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The publication of studies undertaken in the last century to
characterize the role of tissue factor (TF) in physiological and
pathological processes has seen a sharp increase since 1987,
when the gene coding for human TF was sequenced and the
primary structure of the TF apoprotein deduced.1–4 Since
then, and until the beginning of the new century, the contri-
bution of TF to the atherothrombotic process was assessed
focusing on the vessel wall-derived TF, the only source of TF
believed at the time to be present in the human body. Then a
new player came onto the scene, the blood-borne TF, a term

originally introduced to allude mainly to circulating micro-
vesicles (MVs)-carrying TF, which can be taken up by circu-
lating platelets.5,6 This term now refers to TF present in the
circulation as a whole, whether it is derived from MVs, or
from activated leukocytes or platelets.

The findings that have established the role of vessel wall-
derived TF in atherothrombosis have been revised in several
reviews, which the reader is referred to.7–12 By contrast, the
pathophysiological relevance of the blood-borne TF is still a
matter of debate, and controversies on the presence of
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Abstract The contribution of vessel wall-derived tissue factor (TF) to atherothrombosis is well
established, whereas the pathophysiological relevance of the blood-borne TF is still a
matter of debate, and controversies on the presence of platelet-associated TF still exist.
In the past 15 years, several studies have documented the presence of TF in human
platelets, the capacity of human platelets to use TF mRNA to make de novo protein
synthesis, and the increase in the percentage of TF positive platelets in pathological
conditions such as coronary artery disease (CAD). The exposure of vessel wall-derived TF
at the site of vascular injury would play its main role in the initiation phase, whereas the
blood-borne TF carried by platelets would be involved in the propagation phase of
thrombus formation. More recent data indicate that megakaryocytes are committed to
release into the bloodstream a well-defined number of TF-carrying platelets, which
represents only a fraction of the whole platelet population. These findings are in line
with the evidence that platelets are heterogeneous in their functions and only a subset
of them is involved in the hemostatic process. In this review we summarize the existing
knowledge on platelet associated TF and speculate on its relevance to physiology and to
atherothrombosis and CAD.
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platelet-associated TF still exists.13–17 In this review, we aim
to summarize the existing knowledge on platelet-associated
TF and to speculate on its relevance to physiology and to
atherothrombosis and coronary artery disease (CAD).

From Blood-Borne Tissue Factor to Platelet-
Associated Tissue Factor in Humans

Historical Background
Toward the end of the last century several studies provided
evidence for the presence of detectable blood-borne TF
activity in healthy subjects18–20 and for increased levels of
circulating TF antigen in patients suffering from cardiovascu-
lar disease,21–23 sepsis,24 hematologic disorders,19,25 and
disseminated intravascular coagulation.24,26 As a result, an
increased blood thrombogenicity in those disease states was
also described.27 At the same time, the first articles reporting
the presence of procoagulant MVs in the circulating blood of
humans under normal and pathophysiological conditions
appeared in the literature.5,28–32 The presence of “TF–platelet
hybrids” were first discovered and characterized in Yale
Nemerson’s laboratory by Giesen et al in 1999 and Rauch
and Nemerson in 2000: circulating platelets, carrying TF
through the fusion of TF-containing MVs with the membrane
of activated platelets through a CD15-P-selectin transfer
mechanism, may themselves trigger the activation of the
blood coagulation cascade.5,33 Based on these new findings
they also proposed a revised mechanism of thrombus forma-
tion foreseeing a concerted action of the two different pools
of TF: by this mechanism the exposure of vessel wall-derived
TF at the site of vascular injury would play its main role in the
initiation phase, whereas the blood-borne TF carried by
platelets would be involved in the propagation phase of
thrombus formation.5,6,33 The Nemerson group based the
need for an extra source of TF in thrombus formation on the
assumption that, as soon as platelets start to accumulate at
the site of injury, they hamper the interaction of the vessel
wall-derived TF with FVII and the activation of FIX and FX,
thus affecting the generation of the prothrombinase activity
on the surface of a growing thrombus.34 In this scenario, the
platelet-associated TF may therefore sustain the propagation
phase of thrombus formation.

Since then, several articles have reported the presence of
TF in human platelets. In 2001, Zillman et al observed by flow
cytometry that a short (5 minutes) stimulation of whole
blood with collagen resulted in an increase of the quantity
of TF antigen associated with monocytes and granulocytes.35

The authors observed that when the amount of platelets in
whole blood was gradually reduced, the amount of TF on
leukocytes also decreased. Moreover, the increase in TF
antigen elicited by collagen was exclusively noted in the
CD41a-positive leukocytes, suggesting therefore that plate-
lets are a source of TF. It should be mentioned in this regard
that nowadays we are able to provide the demonstration of
this hypothesis taking advantage from the latest generation
flow cytometers developed in recent years, which combine
the fluorescence sensitivity of flow cytometry with the
functional insights of high-resolution microscopy. Imaging

flow cytometry allows us to characterize with absolute
precision the cell type that expresses TF. Taking advantage
from these tools it is possible to confer TF origin to one cell or
another, especially when leukocyte–platelet aggregates are
studied, performing awhole blood flow cytometry analysis, a
method characterized by minimal sample handling (►Fig. 1).
In the following years, we and other investigators identified
TF antigen in human platelets from healthy subjects by using,
besides flow cytometry, several other methodological
approach including western blotting, enzyme-linked immu-
nosorbent assays, confocal, and electronmicroscopy.36–38 The
most relevant finding of these studies was the observation
that stimulation of platelets with agonists such as adenosine
diphosphate (ADP), thrombin, epinephrine, thromboxane
analogue U46619, and calcium ionophore A23187 resulted
in the expression of TF, together with other commonmarkers
of platelet activation such as P-selectin or activated glycopro-
tein IIb/IIIa (GpIIb/IIIa), on the platelet membrane. This event
was time-dependent with the maximal expression of TF
observed 15 to 30 minutes after stimulation and was also
concentration-dependent.14,15,36,37 Moreover, in our experi-
mental setting,we also showed that the platelet-associated TF
was functionally active, being able to bind to FVIIa and to
trigger FXa and thrombin generation.37,39 We also provided
the evidence, for the first time, that platelets contain the TF
mRNA.37,39 Thisfindingwas criticized at the beginning due to
the failure, by other investigators, to get the same results.35,40

Indeed, the presence of TF mRNA in platelets was seen as the
result of a leukocyte contamination during RNA preparation.
A few years later, two independent groups not only confirmed
our finding, but they also showed that platelets, upon stimu-
lation, can use the TF mRNA to make de novo protein
synthesis.41,42

Since both platelets and TF are involved in the etiopatho-
genesis of many diseases, studies were performed to assess
the expression of platelet-associated TF in pathological con-
ditions such as coronary artery disease, diabetes, essential
thrombocythemia, and cancer.39,43–45

In the setting of CAD we showed that the number of
circulating TF-positive platelets and TF-positive platelet–
monocyte aggregates in patients with acute coronary syn-
drome (ACS) was significantly higher than those found in
patients with stable angina and in healthy subjects.39 More-
over, we reported that the number of TF-positive platelets
was not only three times higher in ACS, but each platelet
expressed twice the number of TF molecules than in the two
other groups studied, so that the total capacity to generate
thrombin was greater. Thus, these findings suggest from one
side that TF-bearing platelets as well as platelet-leukocyte
aggregates may contribute to thrombus formation upon
plaque rupture providing a further explanation of the
increased cell thrombogenicity documented in ACS; from
the other side, TF-bearing platelets as well as platelet–
leukocyte aggregates might also be responsible of thrombus
generation in distal sites.

Moreover, the levels of TF mRNA in platelets from ACS
patients were also higher compared with those found in
patients with stable angina and in healthy subjects. This
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finding is of particular relevance considering the well-
described biosynthetic capacity of platelets.46–48

Several mechanisms may be responsible for the increased
number of TF-positive platelets observed in ACS patients,
including a higher amount of TF-positive platelets released by
megakaryocytes into the blood stream or de novo synthesis of
TF protein in the circulating platelets following splicing of the
TF pre-mRNA (see below and ►Fig. 2).39 Appropriate studies
however are required to test these hypotheses.

Mechanisms Responsible for the Presence of Tissue
Factor in Platelets: The Megakaryocyte-Platelet Axis
Data accumulated over the past 15 years suggest that at least
three mechanisms may be involved in the presence of TF in
platelets: (1) the MV-transfer mechanism; (2) the storage
within the α-granules and the open canalicular system, as
reported by Muller et al,38 and (3) the de novo protein
synthesis from the TF-specific messenger RNA.49 We believe
that these pathways are not mutually exclusive and one

mechanism may dominate over the other depending on the
pathophysiological conditions. Despite this evidence, it is still
commonly believed that the only mechanism responsible for
the presence of TF in platelets is through the uptake of TF-
positive microparticles released by activated endothelial cells
or leukocytes. We and others, however, have provided evi-
dence that not only human platelets, but also human mega-
karyocytes contain TF mRNA.37,39,41 Therefore, it can be
speculated that the TF mRNA and the protein detectable in
platelets could be the result not only of a MV-transfer
mechanism, but also of a direct transfer from megakaryo-
cytes.50 To test this hypothesis, we took advantage of an in
vitro cell culture model able to recapitulate megakaryocyte
differentiation and platelet biogenesis (Meg-01 megakaryo-
blast cell line), providing consistent evidence that TF is an
endogenously synthesized protein that characterizes mega-
karyocyte maturation. This in vitro approach allowed us to
study mRNA and protein expression in platelets in the
absence of any cross-talk with other cells or MVs. Indeed,

Fig. 1 Identification of tissue factor (TF)-positive platelets by imaging flow cytometry. Stimulation of whole blood with ADP (10 µM, 15 minutes)
results in an increased expression of platelet- and platelet–leukocyte aggregates (PLA)-associated TF. Single-cell analysis, performed on high-
resolution images of each cell in flow by imaging flow cytometry (FlowSight; Amnis, EMD Millipore, Billerica, MA), indicates that TF expression in
PLA is localized exclusively on platelets. A representative scatterplot of whole blood is reported in panel (A). Monocyte, granulocyte, and
lymphocyte populations were discriminated according to a physical parameter (side scatter, SSC) and CD45 expression. Platelets and PLA were
identified based on CD61 antigen expression. Representative brightfield and CD61 (red)/CD45 (white)/Hoechst (magenta) composite images
(merge) are shown. Single cell images, representative of (B) TF-positive platelet; (C) TF-negative platelet; (D) TF-positive PLA; (E) TF-negative PLA
are shown. Images were acquired at �40 magnification. Channel images of Brightfield (gray), TF (green), CD61 (red), CD45 (white), Hoechst
(magenta), and the composite image are reported as displayed by the Amnis IDEAS data analysis software. ADP, adenosine diphosphate.
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in these experimental conditions we showed the existence of
a direct transfer of both TF pre-mRNA and protein from
megakaryocytes to a subset of platelets where it contributes
to their thrombin generation capacity. Of interest, the per-
centage of TF-positive platelets that we observed in vitro
(both with Meg-platelets and with CD34þ-derived platelets)
was virtually identical to the amount found in blood from
healthy individuals. This striking data suggests that a finely
tuned mechanism, which deserves further investigation to
uncover the molecular pathways involved in its regulation, is
responsible for the controlled delivery of TF from megakar-
yocytes to platelets. All together these data support the
concept that, under physiological conditions, megakaryo-
cytes are committed to release into the bloodstream a well-
defined and programmed number of TF-carrying platelets. It
can be speculated that under pathological conditions, such as
in the presence of low-grade inflammation as present in CAD
patients, alterations in the megakaryocyte transcriptome and
proteome as well as in the release of new platelets may occur.
Alternatively, mechanistic events may take place in the
bloodstream that drive TF pre-mRNA processing and de
novo protein synthesis (►Fig. 2). The common consequence

of these two hypothetical mechanisms is a higher number of
circulating TF-positive platelets.

Although further studies are needed to prove these
hypotheses in the context of CAD, we have recently observed
that in spontaneously hypertensive stroke-prone rats the
percentage of circulating TF-positive platelets directly corre-
lated with blood pressure and is the result of an increased
number of TF-positivemegakaryocyteswhich release into the
bloodstream a higher number of TF-positive platelets
(M. Camera, PhD, unpublished data, 2015).

Although platelets do not have a nucleus, they contain
about 2,000 to 7,000 transcripts.51–53 The finding that plate-
lets can use their mRNA pool to perform new protein synthe-
sis in response to cellular activation is of great importance,
since these mechanisms allow platelets to modify their
protein phenotype and, as a consequence, their functions.46

Concept of Platelet Heterogeneity: 30%— The “Magic”
Number
Leaving aside the controversy and giving credit to the fact that
TF is really present and functional in platelets, based on the
literature reviewed so far, we should also consider that TF is

Fig. 2 Hypothetical mechanisms involved in the regulation of the circulating levels of tissue factor (TF)-positive platelets under physiological and
pathological conditions. Under physiological conditions a percentage of TF expressing megakaryocytes are committed to release in the
bloodstream a constant number of platelets containing either TF protein or TF pre-mRNA.50 Under pathological conditions the increase in the
number of TF-positive platelets may be the result of a (A) mechanism taking place in the bloodstream and resulting in the splicing of the TF pre-
mRNA and de novo protein synthesis or (B) a mechanism taking place in the bone marrow inducing more megakaryocytes to express TF and to
release TF-positive platelets.
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one among the other coagulation factors, such as FV, FIX, FXI,
FXIII, fibrinogen, FVII, exposed on the cell membrane upon
platelet activation. It is of interest to note that for some of
these factors, including TF, the presence not only of the
protein, but also of the specific pre-mRNA/mRNA has been
described and, as already mentioned, this is of particular
relevance taking into account the biosynthetic capacity of
platelets (►Table 1).37,41,42,54–59

It is well established that platelets play a key role in the
initiation and regulation of hemostasis and thrombosis.
Platelets adhere and aggregate at the site of vascular injury
to prevent blood loss and form the building blocks of a
thrombus; they also support the binding of the coagulation
factors involved in tenase and prothrombinase complex
(which results in thrombin generation and further platelet
activation) to localize, amplify, and control the burst of
thrombin generation at the injury site thus preventing a
systemic activation of the blood coagulation.60,61

Although this function has been historically ascribed to all
platelets, it is important to underline that much evidence
accumulated in the past years indicate that platelets are
heterogeneous in their functions and only a subset of platelets
is involved in the hemostatic process.61,62 Themechanisms of
origin and function of this heterogeneity is still unclear.
Indeed, as a matter of fact, individual platelets differently
respond to agonists like collagen or thrombin resulting in a
different binding capacity to coagulation factors and other
plasma proteins. As examples in support to this concept, the
platelet phospholipid asymmetry and the platelet-derived
pool of FV will be briefly discussed.

Phospholipids containing choline, such as sphingomye-
lin and phosphatidylcholine are the main components of
the outer surface of plasma membranes of all eukaryotic
cells under resting conditions, while phosphatidylserine
and phosphatidylethanolamine are localized on the inner
surface.63,64 In this conformation, the platelet membrane
provides a nonprocoagulant surface.65 Upon platelet acti-
vation theflip–flopmechanism, catalyzed by specific trans-
locases,66 allows an enhanced expression of negatively

charged phosphatidylserine in the outer membrane leaflet,
conferring to platelets the procoagulant surface necessary
for the assembly and activation of several enzyme com-
plexes of the coagulation process.60,67,68 It is important to
consider in this regard that, when platelet from healthy
subjects are activated by physiological concentrations of
agonists such as thrombin, collagen, or by the combined
action of thrombin and collagen the exposure of phospha-
tidylserine occurs only in a fraction of activated platelets
that ranges from approximately 4 to 30%, at most, depend-
ing to the agonist used.69–71 These data clearly highlight the
fact that only a subset of the activated platelets undergoes
phosphatidylserine exposure on the membrane surface to
sustain the hemostatic process.

Thrombin generation occurs via prothrombinase, a stoi-
chiometric complex of the cofactor FVa and the serine prote-
ase FXa, assembled on a phosphatidylserine-exposing
membrane surface in the presence of calcium.72 FV exists in
two pools in whole blood: 80% is in the plasma and 20% is
stored in platelet α-granules. The α-granules stored FV is
directly derived from megakaryocytes through endocyto-
sis.73,74 To understand the physiological role of the α-gran-
ules stored FV as compared with the plasma FV, it has been
calculated that the nominal FV concentration of platelets
exceeds that of plasma by an approximate factor of 100.
Thus, its release from α-granules could provide a high local
concentration of FV that may be critical for the generation of
platelet prothrombinase activity.75 In 2010, Fager et al pub-
lished the evidence that only a fraction, about 30%, of
activated platelets expressing P-selectin do also express FV,
and in the same experimental conditions only a fraction of
activated platelets do bind to FXa. These data support the
concept that the ability of activated platelets to generate
thrombin via prothrombinase is defined, once again, only
by a subpopulation of platelets expressing both nondissoci-
able and dissociable pools of platelet-derived FVa, each
capable of binding FXa, and expressing an increased density
of adhesive receptors, including P-selectin, at their activated
membrane surface.76

Table 1 Coagulation factors present in platelets

Coagulation factor Protein mRNA References for mRNA

Tissue factor þ þ 37,39,41,42

FV þ Not reported

FVII þ Not reported

FIX þ Not reported

FXI þ þ 59

FXIII þ þ 54,55, and M. Camera, PhD, unpublished data, 2015

Fibrinogen þ not reported

vWF þ þ 56 and M. Camera, PhD, unpublished data, 2015

TFPI þ þ 57 and M. Camera, PhD, unpublished data, 2015

Protein S þ þ 58

Abbreviation: F, factor.
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Similarly towhat described for phosphatidylserine and FV,
also TF is expressed only by a fraction of platelets. As shown
in ►Fig. 3, flow cytometry analysis of thrombin receptor
activating peptide 6 (TRAP-6) or ADP-stimulated platelets
from healthy subjects shows that the expression of activated
GpIIb/IIIa, of P-selectin and of TF occurs in about 80, 50, and
30% of platelets, respectively. A similar trend was observed
when other platelet agonists, such as collagen or thrombox-
ane A2, were used. These observations fit particularly well
with the in vivo evidences published by Stalker et al who
reported that platelet activation is not uniform throughout
the hemostatic plug.77 They found that the hemostatic
response produces an organized structure, composed of
activated platelets interspersed with fibrin, characterized
by a regional heterogeneity due to differences in platelet
activation state, packing density, and stability. Indeed, a core
of fully activated platelets, expressing P-selectin and sustain-
ing thrombin generation, is overlaid with an unstable shell of
less activated, P-selectin negative, platelets. It is noteworthy,

in this regard, that when costaining for TF and P-selectin is
performed on in vitro agonist stimulated human platelets,
flow cytometry, and confocal microscopy analysis indicate
that all the TF-positive platelets also express P-selectin
(►Fig. 4).15 Moreover, the fact that in vitro data show a
colocalization between TF and FV (►Fig. 4) unequivocally
combines the discoveries made by different research groups
in the past years. All together these data strongly support the
in vivo hemostatic plug model reported by Stalker et al,
according to which the thrombin generation capacity is
restricted to the platelets composing the core of the plug,77

and theyalso give further credit to the theory proposed by the
Nemerson group 15 years ago.6,34

Electron microscopy analysis of thrombi formed in vivo
published in the 1960s provided the first evidence for the
presence of a heterogeneous platelet activation within
the thrombus.78–80 More recently, Palmerini et al assessed
the presence of coagulant active TF in coronary thrombi
collected from patients with ST-segment elevation acute

Fig. 3 Heterogeneity of platelet response to agonist stimulation. In vitro platelet activation results in a differential expression of the common
markers of platelet activation, such as tissue factor, P-selectin or activated glycoprotein IIb/IIIa (GpIIb/IIIa), identifying different platelet
subpopulations. While almost all stimulated platelets express activated GpIIb/IIIa upon stimulation, only a subset of platelets expresses P-selectin
and tissue factor (�50 and 30%, respectively). Whole blood from healthy subjects, left untreated (resting) or stimulated with TRAP-6 (5 µM) or ADP
(10 µM) for 15 minutes, was incubated with saturating concentration of mouse anti-activated GpIIb/IIIa-FITC (PAC-1 monoclonal antibody, Becton
Dickinson, Sparks, MD) anti-P-selectin-APC (monoclonal antibody against CD62, Becton Dickinson) or anti-TF-FITC (monoclonal antibody against
TF, catalogue no. 4508, American Diagnostica, Lexington, MA) and mouse anti-CD41-PE MoAbs. FITC-, APC-, and PE-conjugated isotype controls
were used in all the experiments to quantify the background labeling. Representative density plots of three independent experiments are
reported in the figure. The mean value of the results is reported as percentage positive events � standard deviation. ADP, adenosine diphosphate;
TRAP-6, thrombin receptor activating peptide 6.
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myocardial infarction (STEMI), showing that functionally
active TF accumulates at sites of thrombus formation in the
acute phase of STEMI; the TF activity was indeed specifically
inhibited byamonoclonal antibody able to block TF-mediated
coagulation activity.81 Although, as stated by the authors, the
study was not designed to assess the source of TF found in
thrombi, Palmerini et al showed very clearly that, in a human
setting, also platelets, besides inflammatory cells within the
thrombus of STEMI patients, stain positively for TF. These
findings confirm leukocytes as source of TF, but they also
support the evidence that platelets may be another source of
TF. Of note, the TF immunolocalization provided by Palmerini
et al highlights that not all platelets within the thrombus
express TF. These data completelymatchwith the evidence, as
already stated above, that not all circulating platelets, both in
healthy subjects as well as in patients with CAD, express TF
when analyzed by flow cytometry.37,39

Species-Specific Differences in Platelet
Tissue Factor Expression

The dispute centered on platelet-associated TF has also
been fueled over time by the fact that the evaluation of

the expression of platelet-associated TF in mice provided
negative results. By contrast, compelling evidence supports
the presence of TF in rat platelets. Indeed, in 2012 Hernán-
dez Vera et al showed, through an immunological approach,
the presence of functionally active TF in rat platelets.82

More recently, Tyagi et al not only provided the evidence,
using a proteomic approach, that exposure of rats to a
hypoxic stimulus results in an upregulation of platelet-
associated TF expression but they also showed that plate-
lets contain TF pre-mRNA which is processed, upon expo-
sure to hypoxia, to form themature TFmRNA.82,83Whether
the negative results in mice and the positive results in rats
are a matter of species specificity or a methodological issue
remains to be addressed. It should be mentioned, however,
that important cross-species differences in mammalian
coagulation systems have been previously reported.84,85

Moreover, although several antibodies able to recognize
different epitopes of the human TF protein have been
developed and are commercially available, much more
limited is the availability of antibodies directed against
mouse TF.86 Finally, it is worth mentioning that TF protein
was also observed in platelets from pigs. Of interest,
platelets from ovariectomized pigs treated with 17β-

Fig. 4 Colocalization of tissue factor (TF) and coagulation factor V (FV) or P-selectin on the surface of activated platelet. Platelets expressing TF
upon agonist stimulation do also express FV and P-selectin. Whole blood was stimulated in vitro with TRAP-6 (5 µM, 15 minutes) and labeled for TF
and coagulation FV ( Alexa Fluor 647 labeledmonoclonal antibody against FV, Enzyme Research, Life Technologies, Grand Island, NY) or P-selectin.
The representative density plots of three independent experiments reported in the figure show the colocalization of TF with coagulation FV
(12 � 8%) or with P-selectin (20 � 5%). TRAP-6, thrombin receptor activating peptide 6.
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estradiol or with raloxifene showed increased TF levels
compared with untreated pigs.87

Conclusions and Future Directions

Although the concept of platelet-associated TF has not been
completely accepted so far in the field of hemostasis and
thrombosis, the evidence of its presence and its potential
involvement in the hemostatic and thrombotic processes
both in humans and in experimental animal models, has
accumulated in the past 15 years.37,38,43–45 In one hand, the
evidence of the present time suggests that the function of
platelet-associated TF is to support thrombus growth, as first
postulated by the Nemerson group, in the setting of a plaque
rupture with thrombotic occlusion.6,34 On the other hand,
platelet-associated TF could play a key role also in venous
thrombosis and in immune defense where activation of
platelets and the coagulation cascade take place in the
absence of endothelial injury and, therefore, in the absence
of the contribution of the vesselwall-derived TF.88,89 The next
chapter of the evolving story of platelet-associated TF will
include the identification of the molecular mechanisms
involved in its overexpression in pathological conditions.
Such mechanisms should allow for the development of new
therapeutic strategies aimed to the prevention of thrombotic
complications in cardiovascular diseases.

Acknowledgments
We thank Dr. D. C. Cottell and Dr. P. Maderna for helpful
discussions on the article. This work was supported by
the Fondazione Monzino (grant no. 2013–2014 granted to
M. C.).

References
1 Fisher KL, Gorman CM, Vehar GA, O’Brien DP, Lawn RM. Cloning

and expression of human tissue factor cDNA. Thromb Res 1987;
48(1):89–99

2 Scarpati EM, Wen D, Broze GJ Jr, et al. Human tissue factor: cDNA
sequence and chromosome localization of the gene. Biochemistry
1987;26(17):5234–5238

3 Morrissey JH, Fakhrai H, Edgington TS. Molecular cloning of the
cDNA for tissue factor, the cellular receptor for the initiation of the
coagulation protease cascade. Cell 1987;50(1):129–135

4 Spicer EK, Horton R, Bloem L, et al. Isolation of cDNA clones coding
for human tissue factor: primary structure of the protein and
cDNA. Proc Natl Acad Sci U S A 1987;84(15):5148–5152

5 Giesen PL, Rauch U, Bohrmann B, et al. Blood-borne tissue factor:
another view of thrombosis. Proc Natl Acad Sci U S A 1999;96(5):
2311–2315

6 Rauch U, Nemerson Y. Circulating tissue factor and thrombosis.
Curr Opin Hematol 2000;7(5):273–277

7 Tremoli E, Camera M, Toschi V, Colli S. Tissue factor in atheroscle-
rosis. Atherosclerosis 1999;144(2):273–283

8 van der Wal AC, Li X, de Boer OJ. Tissue factor expression in the
morphologic spectrum of vulnerable atherosclerotic plaques.
Semin Thromb Hemost 2006;32(1):40–47

9 Taubman MB, Fallon JT, Schecter AD, et al. Tissue factor in the
pathogenesis of atherosclerosis. Thromb Haemost 1997;78(1):
200–204

10 Asada Y, Marutsuka K, Hatakeyama K, et al. The role of tissue factor
in the pathogenesis of thrombosis and atherosclerosis. J Atheros-
cler Thromb 1998;4(3):135–139

11 Moons AH, Levi M, Peters RJ. Tissue factor and coronary artery
disease. Cardiovasc Res 2002;53(2):313–325

12 Owens AP III, Mackman N. Role of tissue factor in atherothrom-
bosis. Curr Atheroscler Rep 2012;14(5):394–401

13 Bouchard BA, Mann KG, Butenas S. No evidence for tissue factor on
platelets. Blood 2010;116(5):854–855

14 Camera M, Brambilla M, Toschi V, Tremoli E. Tissue factor expres-
sion on platelets is a dynamic event. Blood 2010;116(23):
5076–5077

15 Camera M, Brambilla M, Boselli D, et al. Functionally active
platelets do express tissue factor. Blood 2012;119(18):4339–4341

16 Østerud B, Olsen JO. Human platelets do not express tissue factor.
Thromb Res 2013;132(1):112–115

17 Østerud B. Tissue factor expression in blood cells. Thromb Res
2010;125(Suppl 1):S31–S34

18 Fukuda C, Iijima K, Nakamura K. Measuring tissue factor (factor III)
activity in plasma. Clin Chem 1989;35(9):1897–1900

19 Key NS, Slungaard A, Dandelet L, et al. Whole blood tissue factor
procoagulant activity is elevated in patients with sickle cell
disease. Blood 1998;91(11):4216–4223

20 Albrecht S, Kotzsch M, Siegert G, et al. Detection of circulating
tissue factor and factor VII in a normal population. Thromb Hae-
most 1996;75(5):772–777

21 Soejima H, Ogawa H, Yasue H, et al. Heightened tissue factor
associated with tissue factor pathway inhibitor and prognosis in
patients with unstable angina. Circulation 1999;99(22):
2908–2913

22 Suefuji H, Ogawa H, Yasue H, et al. Increased plasma tissue factor
levels in acute myocardial infarction. Am Heart J 1997;134(2 Pt
1):253–259

23 Misumi K, Ogawa H, Yasue H, et al. Comparison of plasma tissue
factor levels in unstable and stable angina pectoris. Am J Cardiol
1998;81(1):22–26

24 Gando S, Nanzaki S, Sasaki S, Aoi K, Kemmotsu O. Activation of the
extrinsic coagulation pathway in patients with severe sepsis and
septic shock. Crit Care Med 1998;26(12):2005–2009

25 Amengual O, Atsumi T, Khamashta MA, Hughes GR. The role of the
tissue factor pathway in the hypercoagulable state in patients with
the antiphospholipid syndrome. Thromb Haemost 1998;79(2):
276–281

26 Asakura H, Kamikubo Y, Goto A, et al. Role of tissue factor in
disseminated intravascular coagulation. Thromb Res 1995;80(3):
217–224

27 Carey MJ, Rodgers GM. Disseminated intravascular coagulation:
clinical and laboratory aspects. Am J Hematol 1998;59(1):65–73

28 Hugel B, Socié G, Vu T, et al. Elevated levels of circulating
procoagulant microparticles in patients with paroxysmal noctur-
nal hemoglobinuria and aplastic anemia. Blood 1999;93(10):
3451–3456

29 Jy W, Horstman LL, ArceM, Ahn YS. Clinical significance of platelet
microparticles in autoimmune thrombocytopenias. J Lab Clin Med
1992;119(4):334–345

30 Warkentin TE, Hayward CP, Boshkov LK, et al. Sera from patients
with heparin-induced thrombocytopenia generate platelet-de-
rived microparticles with procoagulant activity: an explanation
for the thrombotic complications of heparin-induced thrombocy-
topenia. Blood 1994;84(11):3691–3699

31 Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, et al. Cell-
derivedmicroparticles generated in patients during cardiopulmo-
nary bypass are highly procoagulant. Circulation 1997;96(10):
3534–3541

32 Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and
procoagulant properties of microparticles in meningococcal sep-
sis. Blood 2000;95(3):930–935

Seminars in Thrombosis & Hemostasis

Platelet Tissue Factor in Atherothrombosis Camera et al.



33 Rauch U, Bonderman D, Bohrmann B, et al. Transfer of tissue factor
from leukocytes to platelets is mediated by CD15 and tissue factor.
Blood 2000;96(1):170–175

34 Rauch U, Nemerson Y. Tissue factor, the blood, and the arterial
wall. Trends Cardiovasc Med 2000;10(4):139–143

35 ZillmannA, Luther T,Müller I, et al. Platelet-associated tissue factor
contributes to the collagen-triggered activation of blood coagula-
tion. Biochem Biophys Res Commun 2001;281(2):603–609

36 Siddiqui FA, Desai H, Amirkhosravi A, Amaya M, Francis JL. The
presence and release of tissue factor from human platelets.
Platelets 2002;13(4):247–253

37 Camera M, Frigerio M, Toschi V, et al. Platelet activation induces
cell-surface immunoreactive tissue factor expression, which is
modulated differently by antiplatelet drugs. Arterioscler Thromb
Vasc Biol 2003;23(9):1690–1696

38 Müller I, Klocke A, AlexM, et al. Intravascular tissue factor initiates
coagulation via circulating microvesicles and platelets. FASEB J
2003;17(3):476–478

39 Brambilla M, Camera M, Colnago D, et al. Tissue factor in patients
with acute coronary syndromes: expression in platelets, leuko-
cytes, and platelet-leukocyte aggregates. Arterioscler ThrombVasc
Biol 2008;28(5):947–953

40 Fink L, Hölschermann H, Kwapiszewska G, et al. Characterization
of platelet-specific mRNA by real-time PCR after laser-assisted
microdissection. Thromb Haemost 2003;90(4):749–756

41 Schwertz H, Tolley ND, Foulks JM, et al. Signal-dependent splicing
of tissue factor pre-mRNA modulates the thrombogenicity of
human platelets. J Exp Med 2006;203(11):2433–2440

42 Panes O,Matus V, Sáez CG, Quiroga T, Pereira J, Mezzano D. Human
platelets synthesize and express functional tissue factor. Blood
2007;109(12):5242–5250

43 Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JW. Platelet
tissue factor synthesis in type 2 diabetic patients is resistant to
inhibition by insulin. Diabetes 2010;59(6):1487–1495

44 Falanga A, Marchetti M, Vignoli A, et al. V617F JAK-2 mutation in
patients with essential thrombocythemia: relation to platelet,
granulocyte, and plasma hemostatic and inflammatorymolecules.
Exp Hematol 2007;35(5):702–711

45 Tilley RE, Holscher T, Belani R, Nieva J, Mackman N. Tissue factor
activity is increased in a combined platelet and microparticle
sample from cancer patients. Thromb Res 2008;122(5):
604–609

46 Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation
of a regulatory protein, Bcl-3, in activated human platelets. Proc
Natl Acad Sci U S A 1998;95(10):5556–5561

47 Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets
mediate inflammatory signaling by regulated interleukin 1beta
synthesis. J Cell Biol 2001;154(3):485–490

48 Evangelista V, Manarini S, Di Santo A, et al. De novo synthesis of
cyclooxygenase-1 counteracts the suppression of platelet throm-
boxane biosynthesis by aspirin. Circ Res 2006;98(5):593–595

49 Camera M, Brambilla M, Facchinetti L, et al. Tissue factor and
atherosclerosis: not only vessel wall-derived TF, but also platelet-
associated TF. Thromb Res 2012;129(3):279–284

50 Brambilla M, Facchinetti L, Canzano P, et al. Human megakaryo-
cytes express Tissue Factor and deliver it to a subset of shedded
platelets where it contributes to thrombin generation [e-pub
ahead of print]. Thromb Haemost 2015;114(3):579–592

51 Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL,
Bahou WF. Transcript profiling of human platelets using micro-
array and serial analysis of gene expression. Blood 2003;101(6):
2285–2293

52 Bugert P, Dugrillon A, Günaydin A, Eichler H, Klüter H. Messenger
RNA profiling of human platelets by microarray hybridization.
Thromb Haemost 2003;90(4):738–748

53 Hillmann AG, Harmon S, Park SD, O’brien J, Shields DC, Kenny D.
Comparative RNA expression analyses from small-scale, single-
donor platelet samples. J Thromb Haemost 2006;4(2):349–356

54 Muszbek L, Adány R,Mikkola H. Novel aspects of blood coagulation
factor XIII. I. Structure, distribution, activation, and function. Crit
Rev Clin Lab Sci 1996;33(5):357–421

55 Jayo A, Conde I, Lastres P, Jiménez-Yuste V, González-Manchón C.
New insights into the expression and role of platelet factor XIII-A.
J Thromb Haemost 2009;7(7):1184–1191

56 Takenaka T, Kuribayashi K, TsukiyamaM,NakamineH, Fukuhara Y,
Kuno T. Concentration of mRNA for von Willebrand factor in
platelets of type I von Willebrand disease. Clin Chim Acta 1996;
245(1):125–127

57 Maroney SA, Haberichter SL, Friese P, et al. Active tissue factor
pathway inhibitor is expressed on the surface of coated platelets.
Blood 2007;109(5):1931–1937

58 Reitsma PH, Ploos van Amstel HK, Bertina RM. Three novel
mutations in five unrelated subjects with hereditary protein S
deficiency type I. J Clin Invest 1994;93(2):486–492

59 Martincic D, Kravtsov V, Gailani D. Factor XI messenger RNA in
human platelets. Blood 1999;94(10):3397–3404

60 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin
generation. Arterioscler Thromb Vasc Biol 2002;22(9):1381–1389

61 Dale GL. Coated-platelets: an emerging component of the procoa-
gulant response. J Thromb Haemost 2005;3(10):2185–2192

62 Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagu-
lation: different populations, different functions. J Thromb Hae-
most 2013;11(1):2–16

63 van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where
they are and how they behave. Nat Rev Mol Cell Biol 2008;9(2):
112–124

64 Lhermusier T, Chap H, Payrastre B. Platelet membrane phospho-
lipid asymmetry: from the characterization of a scramblase activ-
ity to the identification of an essential protein mutated in Scott
syndrome. J Thromb Haemost 2011;9(10):1883–1891

65 Zwaal RF, Comfurius P, van Deenen LL. Membrane asymmetry and
blood coagulation. Nature 1977;268(5618):358–360

66 Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phos-
pholipid scrambling by TMEM16F. Nature 2010;468(7325):
834–838

67 Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF.
Generation of prothrombin-converting activity and the exposure
of phosphatidylserine at the outer surface of platelets. Eur J
Biochem 1982;122(2):429–436

68 Bevers EM, Comfurius P, Zwaal RF. Changes in membrane phos-
pholipid distribution during platelet activation. Biochim Biophys
Acta 1983;736(1):57–66

69 Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT.
Annexin V as a probe of aminophospholipid exposure and platelet
membrane vesiculation: a flowcytometry study showing a role for
free sulfhydryl groups. Blood 1993;81(10):2554–2565

70 London FS, Marcinkiewicz M, Walsh PN. A subpopulation of
platelets responds to thrombin- or SFLLRN-stimulationwith bind-
ing sites for factor IXa. J Biol Chem 2004;279(19):19854–19859

71 Wolfs JL, Comfurius P, Rasmussen JT, et al. Activated scramblase
and inhibited aminophospholipid translocase cause phosphati-
dylserine exposure in a distinct platelet fraction. Cell Mol Life Sci
2005;62(13):1514–1525

72 Kalafatis M, Egan JO, van ’t Veer C, Cawthern KM, Mann KG. The
regulation of clotting factors. Crit Rev Eukaryot Gene Expr 1997;
7(3):241–280

73 Bouchard BA, Williams JL, Meisler NT, Long MW, Tracy PB.
Endocytosis of plasma-derived factor V bymegakaryocytes occurs
via a clathrin-dependent, specific membrane binding event.
J Thromb Haemost 2005;3(3):541–551

74 GouldWR, Simioni P, Silveira JR, Tormene D, Kalafatis M, Tracy PB.
Megakaryocytes endocytose and subsequently modify human
factor V in vivo to form the entire pool of a unique platelet-derived
cofactor. J Thromb Haemost 2005;3(3):450–456

75 Weiss HJ, Lages B, Zheng S, Hayward CP. Platelet factor V NewYork:
a defect in factor V distinct from that in factor V Quebec resulting

Seminars in Thrombosis & Hemostasis

Platelet Tissue Factor in Atherothrombosis Camera et al.



in impaired prothrombinase generation. Am J Hematol 2001;
66(2):130–139

76 Fager AM, Wood JP, Bouchard BA, Feng P, Tracy PB. Properties of
procoagulant platelets: defining and characterizing the subpopu-
lation binding a functional prothrombinase. Arterioscler Thromb
Vasc Biol 2010;30(12):2400–2407

77 Stalker TJ, Traxler EA, Wu J, et al. Hierarchical organization in the
hemostatic response and its relationship to the platelet-signaling
network. Blood 2013;121(10):1875–1885

78 Jorgensen L, Rowsell HC, Hovig T, Mustard JF. Resolution and
organization of platelet-rich mural thrombi in carotid arteries of
swine. Am J Pathol 1967;51(5):681–719

79 Stehbens WE, Biscoe TJ. The ultrastructure of early platelet aggre-
gation in vivo. Am J Pathol 1967;50(2):219–243

80 White JG. Platelet structural physiology: the ultrastructure of
adhesion, secretion, and aggregation in arterial thrombosis.
Cardiovasc Clin 1987;18(1):13–33

81 Palmerini T, Tomasi L, Barozzi C, et al. Detection of tissue factor
antigen and coagulation activity in coronary artery thrombi
isolated from patients with ST-segment elevation acute myocar-
dial infarction. PLoS ONE 2013;8(12):e81501

82 Hernández Vera R, Vilahur G, Ferrer-Lorente R, Peña E, Badimon L.
Platelets derived from the bone marrow of diabetic animals
show dysregulated endoplasmic reticulum stress proteins that

contribute to increased thrombosis. Arterioscler Thromb Vasc Biol
2012;32(9):2141–2148

83 Tyagi T, Ahmad S, Gupta N, et al. Altered expression of platelet
proteins and calpain activity mediate hypoxia-induced prothrom-
botic phenotype. Blood 2014;123(8):1250–1260

84 Karges HE, Funk KA, Ronneberger H. Activity of coagulation and
fibrinolysis parameters in animals. Arzneimittelforschung 1994;
44(6):793–797

85 Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G.
Whole blood viscosity, plasma viscosity and erythrocyte aggrega-
tion in ninemammalian species: reference values and comparison
of data. Exp Physiol 2003;88(3):431–440

86 Basavaraj MG, Olsen JO, Østerud B, Hansen JB. Differential ability
of tissue factor antibody clones on detection of tissue factor in
blood cells and microparticles. Thromb Res 2012;130(3):
538–546

87 Jayachandran M, Sanzo A, Owen WG, Miller VM. Estrogenic
regulation of tissue factor and tissue factor pathway inhibitor in
platelets. Am J Physiol Heart Circ Physiol 2005;289(5):
H1908–H1916

88 Esmon CT. Basic mechanisms and pathogenesis of venous throm-
bosis. Blood Rev 2009;23(5):225–229

89 Engelmann B, Massberg S. Thrombosis as an intravascular effector
of innate immunity. Nat Rev Immunol 2013;13(1):34–45

Seminars in Thrombosis & Hemostasis

Platelet Tissue Factor in Atherothrombosis Camera et al.


