been substantiated by a recent
publication from the Dusseldorf registry, which was not part of
this data set.29 A new BM blast cut-point should therefore be
validated under central pathology review and subsequently be
considered as a revision to the current CMML classification
schema.
Our data set also allowed us to validate seven distinct

prognostic models used in daily CMML clinical practice. Although
all models were valid, it is notable that the prognostic significance
of the IPSS and R-IPSS were valid in our entire data set because
proliferative CMML cases were excluded in the development of
both the IPSS and R-IPSS. Further, even when only proliferative
CMML cases (MPN-CMML) were considered, the R-IPSS and IPSS
remained valid, albeit with decreased prognostic power as
measured by AUC and C-index (Figure 2).
We performed a detailed statistical analysis to compare the

relative prognostic power of existing CMML clinical models using
the ROC and C-index. We also devised a ‘vulnerability score’ to
determine the stability of low-risk CMML cases for each model.
Although we hypothesized that these analyses would yield a
statistically superior model that could be used as a consensus
model for future CMML prognostication, we found that all models

Figure 4. Random forest survival analysis generates a novel CMML model that is comparable to existing models. The results of the random
forest survival analysis for OS (a) and LFS (b) are shown. The ROC curves for all clinical models, including the new model generated using the
variables discovered with random forest analysis is shown for OS (c) and LFS (d).
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Figure 5. Prognostic significance of genetic data in the international CMML database. The frequency and distribution of mutations is shown
using the cbioportal oncoprinter for two clinically relevant subgroups and the number of cases contributed from each center (a and b). The
KM survival analysis for (c) ASXL1, (d) CBL, (e) RUNX1, (f) SRSF2, (g) TET2, (h) SETBP1, (i) NRAS, (j) JAK2 and (k) EZH2. The number of evaluable cases
for each gene and P-value from log-rank test is shown.
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performed modestly but are insufficiently powerful because all
low-risk groups were vulnerable to ‘upstaging.’
Therefore, we attempted to create a novel model using

the random survival forest approach. We reasoned that
a novel method for variable discovery may uncover uniquely
prognostic variables missed by traditional Cox proportional
hazard regression. However, our new model generated with
this approach had comparable performance when statistically
analyzed in the context of existing prognostic tools. Taken
together, our data suggest that the prognostic power of clinical
variables may have reached an asymptote and that novel
prognostication strategies are needed to accurately estimate the
OS of patients with CMML. To address this, we explored the
prognostic impact of genetic data retrospectively annotated in
our database. Although this genetic information was not
centrally collected, we were able to demonstrate that frequencies,
mutual exclusivities and the expected prognostic relevance of
ASXL1 were maintained, supporting the use of this data set for
future study. We were also able to identify the independent
prognostic significance of CBL mutations in CMML, which had not
previously been demonstrated. This is relevant given that our
analysis exploring the relative prognostic power of models
containing ASXL1 mutations identified no difference in prognostic
power compared with other models, perhaps suggesting that
combinations of mutations such as CBL and interrogation of RNA
expression signatures may yield a more powerful molecular
prognostic model. This strategy has been fruitful in other related
hematologic malignancies.30–32

It is important to note that this data set was retrospective,
included hypomethylating agent-treated cases and did not
uniformly capture cases at diagnosis secondary to differing
referral patterns. Although the majority of cases had one gene
molecularly profiled, 298 annotated cases were used to test the
prognostic power of ASXL1 models. A larger molecularly
annotated data set is required to validate our findings. However,
the current data set reflects a ‘real-world’ collection of CMML cases
that could be reliably used to validate future biomarkers. Efforts
are now ongoing to further populate this data set with molecular
data and operationalize a Web-based portal by which the CMML
community can leverage this resource.
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