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10 Primary successions along glacier forelands are perfect examples of the changing climate upon high mountain
ecosystems. Peripheral mountain ranges deserve particular attention, given they are characterised by high numbers of
species and endemism and are considered to be particularly susceptible to climate change. We analysed thermal regime,
soil parameters and plant/arthropod primary succession along a glacier foreland located in such a context, comparing it
with those previously studied in the inner Alps. The overall patterns of the investigated primary succession agree with

15 those of the inner Alps at the same elevation, but stands out for a delayed plant and arthropod colonisation which
promotes the long-lasting persistence of pioneer cold-adapted species. In light of the results obtained, and considering
the glaciological features of peripheral mountain ranges (glaciers persistence at low elevation), this paper asserts the
hypothesis that glacial landforms of these areas may act as warm-stage refugia for pioneer cold-adapted species.

Keywords: primary succession; climate change; refugia; cold-adapted species; carabid beetles; spiders

20 Introduction

After the Little Ice Age (LIA; sixteenth–nineteenth cen-
turies), Alpine glaciers were subjected to a generalised
retreat temporarily interrupted by short periods of
advance. Ecological successions along the terrain freed by

25 glacier retreat (glacier forelands) represent an effect of
changing climate on high mountain ecosystems
(Matthews 1992). Along a chronosequence of glacier
retreat, early-successional species assemblages are pro-
gressively replaced by mid- and late-successional ones

30 (Kaufmann 2001; Raffl et al. 2006). Time since deglacia-
tion is the chief factor driving such processes, although
the role of local ecological conditions at small scale is not
negligible (Burga et al. 2010; Schlegel and Riesen 2012).

Plant succession and soil development along glacier
35 forelands have been analysed in depth since the begin-

ning of the twentieth century and summarised in several
reviews (e.g. Matthews 1992; Miles and Walton 1993).
Within the Alps, such dynamics were investigated in a
wide range of geographical situations (e.g. Burga et al.

40 2010; Caccianiga and Andreis 2004; Lüdi 1955, 1958;
Pirola and Credaro 1993; Raffl et al. 2006). Arthropod
successions were also investigated, even though the stud-
ies are fewer and more recent (e.g. Gereben, Krenn, and
Strodl 2011; Gobbi et al. 2006a, 2010; Kaufmann 2001,

452002; Schlegel and Riesen 2012). However, almost all
the previous works were performed on glacier forelands
located in the inner massifs of the Alpine chain, while
knowledge about peripheral mountain ranges is still poor
due to the scarcity of glaciers.

50Nevertheless, in the context of climate change,
peripheral mountain ranges of any mountain system
deserve particular attention for at least three reasons: (1)
they display plausible future scenarios for the whole
chain and allow to directly test the fate of high mountain

55ecosystems, as the relatively low elevation makes them
particularly susceptible to climate change (Bona et al.
2013; Pauli, Gottfried, and Grabherr 2003); (2) they are
presently characterised by high values of species richness
and endemism, since they were largely ice-free during

60glacial periods and acted as refugia for many plant
(Martini et al. 2012; Schönswetter et al. 2005) and
arthropod species (Latella, Verdari, and Gobbi 2012;
Lohse, Nicholls, and Stone 2011); (3) their spatial
arrangement causes remarkable climatic differences with

65respect to the inner massifs, affecting the altitudinal dis-
tribution of glaciers and their response to climate change
(Scotti, Brardinoni, and Crosta 2014), as well as the ele-
vation of vegetation belts (Caccianiga et al. 2008; Pirola
and Credaro 1977).
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5 The Orobian Alps (maximum elevation: 3050 m
above sea level (a.s.l.)) are a west–east oriented periph-
eral mountain range of the central Alps, south of the
inner and higher Rhaetian Alps (maximum elevation:
4049 m a.s.l.). They are characterised by oceanic climate

10 regime (mean annual precipitation: 1200–2000 mm/y), in
sharp contrast with the continental Rhaetian Alps (mean
annual precipitation: 650–1200 mm/y) (Ceriani and
Carelli 2000). The high winter precipitation causes
Orobian glaciers to be supply-limited rather than con-

15 trolled by ablation, so they are able to persist at lower
elevation and retreat comparatively less than the
Rhaetian ones (Scotti, Brardinoni, and Crosta 2014). As
consequence, high alpine plant species can live at lower
altitudes (Caccianiga, Ravazzi, and Zubiani 1993; Pirola

20 and Credaro 1977), sometimes below the potential tree-
line (Caccianiga et al. 2008). The Orobian Alps were
often indicated as refugia during the glacial periods,
which explains the high number of species and ende-
mism (Lohse, Nicholls, and Stone 2011; Martini et al.

25 2012). However, the lower altitudinal distribution of gla-
ciers and vegetation belts could result in a refugium role
also during warm climatic stages (Gentili et al. 2015).

This paper aims to analyse the primary succession
along a glacier foreland located in such a context, con-

30 sidering both the abiotic (thermal regime and soil param-
eters) and the biotic variables (plant and arthropod
communities). Afterwards, we compared the investigated
colonisation pattern with those previously observed in
the inner Alps. Our hypotheses are: (1) plant and arthro-

35 pod colonisation follows the same pattern along the pri-
mary succession; (2) plant and arthropod colonisation
patterns differ from those of the inner Alps at the same
elevation.

Methods

40 Study area

Trobio glacier was selected as the chief study site, due to
the remarkable documented fluctuations which have
occurred since the LIA. The glacier probably reached its
maximal extension in the early nineteenth century, leav-

45 ing a well-preserved moraine system. The following per-
iod was characterised by a general retreat, interrupted by
four short advances: during the last years of nineteenth
century, the 1920s, 1960s and 1980s. From the LIA to
the 1990s, the glacier lost about 70% of its surface and

50 split into three parts: Eastern, Central and Western Trobio
(Bonardi et al. 2012; Caccianiga, Ravazzi, and Zubiani
1993). Our study was performed along the glacier
foreland of the Western Trobio glacier and on the terrain
outside the LIA moraine, likely ice-free since the Late

55 Glacial (LG) and not involved in the Holocene glacial
dynamic. Currently, the glacier foreland is about 1.2 km
long and ranges from 2550 m a.s.l. (Western Trobio

front) to 2350 m a.s.l. (LIA moraine). The bedrock is
composed by siltstones, sandstones and conglomerates

60(Jadoul et al. 2000).

Sampling design

Six plots were selected, each corresponding to a specific
deglaciation stage, as in Caccianiga, Ravazzi, and
Zubiani (1993):

65
1. Terrain close to the present front of the glacier

(ice-free since <30 years).
2. Terrain within the area marked by the glaciologi-

cal mark of 1985 (c. 30 years).
703. Terrain within the moraine of the 1920s (c.

95 years).
4. Terrain on the roche moutonnée ice-free since the

beginning of the twentieth Century (c. 115 years).
5. Terrain within the LIA moraine, ice-free in the

75early nineteenth century (c. 150 years).
6. Terrain external to the LIA moraine, ice free since

the LG and not involved in Holocene glacial
dynamics (c. 10,000 years).

Two data-loggers (Tinytag TGP-4500) were placed
80between stones, protected from direct sunlight, at the

plots 1 (2500 m a.s.l.) and 5 (2375 m a.s.l.) respectively,
to analyse the thermal regime at ground level along the
glacier foreland over one year (15 August 2013–15
August 2014, recording interval: 60 min). Five sampling

85points for each plot were selected and randomly placed
about 10 m apart from each other. Substrate samples
were taken at the surface for physical and chemical anal-
ysis: a sample of about 1 kg was taken at every plot for
particle size distribution analysis; a sample of about

90200 g was taken at each sampling point to obtain soil
pH (in 1:2.5 soil:water), calcium carbonate content
(Dietrich–Fruhling calcimeter) and organic matter content
(Walkley–Black method). Vegetation surveys were per-
formed on 25 m2 surfaces at each sampling point. The

95percentage cover of rock outcrop, debris, soil, whole
plant cover and of every plant species were estimated
with a resolution of 5%. Arthropods data were collected
through pitfall traps: a plastic cup buried up to the edge
and filled with approximately 20 ml of vinegar and salt

100solution. We placed a pitfall trap at each sampling point,
collected and re-set every 20 days during the snow-free
season (July–October 2013–14). Since several pitfall
traps were destroyed by marmots, we integrated this
method with capture by hand (one-hour long catching

105activity in each plot on 12 September and 2 October
2014). The analysis on arthropod assemblages concerned
carabid beetles (Coleoptera: Carabidae) and spiders
(Arachnida: Araneae), the most abundant ground-dwell-
ing arthropods; these two taxa are well known by the

2 D. TAMPUCCI ET AL.
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5 ecological viewpoint (Brandmayr et al. 2003; Thaler
2003) and are widely used as bioindicators of climate
change at high latitude/elevation ecosystems (e.g. Bråten
et al. 2012; Gobbi, Fontaneto, and De Bernardi 2006b;
Pizzolotto, Gobbi, and Brandmayr 2014).

10 Statistical analysis

We report descriptive statistics (minimum and maximum
values, median and interquartile range) of the distribution
of soil parameters (soil pH, calcium carbonate content,
organic matter content, total plant cover) along the gla-

15 cier foreland. The correlation among such variables was
assessed through Spearman’s monotone correlation coef-
ficient rho. The patterns of correlation were evaluated by
a principal component analysis (PCA) on the ranks of
the variables. Soil parameters entered as active variables;

20 total plant cover was plotted on the plane of the principal
components as a passive variable to evaluate the relation-
ships between soil and vegetation.

Patterns of plant species assemblages along the gla-
cier foreland were described through detrended corre-

25 spondence analysis (DCA) (Hill and Gauch 1980)
carried out on a matrix of plant species cover percent-
ages of 29 sampling points for 55 species (17 species
out of 72 were omitted since occurring in only one sam-
pling point; one sampling point was omitted since no

30 plant species was recorded in it). A cluster analysis was
performed to identify groups of sampling points with
homogeneous vegetation patterns. For determining the
clusters we used only the coordinates of sampling points
on the first canonical axis of the DCA, since it repre-

35 sented the main ordination trend of vegetation. Two clus-
tering algorithms were used: in a first step hierarchical
clustering was performed with Euclidean distance metric
and Ward linkage; then, k-means clustering was used for
‘consolidating’ the clusters previously determined

40 (Husson, Lê, and Pagès, 2010).
The results of cluster analysis were used to study the

relationships between plant assemblages and soil parame-
ters and species richness. For each variable, a generalised
linear regression model (GLM) was fitted including the

45 variable as response and the cluster as explicative cate-
gorical variable. The Gaussian distribution was assumed
for the response in each case except for species richness,
for which the Poisson distribution was the proper one.
To achieve a satisfactory approximation to the Gaussian

50 distribution, the arcsin transformation f ðxÞ ¼ arcsinð ffiffiffi

x
p Þ

was applied to total plant cover and the natural logarithm
transformation to organic matter content. In order to
account for the potential correlation of observations
within each plot, the GLM models were fitted by the

55 generalising estimating equations (GEE) method (Zeger,
Liang, and Albert 1988). For each model, an exchange-
able working covariance structure was specified, in

which observations within the same plot were assumed
to be correlated. The results were reported in terms of:

60(1) global test (chi-square) evaluating the null hypothesis
of no overall difference among the clusters; (2) multiple
comparison between means for all the possible pairs of
clusters (Wald test); the p-values were adjusted using the
Bonferroni correction.

65Concerning the arthropod species, since a quantita-
tive sampling method (pitfall traps) and a qualitative one
(capture by hand) were integrated, we chose to base the
analysis only on the presence/absence species matrix (6
plots for 20 species). Before performing the analysis we

70tested the accuracy of our sampling design and methods
estimating the theoretical total species richness according
to an index based on observed data: the incidence-based
coverage estimator (ICE) (Colwell et al. 2012). ICE esti-
mates the overall number of species that may live in the

75study area, on the basis of the observed number of spe-
cies and the frequency of their occurrence in the plots
(Hortal, Borges, and Gaspar 2006). Canonical correspon-
dence analysis (CCA) (Ter Braak 1986) was performed
to describe the patterns of presence/absence of species

80and their relationships with the soil parameters. As the
ratio between number of soil parameters in CCA and the
number of samples should be kept low to avoid potential
biases of the results, only pH and total plant cover were
used. However, this restriction did not severely affect the

85results, since pH is highly correlated with the soil
parameters not included in the analysis (calcium carbon-
ate content and organic matter content).

Following Vater (2012) and Vater and Matthews
(2013, 2015), plant and arthropod colonisation patterns

90along the chronosequence were analysed calculating
three community parameters for each deglaciation stage:
(1) total species richness (number of species at plot
level); (2) species first appearances (number of species
appearing for the first time along the succession, includ-

95ing first-and-last appearances); (3) species last appear-
ances (number of species appearing for the last time
along the succession, including first-and-last appear-
ances). Herein, we define ‘cold-adapted species’ all the
species strictly linked to alpine and nival belts, thus char-

100acterised by a limited range of tolerance in altitudinal
distribution. Concerning plants, we consider like that all
the species with temperature index = 1 (alpine and nival)
and temperature range of variation = I (temperature index
variation at most ±1) in Landolt et al. (2010). Concern-

105ing arthropods, we based on the available descriptive
literature about the ecological requirement of each identi-
fied taxon (Casale, Sturani, and Vigna Taglianti 1982;
Isaia et al. 2007). All analyses except ICE were per-
formed with the R software (R Core Team 2014), with

110the packages vcd, vegan, FactoMineR, nnet and geepack
added. ICE was calculated with the EstimateS 9.1.0 soft-
ware (Colwell et al. 2012).
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Comparative analysis

The pattern of total species richness, species first appear-
5 ances and species last appearance along the Trobio gla-

cier foreland was compared with those of three glacier
forelands of the Rhaetian Alps for which both plant and
arthropod data were available: (1) Morteratsch glacier,
Swiss Alps, below the potential treeline (1900–2100 m

10 a.s.l.) (Burga 1999; Schlegel and Riesen 2012); (2)
Rotmoos glacier, Austrian Alps, near the potential tree-
line (2280–2450 m a.s.l.) (Kaufmann 2001; Marcante,
Schwienbacher, and Erschbamer 2009); (3) Cedec
glacier, Italian Alps, above the potential treeline

15 (2694–2726 m a.s.l.) (Gobbi et al. 2010). Four common
deglaciation stages were recognised: (1) pioneer stages
(c. 1–30 years since deglaciation); (2) early-successional
stages (c. 31–100 years since deglaciation); (3) mid-suc-
cessional stages (c. 101–150 years since deglaciation);

20 (4) late-successional stages (c. 10,000 years old, ice-free
since the LG). The comparison concerns plants and cara-
bid beetles, while spiders were omitted because of data
unavailability for some glacier forelands. In the area of
Morteratsch glacier, five vegetation surveys of 400 m2

25 were performed by one of the Authors (DT) to integrate
the missing data about the vegetation of the terrain ice
free since the LG (12 September 2015).

Results

Primary succession along the glacier foreland

30 The glacier foreland was characterised by a gradient of
increasing mean annual temperature (from 0.5 to 1.3 °C)
and decreasing snow cover persistence (from 225 to
160 days) from the glacier front to the LIA moraine
(supplementary Figure 1). The difference in altitude

35 between the latter allows for an estimation of a yearly
altitudinal temperature lapse rate of −0.69 °C (100 m)−1

on the investigated landform. All soil parameters were
correlated to each other (supplementary Table 1s) and
varied along the glacier foreland following a more or

40 less clear trend (supplementary Figure 2), except grain
size distribution (supplementary Figure 3). The main soil
gradient occurring from the glacier front to the terrain
ice-free since the LG consists of a progressive decrease
of pH and calcium carbonate content and a correspond-

45 ing increase of organic matter content and total plant
cover (supplementary Figure 4).

Seventy-two plant species were recorded (Table 1),
among which the most frequent were Poa alpina and
Silene acaulis (occurring in 83% of the sampling points),

50 followed by Saxifraga oppositifolia (70%), Androsace
alpina, Artemisia genipi, Festuca quadriflora and Oxyria
digyna (50%). Twenty-nine of the identified plant species
were ‘cold-adapted’. Twenty arthropod species (6 carabid
beetles and 14 spiders) were recorded (Table 1), among

55which the most frequent were the carabid Carabus
castanopterus and the spiders Coelotes pickardi tirolensis
and Entelecara media (occurring in 83% of the plots),
followed by the carabid Pterostichus lombardus and the
spiders Diplocephalus helleri, Drassodex heeri and

60Mughiphantes pulcher (67%). All the identified arthro-
pod species were ‘cold-adapted’, except Carabus cas-
tanopterus (the carabid beetle is able to descend below
the potential treeline) (Casale, Sturani, and Vigna
Taglianti 1982) and Agyneta rurestris (the high-dispersal

65spider is distributed on a wide altitudinal range) (Isaia
et al. 2007).

The primary succession along the glacier foreland
developed in three main stages, each characterised by
distinct vegetation and soil features (supplementary

70Figure 5 and Table 2). The first stage lasted about
95 years, corresponding to pioneer and early-successional
stages. It showed basic substrate (average pH 7.82) with
relatively high calcium carbonate content (2.64%) and
low organic matter content (1.57 g/kg). Total plant cover

75was highly variable but generally scarce (27.3%), with
few pioneer and cold-adapted species (e.g. Androsace
alpina and Saxifraga oppositifolia). The second stage
lasted 90 years at least (we are able to observe the suc-
cession only since LIA), corresponding to mid-succes-

80sional stages. It was characterised by neutral soil (pH
6.96) with an intermediate content of calcium carbonate
(0.55%) and organic matter (13.32 g/kg). Total plant
cover reached a mean value of 42%) and included
mainly graminoids (e.g. Luzula alpino-pilosa and Poa

85alpina) and cushion species (e.g. Saxifraga bryoides and
Silene acaulis). The last stage occurred on terrain ice
free since LG and not involved in Holocene glacial
dynamics, thus corresponding to late-successional stages.
It displays acid soil reaction (pH 4.82), very low calcium

90carbonate content (0.28%) and high organic matter con-
tent (118.30 g/kg). Total plant cover reached the highest
values (60.9%) including typical species of acidophilous
alpine grasslands (e.g. Carex curvula and Carex semper-
virens). Plant species richness (Figure 1(a)) regularly

95increased from pioneer stages to the terrain ice-free since
the beginning of the twentieth century, stabilised in the
terrain ice-free since the LIA and decreased in those ice-
free since the LG. The number of species appearing for
the first time was quite uniform along the whole

100chronosequence (c. 9 first appearances for each plot on
average), while the number of species occurring for the
last time increased from early-successional stages.

Two main arthropod assemblages were recognisable
(supplementary Figure 6): a pioneer one (including

105species like Oreonebria soror tresignore and Agyneta
rurestris) which gradually disappears over the succession
and a late-successional one (including species like
Oreonebria lombarda and Gnaphosa petrobia) which
simultaneously increases. Early- and mid-successional
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5 stages lacked a specific arthropod community and were
rather characterised by the overlapping of species
belonging to the pioneer and late-successional assem-
blages, as well as by the presence of ubiquitous species
(e.g. Carabus castanopterus and Coelotes pickardi

10 tirolensis). Arthropod species richness (Figure 1(b)) gen-
erally increased along the chronosequence, but was char-
acterised by two distinct peaks: a first one in pioneer
stages and a second in late-successional ones. First and
last species appearances followed a similar trend, being

15 both characterised by a severe drop in mid- and early-
successional stages, respectively.

Comparison with the glacier forelands of inner
mountain ranges

The colonisation patterns of Trobio glacier foreland
20 showed important differences with respect to that of the

inner Alpine ones, both for plant and arthropod species.
The pattern of plant species richness (Figure 2(a)) on

Trobio chronosequence was characterised by a later
maximum (mid-successional stages) with respect to

25 Morteratsch and Rotmoos glaciers (early-successional
stages), while Cedec showed a monotonic increase from
early-successional stages. Trobio glacier foreland was
characterised by a rather uniform number of species first
appearances throughout the primary succession (Figure

302(b)), while species entrances on inner Alpine chronose-
quences reached the maximum in different stages
depending on the glacier elevation: pioneer on Mor-
teatsch, early-successional on Rotmoos and late-succes-
sional on Cedec. Species last appearances (Figure 2(c))

35showed an overall similarity among the investigated gla-
cier forelands, with the maximum number of last appear-
ances in mid-successional stages; however, on
Morteratsch and Rotmoos glaciers species loss occurred
at the beginning of the succession (e.g. some species

40showed their first-and-last appearance in the pioneer
stages), while on Cedec and Trobio no species disap-
peared in pioneer stages.

Two main trends of arthropod species richness were
recognisable (Figure 2(d)): the one of Morteratsch and

45Rotmoos glaciers was characterised by an early maxi-
mum and a later decrease, while those of Cedec and Tro-
bio reached the maximum in mid-successional stages.
Species first appearances (Figure 2(e)) reached its maxi-
mum right as the beginning of the succession on Morter-

50atsch and Rotmoos glaciers and in mid-successional
stages on Cedec glacier, while the trend was rather uni-
form along the Trobio chronosequence. Species last
appearances (Figure 2(f)) were quite similar through the
investigated glacier forelands being always characterised

55by a later maximum, but the trend appeared again more
uniform along Trobio glacier foreland.

Figure 1AQ12

B I O D I V E R S I T Y 5

TBID 1117990 QA:
24 November 2015 Initial

Authorquery:
Inserted Text
Please supply a caption for Figure•1 and 2.

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
B

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
A

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
B

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
C

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
D

Deleted text:
Inserted Text
z

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
E

Deleted text:
Inserted Text
.

Deleted text:
Inserted Text
F

Deleted text:
Inserted Text
z



Discussion

Primary succession along the glacier foreland

The overall development and the environmental drivers
5 of primary succession generally agree with those previ-

ously observed in the inner Alps, since plant and arthro-
pod species distribution depends on time since
deglaciation and its related soil parameters. Plant succes-
sion develops in three distinct stages: a first one on

10 recently deglaciated terrain, a mid-successional one on
the terrain ice free between 100 years ago and LIA and a
late-successional one on the terrain ice free since LG, in
agreement with Caccianiga and Andreis (2004). Arthro-
pod colonisation seems to follow a more gradual pattern

15 where two main arthropod assemblages (a pioneer and a
late-successional ones) seamlessly overlap in the interme-
diate stages, in agreement with Kaufmann (2001). There-
fore, plant and arthropod species follow different
colonisation patterns, even if species richness generally

20 increases for both along the succession. Our result con-
trast with those of Gobbi et al. (2010), where plant and
arthropod species richness vary in steps along the
chronosequence. Our hypothesis (1) is thus not supported
by our data.

25Comparison with the glacier forelands of inner
mountain ranges

Despite the overall affinities with the patterns previously
observed in the inner Alps, the investigated primary suc-
cession stands out for noteworthy differences in temporal

30patterns. The colonisation of Rhaetian glacier forelands
differs depending on the elevation: according to Vater
and Matthews (2013), a typical ‘replacement change
model’ prevails below the treeline (Morteratsch glacier),
an ‘addition and persistence model’ prevails above the

35treeline (Cedec glacier) and an intermediate pattern char-
acterised the glacier foreland near the treeline (Rotmoos
glacier). Trobio glacier stands at an elevation similar to
that of Rotmoos, but lies above the potential treeline,
which is locally depressed as a consequence of the ocea-

40nic climate (Caccianiga, Ravazzi, and Zubiani 1993;
Caccianiga et al. 2008). Coherently, its colonisation pat-
tern shows an intermediate trend between those of Rot-
moos and the higher Cedec glacier. In particular, from
pioneer to mid-successional stages, the trends match bet-

45ter with that of Cedec glacier for three main features:
late species richness maximum, constant first appear-
ances along the chronosequence, few first-and-last

Figure 2
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appearances in pioneer stages. On the other hand, with
the transition from mid- to late-successional stages, the

5 trend of Trobio detaches from that of Cedec to become
more similar to that of the lower glacier forelands. This
phenomenon is more evident for plant than for arthropod
species, as for the latter the trend is similar to that of
Cedec for the whole chronosequence. More evidence of

10 the ‘addition and persistence model’ seems thus to occur
on Trobio glacier foreland than on the inner Alpine ones
at the same elevation. Being the climate the main envi-
ronmental difference between Orobian and Rhaetian
Alps, we suppose that oceanic regime may affect the

15 colonisation patterns of ice free terrain in the same way
elevation does within a climatically homogeneous area.
Our hypothesis (2) is thus supported by our data.

Slower plant colonisation on the Orobian Alps was
previously observed and attributed to the more severe

20 environmental condition imposed by the oceanic climate
regime (Caccianiga and Andreis 2004; Caccianiga,
Ravazzi, and Zubiani 1993), as long-lasting snow cover
and long-lasting temperatures around zero occurring in
spring (Caccianiga et al. 2008). Such phenomenon pro-

25 motes the long-lasting persistence of species that other-
wise are considered typically as ‘pioneer’. For example,
cold-adapted plants generally restricted to pioneer stages
(e.g. Androsace alpina and Saxifraga oppositifolia)
(Caccianiga and Andreis 2004) in our study area are able

30 to persist even in the terrain ice-free since the LIA. In a
similar way, cold-adapted carabid beetles that usually
live near the glacier front (e.g. genus Oreonebria)
(Gobbi et al. 2007; Kaufmann 2001) occur here along
the whole chronosequence.

35 Taxonomical and biogeographical overview

Besides the colonisation processes, an important differ-
ence between peripheral and inner mountain ranges lies
in the taxonomical and biogeographical features. The
investigated flora counts some noteworthy peculiarities,

40 such as the presence of an endemic species (Primula
daonensis) and the occurrence of Western-Alpine (e.g.
Achillea nana and Primula latifolia) as well as Eastern-
Alpine elements (e.g. Potentilla nitida and Senecio
carniolicus). However, the most interesting data comes

45 from the arthropod species.
All the collected carabid beetles (except Bembidion

rhaeticum) are steno-endemic species of the Orobian
Alps. Particularly interesting is the finding of Oreonebria
soror tresignore, recently described by Szallies and

50 Huber (2014) as endemic subspecies of Pizzo Tre
Signori (western Orobian Alps). Our findings in the east-
ern chain indicates that this subspecies should be now
considered as endemic of the whole Orobian range. This
data furtherly clarified the biogeographical arrangement

55 of Oreonebria soror in the central-eastern Italian Alps,

with two distinct subspecies in two different geographi-
cal contexts: Oreonebria soror soror as endemic sub-
species of the Adamello-Presanella Massif (Szallies and
Huber 2014) and Oreonebria soror tresignore as ende-

60mic subspecies of the Orobian Alps. On the other hand,
no endemic spiders were found: the most circumscribed
distribution was that of Drassodex heeri and Coelotes
pickardi tirolensis, both occurring on the southern-central
Alps. Carabid beetles are thus supposed to be more sen-

65sitive markers of biogeographical events than spiders,
probably as a consequence of different dispersal abilities.

Peripheral mountain ranges as warm-stage refugia?

Cold-adapted species are supposed to be the first threat-
ened by climate change due to the progressive reduction

70of their habitat with temperature increase and the upshift
of altitudinal belts (Dullinger et al. 2012). However,
recent works highlighted the importance of warm-stage
refugia: sites that locally preserve suitable condition in
spite of large scale climate change (Birks and Willis

752008; Gentili et al. 2015; Stewart et al. 2010). Glacial
and periglacial landforms have been recently proposed as
potential warm-stage refugia for cold-adapted species,
due to their microclimate features and thermal inertia
(Caccianiga et al. 2011; Gentili et al. 2015; Gobbi et al.

802014; Gobbi, Isaia, and De Bernardi 2011; Millar et al.
2013).

Cold-adapted species do not necessarily decrease
along the primary succession of Trobio glacier foreland;
some cold-adapted species are in fact late-successional

85ones (e.g. Carex curvula and Salix herbacea for plants
or Oreonebria lombarda and Gnaphosa petrobia for
arthropods) and are thus not threatened by glacier retreat,
which on the contrary causes an extension of suitable
surfaces to colonise. On the other hand, pioneer but not

90strictly cold-adapted species (e.g. Arabis alpina, Linaria
alpina or Agyneta rurestris) may be locally affected by
glacier retreat as the ongoing colonisation induces a
competition with late-successional species; however,
such species are likely able to find available habitat on a

95wide altitudinal range, as they are not forced to up-shift
with temperature increase, but can down-shift or persist
at the current elevation in other habitats. Therefore, the
most threatened species are those characterised by the
conjunction of cold-adapted and pioneer strategies (e.g.

100Androsace alpina, Saxifraga oppositifolia or Oreonebria
soror tresignore). According to Erschbamer et al. (2007),
the potential loss of cold-adapted species with climate
change seems to be induced by temperature increase, but
mainly mediated by interspecific competition. Since

105cold-adapted species are homogeneously distributed
along the glacier foreland and the thermal gradient
appears substantially coherent with the yearly altitudinal
temperature lapse rate at regional scale (−0.58 °C
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(100 m)−1 in Rolland 2003), our results suggest a
5 marginal role of glacier microclimate in enhancing cold-

adapted species distribution. On the other hand, a more
important role could be played by the outstanding long-
lasting snow cover near the glacier front.

The glacier persistence at lower elevation and the
10 slower colonisation of ice free terrains could result in an

advantage for pioneer cold-adapted species, providing
them long-lasting suitable conditions in spite of the cli-
mate change at large scale. Therefore, given the climate
requirements for glacier formation at regional scale, we

15 suppose that peripheral mountain ranges of any mountain
system may offer more survival chance for pioneer cold-
adapted species than inner massifs at the same elevation.
We thus advance the hypothesis that glacial landforms of
peripheral mountain ranges (e.g. glacier forelands and

20 recent moraines) could act as warm-stage refugia. Our
suggestion is to consider the potential role of glacial
landforms as plausible alternative hypothesis to explain
part of the present biogeographical arrangement of these
chains. More data should be collected in other geograph-

25 ical and climatic context to test our hypothesis.
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