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Abstract We derive a new a posteriori error estimator for the Signorini problem. It gener-
alizes the standard residual-type estimators for unconstrained problems in linear elasticity
by additional terms at the contact boundary addressing the non-linearity. Remarkably these
additional contact-related terms vanish in the case of so-called full-contact. We prove re-
liability and efficiency for two- and three-dimensional simplicial meshes. Moreover, we
address the case of non-discrete gap functions. Numerical tests for different obstacles and
starting grids illustrate the good performance of the a posteriori error estimator in the two-
and three-dimensional case, for simplicial as well as for unstructured mixed meshes.

Keywords Signorini problem · residual-type a posteriori error estimator · Galerkin
functional · full-contact · adaptive finite elements

1 Introduction

Mesh adaption is an important tool in the numerical simulation of real world problems as,
e.g., arising from mechanics or biomechanics. In fact it often dramatically improves the
quality of the numerical solution for given computational resources. It is usually imple-
mented by an iterative process that, with the help of a so-called a posteriori error estimator,
determines regions with less regular or even singular behaviour of the unknown exact solu-
tion. For this purpose, the estimator should be equivalent to the error, at least up to so-called
oscillation terms of higher order. In the case of linear elliptic boundary value problems from
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mechanics, the construction of such a posteriori error estimators has reached a certain ma-
turity – we refer to, e.g., [1, 33, 34], for an overview. Roughly speaking, the construction
consists of the following two steps: the establishment of an equivalence of the error and an
appropriate dual norm of the residual and the estimation from above and below of that dual
norm. For the second step, various techniques are available. A popular one, which appears
attractive in view of its simplicity and generality, is standard residual estimation.

We are interested in Signorini problems from contact mechanics which are characterized
by inequality constraints arising from a non-penetration condition. There are two closely
related problems: the simplified Signorini problem, where the unknown is scalar-valued in-
stead of vector-valued, and the obstacle problem, where the inequality constraints on the
scalar-valued unknown are not imposed on a part of the boundary but on the whole domain.
Some of the estimation techniques for linear elliptic problems have been extended to ob-
stacle problems, see [3, 5, 7, 9, 16, 20, 22, 24–27, 29, 31, 37, 39], and (simplified) Signorini
problems, see [14, 15, 36, 38]. The works on the obstacle problem reveal that sharp a poste-
riori error estimators for such nonlinear problems have to invoke some approximation of the
exact Lagrange multiplier. From the physical point of view, the latter corresponds to a con-
straining or contact force. In this manner the estimator uses an approximation of the actual
contact region, taking into account its possible instability. Regarding the works on the (sim-
plified) Signorini problem, notice that all mentioned works are limited to two-dimensional
reference configurations and that in [14], which considers the same discretization and esti-
mator types as in this article, the given upper and lower bounds do not ensure equivalence
of error and estimator.

In this article we propose, analyze and test a new a posteriori error estimator for the
linear finite element solution of the Signorini problem in linear elasticity. The discrete prob-
lem consists in a discrete variational inequality for the approximate displacement (Section
2) and the estimator is designed for controlling its H1-error plus the H−1-error of a suitable
approximation of the Lagrange multiplier (Section 3). The estimator reduces to the standard
residual estimator for linear elasticity, if no contact occurs. The estimator contributions ad-
dressing the nonlinearity are related to the contact stresses, the complementarity condition,
and the approximation of the gap function. Remarkably, the first two terms vanish also if
the actual discrete contact is ’full’ in that the sign of the contact stresses is compatible with
actual contact of the exact solution. We prove reliability (Section 4) and efficiency (Sec-
tion 5) of the estimator for simplicial meshes, ensuring the equivalence with the error up to
oscillation terms. We thus reproduce the estimator properties encountered for obstacle prob-
lems. The theoretical results are corroborated by a variety of numerical tests, addressing also
non-simplicial meshes (Section 6). Analysis and numerical tests cover two-dimensional and
three-dimensional reference configurations, as well as arbitrary, non-discrete gap functions.

In order to derive and analyze the error estimator, we adopt the framework presented
in [31] and used in, e.g., [12,24–26] for obstacle problems. A key ingredient of this approach
is the so-called Galerkin functional. It is a modification of the residual with respect to the
corresponding linear problem with the help of a suitable approximation of the Lagrange
multiplier and, thus, may be seen as the residual of a linear auxiliary problem [6]. The
correction by the Lagrange multiplier is crucial for sharpness of the upper bounds in the
actual contact regions.

The following comments compare and highlight the differences of our implementation
of this approach for the Signorini problem to the preceding ones for obstacle problems.

– The sharpness of the resulting upper bounds with respect to the displacement error
hinges on the approximate Lagrange multiplier. In [12,24,26] the approximate Lagrange
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multiplier is constructed from the discrete solution and given data with help of the parti-
tion of unity given by the canonical basis function. Notice that, generically, the support
of the Lagrange multiplier is d-dimensional for obstacle problems, while it is (d− 1)-
dimensional for Signorini problems. Since the basis functions have d-dimensional sup-
port, this entails that the identification of the correct contributions for the approximate
Lagrange multiplier is complicated by averaging on the discrete level for the Signorini
problem. Our construction in Section 3.1 deals with this difficulty by invoking appro-
priate means of the test function, which are chosen in a nonlinear manner in the case
of full-contact. The construction is confirmed by the following three facts from Sec-
tion 4. The derivation of the upper bound for the dual norm of the Galerkin functional
goes along the usual lines. The resulting estimator contributions addressing the inequal-
ity constraints vanish on full-contact regions. The consistency error of the approximate
Lagrange multiplier is bounded in terms related to the complementarity condition.

– Generally speaking, the derivation of a lower bound in terms of the estimator contribu-
tion related to contact stresses follows Verfürth’s constructive argument [33] by suitably
testing the Galerkin functional. The aforementioned means in the definition of the ap-
proximate Lagrange multiplier complicate matters. We obtain the appropriate test func-
tions in Subsection 5.1 as special linear combinations of bubble functions over virtual
subgrids.

– For obstacle problems, the lower bound in terms of the estimator contribution associated
with the complementarity condition is established by a discrete counterpart of the crit-
ical point argument by Baiocchi [2]. It allows to bound the detachment of the discrete
solution from the obstacle by the jumps in the normal derivatives across inter-element
faces. In Subsection 5.2 we provide the counterpart of this for linear elasticity. More
precisely, we bound the discrete detachment from the obstacle by jumps across inter-
element faces of the discrete stress in normal direction and by corresponding jumps of a
suitable extension of the gap function.

Our theoretical findings are supported by intensive numerical studies. The adaptively
refined grids and the relevance of the different error estimator contributions are analyzed by
means of different illustrative numerical experiments in 3D. We also quantitatively investi-
gate the convergence of the error estimator by comparing to the case of uniformly refined
grids. Furthermore, for selected examples in 2D and even in 3D where the contact stresses
are known analytically, we compare the numerically computed contact stresses on adaptively
refined grids with the exact contact stresses. Interestingly, although the proofs of upper and
lower bound are given for simplicial meshes, the numerical studies show also very good
performance of the new residual-type a posteriori error estimator for unstructured mixed
meshes consisting of triangles and quadrilaterals in 2D and hexahedra, tetrahedra, prisms,
and pyramids in 3D.

2 The Signorini contact problem

The Signorini contact problem describes the contact of a linear elastic body with a rigid
obstacle. The linear elastic body is represented by a domainΩ ⊂Rd, d= 2,3. The boundary
Γ = ∂Ω is subdivided in three pairwise disjoint parts, the Neumann boundary ΓN which
is an open subset of Γ , the Dirichlet boundary ΓD which is a closed subset of Γ and the
potential contact boundary ΓC which is also a closed subset. Each material particle in the
closure Ω̄ is identified with a point x = (x1, ...,xd)

T . Throughout this work we denote all
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quantities which refer to tensors of order ≥ 1 by bold symbols as, e.g., the displacements u
which are vector-valued. Their components are printed in normal type and are indicated by
subindices, e.g., ui. The summation convention is enforced and ei, i = 1, . . . ,d, denote the
Cartesian basis vectors of Rd such that, e.g., u= uiei.

In linear elasticity [10] small displacements and small strains allow for linearization of
the strain-displacement relation as well as of the stress-strain relation of elastic materials.
The stress σ(u) :Ω→ Rd×d evoked by the displacements u :Ω→ Rd obeys Hooke’s law

σij(u) =Eijmlεml(u) (1)

where the strain tensor is given by

ε(u) =
1
2

(
∇u+(∇u)T

)
and Eijml are the components of Hooke’s tensor which is symmetric, elliptic and bounded.
We note that (1) can be expressed by means of the Lamé constants λ and µ as follows:

σ = λtr(ε)id+2µε. (2)

When two solid bodies come into contact they do not penetrate each other. As the actual
contact zone depends on the deformation of the elastic body, which is an unknown of the
system we do not know in advance which points are coming into contact. However, if the
displacements are small like in linear elasticity we can approximate the distance a priori [11],
e.g. by means of a closest point projection, cf., [19]. The gap function describing the distance
between the elastic body and the rigid body is given by g : ΓC → R and the direction of
constraints are denoted by ν. Thus, the non-penetration condition is

uν ≤ g on ΓC

where uν := u ·ν. The non-penetration condition evokes so-called contact stresses which
are boundary stresses in direction of the constraints at the actual contact boundary. We use
the notation σ̂(u) := σ(u)n for boundary stresses where n is the unit outward normal to
the boundary. Hence, the contact stresses are given by σ̂ν(u) := σ̂(u) ·ν. As we neglect
frictional effects the frictional stresses σ̂T (u) := σ̂(u)− σ̂ν(u) ·ν are assumed to be zero.

In order to enforce a deformation of the linear elastic body, Dirichlet conditions u=uD
on ΓD , Neumann conditions σ̂(u) = π on ΓN and a force density f can be applied on Ω.
The complete problem formulation is given in Problem 1.

Problem 1 Strong formulation of the Signorini contact problem
Find u : Ω̄→ Rd such that

−divσ(u) = f inΩ

σ̂(u) = π on ΓN
u = uD on ΓD
uν ≤ g on ΓC

σ̂ν(u) ≤ 0 on ΓC
(uν −g) · σ̂ν(u) = 0 on ΓC

σ̂T (u) = 0 on ΓC .

As the boundary segments are disjoint, ΓD ∩ΓC = /0. Further, we assume that the actual
contact boundary, where uν = g, is a strict subset of the potential contact boundary.
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2.1 Weak formulation

The solution space of the weak formulation is the subspace

H := {v ∈H1(Ω) | tr|ΓD (v) = uD}
ofH1(Ω) := (H1(Ω))d where tr is the trace operator. For convenience in discretizing uD ,
we assume uD ∈ C0(ΓD). Whenever it is clear from the context that the restriction to the
boundary requires the trace operator we omit the special notation. The space of test functions
is given by

H0 := {ϕ ∈H1(Ω) | tr|ΓD (ϕ) = 0}
and its dual is H∗. For a gap function g ∈H 1

2 (ΓC) we define the admissible set

K := {v ∈H | vν ≤ g on ΓC} (3)

which is non-empty as ΓD∩ΓC = /0. The order relation≤ in (3) has to be understood in the
sense of almost everywhere with respect to the (d−1)-dimensional Hausdorff measure.

We assume the force density f and the Neumann data π to be L2-functions on Ω or
ΓN , respectively. Further, the directions of constraints ν are given by a measurable vector
field with absolute value |ν(x)| = 1. The L2-norm and its scalar product are denoted by
‖ · ‖ and 〈·, ·〉 without any subindex. The duality pairing between H1 and its dual H−1 is
given by 〈·, ·〉−1,1 and the corresponding norms are ‖ · ‖1 and ‖ · ‖−1. The duality pairing

between H
1
2 and its dual H−

1
2 is denoted with 〈·, ·〉− 1

2 ,
1
2

and the corresponding norms are
‖ · ‖ 1

2
and ‖ · ‖− 1

2
. Later on, we need restrictions to subdomains which are indicated by a

further subindex, e.g., ‖ · ‖1,ω for ω ⊂Ω. Finally, we define the symmetric bilinear form

a(·, ·) :=
∫
Ω
σ(·) : ε(·), (4)

which is associated with the elastic energy.
The variational inequality in Problem 2 may be derived from the strong formulation

(Problem 1) by integration by parts and exploiting σ̂ν(u)(vν −uν)≥ 0 for u,v ∈K.

Problem 2 Variational inequality of the Signorini problem
We seek a solution u ∈K such that

a(u,v−u)≥ 〈f ,v−u〉+ 〈π,v−u〉ΓN ∀v ∈K. (5)

The unique solvability of Problem 2 follows from the Theorem of Lions and Stampacchia,
see e.g., [19, Theorem 2.1].

It exists a distribution λ ∈H∗ which turns the variational inequality (5) in an equation

〈f ,ϕ〉+ 〈π,ϕ〉ΓN −a(u,ϕ) = 〈λ,ϕ〉−1,1 ∀ϕ ∈H0. (6)

From the optimization point of view λ is the Lagrange multiplier while from the physical
point of view λ has the meaning of a constraining force density on ΓC which we call contact
force density. The contact force density is directly related to the contact stresses

〈λ,ϕ〉−1,1 =−〈σ̂ν(u),ϕν〉− 1
2 ,

1
2

which follows from the generalized Green’s formula, see e.g., [19, Theorem 5.9]. Due to the
variational inequality the contact force density fulfills the weak sign condition 〈λ,v−u〉−1,1≤
0. We note that Problem 2 can be equivalently formulated as saddle point of a Lagrangian.
The Lagrange multiplier of this saddle point formulation is a functional on H

1
2 (ΓC) and,

hence, formally different to the contact force density.
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2.2 Discrete formulation

In the discrete setting we assume the domain Ω to be polygonal. The mesh m, resolving
the domain, consists of elements e ∈ m which are either disjoint or share a node p, an edge
or a face s. The polygonal boundary segments ΓD,ΓC ,ΓN are resolved by the mesh, too,
meaning that their boundaries ∂ΓC ,∂ΓN ,∂ΓD are either nodes or edges. The set of nodes
p is given by Nm and we distinguish between the set ND

m of nodes on the Dirichlet bound-
ary, the set NN

m of nodes at the Neumann boundary, the set NC
m of nodes at the potential

contact boundary and the set of interior nodes NI
m where p ∈ Ω. The mesh is taken from

a shape-regular family, meaning that the ratio of the diameter of any element to the diam-
eter of its inscribed circle is uniformly bounded. We recall that our theoretical results are
proven for unstructured simplicial meshes whereas the numerical studies are performed for
unstructered mixed meshes consisting of triangles and quadrilaterals in 2D and tetrahedra,
hexahedra, prisms and pyramids in 3D.

For the approximation of H, we use linear finite elements. The space of linear finite
elements which are zero on the Dirichlet boundary is denoted with

Hm,0 := {ϕm ∈ C0(Ω̄) | ∀e ∈m, ϕm|e ∈ P 1(e) and ϕm = 0 on ΓD}
and the space with incorporated Dirichlet values uD is

Hm := {vm ∈ C0(Ω̄) | ∀e ∈m, vm|e ∈ P 1(e) and vm = uD on ΓD}
where we assumed uD to be a linear finite element function. The nodal basis functions
of the finite element spaces are denoted by φp. Hence, a discrete vector quantity has the
representation

ϕm = ∑
p∈Nm

d

∑
i=1

ϕm,i(p)φpei.

We assume the direction of constraints ν to be constant so that vm,ν = vm ·ν is a linear
finite element function on ΓC . Let gm be a discrete approximation of the gap function g,
then the discrete admissible set is given by

Km := {vm ∈Hm | vm,ν ≤ gm on ΓC}. (7)

Under these assumptions Km ⊂K if g = gm.

Problem 3 Discrete variational inequality of the Signorini problem
Find um ∈Km fulfilling the variational inequality

a(um,vm−um)≥ 〈f ,vm−um〉+ 〈π,vm−um〉ΓN ∀vm ∈Km.

The unique solvability of the discrete Signorini problem follows just as in the continuous
case from the Theorem of Lions and Stampacchia. A priori error estimates have been proven
in, e.g., [8, 17] for a sufficiently regular continuous solution u.

3 Main Results

In this section we state the upper and lower a posteriori error estimates but postpone the
proofs to Sections 4 and 5. To this end we introduce the error measure and the Galerkin
functional and we define the error estimator contributions. The Galerkin functional is de-
fined by means of a quasi-discrete contact force density which mimics the properties of the
continuous contact force density λ while computed from the discrete solution and given
data.
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3.1 Galerkin functional and quasi-discrete contact force density

For the linear elliptic equation arising in linear elasticity, the residual Rlin
m ∈H∗ is given by〈

Rlin
m ,ϕ

〉
−1,1

:=〈f ,ϕ〉+ 〈π,ϕ〉ΓN −a(um,ϕ)

=a(u−um,ϕ)
(8)

and we call it linear residual. From the properties of the bilinear form a(·, ·) it follows that
the error in the H1-norm ‖u−um‖1 is bounded by the norm of the residual

‖u−um‖1 . ‖Rlin
m ‖−1. (9)

and the norm of the residual is bounded by the error

‖Rlin
m ‖−1,ω . ‖u−um‖1,ω. (10)

for each open subset ω of Ω. The dual norm ‖Rlin
m ‖−1 is not a computable quantity. How-

ever, it is bounded from below and above by computable quantities as the element residual
r(um) := divσ(um)+f and the jump terms which are either the difference between the
stresses σ|e(um) ·n and σ|ẽ(um) ·n of two neighboring elements e and ẽ where n is the
unit outward normal to the common side s in the interior ofΩ, or the difference between the
given Neumann data π and the boundary stress σ̂|e(um) at a Neumann boundary side s

JI(um) :=(σ|ẽ(um)−σ|e(um))n

JN (um) :=π− σ̂|e(um).
(11)

The relation
〈
Rlin

m ,ϕ
〉
−1,1

= a(u−um,ϕ), compare (8), is disturbed in the case of contact

problems

a(u−um,ϕ) =
〈
Rlin

m ,ϕ
〉
−1,1
−〈λ,ϕ〉−1,1 ∀ϕ ∈H0. (12)

In contrast to the linear elliptic case, the linear residual is no appropriate measure for the er-
ror because it is non-zero if continuous and discrete solution coincide, thus, it overestimates
the error. The contact force density λ as well as the displacements u are both unknowns of
the contact problem. Considering this structure the first reliable and efficient residual-type a
posteriori error estimator for the closely related obstacle problem has been presented in [31].
Therein the error is measured in both unknowns, in the displacements and the constraining
force density. Accordingly, the linear residual is replaced by a Galerkin functional whose
abstract definition, in the case of contact problems, is given by

〈Gm,ϕ〉−1,1 :=a(u−um,ϕ)+
〈
λ− λ̃m,ϕ

〉
−1,1

=
〈
Rlin

m − λ̃m,ϕ
〉
−1,1

∀ϕ ∈H0
(13)

where λ̃m, still to be specified, is an approximation of λm for discrete test functions ϕm ∈
Hm,0 and is additionally defined for non-discrete test functions ϕ ∈H0. Notice that if〈
λ̃m,ϕm

〉
−1,1 = 〈λm,ϕm〉−1,1, then (13) generalizes the Galerkin orthogonality in that

〈Gm,ϕm〉−1,1 = 0. Moreover, following [6], Gm may be seen as the linear residual of an
auxiliary equation. For obstacle problems different choices of λ̃m have been proposed in [12,
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24–26,31]. We refer to [35] for a discussion about residual-type a posteriori error estimators
for obstacle and contact problems.

In this section we define a λ̃m which depends on the discrete solution and data and
reflects the properties of λ as, e.g., in [12,24]. We call it quasi-discrete contact force density.
To this end, we need some preliminary definitions. The patch ωp is the interior of the union
of all surrounding elements. The corresponding diameter is abbreviated with hp := diamωp
and the union of all sides of elements belonging to ω̄p is denoted by γp. We call the union
of all sides in the interior of ωp, not including the boundary of ωp, skeleton and denote it
by γp,I . Given any p ∈NC

m , we subdivide the intersections between Γ and ∂ωp in the three
following sets:

γp,C := ΓC ∩∂ωp,
γp,N := ΓN ∩∂ωp,
γp,D := ΓD ∩∂ωp.

For the ease of presentation, we choose the coordinate system such that e1 = ν. Hence,
the discrete admissible set (7) is given by

Km = {vm ∈Hm | vm,1 ≤ gm on ΓC}. (14)

In the following, we make use of the representation

〈λ,ϕ〉−1,1 =
d

∑
i=1
〈λi,ϕi〉−1,1

of the contact force density with the components

〈λ1,ϕ1〉−1,1 :=−〈σ̂1(u),ϕ1〉− 1
2 ,

1
2 ,ΓC

〈λi,ϕi〉−1,1 := 0, i ∈ {2, ..,d}

where we exploited that the frictional stresses are zero.
The discrete contact force density coincides with the linear residual as functional on

Hm,0,

〈λm,ϕm〉−1,1 := 〈f ,ϕm〉−a(um,ϕm)+ 〈π,ϕm〉ΓN =
〈
Rlin

m ,ϕm

〉
−1,1

∀ϕm ∈Hm,0.

(15)
In order to investigate λm further, we use integration by parts

〈λm,ϕm〉−1,1

=
d

∑
i=1

∑
p∈Nm

〈λm,ϕm,i(p)φpei〉−1,1

=
d

∑
i=1

∑
p∈Nm

∫
γp,I

JI(um) ·ϕm,i(p)φpei+
d

∑
i=1

∑
p∈Nm

∫
ωp
r(um) ·ϕm,i(p)φpei

+
d

∑
i=1

∑
p∈NN̄m

∫
γp,N

JN (um) ·ϕm,i(p)φpei−
d

∑
i=1

∑
p∈NCm

∫
γp,C

σ̂(um) ·ϕm,i(p)φpei

(16)
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for all ϕm ∈ Hm,0. Here, we use the notation N N̄
m for the set of all nodes on Γ̄N . As

constraints are solely imposed in direction e1, homogeneous Neumann boundary condi-
tions hold in the other directions at the potential contact boundary. Therefore, we define
JCT (um) :=−σ̂T (um).

We recall that the constraints are only imposed at contact nodes NC
m in direction e1, so

that (16) reduces to

〈λm,ϕm〉−1,1 = ∑
p∈NCm

∫
γp,I

JI1 (um) ·ϕm,1(p)φp+ ∑
p∈NCm

∫
ωp
r1(um) ·ϕm,1(p)φp

+ ∑
p∈NCm

∫
γp,N

JN1 (um) ·ϕm,1(p)φp− ∑
p∈NCm

∫
γp,C

σ̂1(um) ·ϕm,1(p)φp

(17)

which motivates the representation

〈λm,ϕm〉−1,1 =
d

∑
i=1
〈λm,i,ϕm,i〉−1,1

with

〈λm,1,ϕm,1〉−1,1 := 〈λm,ϕm〉−1,1

〈λm,i,ϕm,i〉−1,1 := 0, i ∈ {2, ..,d}.

We mention that
〈
Rlin

m ,φpe1

〉
−1,1

= 〈λm,1,φp〉−1,1 ≥ 0, which follows from the discrete

variational inequality. Notice that identity (17) is the discrete counterpart of 〈λ,ϕ〉−1,1 =
−〈σ̂1(u),ϕ1〉− 1

2 ,
1
2 ,ΓC

. Hence in the discrete setting the relation between the contact force
density and the contact stresses is polluted by element and jump residuals. This is due to
the fact that nodal values at the contact boundary affect the displacements at the boundary
as well as in the interior. The quasi-discrete contact force density λ̃m should be related to a
functional on ΓC .

In order to prepare the definition of λ̃m, we classify the actual contact nodes p ∈ NC
m

with um,1(p) = gm(p) in two different categories. At so-called full-contact nodes p ∈N fC
m

the discrete solution fulfills the following conditions

• um,1 = gm on γp,C
• σ̂1(um)≤ 0 on γp,C

which means that the conditions of actual contact of Problem 1 are satisfied. The remaining
actual contact nodes are called semi-contact nodes and the set is denoted by N sC

m .
The following definition of λ̃m uses this classification by means of a partition of unity〈

λ̃m,ϕ
〉
−1,1 :=

〈
λ̃m,1,ϕ1

〉
−1,1 := ∑

p∈NCm

〈
λ̃pm,1,ϕ1φp

〉
−1,1

(18)

and adjusts the local contributions so that, on one hand, the Galerkin functional is prepared
for the derivation of an upper bound, and on the other hand, tries to maximize the cancella-
tion within Gm thanks to λ̃m.

For semi-contact nodes p ∈N sC
m , we define〈

λ̃pm,1,ϕ1φp

〉
−1,1

:=
〈
Rlin
m,1,φp

〉
−1,1

cp(ϕ1) = spcp(ϕ1)
∫
γp,C

φp (19)
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where sp :=
〈λm,1,φp〉−1,1∫

γp,C
φp

=

〈
Rlin

m,1,φp

〉
−1,1∫

γp,C
φp

is the nodal value of the discrete contact force

density obtained by lumping the boundary mass matrix and cp(ϕ1) is defined below.
For full-contact nodes p ∈N fC

m , we define〈
λ̃pm,1,ϕ1φp

〉
−1,1

:=〈Rm,1,φp〉−1,1 cp(ϕ1)−
∫
γp,C

σ̂1(um)ϕ1φp

= spcp(ϕ1)
∫
γp,C

φp−
∫
γp,C

σ̂1(um)(ϕ1− cp(ϕ1))φp

(20)

where

〈Rm,1,ϕ1〉−1,1 :=
〈
Rlin
m,1,ϕ1

〉
−1,1

+
∫
ΓC

σ̂1(um)ϕ1.

For nodes which are no actual contact nodes we may also use the definition (19) of
〈
λ̃pm,1,ϕ1φp

〉
−1,1

because sp = 0 if um(p) 6= gm(p).
It will turn out that in order to prove an upper and lower bound of the error measure

‖u−um‖1 +‖λ− λ̃m‖−1 (21)

we need specific choices of cp(ϕ) for semi- and full-contact nodes. Here and in the follow-
ing, elements e ∈m and sides s ∈m are understood as subdomains of Ω, too.

For full-contact nodes p ∈N fC
m , we use

cp(ϕ1) := max
s⊂γp,C

∫
sϕ1φp∫
sφp

.

This choice is important for the derivation of the upper bound, see Section 4.2 and 4.3,
respectively.

For semi-contact nodes p ∈N sC
m , we take

cp(ϕ1) =

∫
γ̃p,C

ϕ1φp∫
γ̃p,C

φp
,

where γ̃p,C is a strict subset of γp,C , such that for every two different nodes p1 ∈ γp,C and
p2 ∈ γp,C , γ̃p1,C ∩ γ̃p2,C = /0. The use of γ̃p,C instead of γp,C will be exploited for the
derivation of lower bounds, see Section 5.1.

We note that we can choose any of the above examples of cp(ϕ) for nodes p ∈ NC
m

which are no actual contact nodes.
To our best knowledge the definition of λ̃m is new. Corresponding a priori error esti-

mates are beyond the scope of this article.

3.2 Error estimator and main results

The error estimator

η :=
9

∑
i=1

ηi, (22)
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for which we prove efficiency and reliability in the following sections consists of the fol-
lowing contributions:

η1 :=

(
∑

p∈Nm

η2
1,p

) 1
2

, η1,p := hp‖r(um)‖ωp

η2 :=

(
∑

p∈Nm

η2
2,p

) 1
2

, η2,p := h
1
2
p ‖JI(um)‖γp,I

η3 :=

 ∑
p∈NN̄m

η2
3,p

 1
2

, η3,p := h
1
2
p

∥∥∥JN (um)
∥∥∥
γp,N

η4 :=

 ∑
p∈NCm

η2
4,p

 1
2

, η4,p := h
1
2
p ‖JCT (um)‖γp,C

η5 :=

 ∑
p∈NCm\N fC

m

η2
5,p

 1
2

, η5,p := h
1
2
p ‖σ̂1(um)‖γp,C

η6 :=

 ∑
p∈N sC

m

η2
6,p

 1
2

, η6,p := (spdp)
1
2

η7 :=

 ∑
p∈N sC

m∪N fC
m

η2
7,p

 1
2

,

η7,p :=



(
sp
∫
γp,C

φp

∫
γ̃p,C

(g−gm)+φp∫
γ̃p,C

φp

) 1
2

if p ∈N sC
m(

sp
∫
γp,C

φp

(
∑

s⊂γp,C

∫
s(g−gm)+φp∫

sφp
+
∫
s(gm−g)+φp∫

sφp

)) 1
2

if p ∈N fC
m

η8 := ‖(um,1−g)+‖ 1
2 ,ΓC

, η8,p := ‖(um,1−g)+φp‖ 1
2 ,γp,C

.

Here and in the following we denote the positive part of a function by ϕ+ := max{ϕ,0}
and the negative part by ϕ− := max{−ϕ,0} such that ϕ= ϕ+−ϕ−. The abbreviation dp in
η6 stands for

dp :=
∫
γ̃p,C

(gm−um,1)φp (23)

where γ̃p,C is a strict subset of γp,C . Thus, η6 reminds of a complementarity condition. In
fact, for a semi-contact node spdp would be a complementarity condition with respect to

the quasi-discrete contact force density
〈
λ̃pm,1,(gm−um,1)φp

〉
−1,1

if γ̃p,C was replaced by

γp,C . We refer to η6 as complementarity residual and call η5 contact stress residual. The
contributions η5,η6 are localized to semi-contact nodes and nodes which are not actually
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in contact. Further we call η7 obstacle approximation and η8 actual constraint violation. In
the absence of any contact, we have η6 = η7 = η8 = 0 and η5 has contributions from all
potential contact nodes such that η is a residual error estimator for linear elliptic boundary
value problems where the potential contact boundary is replaced by a Neumann boundary
with π= 0. If contact occurs such an error estimator for linear equations would overestimate
the error because the expected boundary stresses in the actual contact zone are non-zero. The
contributions η7,η8 deal with the case g 6= gm. The different structure of η7,p and η8,p is due
to the fact that the difference between um,1 and g is computable while the difference between
u1 and gm is not known.

The main results about reliability and efficiency of the error estimator η defined in (22)
and its local contributions are stated in the following theorems and are proven in Sections 4
and 5. We assume the direction of constraints ν to be constant and we consider meshes of
simplices. The exact solution of Problem 2 is denoted by u and the finite element solution of
Problem 3 by um. The continuous contact force density is given by λ and the quasi-discrete
contact force density λ̃m is defined as in Section 3.1. Further let f̄ and π̄ be piecewise
constant approximations of f and π.

Theorem 1 Reliability of the error estimator
The error estimator η provides an upper bound of the error measure (21):

‖u−um‖1 +‖λ− λ̃m‖−1 . η.

Theorem 2 Local lower bounds
The local lower bounds

ηk,p . ‖u−um‖1,ωp +‖λ− λ̃m‖−1,ωp +hp‖f̄ −f‖ωp +h
1
2
p ‖π̄−π‖γp,N

hold for k = 1,2 with p ∈ Nm, for k = 3 with p ∈ N N̄
m , for k = 4 with p ∈ NC

m and for
k = 5 with p ∈NC

m \N fC
m .

Under the assumption that each p ∈N sC
m has a neighboring interior node p ∈NI

m and
for a suitable extension ḡm ∈ Hm of gm to a finite element function on Ω, the following
estimate holds for η6,p:

η6,p . ‖u−um‖1,ωp +‖λ− λ̃m‖−1,ωp +hp‖f̄ −f‖ωp +h
1
2
p

∥∥∥∥J( ḡm0
)∥∥∥∥

γp,C

where for simplicity we supposed that the actual contact zone is a strict subset of the poten-
tial contact boundary.

We recall that hp‖f̄ −f‖ωp and h
1
2
p ‖π̄−π‖γp,N are formally of higher order. We do not

provide lower bounds in terms of the additional error estimator parts η7,p,η8,p,η9,p, but
notice that their counterparts for obstacle problems cannot be neglected in the upper bound
because all the other error estimator contributions might be zero, while the real problem is
not solved due to gm 6= g, compare Examples 4.1 and 4.2 in [31].

4 Reliability of the error estimator

In this section we give the proof of Theorem 1. Our starting point is that the error in the
contact force densities ‖λ− λ̃m‖−1 is bounded by means of ‖Gm‖−1 and ‖u−um‖1. This
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follows from the definition of the Galerkin functional, the boundedness of the bilinear form,
i.e., a(ϕ,ϕ̃)≤ ‖ϕ‖1‖ϕ̃‖1 for all ϕ,ϕ̃ ∈H and Young’s inequality:

‖λ− λ̃m‖2
−1 . ‖Gm‖2

−1 +‖u−um‖2
1. (24)

If we evaluate the Galerkin functional at u−um ∈H0 and exploit the ellipticity of the
bilinear form a(·, ·) on H0, we obtain

‖u−um‖2
1 . ‖Gm‖2

−1 +2
〈
λ̃m−λ,u−um

〉
−1,1 . (25)

Thus, the error in the displacements is bounded by the dual norm of the Galerkin functional
and a duality pairing between the contact force densities and the displacements. In Section
4.1 we show that ‖Gm‖−1 is bounded by the error estimator and we deal with the second
term in Sections 4.2 and 4.3 depending on the kind of gap function.

4.1 Upper bound of the Galerkin functional

For the proof of the upper bound of ‖Gm‖−1, we rewrite 〈Gm,ϕ〉−1,1 as follows:

〈Gm,ϕ〉−1,1

= a(u−um,ϕ)+
〈
λ− λ̃m,ϕ

〉
−1,1

= 〈f ,ϕ〉+ 〈π,ϕ〉ΓN −a(um,ϕ)−
〈
λ̃m,ϕ

〉
−1,1

=
d

∑
i=1

∑
p∈Nm\NCm

〈
Rlin
m,i,ϕiφp

〉
−1,1

+
d

∑
i=2

∑
p∈NCm

〈
Rlin
m,i,ϕiφp

〉
−1,1

+ ∑
p∈NCm

(
〈Rm,1,ϕ1φp〉−1,1−

∫
ΓC

σ̂1(um)ϕ1φp−
〈
λ̃pm,1,ϕ1φp

〉
−1,1

)

=
d

∑
i=1

∑
p∈Nm\NCm

〈
Rlin
m,i,(ϕi− cp(ϕi))φp

〉
−1,1

+
d

∑
i=2

∑
p∈NCm

〈
Rlin
m,i,(ϕi− cp(ϕi))φp

〉
−1,1

+ ∑
p∈NCm

〈Rm,1,(ϕ1− cp(ϕ1))φp〉−1,1− ∑
p∈NCm\N fC

m

∫
ΓC

σ̂1(um)(ϕ1− cp(ϕ1))φp.

(26)

Here we set cp(ϕi) = 0 for Dirichlet nodes. We exploited
〈
Rlin
m,i,φp

〉
−1,1

= 0 for all non-

contact nodes and for i = 2, ..,d at contact nodes and we inserted the definition of λ̃m. For
all p ∈Nm\(ND

m ∪NC
m ) and for all contact nodes with i 6= 1 we choose the constants

cp(ϕi) :=

∫
ωp
ϕiφp∫

ωp
φp

. (27)

The mean values (27) fulfill the standard L2-approximation properties

‖ϕ− cp(ϕ)‖ωp . hp‖∇ϕ‖ωp
‖ϕ− cp(ϕ)‖γp . h

1
2
p ‖∇ϕ‖ωp ,

(28)
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e.g., [32]. For Dirichlet nodes we have at least one edge or side s ⊂ γp,D , where the test
functionϕ is zero, therefore we can deduce ‖ϕ‖ωp .hp‖∇ϕ‖ωp directly from the Poincaré-
Friedrichs inequality. The L2-approximation properties hold also for the constants cp(ϕ)
defined in Section 3.1 for semi- and full-contact nodes, see [29].

Lemma 1 The Galerkin functional with the quasi-discrete contact force density of Section
3.1 satisfies

‖Gm‖−1 .

(
5

∑
k=1

η2
k

) 1
2

. (29)

Proof Inserting the definition of Rlin
m,i and Rm,i in (26), we get

〈Gm,ϕ〉−1,1

=
d

∑
i=1

∑
p∈Nm

(∫
γp,I

JIi (um)(ϕi− cp(ϕi))φp+
∫
ωp
ri(um)(ϕi− cp(ϕi))φp

)

+
d

∑
i=1

∑
p∈NN̄m

∫
γp,N

JNi (um)(ϕi− cp(ϕi))φp

+
d

∑
i=2

∑
p∈NCm

∫
γp,C

JCi (um)(ϕi− cp(ϕi))φp

− ∑
p∈NCm\N fC

m

∫
ΓC

σ̂1(um)(ϕ1− cp(ϕ1))φp

.
d

∑
i=1

∑
p∈Nm

(
h

1
2
p ‖JIi (um)‖γp,I ‖∇ϕi‖γp,I +hp ‖ri(um)‖ωp ‖∇ϕi‖ωp

)

+
d

∑
i=1

∑
p∈NN̄m

(
h

1
2
p

∥∥∥JNi (um)
∥∥∥
γp,N

‖∇ϕi‖γp,N
)

+
d

∑
i=2

∑
p∈NCm

(
h

1
2
p

∥∥∥JCi (um)
∥∥∥
γp,C

‖∇ϕi‖γp,C
)

+ ∑
p∈NCm\N fC

m

(
h

1
2
p ‖σ̂1(um)‖γp,C ‖∇ϕ1‖γp,C

)

.

(
5

∑
k=1

η2
k

) 1
2

‖ϕ‖1,Ω

where we applied Hölder’s inequality and theL2-approximation properties and we exploited
the shape regularity.

4.2 Upper bound in the case of a discrete gap function

As we have already proven the upper bound of ‖Gm‖−1 it remains to bound
〈
λ̃m−λ,u−um

〉
−1,1.

We have 〈λi,ϕi〉=
〈
λ̃m,i,ϕi

〉
= 0 for i 6= 1 and 〈λ1,um,1−u1〉−1,1 ≤ 0 because Km ⊂K
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as long as gm = g. Thus, it remains to bound
〈
λ̃m,1,u1−um,1

〉
−1,1. From the definition of

the quasi-discrete contact force density λ̃m,1 (18,20,19) follows

〈
λ̃m,1,u1−um,1

〉
−1,1 = ∑

p∈N sC
m

(
spcp(u1−um,1)

∫
γp,C

φp

)

+ ∑
p∈N fC

m

(
spcp(u1−um,1)

∫
γp,C

φp

)

− ∑
p∈N fC

m

(∫
γp,C

σ̂1(um)(u1−um,1− cp(u1−um,1))φp
)
.

(30)

The first sum in (30) is bounded by η6

∑
p∈N sC

m

sp

∫
γp,C

φp

∫
γ̃p,C

(u1−um,1)φp∫
γ̃p,C

φp

= ∑
p∈N sC

m

(
sp

∫
γp,C

φp

∫
γ̃p,C

(u1−g)φp∫
γ̃p,C

φp
+sp

∫
γp,C

φp

∫
γ̃p,C

(g−um,1)φp∫
γ̃p,C

φp

)
. ∑
p∈N sC

m

spdp

where we exploit sp ≥ 0 for p ∈NC
m, u1 ≤ g = gm and

∫
γp,C

φp∫
γ̃p,C

φp
is a constant independent

of hp if γ̃p,C is always a fixed fraction of γp,C .
For a full-contact node p, we have u1 ≤ g = gm = um,1 which implies u1−um,1 ≤ 0

and, therefore, cp(u1−um,1) ≤ 0. As further sp ≥ 0 we have spcp(u1−um,1) ≤ 0 such
that the second sum is bounded by zero. In order to estimate the third sum we decompose
it in a sum of integrals over sides. We exploit σ̂1(um) constant on each side as we assumed
meshes of simplices and cp(u1−um,1)≥

∫
s(u1−um,1)φp∫

sφp
for each side s in γp,C to obtain

− ∑
p∈N fC

m

∫
γp,C

σ̂1(um)(u1−um,1− cp(u1−um,1))φp

= ∑
p∈N fC

m

∑
s⊂γp,C

−σ̂1(um)|s
∫
s
(u1−um,1− cp(u1−um,1))φp︸ ︷︷ ︸

≤0

≤ 0.
(31)

This contribution is also bounded by zero. Thus, we have〈
λ̃m−λ,u−um

〉
−1,1 . η2

6 = ∑
p∈N sC

m

spdp. (32)

Putting together (24), (25), (29) and (32) we have the proof of Theorem 1 if g = gm.

4.3 Upper bound for a general gap function in H
1
2

In the foregoing section we used the fact, that um,1 ≤ g if gm = g in order to get an upper
bound of

〈
λ̃m−λ,u−um

〉
−1,1. This condition may not hold for an arbitrary function g ∈
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H
1
2 (ΓC). However, it is possible to give an upper bound of the error measure by means of

the error estimator for arbitrary gap functions. For this purpose, we define a function

u∗m,1 = min{um,1|ΓC ,g} ∈H
1
2 (ΓC)

and a harmonic extension w̃ of w := um,1−u∗m,1 ∈H
1
2 (ΓC) so that the stability estimate

(see e.g., [30], pp. 70–71)

‖um,1−u∗m,1‖1 . ‖um,1−u∗m,1‖ 1
2 ,ΓC

(33)

holds. We set u∗m,1 :=um,1−w̃∈H. In a first step we find an upper bound of 〈−λ1,u1−um,1〉.
To this end, we use

〈
λ1,u

∗
m,1−u1

〉
−1,1
≤ 0 as u∗m,1 ≤ g, Young’s inequality and (33) to

derive

〈−λ1,u1−um,1〉−1,1

=
〈
λ1,um,1−u∗m,1 +u∗m,1−u1

〉
−1,1

≤
〈
λ1,um,1−u∗m,1

〉
−1,1

=
〈
λ1− λ̃m,1,um,1−u∗m,1

〉
−1,1 +

〈
λ̃m,1,um,1−u∗m,1

〉
−1,1

≤ 1
2
‖λ1− λ̃m,1‖2

−1 +
1
2
‖um,1−u∗m,1‖2

1 +
〈
λ̃m,1,um,1−u∗m,1

〉
−1,1

.
1
2
‖λ1− λ̃m,1‖2

−1 +
1
2
‖um,1−u∗m,1‖2

1
2 ,ΓC

+
〈
λ̃m,1,um,1−u∗m,1

〉
−1,1 .

Therefrom we deduce

〈
λ̃m,1−λ1,u1−um,1

〉
−1,1 .

1
2
‖λ1− λ̃m,1‖2

−1 +
1
2
‖um,1−u∗m,1‖2

1
2 ,ΓC

+
〈
λ̃m,1,u1−um,1

〉
−1,1 +

〈
λ̃m,1,um,1−u∗m,1

〉
−1,1

(34)
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An upper bound of the last two terms of (34) is given by〈
λ̃m,1,u1−um,1

〉
−1,1 +

〈
λ̃m,1,um,1−u∗m,1

〉
−1,1

= ∑
p∈NCm

〈
λ̃pm,1,(u1−um,1)φp

〉
−1,1

+ ∑
p∈NCm

〈
λ̃pm,1,(um,1−g)+φp

〉
−1,1

= ∑
p∈NsCm

(
spcp (u1−um,1)

∫
γp,C

φp

)
+ ∑
p∈NsCm

(
spcp

(
(um,1−g)+

)∫
γp,C

φp

)

+ ∑
p∈N fC

m

(
spcp (u1−um,1)

∫
γp,C

φp

)
+ ∑
p∈N fC

m

(
spcp

(
(um,1−g)+

)∫
γp,C

φp

)

− ∑
p∈N fC

m

(∫
γp,C

σ̂1(um)((u1−um,1)− cp (u1−um,1))φp
)

︸ ︷︷ ︸
≤0

− ∑
p∈N fC

m

(∫
γp,C

σ̂1(um)
(
(um,1−g)+− cp

(
(um,1−g)+

))
φp

)
︸ ︷︷ ︸

≤0

≤ ∑
p∈N sC

m

(
spcp

(
(g−um,1)+

)∫
γp,C

φp

)
(35)

+ ∑
p∈N fC

m

(
spcp (u1−um,1)

∫
γp,C

φp

)
+ ∑
p∈N fC

m

(
spcp

(
(um,1−g)+

)∫
γp,C

φp

)

where we exploited the relation

(um,1−u∗m,1)|ΓC = (um,1−g)+|ΓC , (36)

the definition of λ̃m,1 and for semi-contact nodes

(u1−um,1)+(um,1−g)+

= (u1−g)+(g−um,1)+(um,1−g)+

≤ (g−um,1)+(um,1−g)+

= (um,1−g)− = (g−um,1)+.

(37)

In the case of semi-contact nodes we further exploit that (gm−um,1) = (gm−um,1)+ so
that

(g−um,1)+ =(g−um,1+gm−gm)+≤ (gm−um,1)++(g−gm)+ =(gm−um,1)+(g−gm)+.
Thus, we have for the first sum in (35)

∑
p∈N sC

m

(
spcp

(
(g−um,1)+

)∫
γp,C

φp

)

. ∑
p∈N sC

m

spdp+ ∑
p∈N sC

m

(
spcp

(
(g−gm)+

)∫
γp,C

φp

)
. η2

6 + ∑
p∈N sC

m

η2
7,p.

(38)
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For the reformulation of the second sum in (35) we have a closer look at the mean value
cp (u1−um,1) for full-contact nodes. Let S∗ be the side of γp,C fulfilling cp (u1−um,1) =∫
S∗(u1−um,1)φp∫

S∗ φp
. As u1 ≤ g and g−um,1 = g−gm for full-contact nodes we get

cp (u1−um,1)≤
∫
S∗ (g−um,1)φp∫

S∗ φp

≤
∫
S∗ (g−gm)φp∫

S∗ φp

≤
∫
S∗ (g−gm)+φp∫

S∗ φp

≤ ∑
S⊂γp,C

∫
S (g−gm)+φp∫

S φp

(39)

In the third term of (35) we may replace um,1 by gm as full-contact nodes are considered.
Thus, the second and the third sum in (35) is bounded by ∑p∈N fC

m
η2

7,p.

∑
p∈N fC

m

(
spcp (u1−um,1)

∫
γp,C

φp

)
+ ∑
p∈N fC

m

(
spcp

(
(um,1−g)+

)∫
γp,C

φp

)

≤ ∑
p∈N fC

m

(
sp

∫
γp,C

φp

(
∑

s⊂γp,C

∫
s(g−gm)+φp∫

sφp
+

∫
s(gm−g)+φp∫

sφp

))
= η2

7

(40)

Putting together (35, 36, 37, 38, 39, 40), (34) is bounded by〈
λ̃m,1−λ1,u1−um,1

〉
−1,1 .

1
2
‖λ1− λ̃m,1‖2

−1 +
1
2
‖um,1−u∗m,1‖2

1
2 ,ΓC

+
〈
λ̃m,1,u1−um,1

〉
−1,1 +

〈
λ̃m,1,um,1−u∗m,1

〉
−1,1

.
1
2
‖λ1− λ̃m,1‖2

−1 +
1
2
‖(um,1−g)+‖2

1
2 ,ΓC

+η2
6 +η

2
7

.
1
2
‖λ1− λ̃m,1‖2

−1 +η
2
6 +η

2
7 +η

2
8 .

(41)

Together with (24), (25), (29) we have the proof of Theorem 1 if g ∈H 1
2 (ΓC).

5 Efficiency of the error estimator

In this section we give the proof of Theorem 2. The proof of the lower bounds in terms of
the contributions η1,p, ...,η4,p

4

∑
k=1

ηk,p . ‖u−um‖1,ωp +‖λ− λ̃m‖−1,ωp +hp‖f̄ −f‖ωp +h
1
2
p ‖π̄−π‖γp,N (42)

follows like in the case of a linear elliptic problem. In fact Gm plays the role of Rlin
m .

The properties of the bubble functions, see, e.g., [33] are used and the boundedness of the
Galerkin functional by means of the error measure

‖Gm‖−1,ωp ≤ ‖u−um‖1,ωp +‖λ− λ̃m‖−1,ωp (43)
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which follows directly from the definition of the Galerkin functional. The proofs that the
local contributions η5,p and η6,p provide local lower bounds of the error measure are more
intricate and will be given in detail in this section.

5.1 Lower bound in terms of the contribution η5,p

In this section we show that η5,p is a lower bound of the error for all nodes p ∈NC
m \NfC

m .
Similar to the case of η1,p,η2,p,η3,p,η4,p we make use of the relation between the Galerkin
functional and the quantity of interest which here is the boundary stress.

Let p̄∈NC
m \N fC

m be an arbitrary but fixed node. In the following, s denotes a side which
belongs to γp̄,C . We take the corresponding side bubble function

Ψs := ∏
p∈s
φp (44)

as test function in (26)

∑
p∈NCm\N fC

m

∫
ΓC

σ̂1(um)Ψsφp

=−〈Gm,Ψse1〉−1,1 + ∑
p∈Nm\NCm

〈
Rlin
m,1,Ψsφp

〉
−1,1

+ ∑
p∈NCm

〈Rm,1,(Ψs− cp(Ψs))φp〉−1,1 + ∑
p∈NCm\N fC

m

∫
ΓC

σ̂1(um)cp(Ψs)φp

=−〈Gm,Ψse1〉−1,1 + ∑
p∈Nm

∫
ωs

r1(um)Ψsφp

− ∑
p∈N sC

m

spcp(Ψs)
∫
γp,C

φp− ∑
p∈N fC

m

〈Rm,1,φp〉cp(Ψs).

(45)

If the side s is not contained in any patch γp,C of semi- or full-contact nodes p, the two last
terms are zero and we can proceed similar to the case of η1,p,η2,p,η3,p,η4,p. Otherwise, in
order to get rid of the last two terms, we replace Ψs by a suitable function θs such that in
addition cp(θs) = 0 for all semi- and full-contact nodes. The value cp(·) for a semi-contact
node p depends on γ̃p,C which is a strict subset of γp,C , compare Section 3.1. If γp,C
consists of two intervals we choose the inner third of γp,C containing p as γ̃p,C . If γp,C
is a union of triangles we refine each triangle ones uniformly and generate γ̃p,C as the 2D
patch enclosing p with respect to this subgrid. For example in Figure 1, the dark blue region
is γ̃p,C for p = p1. A side s has d nodes {pi}i=1,..,d. We denote the sides of the subgrid
containing pi by si and the middle part by sM , see Figure 1. For the function θs we make
the following ansatz

θs =

(
d

∑
i=1

aiΨi+aMΨM

)
(46)

where Ψi and ΨM are side bubble functions to si and sM . The coefficients are determined
so that

1.
∫
s 1 = ∑p∈Nm\N fC

m

∫
s θsφp

2.
∫
si
θsφpi = 0 for all pi semi-contact nodes
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(a) Subgrid of an interval
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•p1

•
p3

s

sMs2 s3

s1

s1

p1
•• ••

s2

p2

sM

S

1

(b) Subgrid of a triangle

Fig. 1: Subgrid of boundary patches γp,C

3.
∫
s θsφpi = 0 for all pi full-contact nodes with s= s̄.

As p̄ is not a full-contact node there is at least one contribution in the right hand side of the
first condition. Inserting the ansatz (46) in the aforementioned conditions, we get a solvable
system of equations with d+ 1 coefficients (degrees of freedom) aM ,ai, i = {1, ..,d} and

d+ 1 conditions. At this point the special choice of cp(ϕ) :=
∫
γ̃p,C

ϕφp∫
γ̃p,C

φp
as mean value on

γ̃p,C for semi-contact nodes becomes important because the choice cp(ϕ) =
∫
γp,C

ϕφp∫
γp,C

φp
as

mean value over the whole patch γp,C would lead to a contradiction of the conditions. In
the second condition si would be replaced by s and the condition

∫
s θsφpi = 0 for all pi

of the side s would imply ∑p∈Nm\N fC
m

∫
s θsφp = 0 such that the first condition could not be

fulfilled.
As we assumed that the mesh is made of simplices, σ̂1(um) is constant on s. Conse-

quently, cp(θs) = 0 implies cp(σ̂1(um)θs) = 0 and it follows from the first condition

‖σ̂1(um)‖2
s = ∑

p∈Nm\N fC
m

∫
s
σ̂1(um)σ̂1(um)θsφp. (47)

Putting together (47), (45) with test function σ̂1(um)θs instead of Ψs and exploiting the
conditions cp(σ̂1(um)θs) = 0 for all contact nodes we end up with

‖σ̂1(um)‖2
s = ∑

p∈Nm\N fC
m

∫
s
σ̂1(um)σ̂1(um)θsφp

=−〈Gm, σ̂1(um)θse1〉+
∫
ωs

r1(um)σ̂1(um)θs

≤ ‖Gm‖−1,ωp̄‖σ̂1(um)θs‖1,ωs +‖r1(um)‖ωs‖σ̂1(um)θs‖ωs

. ‖Gm‖−1,ωp̄h
− 1

2
s ‖σ̂1(um)‖s+h

1
2
s ‖r1(um)‖ωs‖σ̂1(um)‖s

(48)
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where hs := diam(s). In the last line of (48) we used the properties of the bubble functions
on the subgrid and the fact that γ̃p,C is a fixed portion of γp,C so that hs = chsi for a

mesh-independent constant c. We divide by h
− 1

2
s ‖σ̂1(um)‖s leading to

h
1
2
s ‖σ̂1(um)‖s . ‖Gm‖−1,ωp̄ +hs‖r(um)‖ωs .

By means of the triangle inequality, the shape-regularity, hs ≈ hp and the upper bounds (43)
and (42) of ‖Gm‖−1,ωp̄ and ‖r(um)‖ωp̄ , we get

h
1
2
p ‖σ̂1(um)‖γp̄,C . ‖u−um‖1,ωp̄ +‖λ− λ̃m‖−1,ωp̄ +hp̄‖f̄ −f‖ωp̄ .

Thus, we have proven Theorem 2 for η5,p̄ with p̄ ∈NC
m \N fC

m .

5.2 Lower bound in terms of the contribution η6,p

We derive a lower bound of the local error in terms of the local contributions of η6,p =

(spdp)
1
2 . If sp = 0 or (gm−um,1)(q) = 0 for all neighbouring nodes of p we have η6,p = 0.

Therefore, we assume sp > 0 and (gm−um,1)(q) > 0 for at least one node on γp,C . Let
q̂ be a node which fulfills (gm−um,1)(q̂) ≥ (gm−um,1)(q) for all neighboring nodes q
of p. Due to sp > 0 we have (gm − um,1)(p) = 0. As we consider boundary meshes of
triangles and intervals the discrete functions are piecewise linear. Using Taylor expansion
around (gm−um,1)(p) = 0 leads to

(gm−um,1)(q̂)
= ∇|ŝ(gm−um,1) · (q̂−p). hp∇|ŝ(gm−um,1) ·τ

(49)

where ŝ ⊂ γp,C is a side containing the nodes q̂ and p and τ is the unit tangential vector
pointing from p to q̂. The corresponding element is denoted with ê.

First, we deal with a node p at a convex edge of the boundary. We assumed in Theorem
2 that the node p has at least one neighboring node in the interior. Thus, there exists another
element e⊂ ωp with a boundary side s⊂ ∂ωp∩Γ .

We denote the unit vector pointing from p to the interior node along the interior edge of
e by τ int. Further, we define an extension from gm to a function in Hm by ḡm(q) = um,1(q)
∀q ∈Nm\NC

m . Due to the definition of ḡm, we have

∇|e(ḡm−um,1) ·τ int = 0. (50)

For the gradients in direction τ bd pointing from p to a neighboring boundary node q 6= q̂
we have

∇|e(ḡm−um,1) ·τ bd ≥ 0. (51)
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Fig. 2: Construction of the linear combination of −τ in 2D
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Fig. 3: Construction of the linear combination of −τ in 3D

In the case d= 2 the line given by p and the vector τ int divides the plane into half-planes
with τ on one side and τ bd and −τ on the other side, see Figure 2. Therefore,

−τ = ατ int +βτ bd (52)

with β > 0 and α arbitrary. If d = 3 imagine a plane Pτ,τint spanned by τ and τ int. The
cut of the plane with an opposite side s defines a unit vector τ bd := β1τ bd,1 +β2τ bd,2 with
β1,β2 ≥ 0 and τ bd,1,τ bd,2 are the vectors along the edges of the side s starting in p, compare
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Figure 3. The line τ int divides this plane Pτ,τint such that −τ and τ bd lie in one half-plane
and (52) holds with β > 0 and α arbitrary. Putting together (50), (51) and (52), we get

−∇|e(ḡm−um,1) ·τ ≥ 0 (53)

and therefore adding (53) to (49) gives

(ḡm−um,1)(q̂) = ∇|ŝ(ḡm−um,1) · (q̂−p)
. hp(∇|ê(ḡm−um,1)−∇|e(ḡm−um,1)) ·τ . (54)

For a contact node p at a concave edge, the vector pointing from p in direction −τ goes
through another element e belonging to ωp. Due to the construction of ḡm such that ḡm(q)−
um,1(q)≥ 0, we have

−∇|e(ḡm−um,1) ·τ ≥ 0

and therefore, we can add this gradient in (49) getting (54) also in this case.
Let e0 = ê, en = e and ei, i = 1, ..,n− 1 elements between e0 and en. Common sides

are denoted with si := ei−1∩ ei. Further, we define v̄m with v̄m,1 := ḡm−um,1 and v̄m,i :=
−um,i for i= 2, ..,d. The difference (∇|êv̄m,1−∇|ev̄m,1) ·τ occurring in the right hand side
of (54) can be reformulated to

(∇|êv̄m,1−∇|ev̄m,1) ·τ = (∇|êv̄m−∇|ev̄m)T e1 ·τ
= (∇|êv̄m−∇|ev̄m)τ ·e1

=
n

∑
i=1

(∇|ei v̄m−∇|ei−1 v̄m)τ ·e1.

(55)

The unit outward normal to a side si is denoted by n and extended to an orthonormal basis
by means of tj , for j = 1, ..,d− 1. We can write τ = τ ·nn+∑

d−1
j=1 τ · tjtj and similarly

e1 = e1 ·nn+∑
d−1
j=1 e1 · tjtj . For each summand in the right hand side of (55), we get(

∇|ei v̄m−∇|ei−1 v̄m
)
τ ·e1

= τ ·n
(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·e1 +

d−1

∑
j=1
τ · tj

(
∇|ei v̄m−∇|ei−1 v̄m

)
tj︸ ︷︷ ︸

=0

·e1

= τ ·n
(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·e1. (56)

Exploiting (
∇|ei v̄m−∇|ei−1 v̄m

)
n ·n

=
1
2
(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·n+

1
2
(
∇|ei v̄m−∇|ei−1 v̄m

)T
n ·n

=
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n ·n

and (
∇|ei v̄m−∇|ei−1 v̄m

)
n · tj

=
(
∇|ei v̄m−∇|ei−1 v̄m

)
n · tj +n ·

(
∇|ei v̄m−∇|ei−1 v̄m

)
tj

=
(
∇|ei v̄m−∇|ei−1 v̄m

)
n · tj +

(
∇|ei v̄m−∇|ei−1 v̄m

)T
n · tj

=2
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n · tj ,
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we estimate(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·e1

=e1 ·n
(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·n+

d−1

∑
j=1
e1 · tj

(
∇|ei v̄m−∇|ei−1 v̄m

)
n · tj

.|
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n|.

(57)

Putting together (54), (55), (56) and (57) we get

(ḡm−um,1)(q̂). hp
n

∑
i=1
|(∇|ei v̄m−∇|ei−1 v̄m)τ ·e1|

. hp
n

∑
i=1
|
(
∇|ei v̄m−∇|ei−1 v̄m

)
n ·e1|

. hp
n

∑
i=1
|
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n|.

(58)

In order to bound the jump in the strain in normal direction by means of the jump in the
stress in normal direction, we make use of the material law in linear elasticity

σ = λtr(ε)id+2µε,

compare (2). The inverse relation is given by

ε=
1

2µ
σ− λ

2µ(dλ+2µ)
tr(σ)id,

where d refers to the dimension. Thus,

|
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n|

.|
(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n|+ |trσ(v̄m)|ei − trσ(v̄m)|ei−1 |

(59)

and it remains to bound |trσ(v̄m)|ei − trσ(v̄m)|ei−1 | by means of the jumps in the stress in
normal direction. The trace is invariant under a basis transformation, thus

trσ(v̄m)|ei − trσ(v̄m)|ei−1

=
(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n ·n+

d−1

∑
j=1

(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
tj · tj

(60)

and it remains to bound
(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
tjtj . To this end, we make use of(

ε(v̄m)|ei −ε(v̄m)|ei−1

)
tj · tj

=
1
2
(
∇v̄|ei −∇v̄|ei−1

)
tj︸ ︷︷ ︸

=0

·tj +
1
2
tj
(
∇v̄|ei −∇v̄|ei−1

)
tj︸ ︷︷ ︸

=0

= 0 (61)

and

trε(v̄m)|ei − trε(v̄m)|ei−1

=
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n ·n+

d−1

∑
j=1

(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
tj · tj

=
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n ·n

(62)
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where we exploited (61) and again the fact that the trace is invariant under a basis transfor-
mation. Furthermore, we use the identity

(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n ·n

=λ
(
trε(v̄m)|ei − trε(v̄m)|ei−1

)
+2µ

(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n ·n

=(λ+2µ)
(
trε(v̄m)|ei − trε(v̄m)|ei−1

) (63)

which follows from the material law and from (62). Thus,

(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
tj · tj

=λ
(
trε(v̄m)|ei − trε(v̄m)|ei−1

)
+2µ

(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
tj · tj︸ ︷︷ ︸

=0

=
λ

λ+2µ
(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n ·n

(64)

where we exploited the material law and (63). Combining (64), (60) and (59) we get the
desired bound of the jump in the strain in normal direction by means of the jump in the
stress in normal direction

|
(
ε(v̄m)|ei −ε(v̄m)|ei−1

)
n|. |

(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n|. (65)

Finally, (58) and (65) give rise to

(ḡm−um,1)(q̂). hp
n

∑
i=1
|
(
σ(v̄m)|ei −σ(v̄m)|ei−1

)
n|

. hp
n

∑
i=1

h
−(d−1)

2
p ‖JI(v̄m)‖si

. h
−(d−3)

2
p ‖JI(v̄m)‖γp,I

As (gm−um,1)(q)≤ (gm−um,1)(q̂) for all q ∈ γp,C , we conclude

dp =
∫
γ̃p,C

(gm−um,1)φp . hd−1
p h

−d+2
2

p

(
h

1
2
p ‖JI(v̄m)‖γp,I

)
. h

d
2
p

(
h

1
2
p

∥∥∥∥JI ( ḡm0
)∥∥∥∥

γp,I

+h
1
2
p

∥∥∥JI(um)
∥∥∥
γp,I

)
.
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For the upper bound of spdp, we use Hölder’s inequality and scaling arguments such that

spdp

=

∫
γp,I

JI1 (um)φp+
∫
ωp
r1(um)φp+

∫
γp,N

JN1 (um)φp−
∫
γp,C

σ̂1(um)φp∫
γp,C

φp

·
∫
γ̃p,C

(gm−um,1)φp

.

‖JI1 (um)‖γp,I ‖φp‖γp,I︸ ︷︷ ︸
≈h

d−1
2

p

+‖r1(um)‖ωp ‖φp‖ωp︸ ︷︷ ︸
≈h

d
2
p

+‖σ̂1(um)‖γp,C ‖φp‖γp,C︸ ︷︷ ︸
≈h

d−1
2

p

 ·h−d+1
p

∫
γp,C

(gm−um,1)φp

.

(
h

1
2
p ‖JI1 (um)‖γp,I +hp‖r1(um)‖ωp +h

1
2
p ‖σ̂1(um)‖γp,C

)
·h−

d
2

p ·
∫
γp,C

(gm−um,1)φp

.
(
‖um−u‖1,ωp +‖λ̃m−λ‖−1,ωp +hp‖f̄ −f‖ωp

)
·
(
h

1
2
p

∥∥∥∥JI ( ḡm0
)∥∥∥∥

γp,I

+h
1
2
p

∥∥∥JI(um)
∥∥∥
γp,I

)

.

(
‖um−u‖1,ωp +‖λ̃m−λ‖−1,ωp +hp‖f̄ −f‖ωp +h

1
2
p

∥∥∥∥JI ( ḡm0
)∥∥∥∥

γp,I

)2

(66)

where we exploited that the actual contact boundary is a strict subset of the potential contact
boundary. Thus, we have proven Theorem 2.

We note that JI
(
ḡm
0

)
is the counterpart to the jumps in the obstacle function occurring

in the local lower bounds in the case of obstacle problems, see [25, 26, 31].

6 Numerical results

The implementation of the a posteriori error estimator has been carried out in the framework
of the finite element toolbox UG [4] and the obstacle toolbox OBSLIB++, see [23]. In this
section we compute the numerical solutions of different contact problems in 2D and 3D.
The variational inequalities are solved with a non-smooth multigrid method, see [21,23] and
the meshes are generated in an adaptive refinement process using red-green-refinement on
the basis of our new a posteriori error estimator.

We examine the structure of the refined grids and the rate of convergence of the estima-
tor. In Section 6.1 we consider examples for which the contact stresses are given analytically.
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Thus, we can give the relative error. In Section 6.2 we analyze our residual-type estimator
for contact in more detail, i.e., we analyze the relevance of the different error estimator
contributions ηi and the distribution of their local contributions ηi,p.

In all our experiments the force density f and the Neumann values π are zero. Although
the efficiency and the reliability of the a posteriori error estimator are proven for meshes of
simplices, we see in the following examples that the estimator performs very well also for
different kinds of meshes.

6.1 Examples with analytically given distribution of contact stresses

In the first example a two-dimensional wedge indents a linear elastic half space, see [18,
Chapter 5.2]. The semi-angle α of the wedge has to be close to 90◦, see Figure 4(a), such
that the theory of linear elasticity is valid. The half of the width of the contact strip is

b=
P (1−ν2)

E cotα
, (67)

where P is the load applied to the rigid body and E and ν are the Young’s modulus and the
Poisson ratio. The distribution of the contact stresses is given by

σ̂ν(x) =
E cotα

(1−ν2)2π
ln

b+ (b2−x2
1
) 1

2

b−
(
b2−x2

1

) 1
2

 (68)

where ν = e2 in Figure 4(a). The value of (68) is infinite at the apex of the wedge.

P

�x2

b b

x12↵

1

(a) Rigid wedge

P

RM

�x3

b b

x1

1

(b) Cross-section of Hertzian contact

Fig. 4

The second example is a special case of the Hertzian contact problem. Originally, the
Hertzian contact problem [13] describes the contact between two linear elastic spherical
bodies of dimension d = 3 with radii RS ,RM and elastic moduli ES ,EM and νS , νM .
Here, we consider the extreme case, the contact of a linear elastic cube (RS = ∞) and a
rigid ball (EM = ∞), see Figure 4(b) for a schematic view of a cross-section. In Figure 4(b)
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ν = e3, so that xT = x−x3e3. If the rigid ball is pressed against the linear elastic cube by
a load P , the radius of the actual contact zone is

b=

3PRM
(

1−
(
νS
)2
)

4ES


1
3

, (69)

and the pressure distribution is

σ̂ν(x) =
3P

2πb3

(
b2−|xT |2

) 1
2 . (70)

For more details about the Hertzian contact problem, we refer to [18, Chapter 3.4].
As already explained in Section 3.1 the contact force density λ is related to the contact

stresses 〈λ,ϕ〉−1,1 =−〈σ̂ν(u),ϕν〉− 1
2 ,

1
2 ,ΓC

by means of Green’s formula, whereas such a
relation does not exist in the discrete setting. In order to get a numerical approximation sm
of σ̂ν we make use of the nodal values of the discrete contact force density obtained by the
lumped L2-scalar product and define sm := ∑p∈NCm spφp, such that

〈sm,ϕm,ν〉ΓC =
∫
ΓC

 ∑
p∈NCm

spφp

ϕm,ν .

We call
‖sm(x)− σ̂ν(x)‖ΓC
‖σ̂ν(x)‖ΓC

, (71)

the relative error of the contact stresses in the L2-norm.
In order to model the 2D example by a one-body contact problem we consider a unit

quadrilateral with the edges (0,0),(0,1),(1,0),(1,1) which is moved towards the obstacle
by means of Dirichlet values. We apply Dirichlet boundary values −0.01 in x2-direction
and 0.0 in x1-direction at the top of the quadrilateral. The potential contact boundary is the
lower edge of the quadrilateral and the direction of constraints is ν =−e2. The gap function
is given by g(x1) = 0.2 · (x1− 0.5) if x1 ≥ 0.5 and g(x1) = −0.2 · (x1− 0.5) otherwise.
The material is assumed to be linear elastic with the Poisson ratio ν = 0.25 and the Young’s
modulus E = 3 ·105 kN

mm2 .
The cotangens of the angle α of the rigid wedge and the load applied to the rigid body,

compare Figure 4(a) enter in the formulas for the exact computation of the radius of the
contact zone and the contact stresses. We note that the load P applied to the rigid body co-
incides with the integral of the contact stresses over the contact boundary

∫
ΓC

σ̂ν dx1. Thus,
we solve the contact problem on a very fine grid in a preprocess to get a good approximation
of the total contact forces. In this way we get the value 872.19. The cotangens of the angle of
the wedge is 0.2. Putting these values in formula (67) we get the radius b= 0.01362796875
of the contact zone.

If the starting grid consists of uniform quadrilaterals (256 elements) we call the experi-
ment wedge example with quadrilaterals and if the starting grid is made of uniform triangles
(512 elements) we refer to it by wedge example with triangles. The adaptive refinement pro-
cess has been carried out 14 times. The number of degrees of freedom is 510,588 in the
wedge example with quadrilaterals and 512,850 in the wedge example with triangles.

Figure 5 shows the adaptively refined grid around the corner caused by the tip of the
wedge. In order to visualize the relation between the different zooms in Figure 5 we put
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yellow colored dots below the figures marking the points where x1 = 0.4, x1 = 0.5 and
x1 = 0.6 and green colored dots are set between the yellow colored dots in distances of
0.02. The refined grid is symmetric and the smallest elements can be found mainly in the
area where the tip of the wedge indents the elastic quadrilateral. At this point the exact
normal stresses would be infinite. However, in small areas around the free boundary zone the
elements have been refined very often, too, as can be seen in Figure 5(d) where we zoomed
in the right area of the contact corner. The adaptively refined grid based on a starting grid of
triangles is less symmetric, see Figure 6(a). This is due to the alignment of the triangles on
the starting grid. However, the solution (Figure 6(b)) is symmetric.

The rate of convergence of the error estimator is given by the so-called experimental
order of convergence

eoc :=
ln(ηk)− ln(ηk+1)

ln(#Nm,k+1)− ln(#Nm,k)

where ηk,ηk+1 are the error estimators of two successive refinement steps with the sets of
nodeNmk ,Nmk+1 . We here take the last two steps of refinement. We note that for first order
elements the rate of convergence of the error is optimal if it is 1

d .
The convergence of the error estimator on adaptively and uniformly refined grids is

shown in Figure 7. The experimental order of convergence is about 0.502 for the adaptively
refined grid and 0.436 and 0.399, respectively, for the uniformly refined grid.

In Figure 8 the exact normal stresses σ̂ν(p) (blue dots), computed by means of formula
(68), are compared to the corresponding numerically computed quantities sp (red dots) on
adaptively refined meshes. The values coincide very well.

The L2-norm of the relative error between sm(x) and σ̂ν(x) as defined in (71) is given
by the red lines in Figure 9 plotted against the number of actual contact nodes NaC

m . The
blue lines refer to the same relative error but sm is computed on a mesh where the adaptive
refinement is determined by the standard residual error estimator of linear elliptic problems.
For both methods of adaptive refinement Figure 10 shows the relative error between b and
the numerically computed radius of the contact zone plotted against the number of actual
contact nodes. In order to visualize that the adaptive refinement process by means of the
standard residual error estimator requires much more nodes in order to obtain the same
accuracy as by means of our residual-type estimator η defined in (22) for contact we have
chosen logarithmic scales in Figures 9 and 10.

The 3D example is modeled by a linear elastic unit cube which is pushed against the
obstacle by means of Dirichlet values. We apply Dirichlet values −0.005 in x3-direction
and 0.0 in x1- and x2-direction at the top of the cube. The potential contact boundary is the
bottom of the cube and the direction of constraints is ν =−e3. The gap function describing
the distance between the elastic cube and the rigid ball with radius RM and midpoint m is
given by g =

√
(RM )2− (x1−m1)2− (x2−m2)2 +m3. The elastic moduli are chosen as

in the 2D examples.
We consider two experiments with different starting grids. In the first experiment called

Hertzian contact with hexahedra the starting grid is a uniformly refined mesh of hexahe-
dra (64 elements) and in the second experiment called Hertzian contact with tetrahedra the
starting grid is a uniformly refined mesh of tetrahedra (384 elements). The final grids have
been 10 times adaptively refined. The number of degrees of freedom is 4,871,271 in the ex-
periment Hertzian contact with hexahedra and 6,044,778 in the experiment Hertzian contact
with tetrahedra, respectively.
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(a) Zoom in contact area of final grid

(b) Zoom in contact area of final grid

Fig. 5: Wedge example with quadrilaterals: a)-c). Mesh grading zoomed in the corner caused
by the tip of the wedge; d). Mesh grading around the free boundary zone, zoomed in the right
area of the corner caused by the tip of the wedge

The value of the load P is computed in a preprocess on a very fine grid and amounts to
88.28. The radius of the rigid ball representing the obstacle is RM = 0.75. Thus, the radius
computed by (69) of the contact zone is 0.615142.

In Figure 11 we show a zoom of the actual contact boundary of the adaptively refined
grids of both examples: Hertzian contact with hexahedra and Hertzian contact with tetrahe-
dra. The free boundary is more often refined as the area around full-contact nodes. For both
experiments, Hertzian contact with hexahedra and Hertzian contact with tetrahedra, the
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(c) Zoom in contact area of final grid

(d) Zoom in contact area of final grid

Fig. 5: Wedge example with quadrilaterals: a)-c). Mesh grading zoomed in the corner caused
by the tip of the wedge; d). Mesh grading around the free boundary zone, zoomed in the right
area of the corner caused by the tip of the wedge

rates of convergence of our new residual estimator for contact have been plotted in Figure
12 for the adaptively refined grids as well as for the uniformly refined grids.

The L2-norm of the relative error (71) between sm(x) and σ̂ν(x) plotted against the
number of actual contact nodes is given by the red lines in Figure 13 for both examples. The
blue lines in Figure 13 represent the same quantity but sm(x) is computed on a grid which
is adaptively refined by means of the standard residual error estimators. We have chosen
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(a) Zoom in contact area of final grid

(b) Component u2 of the solution

Fig. 6: Wedge example with triangles: a). Mesh grading; b). Solution profile

logarithmic scales in Figure 13 for the illustration of the decay of the relative errors as a
function of the number of actual contact nodes.

6.2 Relevance of the different error estimator contributions

We consider three different experiments. In each of them the domain of computation is
a unit cube of linear elastic material with the Young’s modulus E = 5 · 102 kN

mm2 and the
Poisson ratio ν = 0.3. One side of the cube is the Dirichlet boundary and the opposite side
is the potential contact boundary so that the body can be pressed against the obstacle by
means of non-zero Dirichlet values in direction of the obstacle. The remaining sides are
Neumann boundary sides. The direction of constraints ν is perpendicular to the potential
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(a) Wedge example with quadrilaterals
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(b) Wedge example with triangles

Fig. 7: Estimator plotted against #Nmk (logarithmic scales)
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(a) Wedge example with quadrilaterals
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(b) Wedge example with triangles

Fig. 8: Approximation of contact stresses
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(a) Wedge example with quadrilaterals
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(b) Wedge example with triangles

Fig. 9: Relative error in L2(ΓC) of discrete contact stresses using new residual-type estima-
tor for contact as defined in (22) (red circles) and standard residual estimator (blue circles)
plotted against #N aC

mk
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(a) Wedge example with quadrilaterals
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(b) Wedge example with triangles

Fig. 10: Relative error of radius of contact zone using new residual-type estimator for contact
as defined in (22) (red circles) and standard residual estimator (blue circles) plotted against
#N aC

mk

contact boundary. The Dirichlet values in direction ν are set to 0.05 or 0.08 depending on
the obstacle. For the other directions we choose zero Dirichlet values.

In the first example of this section, called pyramid example, the obstacle is a pyramid
so that the tip of the pyramid indents the elastic cube, see Figure 14(a). The starting grid
consists primarily of pyramids. Figure 14(b) shows the solution on the adaptively refined
grid around the actual contact boundary. The decay of the error estimator on the adaptively
refined mesh is much faster as on the uniformly refined grid, see Figure 15, thus demon-
strating clearly the merit of the error estimator. The experimental order of convergence of
the error estimator is around 0.42 for the adaptively refined grid, see Figure 15. The value is
greater than 1

d which is known as optimal value. One possible explanation is that we are still
in the pre-asymptotic regime where the approximation of the (d− 1)-dimensional contact
boundary is dominating.

The elements have been refined mostly along the cross where the edges of the pyramid
indent the elastic body and around the free boundary zone, which is given by the curved lines
surrounding the cross. The largest error estimator contributions for the adaptive refinement
are η1 (element residual), η2 (inner jump residual) and η5 (contact stress residual). The
distribution of the local contributions η2

1,p and η2
2,p in refinement step 6 can be seen in

Figure 16(a) and 16(b). From Figure 16 we can deduce that the refinement of the cross
where the edges of the pyramid indent the elastic body is due to η1 (element residual) and
η2 (inner jump residual). The contribution η5 (contact stress residual) is mainly responsible
for the adaptive refinement around the free boundary zone. The distribution of the local
contributions η2

5,p in refinement step 6 is visualized in Figure 16(c).
Next, we consider an example where all additional error estimator contributions η7 (ob-

stacle approximation) and η8 (actual constraint violation) are non-zero. The obstacle looks
like a hat, see e.g., Figure 17(a). We call this experiment hat example and choose starting
grids primarily consisting of pyramids. The final grid and the solution can be seen in a cross-
section in Figure 17(b). The distribution of the local error estimator contributions η2

5,p, η2
6,p,

η2
7,p, and η2

8,p which are related to the contact constraints is visualized in Figure 18 in the
fourth adaptive refinement step. The most important of these error estimator contributions
is η5 (contact stress residual) with a maximal local value of 0.03 for η2

5,p in refinement step
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(a) Hertzian contact with hexahedra

(b) Hertzian contact with tetrahedra

Fig. 11: Zoom in actual contact area of final grid on the contact boundary
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(a) Hertzian contact with hexahedra
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(b) Hertzian contact with tetrahedra

Fig. 12: Estimator plotted against #Nmk (logarithmic scales)
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(a) Hertzian contact with hexahedra
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(b) Hertzian contact with tetrahedra

Fig. 13: Relative error in L2(ΓC) of contact stresses using new residual-type estimator for
contact as defined in (22) (red circles) and standard residual estimator (blue circles) plotted
against #N aC

mk

4. From the definition of η6 (complementarity residual) we know that the local contribu-
tions are restricted to the free boundary zone, see 18(c). Due to the shape of the hat and the
structure of the grid the error estimator contributions η7,p,η8,p are also located near the free
boundary zone, compare Figure 18(d)-(e).

If we choose a sinus wave as obstacle (wave example) the importance of the additional
error estimator contribution η8 (actual constraint violation) gets evident. The starting grid
consists of hexahedra. The grid projected from the contact boundary on the obstacle is shown
for the starting grid and after three refinement steps in Figure 19. Due to the length of the
sinus waves and due to the meshsize of the hexahedra on the starting grid, the grid around
three of the four contact regions is well resolved but not of the fourth one on the left side.
There the local error estimator contributions η2

8,p are non-zero, see Figure 19(c), and provoke
further refinement and hence the detection of contact.



An efficient and reliable residual-type a posteriori error estimator for the Signorini problem 37

(a) Zoom of final grid of contact boundary, also projected on ob-
stacle

(b) Solution profile (−uν ) on final grid around the actual contact
boundary; ranges between −0.05 (blue) and 0.0 (red)

Fig. 14: Pyramid example
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Fig. 15: Pyramid example: Estimator plotted against #Nmk (logarithmic scales)
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(a) η2
1,p (element residual); values are ranging between 0.0

(blue) and 0.07 (red)

(b) η2
2,p(inner jump residual); values are ranging between

10−9 (blue) and 0.02 (red)

(c) η2
5,p (contact stress residual); values are ranging be-

tween 10−9 (blue) and 0.007 (red)

Fig. 16: Pyramid example: Local distribution of selected estimator contributions shown in a
cut through the cube in a). and b). and on the contact boundary in c). after 6 steps of adaptive
refinement
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(a) Final grid of contact boundary projected on obstacle

(b) Solution profile (−u ·ν) over final grid shown in a cut
through the cube

Fig. 17: Hat example

Acknowledgements One of the authors (M.W.) would like to thank the Bonn International Graduate School
for financial support. Moreover this project was also supported by FORD, university research program, “Ad-
vanced numerical algorithms to improve high nonlinear crash simulation with multi-body contacts and fric-
tion” and by the BMBF-project ASIL (advanced solvers integrated library).

References

1. Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Pure Appl. Math. Wiley,
New York (2000)

2. Baiocchi, C.: Estimation d’erreur dans L∞ pour les inèquations à obstacle, in Mathematical Aspects of
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