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Extremal Dependence Concepts
Giovanni Puccetti and Ruodu Wang

Abstract. The probabilistic characterization of the relationship between two
or more random variables calls for a notion of dependence. Dependence
modeling leads to mathematical and statistical challenges, and recent devel-
opments in extremal dependence concepts have drawn a lot of attention to
probability and its applications in several disciplines. The aim of this paper
is to review various concepts of extremal positive and negative dependence,
including several recently established results, reconstruct their history, link
them to probabilistic optimization problems, and provide a list of open ques-
tions in this area. While the concept of extremal positive dependence is
agreed upon for random vectors of arbitrary dimensions, various notions of
extremal negative dependence arise when more than two random variables
are involved. We review existing popular concepts of extremal negative de-
pendence given in literature and introduce a novel notion, which in a gen-
eral sense includes the existing ones as particular cases. Even if much of the
literature on dependence is focused on positive dependence, we show that
negative dependence plays an equally important role in the solution of many
optimization problems. While the most popular tool used nowadays to model
dependence is that of a copula function, in this paper we use the equivalent
concept of a set of rearrangements. This is not only for historical reasons. Re-
arrangement functions describe the relationship between random variables in
a completely deterministic way, allow a deeper understanding of dependence
itself, and have several advantages on the approximation of solutions in a
broad class of optimization problems.

Key words and phrases: Rearrangement, copulas, comonotonicity, coun-
termonotonicity, pairwise countermonotonicity, joint mixability, �-counter-
monotonicity.

1. DEPENDENCE AS A SET OF
REARRANGEMENTS

In the mathematical modeling of a random phe-
nomenon or experiment, the quantity of interest is de-
scribed by a measurable function X : � → R from a
preassigned atomless probability space (�,A,P) to
some other measurable space, which will be chosen as
the real line in what follows. This X is called a random
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variable. A random variable, if considered as an indi-
vidual entity, is univocally described by its law (distri-
bution)

F(x) := P(X ≤ x), x ∈ R.

In the remainder, X ∼ F indicates that X has distri-
bution F , while X ∼ Y means that the random vari-
ables X and Y have the same law. We denote by Lp ,
p ∈ [0,∞) the set of random variables in (�,A,P)

with finite pth moment and by L∞ the set of bounded
random variables. The notation U [0,1] denotes the
uniform distribution on the unit interval, while I(A) de-
notes the indicator function of the set A ∈ A. Through-
out, we use the terms “increasing” versus “strictly in-
creasing” for functions. Most of the results stated in
this paper have been given in the literature in differ-
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ent forms (even if in some cases we provide a self-
contained proof), whereas Sections 3.4 and 4 contain
original results.

Exploring the relationship between two or more ran-
dom variables is crucial to stochastic modeling in nu-
merous applications and requires a much more chal-
lenging statistical analysis. Typically, a number of
d ≥ 2 random variables X1, . . . ,Xd : � → R are gath-
ered into a random vector X := (X1, . . . ,Xd) : � →
R

d . A full model description of (X1, . . . ,Xd) can be
provided in the form of its joint distribution function

F(x1, . . . , xd) := P(X1 ≤ x1, . . . ,Xd ≤ xd),

x1, . . . , xd ∈R.

In this case, we keep the notation X ∼ F and the
univariate distributions Fj (x) := P(Xj ≤ x), j =
1, . . . , d , are referred to as the marginal distributions
of F . When d ≥ 2, the full knowledge of the individual
models F1, . . . ,Fd is not sufficient to determine the
joint distribution F . In fact, the set F(F1, . . . ,Fd) of
all possible distributions F sharing the same marginals
F1, . . . ,Fd typically contains infinitely (uncountably)
many elements. F(F1, . . . ,Fd) is called a Fréchet
class. We also say that a Fréchet class F(F1, . . . ,Fd)

supports a random vector X if the distribution of
X is in F(F1, . . . ,Fd); equivalently, we write X ∈d

F(F1, . . . ,Fd) if Xj ∼ Fj , j = 1, . . . , d . More details
on the set F(F1, . . . ,Fd) can be found in Joe (1997),
Chapter 3.

In order to isolate a single element in F(F1, . . . ,Fd),
one needs to establish the dependence relationship
among a set of given marginal distributions. In what
follows, we use the notion of a rearrangement to de-
scribe dependence among a set of random variables.

DEFINITION 1.1. Let f,g : [0,1] → [0,1] be
measurable functions. Then g is called a rearrange-
ment of f , denoted by g

r∼ f , if g and f have the

same distribution function under λ, the restriction of
the Lebesgue measure to [0,1]. Formally, g

r∼ f if and
only if

λ[g ≤ v] = λ[f ≤ v] for all v ∈ [0,1].
Given a measurable function f : [0,1] → [0,1],

there always exists a decreasing rearrangement f∗
r∼ f

and an increasing rearrangement f ∗ r∼ f , defined by

f∗(u) := F−1(1 − u) and f ∗(u) := F−1(u),

where F(v) := λ{u : f (u) ≤ v}. In the above equation
and throughout the paper, the quasi-inverse F−1 of a
distribution function F : A ⊂ R→ [0,1] is defined as

F−1(u) := inf
{
x ∈ A : F(x) ≥ u

}
, u ∈ (0,1],(1.1)

and F−1(0) := inf{x ∈ A : F(x) > 0}.
In Figure 1 we illustrate a function f : [0,1] →

[0,1] (left) together with its decreasing (center) and
increasing (right) rearrangements. Note that any rear-
rangement function f in Figure 1 is itself a rearrange-
ment of Id, the identity function on [0,1]. We have that
f

r∼ Id if and only if f (U) ∼ U [0,1] for any U ∼
U [0,1]. In some of the literature, rearrangements are
known under the name of measure-preserving transfor-
mations; see, for instance, Vitale (1979) and Durante
and Fernández-Sánchez (2012).

It is well known that a random variable Xj with
distribution Fj has the same law as the random vari-
able F−1

j (U), where U ∼ U [0,1]. This of course re-

mains true if one replaces U with f (U), f
r∼ Id.

Analogously, each component Xj of a random vector
(X1, . . . ,Xd) has the same law as F−1

j ◦ fj (Uj ), for

some fj
r∼ Id and Uj ∼ U [0,1]. For d ≥ 2, different d-

tuples of rearrangements f1, . . . , fd generate random

FIG. 1. A function f : [0,1] → [0,1] (left), its decreasing rearrangement f∗ (center) and its increasing rearrangement f ∗ (right). The
grey areas represent the sets {f ≤ v} (left), {f∗ ≤ v} (center) and {f ∗ ≤ v} (right) which all have the same λ-measure for any v ∈ [0,1].
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vectors with the same marginal distributions but dif-
ferent interdependence among their components. Con-
versely, any dependence among the univariate compo-
nents of a d-dimensional random vector can be gener-
ated by using a suitable set of d rearrangements. The
following theorem reveals the nontrivial fact that the
random variables Uj can be replaced by a single ran-
dom variable U .

THEOREM 1.1. The following statements hold:

(a) If f1, . . . , fd are d rearrangements of Id, and
F1, . . . ,Fd are d univariate distribution functions, then(

F−1
1 ◦ f1(U), . . . ,F−1

d ◦ fd(U)
)

is a random vector with marginals F1, . . . ,Fd .
(b) Conversely, assume (X1, . . . ,Xd) is a random

vector with joint distribution F and marginal distri-
butions F1, . . . ,Fd . Then there exist d rearrangements
f1, . . . , fd of Id such that

(X1, . . . ,Xd)
(1.2)

∼ (
F−1

1 ◦ f1(U), . . . ,F−1
d ◦ fd(U)

)
,

where U is any U [0,1] random variable.

PROOF OF (a). Since fj
r∼ Id, fj (U) is uniformly

distributed on [0,1] and, consequently, F−1
j ◦ fj (U)

has distribution Fj . As a result, the random vector
(F−1

1 ◦ f1(U), . . . ,F−1
d ◦ fd(U)) has marginal distri-

butions F1, . . . ,Fd . �
PROOF OF (b) IN CASE F1, . . . ,Fd ARE CONTINU-

OUS. Let U ∼ U [0,1]. Without loss of generality, we
take U as a random variable on ([0,1],B, λ), where B
denotes the Borel σ -algebra of [0,1]. Let (X1, . . . ,Xd)

be a random vector having joint distribution F with
marginal distributions F1, . . . ,Fd . Let C be the dis-
tribution of (F1(X1), . . . ,Fd(Xd)). Since Fj (Xj ) ∼
U [0,1] if Fj is continuous, C is a distribution on
[0,1]d with U [0,1] marginals. Let VC be the measure
on [0,1]d induced by C. The idea of the proof is to find
a one-to-one measurable mapping f : ([0,1], λ) →
([0,1]d,VC) which is measure-preserving and whose
inverse is also measure-preserving. In fact, we need f

such that for every Bd ∈ B([0,1]d), the Borel σ -algeb-
ra of [0,1]d , and for every B ∈ B we have that

VC

(
Bd)= λ ◦ f −1(Bd) and λ(B) = VC ◦ f (B).

In order to define such f , we first take a one-to-one
measurable function φ : [0,1]d → [0,1] such that φ−1

is also measurable. The existence of such φ is implied
by Theorem 2.12 in Parthasarathy (1967). Let G be the

distribution function associated to the measure VC ◦
φ−1 and define f : [0,1] → [0,1]d as f = φ−1 ◦ G−1.
We have that G−1(U) ∼ G, implying that f (U) =
φ−1 ◦ G−1(U) ∼ C. If f (U) = (f1(U), . . . , fd(U)) ∼
C, then (F−1

1 ◦f1(U), . . . ,F−1
d ◦fd(U)) ∼ F . To con-

clude the proof, it remains to show that the above-
defined fj ’s are rearrangements of Id, but this is di-
rectly implied by the fact that (f1(U), . . . , fd(U)) ∼ C

and the marginals of C are uniform. �
PROOF OF (b) IN CASE F1, . . . ,Fd ARE ARBI-

TRARY. If the Fj ’s have jumps, one can proceed as
for continuous marginals by replacing Fj by F̂j de-
fined as

F̂j (x) = Fj (x−) + (
Fj (x+) − Fj (x−)

)
Ux,

where Ux are uniformly distributed on [0,1] and in-
dependent for all (countable) discontinuity points x

of Fj . In fact, instead of the distribution Fj , one uses in
the proof above its distributional transform as defined
in Rüschendorf (2009): the value of Fj is randomized
over the length of the jumps. �

REMARK 1.1. We make the following remarks
about Theorem 1.1:

(i) The representation in (1.2) is equivalent to
the one given in Theorem 5.1 in Whitt (1976) and
Lemma 1 in Rüschendorf (1983). The proof of Lem-
ma 1 in Rüschendorf (1983) refers the reader to
Lemma 2.7 in Whitt (1976), which is based on The-
orem 2.12 in Parthasarathy (1967). The proof of
Whitt (1976) uses similar arguments and is based on
Sklar’s theorem. It is shown in Rohlin (1952) and
Parthasarathy (1967) that two Borel subsets of com-
plete separable metric spaces are isomorphic if and
only if they have the same cardinality. This allows
for the identification of an isomorphism φ : [0,1]d →
[0,1] as in the above proof. Apart from this last men-
tioned key result, the proof of Theorem 1.1 presented
here is self contained.

(ii) A still different proof of Theorem 1.1 using the
language of copulas (see Definition 1.2) can be found
in Kolesárová, Mesiar and Sempi (2008), Theorem 3.1.
As stressed in the latter reference, the set of d rear-
rangements in (1.2) is unique up to a rearrangement of
Id. In fact, (1.2) holds true even if f1, . . . , fd are re-
placed by f1 ◦ ψ, . . . , fd ◦ ψ , where ψ

r∼ Id.
(iii) The notation C for the distribution of the vector

(F1(X1), . . . ,Fd(Xd)) in the above proof is not unin-
tended: C is a copula under the terminology introduced
in Definition 1.2 below.
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(iv) Theorem 1.1 holds true also in the case that a
different definition of quasi-inverse is used in (1.1).
Quasi-inverses are generalizations of the inverse of a
function that are defined even when the function is not
strictly monotone. For a distribution function F and
y ∈ [0,1] let F←(y) = {x : F(x) = y}. If F is strictly
increasing, then the cardinality of F←(y) is always a
singleton and one can simply set F←(y) := F−1(y).
If the cardinality of F←(y) is more than one, one has
to somehow choose between the various elements of
F←(y), thus allowing for different notions of quasi-
inverse which all coincide except on at most a count-
able set of discontinuities. The notion of quasi-inverse
used in this paper and defined in (1.1) is the left-
continuous one; see also Embrechts and Hofert (2013)
for a comprehensive investigation of its properties.

On the basis of Theorem 1.1, it is natural to iden-
tify the structure of dependence among the components
of a random vector with a set of d rearrangements of
the identity function on [0,1]. An equivalent concept
used to model the structure of dependence in a ran-
dom vector is the notion of a copula function. Since
their introduction in the late 50s, copulas (or copulæ)
have gained a lot of popularity in several fields of ap-
plied probability and statistics like hydrology, finance,
insurance and reliability theory. Especially in quanti-
tative risk management, copulas present a widely used
tool for market and credit risk, risk aggregation, port-
folio selection, etc. Textbook introductions to copulas
can be found in Joe (1997, 2015), Nelsen (2006) and
Durante and Sempi (2015), while more application-
oriented references are McNeil, Frey and Embrechts
(2005) and Jaworski et al. (2010).

DEFINITION 1.2. A copula C is a distribution
function on [0,1]d with U [0,1] marginals.

Using Theorem 1.1, we can immediately see that the
notion of a copula is equivalent to a set of d rearrange-
ments of the identity function on [0,1]. The following
corollary of Theorem 1.1 is essentially a rewriting of
Theorem 3.1 in Kolesárová, Mesiar and Sempi (2008).

COROLLARY 1.2. The function C is a copula if
and only if there exists a set of d rearrangements
f1, . . . , fd of Id such that(

f1(U), . . . , fd(U)
)∼ C,(1.3)

where U ∼ U [0,1]. We also note that the representa-
tion of a copula via d rearrangements f1, . . . , fd as
in (1.3) is not unique, as we have(

f1(U), . . . , fd(U)
)∼ (

f1 ◦ ψ(U), . . . , fd ◦ ψ(U)
)

for any rearrangement ψ of Id. Consequently, when f1
in (1.3) is one-to-one, we can always set f1 = Id.

Even if the equivalent concept of a rearrangement
has been used to model dependence much earlier than
the introduction of copulas (see the Historical Remark
at the end of Section 2), nowadays copulas are consid-
ered a standard tool to model dependence at least in
the above-mentioned fields. The popularity of copula-
based models is mainly due to their mathematical inter-
pretation which is fully captured by Sklar’s theorem.

THEOREM 1.3 (Sklar’s theorem). Given a copula
C and d univariate marginals F1, . . . ,Fd , one can al-
ways define a distribution function F on R

d having
these marginals by

F(x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)
,

(1.4)
x1, . . . , xd ∈ R.

Conversely, it is always possible to find a copula C

coupling the marginals Fj of a fixed joint distribution
F through the above expression (1.4). For continuous
marginal distributions, this copula in (1.4) is unique.

Because of its importance in applied probability and
statistics, Sklar’s theorem has received a lot of atten-
tion and has been proved several times with different
techniques. In our opinion, the most elegant proof of
the theorem is the one provided in Rüschendorf (2009)
based on distributional transforms. Sklar’s theorem
was first announced, but not proved, in Sklar (1959);
for the two-dimensional case d = 2, a complete proof
only appeared in Schweizer and Sklar (1974). For a
comprehensive history of Sklar’s theorem (and all its
proofs as well as a new one) see Durante, Fernández-
Sánchez and Sempi (2012).

The equality (1.4) illustrates a way of isolating the
description of the dependence structure, given by a
copula function C, from the distributions F1, . . . ,Fd

of the marginal components of a random vector. Via
Sklar’s theorem, the mathematical construction, sta-
tistical estimation and the simulation of a complex
multivariate model were made more accessible to the
broader audience [see, e.g., some of the earliest applied
papers Clemen and Reilly (1999) and Embrechts, Mc-
Neil and Straumann (2002)]. Various methodologies
exist for estimating dependence parameters in a fam-
ily of copulas; see, for instance, Chapter 6 in Mai and
Scherer (2014). On the other side, copulas possess a
number of deficiencies, especially when they are used
in higher dimensions; see Mikosch (2006) and Mai and
Scherer (2013).
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In the remainder of this paper, we will use rearrange-
ments to model the structure of dependence of random
vectors. This is not only for historical reasons. Look-
ing at dependence as a set of deterministic functions
has several advantages for the solution of some spe-
cific optimization problems and allows for obtaining a
deeper understanding of the dependence itself.

REMARK 1.2. A direct consequence of Theo-
rem 1.1 is that any random vector can be seen as a de-
terministic function of a single random factor. In prin-
ciple, in order to generate (simulate) an observation
for a d-variate random vector, we need only to sample
a point from the unit interval. This last assertion in-
cludes a random vector with independent components
as a particular case. For example, if we write u ∈ [0,1]
in decimal form, for example, u = 0.u1u2u3 . . . (in case
u has more than one representation we choose the one
with infinitely many 0’s), define f1(u) = 0.u1u3 . . .

and f2(u) = 0.u2u4 . . . . For U ∼ U [0,1], f1(U) and
f2(U) are then independent and U [0,1]-distributed
random variables. These rearrangement functions f1
and f2 are illustrated in Figure 2.

By (1.2), each component of an arbitrary random
vector can be seen as a function of a common random
factor. However, this does not imply that the knowl-
edge of a single component implies the knowledge
of the others. For example, take the random vector
(X1,X2) := (U,f1(U)), where f1 is the rearrange-
ment given in Figure 1 (left) and U ∼ U [0,1]. The sec-
ond random component X2 is completely dependent on
X1 (i.e., takes a.s. only one value for each value of X1),
but not vice versa. This occurs because the rearrange-
ment f is not one to one. There exists an interesting

class of one-to-one rearrangements that, under the cop-
ula taxonomy, are known under the name of shuffle of
Min.

DEFINITION 1.3. A copula C is a shuffle of Min
if there exist d one-to-one, piecewise continuous rear-
rangements f1, . . . , fd of Id such that(

f1(U), . . . , fd(U)
)∼ C,

where U ∼ U [0,1].
Shuffle of Mins were originally introduced in Miku-

siński, Sherwood and Taylor (1992) in the two-dimen-
sional case as copulas having as support a suitable rear-
rangement of the mass distribution of a particular cop-
ula, called the Min copula [see (2.4) below]—hence the
name. The multivariate definition given here is based
on Corollary 2.3 of Durante and Fernández-Sánchez
(2012) and clearly illustrates that shuffle of Mins ex-
presses a special type of dependence, called mutually
complete dependence in Lancaster (1963), under which
each component of a random vector is completely de-
pendent on any of the others. The requirement of piece-
wise continuity of the rearrangements in Definition 1.3
is introduced only for historical reasons to match the
bivariate definition given in Mikusiński, Sherwood and
Taylor (1992), but it is not really necessary.

Mutually completely dependent discrete random
vectors can be represented in terms of a matrix. For
a given (n × d)-matrix X = (xi,j ), we define P(X) as
the set of all (n × d)-matrices obtained from X by re-
arranging the elements within a number of its columns
in a different order, that is,

P(X) = {
X̃ = (x̃i,j ) : x̃i,j = xπj (i),j , π1, . . . , πd

are permutations of {1, . . . , n}}.

FIG. 2. A set of two rearrangements f1 (left) and f2 (right) defining a two-dimensional random vector with independent components.
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We call each matrix in P(X) a rearrangement matrix.
Any rearrangement matrix X̃ ∈ P(X) can be seen as

the support of a discrete, d-variate distribution giving
probability mass 1/n to each one of its n row vectors.
Under this view, any such X̃ has the same marginal
distributions F1, . . . ,Fd , where for each j , Fj is uni-
formly distributed over the n real values xi,j , 1 ≤ i ≤ n,
assumed distinct for convenience. Therefore, any re-
arrangement matrix represents a different dependence
structure coupling the fixed discrete marginal distribu-
tions Fj . In particular, each X̃ has a copula belong-
ing to the class of shuffle of Mins and represents a
mutually complete dependence between its marginal
components. The class of shuffle of Min copulas has
been proved to be dense in the class of copulas en-
dowed, for instance, with the L∞-norm, and this re-
sult again does not need the continuity assumption in
Definition 1.3. In fact, any copula can be considered
as a generalization to the infinite-dimensional space
of such rearrangement matrices [see, e.g., Kolesárová
et al. (2006)]. Equivalently stated, any dependence
structure can be approximated by the copula of a re-
arrangement matrix for n large enough and, in particu-
lar, this result implies that any pair of independent ran-
dom variables can be approximated by a sequence of
pairs of mutually completely dependent random vari-
ables. An early example of this fact can be found in
Kimeldorf and Sampson (1978), where the approxi-
mation sequence is explicitly given (the copula of the
third element of the sequence and the corresponding
rearrangement matrix are illustrated in Figure 3). The
matrix representation described above and the corre-
sponding density result turn out to be extremely useful
to approximate the solution of a broad variety of op-
timization problems in Section 4. For more details on

FIG. 3. The support of the copula (left) of the third element of
the sequence, as described in Kimeldorf and Sampson (1978), ap-
proximating an independent pair of random variables. On the right
part of the figure, we provide a rearrangement matrix representing
a discrete bivariate distribution with the same copula and marginal
distributions uniformly distributed over the first nine integers.

the link between the idea of a rearrangement and copu-
las as dependence structures, we refer to Rüschendorf
(1983). For a review of known results on the approx-
imation of copulas via shuffles of Mins and via the
more general concept of shuffle of copulas, see Durante
and Fernández-Sánchez (2012). We remark that the
L∞-norm between copulas is sometimes argued as
not being a natural norm between probability mea-
sures. More interesting types of convergence are in-
vestigated in Durante and Fernández-Sánchez (2012)
and Fernández-Sánchez and Trutschnig (2015). For an
insight on not necessarily bijective measure-preserving
transformations, we refer to Trutschnig and Fernández-
Sánchez (2013).

Scope of the Paper

In what follows, we review various concepts of ex-
tremal positive and negative dependence using the tool
of rearrangement functions. The term extremal used in
the title does not refer to the field of multivariate ex-
treme value theory (MEVT), which is not the focus
of this paper. Indeed, so-called extreme value copu-
las (such as the Gumbel family of copulas) can be
used to model strong positive dependence; see, for in-
stance, Gudendorf and Segers (2010). However, they
are not capable of modeling any negative dependence,
as shown in Marshall and Olkin (1983). This is a conse-
quence of the significant mathematical asymmetry be-
tween extremal positive dependence and extremal neg-
ative dependence, as we shall illustrate in Sections 2
and 3. Furthermore, in this paper we focus on concepts
of dependence rather than statistical methods for de-
pendence; however, many examples useful in statistics
will be provided along the way.

2. EXTREMAL POSITIVE DEPENDENCE

Much of the literature on dependence modeling is fo-
cused on the notion of an extremal positive dependence
structure. The word extremal used in this paper refers
to dependence structures leading to extremal values un-
der certain criteria which will be specified later. Ex-
tremal positive dependence concepts are typically de-
fined by requiring that all the components of a random
vector behave similarly, for example, can be expressed
as increasing functions of a common factor. This sce-
nario can be interpreted as the ordinary perception of
a catastrophe or extreme natural event: the intensity
of an earthquake/tsunami, a flooding, a famine, a war
or an epidemic can be seen as a single random vari-
able which affects in the same direction people, prop-
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erties and economical factors confined to the same ge-
ographic area. The higher the magnitude of the catas-
trophe, the higher the damage for all the individuals
involved. Analogously, in a financial market all assets
might be influenced by a unique economic shock (e.g.,
a terroristic attack) and react similarly. Random vari-
ables resembling this type of behavior are called com-
monly monotonic: high values for one of them imply
high values for all the remaining and vice versa, in one
word: comonotonic.

DEFINITION 2.1. A random vector (X1, . . . ,Xd)

is said to be comonotonic if there exists a single rear-
rangement f

r∼ Id such that

(X1, . . . ,Xd) ∼ (
F−1

1 ◦ f (U), . . . ,F−1
d ◦ f (U)

)
,

where U ∼ U [0,1]. As f (U) ∼ U [0,1], the rearrange-
ment function f can always be chosen as f = Id. Thus,
the components of a R

d -valued comonotonic random
vector are a.s. increasing functions of a common ran-
dom factor U .

Comonotonic random vectors represent the solution
of a wide class of optimization problems. In particular,
they are well known to maximize the expectation of a
supermodular function over the set F(F1, . . . ,Fd).

DEFINITION 2.2. A function c :Rd →R is super-
modular if

c(u ∧ v) + c(u ∨ v) ≥ c(u) + c(v)
(2.1)

for all u,v ∈ R
d,

where u ∧ v is the component-wise minimum of u and
v, and u ∨ v is the component-wise maximum of u
and v. If (2.1) holds with a strict inequality for all un-
ordered couples of distinct u,v ∈ R

d , then the function
c is strictly supermodular. Simple examples of super-
modular functions include c(x) = f (x1 + · · · + xd) for
f convex, and c(x) = ∏d

j=1 xj . The reader is referred
to Marshall, Olkin and Arnold [(2011), Chapter 6.D]
for more examples and properties in the class Sd of su-
permodular functions.

THEOREM 2.1. For a random vector (X1, . . . ,Xd)

with joint distribution function F , the following state-
ments (a)–(c) are equivalent:

(a) (X1, . . . ,Xd) is comonotonic;
(b) F is given by

F(x1, . . . , xd) = F∨
d (x1, . . . , xd)

:= min
{
F1(x1), . . . ,Fd(xd)

}
,(2.2)

x1, . . . , xd ∈ R,

where Fj is the marginal distribution of Xj , j =
1, . . . , d ;

(c) F ≥ G on R
d for all G ∈ F(F1, . . . ,Fd).

Statements (a)–(c) imply the following:

(d) for all supermodular functions c : Rd → R, we
have that

E
[
c(X1, . . . ,Xd)

]
= sup

{
E
[
c(Y1, . . . , Yd)

] : Yj ∼ Xj,(2.3)

j = 1, . . . , d
}
.

Statements (a)–(d) are implied by the following:

(e) there exists a strictly supermodular function c :
R

d →R such that∣∣E[c(X1, . . . ,Xd)
]∣∣< ∞

and (2.3) holds.

Moreover, if E[|Xj |] < ∞ for j = 1, . . . , d , then (a)–
(e) are equivalent.

PROOF. (a) ⇔ (b) follows from elementary prob-
ability. A self-contained proof can be found in Theo-
rem 2 in the paper Dhaene et al. (2002) or in separate
parts in Rüschendorf (1980). (b) ⇔ (c) can be shown
using a standard argument as used in Hoeffding (1940).
(c) ⇒ (d) follows from Theorem 5 in Tchen (1980); see
the Historical Remark below for a complete history of
this result. (e) ⇒ (c): this can be easily proven by dis-
crete approximation and reduction in the discrete case
to a classical discrete rearrangement theorem of Hardy,
Littlewood and Pólya (1934); we give more details in
the Historical Remark below. In the discrete case, if
(X1, . . . ,Xd) is not comonotonic, then we can change
the order of two elements (while keeping the others),
thus obtaining a larger value of the target function by
strict supermodularity. Strictness of the supermodular
function and finiteness of the sup in (2.3) are only
needed to guarantee uniqueness of the solution. Note
that (d) ⇒ (e) also holds if there exists a strictly super-
modular function c such that |E[c(X1, . . . ,Xd)]| < ∞.
For this purpose one can simply choose c : Rd → R,
(x1, . . . , xd) �→√

(x1 + · · · + xd)2 + 1. �
REMARK 2.1. We make the following remarks

about Theorem 2.1:

(i) It is quite easy to show that point (d) in Theo-
rem 2.1 cannot be extended to nonsupermodular func-
tionals; see the counterexample given in the proof of
Theorem 2.5 in Puccetti and Scarsini (2010). Note
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from (c) and (e) in Theorem 2.1 that the maximiza-
tion of the expectation of supermodular functions and
the maximization of the joint distribution function are
equivalent within a Fréchet class; see Tchen (1980).

(ii) Any function c : Rd → R which can be ex-
pressed as c(x1, . . . , xd) = f (x1 + · · · + xd), where
f : R → R is a convex function, is supermodular. This
choice of c relates to many applications of particular
interest in Finance, Economics and Insurance, where
the sum X1 + · · · + Xd is often interpreted as an ag-
gregation or a risk pooling, and f can be chosen so
as to determine risk measurement, utility or insurance
premiums. Comonotonic random vectors maximize the
expectation of such functions over a Fréchet class,
and hence they are typically viewed to have the most
dangerous dependence structure for individual compo-
nents in a portfolio. Later in Section 3 we will show
that this property is crucial for characterizing extremal
negative dependence concepts, where a minimizer of
the expectation of all supermodular functions does not
exist in general.

REMARK 2.2 (The copula Md ). According to
Definition 2.1, a comonotonic dependence structure
is represented by a set of identical rearrangements.
From (2.2), it is also evident that a random vector is
comonotonic if and only if it has copula Md , where
Md is the so-called Min copula defined as

Md(u1, . . . , ud) = min{u1, . . . , ud}.(2.4)

The Min copula represents a benchmark in statistical
modeling, as it is the copula representing perfect posi-
tive dependence. Its support consists of the main diago-
nal of the unit square and, being itself a (trivial) shuffle
of Min, it is a copula of any rearrangement matrix hav-
ing all the columns similarly ordered; see Figure 4. The
most commonly applied families of parametric copulas

FIG. 4. The support of the Min copula M2 (left) and a rear-
rangement matrix (right) representing discrete bivariate distribu-
tions with copula M2 and marginal distributions uniformly dis-
tributed over the first nine integers.

such as the Clayton, Frank, Gumbel and Gaussian fam-
ilies include the Min copula Md as a limiting case; see,
for instance, Table 4.1 in Nelsen (2006).

Denote by X+ the set of all comonotonic random
vectors having marginal distributions F1, . . . ,Fd . The
following properties hold:

Existence. X+ �= ∅ for any choice of F1, . . . ,Fd .
Uniqueness in law. X+ ∼ F∨

d for any X+ ∈ X+.
Maximization of supermodular functions. Given a
supermodular function c ∈ Sd , we have that

E
[
c
(
X+)]= sup

{
E
[
c(X)

] : X ∈d F(F1, . . . ,Fd)
}
,

for any X+ ∈ X+.

Historical Remark

It was already observed in Hoeffding (1940) [an En-
glish translation is available in Hoeffding (1994)] and
Fréchet (1951) that random vectors having law F∨

d al-
ways exist and maximize pairwise correlations over
F(F1, . . . ,Fd) for d = 2. The terminology comono-
tonic random variables is found in Yaari (1987) and
Schmeidler (1989) within the theory of expected util-
ity even if the term comonotonic, referred to generic
functionals, was already present in Schmeidler (1986).
The strictly related ideas of a monotonic operator and
a monotonic set were pioneered in Minty (1962) and
Zarantonello (1960). In particular, in Minty (1964) one
can find the first proof that the support of a comono-
tonic random vector is contained in a monotonic set,
which directly implies point (b) in Theorem 2.1. The
stochastic orderings implied by supermodular and con-
vex functions in Finance and Actuarial Science have
received considerable interest in the last decade; see,
for instance, the papers Dhaene et al. (2002, 2006).

The fact that a comonotonic random vector max-
imizes a supermodular function of random variables
with given marginals actually goes back to (Theo-
rem) 368 in the milestone book Hardy, Littlewood and
Pólya (1934), where it is proved that the scalar prod-
uct of two vectors is maximal when the components
of the two vectors are similarly ordered (e.g., they are
monotonic in the same sense). An extension of this in-
equality to an arbitrary number of vectors was given
in Ruderman (1952). In (Theorem) 378 of Hardy, Lit-
tlewood and Pólya (1934), the authors prove the anal-
ogous inequality for rearrangements of functions, that
is, ∫ 1

0
f (x)g(x) dx ≤

∫ 1

0
f ∗(x)g∗(x) dx,(2.5)
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where f ∗ and g∗ are the increasing rearrangements of
f,g : [0,1] → [0,1].

Lorentz (1953) extended (2.5) to∫ 1

0
c
(
f1(x), . . . , fd(x)

)
dx

(2.6)

≤
∫ 1

0
c
(
f ∗

1 (x), . . . , f ∗
d (x)

)
dx,

for any supermodular function c. The discrete version
of (2.6) was given in London (1970) for convex func-
tions of a sum and in Day (1972) for general supermod-
ular functions.

The translation of (2.6) into the language of op-
timization problems over the set F(F1, . . . ,Fd) was
given independently in a number of papers under dif-
ferent regularity conditions and using different nomen-
clature for the class of supermodular functionals. The
solution of the sup problem in (2.3) for d = 2 was
first provided in Cambanis, Simons and Stout (1976)
(where supermodular functionals are called quasi-
monotone), Tchen (1980) (n-positive; an early version
of this paper dates back to 1975), Whitt (1976) (su-
peradditive), Rüschendorf (1980) (	-monotone, which
are equivalent to supermodular functions for d = 2)
and in a slightly different form in Meilijson and Ná-
das (1979) (Shur). Theorem 2.1 in arbitrary dimensions
d was already present in Tchen (1980) but also inde-
pendently (and more elegantly) given in Rüschendorf
(1983) (L-superadditive).

The fact that comonotonic random vectors are max-
imal wrt to the supermodular order was also rediscov-
ered independently in Actuarial Science; see Heilmann
(1986). The paper Kaas et al. (2002) contains a ge-
ometry proof of the maximal convex sum property of
comonotonic random vectors, which later on inspired
relevant work on optimal asset allocations. In Math-
ematical Finance, the relationship between comono-
tonicity and risk measures has been one of the very
important aspects of the theory of comonotonicity.
For instance, Kusuoka (2001) showed that all law-
determined coherent (sublinear) risk measures can
be represented as the supremum of risk measures
which are additive over comonotonic random vari-
ables. Cheung (2010) contains a characterization of
comonotonicity via maximum values of distortion risk
measures.

3. EXTREMAL NEGATIVE DEPENDENCE

If the role of comonotonic dependence as a bench-
mark in the modeling of catastrophes and as an opti-
mizer for the class of supermodular functions is well

accepted, we will also show that the concept of neg-
ative dependence is equally important and has been
historically given less weight mainly due to its diffi-
cult extension to higher dimensions, that is, d > 2. In
dimension d = 2 we define (see Section 3.1) an ex-
tremally negatively dependent random vector, called a
countermonotonic random vector, via the requirement
that its components are oppositely ordered. Similarly
to comononotonic vectors, bivariate countermonotonic
random vectors are always supported in any Fréchet
class, have a unique law and minimize the expectation
of supermodular functions.

Unfortunately, the definition of countermonotonicity
and the implied properties cannot be trivially extended
in dimensions d > 2 and, therefore, alternative nega-
tive dependence concepts are called for. Section 3.2
is dedicated to the concept of pairwise countermono-
tonicity, studied in the milestone paper Dall’Aglio
(1972). Pairwise countermonotonic vectors represent a
natural extension of countermonotonicity to higher di-
mensions, but can be defined only under quite restric-
tive assumptions. Only recently, a more general and
practical notion of negative dependence, called joint
mixability (see Section 3.3), has been introduced; and
this with a focus on the sum X1 + · · · + Xd . Pairwise
coutermonotonicity and joint mixability can be seen
as particular cases of the novel concept of �-counter-
monotonicity which we will introduce in Section 3.4.
We will illustrate the concepts presented in this sec-
tion via pedagogical examples from multivariate nor-
mal distributions.

3.1 Countermonotonicity

In dimension d = 2 we define a countermonotonic
random vector on the requirement that its two compo-
nents are oppositely ordered, for example, high values
for the first imply low values for the second and vice
versa.

DEFINITION 3.1. A random vector (X1,X2) is
said to be countermonotonic if there exists a rearrange-
ment f

r∼ Id such that

(X1,X2) ∼ (
F−1

1 ◦ f (U),F−1
2 ◦ (1 − f (U)

))
,(3.1)

where U ∼ U [0,1].
As the rearrangement f in (3.1) can always be taken

as f = Id, in a countermonotonic random vector the
first (second) component is almost surely an increas-
ing (decreasing) function of a common random fac-
tor U . Similarly to comonotonic random vectors, coun-
termonotonic random vectors minimize the expectation
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of supermodular functions over the class of all random
vectors having the same marginals.

THEOREM 3.1. For a random vector (X1,X2)

with joint distribution function F , the following state-
ments (a)–(c) are equivalent:

(a) (X1,X2) is countermonotonic;
(b) F is given by

F(x1, x2) = F∧
2 (x1, x2)

:= max
{
F1(x1) + F2(x2) − 1,0

}
,(3.2)

x1, x2 ∈R,

where Fj is the marginal distribution of Xj , j = 1,2;
(c) F ≤ G on R

2 for all G ∈ F2(F1,F2).

Statements (a)–(c) imply the following:

(d) for all supermodular functions c : R2 → R, we
have that

E
[
c(X1,X2)

]
(3.3)

= inf
{
E
[
c(Y1, Y2)

] : Yj ∼ Xj, j = 1,2
}
.

Statements (a)–(d) are implied by the following:

(e) there exists a strictly supermodular function
c : R2 → R such that |E[c(X1,X2)]| < ∞ and (3.3)
holds.

Moreover, if E[|Xj |] < ∞ for j = 1,2, then (a)–(e) are
equivalent.

The proof of Theorem 3.1 is completely analogous to
the one for Theorem 2.1, as, when d = 2, both propo-
sitions are a direct consequence of the following well-
known facts. First, given two bivariate joint distribu-
tions F and G, we have

F ≤ G if and only if
∫

c dF ≤
∫

c dG

(3.4)
for any supermodular c :R2 →R.

The equivalence (3.4) can be easily derived from Tchen
(1980) and basically follows from the fact that the class
of bivariate supermodular functions can be written as
the convex cone generated by indicator functions of the
type f (x) = I{x ≤ t} for some t ∈ R

2; see Theorem 2
in Rüschendorf (1980) considering that, when d = 2,
	-monotone functions correspond to supermodular
functions. The equivalence (3.4) can also be stated and
extended under the language of stochastic orderings;
the interested reader can start, for instance, from equa-
tion (9.A.18) in Shaked and Shanthikumar (2007).

Second, F(F1, . . . ,Fd) is well known from Hoeffd-
ing (1940) and Fréchet (1951) to have a smallest and
a largest element when d = 2. Formally, for any F ∈
F2(F1,F2) we have that

F∧
2 ≤ F ≤ F∨

2 ,(3.5)

where the smallest element is the distribution (3.2) of
any countermonotonic random vector and the largest
element is the distribution (2.2) of any two-dimensional
comonotonic random vector having marginals
F1 and F2. From (3.4) and (3.5), it readily follows
that the expectation of a supermodular function of a
bivariate random vector is maximized (resp., mini-
mized) under a comonotonic (resp., countermonotonic)
law.

The equivalence in (3.4) is no longer true in higher
dimensions d > 2 for the class of supermodular func-
tions [a counterexample has been provided in Müller
and Scarsini (2000)], but holds true for the smaller
(when d > 2) class of so-called 	-monotone func-
tions; see Theorem 3 in Rüschendorf (1980) and
also Rüschendorf (2004) for a characterization of 	-
monotone functions. However, even for 	-monotone
functionals the extension of Theorem 3.1(c) to arbi-
trary dimensions is not possible, as F(F1, . . . ,Fd) does
not admit in general a smallest element when d > 2.
More precisely, the inequality

F∧
d ≤ F ≤ F∨

d ,(3.6)

where F∧
d := max{F1(x1) + · · · + Fd(xd) − d + 1,0},

holds true [and cannot be improved; see Rüschendorf
(1981)] for any F ∈ F(F1, . . . ,Fd), but F∧

d might fail
to be a distribution function when d > 2. The extremal
distributions F∧

d and F∨
d are also called the lower and,

respectively, upper Fréchet–Hoeffding bound in honor
of the two scholars; see Remark 2.1 in Rüschendorf
(2013) on this. The notion of countermonotonic ran-
dom variables associated with a reduction of their cor-
relation was already presented under the term antithetic
variates in Hammersley and Morton (1956).

REMARK 3.1 (The copula W ). According to Def-
inition 3.1, a countermonotonic dependence structure
is represented by a set of oppositely ordered rearrange-
ments. From (3.2), it is also evident that a vector is
countermonotonic if and only if it has copula W , where
W is defined as

W(u1, u2) = max{u1 + u2 − 1,0}.
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FIG. 5. The support of the copula W (left) and a rearrangement
matrix (right) representing a discrete bivariate distribution with
copula W and marginal distributions uniformly distributed over the
first nine integers

The copula W is therefore the copula representing per-
fect negative dependence. Its support consists of the
secondary diagonal of the unit square and, being a
shuffle of Min (roughly speaking, it is a horizontal
reflection of the Min copula), it is a copula of any
rearrangement matrix having two columns being oppo-
sitely ordered; see Figure 5. Parametric families of cop-
ulas interpolating between the copula W and the copula
M2, and also including the independence copula as a
particular case, are called comprehensive. Examples of
comprehensive families of copulas are the Frank cop-
ula defined in Nelsen [(2006), equation (4.2.5)] and the
bivariate Gaussian copula, which is defined as the cop-
ula of a bivariate normal distribution.

EXAMPLE 3.1 (Bivariate normal distribution). As-
sume that the random vector (X1,X2) follows a bivari-
ate normal distribution N2(μ,�), where μ is the vector
of means and

� =
(

σ 2
1 σ12

σ12 σ 2
2

)

is the positive semidefinite covariance matrix. The
standard deviations σj ≥ 0, j = 1,2, are assumed to
be fixed, that is, the marginal distributions of the vec-
tor are given. The covariance parameter σ12 is allowed
to vary under the constraint that � is positive semidef-
inite, that is,

−σ1σ2 ≤ σ12 ≤ σ1σ2.

Within this parametric model, the extremal positive de-
pendence structure is attained when σ12 is maximized,
that is, when σ12 = σ1σ2. In this case, (X1,X2) is
comonotonic and has copula M2. The extremal nega-
tive dependence structure is attained when σ12 is in-
stead minimized, that is, when σ12 = −σ1σ2; in this
case, (X1,X2) is countermonotonic and has copula W .

Both in the comonotonic and countermonotonic case,
the bivariate normal model represents a singular distri-
bution (� is not invertible).

3.2 Pairwise Countermonotonicty

Similarly to extremal positive dependence, the idea
of extremal negative dependence has been historically
associated to the notion of minimal correlation. Fol-
lowing the discussion carried out in Section 2, we can
state three desirable properties that set X− of all nega-
tively dependent random vectors having marginal dis-
tributions F1, . . . ,Fd should satisfy:

(E) Existence. X− �= ∅ for any choice of F1, . . . ,

Fd .
(U) Uniqueness in law. X− ∼ F∧

d for any X− ∈ X−.
(M) Minimization of supermodular functions. Given

a supermodular function c ∈ Sd , we have that

E
[
c
(
X−)]= inf

{
E
[
c(X)

] : X ∈d F(F1, . . . ,Fd)
}
,

for any X− ∈ X−.

In dimension d = 2, a countermonotonic random
vector satisfies (E), (U) and (M), hence, countermono-
tonicity is the natural notion of extremal negative de-
pendence to use. Unfortunately, when d > 2 there does
not exist any concept of negative dependence satisfying
all three requirements listed above. In arbitrary dimen-
sions d , it is still true that a vector having law F∧

d min-
imizes the expectation of any supermodular function,
but it was shown in Dall’Aglio (1972) that such a vec-
tor only exists under very special assumptions, hence
not satisfying (E). We call such exceptional cases pair-
wise countermonotonic random vectors.

DEFINITION 3.2. A random vector (X1, . . . ,Xd)

is said to be pairwise countermonotonic if all its bivari-
ate projections (Xi,Xj ), i �= j , are countermonotonic
random vectors.

Pairwise countermonotonicity is the most intuitive
extension of the concept of countermonotonicity in
higher dimensions. The name pairwise countermono-
tonicity was, however, not introduced in Dall’Aglio
(1972), which was the first paper to give conditions
for the existence of a d-variate distribution attaining
the lower Fréchet bound F∧

d . Pairwise countermono-
tonicity has also been studied in actuarial science un-
der different names, in particular, with respect to the
minimization of the so-called stop-loss premium for
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a (re-)insurance policy. The first actuarial paper that
studied the safest dependence structure for two-point
distributions was Hu and Wu (1999); Dhaene and De-
nuit (1999) were the first who systematically developed
(probabilistic) properties and characterizations of mu-
tually exclusive risks in a more general setting. Finally,
Cheung and Lo (2014) generalized many of the results
of the two papers mentioned above.

From the definition, it is straightforward [see Lem-
ma 1 in Dall’Aglio (1972)] that the distribution of a
pairwise countermonotonic vector has to be the lower
Fréchet bound F∧

d . However, F∧
d ∈ F(F1, . . . ,Fd)

holds true (and hence a pairwise countermonotonic
random vector exists) only under very restrictive as-
sumptions on the marginals. Indeed, already in
Dall’Aglio (1959) it is shown that if U,V,Z are
continuous random variables with (U,V ) and (V ,Z)

countermonotonic random vectors, then (U,Z) has
to be comonotonic (only continuity of U is actually
needed). We have F∧

d ∈ F(F1, . . . ,Fd) only in the case
in which all marginal distributions Fj have a jump at
their essential infimums or all at their essential supre-
mums. The following proposition combines Lemma 2
and Theorem 3 in Dall’Aglio (1972).

PROPOSITION 3.2. Assume d ≥ 3 and that at least
three among the Fj ’s are nondegenerate (otherwise
we go back to the case d = 2). We have that F∧

d ∈
F(F1, . . . ,Fd) if and only if either

d∑
j=1

[
1 − Fj

(
F−1

j (0)
)]≤ 1,(3.7)

or

d∑
j=1

Fj

(
F−1

j (1)−)≤ 1.(3.8)

If (3.7) is satisfied, then a random vector (X1, . . . ,Xd)

is pairwise countermonotonic iff it has a.s. at most one
component strictly bigger than its essential infimum,
that is,

P
(
Xi > F−1

i (0),Xj > F−1
j (0)

)= 0 for i �= j.

If (3.8) is satisfied, then a random vector (X1, . . . ,Xd)

is pairwise countermonotonic iff it has a.s. at most
one component strictly smaller than its essential supre-
mum, that is,

P
(
Xi < F−1

i (1),Xj < F−1
j (1)

)= 0 for i �= j.

FIG. 6. A rearrangement matrix representing discrete bivariate
distributions with a pairwise countermonotonic dependence struc-
ture. The ones in the matrix represent the essential infimum of the
corresponding marginal distributions. Since each row of the matrix
takes probability 1/9, according to Proposition 3.2, the number of
ones must be at least 18. The same argument holds by interpreting
the ones in the matrix as essential supremums.

Figure 6 illustrates the necessity and sufficiency of
the conditions in Proposition 3.2 for discrete marginal
distributions. It is also pedagogical to see how margi-
nals with jumps allow the building of pairwise counter-
monotonicity avoiding counterexamples like the one in
Dall’Aglio (1959). Assume that the marginal distribu-
tions F1, . . . ,Fd satisfy condition (3.7) [an analogous
example can be built for marginals satisfying (3.8)].
In Figure 7 we give a set of three rearrangements
f1, f2, f3 under which the vector

(X1,X2,X3)

:= (
F−1

1 ◦ f1(U),F−1
2 ◦ f2(U),F−1

3 ◦ f3(U)
)
,

U ∼ U [0,1], is pairwise countermonotonic. For each
pair (fi, fj ) it is possible to find a new rearrangement
gij and a random variable Vij ∼ U [0,1] such that(

F−1
i ◦ gij (Vij ),F

−1
j ◦ (1 − gij )(Vij )

)
(3.9)

∼ (
F−1

i ◦ fi(U),F−1
j ◦ fj (U)

)
.

As a consequence, (Xi,Xj ) is countermonotonic for
i �= j . In Figure 8 we show a possible choice for
g23(V23), where the uniform random variable V23 is il-
lustrated as a rearrangement of the unit interval. The
construction of pairwise countermonotonicity is made
possible in Figures 7 and 8 because jumps at the es-
sential infimum of the distributions allow the choice of
the rearrangement function arbitrarily within each grey
rectangle in Figure 7.

A pairwise countermonotonic random vector enjoys
all the properties of Theorem 3.1 in arbitrary dimen-
sion d .
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FIG. 7. A set of three rearrangements f1, f2, f3 defining a pairwise countermonotonic random vector. In the figure we set
qj := [1 − Fj (F−1

j (0))]. The compatibility condition in (3.7), that is,
∑

qj ≤ 1, is assumed to be satisfied.

THEOREM 3.3. For a random vector (X1, . . . ,Xd)

with joint distribution function F , the following state-
ments (a)–(c) are equivalent:

(a) (X1, . . . ,Xd) is pairwise countermonotonic;
(b) F is given by

F(x1, . . . , xd)

= F∧
d (x1, . . . , xd)

= max
{
F1(x1) + · · · + Fd(xd) − d + 1,0

}
,

x1, . . . , xd ∈ R,

where Fj is the marginal distribution of Xj , j =
1, . . . , d;

(c) F ≤ G on R
d for all G ∈ F(F1, . . . ,Fd).

Statements (a)–(c) imply the following:

(d) for all supermodular functions c : Rd → R, we
have that

E
[
c(X1, . . . ,Xd)

]
= inf

{
E
[
c(Y1, . . . , Yd)

] : Yj ∼ Xj,(3.10)

j = 1, . . . , d
}
.

Statements (a)–(d) are implied by the following:

(e) there exists a strictly supermodular function c :
R

d →R such that∣∣E[c(X1, . . . ,Xd)
]∣∣< ∞

and (3.10) holds.

Moreover, if E[|Xj |] < ∞ for j = 1, . . . , d , then (a)–
(e) are equivalent.

PROOF. (a) ⇔ (b) follows from Dall’Aglio (1972).
(b) ⇔ (c) follows from the point-wise attainability

of the lower Fréchet–Hoeffding bound. (a) ⇒ (d) is
proved for 	-monotone functions in Theorem 5 in
Rüschendorf (1980), in full generality in Theorem 12
in Dhaene and Denuit (1999). (e) ⇒ (a) follows from
a standard rearrangement argument. �

Denote by X P the set of all pairwise countermono-
tonic random vectors having marginal distributions
F1, . . . ,Fd . From the above theorem, two fundamen-
tal properties follow:

(U) Uniqueness in law. XP ∼ F∧
d for any XP ∈ X P .

(M) Minimization of supermodular functions. Given
a supermodular function c ∈ Sd , we have that

E
[
c
(
XP )]= inf

{
E
[
c(X)

] : X ∈d F(F1, . . . ,Fd)
}
,

for any XP ∈ X P .

REMARK 3.2. In Dall’Aglio (1972), the author
did not introduce the term pairwise countermonotonic-
ity, but equivalently investigated the conditions under
which the lower Fréchet bound F∧

d is a well-defined
distribution function in arbitrary dimension d . Con-
sistently with the expository scope of this paper, we,
however, find it more appropriate to identify all vec-
tors having distribution F∧

d as being pairwise counter-
monotonic.

REMARK 3.3. The existence of multivariate prob-
ability measures with given margins and other con-
straints was more generally studied in Vorob’ev (1962)
and in Strassen (1965) where an elegant duality theo-
rem (Theorem 7 of that paper) was established; see also
Section 1.6 in Rüschendorf (2013).
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FIG. 8. A possible choice for g23(V23) in the representation (3.9).

3.3 Joint Mixability

Requiring that an extremally negatively dependent
vector satisfies properties (U) and (M) poses strong
constraints on (E) when d > 2, producing a definition
of extremal negative dependence of very restricted ap-
plicability. Proposition 3.2 implies, for instance, that
any Fréchet class supporting pairwise countermono-
tonic vectors does not contain vectors with continu-
ous marginal components. Consequently, any d-variate
normal model does not include pairwise countermono-
tonicity for d > 2.

EXAMPLE 3.2 (Multivariate normal distribution).
Assume that the random vector (X1,X2,X3) follows
a three-variate normal distribution N3(0,�), where 0
is a vector of zeros, and

� =
⎛
⎝ σ 2

1 σ12 σ13

σ12 σ 2
2 σ23

σ13 σ23 σ 2
3

⎞
⎠

is a positive semidefinite covariance matrix. The stan-
dard deviations σj > 0, j = 1,2,3, are assumed to be
fixed, that is, the marginal distributions of the vector
are given. The covariance parameters σ12, σ13 and σ23

are allowed to vary under the constraint that � is pos-
itive semidefinite. Straightforward constraints for σ12,
σ13 and σ23 are that

−σiσj ≤ σij ≤ σiσj , 1 ≤ i < j ≤ 3.

Within this parametric model, the extremal positive de-
pendence structure is attained when the pairwise cor-
relations are individually maximized, that is, when
σij = σiσj , 1 ≤ i < j ≤ 3. In this case, (X1,X2,X3)

is comonotonic and has copula M3.
Finding values of (σ1, σ2, σ3) yielding an extremal

negative dependence structure is a much trickier ques-
tion. Indeed, the pairwise covariance parameters can-
not achieve their respective smallest values σij =
−σiσj within the same model. A trivial lower bound on
the variance (var) of the standardized marginal models
gives

var
(

X1

σ1
+ X2

σ2
+ X3

σ3

)
≥ 0

⇒ σ12

σ1σ2
+ σ13

σ1σ3
+ σ23

σ2σ3
≥ −3

2
.

Consequently, there does not seem to exist a univocally
defined set of correlation parameters representing the
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most negative dependence structure for this multivari-
ate normal model. Keeping this example in mind, we
will explore different notions of extremal negative de-
pendence.

In order to define a more practical notion of per-
fect negative dependence in dimensions d > 2, we need
to relax our requirements. In the remainder of the pa-
per, instead of requiring a negatively dependent ran-
dom vector to be the minimizer of any supermodular
function, we focus only on those supermodular func-
tions c that can be expressed as c(x) = f (x1 +· · ·+xd)

for some convex function f . This is a strict restriction,
as, for instance, the expectation of the product and the
variance of the sum of uniformly distributed random
variables are minimized by different dependence struc-
tures; see Wang and Wang (2011). This consideration
of optimization problems is also of practical interest;
see also the discussion in Remark 2.1. The relevant
concept here is that of convex order.

DEFINITION 3.3. We say that a random variable
X is smaller than Y in convex order, denoted by X ≤cx
Y , if E[f (X)] ≤ E[f (Y )], for all convex functions f :
R→R such that the expectations exist.

A straightforward consequence of X ≤cx Y is that
E[X] = E[Y ] and E[X2] ≤ E[Y 2] given that they ex-
ist. However, convex order dominance is stronger than
having the same mean and a larger variance and is
related to the concept of so-called majorization of
d-valued vectors. When two random variables have
the same mean, as within the set F(F1, . . . ,Fd), con-
vex order is equivalent to increasing convex order as
defined in Müller and Stoyan (2002). Comprehensive
references regarding the link between comonotonic-
ity, convex order, rearrangements and majorization of
vectors are Marshall, Olkin and Arnold (2011) and
Rüschendorf (2013).

DEFINITION 3.4. We say that X = (X1, . . . ,Xd)

is a �cx -smallest element in F(F1, . . . ,Fd) if X ∈d

F(F1, . . . ,Fd) and

d∑
j=1

Xj ≤cx

d∑
j=1

Yj ,

for any

Y = (Y1, . . . , Yd) ∈d F(F1, . . . ,Fd).

From the definition of convex order, it directly fol-
lows that a �cx -smallest element X ∈ F(F1, . . . ,Fd)

satisfies

(M1):

E
[
f (X1 + · · · + Xd)

]
= inf

{
E
[
f (Y1 + · · · + Yd)

] : Y ∈d F(F1, . . . ,Fd),

E
[
f (Y1 + · · · + Yd)

]
exists

}
,

for any convex function f such that E[f (X1 + · · · +
Xd)] is properly defined.

Theorems 3.1 and 3.3 immediately imply that coun-
termonotonic (for d = 2) and pairwise countermono-
tonic random vectors (when they exist) are �cx -
smallest elements of the corresponding Fréchet classes.
We will now define negatively dependent random vec-
tors based on the weaker requirement (M1). The re-
striction to supermodular functions which can be ex-
pressed as convex functions of a sum is quite intuitive,
as the sum is the most natural aggregating operator and
�cx -smallest elements are still minimizers for a broad
class of functionals including, for instance, the vari-
ance of the sum.

Unfortunately, not all Fréchet classes admit a �cx -
smallest element; see Example 3.1 in Bernard, Jiang
and Wang (2014). However, it is still possible to define
a much wider applicable notion of extremal negative
dependence, which has been recently introduced in the
literature under the name of joint mixability.

DEFINITION 3.5. A random vector (X1, . . . ,Xd)

is said to be a joint mix if

P(X1 + · · · + Xd = k) = 1,

for some k ∈ R.

EXAMPLE 3.3 (Multivariate normal distribution,
continued). Simple examples of joint mixes include
normal random vectors with special covariance matri-
ces; see Wang and Wang (2015a). We now show that a
joint mix (X1,X2,X3) having the three-variate normal
distribution described in Example 3.2 exists if and only
if

2 max
1≤i≤3

σi ≤ σ1 + σ2 + σ3.(3.11)

Without loss of generality, we assume σ1 ≥ σ2 ≥ σ3 >

0. If (X1,X2,X3) has law N3(0,�), we can write⎛
⎝X1

X2
X3

⎞
⎠=

⎛
⎝a11 0 0

a21 a22 0
a31 a32 a33

⎞
⎠
⎛
⎝Z1

Z2
Z3

⎞
⎠ ,(3.12)

where Z1,Z2,Z3 are i.i.d. standard normal random
variables. Since var(X1) = σ 2

1 , we can take a11 = σ1.
First we suppose that (X1,X2,X3) is a joint mix. From
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X1 + X2 + X3 = 0 we obtain that a11 + a21 + a31 = 0.
Note that |a21| ≤ σ2 ≤ σ1 and |a31| ≤ σ3 ≤ σ1. From
a11 + a21 + a31 = 0, it follows that σ1 ≤ σ2 + σ3,
which is (3.11). Now suppose that (3.11) holds. Take
σ12 = 1

2(σ 2
3 − σ 2

1 − σ 2
2 ), σ13 = 1

2(σ 2
2 − σ 2

1 − σ 2
3 ) and

σ23 = 1
2(σ 2

1 − σ 2
2 − σ 2

3 ). We can verify that the matrix⎛
⎜⎝

σ 2
1

1
2

(
σ 2

3 − σ 2
1 − σ 2

2

) 1
2

(
σ 2

2 − σ 2
1 − σ 2

3

)
1
2

(
σ 2

3 − σ 2
1 − σ 2

2

)
σ 2

2
1
2

(
σ 2

1 − σ 2
2 − σ 2

3

)
1
2

(
σ 2

2 − σ 2
1 − σ 2

3

) 1
2

(
σ 2

1 − σ 2
2 − σ 2

3

)
σ 2

3

⎞
⎟⎠

is positive semi-definite if and only if σ1 ≤ σ2 + σ3. It
is easy to see that if (X1,X2,X3) has law N3(0,�),
then

var(X1 + X2 + X3)

= σ 2
1 + σ 2

2 + σ 2
3 + 2σ12 + 2σ13 + 2σ23 = 0,

that is, (X1,X2,X3) is a joint mix.
This indicates that, in a multivariate normal model,

a joint mix is supported if and only if the variances
of the marginal components are homogeneous enough.
This conclusion can be analogously extended to the
class of elliptical distributions; see Theorem 3.5(c) be-
low.

EXAMPLE 3.4 (Survey sampling). The problem of
constructing d dependent variables with a constant sum
occurs in survey sampling. In a survey sampling con-
text, d Bernoulli random variables (with possibly dif-
ferent success probabilities) are associated to d units
in a finite population. Each Bernoulli variable takes the
value 1 if the corresponding unit is drawn in the sam-
ple and 0 otherwise. Constructing a sample design with
a fixed sample size k is equivalent to constructing a

joint mix for possibly inhomogeneous Bernoulli ran-
dom variables. Many solutions to the problem of de-
signing unequal probability survey sampling designs
with fixed sample size k have been published; see,
for instance, Hanif and Brewer (1980) and Brewer
and Hanif (1983). A paper describing the method im-
plemented in the SAS SURVEYSELECT procedure is
Vijavan (1968).

In Figure 9 we show the dependence structure of
a joint mix with U [0,1] marginals. Similarly to a
pairwise countermonotonic random vector, a joint mix
might fail to be supported in a fixed Fréchet class. For
instance, a bivariate random vector (X1,X2) is a joint
mix if and only if X1 = k − X2 a.s. for some constant
k, thus if and only if its marginal components are sym-
metric with respect to k. Thus, it is natural to investi-
gate whether a Fréchet class supports a joint mix.

DEFINITION 3.6. A d-tuple of distributions (F1,

. . . ,Fd) is said to be jointly mixable if F(F1, . . . ,Fd)

supports a joint mix. Equivalently, (F1, . . . ,Fd) is
jointly mixable if and only if there exist d rearrange-
ments f1, . . . , fd

r∼ Id and k ∈R such that

P
(
F−1

1 ◦ f1(U) + · · · + F−1
d ◦ fd(U) = k

)= 1,

where U ∼ U [0,1]. The constant k is called a joint
center of (F1, . . . ,Fd).

Denote now by X J the set of all joint mixes with
marginal distributions F1, . . . ,Fd having finite first
moment. From the definition of a joint mix and Jensen’s

FIG. 9. Left and middle part of the figure: a set of rearrangements f1, f2, f3 under which the sum of three uniform random variables is
equal to k = 1.5 with probability one (f1 is not shown, as it can always be taken as the identity function). These rearrangements define a
3-dimensional distribution (right) which is (not uniformly) distributed on the simplex {(u1, u2, u3) : u1 +u2 +u3 = 1.5} ⊂ [0.1]3. A different
set of rearrangements of the unit interval with constant sum can be found in Gaffke and Rüschendorf [(1981), Example 3].
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inequality, the following properties follow:

(U1) Uniqueness in law for the sum. The distribution
of (XJ

1 + · · · + XJ
d ) is degenerate at the joint

center for any XJ ∈ X J .
(M1) �cx -minimality. Given a convex function f

such that E[f (XJ
1 +· · ·+XJ

d )] exists, we have
that

E
[
f
(
XJ

1 + · · · + XJ
d

)]
= inf

{
E
[
f (X1 + · · · + Xd)

] :
X ∈d F(F1, . . . ,Fd),

E
[
f (X1 + · · · + Xd)

]
exists

}
,

for any XJ ∈X J .

Joint mixability represents a concept of negative de-
pendence. For instance, it is clear that in dimension
d = 2 a joint mix is countermonotonic (the converse
does not hold). In arbitrary dimensions, property (M1)
implies that a joint mix having marginal components
with finite mean is a �cx -smallest element in the corre-
sponding Fréchet class. For instance, a joint mix there-
fore attains the smallest possible variance for the sum
of its marginal components; see Figure 10 where a rep-
resentation of a joint mix in terms of the matrix is given
and compared with comonotonicity. Even if the law of
a joint mix might not be unique, property (U1) states
that the law of the sum of the components of any joint
mix is unique.

If a joint mix satisfies generally weaker versions of
properties (U) and (M), what can we say about the ex-
istence of a joint mix? For d ≥ 3 and a given d-tuple
of distributions (F1, . . . ,Fd), it is generally an open

FIG. 10. Rearrangement matrices representing a discrete bivari-
ate distribution with a (left) comonotonic dependence structure and
a (right) joint mix with the same marginal distributions. While
comonoticity maximizes the variance of the sum of the marginal
components (reported outside the matrix), a joint mix attains the
corresponding minimum.

question to identify whether a joint mix is supported
by (F1, . . . ,Fd). It should be noted that the marginal
distributions of a joint mix cannot be one sided [e.g.,
F−1

j (0) > −∞ for all 1 ≤ j ≤ d and F−1
j (1) = ∞ for

some j ]; see Proposition 2.1(7) in Wang and Wang
(2011). Below, we list some existing results in their
most general form. Proposition 3.4 and Theorem 3.5
below are given in Wang and Wang (2015a). In the fol-
lowing d ∈ N, although the cases d ≤ 2 are trivial. We
say a function ‖ · ‖ : L1 → [0,∞] is a law-determined
norm if ‖ · ‖ satisfies: (i) ‖X‖ = 0 if and only if
X = 0 a.s.; (ii) ‖λX‖ = |λ| · ‖X‖ for all λ ∈ R and
X ∈ L1; (iii) ‖X +Y‖ ≤ ‖X‖+‖Y‖ for all X,Y ∈ L1;
(iv) ‖X‖ = ‖Y‖ if X ∼ Y . Note that here we allow ‖ · ‖
to take value in +∞ and, hence, it is not a proper norm
in classic functional analysis.

PROPOSITION 3.4 (Necessary conditions for joint
mixability). For j = 1, . . . , d , let μj be the mean
of Fj , aj = sup{x : Fj (x) = 0}, bj = inf{x : Fj (x) =
1} and lj = bj − aj . If the d-tuple of distributions
(F1, . . . ,Fd) is jointly mixable, and μ1, . . . ,μd are fi-
nite, then the following inequalities hold:

(a) (Mean inequality)

d∑
j=1

aj + max
j=1,...,d

lj ≤
d∑

j=1

μj

(3.13)

≤
d∑

j=1

bj − max
j=1,...,d

lj .

(b) (Norm inequality)

d∑
j=1

‖Xj − μj‖ ≥ 2 max
j=1,...,d

‖Xj − μj‖,(3.14)

where Xj ∼ Fj , j = 1, . . . , d and ‖ · ‖ is any law-
determined norm on L1.

As special cases of Proposition 3.4, the following
conditions hold if (F1, . . . ,Fd) is jointly mixable:

d∑
j=1

lj ≥ 2 max
j=1,...,d

lj ,(3.15)

and
d∑

j=1

σj ≥ 2 max
j=1,...,d

σj ,(3.16)

where σ 2
j is the variance of Fj , j = 1, . . . , d . All the

above quantities are not necessarily finite. The condi-
tions (3.15) and (3.16) are usually easier than (3.14)
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to check, and sometimes they can also be sufficient, as
stated below.

THEOREM 3.5 (Sufficient conditions for joint mixa-
bility).

(a) Suppose F1, . . . ,Fd are d distributions with de-
creasing densities on their respective supports. Then
the d-tuple (F1, . . . ,Fd) is jointly mixable if and only
if the mean inequality (3.13) is satisfied.

(b) Suppose F1, . . . ,Fd are distributions with uni-
modal-symmetric densities, and mode 0. Let fj (x) be
the density function of Fj and let Gj(x) = Fj (x) −
xfj (x) − 1

2 for j = 1, . . . , d and x ≥ 0. Then (F1, . . . ,

Fd) is jointly mixable if for all a ∈ (0, 1
2),

d∑
j=1

G−1
j (a) ≥ 2 max

j=1,...,d
G−1

j (a).(3.17)

In particular, suppose F1, . . . ,Fd are unimodal-
symmetric distributions from the same location-scale
family. Then (F1, . . . ,Fd) is jointly mixable if and only
if (3.14) holds for some law-determined norm ‖ · ‖.

(c) Suppose F1, . . . ,Fd are marginal distributions
of a d-elliptical distribution. Then (F1, . . . ,Fd) is
jointly mixable if and only if (3.14) holds for some law-
determined norm ‖ · ‖.

For a definition of elliptical distributions see, for
instance, McNeil, Frey and Embrechts (2005). Fur-
ther characterization results on joint mixability are
available for homogeneous Fréchet classes of the type
Fd(F, . . . ,F ) (here we use a subscript d to indicate the
dimension of the Fréchet class). The homogeneous ver-
sion of joint mixability is called complete mixability.

DEFINITION 3.7. A distribution F is said to be d-
completely mixable (d-CM) if Fd(F, . . . ,F ) supports
a joint mix.

Proposition 3.6(a) below is given in Müller and
Stoyan [(2002), Theorem 8.3.10]; (b)–(c) were given
in Puccetti, Wang and Wang (2012); (d) was given in
Puccetti, Wang and Wang (2013).

PROPOSITION 3.6. (a) A d-discrete uniform dis-
tribution, that is, a distribution giving probability mass
1/d to each of the d points in its support, is d-CM.

(b) The binomial distribution B(d,p/q),p, q ∈ N,
is q-CM.

(c) The Cauchy distribution is d-CM for d ≥ 2.

(d) Any continuous distribution with a concave den-
sity on a bounded interval [a, b] is d-CM for d ≥ 3.

(e) Any continuous distribution function F on a
bounded interval [a, b], a < b, having a density f sat-
isfying

f (x) ≥ 3

d(b − a)
for all x ∈ [a, b],(3.18)

is d-CM.

Even if a complete mathematical characterization of
the class of jointly mixable distributions remains open,
it is possible to numerically check whether a d-tuple
of distribution functions is jointly mixable via the so-
called Mixability Detection Procedure (MDP) intro-
duced in Puccetti and Wang (2015).

Joint mixability can help to identify the �cx -smallest
element even if the Fréchet class does not support a
joint mix; see Wang and Wang (2011) and Bernard,
Jiang and Wang (2014) for the cases of one-sided, un-
bounded marginal distributions. The concept directly
relates to a class of optimization problems, such as the
ones discussed in Section 4, and Value-at-Risk max-
imization problems [which were the original motiva-
tion behind the concept; see Wang, Peng and Yang
(2013)]. The recent developments of sufficient condi-
tions for joint mixability typically involve techniques
in probabilistic combinatorics, used, for instance, in
the main results of Wang and Wang (2011), Puccetti,
Wang and Wang (2012, 2013) and Wang and Wang
(2015a). A large class of distributions are asymptot-
ically mixable; see Puccetti, Wang and Wang (2013)
and Wang (2014). This property makes joint mixabil-
ity a flexible concept for the study of high-dimensional
problems.

Historical Remark

The concept of risks with a constant sum goes back
to Gaffke and Rüschendorf (1981), where the com-
plete mixability of a set of uniform distributions was
shown. In Remark 1(b) in Rüschendorf (1982), the
author conjectures that concentrating a multivariate
probability measure on a constant would yield opti-
mal bounds for the distribution function of the sum
of the marginal components. The same notion appears
in Rüschendorf and Uckelmann (2002), Müller and
Stoyan [(2002), Section 8.3.1] and Knott and Smith
(2006) in the context of variance minimization or as
the safest aggregate risk of some random variables.
The term complete mixability was actually coined and
developed as a property of distributions in Wang and
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Wang (2011), and the term joint mixability was in-
troduced in Wang, Peng and Yang (2013). Theoretical
properties of complete mixability and joint mixability
have also been developed recently in Puccetti, Wang
and Wang (2012, 2013), Puccetti and Wang (2015) and
Wang and Wang (2015a). Some early work as spe-
cial cases of Theorem 3.5 are as follows: Rüschendorf
and Uckelmann (2002) showed the complete mixabil-
ity of distributions with a unimodal-symmetric density;
Wang and Wang (2011) gave a necessary and sufficient
condition for the complete mixability of distributions
with monotone densities; Wang, Peng and Yang (2013)
gave a necessary and sufficient condition for the joint
mixability of tuples of normal distributions; a similar
result on the variance reduction of normal distributions
can be found in Knott and Smith (2006).

3.4 �-Countermonotonicity

Joint mixability is a notion of extremal negative
dependence which is arguably more applicable than
pairwise countermonotonicity. Nevertheless, not all d-
tuples of distribution functions are jointly mixable and
the �cx -smallest element in a Fréchet class might not
exist or might not be a joint mix. At this point, it is nat-
ural to ask whether there exists a concept of negative
dependence in dimensions d > 2 which is supported in
any Fréchet class and that includes countermonotonic-
ity, pairwise countermonotonicity and joint mixability
as particular cases. The answer is affirmative: for this,
we define the new notion of a �-countermonotonic
random vector based on the requirement that the sum
of any subset of its components is countermonotonic
with respect to the sum of the remaining ones. All the
results contained in this section are new.

DEFINITION 3.8. A random vector X is said to be
�-countermonotonic if for any subset I ⊂ {1, . . . , d},
we have that the random variables

∑
j∈I Xj and∑

j /∈I Xj are countermonotonic.

The terminology �-countermonotonic stresses the
sum operator as a basis for our criterion. It can be anal-
ogously defined for other operators, such as max, min
or product.

THEOREM 3.7. Any Fréchet class F(F1, . . . ,Fd)

supports a �-countermonotonic random vector.

PROOF. The statement is trivial for d = 1; we as-
sume d ≥ 2 in the following. First, we suppose that
F1, . . . ,Fd have finite second moments. Recall that
we write (X1, . . . ,Xd) ∈d F(F1, . . . ,Fd) if Xj ∼ Fj ,
j = 1, . . . , d . By a compactness argument [see, for

instance, Rüschendorf (1983)], there exists (X1, . . . ,

Xd) ∈d F(F1, . . . ,Fd) such that

E
[
(X1 + · · · + Xd)2]
= inf

{
E
[
(Y1 + · · · + Yd)2] :(3.19)

(Y1, . . . , Yd) ∈d F(F1, . . . ,Fd)
}
< ∞.

We will show that any such (X1, . . . ,Xd) is �-
countermonotonic. For some k,1 ≤ k ≤ d − 1, define
the two random variables

Y1 := X1 + · · · + Xk and Y2 := Xk+1 + · · · + Xd,

and denote by G1, respectively, G2 their laws. We have
that

(X1, . . . ,Xd,Y1, Y2)

∼ (
F−1

1 ◦ f1(U), . . . ,F−1
d ◦ fd(U),G−1

1 ◦ g1(U),

G−1
2 ◦ g2(U)

)
,

for some fj
r∼ Id, j = 1, . . . , d , g1, g2

r∼ Id, U ∼
U [0,1]. Let Z1 = g−1

2 ◦ g1(1 − U) ∼ U [0,1]. By
properties of generalized inverses [see, for instance,
Proposition 1 in Embrechts and Hofert (2013)], we
can write Z2 := G−1

2 ◦ g1(1 − U) = G−1
2 ◦ g2(Z1) =

F−1
k+1 ◦ fk+1(Z1) + · · · + F−1

d ◦ fd(Z1). Since Y1 and
Z2 are countermonotonic and (Y1,Z2) ∈d F2(G1,G2),
we have

E
[
(Y1 + Z2)

2]
= inf

{
E
[
(Ỹ1 + Ỹ2)

2] :
(Ỹ1, Ỹ2) ∈d F2(G1,G2)

}
(3.20)

≤ inf
{
E
[
(X̃1 + · · · + X̃d)2] :

(X̃1, . . . , X̃d) ∈d F(F1, . . . ,Fd)
}

= E
[
(X1 + · · · + Xd)2].

Furthermore, note that(
F−1

1 ◦ f1(U), . . . ,F−1
k ◦ fk(U),F−1

k+1 ◦ fk+1(Z1),

. . . ,F−1
d ◦ fd(Z1)

) ∈d F(F1, . . . ,Fd),

implying that

E
[
(X1 + · · · + Xd)2]
= inf

{
E
[
(X̃1 + · · · + X̃d)2] :

(3.21)
(X̃1, . . . , X̃d) ∈d F(F1, . . . ,Fd)

}
≤ E

[
(Y1 + Z2)

2].
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From (3.20) and (3.21), we finally obtain that

E
[
(Y1 + Z2)

2]
= inf

{
E
[
(Ỹ1 + Ỹ2)

2] : (Ỹ1, Ỹ2) ∈d F2(G1,G2)
}

= inf
{
E
[
(X̃1 + · · · + X̃d)2] :

(X̃1, . . . , X̃d) ∈d F(F1, . . . ,Fd)
}

= E
[
(X1 + · · · + Xd)2]

and, therefore,

E
[
(X1 + · · · + Xd)2]
= E

[
(Y1 + Y2)

2]
= inf

{
E
[
(Ỹ1 + Ỹ2)

2] : (Ỹ1, Ỹ2) ∈d F2(G1,G2)
}
.

By Theorem 3.1(e), we have that Y1 = X1 + · · · + Xk

and Y2 = Xk+1 +· · ·+Xd are countermonotonic. Since
k is arbitrary, we can similarly show that

∑
j∈I Xj and∑

j /∈I Xj are countermonotonic for any I ⊂ {1, . . . , d}.
Now, given arbitrary distributions F1, . . . ,Fd , for

each j = 1, . . . , d , let {Fjk , k ∈ N} be a sequence of

distributions with bounded support, such that Fjk
d→

Fj as k → ∞. For instance, one can choose Fjk(x) :=
Fj (x)I{|x|<k} + I{x>k}, x ∈ R. It follows from the
first part of the proof that we can find a sequence of
�-countermonotonic random vectors Xk ∈d F(F1k,

. . . ,Fdk), k ∈ N. Correspondingly, we can find a se-
quence Ck, k ∈ N, so that each Ck is a possible cop-
ula of Xk , k ∈ N. Since the set of d-copulas is com-
pact with respect to the weak topology, there exists a
subsequence Cki

, i ∈ N, which converges weakly to
some C0. Let X0 ∈d F(F1, . . . ,Fd) be a random vector
having law C0(F1, . . . ,Fd). The sequence of the joint
distributions of the Xki

’s weakly converge to the joint
distribution of X0.

Consequently, for a given a ∈ {0,1}d , the sequence
of the joint distributions of the (Xki

· a,Xki
· (1 − a))’s

weakly converges to the joint distribution of (X0 ·
a,X0 · (1 − a)), where b · c stands for the dot product
of vectors b and c. Being each (Xki

· a,Xki
· (1 − a))

countermonotonic, this finally implies that X0 · a and
X0 · (1 − a) are countermonotonic. From arbitrariness
of a, we conclude that X0 is �-countermonotonic. �

We now prove that �-countermonotonicity coin-
cides with countermonotonicity in dimension d =
2 and with pairwise countermonotonicity in arbi-
trary dimensions when the latter is supported. More-
over, a joint mix and/or the �cx -smallest element
in a Fréchet class (when they exist) are always �-
countermonotonic.

THEOREM 3.8. Suppose X ∈d F(F1, . . . ,Fd). The
following holds:

(a) When d = 2, (X1,X2) is countermonotonic if
and only if (X1,X2) is �-countermonotonic.

(b) Suppose F(F1, . . . ,Fd) supports a pairwise
countermonotonic random vector, then X is pairwise
countermonotonic if and only if X is �-counter-
monotonic.

(c) Suppose F(F1, . . . ,Fd) supports a joint mix. If
X is a joint mix, then X is �-countermonotonic.

(d) Suppose F1, . . . ,Fd have finite means and X is
a �cx -smallest element in a Fréchet class, then X is
�-countermonotonic.

PROOF. (a) This follows directly from Defini-
tion 3.8. (b) Assume, without loss of generality, that
F−1

j (0) = 0, j = 1, . . . , d , and that (3.7) holds, that is,

d∑
j=1

P(Xj > 0) ≤ 1.(3.22)

If X is pairwise countermonotonic, for any a ∈ {0,1}d
at most one of X · a and X · (1 − a) can be strictly pos-
itive, then [X · a,X · (1 − a)] is pairwise countermono-
tonic in dimension d = 2 and hence countermonotonic.
Conversely, assume that X is �-countermonotonic and
write X−k :=∑

j �=k Xj . First observe that

P(X−k = 0) = 1 − P(X−k > 0)

= 1 − P

(⋃
j �=k

{Xj > 0}
)

≥ 1 − ∑
j �=k

P (Xj > 0) ≥ P(Xk > 0)

= 1 − P(Xk = 0),

where the last inequality follows from (3.22). Hence,

P(X−k = 0) + P(Xk = 0) − 1 ≥ 0.(3.23)

Using elementary probability, we find that

P(Xk > 0,X−k > 0)

= 1 − P(Xk = 0) − P(X−k = 0)

+ P(Xk = 0,X−k = 0).

Since Xk and X−k are countermonotonic, from (3.2)
and using (3.23), we obtain

P(Xk > 0,X−k > 0)

= 1 − P(Xk = 0) − P(X−k = 0)

+ max
{
P(Xk = 0) + P(X−k = 0) − 1,0

}= 0.
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Consequently, P(Xk > 0,Xj > 0) = 0 for all j �=
k, that is, X is pairwise countermonotonic. (c) If X
is jointly mixable, then X · a + X · (1 − a) = X1 +
· · · + Xd = k with probability one. Therefore, X · a
and X · (1 − a) are countermonotonic and X is �-
countermonotonic. (d) This follows similarly from the
proof of Theorem 3.7 by replacing E[(X1 +· · ·+Xd)2]
in (3.19) with E[f (X1 + · · · + Xd)], where f is any
strictly convex function. �

Since �-countermonotonicity always exists for any
Fréchet class, and is equivalent to pairwise counter-
monotonicity when the latter is supported, we consider
it as a more fundamental concept compared to pairwise
countermonotonicity. Denote now by X� the set of all
�-countermonotonic random vectors having marginal
distributions F1, . . . ,Fd . Theorems 3.7 and 3.8 imply
the following properties:

(E) Existence. X� �= ∅ for any choice of F1, . . . ,

Fd .
(M2) Minimization of supermodular functions. If

X� ∈d F(F1, . . . ,Fd) is �cx-smallest, then
X� ∈ X� .

EXAMPLE 3.5 (Multivariate normal distribution,
continued). In Example 3.2 assume, without loss of
generality, that σ1 > σ2 > σ3 > 0. By Definition 3.8, it
is easy to see that (X1,X2,X3) is �-countermonotonic
if and only if the following equations hold:

ρ(X1 + X2,X3) = ρ(X1 + X3,X2)
(3.24)

= ρ(X2 + X3,X1) = −1,

where ρ is Pearson’s correlation coefficient [see (4.7)
below]. There are two sets of solutions of (σ12, σ13,

σ23) to (3.24):

1. σ12 = −σ1σ2, σ13 = −σ1σ3, and σ23 = σ2σ3. In
this case, (X1,X2) and (X1,X3) are countermono-
tonic, while (X2,X3) is comonotonic. Roughly speak-
ing, the two components X2,X3 move together oppo-
sitely to X1.

2. σ12 = 1
2(σ 2

3 − σ 2
1 − σ 2

2 ), σ13 = 1
2(σ 2

2 − σ 2
1 − σ 2

3 )

and σ23 = 1
2(σ 2

1 −σ 2
2 −σ 2

3 ). From Example 3.3, � with
this choice of (σ12, σ13, σ23) is positive semidefinite if
and only if σ1 ≤ σ2 + σ3. In that case, (X1,X2,X3) is
a joint mix as in Example 3.3.

Even if �-countermonotonic random vectors are
supported in any Fréchet class, a single �-counter-
monotonic random vector might not possess a de-
sired optimality property. For example, let F1 = F2 =

FIG. 11. Rearrangement matrices representing the three-variate
distribution functions of a joint mix (left) with constant sum of
the marginal components (reported outside the matrix) and of a
�-countermonotonic vector (right) with the same marginals.

F3 = U [0,1]. In Gaffke and Rüschendorf [(1981), Ex-
ample 3] the authors give an example of a jointly
mixable vector U∗ with uniform marginals. Being
a joint mix, U∗ is also a �cx -smallest element in
F(U [0,1],U [0,1],U [0,1]) and, by Theorem 3.8(c),
also �-countermonotonic. However, it is straightfor-
ward to check that the vector

U := (U,U,1 − U) ∈d F
(
U [0,1],U [0,1],U [0,1])

is �-countermonotonic but not a �cx -smallest ele-
ment in F(U [0,1],U [0,1],U [0,1]). In Figure 11 we
give a representation in terms of rearrangement ma-
trices of another �-countermonotonic vector which is
not a �cx -smallest element in its Fréchet class. De-
spite these counterexamples, it is possible to show that
�-countermonotonic random vectors possess a local
optimality property which is illustrated by Proposi-
tion 3.9.

PROPOSITION 3.9. Let X ∈ F(F1, . . . ,Fd) be a
�-countermonotonic random vector. For i = 1, . . . , d ,
consider the random vector

Yi := (X1, . . . ,Xi−1, Yi,Xi+1, . . . ,Xd),

where Yi ∼ Fi . Then Yi ∈ F(F1, . . . ,Fd) and

d∑
j=1

Xj ≤cx

d∑
j=1

Yj .

PROOF. Denoting X+
−i := X1 + · · ·+Xd −Xi , the

theorem follows by noting that for any convex function
f we have that

E
[
f (X1 + X2 + · · · + Xd)

]
= E

[
f
(
Xi + X+

−i

)]≤ E
[
f
(
Yi + X+

−i

)]
= E

[
f (Y1 + · · · + Yd)

]
,
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where the above inequality is implied by Theo-
rem 3.1(d) since Xi and X+

−i are countermonotonic.
�

The local property stated in Proposition 3.9 means
that the sum of the components of a �-counter-
monotonic vector X is always �cx -dominated by any
vector obtained by changing a single rearrangement in
the dependence structure of X. We note that chang-
ing more than one rearrangement would not maintain
the optimality in Proposition 3.9, as, for instance, the
vector (U,U,1 − U) is not �cx -dominated by any
joint mix U∗, which can be always obtained from
(U,U,1 − U) by changing two components. We re-
mark that, although a �-countermonotonic vector is
always supported in a Fréchet class, it is not trivial to
determine its law. A numerical procedure to find �-
countermonotonic vectors in a discrete setting can be
built analogously to the Rearrangement Algorithm in-
troduced in Puccetti and Rüschendorf (2012).

REMARK 3.4. In Lee and Ahn (2014) a different
notion of extremal negative dependence is introduced;
see also Ahn (2015) for some further developments.
A d-random vector X with continuous marginal distri-
butions is said to be d-countermonotonic if it is possi-
ble to find strictly increasing functions f1, . . . , fd such
that f1(X1) + · · · + fd(Xd) = 1 with probability one.
Equivalently, X is d-countermonotonic if and only if
there exist strictly increasing functions fi , such that
f1(X1), . . . , fd(Xd) is a joint mix. From the defini-
tion, it directly follows that a joint mix is always d-
countermonotonic.

The notion of d-countermonotonicity only depends
on the dependence structure of a random vector and
not on its marginal distributions. This means that
any random vector sharing the same copula of a d-
countermonotonic vector is d-countermonotonic; see
Lemma 1 in Lee and Ahn (2014). Defining a con-
cept of extremal negative dependence not depending
on the marginals has some relevant consequences when
d > 2. First of all, d-countermonotonicity is a too gen-
eral notion; for instance, it is easy to see that any
vector (U,U, . . . ,U,1 − U) is d-countermonotonic.
This implies that d- and �-countermonotonicity are
different dependence concepts. Furthermore, any de-
pendence concept that does not take into account the
marginal distributions fails to solve any optimization
problems for d > 2 which depend on the margins. It is
easy to show that, under an extra continuity assump-
tion, d-countermonotonicity is a weaker notion than
�-countermonotonicity.

PROPOSITION 3.10. If X is a �-countermonotonic
random vector with continuous marginals and∑

j �=i Xj is continuously distributed for some i, then
X is d-countermonotonic.

PROOF. The result follows by noting that if the
marginal distributions F1 and F2 of a 2-countermono-
tonic random vector (X1,X2) are continuous, then
it is possible to find a strictly increasing function
f such that f (X1) + X2 = 1 with probability one.
For instance, one can choose f (X1) := −F−1

2 (1 −
F1(X1)) + 1 which is strictly increasing on the range
of X1. If Xj and

∑
j �=i Xj are continuous and counter-

monotonic by assumption, then we can find a strictly
increasing function g such that g(Xj ) +∑

j �=i Xj = 1
with probability one, showing that X is d-counter-
monotonic. �

4. OPTIMIZATION PROBLEMS

In a situation where one wants to describe the influ-
ence of the dependence structure on a statistical prob-
lem, with given marginals of the random vector under
study, one considers an optimization problem over the
Fréchet class F(F1, . . . ,Fd) of all joint distributions
with given marginals F1, . . . ,Fd . We suppress the ex-
plicit notation of the marginals and assume that they
are fixed throughout this section. For a given measur-
able function c : Rd → R, an optimization problem
over the class of possible dependence structures takes
the form

M(c) := sup
{∫

c dF : F ∈ F(F1, . . . ,Fd)

}
(4.1)

or

m(c) := inf
{∫

c dF : F ∈ F(F1, . . . ,Fd)

}
.(4.2)

In (4.1) and (4.2) (and in what follows) the supre-
mum and infimum are meant to be taken over all F ∈
F(F1, . . . ,Fd) such that the integral

∫
c dF is well-

defined. As F(F1, . . . ,Fd) is a compact set with re-
spect to the weak topology, the domain of the supre-
mum in (4.1) is an interval and the sup is attained under
very general boundedness or continuity properties of c;
see Theorem 2.19 in Kellerer (1984). Several different
techniques to compute M(c) and m(c) exist. The func-
tional

∫
c dF is linear in F and has to be optimized

over the convex set F(F1, . . . ,Fd). For instance, M(c)

can be considered as an infinite dimensional linear op-
timization problem and, as such, possesses the dual for-
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mulation

D(c) := inf

{
d∑

j=1

∫
fj dFj :

∫
fj dFj < ∞

(4.3)

s.t.
⊕

fj ≥ c

}
,

where
⊕

fj (x) := ∑d
j=1 fj (xj ). While we always

have ∫
c dF ≤ M(c) ≤ D(c) ≤

d∑
j=1

∫
fj dFj ,(4.4)

for any F ∈ F(F1, . . . ,Fd) and f1, . . . , fd satisfying⊕
fj ≥ c, the equality M(c) = D(c) holds under very

weak conditions depending on the function c consid-
ered. The problem m(c) has an analogous dual repre-
sentation; we refer the interested reader to Section 2.1
in Rüschendorf (2013) for a comprehensive summary
of known results. Since M(c) and m(c) can be seen as
mass transportation problems, they have also been ex-
tensively treated in the more specific literature on mass
transportation; see, for instance, Gangbo and McCann
(1996), Rachev and Rüschendorf (1998) and the recent
Pass (2015).

The two formulations (4.1) and (4.3) are typi-
cally used together in the so-called coupling-dual ap-
proach, where one has to find a joint distribution F ∈
F(F1, . . . ,Fd) [also called a coupling; see Lindvall
(1992)] and an admissible dual choice f1, . . . , fd sat-
isfying

⊕
fj ≥ c for which

∫
c dF =

d∑
j=1

∫
fj dFj ,

implying that all inequalities in (4.4) hold with =.
The case in which c is supermodular has been ex-
tensively studied; see Sections 2 and 3. This includes
the case c = I{×d

j=1 Aj }, for Ai ⊂ R, j = 1, . . . , d

which is treated in Rüschendorf (1981) and implies
in particular the Hoeffding–Fréchet bounds in (3.6).
Problems which can be linked to the maximization of
a supermodular function include the minimization of
a metric d [c(x1, x2) = −d(x1, x2); see, for instance,
Cuesta-Albertos, Rüschendorf and Tuero-Díaz (1993)]
and the maximization of stop-loss functionals of the
type c(x1, . . . , xd) = (

∑d
j=1 xj − k)+, for k ∈ R; see

Müller and Stoyan [(2002), Chapters 3 and 4]. For
c(x1, . . . , xd) = I{max{xi : i = 1, . . . , d} ≤ s}, Lai and
Robbins (1978) is the standard reference; the max op-
erator is replaced by any order statistics in Rychlik

(1996). Maximization of supermodular functions is
closely related to the maximization of a variety of risk
measures; see Dhaene et al. (2006).

In general, the dual formulation in (4.3) is difficult
to solve. Only partial solutions under restrictive as-
sumptions have been given in the above-mentioned lit-
erature. Apart from the cases treated in Theorems 3.1
and 3.3, there does not exist a general analytical so-
lution for m(c) when c is supermodular; see, for in-
stance, Bernard, Jiang and Wang (2014) and references
therein.

If the dual formulation (4.3) can rarely be used to
obtain an analytical solution for M(c) and m(c), rear-
rangement functions provide an easy way to reformu-
late the problem and compute a numerical approx-
imation. Using Theorem 1.1, problem (4.1) can be
reformulated in terms of rearrangements. The fol-
lowing proposition is a rewriting of Lemma 1 in
Rüschendorf (1983).

PROPOSITION 4.1. If U ∼ U [0,1], then

M(c) = sup
{
E
[
c
(
F−1

1 ◦ f1(U), . . . ,

F−1
d ◦ fd(U)

)] :(4.5)

fj
r∼ Id, j = 1, . . . , d

}
.

If the random variable U is discretized and gen-
eral rearrangement functions are replaced with one-
to-one, piecewise continuous rearrangements as in
Definition 1.3, the formulation in (4.5) allows for
a discrete representation of the corresponding prob-
lem. Denote by Un[0,1] a random variable uniformly
distributed over the components of the vector in :=
(0,1/n,2/n, . . . , (n − 1)/n); in may also be chosen as
(1/(n+1),2/(n+1), . . . , n/(n+1)) to avoid possible
singularity at 0. A one-to-one, piecewise continuous
rearrangement f (Un[0,1]) implies a rearrangement of
the components of in. Therefore, a d-tuple of one-to-
one, piecewise continuous rearrangements can be writ-
ten in terms of an (n × d)-matrix X = (xi,j ) in which
each column represents the implied rearrangements of
the components of itn. Any permutation of the elements
within each column of X represents a different mutu-
ally complete dependence structure among the same
discrete marginals. A discretized version of the prob-
lem M(c) can then be written as

Mn(c) := 1

n
max

{
n∑

i=1

c
(
F−1

1 (xi,1), . . . ,F
−1
d (xi,d)

) :
(4.6)

X ∈ Pn

}
,



508 G. PUCCETTI AND R. WANG

where Pn is the set of all (n × d)-matrices obtained
from (itn, . . . , itn) by rearranging the elements within
a number of its columns in a different order. Based
on approximation theorems, for example, described in
Durante and Fernández-Sánchez (2012), the transition
from general rearrangements to the bijective, piecewise
continuous ones is justified if n is large enough; for-
mally,

Mn(c)
n→∞→ M(c).

Though the domain Pn in (4.6) is computationally
intractable, there exists an algorithm by which a very
good approximation to Mn(c)—and hence to M(c)—
can be computed in a relatively fast way. This is the
rearrangement algorithm first introduced in Puccetti
and Rüschendorf (2012) for the computation of lower
and upper bounds on distribution functions and also
suitable to handle the approximation of m(c) when
c is supermodular. The state of the art of the Rear-
rangement Algorithm can be checked at the web-page
https://sites.google.com/site/rearrangementalgorithm/.
Using c(x1, . . . , xd) = (x1 + · · · + xd)2 (which leads
to variance minimization problems), the algorithm is
extremely effective in testing whether a Fréchet class
admits joint mixability; see Puccetti and Wang (2015).
This application leads to a numerical answer to the
more general question of whether a Fréchet class sup-
ports a vector X such that X1 + · · · + Xd has a par-
ticular distribution; see also Wang and Wang (2015a)
on this. To fully capture the advantages of the formula-
tions in (4.5) and in (4.6), we give an application.

EXAMPLE 4.1 (Dependence measures). Depen-
dence measures yield a scalar measurement for a pair
of random variables (X1X2), indicating the strength
of positive or negative dependence among its compo-
nents. Probably, the most widely known and used de-
pendence measure is Pearson’s linear correlation

ρ(X,Y ) = cov(X,Y )√
var(X)var(Y )

,(4.7)

for X,Y ∈ L2. It is a measure of linear dependence
that takes value in the range [−1,1]. For a random
vector (X1,X2) having fixed marginal distributions,
ρ(X1,X2) is maximized by a comonotonic depen-
dence structure and minimized by a countermonotonic
one; see Theorem 4 in Embrechts, McNeil and Strau-
mann (2002). For a fixed pair of marginal distributions,
however, the largest (smallest) value of ρ(X1,X2) may
be strictly smaller (larger) than 1 (−1); see Example 5
given in Embrechts, McNeil and Straumann (2002). In-
deed, it is very well known that |ρ(X1,X2)| = 1 if and

only if X1 is a.s. a linear function of X2. Pearson’s lin-
ear correlation has two relevant drawbacks: it is well
defined only when X1 and X2 have a finite variance; it
does not only depend on the copula of the vector, but
also depends on the shape of the marginal distributions
involved.

In order to overcome these deficiencies, copula-
based dependence measures have been developed. In
contrast to ordinary correlation, these measures are
functions of the copula only. One among these copula-
based dependence measures is Spearman’s rank corre-
lation coefficient, defined as

ρS(X1,X2) = ρ
(
F1(X1),F2(X2)

)
.

Spearman’s rank correlation takes value in the range
[−1,1], and does not depend on the marginal dis-
tributions of a vector (X1,X2) but only on its cop-
ula. It takes value 1 when X1 and X2 are comono-
tonic and value −1 when they are countermonotonic;
see Theorem 3 in Embrechts, McNeil and Straumann
(2002). A multivariate version of Spearman’s rank
correlation coefficient was introduced in Joe (1990)
[see also Schmid and Schmidt (2007) for its statisti-
cal inference]. For a random vector (X1, . . . ,Xd) hav-
ing marginal distributions F1, . . . ,Fd , the multivariate
Spearman’s rho is defined as

ρS(X1, . . . ,Xd)

= d + 1

1 − (d + 1)2−d
E

[
d∏

i=1

Fi(Xi) − 2−d

]
.

Since (x1, . . . , xd) �→ ∏d
i=1 Fi(xi) is a supermodular

function, for a fixed set of distributions F1, . . . ,Fd ,
ρS(X1, . . . ,Xd) attains its maximum value for a
comonotonic random vector. In order to find the best
possible lower bound for ρS , one has to consider the
problem of minimizing the expectation of the product
of d uniformly distributed random variables, that is,

m(�) = inf

{
E

[
d∏

j=1

Xi

]
:

(4.8)

Xi ∼ U [0,1],1 ≤ i ≤ d

}
.

An optimal coupling for m(�) has been found in
Wang and Wang (2011), where the long history of
the problem is also presented. The case of the product
of strictly positive uniform random variables U [a, b],
with a > 0, is easier to deal with and analytical results

https://sites.google.com/site/rearrangementalgorithm/
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FIG. 12. Optimal set of rearrangements f2, f3 attaining m(�) in (4.8).

are given in Bignozzi and Puccetti (2015). For an ar-
bitrary set of marginal distributions F1, . . . ,Fd , an an-
alytical computation of the smallest expectation of the
product of random variables remains unknown. How-
ever, the discretized formulation (4.6) used in conjunc-
tion with the rearrangement algorithm provides a nu-
merical approximation and a discretized image of the
optimal set of rearrangements for an arbitrary choice
of the marginal distributions under study.

In Figure 12 we provide the set of optimal rearrange-
ments attaining m(�) for the case of d = 3 uniform
marginals [i.e., the original case treated in Wang and
Wang (2011)]. The point clouds in these pictures rep-
resent a structure of joint mix for the log-transformed
variables, thus an extremal negative dependence. In

Figure 13 we show optimal rearrangements for the
analogous problem with a particular choice of noniden-
tical marginal distributions. It is clearly visible that the
optimal dependence structure heavily depends on the
given marginals. This is not true, for instance, in the
case of the maximal expectation of a product, which
is always attained by a comonotonic dependence struc-
ture (the product function is supermodular). All the fig-
ures contained in this section represent a shuffle of min,
implying that all the rearrangements illustrated are one
to one. Furthermore, in these figures we show only
the two rearrangement functions f2, f3 since we re-
call that for a set of bijective rearrangements the first
one can always be taken as f1 = Id. In the case of
identical marginal distributions, it is also possible to

FIG. 13. Optimal set of rearrangements f2, f3 attaining the minimal expectation of the product of three random variables with distributions
F1 = Pareto(4), F2 = Log N(0,1), F3 = Exp(1).
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FIG. 14. The set A∗ as defined in (4.11) (left) can always be taken as some interval [α,1] up to a proper rearrangement of the unit interval
(right). In this figure we set g = +, the sum operator, and Fj = U [0,1], j = 1, . . . , d .

take f2 = f3 (see Figure 12); this is a consequence of
Remark 2 in Gaffke and Rüschendorf (1981). Summa-
rizing, the smallest attainable value of the multivari-
ate Spearman’s rho is obtained from results based on
joint mixability. Hence, it is crucial that a notion of ex-
tremal negative dependence serves as a benchmark in
the modeling of dependence.

For some particular class of functionals, the domain
of (4.5) can be reduced: this is especially useful when
one looks for a numerical solution of M(c). The fol-
lowing theorem is an extension, with a constructive
proof, of Proposition 3(c) in Rüschendorf (1982). We
write f α

j

r∼ Id|[α,1] to indicate that the function f α
j :

[α,1] → [α,1] is a rearrangement of Id|[α,1] and we
denote by U [α,1] the law of a random variable uni-
formly distributed on [α,1]. Similarly, [α,1] can be re-
placed by [0, α] in the above notation.

THEOREM 4.2. Suppose that the function c is
coordinate-wise increasing and there exists a measur-
able, coordinate-wise increasing function g : Rd → R

such that

c(x1, . . . , xd)
(4.9) = c(x1, . . . , xd) · I

{
g(x1, . . . , xd) ≥ k

}
,

for some k ∈ R. If M(c) in (4.5) is attained by
f ∗

1 , . . . , f ∗
d

r∼ Id, then it holds that

M(c) = sup
{
E
[
c
(
F−1

1 ◦ f α
1
(
Uα), . . . ,

F−1
d ◦ f α

d

(
Uα))] : f α

j

r∼ Id|[α,1],(4.10)

j = 1, . . . , d
}
,

where Uα ∼ U [α,1] and α := P(g(F−1
1 ◦ f ∗

1 , . . . ,

F−1
d ◦ f ∗

d ) ≥ k).

PROOF. Let f ∗
j

r∼ Id be solutions of (4.10) and de-
fine the set

A∗ = {
u ∈ [0,1] : g(F−1

1 ◦ f ∗
1 (u), . . . ,

(4.11)
F−1

d ◦ f ∗
d (u)

)≥ k
}
.

Then, the Lebesgue measure of A∗ is λ(A∗) = α and
there exists f

r∼ Id such that A∗ = f ([α,1]). There-
fore, as illustrated in Figure 14, we can assume w.l.o.g.
that A∗ = [α,1].

To prove the ≥ inequality in (4.10), it is sufficient
to note that any set of rearrangements f α

1 , . . . , f α
d

r∼
Id|[α,1] can be easily extended to a set of rearrange-
ments f1, . . . , fd

r∼ Id, for instance, by setting

fj (u) :=
{

u, if u < α,
f α

j (u), if u ≥ α.

Optimality of the f ∗
j ’s and (4.9) imply, for all u ∈

[0,1], that

c
(
F−1

1 ◦ f ∗
1 (u), . . . ,F−1

d ◦ f ∗
d (u)

)
= c

(
F−1

1 ◦ f ∗
1 (u), . . . ,F−1

d ◦ f ∗
d (u)

)
· I
{
u ∈ [α,1]}

≥ c
(
F−1

1 ◦ f1(u), . . . ,F−1
d ◦ fd(u)

)
· I
{
u ∈ [α,1]}

= c
(
F−1

1 ◦ f α
1 (u), . . . ,F−1

d ◦ f α
d (u)

)
· I
{
u ∈ [α,1]}.

To prove the ≤ inequality in (4.10), for j = 1, . . . , d ,
denote

A+
j := {

u ∈ [α,1] : f ∗
j (u) ≥ α

}
, A−

j := [α,1] \ A+
j

and

B+
j := {

u ∈ [0, α) : f ∗
j (u) ≥ α

}
, B−

j := [0, α) \ B+
j .

If A−
j �= ∅, we can always find a new set of rear-

rangements f ∗∗
1 , . . . , f ∗∗

d such that

f ∗∗
j

([α,1])= [α,1],
f ∗∗

j

∣∣[α,1] ≥ f ∗∣∣[α,1] and(4.12)

f ∗∗
j

∣∣[0, α] ≤ f ∗∣∣[0, α], j = 1, . . . , d.
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FIG. 15. A new rearrangement f ∗∗
j : [0,1] → [0,1] can always

be obtained from f ∗
j so that f ∗∗

j |[α,1] ≥ α and f ∗∗
j |[0, α) ≤ α;

see the proof of Theorem 4.2 for the notation used.

An illustration is given in Figure 15. Formally, the
functions f ∗∗

j , j = 1, . . . , d , are defined in [α,1] as

f ∗∗
j (u) :=

⎧⎪⎨
⎪⎩

φj

(
f ∗

j (u)
)
, if u ∈ A−

j ,

ξj

(
f ∗

j (u)
)
, if u ∈ B+

j ,

f ∗
j (u), if u ∈ A+

j ∪ B−
j ,

where φj denotes the unique increasing rearrangement
mapping from C := f ∗

j (A−
j ) to D := [α,1] \ f ∗

j (A+
j )

and ξj denotes the unique decreasing rearrangement
mapping from E := f ∗

j (B+
j ) to F := [0, α) \ f ∗

j (B−
j );

see, for instance, McCann (1995). This construction of
f ∗∗

j satisfies (4.12). Since f ∗
j is measure-preserving,

it is straightforward to check that λ(C) = λ(D) and
λ(E) = λ(F ), implying that each f ∗∗

j is still a rear-
rangement of Id. Moreover, by increasingness of the
function g we also have that{

u ∈ [0,1] : g(F−1
1 ◦ f ∗∗

1 (u), . . . ,F−1
d ◦ f ∗∗

d (u)
)≥ k

}
= [α,1].

Finally, the assumptions on c imply, for u ∈ [0,1], that

c
(
F−1

1 ◦ f ∗
1 (u), . . . ,F−1

d ◦ f ∗
d (u)

)
= c

(
F−1

1 ◦ f ∗
1 (u), . . . ,F−1

d ◦ f ∗
d (u)

)
· I
{
u ∈ [α,1]}

≤ c
(
F−1

1 ◦ f ∗∗
1 (u), . . . ,F−1

d ◦ f ∗∗
d (u)

)
· I
{
u ∈ [α,1]}

= c
(
F−1

1 ◦ f α
1 (u), . . . ,F−1

d ◦ f α
d (u)

)
· I
{
u ∈ [α,1]},

where f α
j := f ∗∗

j |[α,1] is the rearrangement of [α,1].
�

An entirely analogous proof yields the correspond-
ing theorem for m(c).

THEOREM 4.3. Suppose that the function c is
coordinate-wise increasing and there exists a measur-
able, coordinate-wise increasing function g : Rd → R

such that

c(x1, . . . , xd)

= c(x1, . . . , xd) · I
{
g(x1, . . . , xd) ≤ k

}
,

for some k ∈ R. If m(c) in (4.5) is attained by f ∗
1 , . . . ,

f ∗
d

r∼ Id, then it holds that

m(c) = inf
{∫

c
(
F−1

1 ◦ f α
1 (Uα), . . . ,

F−1
d ◦ f α

d (Uα)
) :(4.13)

f α
j

r∼ Id|[0, α], j = 1, . . . , d

}
,

where Uα ∼ U [0, α] and α := P(g(F−1
1 ◦ f ∗

1 , . . . ,

F−1
d ◦ f ∗

d ) ≤ k).

Equations (4.10) and (4.13) are intuitively obvious:
to maximize an increasing function which depends
only on the right tail of a certain distribution, one
should use in each component only the largest part of
each marginal distribution. Analogously, if the increas-
ing function to be minimized depends only on the left
tail of some distribution, one should use in each com-
ponent only the smallest part of each marginal distri-
bution.

EXAMPLE 4.2 (Maximizing the distribution of a
sum). The reduced versions (4.10) and (4.13) are rel-
evant, for instance, when c(x1, . . . , xd) := I{∑d

j=1 xj ≥
k}, k ∈ R. This particular cost function gives lower and
upper sharp bounds on the distribution of a sum of ran-
dom variables with given marginals. This problem has
a long history.

During one of his walks with students, A. N. Kol-
mogorov gave to G. D. Makarov the problem of find-
ing the lower and upper best possible bounds on the
distribution function of a sum of d random variables
with given marginal distributions. Makarov (1981) pro-
vided the first result for d = 2. Independently from
Makarov’s approach, Rüschendorf (1982) gave an el-
egant proof of the same theorem using a dual re-
sult proved for a more general purpose. The dual ap-
proach of Rüschendorf was related to a much earlier
issue, dating back to 1871: the so-called Monge mass-
transportation problem; in particular, he solved a spe-
cial case of its Kantorovich version. A complete anal-
ysis of this kind of problem is given in Rachev and
Rüschendorf (1998). Some years later Frank, Nelsen
and Schweizer (1987) restated Makarov’s result, using
a formulation of the problem based on copulas. Intro-
ducing the use of dependence information, Williamson
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and Downs (1990) gave the best possible bounds for
more general aggregating operators and also in the
presence of a lower bound on the copula of a two-
dimensional portfolio. The extension of the above re-
sults to the case d > 2 is nontrivial, as the lower
Fréchet bound used by Makarov in the construction
of the optimal bivariate solution is not attainable by a
distribution function, apart from the case in which the
marginal distributions support pairwise countermono-
tonicity.

The above problem in arbitrary dimension was then
attacked using duality theory in Embrechts and Puc-
cetti (2006), where improved bounds were found with-
out a sharpness condition. Finally, the analytical com-
putation of M(c) and m(c) under specific assump-
tions on marginal distributions has been carried out in
Wang, Peng and Yang (2013). This optimization prob-
lem has been also solved numerically in total general-
ity using the Rearrangement Algorithm as illustrated in
Embrechts, Puccetti and Rüschendorf (2013). In Fig-
ure 16 we show a set of the three reduced rearrange-
ments of [α,1] under which the tail function of the sum
of three Pareto(2) random variables attains its maxi-
mum. Again, the point clouds in these pictures repre-
sent a structure of joint mix, implying that even in the
case of one-sided marginal distributions, a relevant part
of the optimal dependence structure shows a joint mix
(negatively dependent) behavior. Coherently with The-
orem 4.2, rearrangement functions (and thus the corre-
sponding dependence structure) can be set arbitrarily in
the remaining interval [0, α). The optimal dependence
structure in Figure 16 has been extensively studied

in Embrechts, Puccetti and Rüschendorf [(2013), Sec-
tion 3] and has received considerable interest in the
computation of bounds on risk measures in quantitative
risk management; see Embrechts et al. (2014). Note
that Theorem 4.2 is particularly useful for determin-
ing bounds on any functional depending on the upper
tail of the distribution of the sum; this includes a vari-
ety of risk measures in quantitative risk management.
This example clearly shows that the maximization and
minimization of a nonsupermodular function call for
the notion of extremal negative dependence.

5. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The dependence relationship between two or more
random variables can be described using the equiva-
lent concepts of a copula or a set of rearrangements of
the identity function. Through the lens of rearrange-
ments, this paper reviews the concept and the his-
tory of the notion of extremal positive dependence
(also called comonotonicity) and surveys the various
concepts available of extremal negative dependence,
proposing a novel unifying notion in higher dimen-
sions.

A natural notion of extremal negative dependence,
called countermonotonicity, is available for bivariate
random vectors. A countermonotonic vector always
exists, all countermonotonic vectors have the same de-
pendence structure and are the minimizer of the expec-
tation of supermodular functions.

Unfortunately it is not possible to define a neg-
ative dependence concept extending all these rele-

FIG. 16. Optimal reduced rearrangements f2, f3 attaining M(I{∑d
j=1 xj ≥ k}) with k � 45.99 (which corresponds to α = 0.99),

Fj = Pareto(2),1 ≤ j ≤ 3; see the discussion after Theorem 4.3.
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vant properties to d-variate vectors of arbitrary di-
mensions. In dimensions d > 2, different concepts
of negative dependence arise: pairwise countermono-
tonicity, joint mixability and �-countermonotonicity.
These latter notions are all marginally dependent,
that is, for different marginal distributions, the cop-
ula of a pairwise countermonotonic random vector/�-
countermonotonic random vector/joint mix is not
unique in general. A related challenge is that no univer-
sal solution exists for many optimization problems, as,
for instance, the minimum for a convex function of the
sum of the preassigned marginal components of a ran-
dom vector. We believe that this is exactly the reason
why more research is needed in the field of extremal
negative dependence.

There are still quite a few existing open mathemati-
cal questions about extremal dependence concepts, es-
pecially concerning extremal negative dependence. We
would like to invite the interested reader to contribute
to the following questions:

(i) Characterization of complete/joint mixability.
Despite some recent significant progress, a full char-
acterization of complete/joint mixability is still open.
In particular, even in the homogeneous case, neces-
sary and sufficient conditions for complete mixability
of bounded unimodal distributions is a long-standing
open problem. It was observed that the conditions in
Proposition 3.4 are not sufficient for such classes; see,
for example, some numerical verifications given in
Puccetti and Wang (2015). The question regarding the
uniqueness of the center of a set of d jointly mixable
distributions with infinite first moments is also open.

(ii) Existence of the �cx -smallest element in a
Fréchet class. A small modification of the counterex-
ample in Section 3 of Bernard, Jiang and Wang (2014)
yields that F(F1, . . . ,Fd) may not have a �cx -smallest
element even when the marginal distributions are as-
sumed to be continuous. At the moment we do not have
a clear picture of what conditions are required for the
existence of a �cx-smallest element in a Fréchet class.

(iii) General solutions of M(c) and m(c) for non-
supermodular functions c. The case where c(x1, . . . ,

xd) = I{∑d
i=1 xi ≤ k} is only partially solved based on

the idea of complete/joint mixability, as discussed, for
instance, in Wang, Peng and Yang (2013) and Puccetti
and Rüschendorf (2013). For more general c the prob-
lem becomes

M̂(ψ) := sup
{
ψ(F) : F ∈ F(F1, . . . ,Fd)

}
,

where ψ is a functional which maps the set of d-joint
distributions to real numbers. Such ψ can be inter-
preted as a multivariate law-determined risk measure

in the context of finance and insurance. A univariate
risk measure of the sum X1 + · · · + Xd is a special
choice of ψ ; see Embrechts et al. (2014) for a review
concerning Value-at-Risk and Expected Shortfall.

(iv) Stronger extremal negative dependence con-
cepts. Is there a notion of extremal negative depen-
dence which is stronger than �-countermonotonicity
but yet is supported by all Fréchet classes? Stronger
and reasonable concepts are not yet found at the mo-
ment.

(v) Random sequences and asymptotic analysis.
The discussions on extremal dependence concepts can
be naturally generalized from random vectors to ran-
dom sequences. One attempt to deal with this type of
question is given in Wang and Wang (2015b) where a
notion of extremal negative dependence for sequences
was proposed. Other alternative formulations of ex-
tremally negatively dependent sequences are possible,
and much research is still needed, especially in the case
when the marginal distributions are not identical.

(vi) Different aggregating functionals. The defini-
tion of joint mixability and �-countermonotonicity
rely on the sum operator chosen as the aggregating
functional. The extension of the concept of joint mix-
ability and �-countermonotonicity to different aggre-
gating functionals as a research problem needs further
investigation. As an illustration, in Figure 17 we show
a set of three rearrangements under which the prod-
uct of three Lognormal distributions is jointly mixable.
A first step in this direction can be found in Bignozzi
and Puccetti (2015).

(vii) Optimization problems and constrained opti-
mization problems. The optimization problems men-
tioned in Section 4 have important applications in op-
erations research; see, for instance, Haus (2015). There
are many theoretical as well as numerical challenges
left with those optimization problems. In particular, the
problems in Section 4 are unconstrained in the sense
that all elements in F(F1, . . . ,Fd) are counted. How-
ever, one may have more constraints than just in the
margins. For the case of having an extra variance con-
straint in the financial risk management context, see
Bernard, Rüschendorf and Vanduffel (2015).
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