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I. Abstract 
 

The c-myc gene encodes for a transcription factor involved in the regulation of different 

cellular mechanisms, ranging from cell cycle control and apoptosis to cellular metabolism. 

Myc is frequently altered in human cancer either by genomic rearrangement or by 

alteration of upstream regulatory pathways. Myc crucial role both in tumor formation and 

maintenance makes it an attractive molecular target for cancer therapy. Unfortunately, 

Myc is intrinsically resilient to direct pharmacological targeting using small molecules. 

To overcome this issue, alternative therapeutic avenues have been explored. In the last 

years, independent groups showed that BET proteins inhibition leads to a strong Myc 

downregulation in Multiple Myelomas and Acute Myeloid Leukemias, with consequent 

cell cycle arrest and tumor regression. To support the hypothesis of a direct and specific 

effect on Myc levels mediated by BET proteins, two different working models were 

proposed depending on c-myc location (translocated versus endogenous).  

In order to extend these observations and improve our understanding of the mechanism of 

action of BETs inhibitors, we evaluated global transcriptional alteration and chromatin 

profiles in Burkitt’s Lymphomas in response to JQ1.  

Our results demonstrate that BETs inhibitors efficacy is dependent on global alteration of 

RNA PolII dynamics, due to the role of BRD4 in regulating elongation. Yet, despite a 

pervasive eviction of BRD4 from chromatin and the global effect on RNA PolII observed 

following BETs inhibition, the transcriptional alterations are limited to a subset of genes. 

These genes are characterized by promoter regions heavily marked by H3K27Ac, high 

binding of BRD4 and Transcription Factors (Myc and E2F1) and RNA PolII. These JQ1 

sensitive genes are consistent among different cell lines and characterized by high 

expression levels.  
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Prominent promoter saturation and high RNA PolII pausing render their expression rate-

limited by transcriptional elongation. Indeed the same genes are selectively targeted by 

pharmacological treatments affecting components of the elongation machinery. Thus, 

selective transcriptional effects following JQ1 treatment are linked to BETs role in 

regulating transcriptional elongation. These observations highlight the role of BETs 

protein in regulating gene expression and provide a rationale to explain how broad 

inhibition of elongation may lead to a selective transcriptional response. 
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II. Introduction 
 

MYC 
 

The myc gene was first identified as the avian retroviral oncogene v-myc responsible of the 

transforming capacity of the MC29 avian virus  (Sheiness and Bishop, 1979), only later its 

cellular counterpart was identified  (Vennstrom et al., 1982). c-myc is a member of a larger 

family comprising also L-Myc and N-Myc. All the family members share high structural 

homology and exert their transcriptional function by binding to the cofactor Max  

(Blackwood and Eisenman, 1991). The c-Myc protein is characterized by different N-

terminal Myc homology Boxes (MB), which are also conserved in the other family 

members. In particular, the most relevant for Myc function are MBI and MBII, that 

respectively contain key phosphorylation sites (Thr58 and Ser62) and binding domains for 

co-activators as TRRAP. The Myc protein contains also a Transactivator Domain (TAD), 

needed for the activation of transcription, and a Nuclear Localization Signal (NLS), 

necessary for the proper subcellular localization. The helix-loop-helix-leucine-zipper 

domain (HLH-LZ) and the basic region (BR) are located at the C-terminus and are 

necessary for the dimerization with Max and for the binding to specific DNA sequences, 

respectively. 
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Fig. 1 Myc protein structure 
Schematic representation of the Myc protein structure where an N-terminal Domain (NTD), a central region 
and a C-terminal Domain (CTD) are highlighted. The NTD contains the Trans-Activator Domain (TAD), 
necessary for gene activation, and the Myc homology Boxes (MB). In particular MBI and MBII are 
depicted: MBI contains key phospho-sites (Thr58 and Ser62), while MBII contains protein-protein 
interaction domain. In the central region is located the Nuclear Localization Signal (NLS). Finally, the CTD 
contains the Helix-Loop-Helix-Leucine-Zipper (HLH-LZ) domain, necessary for the dimerization with Max, 
and the Basic region (b) needed for the binding to the DNA.  
Figure adapted from “c-myc: more than just a matter of life and death.”  (Pelengaris et al., 2002)  © 2015 
Macmillan Publishers Limited. All Rights Reserved. 

 

Transcriptional and post-translational regulation of Myc 

Since Myc is involved in different cellular processes and its deregulation is associated to 

tumor formation, Myc expression is tightly regulated at different levels, ranging from the 

transcriptional control to protein degradation.  

The c-myc gene is characterized by the presence of at least 4 different promoters (P0, P1, 

P2 and P3) located before the second exon, which contains the starting codon. The most 

used promoter is P2 that, together with P1, contains both TATA boxes and Initiator (Inr) 

sequences. P0 and P3 are less used and they are TATA-less promoters  (Wierstra and 

Alves, 2008).  

 

Fig. 2 The c-myc gene structure 
The c-myc gene is composed by 3 exons, with the starting codon located in the second exon. At least 4 
different promoters, located upstream of the second exon, were identified so far.  
Figure adapted from “The c-myc Promoter: Still MysterY and Challenge” (Wierstra and Alves, 2008)  
Copyright © 2007 Elsevier Inc. All rights reserved. 
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In Myc promoter a plethora of binding sites for different TFs were identified  (Wierstra 

and Alves, 2008). Evidences were provided for the positive regulation of c-myc 

transcription mediated by WNT  (He et al., 1998; Sansom et al., 2007), JAK/STAT  

(Bromberg et al., 1999; Kiuchi et al., 1999), Notch  (Palomero et al., 2006; Sharma et al., 

2006; Weng et al., 2006) and Hedgehog  (Berman et al., 2002; Sicklick et al., 2006), while 

TGFβ represses c-myc transcription  (Chen et al., 2002; Frederick et al., 2004).  

 
Fig. 3 Transcriptional regulation of the c-myc gene 
c-myc transcription is regulated by a plethora of different signaling pathways. Among the most relevant, 
activating signals are mediated by Hedgehog, WNT, Notch, JAK-STAT pathways, while negative regulation 
is exerted by TGFβ signaling.  
Figure adapted from “MYC: connecting selective transcriptional control to global RNA production” (Kress 
et al., 2015)  © 2015 Macmillan Publishers Limited. All Rights Reserved. 
 

Myc is one of the first genes for which the regulation of the elongation step and the 

presence of RNA PolII paused at the promoter were observed. Indeed, Myc is not 

expressed in quiescent cells but its transcription is immediately activated in response to 

mitogenic stimuli. This immediate response is favored by the presence of promoter-

proximal paused RNA PolII, ready to be released as soon as the stimulus is triggered  

(Bentley and Groudine, 1986; Nepveu and Marcu, 1986). Once Myc is transcribed, it 

could be regulated both at the post-transcriptional and post-translational levels. Indeed 

both, Myc mRNA and protein have a very short half life (20-30 minutes) due to active 

mechanisms that shorten the mRNA or destabilize the protein through phosphorylation of 

key residues. In particular, mitogenic stimuli induce the phosphorylation on Ser62, 

necessary for the stabilization and activation of Myc protein. At the same time, phospho-

Ser62 serves as a scaffold for the recruitment of GSK3β that in turn phosphorylates Thr58, 

thus causing the subsequent ubiquitination and degradation of the Myc protein  (Meyer 

and Penn, 2008; Vervoorts et al., 2006). 
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Fig. 4 Schematic representation of Myc protein degradation 
Two critical residues are responsible of Myc protein degradation: Thr58 and Ser62. Ser62 is phosphorylated 
in response to mitogenic stimuli and, while enhancing Myc activity, creates a scaffold for the binding of 
GSK3β that leads to the phosphorylation of Thr58. After this second phosphorylation event, the 
oncosuppressor FBW7 is bound and it recruits SCF, favoring Myc ubiquitination and proteosomal 
degradation.  
Figure adapted from “The Ins and Outs of MYC Regulation by Posttranslational Mechanisms”  (Vervoorts et 
al., 2006) © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. 
 

Besides the direct regulation of Myc mRNA and protein, another layer of control is 

represented by the availability of Max. Indeed, Myc recognition of the DNA target 

sequences is mediated by the dimerization with its partner Max  (Amati et al., 1992). 

Differently from Myc, Max is constitutively expressed and it could dimerize also with 

other HLH-LZ proteins as Mad, a Myc antagonist that, recognizing Myc target sequences, 

represses genes that are usually activated by Myc. Thus, the amount of free Max and the 

balance of Myc-Max and Mad-Max dimers represent an additional step in the control of 

Myc activity  (Grandori et al., 2000). 

 

Myc as transcription activator 

The Myc-Max heterodimer shows a preference for specific DNA sequences, called E 

boxes (CACGTG). Its binding to chromatin allows the recruitment of different co-

activators and chromatin remodeling factors such as pTEFb  (Rahl et al., 2010) TRRAP  

(McMahon et al., 1998) CBP and p300  (Vervoorts et al., 2003), as well as RNA PolII 

itself  (Koch et al., 2007). Indeed, the function of Myc as transcription activator could be 

simplistically summarized as a first step of recruitment of chromatin modifiers, favoring 

the deposition of marks of transcriptional activation, and a second step of enhancement of 

elongation, favoring the release of promoter paused RNA PolII. Different evidences 
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showed that Myc, via its MBII domain, could directly bind TRRAP  (McMahon et al., 

1998) and recruits on the promoter Histone Acetyl Transferases (HATs)  (McMahon et al., 

2000). Finally, after inducing chromatin acetylation at promoters, Myc could recruit RNA 

PolII and pTEFb to enhance the release of the stalled RNA PolII and induce the 

transcriptional elongation  (Eberhardy and Farnham, 2002; Rahl et al., 2010). Myc is not a 

pioneer factor, meaning that it is not able to bind closed chromatin and cannot recognize 

target sequences when they are buried into the nucleosome structure. Indeed, it was 

demonstrated in reprogramming experiments that, while Oct4, Sox2, Klf4 (OSK) were 

able to act as pioneer factors by binding closed chromatin and unwinding the DNA, Myc 

only bound the DNA subsequently to OSK  (Soufi et al., 2012).  

Moreover, Myc binding to its target sequences required the presence of specific chromatin 

modifications characteristic of active regulatory regions as H3K4me1, H3K4me2, 

H3K4me3, H3K27Ac. Furthermore, DNA sequences bound by Myc are usually located in 

regions enriched for CpG islands  (Sabò et al., 2014).  

Different mechanisms have been proposed for Myc recognition and binding to its target 

sequences: one above all better summarizes what is known so far on Myc and predicts that 

target recognition occurs as a multistep process with a first phase of protein-protein 

interaction with the already assembled basal transcription machinery (Pre-Initiation 

Complex (PIC)) and with the chromatin “readers” that decipher the histone modifications. 

Once these regions are identified, the Myc-Max heterodimer makes contact with DNA and 

scans the open chromatin stretch in order to find high affinity regions to bind. The 

recognition of the E-boxes allows the transition from a low-affinity to a high-affinity 

binding among Myc-Max and the DNA, this interaction is further stabilized by the 

protein-protein contacts with the basal transcription machinery  (Sabò and Amati, 2014).  
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Fig. 5 Schematic model for Myc-Max dimer DNA recognition 
The recognition of Myc target sequences, the E-boxes (CACGTG), follows the formation of Myc-Max 
dimer. Initially, Myc-Max dimer takes contacts with the basal transcription machinery (Pre-Initiation 
Complex (PIC)) and with chromatin readers. Subsequently, the dimer binds with low affinity and scans the 
DNA stretch, until the E-box is found and bound with high affinity.  
Figure adapted from “Genome Recognition by Myc” (Sabò and Amati, 2014) Copyright © 2014 Cold Spring 
Harbor Laboratory Press; all rights reserved. 
 

The intensity and the number of sites bound by Myc change strongly based on the cell line 

analyzed and depend on the endogenous Myc levels  (Sabò and Amati, 2014). There is 

ample evidence showing that, when expressed at physiological levels, Myc binds only 

canonical E-boxes, preferentially at the promoter, with relative high affinity. In cells 

where Myc is deregulated and overexpressed, its binding is no longer restricted to specific 

DNA sequences, but can also occurs on not-canonical E-boxes present in distal regulatory 

regions. In this scenario, virtually all the regulatory regions are bound by Myc causing a 

phenomenon called “invasion”  (Sabò et al., 2014). 
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Myc regulates transcriptional elongation 

Myc can regulate the expression of its target genes either by activating or repressing them 

after the binding to regulatory regions usually located on the promoter. The promoter is 

defined as a DNA region surrounding the Transcription Start Site (TSS) and that is 

essential both for the assembly of the Pre-Initiation Complex (PIC) and for the recruitment 

of specific Transcription Factors (TFs) that ensure the fine regulation of the expression of 

the target genes. Similar to promoters for DNA composition and modular assembly of TFs 

binding sites, the enhancers can regulate the transcription of associated genes in an 

orientation- and distance-independent manner.  

TFs and co-activators recruited to promoter associated regulatory regions can control gene 

expression by affecting different steps of the transcription process: initiation, elongation 

and termination. During the initiation step, RNA PolII and General Transcription Factors 

are recruited on the promoter. While first studies on gene transcription claimed that the 

recruitment of RNA PolII represented the limiting step in the regulation of gene 

expression, recent evidences demonstrated that RNA PolII, once on the TSS, is not 

immediately engaged in the transcription process, but instead it is retained on the promoter 

in a stalled condition  (Krumm et al., 1992; Plet et al., 1995; Rasmussen and Lis, 1993; 

Rougvie and Lis, 1988; Strobl and Eick, 1992). Indeed, different modifications are 

required to prime RNA PolII and enhance its processivity, among which the most 

characterized are the phosphorylation on Serine 5 (Ser5) and Serine 2 (Ser2) of the 

Carboxy-Terminal Domain (CTD). The phospho-residue on Ser5 is needed for RNA PolII 

priming and it is added by CDK7, a component of the TFIIH in the PIC complex  

(Sainsbury et al., 2015). Instead, the Ser2 is phosphorylated by CDK9 that, together with 

Cyclin T1, is part of the positive Elongation Factor (pTEFb). The phosphorylation on Ser2 

is necessary for promoter clearance and the progression of transcription through the 

elongation step. pTEFb further pushes the RNA PolII toward the elongating form 

phosphorylating negative transcription regulators as NELF and DSIF, that in physiological 
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condition block RNA PolII in a promoter-proximal paused state  (Buratowski, 2009; 

Jonkers and Lis, 2015). Finally, the transcription process ends as soon as RNA PolII 

encounters the Transcription End Sites (TES), that contain the information for its release 

from chromatin  (Porrua and Libri, 2015).  

Recent evidences show that Myc can actively enhance the elongation step by directly 

recruiting pTEFb on the promoter of its targets  (Rahl et al., 2010). Accordingly, Myc-

Max inhibition caused a strong reduction in the elongating and Ser2 phosphorylated RNA 

PolII, while no changes were observed on RNA PolII recruited on the promoter or on the 

amount of polymerase phosphorylated on Ser5  (Rahl et al., 2010).  

 

Myc role in cell cycle progression and apoptosis 

Myc regulates transcriptional programs involved in different aspects of cell life, ranging 

from the cell cycle control to regulation of cell growth, apoptosis, cell metabolism and 

ribosome biogenesis  (Ponzielli et al., 2005).  
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Fig. 6 Myc regulatory network 
Myc is a key transcription factor involved in the regulation of different biological process, ranging from cell 
cycle progression and apoptosis to angiogenesis and cellular differentiation.  
Figure adapted from “Cancer therapeutics; Targeting the dark side of Myc”  (Ponzielli et al., 2005) ©2005 
Elsevier Ltd. All rights reserved.  
 

Since Myc is a transcription factor, it exerts its function through the regulation of key 

genes involved in different processes. Indeed, the positive effect exerted by Myc in the 

control of the cell cycle can be explained by the transcriptional activation mediated by 

Myc of genes essential for the cell cycle progression, such as Cyclin D1, D2, E1, 

CDC25A, E2F1, E2F2, CDK4  (Meyer and Penn, 2008; Obaya et al., 1999; Oster et al., 

2002). Beside the transcription activator function, Myc can act as a transcriptional 

repressor, inhibiting the expression of specific genes. This is particularly relevant for cell 

cycle progression, where Myc importance is not only limited to the activation of the genes 

mentioned above, but it is critical also for the repression of cell cycle check point genes 

(GADD45 and GADD153) or for the inhibition of CDK inhibitors  (Meyer and Penn, 

2008). Myc is also involved in the regulation of apoptosis by acting on the ARF-MDM2-

p53 axis, both activating ARF and concomitantly inhibiting p21. This aspect of Myc 

biology is particularly relevant in tumor onset: indeed, different publications clearly 

demonstrated that oncogenic Myc and concomitant inactivation of p53 or increased 

expression of anti-apoptotic factors as BCL2 led to an acceleration of tumor onset  (Meyer 

and Penn, 2008; Strasser et al., 1990). 
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Myc in cancer 

Given its crucial role in different aspects of cell life and in particular in the control of cell 

cycle and cell growth, Myc deregulation is associated to different types of cancer. Indeed, 

Myc expression is altered in a wide spectrum of tumors, ranging from hematological to 

solid tumors. The most common alteration of Myc expression involves gene translocation 

and amplification, while point mutations are more rare and usually lead to an increase in 

protein stability. In particular, Myc amplification is more frequent in solid tumors, indeed 

it is found in ~30% of Hepatocellular carcinoma, in 9-45% of Breast cancers and in 40% 

of Ovarian cancers; while Myc translocation is commonly associated to hematological 

disorders, in fact it is present in 100% of Burkitt’s Lymphomas (BL) and ~15% of 

Multiple Myeloma (MM), where c-myc is translocated under the control of the 

Immunoglobulin regulatory regions  (Vita and Henriksson, 2006). The translocation 

responsible of the onset of BL involves chromosome 8, in which c-myc is located, and 

chromosome 14, 2 or 22 where the regulatory regions for the immunoglobulin heavy and 

light chains are located  (Molyneux et al., 2012). 

 
Fig. 7 Schematic representation of the c-myc gene rearrangement  
Myc deregulation in cancer could be achieved by different mechanisms as gene amplification, typical of 
solid tumors, or genomic rearrangement, typical of hematopoietic malignancies. In particular 100% of BL 
and ~15% of MM are characterized by chromosomal translocation that juxtaposes the c-myc locus to the 
Immunoglobulin regulatory regions of the heavy, or more rarely of the light, chain.  
Figure adapted from “Reflecting on 25 years with Myc”  (Meyer and Penn, 2008) © 2008 Macmillan 
Publishers Limited. All Rights Reserved. 
 

Beside these gross genomic alterations, Myc expression can be deregulated also by the 

impairment of upstream pathways. One example is provided by Acute Myeloid Leukemia 

(AML) where the fusion oncoprotein MLL-AF4/9 directly activates c-myc transcription. 
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Furthermore, key Myc aminoacids could be mutated in cancer: one hotspot is represented 

by the residue Thr58 that when phosphorylated leads to Myc degradation via proteasome. 

Mutations on this residue not only ensure a longer protein half life, but also confer 

oncogenic properties separating the regulation of the cell cycle progression from the 

control of the apoptosis mediated by Myc. Indeed, mutant Myc on Thr58 is unable to 

induce BIM expression that inhibits BCL2, with the final result of the bypass of the 

apoptotic response and an acceleration of lymphomagenesis  (Hemann et al., 2005).  

 

Myc as a therapeutic target 

As mentioned above, Myc is often associated to cancer since it is necessary both for tumor 

formation and tumor maintenance. The central role exerted by Myc in tumor maintenance 

was highlighted in experiments using conditional mice in which Myc expression could be 

modulated in a reversible way. In particular, if Myc expression was switched off in 

established tumors, tumor shrinkage and regression were observed, both in hepatocellular 

carcinoma  (Shachaf et al., 2004) and in pancreatic cancer  (Pelengaris et al., 2002a). It is 

worth to note that the response to Myc downregulation is tumor-type specific, since 

lymphomas undergo apoptosis, osteosarcoma cells are forced to differentiate while 

hepatocellular carcinomas show an heterogeneous response, indeed the vast majority of 

carcinoma cells die for apoptosis and few cells remain dormant and ready to re-establish a 

new tumor once Myc expression is restored  (Gabay et al., 2014). The crucial role of Myc 

in tumor maintenance was demonstrated also in tumors driven by other oncogenes, as in 

Kras driven lung cancers  (Soucek et al., 2008). Indeed, modulating the expression of a 

Myc dominant negative (Omomyc) (Soucek et al., 1998), and therefore blocking Myc 

transcriptional activity, was sufficient to cause strong regression also in already 

established Kras tumor. Since Myc is essential for the regulation of normal cell 

proliferation, this study assessed also the side effects of a systemic Myc inhibition. Indeed, 
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a prolonged Omomyc induction led to defects in spermatogenesis, hair production and 

epidermal thickness. However, these effects were well tolerated and reversible, since the 

animals did not show any weight loss and, after Myc restoration, the proliferation in the 

normal tissues was reinstated  (Soucek et al., 2008). 

Due to its involvement both in tumor formation and maintenance and since its 

downregulation is clearly associated to tumor regression and cellular differentiation, the 

possibility to target Myc represents a tempting therapeutic option. Unfortunately, Myc, as 

other transcription factor, does not possess a ternary structure suitable for direct drug 

targeting. Thus, different approaches have been used in order to overcome this obstacle: 

the main strategies evaluated so far range from inhibition of c-myc expression, using 

AntiSense Oligonucleotides (ASOs), to transcription inhibition thanks to the use of Triple 

helix Forming Oligonucleotides (TFOs) or porphyrins that create a physical obstacle for 

RNA PolII. Another promising alternative is represented by the possibility to prevent the 

dimerization with Max, through the use of Myc dominant negative, as Omomyc  (Soucek 

et al., 1998, 2002). Each of these approaches shows limitations in particular for clinical 

applications, concerning molecules stability, half-life and feasibility to reach the right 

target  (Ponzielli et al., 2005).  
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BET proteins 
 

BET family 

Chromatin is a target of several Post-Translation Modifications (PTMs), ranging from 

acetylation to ubiquitination, which are produced by a class of proteins collectively called 

“writers”. These modifications are thought to provide a “code”, which contains epigenetic 

information. This code is deciphered by proteins called “readers” which are able to 

recognize specific PTMs, and eventually reset by “erasers”, proteins capable of removing 

PMTs.  (Filippakopoulos and Knapp, 2014).  

 
Fig. 8 Histone modifications and proteins involved in histone modification 
Histone proteins usually are subjected to post translation modification mediated by “writers” that are 
devoted to add phospho, methyl, acetyl or other groups. This code is read by a specific class of proteins 
called “readers” and eventually removed by “erasers”. Histone Acetyl Transferares, Kinases and Histone 
Methyl Transferases are members of the writer class; among the readers are included bromodomain and 
chromodomain, while Histone Deacetylases, Phosphatases and Demethylases composed the eraser class.  
Figure adapted from “Targeting bromodomains: epigenetic readers of lysine acetylation”  (Filippakopoulos 
and Knapp, 2014) © 2014 Macmillan Publishers Limited. All Rights Reserved. 
 

In particular, the acetyl group is added to lysines by the Histone Acetyl Transferases 

(HATs) and is detected by bromodomain containing proteins, such as those belonging to 

the BET family (Bromodomain and Extra-Terminal containing proteins). The BET family 

is composed of 4 different nuclear proteins (BRD2, BRD3, BRD4 and BRDT) 

characterized by two tandem bromodomains (BD) and an Extra-terminal (ET) domain.  
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Fig. 9 Schematic representation of BETs proteins 
The BET family is composed of 4 different members: BRD2, BRD3, BRD4 and BRDT. All the members are 
characterized by 2 N-terminal bromodomains (BD) and one Extra-Terminal domain (ET). While for BRD2, 
BRD3 and BRDT only one isoform is known, for BRD4 3 different isoforms exist.  
Figure from “The Mechanisms behind the Therapeutic Activity of BET Bromodomain Inhibition”  (Shi and 
Vakoc, 2014)  ©2014 Elsevier Inc. 
 

The bromodomain was first identified in the Drosophila brahma gene and is composed by 

4 α-helices and 2 loops that create a hydrophobic pocket where the acetylated lysines are 

bound. In the human genome 61 bromodomains have been identified, distributed in 46 

different proteins that cluster in 8 different families. 

 
Fig. 10 Phylogenetic for bromodomain proteins 
In humans the bromodomain containing proteins are divided in 8 different classes, based on protein 
structure. In total, 61 different bromodomains organized in 46 different proteins were indentified. 
Figure adapted from “Targeting bromodomains: epigenetic readers of lysine acetylation”  (Filippakopoulos 
and Knapp, 2014) © 2014 Macmillan Publishers Limited. All Rights Reserved. 
 

Thanks to its peculiar 3D structure, the bromodomain pocket is amenable to small 

molecule targeting. Indeed, in the recent years different BET protein inhibitors, mimicking 

the acetyl lysines or blocking the bromodomain pocket, have been synthesized  

(Filippakopoulos and Knapp, 2014). The scientific community has extensively taken 
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advantage of BET inhibitors in order to study BETs mechanism of action and their 

involvement in different pathologies.  

 

BETs as cell cycle progression regulators 

BRD2 and BRD4 are the BET proteins better characterized. They are ubiquitously 

expressed, while BRDT expression is limited to the testis. Less is known about BRD3.  

Both BRD2 and BRD4 are involved in the cell cycle control and progression, since BRD2 

interacts with E2F proteins, necessary for S phase genes transcription, and BRD4 is 

recruited on the promoter of G1 genes and it is essential for their expression, since BRD4 

silencing prevents the progression through the cell cycle after serum starvation  

(Mochizuki et al., 2008). Furthermore, BRD4 is also critical for G1/S progression since its 

overexpression led to a block in G1 due to the binding and the sequestration of RFC, a 

component of DNA replication machinery  (Maruyama et al., 2002). Involvement of 

BRD4 was also demonstrated for the G2/M progression, where it is critical the interaction 

with SPA-1, a GAP protein  (Farina et al., 2004). Indeed, not only BRD4 could bind SPA-

1 and enhance its GAP activity, but also SPA-1 could regulate BRD4 subcellular 

localization, since SPA-1 overexpression led to BRD4 mislocalization in the cytoplasm, 

blocking G2/M transition  (Farina et al., 2004). Furthermore, both BRD2  (Shang et al., 

2009) and BRD4  (Houzelstein et al., 2002) deficient mice are not viable, showing severe 

defects in the development and in utero death, respectively. Attempts were made to 

produce BRD2 hypomorphic mice that are still viable but show severe defects in 

organogenesis  (Wang et al., 2010). The drastic in vivo effects caused by deletion of either 

BRD2 or BRD4 clearly suggested that, even though the two proteins share high level of 

homology both in the bromodomains and in the extra-terminal domain, BET proteins 

cannot compensate for the absence of the other family members, thus suggesting that each 

BET protein may have specific and unique functions. 
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BETs as transcriptional co-activators 

BET proteins are also involved in transcriptional regulation since they can function as co-

activators. BRD4 is involved in the release of the promoter-proximal paused RNA PolII, 

thanks to its ability to recruit pTEFb on the TSS, via the direct binding to Cyclin T1  (Jang 

et al., 2005; Yang et al., 2005). Recent evidences suggested that BRD4 is an atypical 

kinase able to phosphorylate RNA PolII on Ser2. In particular, this activity seems to be 

essential for the first round of RNA PolII phosphorylation, when CDK9 is still repressed  

(Devaiah et al., 2012). Yet, the lack of a clear kinase-like domain in BRD4 protein may 

call into question this atypical BRD4 function.  

BRD4 affects gene transcription both at the promoter-proximal level, thanks to pTEFb 

recruitment, and at distal regulatory regions, through the binding with Jumonji Domain 

containing 6 (JMJD6)  (Liu et al., 2013). The interaction and the cooperation among 

BRD4 and JMJD6 takes place at a subset of distal regulatory regions called anti-pause 

enhancers (A-PE). The looping of A-PE in the proximity of gene promoters, mediated by 

the Mediator complex, ensures the activation of gene transcription thanks to the release of 

promoter-paused RNA PolII. The triggering signal for the release of the RNA PolII is 

mediated by JMJD6, a de-methylase that removes the methyl group from H4R3me2 and 

7SK, thus causing the destabilization of 7SK and the release (and activation) of pTEFb  

(Liu et al., 2013) (Fig.11).  
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Fig. 11 Model for RNA PolII pause release caused by BRD4-JMJD6 interaction 
pTEFb is sequestered in an inactive complex by HEXIM1 and 7SK. When BRD4 and JMJD6, following 
histone acetylation, are recruited on distal regulatory regions, called anti-pause enhancers (A-PE), JMJD6 
enzymatic activity leads to demethylation of both H4R3me2 and 7SK, with the consequent disruption of the 
inhibitory complex. 
Figure adapted from “BRD4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional 
Pause Release”  (Liu et al., 2013) © 2013 Elsevier Inc. 
 

Beside the recognition of acetylated histones, the recruitment of BRD4 on promoters could 

be mediated also by the interaction with specific transcription factors. This TF mediated 

BRD4 recruitment was demonstrated for TWIST target genes  (Shi et al., 2014). Indeed, 

TWIST could recruit BRD4 on the regulatory regions of its targets thanks to the binding of 

TWIST acetylated lysines to BRD4 bromodomains. Once the complex is formed and 

recruited on the chromatin, BRD4 could enhance the transcription of TWIST targets 

recruiting pTEFb  (Shi et al., 2014). In particular, evidences were provided for genes 

involved in the Epithelial to Mesenchymal Transition (EMT) and in tumor progression 

(e.g. WNT5A) (Shi et al., 2014). Furthermore, BRD4 activates the transcription of 

inflammatory genes thanks to interaction with acetylated RelA, a subunit of NFkB. This 

interaction is particularly relevant in tumor where BRD4 stabilizes NFkB in the nucleus, 

allowing the transcription of NFkB targets  (Huang et al., 2009). The involvement of 

BRD4 in the regulation of inflammatory response genes is further supported by the 

demonstration that treatment with BET inhibitors reduces the graft-versus-host disease 

after bone marrow transplantation  (Sun et al., 2015).  

In the scenario of gene transcription regulation, BRD4 can also interact with Nuclear SET 

Domain-Containing Protein 3 (NSD3) via its ET domain  (Rahman et al., 2011). NSD3 is 
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a methyltransferase that belong to the SET family and that is responsible of the 

methylation of the histone H3K36, a histone modification typical of active transcription.  

 

BRD4 is implicated in DNA condensation and gene bookmarking 

Beside its involvement in gene regulation, BRD4 may also have a structural role in 

regulating chromatin condensation. Indeed, studies in which BRD4 was silenced, or 

displaced from the chromatin thanks to the use of a dominant negative isoform, 

highlighted a global chromatin unfolding with a consequent enlargement of the nuclei and 

chromatin fragmentation  (Wang et al., 2012). This effect on chromatin condensation was 

recently connected to a BRD4 role in DNA Damage Response (DDR). Indeed, it was 

demonstrated that BRD4 isoform B is responsible for the maintenance of high order 

chromatin structure and its silencing was associated to an increased γH2AX signal after 

irradiation. The BRD4 isoform B structural function and regulation of DDR seems to be 

mediated by the Condensin II complex and in particular by SMC2 and SMC4, that by 

compacting chromatin can prevent the onset of DDR signaling  (Floyd et al., 2013) . 

Beside the involvement in the transcriptional process and in chromatin structure 

maintenance, BRD4 is also implicated in the transmission of mitotic memory since it is 

constantly bound to chromatin, even during mitosis. BRD4 bookmarking is possible 

thanks to histone acetylation and the consequent binding mediated by the bromodomains. 

Recent publication demonstrated that BRD4 preferentially bound M/G1 genes that showed 

high levels of promoter acetylation. This bookmarking ensures a rapid transcription of G1 

genes soon after the end of mitosis  (Dey et al., 2009; Zhao et al., 2011). The relevance of 

this bookmarking is further supported by BRD4 silencing or inhibition experiments where 

post-mitotic transcription is strongly reduced when BRD4 is evicted from the chromatin  

(Dey et al., 2009; Zhao et al., 2011).  
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Super-enhancers 

In the last few years a new class of distal regulatory regions has been identified: the Super-

Enhancers (SEs). Different features characterize these regions: (1) they are larger than 

canonical enhancers, (2) they are highly acetylated, (3) they show high occupancy of 

transcriptional co-factors such as Mediator complex and BRD4 (4) they are depleted in 

promoters  (Lovén et al., 2013).  
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Fig. 12 Pipeline to define Super Enhancers 
Super Enhancers are defined as broad distal regulatory regions that are particularly enriched for BRD4 and 
MED1 binding, they are highly acetylated and devoid of promoters. After the canonical peak calling 
pipeline, peaks closer than 12.5 kb were stitched together and finally all the stitched peaks are ranked based 
on Med1 enrichment: only the most enriched ones are defined as Super Enanchers.  
Figure adapted from “What are super-enhancers?” (Pott and Lieb, 2015) ©2015 Nature America, Inc. All 
right reserved.  
 

SEs have been computationally identified in different cellular systems and found in the 

proximity of cell identity genes in Embrionic Stem Cells (mESCs)  (Hnisz et al., 2013; 

Whyte et al., 2013) as well as in other differentiated cellular models (pro-B cells  (Meng et 

al., 2014; Qian et al., 2014), adipocytes  (Schmidt et al., 2015). Disruption of the SEs-

promoter loop, through the silencing of Mediator components or by the treatment with 

BRD4 inhibitors, results in the downregulation of these cell type specific genes. SEs can 

be identified not only in physiological conditions but also in cancer cells, where actually 

they were first discovered. In the tumor context, SEs regulate the expression of key 
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oncogenes, as in the MM  (Lovén et al., 2013) or Diffuse Large B Cell Lymphomas 

(DLBCL)  (Chapuy et al., 2013).  

The mechanism of action and the consequent relevance of SEs are still under debate  (Pott 

and Lieb, 2015). The first point of debate is the novelty connected to the SEs since broad 

regulatory regions with enhancer characteristics have been already described as DNA 

Methylation Valleys (DMVs)  (Xie et al., 2013) or Locus Control Regions (LCRs)  (Li et 

al., 2002). Comparison of SEs with DMVs or LCRs showed a high level of overlap, and 

more precisely all the SEs were included in the other categories  (Hnisz et al., 2013). The 

only difference among the distinct classes of the above mentioned distal regulatory regions 

is the number of elements identified, since usually SEs are in the order of hundreds, while 

the others are in the tune of thousands: this difference is probably related to the different 

method used for the identification. Also the approach used to identify SEs is under debate, 

since arbitrary thresholds were used to set the most enriched Med1 stitched peaks. 

Furthermore, functional studies validating the SEs identified are still missing, with the 

consequent confusion about the putative mechanism of action, since it is not clear yet if 

SEs are special regulatory regions with unique characteristics or if their activity is just the 

result of the merging of adjacent canonical enhancers. 

 

BETs misregulation and cancer 

As other factors involved in the cell cycle control, also BRD2 and BRD4 overexpression 

or misregulation is associated with cancer. Indeed, transgenic mice where BRD2 gene is 

placed under the control of the Eµ- enhancer, with a consequent overexpression of the 

gene in the hematopoietic system, are characterized by the onset of lymphomas resembling 

human DLBCL (Greenwald, 2003). The pro-proliferative effect of BRD2 was also 

confirmed by bone marrow (BM) reconstitution experiments, where mice sub-lethally 

irradiated were subjected to BM transplantation with Hematopoietic Stem Cells (HSCs) 
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previously infected with control, overexpressing vectors or silencing vectors for BRD2  

(Belkina et al., 2014). These experiments demonstrated that BRD2 overexpression could 

provide selective advantages to donor B cells and ensured a higher proliferative response 

of mature B cells after stimulation in vitro, while HSCs in which BRD2 was silenced were 

not able to properly engraft and proliferate in the recipient mice  (Belkina et al., 2014).  

Misregulation of BRD4 was first identified in the poorly differentiated squamous cell 

carcinoma, the human NUT midline carcinoma (NMC tumors)  (French et al., 2003) 

where a chromosomal translocation caused the formation of an oncogenic fusion protein 

with BRD4, or most rarely BRD3  (French et al., 2008), and NUT, a nuclear protein 

normally expressed only in testis. This fusion protein is composed of the complete NUT 

protein and the N-terminal domain of BET proteins, including the two bromodomains  

(Filippakopoulos and Knapp, 2014). 

 
Fig. 13 Structure of the BRD-NUT oncogene 
NUT Midline Carcinoma is a poorly differentiated squamous cell carcinoma where BRD4 NTD, comprising 
the 2 bromodomains, is fused to the complete sequence of the NUT protein. More rarely the oncogenic 
fusion protein is composed by BRD3 NTD and NUT protein. 
Figure adapted from “Targeting bromodomains: epigenetic readers of lysine acetylation”  (Filippakopoulos 
and Knapp, 2014) © 2014 Macmillan Publishers Limited. All Rights Reserved. 
 

Recently, a model for “chromatin-driven carcinogenesis” for NMC onset has been 

proposed thanks to the identification of very large regulatory regions called Megadomains  

(Alekseyenko et al., 2015). Briefly, once the BRD-NUT oncoprotein is formed, it binds 

already acetylated regulatory regions that act as “seed” and from which start a feed-

forward loop of acetylation and recruitment of further BRD-NUT proteins, causing the 

spreading of the acetylation and the formation of the Megadomains, whose limits are 
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defined by the Transcription Activation Domains (TADs). The Megadomains are 

associated to enhanced transcription of genes among which are included genes, or non 

coding RNAs, essential for the maintenance of the undifferentiated state characteristic of 

NMC tumors, as Tp63, MED24 and PVT1. These Megadomains differ from the previous 

described SEs  (Lovén et al., 2013) for location and origin, since Megadomains are 

generated from the expansion of already pre-marked and existing canonical enhancers and 

they are an order of magnitude larger than SEs. 

 
Fig. 14 Model for Megadomain formation 
The oncogenic fusion protein BRD4-NUT, after the recruitment on already acetylated chromatin, induces 
further histone acetylation thanks to the binding with p300. The increase in the acetylation levels causes a 
following recruitment of BRD4-NUT protein, the spreading of the acetylation and the formation of the 
megadomain that is limited only by TAD boundaries. 
Figure adapted from “The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within 
large topological domains” (Alekseyenko et al., 2015)  © 2015 Alekseyenko et al.; Published by Cold Spring 
Harbor Laboratory Press. 
 

Inhibiting BET proteins to indirectly targeting Myc 

In the last years an exploding interest on BET proteins rose due to the development of 

small molecules that, preventing the binding of BET proteins to their targets, lead to the 

block of cell proliferation in vitro and tumor regression in vivo. Different reports 
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suggested that Myc downregulation was the principal target of BETs inhibitors, ensuring a 

specificity of action restricted to tumors in which Myc is deregulated  (Dawson et al., 

2011; Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011). Since the cellular 

models used in these reports were characterized by different mechanisms accounting for 

Myc deregulation, two distinct models were proposed to explain the specificity of action 

in these different tumor contexts. If c-myc is translocated under the control of the 

Immunoglobulin Heavy chain enhancers (IgH), which are regulatory regions highly 

decorated with BRD4, the reduction in c-myc transcription could be explained by the 

displacement of BRD4 from the IgH enhancers mediated by BETs inhibitors  (Lovén et 

al., 2013).  
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Fig. 15 Model for Myc downregulation mediated by BETs inhibitors in c-myc translocated tumors 
In Multiple Myeloma, as well as in many other hematological malignancies, c-myc is translocated under the 
control of the Immunoglobulin (Ig) regulatory elements. Recently, it was demonstrated that Ig regulatory 
regions are highly decorated with BRD4 and Mediator complex and they differ from the canonical enhancers 
for their length. These new regulatory elements, called IgH Super-enhancers (IgH-SEs), are particularly 
sensitive to BETs inhibition, that evicting BRD4 from IgH SEs, causes a specific switching off of Myc 
expression. 
Figure from “Selective inhibition of tumor oncogenes by disruption of Super-enhancers”  (Lovén et al., 
2013). Copyright © 2013 Elsevier Inc. All rights reserved. 
 

When c-myc is not translocated, as in the Acute Myeloid Leukemia, its expression is 

driven by MLL/AF9 oncoprotein that binds the promoter via BET proteins: in this 

scenario the reduction of Myc expression mediated by BETs inhibitors is due to the lack of 

recruitment of the MLL fusion protein to its promoter.  

  



  Introduction 

28 
 

 

Fig. 16 Model for Myc downregulation in response to BETs inhibition when c-myc expression is 
dependent on other oncogene 
In Acute Myeloid Leukemia the MLL/AF9 fusion protein is the driven oncogene responsible for the 
transcription of genes involved in proliferation and apoptosis as c-myc, BCL2 and others. MLL fusion 
proteins are recruited on the promoters of their targets by BETs proteins. In this context, BETs inhibitors, 
preventing the binding of BET proteins to the acetylated histones, impair MLL fusion proteins transcription 
program. 
Figure adapted from “Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion 
leukaemia”  (Dawson et al., 2011) © 2011 Macmillan Publishers Limited. All Rights Reserved.  
 

Among all the inhibitors produced, the most used in preclinical studies are the ones that, 

mimicking the acetylated lysines, bind the bromodomain with the consequent detachment 

of BET proteins from their interactors (i.e. acetylated histones), as JQ1  (Nicodeme et al., 

2010) and I-BET  (Filippakopoulos et al., 2010).  
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III. Materials and methods 
 

Cell culture 

Burkitt’s Lymphoma (BL-2, BL-28, DAUDI, P3HR1, RAJI and RAMOS) and Acute Myeloid 

Leukemia (MV4.11 and THP.1) cell lines were purchased from ATCC. The Multiple Myeloma 

cell lines were kindly provided by Dr. G. Tonon. The Eµ-Myc lymphomas cells were obtained 

smashing lymphomas derived from Eµ-Myc mice. Murine Embryonic Fibroblast (MEFs) were 

derived from 13.5 day post coitum C57/BL6 or MycER knock in embryos. BL, AML and MM 

were cultured in RPMI medium supplemented with 10% Fetal Bovine Serum, 2mM L-

Glutammine, 1% penicillin/streptomycin. Eµ-Myc Lymphoma cells were cultured in DMEM and 

IMDM (ratio 1:1) supplemented with 10% Fetal Bovine Serum, 2mM L-Glutammine, 1% 

penicillin/streptomycin, 25 µM β-mercaptoethanol, 1% Non Essential Aminoacids. MEFs were 

cultures with DMEM medium supplemented with 10% Fetal Bovine Serum, 2mM L-Glutammine, 

1% penicillin/streptomycin, 25 µM β-mercaptoethanol, 1% Non Essential Aminoacids. All the 

cells were grown at 37°C and 5% CO2, except for MEFs that were grown at 37°C in low oxygen.  

For the production of viral particles carrying vectors for constitutive expression, Hek293T or 

AMPHO packaging cells were cultured with DMEM with 10% Fetal Bovine Serum, 2mM L-

Glutammine, 1% penicillin/streptomycin. On the contrary, for the production of viral particles 

carrying vectors for inducible silencing, Hek293T packaging cells were cultured with DMEM with 

10% Tet-FREE Fetal Bovine Serum, 2mM L-Glutammine, 1% penicillin/streptomycin. 

BETs inhibitor JQ1 was kindly provided by Dr. J. Bradner. For the treatment with the drug, 

250000 cells/mL were cultured in fresh medium with different concentration of JQ1 (0, 50, 100, 

250 or 500 nM). 

PHA-767491 (Calbiochem, Cat# 217707) and 5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside 

(DRB, Sigma-Aldrich, D1916) were used to inhibit CDK9. 250000 cells/mL were cultured in fresh 

medium and treated with PHA-767491 (0-0.1-1-10-50 µM) or DRB (0-0.1-1-10-100 µM) for 24 or 

3 hours, respectively. 
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Cell transfection, viral production and infection 

Hek293T or AMPHO packaging cells were transfected according to CaCl2 protocol. Briefly, for 

each 10 cm plate of packaging cells, 10 µg of DNA of interest were mixed with 3 µg of helper 

plasmids (VSVG and Δ8.2 for lentiviral production and pKAT or pCL-Eco for retroviral 

production for human or murine cells infection, respectively), 61 µL of CaCl2, 423 µL of H2O and 

500 µL of HBS 2x. The mixture was incubated for 10 minutes at room temperature and then added 

to packaging cells with 9 mL of complete DMEM medium. After O/N incubation, the medium was 

replaced with 5 mL of fresh complete DMEM. The virus was collected 48h and 72h after the 

transfection.  

BL cells were infected using spin infection protocol. Briefly, 2*106 cells were resuspended in 2 mL 

of virus with 8 µg/mL of Polybrene. The cells were spinned at 1800 RPM for 1:30h and then let in 

the incubator at 37°C for 3h. The medium was replaced for the O/N recovery with 2mL of fresh 

complete medium. 24h after the infection, the cells were selected with 2.5 µg/mL of Puromycin. 

When Doxycycline inducible vectors were used, transfection, virus production and cell infected 

culture were performed using medium supplemented with 10% of Fetal Bovine Serum Tet-FREE. 

The induction of the inducible vectors was performed adding 2 µg/µL of Doxycycline. 

 

Plasmids 

LT3GEPIR shREN and RT3GEN shBRD4 were kindly provided by Dr. J. Zuber.  

LT3GEPIR shBRD4 (602-1817-1838) vectors were obtained sub-cloning shRNA targeting BRD4 

from RT3GEN to LT3GEPIR. Briefly, 5 µg of plasmids were digested O/N with XhoI and EcoRI 

restriction enzymes. The digested LT3GEPIR shREN was run on a 0.8% agarose gel, while the 

digested RT3GEN shBRD4 was run on a 2.5% agarose gel. A fragment of 10000 bp for 

LT3GEPIR digestion and one of 150 bp for R3GEN were purified from the gel and quantified by 

nanodrop. Ligation was performed for 3 hours at room temperature using a ratio vector/insert 1:3. 

The ligation was then transformed by heat shock in competent STBL3 bacteria, in order to avoid 

plasmid recombination, and plated on LB+Ampicillin plate. The day after, ~5 single colonies were 

picked and amplified in 5mL of LB+Ampicillin at 37°C over day. 4mL out of 5 mL for each 

bacterial growth were used for plasmid extraction with the NucleoSpin® Plasmid (No Lid) 
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(Macherey-Nagel) according to manufacturer’s instructions. After checking the integrity of the 

plasmids on agarose gel, the vectors with the new insert was then checked by DNA Sanger 

sequencing. 

pBP-CDK9 vector was obtained subcloning CDK9 CDS from pMX-CDK9, kindly provided by 

Dr. M. Esteban, into pBabePuro. Both pMX-CDK9 and pBabePURO were digested O/N with 

BamHI and EcoRI. The fragments were purified after agarose gel run and the ligation was 

performed with 1:3 vector/insert ratio. TOP10 bacteria were then transformed and plated on 

LB+Ampicillin plate for O/N growth. ~5 single colonies were picked and amplified in 5mL of 

liquid LB+Ampicillin at 37°C over day. The vectors were then extracted with the NucleoSpin® 

Plasmid (No Lid) (Macherey-Nagel) according to manufacturer’s instructions. After checking the 

integrity of the plasmids on agarose gel, the vectors with the new insert was then checked by DNA 

Sanger sequencing. 

pBabePURO-EV and pBabePURO-E2F1 were already available in the lab. 

 

Cell growth Assay 

The cell growth was measured using the CellTiterGlo Luminescent Cell Viability Assay 

(Promega).  

For cells that grow in suspension (BL, AML, MM and Eµ-Myc lymphoma cells) 250000 cells/mL 

in a total volume of 4 mL were cultured in 6 well plate in presence of JQ1 (50, 100, 250, 500 nM) 

or DMSO for 4 days. The assay was performed in triplicate every 24h using 100 µL of cell 

suspension and 100 µL of CellTiterGlo. The luminescence was read in a white 96 well plate using 

a multiwell plate reader (Glomax, Promega). 

For adherent cells (MEFs) 500 cells were plated in each well of a white 96 well plate, with a total 

volume of 100 µL. The cells were treated for up to 4 days with DMSO or JQ1 (100 or 250 nM) in 

combination with EtOH or 400 nM of 4-Hydroxytamoxifen (4-OHT). Each condition was plated in 

triplicate and the luminescence was read after the addition of 100 µL of CellTiterGlo using a 

multiwell plate reader (Glomax, Promega). 

Cell cycle and dead cell discrimination analysis 
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The cell cycle progression was analyzed by Bromo deoxy Uridine (BrdU) incorporation. 250000 

cells/mL of BL, AML, MM or Eµ-Myc lymphomas were cultured in a total volume of 15 mL in 

presence of DMSO or JQ1 (100 nM for BL, AML and MM and 50 nM for Eµ-Myc lymphomas) 

for 24h. BrdU (33 µM) was added to the culture during the last 20’ of JQ1 treatment. The cells 

were then collected (1500 RPM for 5’), resuspended with 250 µL of PBS and fixed with 750 µL of 

cold ethanol (100%) dropwise. 500000 cells/ 10 cm plate of MEFs were cultured with DMSO or 

different concentration of JQ1 (100 or 250 nM) in combination with EtOH or 400 nM 4-OHT for 

48h. BrdU (33 µM) was added to the culture during the last 20’ of the treatment. Cells were then 

washed once with PBS, trypsinized and centrifugated at 1500 RPM for 5’. The pellet was 

resuspended with 250 µL of PBS and fixed with 750 µL of cold ethanol (100%) dropwise. For 

both suspension and adherent cells, the fixation step was carrying on O/N at 4°C. The cells were 

then washed once with PBS+1% BSA and then resuspended in 1mL of denaturing solution (2N 

HCl) and incubate at room temperature for 30’. The reaction was blocked with 3mL of 0.1M 

Sodium Borate (Na2B4O7 pH 8.5) for 2 min at room temperature. The cells were then collected at 

1200 RPM for 10’ and washed once with 1mL of PBS+1% BSA. The staining was performed 

using 100 µL of an anti-BrdU mouse antibody (1:5) in PBS 1% BSA for 1h at room temperature 

and light protected. Cells were washed once with 1mL of PBS+1% BSA and resuspended in 100 

µL of anti-mouse FITC (1:50) or anti-mouse Alexa 648 (1:50) in PBS 1% BSA and incubate for 

1h at room temperature, light protected. After one washing step in 1ml PBS 1% BSA, cells were 

incubated O/N at 4°C in 1mL of PBS+PI (2.5 µg/mL) +RNaseA. The acquisitions were performed 

with FACS Calibur. The analysis was performed with FlowJo software. 

The discrimination of dead cells was performed on live BL, AML, MM cells (250000 cells/mL, 

total volume= 10 mL) treated or not with JQ1 (100 nM) for 24h. Cells were collected and washed 

once with 1mL of PBS+1% BSA. Cells were then resuspended in 500 µL of PBS. 2 µL of PI (50 

µg/ml in PBS) were added and incubated for 5’ at room temperature. The acquisitions were 

performed with FACS Calibur. The analyses were performed with FlowJo software.   
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Western blot 

For western blot analysis, 250000 cells/mL of BL, AML, MM and Eµ-Myc lymphoma cells were 

cultured in a total volume of 20 mL. 24h after the plating different concentrations of JQ1 (0, 50, 

100, 250, 500 nM) were added to the culture for either 6 or 24h. Cells were collected by 

centrifugation at 1500 RPM for 5’ and washed once in PBS. Cells were lysed in an adequate 

volume of lysis buffer (20 mM HEPES pH7.5, 100 mM NaCl, 5 mM EDTA, 10% Glycerol, 1% 

Triton X-100) supplemented with MINI-complete Protease Inhibitor Cocktail Tablets (Roche) and 

phosphatase inhibition (0.4 mM ortovanadate, 10 mM NaF) for 10’ on ice. The cell lysate was then 

sonicated for 20’’ with 10% of amplitude with Branson sonicator and cleared by centrifugation at 

full speed at 4°C. Proteins were quantified by Bradford assay. 20-30 µg of proteins were boiled at 

95°C with Laemmli sample buffer and loaded on Mini-PROTEAN® TGX™ Gel (Bio-rad). 

Proteins were transferred to Trans-Blot® Turbo™ Nitrocellulose Transfer Packs (Bio-rad) using 

Trans-Blot® Turbo™ Transfer System (Bio-rad). Blocking was performed with TBS 1X+5% of 

not fat milk or with TBS 1X+ 5% of BSA. The primary antibodies used were: Myc (1:10000, Y69 

Abcam ab32072), vinculin (1:10000, Sigma, V9264), tubulin (1:1000, Santa Cruz), BRD4 

(1:1000, Bethyl A301-985A100), RNA PolII (1:1000, Santa Cruz N-20, sc-899), RNA PolIIS5p 

(1:1000, Abcam ab5131), RNA PolIIS2p (1:500, Chromotek 3e10), HEXIM1 (1:1000, Abcam 

ab25388), CDK9 (1:500, Santa Cruz H-169, sc-8338).  

The secondary antibodies used were: anti-mouse (1:5000, homemade), anti-rabbit (1:5000, 

homemade), anti-rat (1:5000, Cell signaling). The blot were developed with ECL (amsharm) using 

ChemiDoc System (Bio-rad). 

 

RNA extraction and expression quantification 

For expression analysis, 250000 cells/mL of BL, AML, MM and Eµ-Myc lymphoma cells were 

cultured in a total volume of 20 mL, while 500000 cells/10 cm plate were plated for MEFs. 24h 

after the plating different concentrations of JQ1 (0, 50, 100, 250, 500 nM) were added to the 

culture for either 6 or 24h. Cells that grow in suspension were collected by centrifugation at 1500 

RPM for 5’ and washed once in PBS, while adherent cells were trypsinized, centrifugated at 1500 

RPM for 5’ and washed once in PBS. RNA was extracted using RNeasy columns (Qiagen) and 
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treated on-column with DNase (Qiagen). 1 µg of RNA was retrotranscribed using the ImPromII kit 

(Promega) according to the manufacture’s instruction. 10 ng of cDNA were used to perform real-

time qPCR using FAST SYBR Green Master Mix (Applied Biosystems).  

 

Primers: 

Human: 

BRD4 from  (Floyd et al., 2013)  

CDC25A FW:  CACATGGAAGAAGAGGTTGA 

CDC25A REV:  ATACAGCTCAGGGTAGTGGA 

E2F1 FW:  TCCAAGAACCACATCCAGTG 

E2F1 REV:  CTGGGTCAACCCCTCAAG 

GINS3 FW:  AGTCCCGAGAATGCAGACAT 

GINS3 REV:  GCGAAAACGTCCGATAAAAG 

KIF2C FW:  AGGAGCATCTGGTTAACTCTGC 

KIF2C REV:  TCTGCCCAGAGGTTCTGC 

MCM2 FW:  CGAAACCTGGTTGTTGCTG 

MCM2 REV:  GGTGAAGGATTCCGATGATTC 

MYC FW:  TCAAGAGGTGCCACGTCTCC 

MYC REV:  TCTTGGCAGCAGGATAGTCCTT 

PARK7 FW:  GGGGTGAGTGGTACCCAAC 

PARK7 REV:  TGGAAGCCATTTTTATGTTATATGTTT 

RPL36 FW:  GGGCCCTCAAATTTATCAAGA 

RPL36 REV:  GTCTTTCTTGGCAGCAGCTT  

RPPO FW:  TTCATTGTGGGAGCAGAC 

RPPO REV:  CAGCAGTTTCTCCAGAGC 

RRM2 FW:  GCGATTTAGCCAAGAAGTTCAGAT 

RRM2 REV:  CCCAGTCTGCCTTCTTCTTGA 
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SLC16A1 FW:  GTGACCATTGTGGAATGCTG 

SLC16A1 REV  CATGTCATTGAGCCGACCTA 

TOMM20 FW:  CTGCAGGTCTTACAGCAAACTC 

TOMM20 REV: TCAGCCAAGCTCTGAGCAC 

 

Murine: 

Arrsd1 FW:  GCAGAGGCTGTGGAAACC 

Arrsd1 REV:  TTCTTCCCTGCTCCTTTGC 

BRD4 FW:  CCCCATCTCAACCAGCAT 

BRD4 REV:  AGAGCAGCAGCTCGGTTACT 

Cabp4 FW:  GCTGATAAGCCCAAAGCTGA 

Cabp4 REV:  CATCCCTGTCCTTGTCAAACT 

Cct3 FW:  TTAGCTCAGCACTACCTCATGC 

Cct3 REV:  CTCAGGTCGGCTGACTATCC 

Dusp6 FW:  AAATTCCTATCTCGGATCACTGG 

Dusp6 REV:  CATCTATGAAAGAAATGGCCTCA 

Endou FW:  GACGGCTGTCATGAAGGAAC 

Endou REV:  TCGTCCACAAACTCTTGTTCTG 

Fam26f FW:  AGCCTGGTGACCCTACTGAC 

Fam26f REV:  ACTGGAACACCACTGAGGAGA 

Fuca2 FW:  AGTCTGGGGGAAACAGAGGT 

Fuca2 REV:  AGGTAACTCCACGGTGATGC 

Il7r FW:  CGAAACTCCAGAACCCAAGA 

Il7r REV:  AATGGTGACACTTGGCAAGAC 

Msto1 FW:  TACAGAACAGGCCGGACAC 

Msto1 REV:  GGTTACCTTCTTCTTTTAGAGTGTTCA 

Myc FW:  CGTGAACTTCACCAACAGGAAC 

Myc REV:  GAAATTCTCTTCCTCGTCGCAG 
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Myl4 FW:  CAAGCACATCATGTCTGGGTA 

Myl4 REV:  TGGATCTCTTGCTTTCTCACG 

Pax5 FW:  ACGCTGACAGGGATGGTG 

Pax5 REV:  GGGGAACCTCCAAGAATCAT  

Pcbp1 FW:  CAACAGCTCCATGACCAACA 

Pcbp1 REV:  ACCAGCCGAAGTGTGACC 

Pogk FW:  CCAGGGAGTAACCTTTGCAG 

Pogk REV:  GTTGAGGAAAATGGGAGGTG 

Prmt3 FW:  GAGGATGAGGATGGCGTCTA 

Prmt3 REV:  ACTTTCTGTGCGTACTTTGTCCT 

Pus7 FW:  CCCCAAGCATAAAATCAGTGAGG 

Pus7 REV:  CCCCGATAAGGAGTAATCTCGAA 

Reep6 FW:  AGCGCTTCGAACGTTTTCT 

Reep6 REV:  TCTCTACACCGGTCCTTGCT 

Rppo FW:  TTCATTGTGGGAGCAGAC 

Rppo REV:  CAGCAGTTTCTCCAGAGC 

Rsph9 FW:  ACCACGCAAGACGCTCTAC 

Rsph9 REV:  AACGGCCACTCACCACAG 

Slc16a13 FW:  ACCTGAGTATTGGGCTGCTG 

Slc16a13 REV:  GCCATGGTCGGAGTGAAG 

 

For Microarray assay, 250000 cells/mL of RAJI cells were cultured in a total volume of 40 mL. 

24h after the plating DMSO or 100 nM of JQ1 were added to the culture for 24h. Total RNA from 

107 RAJI was purified using TRIzol reagent (Invitrogen) according to manufacturer’s instructions, 

treated with TurboDNase (Ambion) and processed for oligonucleotide microarray profile through 

Affymetrix Human Gene 1.0 ST arrays platform.  

For RNAseq assay, 250000 cells/mL of Eµ-Myc lymphoma cells (ly9644, ly27805, ly28514) were 

cultured in a total volume of 40 mL. 24h after the plating DMSO or 50 nM of JQ1 were added to 

the culture for additional 24h. Total RNA was extracted from 107 Eµ-Myc lymphoma cells using 
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miRNeasy Mini Kit (QIAGEN) according to manufacturer’s instructions. Digestion with DNase I 

was performed on column. 1 µg of RNA was used for RNAseq strand specific library preparation 

(Illumina) according to TruSeq Stranded Total RNA Sample Preparation Guide. Ribosomal RNA 

was removed using rRNA removal Mix, present in the kit. The index used to mark the different 

samples was decided according to TruSeq Sample Preparation Pooling Guide (Illumina): since we 

multiplexed 2 samples per lane, we used AR006 and AR012 to mark DMSO and JQ1 samples, 

respectively. The efficacy of rRNA depletion and the quality of the library preparation were tested 

using Agilent Technologies 2100 Bioanalyzer using Eukaryote Total RNA Nano or High 

Sensitivity DNA Assay, respectively. 

Nanostring® assay was performed using a codeset designed including genes deregulated by Myc. 

Briefly, 250000 cells/mL of Eµ-Myc lymphoma cells (ly9644, ly27805, ly28514) were cultured in 

a total volume of 40 mL. 24h after the plating DMSO or 50 nM of JQ1 were added to the culture 

for additional 24h. Total RNA was extracted from 107 Eµ-Myc lymphoma cells using TRIZOL 

reagent (Invitrogen) according to manufacturer’s instructions and treated with TurboDNase 

(Ambion).100 ng of total RNA was used to proceed with the probe hybridization according to 

manufacturer’s instructions. 

 

4-sU labeling 

4-thiouridine (4-sU) labeling was performed as previously described (Rabani et al., 2011) with 

minor modifications. RAJI (300000 cells/mL) were cultured in 100 mL of complete medium. 24h 

after the plating, cells were treated with vehicle (DMSO) or JQ1 (100 nM) for 24h. A pulse of 30’ 

of 4-sU (300 µM) was performed. The reaction was immediately blocked with 4 volumes of cold 

PBS and cells were centrifugated at 1800 RPM for 15’ at +4°C. RNA was extracted with the 

Qiagen miRNeasy kit according to the manufacturer’s instructions and DNase I digestion was 

performed. 40 µg of total RNA was used for the biotinylation reaction. RNA was diluted in 100 µl 

of RNase-free water. 100 µl of biotinylation buffer (2.53 stock: 25 mM Tris pH 7.4, 2.5 mM 

EDTA) and 50 µl of EZ-link biotin-HPDP (1 mg/ ml in DMF; Pierce/Thermo Scientific 21341) 

were added and incubated for 2 h at 25°C. RNA was precipitated and unbound biotin-HPDP was 

removed by a combination of chloroform/isoamylalcohol (24:1) precipitation with purification 
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using MaXtract high density tubes from Qiagen. Biotinylated RNA was purified using Dynabeads 

MyOne Streptavidin T1 (Invitrogen). Before addition of RNA, 50 µL of beads were washed twice 

in washing buffer A (100 mM NaOH, 50 mM NaCl) and once in washing buffer B (100 mM 

NaCl). Beads were resuspended in 100 µL of buffer C (2 M NaCl, 10 mM Tris pH 7.5, 1 mM 

EDTA, 0.1% Tween-20) to a final concentration of 5 µg/µL. RNA was added in an equal volume 

and rotated at room temperature for 15’. Beads were washed 3 times with washing buffer C. RNA 

was eluted from the beads in 100 µL of 10 mM EDTA in 95% formamide (65 °C, 10'). RNA was 

extracted with the RNeasy MinElute Spin columns from Qiagen according to the manufacturer and 

eluted in 14 µL of RNase-free water. RNA was retrotranscribed with SuperScript® VILO cDNA 

Synthesis Kit, according to manufacturer’s instruction. Real-time qPCR was performed using 

FAST SYBR Green Master Mix (Applied Biosystems). 

 

Primers: 

MCM2 FW 
AAGGGGATTGTCTTGGGGAG 2°intron  

MCM2 REV TGCCTATGGTCGCTCTGTAG 2° intron 

MCM2 FW CCATTCTTGTCGGTCTCCCT 7°intron-8°exon 

MCM2 REV CCAGGCCTCTCTTGATGTCT 7°intron-8°exon 

RPL36 FW TACTCACCTCCGCCCCTT 1° exon 

RPL36 REV CACTTTGTGGCCCTTGTTGA 1° exon 

RPL36 FW CGCGAGAGAAGCTGCTTAAC 2°intron-3°exon 

RPL36 REV GTGTTTGGTCAGACGCTAGG 2°intron-3°exon 

RRM2 FW AGTGGTGTGATCTTGGCTCA 4°intron 

RRM2 REV ACTCATGAGGCTGAGGTTGG 4°intron 

RRM2 FW TGTGACTTCCGAACCTCAGG 3°intron-4°exon 
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RRM2 REV CTCCTCGGGTTTCAGGGATT 3°intron-4°exon 

SYVN1 FW CTGGAACCTGGGTCAGTCTT 1° intron 

SYVN1 REV TGCAGCTTTTCCTCATCACC 1° intron 

SYVN1 FW ATTCAAGGCACATGTGGGGT 6°exon-7°intron 

SYVN1 REV CTGGTGTTTGGCTTTGAGGT 6°exon-7°intron 

TOMM20 FW AGCCTGGTTGATACGGTGAA 1° intron 

TOMM20 REV GCCTCTCGAGTAGCTAGGAC 1° intron 

TOMM20 FW GATGGTCTACGCCCTTCTCA 3°intro-4°exon 

TOMM20 REV CCAAGGCTTTTCAGGTTACATG 3°intro-4°exon 

ZNF367 FW CCAGCCCCAGTGAAGAAGTA 1°intron 

ZNF367 REV CAAGTTGTTCCAAGGCTCCC 1°intron 

ZNF367 FW CACAGATAGGGCCTCTCACC 2°intron-3°exon 

ZNF367 REV CCCTCCTCTTCTGGCCTTAT 2°intron-3°exon 

 

  

 

Chromatin Immunoprecipitation 

BL, MM or Eµ-Myc lymphoma cells (250000 cells/mL) were plated and DMSO or JQ1 (100 nM 

for the cell lines, 50 nM for Eµ-Myc lymphomas) were added 24h after the initial plating. After 

24h of drug treatment, cells were counted and washed once with PBS. 108 cells were resuspended 

in 10 mL PBS and fixed. For Myc, Histone Marks, RNA PolII and E2F1 ChIP the cells were fixed 

using formaldehyde (final concentration of 1%), for BRD4 ChIP the cells were fixed using either 

glutaraldehyde (final concentration 1%) or formaldehyde (final concentration of 1%). The fixation 

step was carried out at room temperature for 10’ and quenched with 0.125 M Glycine for 5’ at 
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room temperature. Cells were washed twice with PBS and stored at -80°C as pellet. 108 cells were 

resuspended in 5 mL of LB1 buffer (50 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% 

Glycerol, 0.5% NP-40, 0.25% Triton X-100), kept on ice for 10’ and then centrifugated at 1350 xg 

for 5’ at +4°C. The supernatant was eliminated and the cells were gently rocked at room 

temperature for 10’ in 5 mL of LB2 buffer (10 mM tris-HCl pH 8, 200 mM NaCl, 1 mM EDTA, 

0.5 mM EGTA). At this point, the nuclei were extracted and pelleted by spinning at 1350 xg for 5’ 

at +4°C. The pellet was resuspended in 3 mL of LB3 buffer (10 mM Tris-HCl pH 8, 100 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1 % Na-Deoxycholate, 0.5% N-lauroylsarcosine) and 

sonicated in order to obtain DNA fragment of 300-100 bp. For BRD4, Myc, E2F1, total RNA PolII 

and RNA PolII-S5p ChIP, the lysate from 50*106 cells was incubated with 10 µg of antibody 

previously bound to protein G Dynabeads (Invitrogen) in PBS+0.5% BSA. For Histone Marks 

ChIP, 20*106 cells were incubated with 5 µg of the antibody previously bound to protein G 

Dynabeads (Invitrogen) in PBS+0.5% BSA. For RNA PolII-S2p ChIP, the lysate corresponding to 

10*10 7 cells was incubated with 60 µL of hybridoma O/N on the rotating wheel at +4°C. 

Concomitantly, 4.5 µL of anti-rat were incubated with 50 µL of protein G Dynabeads O/N on the 

rotating wheel at +4°C. The day after the chromatin+primary antibody was mixed to the secondary 

antibody+protein G Dynabeads for 3h on rotating wheel at +4°C. After the incubation with the 

antibody, the beads were collected using the DynaMag™ magnet and washed 6 times with 1 mL of 

RIPA buffer (50 mM HEPES pH 7.5, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-

Deoxycholate). Beads were then washed with 1 mL f TE 1X+50 mM NaCl before the elution step 

(de-crosslinking). For cells fixed with formaldehyde, de-crosslinking was performed O/N at 65°C 

with 150 µL of TE1X+2% SDS. For cells fixed with glutaraldehyde, de-crosslinking was 

performed with 150 µL of TE+1% SDS+ 100 mM NaHCO3. The sample were first treated for 1h 

with RNaseA at 37°C, then Proteinase K was added and the de-crosslink reaction was incubated at 

65°C O/N. DNA was purified with PCR Qiaquick columns (Qiagen) and quantified using 

PicoGreen (Invitrogen) or QUBIT (Invitrogen). 

For ChIPqPCR, 6 µL of DNA diluted 1:6 was used to perform real-time PCR using FAST SYBR 

Green Master Mix (Applied Biosystems).  
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Primers: 

Human: 

AchR FW:  CCTTCATTGGGATCACCACG 

AchR REV:  AGGAGATGAGTACCAGCAGGTTG 

IFRD2 FW:  CGTGCCCCAGCAGTCATT 

IFRD2 REV:  GCAGTGGGCAGCGAGC 

IgH_E1, IgH_E2, IgH_E3, IgH_E4 primers were taken from  (Delmore et al., 2011)  

NCL FW:  TTTTGCGACGCGTACGAG 

NCL REV:  ACTAGGGCCGATACCGCC 

NME1 FW:  GGGAGTGGGTTAGGTGAGGAGT 

NME1 REV:  CGTCGCGGTCTGACGAG 

 

Murine: 

AchR FW:  AGTGCCCCCTGCTGTCAGT 

AchR REV:  CCCTTTCCTGGTGCCAAGA 

D7 FW:  CGGCTCGGCCAGCAGAAG 

D7 REV:  TAGTCCACATGGCGGCGC 

Nucleolin FW:  GAGTGTCTGTAGTACCCCGGAAA 

Nucleolin REV: CCACGCTGCCGTCCC 

Pus7 FW:  GCTGCACCGCGTGGAGAC 

Pus7 REV:  GGCTGGTGGGATAACCCGT 

For ChIPseq, 2–10 ng ChIP DNA was prepared for HiSeq2000 sequencing with TruSeq ChIP 

Sample Prep Kit (Illumina) following the manufacturer’s instructions. 

 

 

 

NGS data filtering and quality assessment 

ChIP-seq reads sequenced with the Illumina HiSeq2000 were filtered using the fastq_quality_ 

trimmer (setting the options to -Q33 -t 20 -l 10) and fastq_masker (setting the options to -q 20 -r 
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N) tools of the FASTX-Toolkit suite (http://hannonlab. cshl.edu/fastx_toolkit/). Their quality was 

evaluated and confirmed using the FastQC application 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

 

Analysis of ChIP-seq data 

ChIP-seq NGS reads were aligned with the BWA tool (Li H. (2013) Aligning sequence reads, 

clone sequences and assembly contigs with BWA-MEM.arXiv:1303.3997v2 [q-bio.GN].) using 

default settings using the mm9, hg19 and hg18 genomes for Eμ-myc, Raji and MM1.S and OC-

LY1 data, respectively. Peaks were called with the MACS v1.4 software  (Zhang et al., 2008) . 

Peaks’ p-value threshold was set to 10-8 for Raji data and 10-9 for MM1.S data. FDR (false 

discovery rate), determined as the ratio between the negative and the positive peaks, was set to 5% 

for all the data. Negative peaks were found by MACS on the input samples, using the ChIP as 

reference.  

Normalized reads count within a genomic region was determined as the number of reads per 

million of library aligned reads (rpm), that were subtracted by the input normalized reads. Peak 

read density (reads per million of reads per base pair) for a particular region was determined as the 

ratio between the normalized reads count and the length of the region in base pair. 

 

Definition of promoter, intragenic and intergenic regions 

In order to assess if a specific ChIP-seq peak is in a promoter, in a genebody or is intergenic, the 

following criteria were applied. Regions that overlap with at least one bp with any promoter 

(defined as genomic region [-2000; +1000] bp spanning TSSs, transcription start sites), were 

considered as belonging to promoters; regions that weren’t promoters but had at least 1 bp 

overlapping with any genebody were considered intragenic. The remaining regions (that did not 

overlap either with promoters or genebodies) were considered intergenic. Annotations were 

performed with the R annotation packages TxDb.Hsapiens.UCSC.hg19.knownGene and 

TxDb.Hsapiens.UCSC.hg18.knownGene or TxDb.Mmusculus.UCSC.mm9.KnownGene of 

Bioconductor(Marc Carlson (). TxDb.Hsapiens.UCSC.hg18.knownGene: Annotation package for 
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TranscriptDb object(s). R package version 2.14.0.; Marc Carlson (). 

TxDb.Hsapiens.UCSC.hg19.knownGene: Annotation package for transcriptDb object(s). R 

package version 2.14.0.). 

 

RNA PolII stalling index 

The RNA polymerase II stalling index (SI, also called elongation rate) (Rahl et al., 2010; 

Zeitlinger et al., 2007) was calculated as SI = Prom/GB; prom refers to the read counts on the 

promoter (TSS ± 300 bp interval) and GB to the read counts in the gene body (the interval between 

TSS +301 and 3,000 bp after the TSS). These values were normalized both to library size (total 

number of reads) and to the length of the interval, and only genes with GB > 600 and with a 

RNAPII ChIP-seq peak in the promoter region were considered. PolII signal in genebodies was 

plotted using the same criteria that were used in SI calculation; genes were expanded by 20% 

upstream and 20% downstream, in order to have a better overview of the neighborhood. They were 

then divided into 150 bins, for which the input-subtracted reads were counted and were normalized 

both by library size and gene length, using “GRcoverageInbins” function of compEpiTools R 

package (http://genomics.iit.it/groups/computational-epigenomics.html (2014). compEpiTools: 

tools for computational epigenomics. R package version 0.99.0.). 
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IV. Results 
 

BET inhibition effects on cell viability and Myc levels 

Previous publications already showed that BET inhibition strongly affects the proliferation of 

different tumor types (e.g. Multiple Myeloma (MM), Acute Myeloid Leukemia(AML)) both in 

vitro and in vivo  (Dawson et al., 2011; Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 

2011). We focused our attention on human Burkitt’s lymphoma (BL) cell lines and on Eµ-Myc 

lymphomas, a murine model for immature B cells malignancies  (Adams et al., 1985). BL are 

characterized by a chromosomal rearrangement that put in close proximity the c-myc locus and the 

immunoglobulin distal regulatory regions. The most common recombination involves chromosome 

8, where the c-myc gene is located, and chromosome 14, containing the regulatory regions for the 

immunoglobulin heavy chain (IgH). In a minor fraction of BL cases, c-myc is juxtaposed to the 

immunoglobulin light chain regulatory regions in chromosome 2 or 22  (Molyneux et al., 2012). 

The Eµ-Myc mouse model was engineered in the ‘80s to mimic human B cell malignancies: in this 

murine model, the chromosomal rearrangement found in the plasmacytoma ABPC17  (Corcoran et 

al., 1985) was reproduced fusing the IgH enhancer upstream of the first exon of the c-myc gene. In 

this model, c-myc misregulation leads to the development of B cell lymphoma with a short latency 

of around 3 months and high penetrance.  

As a first step, we assessed the sensitivity of BL and Eµ-Myc lymphomas cells to BET inhibition, 

by evaluating cell growth in samples treated with increasing doses of JQ1, ranging from 50 nM to 

500 nM. As positive controls, we used AML (MV4.11, THP.1) and MM cells (MM.1S, OPM1, 

KMS11) for which the sensitivity to BETs inhibitors has already been reported. As shown in 

Fig.17, all the BL cell lines (BL-2, BL-28, DAUDI, P3HR1, RAJI and RAMOS) and Eµ-Myc 

lymphoma cells were responsive to BET inhibition, showing growth arrest in a time- and dose-

dependent manner. RAJI and Eµ-Myc lymphomas were the most sensitive cells, since they showed 

a strong decrease in cell viability already after 48h of treatment, at relatively low doses of JQ1 

(100 nM and 50 nM, respectively).  
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Fig. 17 BETs inhibition strongly affects cell growth 
Cell growth assay using CellTiterGlo (Promega) on BL (BL-2, BL-28, DAUDI, P3HR1, RAJI and 
RAMOS), three independent Eµ-Myc lymphomas (9644, 27805 and 28514), MM (MM.1S, OPM1, KMS11) 
and AML (MV4.11, THP.1) cell lines after treatment with 0-50-100-250-500 nM JQ1 for up to 4 days. For 
each time point, the mean and the standard deviations of 3 technical replicates are reported.  
 

Since BET inhibition caused a strong decrease in cell growth, we wondered whether this effect 

was due to a block in the cell cycle progression, to an increase in cell death or both. In order to 

discriminate among these possibilities and to evaluate short-term responses, we performed cell 

cycle analysis on cells treated for 24h using the lowest effective dose of JQ1, as determined in the 
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experiments mentioned above. In particular, 100 nM of BETs inhibitor was used to treat the 

human cell lines (BL, AML and MM), while 50 nM was used for Eµ-Myc lymphomas treatment. 

As shown in Fig.18, in BL and Eµ-Myc cells, BETs inhibition led to a decrease in the percentage 

of cells in S phase with a consequent increase in the G0/G1 population, suggesting a defect in 

G1/S progression. Also from this type of assay, RAJI and Eµ-Myc lymphomas resulted the most 

sensitive cell lines to BETs inhibition. Indeed, for RAJI cells the S-phase population dropped from 

42% to 10%, while the G0/G1 population increased from 38% to 78%. Similar results were 

observed for Eµ-Myc lymphomas were the percentage of BrdU positive cells diminished from 

68% to 40%, with a concomitant increase of G0/G1 population (from 23.5% to 45.2%). The 

reduction in the percentage of cycling cells was evident also in the other BL cell lines (BL-2, 

DAUDI, P3HR1 and RAMOS), even though they showed a milder cell cycle alteration with a 

~20% reduction of the S-phase population respect to the control condition (from ~50-40% in 

DMSO sample to ~40-30% in JQ1 sample). The only exception was represented by BL-28 cells 

that, after 24h of treatment did not show any alteration in the cell cycle distribution. This was 

expected and coherent with the low sensitivity of BL-28 to BET inhibition observed in the cell 

growth assay. 
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Fig. 18 BETs inhibition alters cell cycle progression 
Cell cycle analysis by BrdU incorporation in BL (BL-2,BL-28, DAUDI, P3HR1, RAJI, RAMOS), Eµ-Myc 
lymphoma, MM (MM.1S, OPM1, KMS11) and AML (MV4.11, THP.1) cells after treatment for 24h with 
DMSO or JQ1 (100 nM for human cell lines or 50 nM JQ1 for Eµ-Myc cells). A BrdU pulse of 20’ was 
performed. DNA content is evaluated by PI staining. For each cell line a single technical replicate was 
performed once. 
 

In order to verify if the decrease in the percentage of cells engaged in active cell division was also 

associated to an increase in the amount of cellular death, we assessed cell vitality after 24h of 

treatment with BETs inhibitor, using Propidium Iodide (PI) staining as readout. As shown in the 

Fig.19, the different cell lines used showed a different percentage of PI positive cells in the control 

sample, reflecting intrinsic characteristics of each cell line. However, the treatment with JQ1 did 

not influence the amount of PI positive cells since it remained constant both in DMSO and JQ1 
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treated sample, suggesting the absence of any toxic effect mediated by BETs inhibition, at least in 

the first 24h.  

Comprehensively, the analysis of cell growth and the vitality assay suggested that the first 

response to BETs inhibitors was mainly cytostatic with limited cytotoxic effects. 

 

Fig. 19 BETs inhibition does not increase cellular death 
Analysis of cell vitality on BL (BL-2, BL-28, DAUDI, P3HR1, RAJI, RAMOS), MM (MM.1S, OPM1, 
KMS11) and AML (MV4.11, THP.1) cells after treatment for 24h with DMSO or 100 nM JQ1 through PI 
incorporation. For each cell line a single technical replicate was performed. 
 

The lack of a strong impact on cell death was further confirmed by experiments on Eµ-Myc cells 

infected with a constitutive vector encoding for BCL2, in order to make an apoptosis resistant 

version of these lymphomas. Two independent Eµ-Myc lymphomas infected with MSCV-BCL2 or 

MSCV-EV (as control) were treated with vehicle (DMSO) or 50 nM of JQ1 for up to 4 days and 

cell growth analysis was performed. As shown in Fig.20, the overexpression of BCL2, while 

providing increased fitness of the lymphomas, did not alter the effects of JQ1, since at all time 

point considered we observed a consistent inhibition of cell growth. 
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Fig. 20 BCL2 overexpression does not impact on the impairment of cell growth mediated by JQ1 
Cell growth assay using CellTiterGlo (Promega) on two independent Eµ-Myc lymphomas (21112 and 
23600) infected with MSCV-BCL2, or MSCV-EV as control, and treated with DMSO or 50 nM of JQ1 for 
up to 4 days. The mean and the standard deviations of 3 technical replicates are reported for each time point.  
 

As expected, overexpression of BCL2 had no effect on cell cycle distribution: both control and 

BCL2 overexpressing lymphomas responded to BETs inhibition with a decrease in the percentage 

of S-phase cells (from ~60-50% in DMSO to ~30% in JQ1 sample) and a consequent increase in 

the amount of cells in G1 (from ~30-40% in DMSO to ~50-60% in JQ1) (Fig.21). 

 

Fig. 21 Bypass of apoptosis is not influencing cell cycle distribution after BETs inhibition 
Cell cycle analysis after BrdU incorporation in two independent Eµ-Myc lymphomas (21112 and 23600) 
infected MSCV-BCL2, or MSCV-EV as control, and treated with DMSO or 50 nM of JQ1 for 24h. DNA 
content is evaluated through PI staining. For each Eµ-Myc lymphoma a single technical replicate was 
performed. 
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The strong cytostatic effect observed is in line with what reported by studies on MM and AML  

(Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011) where cell cycle arrest following 

BETs inhibition was linked to Myc downregulation. In order to verify if the decrease in c-myc 

expression after BETs inhibition was shared by different cellular systems, we analyzed Myc 

expression in BL and Eµ-Myc cells after JQ1 treatment, investigating both RNA and protein levels 

by RTqPCR and Western Blot, respectively. As previously reported  (Delmore et al., 2011; Mertz 

et al., 2011; Zuber et al., 2011), we observed a substantial drop in Myc levels both at the RNA 

(Fig.22) and protein levels (Fig.23) either in MM and in AML cell lines. Myc downregulation was 

not consistently observed in all the BL cell lines analyzed: indeed, while BL-28, DAUDI and 

RAMOS showed a reduction in Myc transcription in a dose-dependent fashion; BL-2, P3HR1 and 

RAJI showed Myc mRNA changes only when treated with the highest concentration of JQ1 (500 

nM) (Fig.22). The analysis of Myc protein levels phenocopied the expression data, since we 

observed Myc reduction in BL-2, P3HR1 and RAJI only after treatment with the highest 

concentration of drug (Fig.23). Similarly to what observed for some BL cell lines, also Eµ-Myc 

lymphomas did not show any changes in Myc mRNA (Fig.22) or protein (Fig.23) levels after 24h 

of BETs inhibitor treatment. These experiments suggested that JQ1 has growth inhibitory 

properties that can be separated from its effect on the modulation of Myc levels. 

 

Fig. 22 BETs inhibition is not always associated to a reduction of Myc mRNA 
Analysis of Myc expression levels by RTqPCR on BL (BL-2, BL-28, DAUDI, P3HR1, RAJI and RAMOS), 
three independent Eµ-Myc lymphomas (9644, 27805 and 28514), MM (MM.1S, OMP1, KMS11) and AML 
(THP.1, MV4.11) cells treated for 24h with different concentrations of JQ1 (black: DMSO, red: 50 nM, 
orange: 100 nM, yellow: 500 nM). The expression values are normalized on RPP0 and DMSO sample. The 
mean and the standard deviations of 3 technical replicates are reported. 
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Fig. 23 BETs inhibition is not always associated to a reduction of Myc protein 
Analysis of Myc protein levels by Western Blot analysis on BL (BL-2, BL-28, DAUDI, P3HR1, RAJI and 
RAMOS), three independent Eµ-Myc lymphomas (9644, 27805 and 28514), MM (MM.1S, OMP1, KMS11) 
and AML (THP.1, MV4.11) cells treated with different concentrations of JQ1 (0-50-100-500 nM) for 6 or 
24h. Vinculin or tubulin is used as loading control. Quantification of Myc signal over Vinculin or Tubulin 
one is shown in the barplots. For RAJI cell line, 1 technical replicate for 3 independent biological replicates 
were performed and a representative western blot is shown. For the remaining cell lines, a single technical 
replicate was performed. 
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MM cell lines are characterized by a chromosomal translocation that juxtaposes the c-myc locus to 

the immunoglobulin heavy chain (IgH) regulatory regions. These IgH enhancers are characterized 

by extremely high BRD4 binding that positively regulates the transcription of the translocated c-

myc  (Lovén et al., 2013). In this light, Myc downregulation in response to JQ1 treatment could be 

explained as a consequence of BRD4 displacement from IgH enhancers. Since also BL are 

characterized by chromosomal rearrangement involving the c-myc gene and Ig regulatory 

elements, we asked if the lack of Myc downregulation in response to BETs inhibition, that we 

observed in some BL cell lines, could be dependent on different chromatin modifications of the 

IgH enhancers. To test this hypothesis, we performed Chromatin Immuno-Precipitation followed 

by quantitative PCR (ChIPqPCR) experiments on the IgH regulatory regions for H3K27Ac 

(Fig.24), commonly used as mark of open and active chromatin. The levels of acetylation were 

comparable among all the cell lines used, with the only exception for BL-28 that did not show any 

acetylation in the IgH enhancers (Fig.24).  
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Fig. 24 Analysis of the acetylation levels on the IgH regulatory regions 
Analysis of histone H3 acetylation levels on IgH regulatory regions by ChIPqPCR for H3K27Ac on BL 
(BL-2, BL-28, DAUDI, P3HR1, RAJI, RAMOS) and MM.1s treated with DMSO (black) or 100 nM of JQ1 
(red) for 24h. The mean and the standard deviations of 3 technical replicates are reported. Acetylcholine 
Receptor (AchR) is used as negative control. 
 

Since previous works on MM cells showed that IgH enhancers are particularly enriched for BRD4 

binding, we verified if also BL IgH enhancers were decorated with BRD4 and if there were 

differences in terms of binding intensity or response to JQ1 treatment that could account for the 

absence of Myc downregulation observed in particular in RAJI. As it is shown in Fig.25, BL and 

MM cell lines were characterized by different levels of BRD4 binding to the IgH enhancers. In 

general, BL cells showed a lower BRD4 signal on the IgH enhancer regions compared to MM 
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lines. In particular, for 3 out of 6 BL cell lines used (BL-28, P3HR1, RAJI), BRD4 binding at the 

IgH enhancers was undetectable, while for the remaining 3 (BL-2, DAUDI, RAMOS) BL cell 

lines, BRD4 signal was barely enriched respect to the negative control, with a signal intensity that 

was from 5 to 10 times lower than the one determined in MM lines. Furthermore, BRD4 binding 

was strongly reduced in MM cells after JQ1 treatment, confirming the efficacy of the drug.  

Interestingly, no BRD4 could be detected on the IgH enhancers of P3HR1 or RAJI, possibly 

accounting for their lack of Myc downregulation following BET inhibition. 

 

 

Fig. 25 BL cells are characterized by low levels of BRD4 binding on IgH enhancers 
Analysis of BRD4 binding on IgH regulatory regions by ChIPqPCR for BRD4 on BL (BL-28,DAUDI, 
P3HR1, RAJI, RAMOS) and MM (MM.1S, KMS11) treated with DMSO (black) or 100 nM of JQ1 (red) for 
24h. The mean and the standard deviations of 3 technical replicates are reported. Acetylcholine Receptor 
(AchR) is used as negative control. 
 

The evidences collected so far suggested that MM and BL cell lines, despite the similar 

chromosomal rearrangement, control c-myc expression differently. Indeed, while the strong 

downregulation of Myc in MM cells could be explained by the massive depletion of BRD4 from 

the IgH enhancers, in BL cells other BRD4-independent regulatory mechanisms should account 

for Myc regulation, since the low BRD4 binding on IgH enhancers and the lack of transcriptional 

effect on Myc after JQ1 treatment.  
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JQ1 effects are mainly mediated by BRD4 

While JQ1 shows high affinity for BRD4, it also has some potential activity on other 

members of the BET family  (Filippakopoulos et al., 2010). To gain some insight 

regarding the intracellular target of JQ1, we first evaluated the expression of the 3 main 

BET proteins expressed in somatic tissue by RTqPCR. While BRD3 is barely expressed in 

all the cell lines analyzed (BL, MM and Eµ-Myc lymphomas), BRD4 is the predominant 

BET protein expressed in BL and MM cell lines. Instead, in the Eµ-Myc system, both 

BRD2 and BRD4 are present at comparable levels (Fig.26).   
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Fig. 26 BRD2 and BRD4, but not BRD3, are expressed in BL, Eµ-Myc lymphomas and MM 
Analysis of BETs proteins expression levels by RTqPCR for BRD2 (black), BRD3 (dark grey) and BRD4 
(light grey) in BL (BL-2, BL-28, DAUDI, P3HR1, RAJI), Eµ-Myc lymphomas (9644, 27805 and 28514) 
and MM (MM.1S, OPM1, KMS11). The expression values are normalized to RPP0 levels. The mean and the 
standard deviations of 3 technical replicates are reported. 
 

Since JQ1 causes the displacement of its target from the acetylated histones, we evaluated the 

chromatin occupancy of BET proteins performing ChIPqPCR for BRD2, BRD3 and BRD4 on the 

TSS of genes selected (Fig.27). While both RAJI and Eµ-Myc cells showed no BRD3 enrichment 

compared to the negative control (Acetylcholine Receptor: AchR), as expected since the very low 
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expression level, the other two members of the family, BRD2 and BRD4, were bound to the TSS 

of the genes analyzed.  

 

 

Fig. 27 BRD2 and BRD4, but not BRD3, bind promoters of active genes. 
Analysis of BRD2 (black), BRD3 (dark grey) and BRD4 (light grey) chromatin binding by ChIPqPCR for 
on the promoter of expressed genes on RAJI or Eµ-Myc lymphomas. Acetylcholine Receptor (AchR) is used 
as negative control. For each cell line a single technical replicate was performed. 
 

This results were in line with already published ChIPseq experiments on MM.1S cells for all the 

BET proteins  (Anders et al., 2014). Indeed, these genome wide data showed that the 3 family 

members co-occupied the same genomic regions and furthermore, BRD4 signal was stronger and 

more abundant respect to BRD2 or BRD3 ones. After verifying the expression and the chromatin 

binding of BET proteins, we tested if BRD2 and BRD4 are equally affected by the treatment with 

JQ1, performing ChIPqPCR for BRD2 or BRD4 on RAJI or Eµ-Myc lymphomas after the 

treatment with DMSO or JQ1 for 24h (Fig.28). While BRD4 was consistently displaced after JQ1 

treatment in all the cellular models analyzed, BRD2 response was more heterogeneous since just 

one Eµ-Myc lymphoma (28514) out of 3 showed a strong reduction in BRD2 enrichment after 

BET inhibition, thus suggesting that the cytostatic effect observed upon JQ1 administration was 

mainly due to BRD4 inhibition.  
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Fig. 28 JQ1 displaces BRD4, and less efficiently BRD2, from chromatin 
Analysis of BRD2 or BRD4 binding to the chromatin after DMSO (black) or JQ1 (red) treatment through 
ChIPqPCR on RAJI or Eµ-Myc lymphomas (9644, 27805 and 28514). Acetylcholine Receptor (AchR) is 
used as negative control. For each cell line a single technical replicate was performed. 
 

To further demonstrate the involvement of BRD4 in JQ1 response, we performed silencing 

experiments using specific shRNAs targeting BRD4. After a first attempt using a constitutive 

silencing vector, we took advantage of a conditional silencing system where the expression of a 

specific shRNA is induced by the addition of Doxycycline  (Fellmann et al., 2013). All the 3 

independent shRNAs used caused more than 80% reduction in BRD4 expression that was 

maintained for up to 3 days (Fig.29). The decrease of mRNA detected was mirrored by the 

reduction of protein production, suggesting the efficacy of the shRNA used (Fig.30).  
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Fig. 29 shRNAs against BRD4 strongly reduce BRD4 mRNA production 
Expression analysis by RTqPCR to evaluate the level of BRD4 knock down after 0 (black), 1 (dark grey), 2 
(gray 50%) or 3 (light gray) days of shRNA induction through the administration of Doxycycline in RAJI. 3 
independent shRNA are used: shBRD4.602, shBRD4.1817, shBRD4.1838. The expression values are 
normalized on RPP0 levels. The mean and the standard deviations of 3 technical replicates are reported. 

 

Fig. 30 shRNAs against BRD4 strongly reduce BRD4 protein levels 
Analysis of BRD4 protein levels by Western Blot to evaluate the level of BRD4 downregulation after 0, 24 
or 48h of shRNA induction through Doxycycline administration in RAJI. 3 independent shRNA are used: 
shBRD4.602, shBRD4.1817, shBRD4.1838. Vinculin is used as loading control. In the lower panel the 
barplot shows the quantification of the Western Blot: BRD4 signal (black: 0h, dark gray: 24h, light gray: 
48h) is normalized on the Vinculin. Two technical replicates were performed and a representative western 
blot is shown. 
 

In order to verify if BRD4 silencing could phenocopy BETs inhibitor response, we analyzed the 

cellular and transcriptional effect mediated by shRNAs against BRD4. Expression analysis by 
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RTqPCR demonstrated that BRD4 silencing strongly downregulated genes sensitive to JQ1 

treatment, while the expression of genes insensitive to JQ1 remained constant up to 3 days after 

shRNA induction (Fig.31). 

 

Fig. 31 BRD4 silencing recapitulates JQ1 transcriptional effects 
Expression analysis by RTqPCR to evaluate the expression levels of genes sensitive or insensitive to JQ1 
after 0 (black), 1 (dark grey), 2 (gray 50%) or 3 (light gray) days of BRD4 silencing through the 
administration of Doxycycline in RAJI. 3 independent shRNA are used: shBRD4.602, shBRD4.1817, 
shBRD4.1838. The expression values are normalized on RPP0 levels. The mean and the standard deviations 
of 3 technical replicates are reported. 
 

Moreover, we performed cell cycle analysis to evaluate cytostatic effects following BRD4 

silencing (Fig.32). Doxycycline administration caused an increase from ~40% to ~60-70% in the 

G0/G1 population already after 24h and the percentage of arrested cells further increased after 48h 

of silencing (from 50% to ~80%).  
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Fig. 32 BRD4 silencing recapitulates the block in the cell cycle progression induced by JQ1 
Cell cycle analysis through BrdU incorporation (BrdU pulse: 20’) after shBRD4 induction through 
Doxycycline administration for 24 or 48h. 3 different shRNAs against BRD4 are used: shBRD4.602, 
shBRD4.1817, shBRD4.1838. DNA content is evaluated through PI staining. For each cell line a single 
technical replicate was performed. 
 

Whilst both BRD2 and BRD4 occupied the same genomic regions and JQ1 caused slight 

displacement of also BRD2 from the chromatin, we decided to use BRD4 as an approximation of 

the other BET members since the better quality of BRD4 ChIPseq data and the phenocopying 

effects of BRD4 silencing respect to JQ1 treatment. 
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Optimization of BET proteins Chromatin ImmunoPrecipitation 

Having realized the poor performance, in our hands, of published protocol for BRD4 ChIP, we set 

out to optimize the procedure in order to obtain high resolution ChIPseq maps. Indeed, BRD4 

ChIPseq experiments performed on RAJI using standard ChIP protocol with formaldehyde 

formaldehyde (FA) as fixative agent resulted in very low amount of immunopricipitated DNA. The 

quantity immunoprecipitated DNA strongly affected the quality of the ChIPseq library prepared, 

indeed ChIP signal was barely distinguishable from the background, with a consequent bad peak 

calling (only 884 BRD4 peaks were identified).  

The implementation of the fixation step, using a fixative able to create covalent bonds among 

proteins not directly bound to DNA (i.e. glutaraldehyde: GLUT), allowed us to immunoprecipitate 

BRD4 more effectively. Indeed, the good quality of BRD4 ChIP signal was evident both in 

ChIPqPCR (Fig.33) and in ChIPseq (Fig.34) analysis, since the enrichment signal after the 

standard fixation protocol (FA) was undistinguishable from the negative control (AchR) while the 

use of an alternative fixative agent (GLUT) allowed 30 fold enrichment over the background. 

Furthermore, we verified that the use of a stronger fixative step did not cause the 

immunoprecipitation of non specific protein performing BRD4 ChIP after the treatment with JQ1 

for 24h. Indeed we were still able to clearly detect BRD4 displacement from the chromatin 

(Fig.33-34).  

 

Fig. 33 Implementation of the fixation step increases the efficiency of BRD4 immunoprecipitation 
Analysis of BRD4 binding on IgH regulatory regions by ChIPqPCR for BRD4 on RAJI fixed for 10’ with 
formaldehyde or glutaraldehyde after treatment with DMSO (black) or 100 nM JQ1 (red) for 24h. 
Acetylcholine Receptor (AchR) is used as negative control. For RAJI fixed with FA the mean and the 
standard deviation of three technical replicates are reported; for RAJI fixed with GLUT a single replicate 
was performed. 
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Fig. 34 Implementation of the fixation step increases the efficiency of BRD4 immunoprecipitation 
Screenshot of BRD4 ChIPseq on RAJI fixed for 10’ with formaldehyde or glutaraldehyde after treatment 
with DMSO (black) or 100 nM JQ1 (red) for 24h. H3K27Ac, H3K4me3, H3K4me1 are used to identify 
open and active chromatin. Each ChIP sample was sequenced once. 
 

The improvement of signal to noise ratio was sufficient to properly proceed with further genome 

wide analyses, indeed we were able to identify 11915 different peaks. Furthermore, comparison of 

BRD4 peaks identified after standard or implemented fixation step showed that all the former 

peaks were include in the latter (Fig.35).  
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Fig. 35 The use of an alternative fixative enlarges the chromatin binding sites identified for BRD4 
Analysis of genome wide BRD4 binding using different fixation protocols: FA (formaldehyde: gray), GLUT 
(glutaraldehyde: red). In the Venn Diagram the overlapping area (gray+red) shows the number of BRD4 
common peaks, the red only and the gray only area represent the number of unique peaks identified after the 
fixation with GLUT or with FA, respectively. Each ChIP sample was sequenced once. 
 

Genome Wide mapping of BRD4  

To verify if the reduction in BRD4 binding mediated by JQ1 was limited to the genes analyzed by 

ChIPqPCR or instead if it was a common feature shared in a genome wide scale, we performed 

ChIPseq for BRD4 on cells treated with DMSO or JQ1 for 24h. As shown by the Venn Diagram in 

Fig.36, depicting the overlap between BRD4 ChIPseq in RAJI treated with DMSO or JQ1, the 

number of BRD4 peaks was strongly reduced after BETs inhibition, indeed only ¼ of peaks were 

still present in JQ1 sample (Fig.36). Furthermore, BRD4 peaks that were not displaced by JQ1 

were already present in the DMSO sample (Fig.36). Similar results were also obtained using the 

primary Eµ-Myc lymphoma cells where only half of BRD4 peaks was still present after the 

treatment with JQ1 (Fig.36). Whilst BETs inhibition strongly reduced BRD4 occupancy both in 

BL and in Eµ-Myc lymphoma cells, a difference in percentage of JQ1-resistent BRD4 peaks was 

evident.  
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Fig. 36 BETs inhibition efficiently impairs BRD4 genome wide binding 
Analysis of BRD4 chromatin binding in RAJI or Eµ-Myc lymphoma after treatment for 24h with DMSO 
(gray) or JQ1 (red). In the Venn diagram the overlapping regions (gray+red) represent the common BRD4 
peaks identified both in DMSO and in JQ1 samples. The gray only and the red only regions represent the 
number of BRD4 peaks identified uniquely in DMSO and JQ1 samples, respectively. Each ChIP sample was 
sequenced once. 
 

Nonetheless, the remaining BRD4 peaks in both RAJI and Eµ-Myc lymphoma cells were strongly 

less enriched than the DMSO counterpart, suggesting that JQ1 is exerting its activity on all BRD4 

peaks, since the vast majority of them was displaced while the residual peaks showed a marked 

reduction in signal intensity (Fig.37) 

 

Fig. 37 BETs inhibition causes a strong reduction in BRD4 intensity binding 
Quantification of reads associated to BRD4 peaks (rpm: reads per million) in RAJI or Eµ-Myc lymphomas 
after 24h treatment with DMSO (gray) or JQ1 (red). 
 

In order to have more insight into BRD4 chromatin binding, we performed a genomic distribution 

analysis of BRD4 peaks. As shown by the pie chart in Fig. 38, BRD4 peaks were equally 

distributed among promoter, intragenic and intergenic regions in RAJI. Moreover the allocation of 

BRD4 peaks was not strongly influenced by JQ1 treatment, since the percentage of peaks 

associated to promoter, intragenic and intergenic regions was comparable among DMSO and JQ1 
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samples, suggesting the absence of a preferential displacement from a specific genomic location 

(Fig.38). Similar results were obtained also in Eµ-Myc lymphomas, where BRD4 occupied regions 

were equally assigned to genes or intergenic locations (Fig.38). 

  

Fig. 38 BETs inhibition does not affect BRD4 peaks distribution 
Analysis of genomic distribution (promoter: red, genebody: orange, intergenic: green) of BRD4 peaks after 
24h of treatment with DMSO (left) or JQ1 (right) in RAJI (upper panel) or Eµ-Myc lymphomas (lower 
panel). Each ChIP sample was sequenced once. 
 

Overall, the genome wide studies of BRD4 distribution in RAJI and Eµ-Myc cells showed that 

BRD4 was homogeneously disperse among promoter, intergenic and intragenic regions and that all 

BRD4 binding sites were sensitive to BETs inhibitor effects, since we noticed a reduction of 

number and intensity of the peaks regardless of the genomic localization. 

 

BETs inhibition affects Myc and E2F transcriptional programs 

Since BET proteins are involved in the regulation of transcription  (Jang et al., 2005; Yang et al., 

2005), we first investigated the genome wide transcriptional changes caused by JQ1. Using 

microarray assay, we were able to identify a small subset of genes affected by BETs inhibition; in 

particular we scored 1017 downregulated and 481 upregulated genes (JQ1-DEGs) in RAJI. 

RTqPCR analysis on genes selected from the downregulated or not-deregulated classes was used 
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to efficiently validate the genome wide assay, indeed we were able to confirm respectively the 

downregulation or the insensitivity to the JQ1 treatment using a different approach, obtaining a 

good correlation among the two techniques (R2=0.91) (Fig.39-40). Furthermore, the RTqPCR 

analysis suggested that genes responsive to BETs inhibition were downregulated in a dose-

dependent manner, while not responsive genes were unaffected even at high concentration of JQ1 

(Fig.39).  

 

Fig. 39 JQ1 responsive genes are downregulated in a dose-dependent manner, while JQ1 insensitive 
genes are not affected neither by high concentration of drug 
Expression analysis by RTqPCR in RAJI treated for 24h with DMSO or different concentration of JQ1 
(black: DMSO, red: 50 nM, orange: 100 nM, yellow: 500 nM) to validate downregulated or not deregulated 
genes obtained from Microarray assay. The expression levels are normalized on RPP0 and DMSO sample. 
The mean and the standard deviations of 3 technical replicates are reported. 

 

 

Fig. 40 RTqPCR validates genome wide expression data in RAJI 
Correlation plot to validate the genome wide expression data on RAJI treated for 24h with DMSO or JQ1. 
On the x axis the Log2 Fold Change obtained from RTqPCR is reported, while on the y axis the Log2 Fold 
Change obtained from Microarray assay is reported. 
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Similar results were obtained in Eµ-Myc lymphomas, where we investigated, through RNA 

sequencing (RNAseq), the transcriptional changes caused by BETs inhibition. Also in this system, 

we were able to identify a subset of JQ1 deregulated genes (608 downregulated and 840 

upregulated) that we validated by Nanostring® (Fig.41) and RTqPCR (Fig.42) assays.  

 

Fig. 41 Nanostring assay validates genome wide expression data in Eµ-Myc lymphomas 
Correlation plot to validate the genome wide expression data on Eµ-Myc lymphomas (9644, 27805 and 
28514) treated for 24h with DMSO or JQ1. On the x axis the Log2 Fold Change obtained from RNAseq is 
reported, while on the y axis the Log2 Fold Change obtained from Nanostring assay is reported. 
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Fig. 42 RTqPCR validates genome wide expression data in Eµ-Myc lymphomas 
Expression analysis by RTqPCR to validate downregulated or not deregulated genes identified through 
RNAseq assay in Eµ-Myc lymphomas (9644, 27805 and 28514) treated with DMSO (black) or 50 nM of 
JQ1 (red) for 24h. The expression values are normalized on RPP0 and DMSO sample. The mean and the 
standard deviations of 3 technical replicates are reported. 
 

We functionally annotate JQ1-DEGs by performing Gene Set Enrichment Analysis (GSEA)  

(Subramanian et al., 2005) using different collections from Molecular Signature Database 

(MSigDB) (Subramanian et al., 2005) as gene sets of reference. While upregulated genes in RAJI 

did not show robust enrichment for any gene set, analysis of downregulated genes using MSigDB 

collection for Gene Ontology (GO) terms (C5) showed strong enrichment for genes involved in the 

cell cycle control and DNA replication or G2/M checkpoint, as expected since the block in G1 

after JQ1 treatment (Fig.43). 
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Fig. 43 BETs inhibition deregulates genes involved in cell cycle control 
Gene Ontology analysis using expression genome wide data, obtained through microarray assay in RAJI 
treated with DMSO or JQ1 for 24h. The Gone Ontology C5 collection from MSigDB is used. In the upper 
panel representative enrichment plots are reported. In the lower panel, the top10 GO terms are reported. 
Normalized Enrichment Score (NES) and False Discovery Rate (FDR) values are reported. 
 

GO_term SIZE ES NES FDR	q-val
CELL_CYCLE_PROCESS 174 -0.7248 -2.74772 0
CELL_CYCLE_PHASE 156 -0.71301 -2.6616 0
MITOTIC_CELL_CYCLE 143 -0.71132 -2.62671 0
DNA_METABOLIC_PROCESS 223 -0.65015 -2.55767 0
M_PHASE 101 -0.71945 -2.52673 0
CHROMOSOME 113 -0.69598 -2.50958 0
CELL_CYCLE_GO_0007049 286 -0.63248 -2.47855 0
MITOSIS 75 -0.72658 -2.47655 0
CHROMOSOMAL_PART 88 -0.71137 -2.46899 0
M_PHASE_OF_MITOTIC_CELL_CYCLE 78 -0.72229 -2.45903 0



  Results 

 
 

71 

In order to identify the key transcription factors associated to BETs inhibition response, we further 

characterized the JQ1-DEGs performing GSEA using as gene set of reference already published 

Myc ChIPseq in RAJI cells and the collections for Oncogenic Signature (C6) from MSigDB. As 

shown in Fig. 44-45, genes downregulated after JQ1 treatment were enriched for genes bound by 

Myc (Fig.44) and positively regulated by E2F1 (Fig.45). 
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Fig. 44 JQ1 sensitive genes in RAJI were enriched for Myc targets 
Gene Set Enrichment Analysis using expression genome wide data, obtained through microarray assay, in 
RAJI treated with DMSO or JQ1 for 24h using already published Myc ChIPseq on RAJI  (Seitz et al., 2011). 

 

Fig. 45 JQ1 sensitive genes in RAJI were enriched for E2F1 regulated genes 
Gene Set Enrichment Analysis using expression genome wide data, obtained through microarray assay, in 
RAJI treated with DMSO or JQ1 for 24h using Oncogenic Signature Collection (C6 collection) from 
MSigDB. 
 

The enrichment in the downregulated genes for Myc targets or for genes that contain the 

recognition elements for Myc-Max binding was also confirmed in the Eµ-Myc system, performing 

GSEA with Transcription Factor motif or Oncogenic Signature collections (C3 and C6, 

respectively) (Fig.46).  
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Fig. 46 JQ1 sensitive genes in Eµ-Myc lymphomas were enriched for Myc bound and regulated genes 
Gene Set Enrichment Analysis using genome wide expression data, obtained through RNAseq, in Eµ-Myc 
lymphomas treated with DMSO or JQ1 for 24h. Transcription Factor motif and Oncogenic Signature (C3 
and C6, respectively) collections from MSigDB are used as gene set of reference. 
 

Altogether, the genome wide expression analysis on RAJI and Eµ-Myc lymphomas pointed out 

that genes involved in the cell cycle control and Myc and E2F1 targets were preferentially 

downregulated after treatment with BETs inhibitor. Since the downregulation of the same classes 

of genes was already reported in MM cells  (Delmore et al., 2011), we tested if there was similarity 

between the altered transcriptional programs in different contexts. To verify this possibility, we 

performed GSEA using as gene set of reference the lists of deregulated genes obtained from 

Delmore et al., (2011). As shown in Fig.47, genes identified as downregulated in MM cells in  

Delmore et al., (2011) were enriched for genes downregulated in RAJI, while genes upregulated in 

MM were enriched for upregulated transcripts in RAJI, suggesting that BRD4 inhibition in 

different lines leads to the alteration of similar pathways. 
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Fig. 47 BETs inhibition altered the similar transcriptional program in different contexts 
Gene Set Enrichment Analysis using genome wide expression data on RAJI treated with DMSO or JQ1 for 
24h using as gene set of reference the list of deregulated genes in MM.1S cells treated with JQ1already 
published  (Delmore et al., 2011). 
 

Thus, regardless the alteration of Myc levels, the final transcriptional outcome, in response to 

BRD4 inhibition, is comparable in different cellular contexts and it mainly affects Myc/E2F1 

targets thereby accounting for the strong cytostatic effect exerted by JQ1 in these cell lines. 

 

Myc and E2F1 genomic occupancy is not altered by BETs inhibition 

Since Myc and E2F1 target genes were downregulated following JQ1 treatment, we asked whether 

the treatment with BETs inhibitors would affect Myc or E2F1 chromatin distribution.  

As a first step in the analysis, we investigated the genomic distribution of the two transcription 

factors in RAJI cells and asked whether their localization would be altered after BET inhibition. 

As expected, in the control samples, Myc was equally distributed among either promoters, 

intergenic and intragenic regions (Fig.48), while E2F1 was preferentially localized in the 

proximity of promoters (Fig.48). Myc and E2F1 binding was not influenced by JQ1 treatment, 

since the total number of peaks and their localization were comparable among the two conditions, 

as displayed in the pie chart for genomic distribution and Venn diagram showing the overlap 

between peaks identified in the treated versus untreated sample (Fig.48-49).  
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Fig. 48 BETs inhibition does not change genomic localization of Myc or E2F1 binding 
Analysis of genomic distribution (promoter: red, genebody: orange, intergenic: green) of Myc (left) or E2F1 
(right) ChIPseq peaks in RAJI treated with DMSO (upper panel) or JQ1 (lower panel) for 24h. Each ChIP 
sample was sequenced once. 
 

 

Fig. 49 BETs inhibition does not reduce global Myc and E2F1 binding in RAJI 
Analysis of BRD4 chromatin binding in RAJI or Eµ-Myc lymphoma after treatment for 24h with DMSO 
(gray) or JQ1 (red). In the Venn diagram the overlapping regions (gray+red) represent the common BRD4 
peaks identified both in DMSO and in JQ1 samples. The gray only and the red only regions represent the 
number of BRD4 peaks identified uniquely in DMSO and JQ1 sample, respectively. Each ChIP sample was 
sequenced once. 
 

In order to verify if BETs inhibition affects the intensity of Myc and E2F1 binding, we further 

analyzed the ChIPseq data, quantifying the reads localized in the proximity of the TSS of Myc or 

E2F1 targets. The intensity of Myc or E2F1 promoter peaks was not reduced by BETs inhibition, 
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on the contrary JQ1 treated samples showed a slight increase in the read density around the TSS 

(Fig.50).  

 

Fig. 50 BETs inhibition does not impair the TSS binding of Myc or E2F1 in RAJI 
Reads distribution around the TSSs for Myc (upper panels) or E2F1 (lower panels) ChIPseq in RAJI after 
DMSO (black line) or JQ1 (red line) treatment for 24h. The input is used to set the background levels. The 
quantification of the reads distribution is reported in the boxplot on the right. Paired t-test is used to evaluate 
statistical significant differences. Each ChIP sample was sequenced once. 
 

Therefore, the downregulation of Myc and E2F1 dependent genes observed after JQ1 treatment 

could not be explained by the displacement of the two TFs from the promoter of their target genes. 

To gain further confirmation of the lack of alteration of TF binding after BETs inhibition, we 

performed Myc ChIPseq in Eµ-Myc lymphomas treated with DMSO or JQ1 for 24h. As shown in 

figures 51-52, neither the total number of Myc peaks (Fig.51) nor its binding intensity on the TSS 
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(Fig.52) were reduced by JQ1 treatment, on the contrary we noticed a slight increase both in the 

number of peaks and in the intensity of Myc TSS binding after BETs inhibition. 

 

Fig. 51 BETs inhibition does not alter global Myc chromatin occupancy in Eµ-Myc lymphomas 
Analysis of Myc chromatin binding in Eµ-Myc lymphomas treated with mock (DMSO: gray) or JQ1 (red). 
The overlap region (gray+red) in the Venn Diagram represents the number of common peaks between the 
two conditions. The only gray and only red parts represent the unique peaks in DMSO and JQ1 sample, 
respectively. Myc ChIPseq was performed in 3 independent Eµ-Myc lymphomas and the merge of the three 
sequencing was used for the analysis. 

 

Fig. 52 BETs inhibition does not impair the TSS binding of Myc in Eµ-Myc lymphomas 
Analysis of Myc binding on the TSS of its target through quantification of reads distribution around the 
TSSs for Myc ChIPseq in Eµ-Myc lymphomas after DMSO (black) or JQ1 (red) treatment for 24h. In the 
left panel, it is shown the TSS profile of Myc ChIPseq. The input is used to set the background level. In the 
right panel, the boxplot shows the quantification of reads distribution. Paired t-test is used to evaluate 
statistical significant differences. Myc ChIPseq was performed in 3 independent Eµ-Myc lymphomas and 
the merge of the three sequencing was used for the analysis. 

 

In order to further verify if the response to BETs inhibitor was independent on the levels of TFs, 

we tested the JQ1 effects in cells where either Myc or E2F levels and activity could be raised by 

ectopic overexpression. To modulate the activation of Myc, we took advantage of the Myc-ER 

system, where Myc is fused to a modified form of the Estrogen Receptor (ER) which is responsive 
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to 4-Hydroxytamoxyfen (OHT). Once OHT is added to the cell culture, Myc-ER fusion protein is 

shuttled into the nucleus and free to transcribe its target genes. As a first step, we evaluated cell 

growth of two independent Myc-ER cell lines cultured in the presence of JQ1. As shown in Fig.53, 

both control and OHT treated cells were sensitive to BETs inhibition: not only OHT addition (i.e. 

ectopic Myc activation) did not rescue the cell growth arrest, but cells in which Myc-ER was 

activated seemed slightly more sensitive to BETs inhibition, in line with previous publication 

where based on a genome wide screen in Myc overexpressing cells, BRD4 was identified as a gene 

synthetic lethal with Myc  (Toyoshima et al., 2012).  

 

Fig. 53 Enhanced Myc activity is not sufficient to compensate growth arrest caused by BETs inhibition  
Cell growth assay using CellTiterGlo on primary Murine Embrionic Fibroblast (MEF) infected with 
pBabePuro-MycER and treated with OHT (right panel), to induce Myc activation, or EtOH (left panel), as 
control, in combination with different concentration of JQ1 (black: DMSO, red: 100 nM, orange: 250 nM) 
for up to 4 days. Two independent MEFs preparations (N3 and N7) are used. The mean and the standard 
deviations of 3 technical replicates are reported. 
 

As we already verified for cancer cell lines, also in this context BETs inhibition main effect was a 

block in the cell cycle progression with a consistent decrease in the percentage of cells in S phase, 

as demonstrated by BrdU incorporation and labeling after 48h of JQ1 treatment in combination 

with Myc activation (Fig.54). 
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Fig. 54 Myc increased activity is not sufficient to prevent block in the cell cycle progression induced by 
BETs inhibition 
Cell cycle analysis through BrdU incorporation (pulse 20’) on primary MEFs infected with pBabePuro-
MycER and treated with OHT, to induce Myc activation, or EtOH, as control, in combination with different 
concentration of JQ1 (0-100-250 nM) for 48h. In the lower panel a barplot depicting the % of BrdU positive 
cells is reported. Two independent MEFs preparations (N3 and N7) are used. 
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From this phenotypical analysis, we collected evidences that high Myc activity, rather than 

rescuing, is actually sensitizing cells to BET inhibition. In order to verify if ectopic activation of 

Myc could at least prevent the downregulation of Myc target genes after BETs inhibition, we 

performed RTqPCR on MEFs infected with pBabePuro-Myc-ER after JQ1 treatment and/or OHT 

administration (Fig.55). The analysis of the expression levels on selected Myc targets clearly 

demonstrated that BETs inhibition caused a reduction in their expression levels and that Myc 

enhanced activity was not sufficient to prevent this transcriptional response, suggesting that BRD4 

affects transcription of these genes at a level that is downstream Myc binding to its targets. 

 

Fig. 55 Myc overexpression is not sufficient to prevent JQ1transcriptional effects on Myc targets 
Expression analysis by RTqPCR on Myc target on primary Murine Embrionic Fibroblast (MEF) infected 
with pBabePuro-MycER and treated with different concentration of JQ1 (black: DMSO, red: 100 nM, 
orange: 250 nM) in combination with EtOH (mock) or OHT treatment to induce Myc activation. Two 
independent MEFs preparations (N3 and N7) are used. The expression values are normalized on RPP0 
expression. The mean and the standard deviations of 3 technical replicates are reported. 
 

The previously described GSEA on RAJI highlighted the alteration of both Myc and E2F 

transcriptional program (Fig.44-45). Therefore we decided to test if E2F1 overexpression could be 

sufficient to bypass BET inhibition. To verify this hypothesis, we infected RAJI cells with a 

constitutive vector overexpressing E2F1 and we analyzed the effect of JQ1 treatment in terms of 
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transcriptional response of some E2F1 target genes. As shown in Fig.56, the downregulation of 

E2F1 targets caused by BET inhibition was not bypassed by the ectopic expression of the 

transgene.  

 

Fig. 56 E2F1 overexpression is not sufficient to prevent JQ1 transcriptional effects on E2F1 targets 
Expression analysis by RTqPCR on E2F1 targets on RAJI infected with pBabePuro-EV or pBabePuro-
E2F1-HA and treated for 24h with DMSO (black) or 100 nM JQ1 (red). The expression values are 
normalized to RPP0 expression. The mean and the standard deviations of 3 technical replicates are reported. 
 

In order to rule out the possibility of a cooperation between Myc and E2F1 and the need of the 

double overexpression to overcome BET inhibition, we performed E2F1 overexpression 

experiments in MEFs where Myc-ER transgene was knocked in (KI) under the control of the 

Rosa26 promoter. As it is shown in Fig.57-58, even though we were able to properly 

overexpressed E2F1, the cell growth response to JQ1 treatment was not rescued by the 

combination of Myc activation and E2F1 overexpression. 

 

Fig. 57 E2F1 is efficiently overexpressed in MEFs 
Analysis of E2F1 protein level by Western Blot on primary MEFs Wilde Type (WT) or MycER Knock-in 
(KI) not infected or infected with pBabePuro-EV or pBabePuro-E2F1-HA. A single replicate was 
performed. 
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Fig. 58 E2F1 overexpression and Myc activation are not sufficient to overcome BETs inhibition 
impairment of cell growth 
Cell viability assay on primary MEFs Wilde Type (WT) or MycER knock in (KI) infected with pBabePuro-
EV (upper panel) or pBabePuro-E2F1-HA (lower panel) and treated for up to 4 days with different 
concentration of JQ1 (black: DMSO, orange: 100 nM, yellow: 250 nM) and with EtOH (solid lines) or OHT 
(dashed lines), to induce Myc activation. The mean and the standard deviations of 3 technical replicates are 
reported.  
 

 

Characteristics of JQ1 responsive genes 

Since BETs inhibition alters the expression of a defined set of genes, shared by different cell lines, 

we wondered whether we could identify features that specifically characterized these JQ1 

responsive genes. With this idea in mind, we performed an integrated analysis of the transcriptome 

and the chromatin profiles obtained by the ChIPseq. As a first level of investigation, we analyzed 

if JQ1 responsive genes show differences in their expression levels in comparison to the not 

deregulated ones. Indeed, quantifying the expression in the DMSO treated samples, we observed 

that in RAJI cells the class of downregulated genes was characterized by a significant higher level 

of expression respect to not-deregulated genes (Fig.59).  
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Fig. 59 JQ1 sensitive genes are expressed at high levels 
Expression quantification through Microarray assay in RAJI for NO-DEG, DOWN or UP regulated genes 
identified through Microarray analysis in RAJI after treatment with JQ1. Unpaired t test (two tails) is used. * 
pvalue=0.0259; **** pvalue<0.0001. 
 

In order to verify if this higher expression level in the downregulated genes could be associated to 

the presence of specific chromatin features, we investigated the chromatin occupancy of different 

transcription factors or histone marks (Fig.60) in RAJI. Focusing our attention on downregulated 

genes, we noticed that the vast majority of the TSS in the DMSO sample was simultaneously 

bound by BRD4 and by Myc and E2F1, as predicted by the GSEA analysis. On the contrary, only 

a small fraction of not deregulated genes showed the presence of BRD4 and the transcription 

factors Myc and E2F1 (Fig.60) on their TSS. Furthermore, it is worth to notice that, regardless of 

the group identity (downregulated or not-deregulated), the genes characterized by the presence of 

RNA PolII and by the histone marks for active chromatin (H3K27Ac, H3K4me1, H3K4me3) were 

also bound by BRD4, that, as expected, is strongly depleted after BETs inhibition. This evidence 

suggested that, even though BETs inhibition ultimately affects the expression of a limited number 

of genes, BRD4 is bound to all the promoters of genes actively transcribed (Fig.60).  
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Fig. 60 JQ1 sensitive genes are preferentially bound by BRD4, TFs (Myc and E2F1) and RNA PolII in 
RAJI 
Digital heatmap showing the distribution of BRD4, Med1, TFs (Myc and/or E2F1), RNA PolII and histone 
marks (H3K27AC, H3K4me1 and H3K4me3) in no-deregulated or downregulated genes in RAJI after the 
treatment for 24h with DMSO or JQ1. Each ChIP sample was sequenced once. 
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These results were also confirmed using available ChIPseq data for MM.1S  (Delmore et al., 2011) 

and for a Diffuse Large B Cell Lymphoma cell line (OC-LY1) (Chapuy et al., 2013) after BETs 

inhibition. In both cell lines, regions marked with histone modifications for open and active 

chromatin were also bound by BRD4, furthermore there was a strong association between BRD4 

binding and RNA PolII/Myc. Moreover, also in these cellular models, downregulated genes were 

highly enriched for targets of Myc, in contrast to not-deregulated genes (Fig.61-62).  
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Fig. 61 JQ1 sensitive genes are preferentially bound by BRD4, E2F1 and RNA PolII in MM.1S 
Digital Heatmap showing the distribution of BRD4, Med1, RNA PolII, Myc, CDK9 and histone marks 
(H3K27Ac and H3K4me3) in no-deregulated or downregulated genes after JQ1 treatment in MM.1S. 
Expression data and ChIPseq data used to perform this analysis were public available  (Delmore et al., 2011; 
Lovén et al., 2013) . 
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Fig. 62 JQ1 sensitive genes are preferentially bound by BRD4, E2F1 and RNA PolII in OC-LY1 
Digital Heatmap showing the distribution of BRD4, RNA PolII, E2F1 and histone marks (H3K27AC, and 
H3K4me3) in no-deregulated or downregulated genes in OC-LY1 after the treatment for 24h with DMSO or 
JQ1. Expression data and ChIPseq data used for this analysis were obtained from  (Chapuy et al., 2013). 
 

In order to extend these observations, we verified also in the Eµ-Myc lymphomas the chromatin 

landscape for downregulated or not-regulated genes after BETs inhibition. Also in Eµ-Myc 

lymphomas, we still observed the strong correlation between TSS marked with transcription 
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factors/RNA PolII/active histone marks and BRD4, but we were not able to discriminate between 

responding versus not responding genes based on the binding pattern, since also the latter class of 

genes was strongly enriched for Myc/RNA PolII bound genes (Fig.63). This difference could be 

due to the biology of Eµ-Myc lymphomas: in this cellular system, Myc is expressed at very high 

levels and a phenomenon called “invasion” occurs  (Lin et al., 2012; Sabò et al., 2014). Briefly, 

when Myc is expressed at physiological and low levels, it binds only few targets with the 

canonical E-box sequences in their promoter; once Myc is overexpressed it will bind also not 

canonical E-boxes, both at the promoter and at the enhancer regions, invading all the regulatory 

regions. This phenomenon will explain why we were not able to discriminate among JQ1 sensitive 

and insensitive genes based on Myc binding.  
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Fig. 63 JQ1 responsive genes are not distinguishable from not deregulated ones based on chromatin 
occupancy in Eµ-Myc lymphomas 
Digital Heatmap showing the distribution of BRD4 (DMSO or JQ1 sample) and Myc, RNA PolII and 
H3K27Ac in 3 different Eµ-Myc lymphomas.  
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Since these heatmaps are digital representations of the occupancy of a particular region, we 

decided to analyze also the binding intensity of each factor on the TSS of the genes belonging to 

the different classes (Fig.64). From the analysis in RAJI of the reads distribution around the TSS, 

we noticed a much higher intensity binding of BRD4, Myc & E2F1 and RNA PolII in 

downregulated genes respect to not-deregulated ones (Fig.64). These data are in line with the 

results obtained in MM.1S cell line: in fact, also in this cellular system the downregulated genes 

were characterized by a very high binding of BRD4, Myc and RNA PolII (Fig.64).  

This analysis suggested that the promoters of downregulated genes are (over)loaded with BRD4 

and other TFs that, attracting more RNA PolII, may ensure a higher expression level in basal 

conditions.  
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Fig. 64 JQ1 sensitive genes are characterized by high intensity binding of BRD4, TFs and RNA PolII 
on the TSSs 
Reads distribution around the TSSs in no-deregulated or downregulated genes in RAJI (upper panels) or 
MM.1S (lower panels) after DMSO (black line) or JQ1 (red line) treatment. For RAJI BRD4, Myc, E2F1 
and RNA PolII ChIPseq are analyzed. Each ChIP sample was sequenced once. For MM.1S BRD4, Myc and 
RNA PolII ChIPseq already published are used  (Delmore et al., 2011; Lovén et al., 2013).  
 

 

BRD4 inhibition causes alteration of RNA PolII dynamics 

Since the ChIPseq data clearly showed that the deregulation of Myc and E2F1 targets did not 

correspond to a reduced binding of these TFs on the promoter of their targets, and the 

overexpression experiments suggested that the BETs inhibitors act downstream the binding of a 

TF on the promoter of its targets, we wondered whether gene downregulation caused by BETs 



  Results 

 
 

92 

inhibition was actually linked to alterations of RNA PolII activity. To address this question, we 

performed ChIPseq on RNA PolII in RAJI treated with JQ1. Analysis of the RNA PolII peaks 

distribution (Fig.65) showed that the binding sites were mainly localized in the genebody (around 

50%) and on the promoter (30%), while a minority of peaks were localized in the intergenic 

regions, as expected. Moreover, BETs inhibition did not change the global binding of RNA PolII 

to the chromatin (Fig.65-66), suggesting no massive alteration of RNA PolII occupancy after 

BRD4 inhibition.  

 

Fig. 65 BETs inhibition does not alter the global genomic distribution of RNA PolII in RAJI 
Analysis of genomic distribution in Promoters (red), Genebody (orange) and Intergenic (green) regions of 
RNA PolII peaks in RAJI treated with DMSO (left) or 100 nM of JQ1 (right) for 24h. Each ChIP sample 
was sequenced once. 

 

Fig. 66 BETs inhibition does not reduce the number of RNA PolII binding sites in RAJI 
Analysis of RNA PolII chromatin binding in RAJI treated with mock (DMSO: gray) or JQ1 (red) for 24h. 
The overlap region (gray+red) in the Venn Diagram represents the number of common peaks between the 
two conditions. The only gray and only red parts represent the unique peaks in DMSO and JQ1 samples, 
respectively. Each ChIP sample was sequenced once. 
 

Nonetheless, the inhibition of BRD4 might affect RNA PolII processivity. To test this hypothesis, 

we evaluated the Stalling Index (SI). This value takes into account the signal of RNA PolII on the 

promoter and on the genebody of transcribed genes (Fig.67): usually, an high SI value is 



  Results 

 
 

93 

associated to high levels of RNA PolII on promoter (stalled PolII) and/or low level of traveling 

RNA PolII on the genebody (related to the block in the elongation step). From this analysis, we 

noticed that the SI associated to RAJI treated with JQ1 was higher than the control (DMSO) 

sample, regardless of the class of genes analyzed (Fig.67). In particular, the compromised 

elongation step was evident in JQ1 downregulated genes, in which the RNA PolII signal in the 

genebody was strongly reduced while the occupancy on the promoter was not affected, as shown 

by the SI plot and by the RNA PolII profile and reads quantification in Fig.67. On the contrary, the 

not-deregulated (Fig.67) and upregulated (Fig.67) genes were characterized by a higher RNA PolII 

signal on the promoter without massive changes on the genebody. 
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Fig. 67 BETs inhibition strongly affects RNA PolII dynamics in RAJI 
Evaluation of the RNA PolII dynamics in RAJI after treatment with DMSO (black) or JQ1 (red) for 24h. In 
the upper panel a schematic representation of Stalling Index evaluation was reported. (A) Stalling Index is 
calculated for not-deregulated, downregulated and upregulated genes. The left panel summarizes the global 
SI, the middle panel shows the quantification of RNA PolII on the TSS, while the right panel shows the 
quantification of RNA PolII reads on the GeneBody (GB). (B) RNA PolII profiles along the gene. The 
dashed line represents the background (input) signal. (C) Boxplot to quantify RNA PolII reads on the TSS, 
on the GB and on the TES. Pair t-test is calculated for each DMSO-JQ1 pair. Each ChIP sample was 
sequenced once. 
 

In order to verify if the stalling of the RNA PolII on downregulated genes would lead to a 

reduction in the transcription rate, we performed 4-thioUridine (4-sU) labeling, followed by 

RTqPCR. This technique, indeed, allows the specific labeling of the newly synthesized mRNA. As 

shown in Fig.68, downregulated genes showed a 60% reduction in the production of new 

transcripts after the treatment with JQ1, while no differences were evident in the not-deregulated 

genes.  

 

Fig. 68 JQ1 treatment affects the mRNA production of downregulated genes 
Quantification by RTqPCR of ongoing transcription in genes not deregulated or downregulated by 24h JQ1 
treatment in RAJI. The newly synthesized RNA is labeled with a 30’ pulse of 4-sU. The total number of 
copies of labeled RNA in the JQ1 sample over the DMSO is reported. In order to discriminate the immature 
from the spliced mRNA, primers are designed at the intro-exon boundary. One technical replicate per two 
biological replicates were performed and a representative plot is shown. 
 

The analysis on RNA PolII dynamics and the 4-sU labeling results suggested that BRD4 inhibition 

affected the synthesis of downregulated genes by selectively compromising their transcriptional 
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elongation. On the contrary, the transcription of not-deregulated genes was not altered, probably 

because the initial reduction on the elongating RNA PolII was immediately compensated by a 

higher recruitment of RNA PolII on the promoter, as it is suggested by the higher ChIPseq signal 

of promoter associated polymerase.  

In order to verify if the stalling of the RNA PolII is an effect shared also by other cell lines, we 

performed the SI evaluation on RNA PolII ChIPseq in MM.1S (Fig.69) or OC-LY1 (Fig.70) cells 

using published datasets  (Chapuy et al., 2013; Lovén et al., 2013). Also in these cell lines, JQ1 

treatment strongly affected the RNA PolII rate. In particular, downregulated genes were 

characterized by a reduction of RNA PolII signal on the genebody, without any change at the 

promoter level (Fig.69-70); while not-deregulated (Fig.69-70) and upregulated genes (Fig.69-70) 

were marked with a higher RNA PolII density on their promoter.  
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Fig. 69 BETs inhibition strongly affects RNA PolII dynamics in MM.1S 
Evaluation of the RNA PolII dynamics in MM.1S after treatment with DMSO (black) or JQ1 (red). (A) 
Stalling Index is calculated for not-deregulated, downregulated and upregulated genes. The left panel 
summarizes the global SI, the middle panel shows the quantification of RNA PolII on the TSS, while the 
right panel shows the quantification of RNA PolII reads on the GeneBody (GB). (B) RNA PolII profiles 
along the gene for not-deregulated, downregulated and upregulated genes. The dashed line represents the 
background (input) signal. (C) Boxplot to quantify RNA PolII reads on the TSS, on the GB and on the TES. 
Pair t-test is calculated for each DMSO-JQ1 pair. For this analysis already published data are used  (Delmore 
et al., 2011; Lovén et al., 2013)  
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Fig. 70 BETs inhibition strongly affects RNA PolII dynamics in OC-LY1 
Evaluation of the RNA PolII dynamics in OC-LY1 after treatment with DMSO (black) or JQ1 (red). (A) 
Stalling Index is calculated for not-deregulated, downregulated and upregulated genes. The left panel 
summarized the global SI, the middle panel shows the quantification of RNA PolII on the TSS, while the 
right panel shows the quantification of RNA PolII reads on the GeneBody (GB). (B) RNA PolII profiles 
along the gene for not-deregulated, downregulated and upregulated genes. The dashed line represents the 
background (input) signal. For this analysis already published data are used  (Chapuy et al., 2013)  
 

Further indications of alteration of RNA PolII dynamics and processivity derived from analysis of 

its phosphorylation status. After the recruitment on the promoter, RNA PolII needs to be 

phosphorylated on Serine5 (Ser5) and Serine 2 (Ser2) of its CTD in order to be active and to start 

gene transcription  (Kwak and Lis, 2013). In particular, the phosphorylation on Ser5 of RNA PolII 

CTD is mediated by CDK7 during the initiation step of the transcription process and it is 

characteristic of primed and promoter-paused RNA PolII. Instead, the modification of Ser2 is 

mediated by CDK9, the kinase of the positive elongation factor pTEFb, and it is necessary for the 

transition from the initiation to the elongation step. In order to verify if the treatment with JQ1 

caused global alteration of the phosphorylation status, we checked by Western Blot the level of 

phosphorylated RNA PolII with specific antibodies, previously tested, and that recognize 

exclusively the RNA PolIIS5p or RNA PolIIS2p forms. After the treatment with JQ1, neither RNA 
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PolIIS5p nor RNA PolIIS2p levels were decreased (Fig.71), suggesting the absence of a global 

alteration in RNA PolII phosphorylation status.  

 

Fig. 71 BETs inhibition does not cause a global reduction in RNA PolII phosphorylated forms 
Analysis of RNA PolIIS2p and RNA PolIIS5p levels by Western Blot in RAJI treated with different 
concentration of JQ1 (0-50-100-500 nM) for 6 or 24h. Total RNA PolII was used to monitor eventual 
alteration in the levels of total RNA PolII. Ponceau is used as loading control. Two technical replicates were 
performed and a representative blot is shown. In the lower panels, the barplots show the quantification of the 
phosphor RNA PolII over the total. 
 

In order to assess differences in RNA PolII phosphorylation that could be characteristic and 

restricted to JQ1 responsive genes, we performed ChIPseq on phosphorylated RNA PolII forms 

(RNA PolIIS2p and RNA PolIIS5p) and we analyzed their distribution along the genes of the 

different classes of genes. This analysis showed that the distribution of RNA PolIIS2p was 

strongly affected by BETs inhibition, in particular the JQ1 responsive genes were characterized by 

a strong decrease in the levels of RNA PolIIS2p both in the genebody and on the Transcriptional 

End Site (TES), as shown both in the gene profile and in the quantification of the intensity of the 

phosphorylated RNA PolII respect to the total form (Fig.72), supporting the hypothesis that BET 

inhibition led to a decrease in the elongating RNA PolII in this class of genes. On the contrary, 

both upregulated and not affected genes showed a global increase in the RNA PolIIS2 

phosphorylated forms (Fig.72). While for the upregulated genes this result was expected, since 
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they responded to BET inhibition with an increase in transcription, the results for the not 

deregulated genes was a further support to our hypothesis of a compensatory mechanism that can 

counterbalance the effect of JQ1 by recruiting more RNA PolII on the TSS of the genes and thus 

leading to an increase in the elongating RNA PolII.  

 

Fig. 72 BETs inhibition strongly affects elongating RNA PolII (S2p) 



  Results 

 
 

101 

Analysis of RNA PolIIS2p in not deregulated (NO-DEG), downregulated (DEG-DOWN) or upregulated 
(DEG-UP) genes after 24h JQ1 treatment in RAJI. In the upper panel the analysis of RNA PolIIS2p 
distribution along the genes in DMSO (black) or JQ1 (red) is reported. The dashed line represents the 
background level (input). 
In the lower panel, the amount of phosphorylated Ser2 RNA PolII over the total form in the Genebody (GB) 
or Transcription End Site (TES) is evaluated. Pair t-test is performed to evaluate statistical significant 
differences among DMSO (gray) and JQ1 (red) samples. Each ChIPseq sample was sequenced once. 
 

Moreover, from the analysis of RNA PolIIS5 phosphorylated form, we noticed that downregulated 

genes showed a strong decrease in the RNA PolIIS5p along the genebody, with no significant 

changes at the TSS (Fig. 73), supporting the idea that less initiating RNA PolII is able to escape 

from the TSS in order to complete the transcription. The not deregulated and upregulated genes 

showed a clear increase in the Ser5 phosphorylated form both at the TSS and on the genebody 

(Fig.73). Furthermore, the increased Ser5p/Tot ratio (Fig.57) both in not-deregulated and 

upregulated genes denoted an enhancement of the phosphorylation mediated by CDK7 after BETs 

inhibition, suggesting that the compensatory effect may be mediated also by an active recruitment 

and priming of RNA PolII, rather than a simple release from the TSS of RNA PolII molecules 

already present. 
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Fig. 73 BETs inhibition induces phosphorylation of RNA PolII on the Serine 5 
Analysis of RNA PolIIS5p in not deregulated (NO-DEG), downregulated (DEG-DOWN) or upregulated 
(DEG-UP) genes after 24h JQ1 treatment in RAJI. In the upper panel the analysis of RNA PolIIS2p 
distribution along the genes in DMSO (black) or JQ1 (red) is reported. The dashed line represents the 
background level (input). 
In the lower panel, the amount of phosphorylated Ser5 RNA PolII over the total form in the Genebody (GB) 
or Transcription End Site (TES) is evaluated. Pair t-test is performed to evaluate statistical significant 
differences among DMSO (gray) and JQ1 (red) samples. Each ChIPseq sample was sequenced once. 
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These observations suggested that BRD4 regulates RNA PolII elongation, while this is a general 

effect that will likely concern any transcribed gene, the decrease in the transcription rate will 

specifically affect a subset of expressed genes which will be unable to compensate the drop in 

elongation rate with the increase in RNA PolII recruitment.  

 

Cdk9 inhibition preferentially downregulates JQ1 sensitive genes 

Several experimental evidences suggest that BRD4 is a positive co-factor in the regulation of gene 

transcription, since it is necessary for the recruitment of Positive Elongation Factor (pTEFb 

composed by CDK9 and Cyc T1) on the promoter of target genes, allowing the phosphorylation on 

Serine 2 of RNA PolII  (Jang et al., 2005; Yang et al., 2005). Since our data showed that JQ1 

responsive genes are particularly sensitive to alteration in RNA PolII elongation, we wondered 

whether this class of genes would be similarly sensitive to other inhibitors of RNA PolII 

elongation. To answer to this question, we analyzed the transcriptional response after inhibition of 

CDK9, using two well-known CDK9 inhibitors (e.g. DRB and PHA-767491) on both JQ1 

responsive and not responsive genes. As shown in Fig.74, genes sensitive to BET inhibition were 

preferentially downregulated by CDK9 inhibitors. As expected, high concentration of CDK9 

inhibitors, which will globally blunt elongation preventing any compensatory effect at the 

promoter level, affected the expression of all the tested genes. 
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Fig. 74 JQ1 responsive genes are more sensitive to CDK9i 
Expression analysis by RTqPCR on JQ1 responsive or not-deregulated genes in RAJI in response to two 
different CDK9 inhibitors: in the upper panel, RAJI cells are treated for 3h with different concentration of 
DRB (Mountbatten pink: DMSO, indaco: 0.1 µM, blu persia: 1 µM, lavender: 10 µM, periwinkle: 100 µM), 
in the lower panel RAJI are treated for 24h with different concentration of PHA (Mountbatten pink: DMSO, 
indaco: 0.1 µM, blu persia: 1 µM, lavender: 10 µM). The expression values are normalized on RPP0 
expression and on the DMSO sample. The mean and the standard deviations of 3 technical replicates are 
reported. 
 

Taking advantage of already published data, we analyzed also the RNA PolII dynamics on MM.1S 

cells treated with CDK9 inhibitor  (Anders et al., 2014) using the  (Delmore et al., 2011) 

expression data to define the classes of JQ1 sensitive or insensitive genes. As shown in Fig.75, 

CDK9 inhibitors had a stronger effect respect to BRD4 inhibition in terms of stalling of RNA 

PolII, indeed we observed a decrease in the elongating RNA PolII also in genes classified as not 

responding to BRD4 inhibition. Nonetheless, JQ1 targets showed a greater stalling index with a 

higher reduction in the travelling RNA PolII on the genebody compared to the others, consistent 

with the hypothesis that these genes are intrinsically less capable to compensate for drops in 

elongation rates. 
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Fig. 75 JQ1 responding genes are also more sensitive to CDK9 inhibition 
Evaluation of the RNA PolII dynamics in MM.1S after treatment with DMSO (black) or CDK9 inhibitor 
(red) on genes identified as not-deregulated (NO-DEG), downregulated (DEG-DOWN) or upregulated 
(DEG-UP) after BETs inhibition. (A) Stalling Index is calculated for NO-DEG, DEG-DOWN or DEG-UP 
genes. The left panel summarizes the global SI, the middle panel shows the quantification of RNA PolII on 
the TSS, while the right panel shows the quantification of RNA PolII reads on the GeneBody (GB). (B) 
RNA PolII profiles along the gene for NO-DEG, DEG-DOWN, DEG-UP genes. The dashed line represents 
the background (input) signal. For this analysis already published data are used (Anders et al., 2014; 
Delmore et al., 2011).  
 

The elongation dependency of the genes downregulated by BETs inhibition was further verified in 

CDK9 overexpression experiments. Indeed, ectopic expression of CDK9 (Fig.76) was sufficient to 

slightly increase the expression levels of genes sensitive to JQ1 treatment, while genes insensitive 

to the drug were not altered by CDK9 overexpression (Fig.77).  
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Fig. 76 CDK9 overexpression in RAJI 
Analysis of CDK9 protein level by Western Blot analysis to evaluate CDK9 overexpression in RAJI cells 
infected with either pBabe-PURO-EV or pBabe-PURO-CDK9. Vinculin is used as loading control. One 
technical replicate per each of the two biological replicates was performed and a representative blot is 
shown. 

 

Fig. 77 CDK9 overexpression slightly induces the expression of JQ1 sensitive genes 
Expression analysis by RTqPCR to evaluate the expression levels of genes responsive (downregulated) or 
insensitive (not deregulated) to JQ1 in RAJI infected with either pBabe-Puro-EV (black) or pBabe-Puro-
CDK9 (gray). The expression values are normalized to RPP0 expression levels and pBabe-Puro-EV sample. 
The mean and the standard deviations of 3 technical replicates are reported.  
 

These data suggested that the limiting step in the control of BRD4 targets expression is the 

elongation of RNA PolII. Once this process is perturbed the genes cannot compensate it and their 

transcription will be decreased. On the contrary, the regulation of JQ1 insensitive genes could be 

multilayer allowing to buffer eventual mild perturbation, only heavy alteration of the elongation 

step, as in the case of high concentration of CDK9 inhibitors, will end up with a decrease in their 

expression level. 

 

Super-Enhancers 
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Recent publications have highlighted the presence of new distal regulatory elements, called Super-

enhancers (SEs), characterized by their unusual length and by high levels of BRD4, Med1 and 

H3K27 acetylation  (Lovén et al., 2013). These SE regions are associated to genes that confers cell 

identity or that are necessary for tumor maintenance  (Chapuy et al., 2013; Dowen et al., 2014; 

Hnisz et al., 2013; Lovén et al., 2013; Whyte et al., 2013). The presence and the characteristics of 

those regions were used to support and rationalize the specific downregulation caused by BETs 

inhibitors of some genes associated to tumor progression as c-myc  (Lovén et al., 2013). In order to 

verify if also in RAJI we could identify these regions, we analyzed our BRD4 ChIPseq data 

according to the parameter used in the paper mentioned above (Fig.78).  

 

Fig. 78 Super-enhancers identification in RAJI 
Identification of super-enhancers ranking BRD4 stitched peaks according to BRD4 intensity signal (rpm: 
reads per million). Each ChIPseq sample was sequenced once. 
 

This analysis allowed us to identify in RAJI around 270 Super-enhancers that share features of the 

canonical active enhancers, such as high ratio H3K4me1/H3K4me3 and H3K27Ac (Fig.79).  
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Fig. 79 SEs shows characteristics of distal regulatory regions and they are highly acetylated 
Analysis of histone modifications signal in Super-enhancers (SE), promoters or enhancers. 
H3K4me1/H3K4me3 ratio is used to identify active enhancers, while H3K27Ac is a mark of active and open 
chromatin on SE, promoters or canonical enhancers. The local read density (reads per million/ base pair: 
rpm/bp) is reported. Each ChIPseq sample was sequenced once. 
 

Compared to canonical enhancers, Super-enhancers were particularly enriched for BRD4 binding 

and acetylation on the H3K27 (Fig.80).  

 

Fig. 80 SEs are strongly bound by BRD4 
Analysis of BRD4 intensity binding on Super-enhancers (SE), canonical enhancers or promoters. The local 
read density (reads per million/ base pair: rmp/bp) is reported. 
 

Moreover, SEs were highly sensitive to BETs inhibition, since the treatment with JQ1 caused a 

much stronger BRD4 depletion on SE compared to canonical enhancers (Fig.81). 
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Fig. 81 SEs are highly sensitive to BRD4 displacement mediated by JQ1 
Analysis of BRD4 intensity binding on Super-enhancers (SE) or canonical enhancers (normal) after 24h of 
treatment with DMSO (gray) or 100 nM of JQ1 (red) in RAJI. 
 

Super-enhancers were occupied by Myc and RNA PolII and also in this case, as for canonical 

enhancers and promoters, BETs inhibition caused a local increase of Myc and RNA PolII binding 

(Fig.82). 

 

Fig. 82 SEs are bound by Myc and RNA PolII in RAJI 
Analysis of Myc or RNA PolII intensity binding on Super-enhancers (SE) or canonical enhancers (normal) 
after 24h of treatment with DMSO (gray) or 100 nM of JQ1 (red) in RAJI. Each ChIPseq sample was 
sequenced once. 
 

Since Super-enhancers have been proposed to regulate either cell type specific genes or key 

oncogenes in tumor cell lines and they are particularly sensitive to the treatment with JQ1, we 

wondered whether they were also associated to genes that were downregulated after BETs 
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inhibition in RAJI. To answer to this question, we first associated the Super-enhancers to the 

closest gene and we performed the overlap between the associated Super-enhancers genes and the 

DEGs identified after microarray analysis. None of the classes that we defined as DEGs were 

enriched for genes associated to Super-enhancers (Fig.83).  

 

Fig. 83 SEs associated genes are not enriched for JQ1 responsive genes 
Comparison of Super-Enhancer (SE) associated genes and genes deregulated (DOWN or UP) by JQ1 
treatment in RAJI. The comparison of canonical enhancer associated genes and JQ1 responsive genes is used 
as control. 
 

While we did not find any direct association between genes differentially expressed upon BETs 

inhibition and SE, based on proximity analysis, long-range transcriptional control exerted by SE 

will merit further assessment.  
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V. Discussion 
 

The c-myc gene encodes for a transcription factor involved in different aspects of cellular 

life and, in particular, in cell cycle control and apoptosis, cell differentiation, cell 

metabolism, energy production and RNA synthesis  (Ponzielli et al., 2005). The crucial 

role of Myc in the regulation of cell cycle and cell proliferation was demonstrated shortly 

after its discovery as a viral oncogene in avian leukemia  (Sheiness and Bishop, 1979). 

Hitherto, Myc oncogenic activity has been associated not only to the onset of the vast 

number of human tumors  (Dang, 2012), but also to tumor maintenance  (Pelengaris et al., 

2002b; Shachaf et al., 2004; Soucek et al., 2008). Thus, the development of inhibitory 

strategies aimed at modulating or switching off Myc expression represents “the promise 

land” in cancer treatment. Different strategies have been proposed to impair Myc 

expression or activity  (Ponzielli et al., 2005), among these, in the last years the possibility 

to target chromatin readers has been explored. Indeed, different reports in 2011 

demonstrated that the use of BETs inhibitors led to cell cycle arrest in vitro and tumor 

regression in vivo  (Dawson et al., 2011; Delmore et al., 2011; Mertz et al., 2011; Zuber et 

al., 2011). Moreover, in these publications, Myc downregulation was proposed as the main 

target of BETs inhibitors  (Dawson et al., 2011; Delmore et al., 2011; Mertz et al., 2011; 

Zuber et al., 2011). 

BET proteins are crucial mediators in gene transcription, since, after the recognition and 

the binding of acetylated histones through the bromodomains, they recruit activators of 

transcription, as pTEFb (Jang et al., 2005; Yang et al., 2005).  

Different working models have been proposed to explain how BETs inhibition triggers 

Myc downregulation. Indeed when the c-myc gene is translocated under the control of the 

IgH enhancer, its transcription is regulated by broad regulatory distal regions located in 

the IgH locus, called IgH-Super Enhancers (SE), that are highly enriched for BRD4. In 
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this context, Myc downregulation could be explained by the displacement of BRD4 from 

the IgH-SE  (Delmore et al., 2011; Lovén et al., 2013). When c-myc is not translocated, its 

expression can be regulated by oncogenic transcription factors, as MLL/AF9 in the Acute 

Myeloid Leukemia, recruited on chromatin by BET proteins. Also in this system the 

treatment with BETs inhibitors prevents BET proteins binding to chromatin and switch off 

Myc transcription  (Dawson et al., 2011).  

Subsequent publications, as well as our work, called into question the idea that Myc 

downregulation is a conditio sine qua non BETs inhibitors can exert their therapeutic 

functions. Indeed, we were able to identify different Burkitt’s lymphoma cell lines and 

Eµ-Myc lymphomas that do not show any alteration of Myc levels (Fig.22-23), even if 

highly sensitive to drug treatment in terms of decrease in cell growth (Fig.17) and block in 

G1/S progression (Fig.18). Moreover, our results suggest that, despite the final effect on 

Myc expression, BETs inhibition leads to a deregulation of a restricted class of genes, 

enriched for targets of Myc (Fig.44) and E2F (Fig.45) and involved in cell cycle 

progression (Fig.43). It is worth to highlight that similar classes of genes are 

downregulated in response to BETs inhibitors in different hematological tumors (Burkitt’s 

Lymphomas and Multiple Myeloma), independently from the alteration of Myc levels 

(Fig.47). Indeed, both RAJI (Myc no change) and MM.1S (Myc downregulated) showed a 

strong downregulation of genes involved in the cell cycle progression in response to BETs 

inhibitors. This similarity in the global transcriptional changes in BL and MM, regardless 

the effect on Myc transcription, further reinforces the idea that, beside the already 

proposed Myc-dependent mechanisms, a more general mechanism should exist. 

Despite the growing literature on BET proteins and the use of BETs inhibitors in different 

cellular models, a clear characterization of genes sensitive to BETs inhibition is still 

missing. In our work, we identify an association that may lead to a priori prediction of 

JQ1 responsive genes. Indeed, our results suggest that downregulated genes in RAJI are 

characterized by a high expression level, compared to the not deregulated ones (Fig.59). 
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Moreover, JQ1 responsive genes, not only are enriched for Myc and E2F1 targets, as 

demonstrated by GSEA (Fig.44-45) and ChIPseq (Fig.60-61-62), but also they show the 

strongest intensity binding of those TFs (Myc and E2F1) and RNA PolII on the TSS 

(Fig.64), suggesting an high transcriptional activity.  

Beside the deep characterization of JQ1 responsive genes, our work demonstrates that in 

hematological malignancies (BL, MM, DLBCL) BETs inhibition alters the dynamics of 

RNA PolII both in JQ1 sensitive and insensitive genes. Previous publications already 

showed the involvement of BRD4 in the regulation of RNA PolII rate in different cellular 

systems  (Di Micco et al., 2014; Anand et al., 2013; Kanno et al., 2014; Liu et al., 2014, 

2013). Indeed, it was demonstrated that BRD4 inhibition or silencing are associated to an 

impairment of RNA PolII rate not only in JQ1 responsive genes, but also in the remaining 

active transcripts  (Anand et al., 2013; Liu et al., 2013; Di Micco et al., 2014). While some 

reports associate the regulation of RNA PolII rate mediated by BRD4 to its capacity to 

recruit and activate pTEFb  (Liu et al., 2014), in Ozato’s lab this possibility was excluded 

and the BRD4 control of the elongation rate was connected to its histone chaperone 

activity  (Kanno et al., 2014). In our work, we mainly focused our attention on the analysis 

of the transcriptional consequences to BETs inhibition rather than on the mechanistic 

dissection of BRD4 involvement in the control of the elongation step. Indeed, our results 

add an additional layer of information, thanks to a deeper analysis of RNA PolII 

dynamics: our work, in line with already published reports, demonstrates an increase in the 

Stalling Index (SI) in all active genes as well as in JQ1 sensitive ones (Fig.67-69-70). 

Furthermore we demonstrate that, while not sensitive genes are characterized by an 

increase in the promoter-proximal RNA PolII with no changes on the elongating RNA 

PolII on the genebody, JQ1 responsive genes show a strong decrease in the RNA PolII 

associated to genebody (Fig.67-69-70). It is worth to remember at this point that the SI 

takes into account the amount of RNA PolII both on the TSS and on the genebody, 

consequently an increase in the SI value could be associated to either an increase in the 
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TSS associated RNA PolII or to a decrease in the elongating polymerase. Our work 

suggests that BETs inhibition causes a genome wide alteration of RNA PolII dynamics 

with an increase in the SI value: while JQ1 sensitive genes experience a drop in the 

elongating RNA PolII, JQ1 insensitive genes actively recruit more RNA PolII on the TSS. 

Furthermore, our results suggest that the active recruitment of total RNA PolII on the TSS 

of JQ1 insensitive genes is followed by an active phosphorylation on the polymerase CTD, 

since we observed an increase of both S5p TSS associated (Fig.73) and S2p elongating 

RNA PolII (Fig.72). On the contrary, JQ1 sensitive genes were characterized by the 

absence of additional phosphorylation after BETs inhibition, since the amount of RNA 

PolII phosphorylated forms over the total was comparable among DMSO and JQ1 sample 

(Fig.72-73).  

Overall, the analysis of RNA PolII clearly demonstrated that two different responses are 

possible after BETs inhibition: while JQ1 insensitive genes recruit more RNA PolII on the 

promoter and respond to BETs inhibition increasing the phosphorylation of the 

polymerase, JQ1 sensitive genes show a strong reduction in the elongating RNA PolII 

without any further recruitment or phosphorylation of new RNA PolII molecules.  

Comprehensively, our work proposes a novel mechanism of action for BETs inhibitors. 

Indeed our data show that, beside the already proposed direct downregulation of key 

Transcription Factors as Myc, another JQ1 effect is the alteration of RNA PolII dynamics: 

while JQ1 responsive genes transcription is strongly reduced after drug treatment due to a 

drop in the elongating RNA PolII, JQ1 not responsive genes are able to compensate the 

alteration of the polymerase distribution increasing both the total amount of TFs and RNA 

PolII on the promoter and the phosphorylation of polymerase in order to enhance its 

processivity. Probably this compensatory mechanism is not possible in the class of JQ1 

sensitive genes because they are already expressed at their maximum level. Furthermore, 

our work suggests that for highly transcribed genes the elongation step is a rate limiting 

step, since they are highly sensitive to any alteration of RNA PolII elongating fraction and 
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they are not able to compensate this change. In this light, our work not only suggests a 

novel BETs inhibitor mechanism of action but highlights the possibility to use the 

elongation step as an additional potential therapeutic target. 
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