
1 

On the molecular basis of the activity of the antimalarial drug 

chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond 

with free heme in solution  

Giovanni Macetti,a Silvia Rizzato,a Fabio Beghi,a Lucia Silvestrinib and Leonardo Lo Presti*a,c,d    

  

a Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, I-20133 Milano (Italy).  

b University of Natural Resources and Life Sciences (BOKU), Wien, Department for Agrobiotechnology, 

Institute of Environmental Biotechnology and Department for Applied Genetics and Cell Biology,  

Konrad Lorenz Strasse 20, A-3430 Tulln/Donau (Austria).  

c CNR-ISTM, Via Golgi 19, I-20133 Milano (Italy).  

d Centre for Materials Crystallography, Århus University, Langelandsgade 140, DK-8000 Århus, 

(Denmark).  

* To whom correspondence should be addressed. E-mail: leonardo.lopresti@unimi.it, Phone +39-02-
50314252 Fax: +39-02-50314300.  
 

 

Keywords: Antimalarial drugs, chloroquine, hematin, EXAFS, DFT calculations 



2 

ABSTRACT 

4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step 

of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π· · ·π 

interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the 

heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in 

acidic solutions of hematin at room temperature was investigated by EXAFS spectroscopy in the 4.0-5.5 

pH range, both in presence and in absence of the antimalarial drug chloroquine. EXAFS results were 

complemented by DFT simulations in polarizable continuum media (PCM) to model solvent effects. We 

found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center 

might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted 

hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, 

whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block 

the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization 

of the malaria pigment without permanently hampering the catalytic activity of the redox centre. These 

findings are discussed at the light of possible implications on the engineering of drugs able to thwart the 

adaptability of the malaria parasite against classical aminoquinoline-based therapies. 
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GRAPHICAL ABSTRACT. Difference between chloroquine-containing and chloroquine-free EXAFS 

spectra reveal the existence of a direct Fe–N coordinative bond with heme. DFT simulations show that 

this complex is stable in the acidic vacuolar environment and unstable in the alkaline cytosol, where 

uncomplexed heme increases the cellular oxidative stress of the malaria parasite. 
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1. INTRODUCTION 

Malaria, one of the topmost worldwide parasitic diseases, is caused by protozoa of the genus 

Plasmodium, which infect human erythrocytes via the transmission through the Anopheles 

mosquitoes and digest host hemoglobin. Despite ongoing efforts to counteract the contagion, the 

emerging and spreading of parasite (cross-)resistance [1] is becoming a dramatically serious 

problem. [2] In particular, P. falciparum, the most virulent malaria parasite, evolved resistance 

against chloroquine (CQ, Scheme I(a)), [3–5] an important aminoquinoline-class drug, [6] while 

other antiplasmodials are becoming less and less effective. [7–9] The urgency of designing new 

drugs able to thwart the parasite adaptability is growing up due to the need of limiting the 

infection. Additionally, in the next decades, the climate changes could provoke fresh outbreaks of 

the disease in Western countries and new malaria parasite adaptation processes cannot be 

excluded. [10] 

 

Scheme I. Chloroquine (a), hematin (b) and heme dimer (c) chemical structures 

A possible weakness in the Plasmodium metabolic pathways resides in the fact that hemoglobin 

digestion releases free heme (Fe(II)-protoporphyrin IX, Fe(II)-PPIX). In the acidic (pH ≈ 4.5–5.0) 

digestive vacuole (DV) of the parasite, Fe-PPIX is present as monomeric hematin (Scheme I(b)), 

with partly dissociated propionic groups and oxidized Fe(III) active centres. This compound can 

be released into cytosol, where it takes part in cyclic Fenton-type redox reactions [11] generating 

reactive oxygen species (ROS) and increasing the cellular oxidative stress. [12,13] To detoxify 

free heme, the parasite promotes its dimerization through iron-carboxylate coordinative bonds 
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(Scheme I(c)) directly in the DV. [14,15] Dimeric heme then forms an insoluble solid known as 

β-hematin or hemozoin, which consists of triclinic (P1) pale yellow crystals [16] that give a 

characteristic colour to the skin of malaria-infected people. It has been suggested that lipid 

nanodroplets dispersed in the DV might play a key role in the hemozoin self-assembly, [17,18] a 

process catalysed by a specific histidine-rich polymerase. [19,20]  

Among other formerly proposed antiplasmodial mechanisms, [21,22] it is nowadays widely 

accepted that 4-aminoquinoline (AQ) drugs, such as CQ (Scheme I(a)), interfere with the parasite 

detoxification pathway. [23] A recent study of crystallization kinetics of β-hematin in presence of 

CQ argued [24] that the drug should act by binding at the fastest-growing crystal faces of 

hemozoin. Else, it is believed that CQ could hamper the heme dimerization in solution, even 

though there is no general consensus on the structure of the heme:CQ complex. [25–27] UV and 

UV-vis spectroscopy results on heme/CQ solutions are usually interpreted [28,29] by assuming 

that the rigid fused aromatic structure in the drug quinoline moiety interacts with the 

protoporphyrin scaffold through stacking π⋅⋅⋅π interactions. This structural model was 

corroborated by semiempirical AM1 [27] and PM3 [30] simulations. Also EXAFS [31,32] and 

NMR [25] experiments, although having been performed respectively on mesohematin anhydride 

solutions and in alkaline conditions, agree with this interaction geometry. On the contrary, high-

grade DFT simulations suggest that either a water molecule or the OH– group in hematin (Scheme 

I(b)) might act as a bridge between the iron centre and the secondary amine of CQ. [33] Direct 

Fe-N interactions were even proposed on the basis of solid state 13C and 15N NMR outcomes. [26] 

Attempts to produce crystalline heme:CQ adducts [24] were only partly successful, as up to now 

they led to the crystallization of a new β-hematin DMSO-solvated phase. On the contrary, adducts 

of Fe(III)-PPIX with other antimalarials (halofantrine,[34] quinine and quinidine [35]) have been 

successfully crystallized and their solid-state structures reported. Interestingly, in these structures 

Fe is always directly coordinated with a donor (O, N) atom of the drug. A very recent quantum 
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mechanical study of porphine and Fe-PPIX complexes accordingly predicted a direct Fe-N 

interaction when unsubstituted quinoline was considered as a ligand. [36] 

Till now, no unequivocal evidence exists that secure the most probable heme:CQ interaction 

geometry. On the other hand, a complete understanding of this recognition process at the 

molecular and sub-molecular level is desirable to elucidate what kind of intermolecular 

interactions determine the antiplasmodial ability of CQ. To shed light on this issue, we report on a 

combined experimental and theoretical study of the hematin/CQ system in conditions as close as 

possible to the chemical environment of the Plasmodium DV. To elucidate the role of 

nanodispersed lipidic phases, samples including a tensioactive (sodium dodecyl sulphate, SDS) at 

its critical micellar concentration (CMC) were also compared with analogue tensioactive-free 

specimens. High-grade DFT simulation were crucial to interpret the very weak trends found by 

EXAFS experiments. This work represents the first direct and systematic investigation of the 

drug:substrate recognition process in the heme:CQ system, performed at a pH range comparable 

to the pH of the Plasmodium digestive vacuole. The most striking results of the present 

contribution are discussed in the perspective of engineering novel CQ-analogue drugs 

characterised by an improved specificity and effectiveness against malaria desease. 

2. METHODS 

2.1 Preparation of the solutions.  

Solid powders of reagent-grade hematin porcine, CQ diphosphate salt and sodium dodecyl sulfate 

(SDS) were purchased by Sigma-Aldrich. The solutions were prepared by dissolving hematin in 

dimethylsulfoxyde (DMSO, reagent grade, Aldrich) and mixing 1:1 with an aqueous citrate buffer 

(final concentration: 0.1 M) to set the desired pH (4.0, 4.5, 5.0 and 5.5). The employment of a 

fully aqueous environment was not suitable, as hematin porcine was poorly soluble in water at the 

selected operative concentrations (see infra). For each pH value, three solutions were prepared, 
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consisting of hematin (H), hematin plus CQ (HC), and hematin plus CQ and SDS (HCS). 

Individual samples are labelled as X(pH), with X=H, HC or HCS. Where not otherwise specified, 

nominal concentration of hematin and CQ were set at 5 and 1 mM, respectively. More 

concentrated CQ solutions were also tested, but no significant differences were evident neither in 

the signal shape, nor in the fitting results (see Section S1 in the Supplementary Information, SI). 

The drug concentration is comparable with that reported in vivo within the DV of Plasmodium 

based on the estimated CQ vacuolar accumulation ratio. [27] In SDS-containing solutions, the 

critical micellar concentration of the tensioactive (8 mM) was set to have lipidic micelle 

coexisting with other reactants.  

 

2.2 EXAFS experiments.  

Extended X-ray Absorption Fine Structure (EXAFS) spectra across the Fe Kα absorption edge 

(7.11 keV) were carried out at the BM26A (DUBBLE) station of the ESRF facility in Grenoble 

(FR). All the spectra were recorded at room temperature in the 6.9-7.7 keV energy range, 

allowing a practical maximum resolution of 10.0 Å–1 in k space. Glass capillaries (∅ 1.5 – 2.0 

mm, ≈ 3/4 filled) were employed to host solutions. After some preliminary tests in transmission 

geometry, fluorescence mode was selected to maximize the signal intensity. See Section S1 SI for 

details concerning data collection (S1.1), and fitting (S1.2 – S1.5). 

Great care was taken to avoid degradation of the solutions. All the specimens were either stored in 

the dark at T ≤ 4°C prior being sent to the experimental station, or measured as freshly prepared. 

To limit radiation damage (Section S1.1.2 SI), each recorded spectrum was obtained upon 

averaging a total of 6 scans, obtained from 2-3 repeated scans on a sequence of 2-3 capillaries 

filled with the same solution.  

The Horae suite of programs, [37] based on the IFEFFIT library, [38] was used throughout data 

processing and fitting. The E0 edge values were always set at the inflection point of the Fe Kα 
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transition. DFT-optimized structures of hematin, Fe(III)-protoporphyrin dimer and a sensible 

Fe(III)-protoporphyrin:CQ adduct (see Section 3.2 below and Section S1.3 SI) were employed as 

starting models to interpret the fine structure functions, whereas the available crystallographic 

data [16] were used to model the possible presence of hemozoin crystals. Hereinafter, we will 

refer to these structural models by Roman numerals as hematin monomer (i), heme dimer (ii), 

hemozoin (iii) and FePPIX:CQ adduct (iv). They were employed to perform both shell-by-shell 

and multi-shell fittings. Details on least-squares refinements can be found in Sections 4.2.1 and 

4.2.2 below, whereas complete lists of statistical agreement factors and refined parameter values 

are available to the interested reader in Section S1.3 SI and Tables S1-S15 SI.  

  

2.3 UV-Vis experiments.  

The effect of CQ on the hematin-containing solutions was checked through UV-Vis spectroscopy. 

Measurements were performed by using a SPECTRO LGS53 UV-Vis spectrophotometer in the 

wavelength range of 300–450 nm. The concentrations of hematin and CQ drug were both 12 µM.  

 

2.4 Quantum mechanical DFT simulations.  

Quantum mechanical DFT calculations were performed by the Gaussian09 suite of programs [39] 

with the hybrid (U)B3LYP [40–43] functional and the triple-zeta 6–311G(p,d) basis set. [44] 

Calculations were performed in polarizable continuum media (PCM) [45] to take into account 

solvent effects at a reasonable computational cost. Geometry relaxations were performed both in 

water and in n-octanol as a model of an apolar environment. According with EPR and Mössbauer 

evidence, the iron centre was modelled in its oxidized form (Fe(III)) with spin multiplicity S = 

5/2. [46,47] Main numerical results are summarized in Section S2 SI. 

Fe(III)-protoporphyrin adducts with various chemical species, such as water, OH– or  chloroquine 

as axial ligands, were considered (see Section 4.3 below). To ensure that true minima on the 
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potential energy surface (PES) were reached, a full analysis of the normal vibration modes of each 

refined structure was carried out. Vibrational partition functions were also computed to provide 

thermochemical estimates [48] for ligand exchange and acid-base reactions on the iron centre. 

3. RESULTS  

Hereinafter, relevant chemical compounds are named by highlighting (i) the axial ligand in the 

iron first coordination shell, if present, and/or (ii) the protonation degree of the main acid/basic 

centres. For example, neutral hematin is indicated as FePPIX(OH)H2, while FEPPIX(OH)H– and  

FePPIX(OH)2– mean that either or both the propionic groups have lost their protons. Similarly, 

FePPIX(H2O)H2
+ represents the protonated hematin molecule, with a water molecule coordinated 

on the Fe centre. In this notation, neutral chloroquine is written as CQ, while CQH+ and CQH2
2+ 

are the corresponding single and double protonated forms.  

 

3.1 UV-vis results 

The recorded UV spectra (Figure 1) are identical to those reported in a same previous paper [49] 

carried out on 40% DMSO buffered aqueous solution of hematin and CQ in different 

stoichiometric ratios. In the presence of the drug we detected the same decrease of the Soret band 

of hematin at λ ≈ 400 nm. According with Literature, [28,30,49Errore. Il segnalibro non è definito.] such an 

effect was attributed to the interference between the CQ drug and the heme monomer-dimer 

system, and in particular to the formation of some kind of donor-acceptor FePPIX-

aminoquinoline supramolecular complex. 
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FIGURE 1. Colour online. Left: UV–vis spectra at pH = 5.0 of a 1:1 DMSO/aqueous citrate 
buffer solution (0.02 M) of CQ (red), hematin (black) and the binary mixture CQ/hematin (light 
blue). Right: Comparison of the spectrum of the binary mixture CQ/hematin (light blue) with the 
point-by-point sum signal computed from CQ and hematin spectra on the left (black, dashed).  
 

3.2 EXAFS analysis.  

Figure 2 shows the EXAFS fine structure functions, χ(k), and their corresponding Fourier 

transforms χ(R), for the pH = 5.0 series, taken as a representative case for the conditions of the 

DV environment. Analogous pictures for the other samples in the 4.0-5.5 pH range, including 

least-squares fits against the applied structural models, can be found in Section S1 SI (Figures S5-

S12 SI), together with least-squares agreement factors (Tables S2-S4 SI) and final refined 

parameters (Tables S5–S15 SI).  
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FIGURE 2. Colour online. k2-scaled EXAFS fine structure functions χ(k) (left) and their Fourier 
transforms χ(R) (right) for the H(5.0), HC(5.0) and HCS(5.0) samples. Measured data are shown 
as blue dots, connected through broken lines as guides for the eye. The smoothed curves are 
functions employed to reproduce the experimental signals, as computed from the real-space fitting 
of different structural models against each dataset (blue: monomeric hematin, (i); red: heme 
dimer, (ii); green: crystalline hemozoin, (iii)). 
 

At a first glance, the experimental χ(k) curves in Figure 2 look quite similar. The same holds true 

also for H, HC and HCS sample series at other pH’s (Figures S5-S8 SI). Real-space Fourier 

transforms invariably show three main peaks at R ≈ 2.1, 3.0 and 4.2 Å, plus minor oscillations 

hardly distinguishable from the Fourier noise due to k-space filtering. Accordingly, the 

experimental data might be fitted quite equally well by structural models based on monomeric 

hematin (i), dimeric heme (ii) and hemozoin crystals (iii). For example, the monomeric hematin 

model (i) gives R agreement factor / reduced χ2 parameters as low as 0.017/32.6, 0.028/13.5 and 

0.021/26.3 for the H(5.0), HC(5.0) and HCS(5.0) samples. To the sake of comparison, the same 

values become 0.016/28.0, 0.037/17.9 and 0.023/30.3 when computed on the basis of the dimeric 

heme model (ii). Crystalline hemozoin (iii) provides, on average, slightly worse statistics (Tables 

S2-S4 SI).  

Neither obvious trends nor clear hints on what structural model(s) should be preferred to interpret 

the experimental data are easily recognizable (Tables S2-S4 SI). This is due to the fact that the 

local environment of the iron ion, which is fixed by the rigid protoporphyrin scaffold, necessarily 

dominates the EXAFS signals. Therefore, the main features of the iron coordination geometry 

must be conserved in all the examined samples. This implies that the recorded spectra are always 

similar to each other, and the effect of the drug should manifest in more subtle features 

throughout the dominating contributions of PPIX moiety. Besides, the picture is even more 

complicated by the fact that different iron complexes (monomeric hematin, dimeric heme, 

hemozoin and possible heme:CQ adducts) might coexist in solution. Nevertheless, some 

systematic trends are recognizable when the chemical composition of the solutions is varied.  
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Actually, most CQ-containing HC and HCS specimens have lower E0 edge energies than the CQ-

free ones (H) at a given pH (Table 1). Average <E0> values for the H, HC and HCS solutions 

throughout the 4.0-5.5 pH range turn out to be as high as 7125.6(5) eV, 7123.9(4) eV and 

7124.3(3) eV respectively.  

Table 1. E0 edge values (eV) for the Fe Kα transition in H, HC and HCS solutions as a function of pH.  

pH Ha HCb HCSc 
4.0 7126.5 7123.5 7125.0 
4.5 7124.5 7123.0 7124.0 
5.0 7126.5 7124.0 7124.5 
5.5 7125.0 7125.0 7123.5 

a Hematin-only solution 
b Hematin plus chloroquine 
c Hematin plus chloroquine and SDS 
 

As each H, HC and HCS spectrum at a given pH is obtained from the average of 4-6 scans on 2-3 

different solutions (see Section 2.2 above), it is improbable that this E0 shift be due to random 

errors. Rather, though very small, in our opinion these differences likely rely on a true physical 

effect. Following other groups [31], we attributed them to a slight difference in the chemical 

environment of the iron absorber. The latter should be related to the presence of CQ in the reaction 

mixture. Accordingly, we did not apply any a priori shift to the EXAFS-estimated edge energies in the 

subsequent analysis.  

 

FIGURE 3. Colour online. Point-by-point difference (green) of the measured EXAFS fine 
structure functions of the HC(5.0) (red) and H(5.0) (black) specimens. See Figure S13-S16 SI for 
the corresponding curves at different pH’s. 
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To single out statistically significant differences among the spectra recorded in the presence (HC, HCS) 

and in the absence (H) of chloroquine, the measured fine structure function of the CQ-free solution H 

might be subtracted from that of the CQ-containing one, e.g. HC, at the same pH. The residual signal 

should then convey the amount of information by which the two pristine spectra differ from each other, 

i.e. should enclose the effect of CQ on the environment of the iron ion. Figure 3 shows the point-by-point 

difference of the measured EXAFS fine structure functions of the HC and H solutions at pH = 5.0. An 

equivalent curve is obtained when the H(5.0) signal is subtracted from the HCS(5.0) one (Fig. S15(b) SI). 

In general, the difference signal shows neatly structured oscillations at low k values, due to the very small 

phase shift between the two original curves that can be traced back to the small differences in E0 

discusses above. On the contrary, at higher k modules these oscillations are smeared into featureless 

noise. It can be safely excluded that the difference signal in Fig. 3 could be attributed to other compounds 

in solution rather than CQ, such as DMSO or the citrate buffer, as both the HC and H samples contained 

exactly the same amount of these species within the statistical error. Moreover, identical findings hold 

true also when other samples are considered: A very similar difference signal is almost invariably 

retrieved throughout the whole 4.0-5.5 pH range, when either HC-H or the HCS-H differences are taken 

into account (Section S1.4 SI). However, difference spectra depend on the average structure of the solute 

throughout its accessible conformation spaces, which are likely different in H and HC (or HCS) samples. 

Besides, solvent effects and possible inhomogeneities of the probed specimens – all of them being 

potential sources of undetected but unavoidable systematic errors – might affect either the small detected 

phase shift or the intensity of the oscillations (Figures S13-S16 SI). For these reasons, extracting 

quantitative information from the difference signals is not feasible. Rather, on a more qualitative level, 

we note that two main peaks (A, C) at R ≈ 1.9 and 2.8 Å, plus a neat shoulder (B) at ≈ 2.4 Å, appear in the 

real-space Fourier transform of the difference signal (Figure 4, left).  
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FIGURE 4. Colour online. Left: Real-space Fourier-transformed HC(5.0)-H(5.0) difference 
signal shown in Figure 3.. Right: Ball-and-stick representation (C: grey, N: blue, Cl: light green, 
Fe: brown) of the approximate (see text) interaction geometry for the quinoline ring of CQ and the 
FePPIX structure. –R stands for the CQ alkyl side chain. A, B and C label the features of the 
difference curve which correspond with the Fe–X (X = C, N) next neighbour distances on the 
right. Diamond v3.2k, © 1997-2014 Crystal Impact GbR, Bonn, Germany was employed 
throughout to draw ball-and-stick pictures. 
 

Various models, based on possible approaching modes of the CQ molecule in the neighbourhood of the 

Fe(III) centre, were considered to interpret the main features in χ(R) (Figure 4, left). We eventually 

realized that such features, despite corresponding to approximate Fe-backscatterer distances, are 

qualitatively in accordance with the geometries of both the quinoline:porphine complex, as predicted by 

quantum mechanical calculations [36], and other PPIX:4-AQ drugs adducts, as determined by single-

crystal X-ray diffraction experiments [34,35]. This prompted us to look for a FePPIX:CQ complex 

consistent with this interaction geometry, i.e. implying a direct Fe-N coordinative bond (Figure 4, right). 

Obviously, no quantitative insights into the heme:CQ recognition process can be obtained by the study of 

the difference signal alone. We therefore employed the information on the relative orientation between 

the quinoline and PPIX rings here hypothesized to build a suitable starting point for subsequent quantum 

mechanical DFT optimizations (see infra). 

 

4. DISCUSSION: Is a Fe–N coordinative bond directly involved in the CQ:heme recognition 

process?  



15 

4.1 Quantum mechanical simulations.  

To improve the accuracy of the proposed structural model (Figure 4, right), the adduct structure 

was optimized through DFT-PCM calculations of the isolated complex (see Section 2.4 above). 

Water and n-octanol were considered as solvents, the latter having being chosen to model the 

apolar environment due to lipid micelles in SDS-containing specimens. As for the starting 

geometry, we employed monoprotonated CQH+ to bind the ferric centre through the free 

quinoline N atom. In general, the accessible conformation space for possible heme:CQ interacting 

pairs is very large, as the side hydrocarbon chain in CQH+ has a significant torsional freedom 

even when N is coordinated to Fe. According to Literature findings, [25,33,50,51] to reduce the 

complexity of the problem to an affordable level we looked for favourable interaction geometries 

that included attractive N-H⋅⋅⋅O charge-assisted hydrogen bond (CAHB) interactions among the 

tertiary amine and the free heme propionate group.  

 

FIGURE 5. Colour online. Ball-and-stick representation of the B3LYP 6-311G(p,d) optimized geometry 
for a stable FePPIX(CQH)H+ complex in water (a) and in n-octanol (b). Short NH⋅⋅⋅O, CH⋅⋅⋅O and CH⋅⋅⋅N 
intermolecular hydrogen-bonded contacts are shown as dashed red lines and the corresponding distances 
in Å highlighted. The usual colour code was employed to represent different atoms (green: chlorine, 
brown: iron; red: oxygen; blue: nitrogen; grey: carbon and white: hydrogen). 
 

Figure 5 shows the fully relaxed geometries for the FePPIX(CQH)H+ adduct corresponding to the 

true minima found by DFT simulations in water (a) and n-octanol (b) (Table S18 SI). The two 

complexes share the same basic structure, with the main molecular planes of PPIX and quinoline 

moieties lying approximately orthogonal to each other. The most striking difference is a 

significant reduction in the NH···O HB contact distances for the heme:CQ adduct in octanol (Fig. 



16 

5 and Tables S19-S20 SI). This effect is due to the expected increase in the CAHB strength in the 

low dielectric constant environment provided by the less polar solvent. On the contrary, the 

chemical nature of the solvent has clearly a minor effect on the Fe coordination environment, with 

changes in contact lengths between the FePPIX ring and the quinoline system not exceeding 10– 2 

Å.  

 

4.2 Performance of the DFT structural models against EXAFS data.  

4.2.1 First-shell fitting. To check to what extent the DFT-relaxed geometries shown in Fig. 5 

reproduce the experimental data, we performed real-space fittings of the Fourier-transformed 

EXAFS fine structure functions (Tables 2–3, Figure 6). We focused just on the first peak at ≈ 2.0 

Å (Figure 2, right), which is due to the convolution of structural contributions coming from the 

Fe(III) first-shell ligand sphere. On the basis of X-ray diffraction experiments on chloroquine-

analogue complexes [34,35], solid state NMR findings [26] and our EXAFS-assisted DFT 

simulations (Sections 3.1 and 4.1 above), the first-sphere ligands are expected to be directly 

involved in the drug:substrate recognition process, while farther coordination shells should be 

much less affected by the presence of CQ. In-water DFT-optimized structures of (i) isolated 

hematin (FePPIX(OH)H–), (ii) heme dimer (FePPIX(FePPIXH)H), (iii) crystalline hemozoin 

([FePPIX(FePPIXH)H]n→∞) and FePPIX(CQH)H+ complex (iv)  (Figure 5, left) were employed to 

compute starting estimates for the corresponding Fe–X (X = O, N) backscattering paths. As the 

Fe(III) ions in the PPIX scaffold exploit a C4v-like distorted square-pyramidal coordination, two 

independent ∆r corrections were applied to account for axial and equatorial ligands in models (i)–

(iii). When the heme:CQ FePPIX(CQH)H+ adduct model (iv) was considered, a third ∆r 

parameter was added to simulate higher-R contributions due to the Fe-Nq backscattering path 

involving the quinoline Nq Nitrogen of CQ. Actually, this complex is expected to coexist in 

solution with drug-free substrates, such as monomeric hematin or dimeric heme.  



17 

Figure 6 and Table 2 show the structural parameters retrieved from the χ(R) signals fittings the 

hematin monomer (i) and heme:CQ adduct (iv) systems against H, HC and HCS sample series. 

Results corresponding to models (ii) and (iii) are very similar to those from model (i) and are 

reported in the Supporting Information (Figure S4 SI and Table S1 SI).  

 
Table 2. Refined parameters for first-shell fittings against H, HC and HCS samples in the 4.0–5.5 
pH range, with estimated standard deviations (e.s.d.’s) in parentheses. R- and k-windows were as 
large as 1.2-2.6 Å and 2-12 Å-1, respectively. Hanning (dR = 0.0) and Kaiser-Bessel (dk = 1.89) filters 
were employed in the real and reciprocal spaces, giving a total of 16 independent points. Models (i) and 
(iv) were employed to interpret H and HC/HCS datasets, respectively. For the sake of comparison, the 
iron-ligand first-shell distances from DFT calculations in water are d[Fe–O] axial = 1.88 Å, <d[Fe-N]> 
equatorial = 2.071(3) Å, and d[Fe–Nq] axial = 2.12 Å. 
 
 
Sample 

d[Fe–O]  
axial / Å 

<d[Fe-N]>  
equatorial/ Å 

d[Fe–Nq]  

axial / Å c 
S0

2 σ /Å2 R d 

H(4.0) a 1.86(8) 2.03(2) // 0.9(3) 0.006(6) 0.0715  
HC(4.0) b 1.9(1) 2.02(2) 2.5(1) 1.1(6) 0.009(9) 0.0561  
HCS(4.0) b 1.9(2) 2.01(5) 2.4(1) 1.6(8) 0.02(1) 0.0327 
H(4.5) a 1.83(8) 2.02(2) // 1.0(4) 0.007(6) 0.0634 
HC(4.5) b 1.84(9) 2.03(2) 2.5(1) 1.2(9) 0.008(8) 0.0723   
HCS(4.5) b 1.8(1) 2.04(2) 2.5(1) 1.2(9) 0.009(8) 0.0826 
H(5.0) a 1.9(3) 2.00(5) // 1.2(5) 0.02(2) 0.0409 
HC(5.0) b 1.8(1) 2.03(2) 2.5(1) 1(1) 0.011(9) 0.0693 
HCS(5.0) b 1.9(1) 2.05(2) 2.5(1) 1.2(8) 0.009(8) 0.0805 
H(5.5) a 1.86(9) 2.04(2) // 0.9(4) 0.005(6) 0.1090 
HC(5.5) b 1.9(1) 2.04(3) 2.5(2) 1.2(8) 0.010(9) 0.0878 
HCS(5.5) b 1.8(1) 2.02(3) 2.5(2) 1(1) 0.01(1) 0.0643 
a Fitting against the hematin monomer FePPIX(OH)H– model (i) at the in-water optimized DFT geometry.  
b Fitting against the The FePPIX(CQH)H+ adduct model (iv) (Figure 5) at the in-water optimized DFT geometry. 
c Nq is the quinoline Nitrogen of the CQ molecule. 
d Statistical agreement factor. 
 

The agreement among the refined structural parameters shown in Table 2 and the corresponding 

theoretical estimates is generally good. The Fe–Nq distances are clearly overestimated, even 

though their estimated standard deviations (e.s.d.’s) are so large that the theoretical expected 

values are retrieved within 2-3 e.s.d.’s in most cases.  
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FIGURE 6. Colour online. χ(R) functions (black) for 1.2 Å ≤ R ≤ 2.6 Å, as computed from the 
EXAFS spectra of H, HC and HCS samples in the 4.0–5.5 pH range. The least-squares fitted 
contributions due to paths belonging to the Fe first coordination shell are also shown (red: Fe–O 
axial; green: <Fe–N> equatorial; light blue: Fe–Nq axial, Nq being the quinoline Nitrogen of CQ). 
The specs of the least-squares models are the same as in Table 2. 
 

From Figure 6, it is evident that the square pyramidal first coordination shell of Fe in the PPIX 

scaffold dominates the χ(R) signal: Compare for example the individual path contributions for 

Fe–O axial (red) and Fe-N equatorial (green) scatterers in H samples with those in HC and HCS 

ones. As expected, the hypothesized Nq ligand provides just a minor correction to the χ(R) 

function. Accordingly, the corresponding contribution due to this path (light blue curves in Figure 

6) is always very broad, and in fact its high variance translates into the high estimated standard 

deviations of the d[Fe–Nq] values in Table 2.  

Yet, the following points are also worth of being noted. First, the maximum of the first-shell peak 

shows a slight tendency to be systematically shifted towards higher R backscattering lengths upon 

the addition of either CQ, or CQ and SDS. Second, the peak of HC and HCS samples is 
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systematically broader than in H solutions. The only exception is the pH = 5.0 series, whose 

H(5.0) parent solution shows an exceptionally broad first-shell peak compared with other H 

specimens. We note, however, that that even in this case the signals from HC(5.0) and HCS(5.0) 

solutions are neatly shifted towards higher R values with respect to H(5.0). These evidences might 

be traced back to the increasing importance of the high-R contribution of the Fe-Nq axial bond 

when the drug (and/or SDS) is present. It is improbable that such changes are due to π· · ·π 

heme:CQ interactions, as the latter are expected to take place at considerably longer distances 

from the iron atom. For example, fittings against NMR data [25] give an estimate of 3.9(2) Å for 

the Fe–Nq distance in the heme:CQ adduct.  

Unfortunately, the difference we observe can be hardly translated into a quantitative model, as the 

improvement of the fit quality against the HC and HCS data upon adding the Fe–Nq contribution 

is only marginal. Table 3 lists the individual agreement R factors, as computed after applying 

models (i)–(iv) to each chloroquine-containing HC and HCS dataset. Model (iv) invariably shows 

a slight improvement in the final R factor, as expected due to its higher number of variable 

parameters. To assess whether such an improvement is also statistically significant, the Hamilton 

R-test [52] was performed (Table 3, last column). Interestingly, the test is always satisfied, but the 

confidence level is generally low. It should be remarked that the EXAFS spectra here studied 

were recorded in dilute solution at room temperature. 

Table 3. Agreement R factors when different structural models are applied to real-space EXAFS datasets 
H, HC and HCS. Global fitting parameters are the same as in Table 2 above. Models (i)–(iii) rely on 13 
variables, which become 14 for the heme:CQ adduct one (iv) (see text). The number of independent 
points is always 16. 
 
Model → 
Sample ↓ 

Hematin  
monomer (i) 

Hematin  
dimer (ii) 

Hemozoin  
(iii) 

FePPIX(CQH)H+ 
adduct (iv) 

Average Hamilton 
significance level a 

HC(4.0)  0.0705  0.0677  0.0692  0.0561  50.0 % 
HCS(4.0)  0.0409 0.0441  0.0428  0.0327 66.7 % 
HC(4.5)  0.0845  0.0801 0.0817  0.0723   50.0 % 
HCS(4.5)  0.0987  0.0958  0.0968  0.0826 50.0 % 
HC(5.0)  0.0959  0.0916  0.0940  0.0693 75.0 % 
HCS(5.0)  0.0945  0.0927  0.0933  0.0805 50.0 % 
HC(5.5)  0.1076  0.1070  0.1076  0.0878 50.0 % 
HCS(5.5)  0.0792  0.0776  0.0790  0.0643 50.0 % 
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a Confidence level at which the Hamilton significance test [52] is satisfied, given as the average of the individual 
confidence levels for comparisons of model (iv) with models (i), (ii) and (iii), respectively. The higher this parameter, 
the higher the probability that the slight improvement of the agreement factor due to model (iv), which employs one 
more variable than models (i)–(iii), is statistically significant. 
 

Therefore, thermal motion issues make very difficult to extract accurate and quantitative 

information from the least-squares fittings alone. On the other hand, we have weak, although 

systematic, indications that i) the presence of CQ (and of CQ plus SDS) somehow influence the 

first coordination shell of the iron absorber and ii) the proposed heme:CQ adduct model (iv) 

performs slightly better than (i)–(iii) in interpreting the measured signal.  

4.2.2 Multi-shell fitting. It is instructive to explore the outcomes of multi-shell fittings as a 

function of the chemical composition of the probed solutions. This is indeed the method recently 

employed to interpret EXAFS spectra collected on mesohematin anhydride:CQ systems [31,32]. 

Moreover, due to above sketched difficulties in retrieving accurate geometric parameters at 

atomic resolution from experimental data, we might inspect at the performances exploited by each 

DFT model in reproducing a wider portion (1.0 Å ≤ R ≤ 5.0 Å) of the χ(R) function. In this way, a 

greater number of independent data can be taken into account, granting more flexibility to the 

model and allowing to retrieve at least qualitative hints on what species among the (i)–(iv) above 

described are favoured, on average, in a given chemical environment. Full details of the least-

squares procedures, including individual statistics of the various fits, refined parameters (Tables 

S2–S15 SI) and first-shell coordination distances (Tables S21–S31 SI), can be found in Sections 

S1.3 and S3 SI.  

To compare the quality of the various models on the same grounds, especially when applied to 

different samples, we define here for the first time a ‘score function’ for the i-th model, Si, based 

on the reduced χ2 parameters according to: 
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In (1), each sum runs over the N models applied to a given spectrum, n is an integer normalization 

constant to have ΣiSi = 100 and χi
2 is the reduced χi

2 of the i-th model. The lower an individual 

χi
2, the higher will be the corresponding score Si, meaning that that model provides a better fit 

against the experimental fine structure function of a given sample than any other model with a 

lower score. Neither clear nor systematic trends are detectable among individual Si (Figure S17 

SI) estimates as a function of the pH. Therefore, just the average scores of each model throughout 

each pH series were considered. Figure 7 summarizes the computed scores for the models above 

listed against the H, HC and HCS sample series. 

 

FIGURE 7. Color online. Suitability of different structural models in reproducing experimental EXAFS 
data for the H, HC and HCS sample series. Fitting ranges were always 1.0 Å ≤ R ≤ 5.0 Å and 2.0 Å –1 ≤ k 
≤ 10.0 Å –1, corresponding to 25 independent data. Models (i)–(iii) employed 18 independent variables, 
which became 20 when model (iv) was considered.The higher the score parameter (eq. (1)), the better that 
model fits the specific sample that it is being considered (see text). Models (i)–(iv) described in Section 
4.2.1 above were taken into account. Each bar comes from the average of individual score functions 
throughout the 4.0–5.5 pH range. Vertical lines correspond to 1 estimated standard deviation (e.s.d.).  
 

Looking at trends of mean values in Figure 7 rather than at individual measurements (Figure S17 

SI), some interesting indications can be retrieved. For example, when the drug is not present (H 

solution), models (i) and (ii) differ by ≈ 2 e.s.d.’s, with the heme dimer performing slightly better. This is 

no longer true when chloroquine is added to the mixture, as in HC solutions all the four models are, 

on average, equally performant. Comparing the HC series with the HCS out, on the contrary, it is 

evident that the presence of SDS significantly enhances the performances of the heme:CQ adduct 
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model, while the hemozoin model (iii) becomes absolutely the worst performing one. Incidentally, the 

fact that model (iii) invariably shows a poorer score with respect to (i) and (ii) (Figure 7) could be related 

to the absence of chemical promoters of the heme polymerization [19,20] in our model chemical mixture. 

The Hamilton R-test [52] is always satisfied when the model with more parameters (heme:CQ 

adduct) is compared with the roughly equally-performant models with less parameters, such as the 

hematin monomer (i) or dimer (ii) ones. The average significance level for all the samples indeed 

amounts to 80.5 ± 0.1% (comparison with model (i)) and increases up to 86.8 ± 0.1% upon 

comparison with model (ii). See Section S1.5 SI for more details. 

In conclusion, the presence of lipidic micelle somewhat favours the formation of the heme:drug 

complex, discouraging at the same time the appearing of hemozoin crystals. This could be related 

to the increased strength of the CAHB non-covalent interactions among side chains (see above) in 

a low dielectric constant medium. According also with Literature findings, [53] the overall 

chemical composition of the DV environment (e.g. the presence of lipidic phases) appears to be 

more determinant than pHDV alone for the molecular recognition process. It should be stressed 

that we do not demand the proposed model for the FePPIX(CQH)H+ complex as the only 

possible. Former spectroscopic (EXAFS, NMR and UV-Vis) evidence implies that the setup of 

π⋅⋅⋅π stacking interactions between the quinoline moiety of CQ and the FePPIX aromatic system 

is indeed probable and it cannot be excluded that our proposed Fe–N interaction geometry coexist 

with stacked heme:CQ adducts in solution. 

 

4.3 Suitability of the heme:drug complexation in the DV chemical environment.  

To verify whether the formation of the proposed FePPIX(CQH)H+ complex is possible in 

practice, it is important to take into account what reactions, and in particular which acid-base 

equilibria, are likely to occur in the Plasmodium vacuolar environment. pHDV is expected to range 

from 4.5 to 5.5. [53–55] Under these conditions, the doubly protonated form of chloroquine, 
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CQH2
2+, prevails over the monoprotonated (CQH+) and neutral (CQ) forms (Section S4 SI, Figure 

S18 SI). [56,57] Indeed, the tertiary amine and quinoline basic centres in CQ (Scheme I(a)) have 

respectively pKa ≈ 10.18 and ≈ 8.38, [58] even though a lower pKa (6.33) was also recently 

reported for the quinoline N atom. [54] Classical thermodynamic calculations show that the 

[CQH+]/[CQH2
2+] ratio steeply increases by one order of magnitude (from ≈ 1·10–4 to ≈ 1·10–3) as 

the pH rises from 4.5 to 5.5 (Figure S19(a) SI), while the neutral CQ form is always at least two 

order of magnitude more diluted than CQH+ (Figure S19(b) SI). Therefore, one may wonder 

whether enough monoprotonated drug, CQH+, is present in the DV to effectively complex heme 

according to the geometry here proposed (see above).  

To answer this question, it is worth noting that in the vacuolar environment free hematin 

(FePPIX(OH)H–) undergoes a strongly exothermic protonation to give the corresponding neutral 

FePPIX-water complex (FePPIX(H2O)H), which in turn might act as a reaction intermediate 

towards the heme:CQ adduct (reactions (2a-c)): 

CQH2
2+ + H2O  → CQH+ + H3O+     (2a) 

FePPIX(OH)H– + H3O+ → FePPIX(H2O)H + H2O     (2b) 

FePPIX(H2O)H + CQH+ → FePPIX(CQH)H+ + H2O       (2c) 

The latter sum to give the process (3): 

FePPIX(OH)H– + CQH2
2+ →  FePPIX(CQH)H+ + H2O                          (3) 

which is an acid-base reaction, coupled with a ligand exchange, between fully protonated 

chloroquine and free hematin. In other words, the monoprotonated minority form of drug, CQH+, 

may form upon complexation with heme and it is not strictly required that it acts itself as a 

reactant.  
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Table 4. Thermochemical data (kJ⋅mol–1) for reactions (2) and (3) at T = 298 K and p = 1 bar.a 

Reaction ∆rH∅ ∆rG∅ T·∆rS∅ 

(2a) 
156.9 
155.1 

152.0 
148.7 

4.9 
6.5 

(2b) 
-139.2 
-169.5 

-138.3 
-170.5 

-0.9 
1.0 

(2c) 
-85.5 

-116.4 
-49.2 
-80.0 

-36.3 
-36.5 

(3) 
-67.8 

-130.8 
-35.4 

-101.8 
-32.4 
-29.0 

a Thermochemical quantities are computed from the DFT electronic energies of reactants and products in 
water (first row) and n-octanol (second row) upon applying statistical thermodynamics corrections. 
 

Table 4 shows the thermochemical data associated to reactions (2a-c) and (3), as computed at the 

DFT-B3LYP 6-311G(p,d) level of theory. Individual values of the quantum mechanical electronic 

energies are listed in the SI (Section S5, Tables S32–S34). Strictly speaking, entries in Table 4 

refer to processes taking place among ideal gases of reagents and products [48] and therefore they 

cannot be directly compared with experimental outcomes. Yet, it is worth noting that our estimate 

for the reaction enthalpy of the overall reaction (3) among stable species in water (–16.2 kcal⋅mol–

1) is reasonably close to calorimetric measurements of heat associated to the heme:CQ binding 

process (–10(1) kcal⋅mol–1 at T = 37 °C and pH = 6.5 [59] and –7.9 kcal⋅mol–1 at T = 28 °C and 

pH = 5.6 [60]). 

Data in Table 4 show that processes (2a-c) are all enthalpy-driven, and so the overall reaction (3), 

as the entropy term is either immaterial (2a-b), or even unfavourable (2c). The entropy reduction 

associated to the ligand shift reaction (2c) is clearly due to the loss of conformational freedom 

experienced by the drug upon complexation, as strong CAHB interactions between the tertiary 

amine and the propionate moiety (Fig. 5) lock otherwise free torsion angles of the long 

hydrocarbon chain. In conclusion, reaction (3) is exergonic as the strongly exothermic acid-base 

process (2b) and the ligand shift reaction (2c) provide enough energy to pay the highly 

unfavourable deprotonation cost of the CQH2
2+ species (reaction (2a)).  
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When the same thermochemical parameters are computed from reactants and products optimized 

in n-octanol (Table 4), analogue conclusions hold true but the process (3) becomes significantly 

more favoured. This is due to a couple of concomitant effects. First, the neutral heme:water 

intermediate, FePPIX(H2O)H, is more stabilized (reaction (2b)) with respect to its charged 

reactants in the low-dielectric constant medium than in water (Table S34 SI); second, the ligand-

shift reaction (2c) becomes more exothermic as the apolar environment allow the strengthening of 

CAHB interactions (Figure 5, Tables S19–S20 SI). This is also consistent with EXAFS results 

(Figure 7). 

It should be also noted that the vacuolar pH range is ideal for promoting hemozoin crystallization. 

In fact, the two propionate groups of the FePPIX(OH)H2 scaffold have pKa = 4.3 and 5.5 [36]; 

free hematin is expected to exist mainly in either anionic FePPIX(OH)H– or neutral 

FePPIX(H2O)H form (reaction (2b)), where just the more acidic propionic function has lost its 

proton. Indeed, a single protonated carboxylic function per heme molecule (Scheme I(c)) is 

required to set up hydrogen-bonded chains in the hemozoin crystal. [16] Then, heme:CQ 

complexation is expected to be in competition with heme dimerization (4):  

2 FePPIX(H2O)H → FePPIX(FePPIX)H + 2 H2O        (4) 

The latter is strongly exothermic and exergonic, with ∆HØ (∆GØ) = –44.9 (–46.6) kcal·mol–1 and 

–52.7 (–55.0) kcal·mol–1 in water and n-octanol (see Table S34 SI). Therefore, a robust 

thermodynamic driving force exists towards heme dimerization. This evidence complies well with 

the slight preference showed by H EXAFS data for the heme dimer model (ii) (see above). At the 

same time, it also implies that the competition of CQ for the Fe axial position should be kinetic in 

nature. This is reasonable, as a ligand exchange reaction (2c), possibly conjugated with a proton 

transfer (3), is expected to occur faster than a concerted ligand exchange involving two water 

molecules on two Fe centres (4). It is also worth noting that the parasite employs a specific 

polymerase to speed up hemozoin crystallization. [19,20] This implies that heme self-assembly is 
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by itself a relatively slower process compared with possible antagonist reactions, such as 

extrusion of free heme from DV and/or complexation with CQ.  

 

4.4 On the reversibility of the direct Fe–N bond in the heme:CQ complex.  

There is consensus on the fact that free hematin is detrimental to the malaria parasites. 

Monomeric Fe-PPIX indeed produces oxidant ROS in the cytosol [12,13] (see the Introduction 

above), and it was also found to inhibit the malarial form of the enzyme lactate dehydrogenase. 

[21] To preserve the activity of the Fe3+ redox centre, it is mandatory that the axial position of the 

Fe-PPIX complex be not blocked irreversibly by any ligand. Binding of Fe(III) by propionate 

groups, followed by irreversible hemozoin crystallization (see Introduction), is indeed the 

detoxification mechanism adopted by the malaria parasite. Therefore, reversible heme:drug 

complexation is mandatory to account for the CQ antiplasmodial ability.  

It has been recently proposed that the heme:CQ complex is unstable in the parasite cytosol, where 

it might passively diffuse through the DV membrane following its natural concentration gradient. 

[61] The Plasmodium cytosol is weakly alkaline (pH ≈ 7.15(7)), [62] so in that environment the 

majority of free (FePPIX(OH)2–) and complexed (FePPIX(CQH)) heme molecules bear charged 

propionic groups. At the same time, the concentration of the CQH+ form of chloroquine is, on 

average, two order of magnitude higher than in the DV (Figure S18 SI). In these conditions, OH– 

ions can effectively shift CQH+ from the iron complex according to (5a–b): 

FePPIX(CQH) + H2O  → FePPIX(H2O)– + CQH+    (5a) 

 FePPIX(H2O)– + OH– → FePPIX(OH)2– + H2O   (5b) 

which sum to equation (6): 

FePPIX(CQH) + OH– → FePPIX(OH)2– + CQH+    (6) 

Table 5 shows the corresponding thermochemical data for processes (5) and (6). As expected, 

here the entropic term is favourable for the shift reaction (5a), as the released free drug can span a 
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larger portion of its accessible conformation space. However, it is again an exothermic acid-base 

reaction, (5b), which provides the enthalpic driving force for making the overall process (6) 

exergonic. 

Table 5. As Table 4 above for reactions (5) and (6) at T = 298 K and p = 1 bar.a  

Reaction ∆rH∅ ∆rG∅ T⋅∆rS∅ 
(5a) 99.6 71.2 28.5 
(5b) -265.4 -268.3 2.9 
(6) -165.7 -197.1 31.4 

a Reactants and products were optimized in water. 

In conclusion our thermochemical calculations, within the limits of the approximations here 

employed, demonstrate that the Fe–N direct interaction in the heme:CQ complex does not 

irreversibly block the Fe-PPIX redox centre, as the FePPIX(CQH) adduct is unstable with respect 

to exchange with OH– ions in the slightly alkaline conditions of the cytosol. 

CONCLUSIONS 

We investigated the interaction of the antimalarial drug chloroquine (CQ) with heme in acidic 1:1 

H2O:DMSO solutions at room temperature by EXAFS spectroscopy. The chemical composition 

of the solutions was set in order to reproduce as closely as possible the conditions within the 

digestive vacuole (DV) of the malaria parasite. EXAFS outcomes were also complemented by 

DFT simulations in water and n-octanol to provide an interpretative framework of the 

spectroscopic data and to investigate the thermochemistry of heme:CQ complexation. 

A broad consensus sustains the heme:CQ complexation as the core process of the drug activity 

against Plasmodium parasite. Heme:CQ adducts might indeed either cause direct damage to the 

parasite membranes, [22] or produce indirect damage by aiding toxic free heme [12,13] to be 

released into cytosol. As CQ interferes with hemozoin assembly, it makes more Fe-PPIX 

available to diffuse out of the DV either in its monomeric [12] or complexed [61] form. Heme:CQ 
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adducts are indeed expected to be unstable in the slight alkaline environment of the Plasmodium 

cytosol, [61] and our DFT calculations support this hypothesis.  

As for the nature of the heme:CQ complex, phase shifts detected in the EXAFS signal between 

CQ-containing and CQ-free hematin solutions suggest that, at least in the conditions here adopted, 

the first coordination shell of the iron ion is closely involved in the drug:substrate recognition 

process. We propose that a complex where the quinoline nitrogen of the drug is coordinated to the 

iron center might coexist with other possible (e.g. π· · ·π stacked) adduct geometries. It is the first 

time that a direct Fe-N bond, formerly hypothesized on the basis of solid-state NMR findings, 

[26] is observed in solution. However, the reader must be aware of the technical limits of the 

experiments we performed.  First, EXAFS spectra were collected at room temperature; therefore, 

thermal motion issues limit both the accuracy and the precision of the refined parameters. Second, 

the changes we found in EXAFS spectra are very small and do not allow to extract quantitative 

information on the nature of the heme:CQ complex(es). Nevertheless, trends in edge energies, 

difference signals and χ(R) functions are consistent throughout the whole pH series here explored 

and agree with the heme:CQ adduct model here proposed on the basis of EXAFS-aided DFT 

calculations. Obviously, the latter could be either confirmed or falsified by further experimental 

evidences. Low-T EXAFS experiments are in order to gain further insights into the interaction of 

AQ-class drugs with heme and a forthcoming paper will be devoted to this topic. 

In any case, DFT simulations demonstrate that charge-assisted hydrogen bonds (CAHBs) among 

the drug tertiary amine R3NH+ and the free propionate chain of the Fe-PPIX system are 

determinant in stabilizing the adduct. As expected, CAHBs are strengthened in a less polar 

environment. Therefore, the formation of the proposed heme:drug adduct should be favoured by 

the presence of lipid micelles. In conclusion, both the quinoline Nitrogen and the lateral chain of 

CQ are effective components of the drug pharmacophore and cooperate in determining its ability 

to hamper heme dimerization. 
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In computational works, the putative effectiveness of a CQ-like drug is often judged based on its 

heme-binding strength. [28] Anyhow, the ability of the drug to slow down heme self-recognition 

and self-assembly could be as much important as thermodynamics in determining the 

effectiveness of the antiplasmodial action. Therefore, provided that the CQ-induced toxicity is 

mainly due to free heme and not to interactions of the drug with other molecular targets, [21] it is 

not strictly mandatory that the heme:CQ adduct be the most stable on absolute grounds. Besides, 

with a regard to the inhibition kinetics determination, CAHBs might be even more crucial than 

direct interplay among the core moieties of the interacting molecules. These non-covalent 

interactions are ubiquitary in all the proposed heme:CQ interaction geometries [25,33,50,51]. In 

light of the described findings, it is plausible to consider the CAHBs strength engineering as an 

effective strategy towards the development of novel CQ-based antiplasmodials. 
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