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Abstract We develop a methodology for the construction
of a Hessian representation of Monte Carlo sets of parton
distributions, based on the use of a subset of the Monte
Carlo PDF replicas as an unbiased linear basis, and of a
genetic algorithm for the determination of the optimal basis.
We validate the methodology by first showing that it faith-
fully reproduces a native Monte Carlo PDF set (NNPDF3.0),
and then, that if applied to Hessian PDF set (MMHT14)
which was transformed into a Monte Carlo set, it gives
back the starting PDFs with minimal information loss. We
then show that, when applied to a large Monte Carlo PDF
set obtained as combination of several underlying sets, the
methodology leads to a Hessian representation in terms of
a rather smaller set of parameters (MC-H PDFs), thereby
providing an alternative implementation of the recently sug-
gested Meta-PDF idea and a Hessian version of the recently
suggested PDF compression algorithm (CMC-PDFs). The
mc2hessian conversion code is made publicly available
together with (through LHAPDF6) a Hessian representations
of the NNPDF3.0 set, and the MC-H PDF set.
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1 Introduction

The reliable treatment of uncertainties on the Parton Distri-
butions (PDFs) of the proton is currently an essential ingredi-
ent for LHC phenomenology (see for example Refs. [1–5] for
recent reviews). PDF uncertainties are of a peculiar nature,
because they are uncertainties on a space of functions, and
two main methods have been used to provide a representa-
tion of them: the Hessian method and the Monte Carlo (MC)
method.

In the Hessian method (currently used for instance in the
MMHT14 [6] and CT10 [7] PDF sets), a parametrization
based on a fixed functional form is introduced, and a multi-
gaussian probability distribution is assumed in the space of
parameters. Uncertainties are then given as the inverse of the
covariance matrix of this multigaussian distribution. This is
usually obtained, assuming linear error propagation and the
least-squares method, as the Hessian matrix with respect to
the parameters of a figure of merit (χ2) at its minimum, which
is viewed as the best-fit PDF. In the Monte Carlo method (cur-
rently used for instance in the NNPDF3.0 [8] PDF set) PDFs
are delivered as an ensemble of replicas which provide a dis-
crete (Monte Carlo) representation of the underlying proba-
bility distribution: uncertainties are then simply obtained as
moments of this probability distribution.

The Monte Carlo method has the twofold advantage that
no Gaussian and linear error propagation assumption is nec-
essary, and also, that PDFs can then parametrized with a
general-purpose functional form with a large number of
parameters (such as neural networks), for which the least-
squares method would fail. The Hessian method, on the other
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hand, has the advantage that the (orthogonal) eigenvectors
of the Hessian matrix may be treated as nuisance parame-
ters. This is often a desirable feature when PDFs are used
in experimental analysis, because other sources of uncer-
tainty are also represented as nuisance parameters, and also
because through standard methods [9] it is then possible to
the determine a subset of nuisance parameters which is most
important for a given cross-section or distribution.

Whereas deviations from Gaussianity may be important
in specific kinematic regions, especially when limited exper-
imental measurements are available and PDF uncertainties
are driven by theoretical constraints (such as for example the
large-x region, relevant for new physics searches), in most
cases, and specifically when PDF uncertainties are small and
driven by abundant experimental data, the Gaussian approx-
imation is reasonably accurate. This then raises the question
of whether in such case, in which everything is Gaussian and
the Hessian approximation is adequate, one could have the
best of possible worlds: a Hessian representation with the
associate advantages, but without having to give up the use
of a general-purpose flexible functional form.

It is the purpose of the present paper to achieve this goal.
We will do this by using the MC replicas themselves as the
basis of the linear representation of the original MC sample.
Indeed, we will show that if replicas of a very large Monte
Carlo set (Nrep = 1000 replicas) are represented as a linear
combination of a subset of them, not only it is possible to
achieve very good accuracy by using a much smaller subset
of replicas as basis functions, but in fact there is an optimal
number of basis replicas, in that the degeneracy of replicas is
such that larger bases would no longer be linearly indepen-
dent. It turns out that this optimal number is quite small, of
the same order of magnitude as the typical number of Hes-
sian eigenvectors for standard PDF sets such as MMHT14 or
CT10. All this is true if the basis replicas are suitably chosen,
which we do using a genetic algorithm. We can then simply
construct a Hessian representation in the space of these lin-
ear expansion coefficients, with essentially no information
loss or further bias introduced in comparison to the starting
Monte Carlo representation. It is thus possible to provide a
faithful, unbiased Hessian representation of any Monte Carlo
PDF set, such as those provided by NNPDF.

It is interesting to observe that the inverse problem, namely
the conversion of a Hessian PDF set into a Monte Carlo rep-
resentation, has already been considered and solved [10]. An
important advantage of being able to provide a MC represen-
tation of Hessian sets is the construction of combined PDF
sets, which incorporate the information contained in several
individual sets, as required for instance for Higgs boson cou-
pling extraction or New Physics searches at the LHC. Cur-
rently, the recommended procedure (the so-called PDF4LHC
recommendation [11,12]) is to take an envelope, which has
no clear statistical meaning. However, once converted into

a Monte Carlo representation, PDFs based on a common
dataset can be combined in a simple way [1,3,10,13]. In
this context, also the problem discussed in this work, namely
the conversion from Monte Carlo to Hessian, has also been
handled in the so-called “Meta-PDF” approach [13]. In this
approach, a functional form similar to those used in the
MMHT14 and CT analyses, the “meta-parametrization”, is
fitted to the combined Monte Carlo PDF set. This clearly
achieves the same goal as the conversion considered here,
but with the further usual bias that a choice of functional
form entails. If applied to a combined PDF set, the method-
ology presented here provides thus an unbiased alternative
to the Meta-PDF method of Ref. [13].

The paper is organized as follows. In Sect. 2 we describe in
the detail our methodology for the Monte Carlo to Hessian
conversion. Then, in Sect. 3 we first, apply our methodol-
ogy to a native Monte Carlo set, NNPDF3.0, benchmark its
accuracy, and show that we end up with an optimal number of
Hessian eigenvectors of order of a hundred. We then apply
the methodology to a Monte Carlo set obtained by apply-
ing the Watt–Thorne [10] method to a starting Hessian PDF
set, MMHT14. This provides a closure test of the method-
ology: we can check explicitly that the starting set is repro-
duced very well. Finally, in Sect. 4 we provide a Hessian
representation of a Monte Carlo set obtained by combining
several underlying PDF sets (either native Monte Carlo or
converted to Monte Carlo from Hessian). We end up with
a set of eigenvectors, the MC-H PDFs, which is of similar
size of the compressed Monte Carlo PDF obtained recently
[14] by applying compression algorithms to the large com-
bined replica set, the so-called CMC-PDFs. Therefore, the
PDF set which we obtain in this case provides an alternative
to either the Meta-PDFs of Ref. [13], of which it provides
an unbiased version, or to the CMC-PDFs of Ref. [14], of
which it provides a Hessian version. Details of PDF delivery
in LHAPDF6 are presented in Sect. 5, where conclusions are
also drawn. In Appendix A we discuss an alternative strategy
to construct a Hessian representation of MC sets, which is
used to validate our main methodology, and might turn out
to be advantageous for future applications.

2 Methodology

As discussed in the introduction, the basic idea of our
approach is to construct a linear representation for a set of
Monte Carlo PDF replicas by expressing them as a linear
combination of a small subset of them. Linearized error prop-
agation, which is at the basis of the Hessian approach, can
then be applied to the expansion coefficients, which imme-
diately provide a representation of the Hessian matrix. It is
important to observe that by “PDF replica” we mean the full
set of PDFs at the parametrization scale, i.e., seven PDFs
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provided as a function of x for some fixed Q2 value, denoted
in the following by Q2

0. These are all represented as a lin-
ear combination of the basis replicas with fixed coefficients,
which thus do not depend on either the PDF or x value. Note
that, because of the linearity of perturbative evolution, once
a replica is expressed as a linear combination at the reference
scale, all PDFs at all scales (including heavy flavors generated
dynamically above the corresponding thresholds) are then
given by the same linear combination of basis replicas. This in
particular ensures that sum rules are automatically satisfied.

We will first, describe how the Hessian matrix is con-
structed, and then, the optimization of parameters that char-
acterize the procedure, specifically the choice of basis repli-
cas.

2.1 Construction of the Hessian matrix

We start assuming that we are given a prior set of PDFs
represented as MC replicas { f (k)

α }k=1,...,Nrep where α =
1, . . . , Npdf denotes the type of PDF, i.e. Npdf = 2N f + 1:
N f quarks and antiquarks and the gluon. In order to simplify
the notation, we drop the explicit dependence of the PDFs on
x and Q2. The central idea of our strategy consists of finding
a subset of replicas, denoted by {η(i)

α }i=1,...,Neig ⊂ { f (k)
α },

such that any replica of the prior set, f (k)
α , can be represented

as a linear combination

f (k)
α ≈ f (k)

H,α ≡ f (0)
α +

Neig∑

i=1

a(k)
i (η(i)

α − f (0)
α ),

k = 1, . . . , Nrep, (1)

where f (0)
α is the central (average) value of the prior MC

set; a(k)
i are constant coefficients, independent of α, x and

Q2; and f (k)
H,α denotes the new Hessian representation of the

original replica f (k)
α . Note that by construction the central

value of the Hessian representation is the same as that of the
original MC set.

In order to determine the parameters {a(k)
i } we first define

the covariance matrix in the space of PDFs for the prior set
of replicas as

covpdf
i j,αβ ≡ Nrep

Nrep − 1
(〈 f (k)

α (xi , Q
2
0) · f (k)

β (x j , Q
2
0)〉rep

−〈 f (k)
α (xi , Q

2
0)〉rep〈 f (k)

β (x j , Q
2
0)〉rep), (2)

where the averages are performed over the original set of
Nrep replicas. Then, we construct a figure of merit, χ

2(k)
pdf :

χ
2(k)
pdf ≡

Nx∑

i, j=1

Nf∑

α,β=1

([ f (k)
H,α(xi , Q

2
0) − f (k)

α (xi , Q
2
0)]

·(covpdf )−1
i j,αβ · [ f (k)

H,β(x j , Q
2
0) − f (k)

β (x j , Q
2
0)]).

(3)

Note in Eqs. (2) and (3) the use of the subscript “pdf”, to
avoid any confusion with the covariance matrix and the χ2

in the space of experimental data, which do not play any role
here.

The optimal set of expansion coefficients {a(k)
i } for each

of the original Nrep replicas is determined by minimization of
Eq. (3). This is a convex problem which can be solved in an
efficient way through Singular Value Decomposition (SVD)
techniques. The problem consists of finding the vector �a of
dimension Neig that minimizes the residual of a linear system
of dimensions (Nx N f )×Neig for each replica of the original
set. The PDF covariance matrix Eq. (2) can be viewed as a
(Nx N f ) × (Nx N f ) matrix covpdf

lm , with indices l,m related
to those of the original definition by l = Nx (α − 1) + i and
m = Nx (β−1)+ j . Then we define an Nx Npdf ×Neig matrix
Ymq as

Ymq = η
(q)
β (x j ), (4)

with the same definition for the index m. We can now lay out
the linear system by defining

Alq =
Nx Npdf∑

m=1

(covpdf)
− 1

2
lm Ymq ,

b(k)
l =

Nx Npdf∑

m=1

(covpdf)
− 1

2
lm f (k)

α (xi ), (5)

again, with l = Nx (α − 1) + i . Here (covpdf)− 1
2 stands

for a square root of inverse covariance matrix, i.e., for a
semi-positive definite real matrix A, the matrix such that

(A
1
2 )t A

1
2 = A. Finally we can recast the original problem

Eq. (3) as that of finding �a that minimizes ‖A�a − b(k)‖.
If the starting number of MC replicas is large enough,

they will not all be linearly independent. In such case, if the
number of eigenvectors Neig is too large, the system will be
over-determined and the solution will be degenerate in the
space of linear expansion coefficients �a. In these conditions,
the correlations between this parameters will be ill-defined,
and will result in a numerically unstable covariance matrix
Eq. (6). On the other hand, if the number of eigenvectors Neig

is too small, it will not be possible to achieve a small value of
the figure of merit Eq. (3) and the Hessian representation of
the original covariance matrix will be a poor approximation.
Therefore, on quite general grounds one expects that, if one
starts with an extremely large (“infinite”) number of MC
replicas, there will always be an optimal value of Neig.

In Eq. (3) we have introduced a sampling in x , with a total
of Nx points. This immediately raises the issue of choosing
both a suitable spacing and range of the grid of points in
x . Because PDFs are generally quite smooth, neighboring
points in x are highly correlated, and thus the x-grid can-
not be too fine-grained, otherwise the matrix covpdf rapidly
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becomes ill-conditioned. Furthermore, the choice of the x-
grid range must keep into account not only the fact that we
want the replicas to be especially well-reproduced where they
are accurately known (hence the grid should not be domi-
nated by points in extrapolation regions), but also that the
whole procedure is meaningful only if the starting probabil-
ity distribution is at least approximately Gaussian. The way
both issues are handled will be discussed in detail in Sect. 2.2
below.

Having determined the expansion coefficients {a(k)
i }, we

obtain the eigenvector directions which describe our original
replica set by computing their covariance matrix:

cov(a)
i j = Nrep

Nrep − 1
(〈a(k)

i a(k)
j 〉rep − 〈a(k)

i 〉rep〈a(k)
j 〉rep),

i, j = 1, . . . , Neig. (6)

This covariance matrix in the space of the linear expansion
parameters Eq. (6) should not be confused with the covari-
ance matrix in the space of PDFs, defined in Eq. (2) (hence
the different superscripts). The Hessian matrix is then the
inverse of cov(a)

i j , which we can diagonalize through a rota-
tion matrix vi j , thus obtaining a set of eigenvalues λi (as in
the Meta-PDF method of Ref. [13]).

We thus obtain the one-sigma uncertainty band associated
to each orthogonal direction by normalizing by

√
λi . There-

fore the total one-sigma uncertainty will be given by

σ PDF
H,α (x, Q2)

=

√√√√√
Neig∑

i=1

⎡

⎣
Neig∑

j=1

vi j√
λi

(η
( j)
α (x, Q2) − f (0)

α (x, Q2))

⎤

⎦
2

, (7)

and our final Hessian representation of the original Monte
Carlo PDF set is composed by Neig symmetric eigenvectors,
given by

f̃ (i)
α (x, Q2) = f (0)

α (x, Q2) +
Neig∑

j=1

vi j√
λi

×(η( j)
α (x, Q2) − f (0)

α (x, Q2)). (8)

For PDF sets obtained with this Hessian representation, one
should use the symmetric Hessian formula, namely, the one-
sigma PDF uncertainty will be given by

σ PDF
H,α (x, Q2) =

√√√√√
Neig∑

i=1

( f̃ (i)
α (x, Q2) − f (0)

α (x, Q2))2, (9)

which is the practical recipe for Eq. (7). An analogous expres-
sion should be used for the computation of PDF uncertainties
in physical cross-sections.

If the method is successful, Eq. (9) should be close to the
original result for the one-sigma PDF uncertainty in the MC

representation, namely

σ PDF
α (x, Q2) =

√
〈( f (k)

α (x, Q2))2〉rep − 〈 f (k)
α (x, Q2)〉2

rep.

(10)

Of course, once the Hessian representation is available, all
the Hessian technology can be used, like the dataset diago-
nalization method [9] or the computation of the correlation
coefficients between different cross-sections [15]. Likewise,
one can now easily include the orthogonal eigenvectors in a
nuisance parameter analysis.

2.2 Optimization

We discuss now the determination of the optimal set of
parameters which characterize our procedure, and specifi-
cally:

• the optimal grid of points in x over which the figure of
merit Eq. (3) is evaluated;

• the optimal number of eigenvectors Neig and the optimal
choice of the basis replicas.

We consider in particular the application of our method to a
prior set of Nrep = 1000 MC replicas from the NNPDF3.0
NLO set. We then consider also Nrep = 1000 MC replicas of
the MMHT14 NLO set, constructed from the original Hes-
sian representation using the Hessian to Monte Carlo con-
version methodology of Ref. [10].

A suitable choice for the grid of points in x is one that
ensures that PDFs are well-reproduced in the kinematic
region which is relevant for phenomenology, and that the
spacing of the grid is such that correlations between neigh-
boring points are not so strong that it becomes impossi-
ble to invert the covariance matrix. In practice, we pro-
ceed as follows: we first consider an initial grid of points
in x ∈ [10−5, 0.9] with Nx = 50 for all PDFs (Npdf = 7,
since heavy flavor PDFs are generated dynamically), half
equally spaced on a logarithmic scale for x ∈ [10−5, 10−1]
and half equally spaced on a linear scale for x ∈ [0.1, 0.9].
We then determine the eigenvectors of the ensuing 350×350
(Nx Npdf ×Nx Npdf ) covariance matrix, and discard all eigen-
vectors corresponding to eigenvalues whose size is smaller
than a factor 10−12 times the largest one. This removes points
which carry little information due to large correlations. We
then invert the covariance matrix in the remaining subspace.

A further difficulty arises whenever the prior uncertain-
ties are not Gaussian. In such case, a faithful Hessian rep-
resentation is (by construction) impossible, and our proce-
dure, which always leads to a final Hessian matrix, becomes
meaningless. Whenever the starting PDF set has potentially
non-Gaussian uncertainties, it is thus necessary to quantify
the deviation from gaussianity in order to make sure that the
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Fig. 1 Comparison of one-sigma and 68 % confidence level intervals for some PDFs from the NNPDF3.0 NLO set, determined using a sample of
Nrep = 1000 MC replicas, at Q = 4 GeV2. From top to bottom and from left to right the gluon, down, up and strange PDFs are shown

procedure can be consistently applied. We do this using the
simplest indicator, namely the second moment of the proba-
bility distribution, specifically comparing the one-sigma and
68 % confidence level intervals [16], which for a Gaussian
distribution coincide. The comparison is shown in Fig. 1 for
some PDFs in the NNPDF3.0 NLO set at Q2 = 4 GeV2.
It is clear that deviations from gaussianity can be signifi-
cant whenever experimental information is scarce or missing,
specifically at small- and large-x , since in these regions the
PDF uncertainty is not determined by gaussianly distributed
data but rather by extrapolation and by theoretical constraints
(such as sum rules and cross-section positivity).

We thus define the indicator

εα(xi , Q
2
0) =

∣∣σα(xi , Q2
0) − σ 68

α (xi , Q2
0)

∣∣

σ 68
α (xi , Q2

0)
, (11)

where σα(xi , Q2
0) and σ 68

α (xi , Q2
0) are respectively the one-

sigma and 68 % confidence level intervals for the α-th PDF
at point xi and scale Q2

0, computed from the original MC
representation with Nrep = 1000 MC replicas. When the
prior set has potentially non-Gaussian uncertainties, first of
all we evaluate the figure of merit Eq. (11) on the same grid of
point on which the covariance matrix is computed. We then
discard all points for which the deviation Eq. (11) exceeds

some threshold value ε, i.e. we only include points such that

εα(xi , Q
2
0) < ε. (12)

We then proceed as above: on the remaining points we com-
pute the covariance matrix, determine its eigenvectors, and
discard eigenvectors whose size is less than twelve orders of
magnitude smaller than the largest eigenvector. Needless to
day, this additional initial step is not required for sets (such
as MMHT14) which are obtained from a Monte Carlo con-
version of an original Hessian set, and thus have Gaussian
uncertainties by construction.

We now turn to the determination of the optimal basis
of replicas for the Hessian representation. This optimization
requires the definition of a statistical estimator which mea-
sures the quality of the Hessian representation. Given that the
Hessian representation corresponds to a Gaussian distribu-
tion, and that central values are reproduced by construction,
the probability distribution is fully determined by the covari-
ance matrix. In practice, however, a good assessment of the
quality of the Hessian representation is obtained by simply
verifying that the diagonal elements of the covariance matrix
are well reproduced, thanks to the fact that correct correla-
tions are automatically provided by the use of PDF replicas
as a basis, as we shall explicitly verify below.
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We introduce therefore the estimator

ERFσ =
Nx∑

i=1

Npdf∑

α=1

∣∣∣∣∣
σ PDF
H,α (xi , Q2

0) − σ PDF
α (xi , Q2

0)

σ PDF
α (xi , Q2

0)

∣∣∣∣∣ , (13)

which compares the one-sigma standard deviations com-
puted for the original MC and their Hessian representations,
as given respectively by Eqs. (10) and (9). We then compute
the estimator for a given fixed value of Neig basis replicas.
The choice of these is random at first, and then optimized
using a Genetic Algorithm (GA).

The parameters of the GA are chosen based on the stud-
ies of Ref. [14], where the related problem of optimizing the
choice of PDF replica set was studied: we find that a sin-
gle mutation per iteration of the GA is sufficient, with the
number of mutants chosen to be between one and four per
mutation, with probabilities listed in Table 1. It turns out that
Nmax

gen = 2000 iterations of the GA are sufficient to obtain
good stability and a sizable improvement of the figure of
merit in comparison to the starting random selection.

In Fig. 2 we plot the value of the estimator Eq. (13) after
GA minimization, as a function of the threshold value of ε

and the number Neig of basis replicas. A valley of minima
is clearly seen, and shown in the plot as a curve, determined
by searching for the absolute minimum of the estimator as a
function of Neig for each fixed ε.

An interesting feature of Fig. 2 is that for all values of ε the
optimal value of Neig is reasonably small, and much smaller
than the total number of replicas Nrep = 1000. As one might
expect, when the value of the threshold ε is small, and thus a
large number of points in x is excluded, the optimal number of
eigenvectors is also small, rapidly decreasing when ε � 0.2.
Clearly, however, if ε is too small, only few points will be
retained in the computation of the figure of merit Eq. (3) and
the original MC replicas will not be reproduced accurately
enough.

In order to determine the optimal value of ε, for each
value of Neig and ε shown in Fig. 2 we have recomputed the
figure of merit Eq. (13) using the same eigenvector basis,
but now including all points; the valley of minima is then
determined again for this new surface. The dependence on ε

is now due to the fact that the eigenvector basis changes as ε

Table 1 Number of mutants per replica and respective probabilities for
each generation of the GA

mc2hessian v1.0.0

Nmut
rep Pmut (%)

1 30

2 30

3 10

4 30

Fig. 2 The figure of merit, Eq. (13), for the Hessian representation of
the NNPDF3.0 NLO set, computed for points which satisfy the gaus-
sianity criterion Eq. (12), plotted versus the threshold ε Eq. (12) and
the number of eigenvectors Neig, after the choice of basis replicas has
been optimized through a run of the GA with the settings of Table 1.
The value of the estimator along the valley of minima, i.e. the curve
determined by finding the value of Neig at which the estimator has its
absolute minimum for each ε is shown (blue curve). The red curve
marks the value ε = 0.25 which is finally adopted. The projection of
the valley of minima in the (ε, Neig) plane is shown in Fig. 3

Fig. 3 The valley of minima shown in Fig. 2 (blue curve) shown as
a projection on the (ε, Neig) plane, compared to the curve recomputed
using the same eigenvector basis but including all points in the deter-
mination of the figure of merit (black curve). The red line indicates the
threshold value ε = 0.25 which is finally adopted

is varied, though the definition of the figure of merit does not.
Therefore, the difference between the two curves is a measure
of how much the exclusion of nongaussian points by the ε

criterion affects the choice of optimal eigenvector set. The
two curves are compared in Fig. 3: they are seen to diverge
when ε � 0.2. We take this as an indication that, below
this value, the amount of information which is necessary in
order to describe all points starts being significantly different
from that which is sufficient for an accurate description of the
points which have passed the cut, and thus the cut becomes
too restrictive. We consequently adopt ε = 0.25 (red curve),
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Fig. 4 The figure of merit of Fig. 2, plotted versus Neig for fixed ε =
0.25 (blue curve), for the NNPDF3.0 NLO set. The optimal value Neig =
120 is denoted by a vertical dash. Results obtained by not optimizing
the basis through the GA are also shown (red curve)

as a reasonable compromise between only including points
for which uncertainties are Gaussian, and not loosing too
much information.

The profile of the figure of merit with the choice of thresh-
old value ε = 0.25, is shown in Fig. 4. It is seen that the
optimal number of eigenvectors is Neig = 120. The fact that
this value is much less than the starting Nrep = 1000 means
that replicas in the original set are strongly correlated. This is
nicely consistent with the result that it is possible to construct
a “compressed” representation of NNPDF3.0, in which the
original probability distribution is reproduced but including
a much smaller, optimized set of Monte Carlo replicas [14].
In fact, it turns out that the optimal number of eigenvectors,
and the number of compressed replicas, are of the same order
of magnitude.

In Fig. 4 we also show the figure of merit when the basis
replicas are chosen randomly, instead of being optimized
through the GA. It is apparent that use of the GA leads to
an improvement of the figure of merit by almost a factor
two. It is interesting to observe that this improvement is in
fact achieved by modifying only a small fraction of the ini-
tial random selection of replicas: specifically, only 26 of the
replicas used as initial input for the basis are mutated at the
end of the Nmax

gen iterations of the GA. This suggests that there
is still room for improvement in the selection of the optimal
basis, since the GA only explores combinations that are not
to far from the initial basis.

Finally, we have repeated our construction for the Monte
Carlo representation of the MMHT14 NLO PDF set. In this
case, because the starting PDF set is Hessian, no gaussian-
ity requirements are necessary. On the other hand, because
the underlying PDF set is described by a smaller number
of parameters than either the NNPDF or the combined set
considered previously, Monte Carlo replicas tend to be more

Fig. 5 Same as Fig. 4, but for the MMHT14 MC NLO PDF set. In
this case the gaussianity condition Eq. (12) is not applied. The optimal
value Neig = 14 is denoted by a vertical dash

correlated. As a consequence, it is necessary to relax some-
what the criterion for selection of the eigenvectors of the
covariance matrix: in this case, we keep all eigenvectors cor-
responding to eigenvalues whose size is larger than 10−15

times that of the largest one (instead of 10−12 as in the pre-
vious cases). We then simply determine the figure of merit
as a function of Neig: results are shown in Fig. 5. Also in this
case, the GA leads to an improvement of the figure of merit
by more than a factor two. Now, however, the optimal num-
ber of eigenvectors is rather smaller, Neig = 14, as compared
to the NNPDF3.0 result. Again, this is of the same order as
that which is used when applying the compression algorithm
of Ref. [14] to the MMHT14 PDFs.

3 Results and validation

We now study in detail the results which are obtained
when applying our Monte Carlo to Hessian conversion to
NNPDF3.0 NLO – a native Monte Carlo PDF set – and
MMHT14 – a Hessian PDF set which has been turned into
Monte Carlo using the technique of Ref. [10]. In the for-
mer case, we compare the final Hessian PDFs to the starting
Monte Carlo ones, at the level of central values, uncertain-
ties, and correlations, thereby validating the procedure. In
the latter case, we compare the results of the final Hessian
conversion to the original Hessian set, thereby providing a
powerful closure test of the procedure. Finally, we compare
results before and after Hessian conversion for both PDF
sets at the level of physical observables, in order to ascertain
the accuracy of our methodology for realistic applications.
PDF comparisons and luminosity plots shown in this sec-
tion have been produced using theAPFEL Web plotting tool
[17,18].
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Fig. 6 Comparison between the starting Monte Carlo representation
with Nrep = 1000 replicas and the final Hessian representation with
Neig = 120 eigenvectors for the for the NNPDF3.0 NLO set with

αs = 0.118. From left to right and from top to bottom we the gluon,
total quark singlet, total strangeness and the total valence are plotted vs.
x for fixed Q2 = 2 GeV2

3.1 Hessian representation of Monte Carlo PDFs

We concentrate on the PDF set obtained starting with Nrep =
1000 NNPDF3.0 NLO replicas, and applying our method-
ology with the optimal choice of parameters discussed in
Sect. 2.2, namely ε = 0.25, Neig = 120. In Fig. 6 we com-
pare the original Monte Carlo representation to the final Hes-
sian representation of several PDFs at Q2 = 2 GeV2: the
excellent accuracy of the Hessian representation is apparent,
with differences in the one-sigma PDF uncertainty bands of
the order 5 % at most (recall that central values coincide by
construction). In Fig. 7 the same comparison is performed
at Q2 = 104 GeV2, now shown as a ratio to central val-
ues.

In Fig. 8 we then compare some parton luminosities, com-
puted for proton–proton collisions with a center of mass
energy of 13 TeV, plotted vs. the invariant mass of the final
state. Results are shown normalized to the central value of
the NNPDF3.0 NLO Monte Carlo set. Again, we find excel-
lent agreement, except in the regions of very small or very
large invariant masses (which respectively depend on small
and large-x PDFs). This is unsurprising given that these are

extrapolation regions in which the Gaussian approximation
is less good.

As mentioned in Sect. 2.2, even though the figure of merit
Eq. (13) used for the GA only optimizes the diagonal ele-
ments of the covariance matrix, correlations are automati-
cally reproduced thanks to the use of the original replicas as
a basis. We can check this explicitly. The correlation coef-
ficient between two different PDFs fα and fβ , at a given
value of x , Q2, in the Monte Carlo representation is given by
[19]:

ρ
αβ
MC(x, Q2) = Nrep

Nrep − 1

×
( 〈 f (k)

α (x, Q2) f (k)
β (x, Q2)〉rep − 〈 f (k)

α (x, Q2)〉rep〈 f (k)
β (x, Q2)〉rep

σ PDF
α (x, Q2) · σ PDF

β (x, Q2)

)
,

(14)

where averages are taken over the Nrep = 1000 replicas of
the sample, and σα(x, Q2) and σβ(x, Q2) are the standard
deviations Eq. (10). In the Hessian representation the same
quantity is given by
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Fig. 7 Same as Fig. 6 but at Q2 = 104 GeV2, and with results normalized to the central PDF

ρ
αβ
Hessian(x, Q

2) =
∑Neig

k=1[( f̃ (k)
α (x, Q2) − f (0)

α (x, Q2))( f̃ (k)
β (x, Q2) − f (0)

β (x, Q2))]
√∑Neig

k=1( f̃
(k)
α (x, Q2) − f (0)

α (x, Q2))2
√∑Neig

k=1( f̃
(k)
β (x, Q2) − f (0)

β (x, Q2))2
, (15)

where now the sum is performed over the Neig eigenvectors,

and f (0)
α , f (0)

β are the respective central sets, which coincide
with the MC average values.

The correlation coefficients Eqs. (14) and (15) before and
after Hessian conversion are compared in Fig. 9: again, very
good agreement is seen, with differences compatible with
the uncertainty on the Monte Carlo representation. We have
checked explicitly that a similar level of agreement is found
at the level of correlations between a number of LHC cross-
sections and differential distributions.

We conclude that at the level of second moments the Hes-
sian representation of the starting Monte Carlo probability
distribution is very accurate. Of course, to the extent that
higher moments deviate from Gaussian behaviour they will
be accordingly not so well reproduced.

3.2 A closure test: Hessian representation of Hessian PDFs

We now consider the MMHT14 NLO PDF set. In this case,
the Monte Carlo representation which is converted into Hes-

sian is in turn obtained by starting from an initial Hessian rep-
resentation, using the methodology of Ref. [10]. We can then
compare the starting and final Hessian sets, thereby obtain-
ing a closure test. This provides a powerful test of the basis-
independence of our procedure, in that the starting Hessian
is defined in the space of parameters of a specific functional
form, which is then turned into Hessian by running a Monte
Carlo in parameter space, while our final Hessian representa-
tion uses the ensuing Monte Carlo replicas as basis functions.

Again, we adopt the optimal choice of parameters dis-
cussed in Sect. 2.2, namely Neig = 14. Note that this was
obtained by relaxing somewhat the criterion for keeping
eigenvectors of the covariance matrix, due to the greater cor-
relation of MMHT PDF replicas: indeed, we have verified
that use of the same criterion as for the sets we considered
previously would need to a smaller optimal number of eigen-
vectors (Neig = 12 instead of Neig = 14), and a considerable
loss of accuracy.

The starting Hessian representation and our final Hessian
conversion are compared in Fig. 10 at Q2 = 2 GeV2. Again
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Fig. 8 Same as Fig. 6, but now comparing parton luminosities for proton–proton collisions at 13 TeV, plotted vs. the invariant mass of the final
state. Results are shown normalized to the central PDF

we find agreements of the uncertainty to better than 5 %. It
is interesting to observe that the original Hessian representa-
tion had Neig = 25 asymmetric eigenvectors (corresponding
to 50 error sets), while our final Hessian conversion only
needs Neig = 14 symmetric eigenvectors. This means that
our algorithm has managed to achieve a compression of the
information in the native Hessian representation, thanks to
the use of replicas as a basis, with minimal information loss.

3.3 LHC phenomenology

We finally validate our Hessian conversion at the level of
physical observables: standard candle total cross-sections
and differential distributions. For simplicity, we perform all
comparisons at NLO, given that, clearly, the accuracy of the
Hessian approximation is essentially independent of the per-
turbative order.

In Fig. 11 we compare results obtained using the Monte
Carlo and Hessian NNPDF3.0 representations, and the orig-
inal and final Hessian representation of MMHT14 PDFs,
for the total cross-sections for Higgs production in gluon
fusion obtained using the ggHiggs code [20], top quark
pair production obtained with top++ [21], and inclusive

W and Z production obtained with VRAP [22]. Results are
always shown normalized to the value of the original Monte
Carlo set. For NNPDF3.0, the agreement is very good, with
PDF uncertainties consistent with 10 % differences at most.
Somewhat larger differences are found for MMHT14.

We then compare several differential distributions, cho-
sen among those which have been used in the NNPDF3.0
PDF determination, and for which fast interfaces are avail-
able, either APPLgrid [23], FastNLO [24] or aMCfast
[25]. Again, results are always shown normalized to the cen-
tral value of either NNPDF3.0 NLO Monte Carlo set or the
MMHT14 NLO native Hessian. In particular we consider:

• The ATLAS high-mass Drell–Yan measurement [26],
integrated over rapidity |yll | ≤ 2.1, and binned as a func-
tion of the di-lepton invariant mass pair Mll ,

• the CMS double differential Drell–Yan measurement
[27] in the low-mass region, 20 ≥ Mll ≥ 30 GeV, as
a function of the di-lepton rapidity yll ,

• The CMS W+ lepton rapidity distribution [28],
• The CMS measurement of W+ production in association

with charm quarks measurement [29], as a function of
the lepton rapidity yl ,
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Fig. 9 Correlation coefficients between pairs of PDFs at a common value of x and Q2 versus x for Q2 = 104 GeV2 before and after Hessian
conversion

• The ATLAS inclusive jet production measurement [30]
in the central rapidity region, |yjet| ≤ 0.3, as a function
of the jet pT , and

• The same ATLAS inclusive jet production measurement
[30] now in the forward rapidity region, 4.0 ≤ |yjet| ≤
4.4, as a function of the jet pT .

These observables probe a wide range of PDF combina-
tions, from light quarks and anti-quarks (Drell–Yan) and
strangeness (W + c) to the gluon (jets) in a wide range of
Bjorken-x and momentum transfers Q2.

Results are shown in Fig. 12 for NNPDF, and in Fig. 13
for MMHT14. Again, there is a good agreement between the
original Monte Carlo and the new Hessian representations,
with differences smaller than 10 %.

4 A Hessian representation of combined MC sets:
MC-H PDFs

As discussed in the introduction, the Monte Carlo representa-
tion of PDFs offers the possibility of constructing combined
PDF sets which incorporate information from different PDF
determinations, and thus provide an alternative [1,3,10,13]
to the current PDF4LHC recommendation [11] for the com-

bination of predictions obtained using different PDF sets,
which is less than ideal from a statistical point of view.

An obvious shortcoming of a combined Monte Carlo set
is that it contains generally a large number of replicas, which
can be cumbersome to handle, and which is computationally
very intensive. This difficulty has been handled in Ref. [14]
by developing a compression algorithm, whereby the number
of replicas in a Monte Carlo set is optimized by means of a
GA without significant loss of information. This has enabled
the construction of sets of less than Nrep = 50 replicas which
reproduce most of the information contained in a starting
Nrep = 300 replica set.

Combined Monte Carlo set are generally non-Gaussian
even when obtained by combining individually Gaussian
PDF sets. However, once again the Gaussian approxima-
tion may often be adequate in practice, and then a Hessian
representation may be useful for applications as repeatedly
mentioned. The so-called Meta-PDF method [13] has been
proposed as a way of dealing with this problem: it consists of
re-fitting a fixed functional form to the final combined Monte
Carlo set, and thus it has the usual shortcomings related to a
fixed choice of functional form. We now show how by apply-
ing our Monte Carlo to Hessian conversion to a combined
Monte Carlo set we directly obtained a Hessian representa-
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Fig. 10 Same as Fig. 6, but for MMHT14 NLO PDFs, with Neig = 25 asymmetric eigenvectors in the starting Hessian set and Neig = 14 symmetric
eigenvectors in our final Hessian conversion
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Fig. 11 Comparison of NLO inclusive cross-sections at the LHC, com-
puted using PDFs before and after Hessian conversion: for NNPDF3.0
(left) the Hessian representation is compared to the original Monte

Carlo, while for MMHT14 (right) the final Hessian conversion is com-
pared to the original Hessian

tion with a small number of eigenvector, therefore obtaining
a compressed Hessian representation, which we call MC-H
PDFs.

We start with a Monte Carlo combination of the
NNPDF3.0, CT14 and MMHT14 NNLO PDF sets, with
αs(MZ ) = 0.118. This is the starting point of the construc-

tion of the compressed sets of Ref. [14], where further details
are given, and it contains Nrep = 300 replicas.1 We could in
principle then first, run the compression algorithm of Ref.

1 Note that the CT14 PDF set included in this combination is still pre-
liminary. We thank Pavel Nadolsky for providing this preliminary ver-
sion of CT14.
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Fig. 12 Comparison of the original Monte Carlo representation and
the new Hessian representation of NNPDF3.0 NLO for a number of
differential distributions at the LHC 7 TeV. The error band corresponds

to the one-sigma PDF uncertainty in each bin. Results are shown nor-
malized to the central value of the NNPDF3.0 NLO Monte Carlo set.
See text for more details

[14], and then perform a Monte Carlo to Hessian conversion
of the ensuing compressed set of replicas. However, each of
these two steps entails potential information loss, and thus it
is more advantageous to perform directly a Hessian conver-
sion of the starting set of Nrep = 300 MC replicas.

We thus apply our Monte Carlo to Hessian conversion to
the combined prior with Nrep = 300, following the method-
ology presented in Sect. 2. It actually turns out that significant
deviations from Gaussian behavior are observed for PDFs

for which direct experimental information is scarce, and thus
theoretical bias or constraints play some role, such as the
strange PDF. Once a final combined set is made available for
phenomenology, a choice will have to be made in order to
decide whether a Hessian approximation is viable. For the
time being, given the preliminary nature of the existing set,
we simply choose ε = 0.25 as in Sect. 2.2 as a threshold
for discarding non-Gaussian points. We then end up with an
optimal conversion with Neig = 90 eigenvectors, somewhat
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Fig. 13 Same as Fig. 12, but for MMHT14 NLO PDFs. The final Hessian set obtained after conversion of the Monte Carlo replicas is compared
to the starting Hessian representation

larger though of the same order than the number of com-
pressed replicas of the CMC set (Nrep ∼ 40).

We have performed an extensive set of validation tests of
these MC-H PDFs, at the level of PDFs, luminosities and
physical observables, of which we now show some exam-
ples. In Fig. 14 we compare PDF luminosities at the LHC
with

√
s = 13 TeV computed with the starting combined

MC set and the final MC-H Hessian set. We find good agree-
ment, with differences below 10 % at the level of PDF uncer-
tainties. It is important to note that some disagreement is to

be expected because the starting combined set is not Gaus-
sian, in particular for regions of x (such as large and small
x) and PDFs that are poorly constrained by experimental
data: indeed, the largest discrepancies are observed at low
and high invariant masses MX . These differences thus signal
an intrinsic limitation of the Hessian representation, rather
than a failure of our methodology.

The good agreement at the level of PDF luminosities trans-
lates into a good agreement at the level of physical observ-
ables. In Fig. 15 we compare the processes that we discussed
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Fig. 14 Same as Fig. 8, but now comparing a combined MC PDF set
with Nrep = 300 replicas to its MC-H Hessian representation with
Neig = 90 eigenvector. The starting set is obtained from the combi-

nation of Monte Carlo representations of the NNPDF3.0, CT14 and
MMHT14 NNLO PDF sets containing Nrep = 100 replicas each

in Sect. 3.3 (with the same settings), computed using the
starting combined MC PDF set and the final MC-H Hessian
representation. Again, results are normalized to the central
value of the starting combined set, and uncertainties bands
correspond to the one-sigma PDF uncertainty in each bin
(recall that central values of the starting and final PDF sets
are the same by construction). Again, discrepancies are below
the 10 % level.

We concluded that the Hessian conversion algorithm pre-
sented in this paper also provides a successful methodology
for the construction of a Hessian representation with a mod-
erate number of eigenvectors of combined Monte Carlo PDF
sets. Differences between the starting MC set and the final
MC-H Hessian representation can be used, to a certain extent,
to quantify the degree of non-gaussianity which is present in
the original set.

5 Delivery and outlook

We have provided a general purpose methodology for the
Hessian conversion of any Monte Carlo PDF set. When

applied to a native Monte Carlo set, this methodology pro-
vides an efficient Hessian representation which is faithful
to the extent that the starting set is Gaussian. When applied
to a Monte Carlo set obtained from a starting Hessian, the
methodology gives back the original set to very good accu-
racy, but using the Monte Carlo replicas as a basis. Finally,
when applied to a combined Monte Carlo replica set it pro-
vides a Hessian version (MC-H PDFs) of the recently pro-
posed PDF compression methodology (MC-PDFs [14]), and
an implementation of the Meta-PDF idea [13] which is free
of the bias related to the choice of a specific functional form.

The main deliverable of this work is the mc2hessian
code, which easily allows for the construction of a Hes-
sian representation of any given Monte Carlo PDF set. The
mc2hessian code is written in Python using the numer-
ical implementations provided by the NumPy/Scipy pack-
ages [31]. This code is publicly available from the GitHub
repository

https://github.com/scarrazza/mc2hessian

and outputs results directly in the LHAPDF6 format [32], so
that the new Hessian sets can be easily interfaced by any other
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Fig. 15 Same as Fig. 12, but now for the PDF sets of Fig. 14

code. However, it should be kept in mind that the Hessian rep-
resentation always requires careful validation, as some infor-
mation loss is necessarily involved in this transformation,
and specifically any deviation from Gaussianity is inevitably
washed out.

The Hessian version of the NNPDF3.0 sets

NNPDF30_nlo_as_0118_hessian
NNPDF30_nnlo_as_0118_hessian

as well as the MC-H PDFs

MCH_nlo_as_0118_hessian
MCH_nnlo_as_0118_hessian

will be made available inLHAPDF6. Future NNPDF releases
will be provided both in the native Monte Carlo and in the
new Hessian representations.

An interesting development of the methodology suggested
here is that an unbiased Hessian representation could be used
as a way to single out the PDF flavours (and x-ranges) that
provide the dominant contribution to individual physics pro-
cess, by picking the dominant eigenvectors; along the lines
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of previous suggestions [9,33], but in a parametrization-
independent way. This could then be used to construct tai-
lored sets with a small number of eigenvectors which, though
not suitable for general-purposes studies, could be useful for
experimental profiling when restricted to a small subset of
relevant processes. These and related issues will be the sub-
ject of future work.
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Appendix A: Hessian representation through Singular
Value Decomposition

The solution to the problem of finding a suitable Hessian
representation of MC PDF sets is not unique. The main
strength of the approach we have explored here is that a
representation in terms of the original MC replicas automat-
ically inherits a number of useful properties of the replicas,
such as, for instance, the fact that sum rules are automati-
cally satisfied and correlations are well reproduced, as dis-
cussed in Sect. 3.1. This suggests an alternative approach, in
which instead of representing all starting replicas on a subset
of them, we pick the dominant combination of all replicas
through Singular Value Decomposition (SVD). This alterna-
tive method is briefly discussed in this Appendix. So far we
have used it for validation of our main methodology, though
it might be especially suitable for future applications, such
as the construction of reduced eigenvector sets for specific
physical processes.

 [GeV]XM
10 210 310

Q
ua

rk
-A

nt
iq

ua
rk

, l
um

in
os

ity
 (

ra
tio

)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
 = 0.118SαLHC 13 TeV - NNPDF3.0 NLO 

Monte Carlo

Hessian

G
en

er
at

ed
 w

it
h

 A
P

F
E

L
 2

.4
.0

 W
eb

 [GeV]XM
10 210 310

Q
ua

rk
-A

nt
iq

ua
rk

, l
um

in
os

ity
 (

ra
tio

)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
 = 0.118SαLHC 13 TeV - NNPDF3.0 NLO  = 0.118SαLHC 13 TeV - NNPDF3.0 NLO 

Monte Carlo

Hessian

G
en

er
at

ed
 w

it
h

 A
P

F
E

L
 2

.4
.0

 W
eb

 [GeV]XM
10 210 310

Q
ua

rk
-G

lu
on

, l
um

in
os

ity
 (

ra
tio

)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
 = 0.118SαLHC 13 TeV - NNPDF3.0 NLO 

Monte Carlo

Hessian

G
en

er
at

ed
 w

it
h

 A
P

F
E

L
 2

.4
.0

 W
eb

 [GeV]XM
10 210 310

G
lu

on
-G

lu
on

, l
um

in
os

ity
 (

ra
tio

)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
 = 0.118SαLHC 13 TeV - NNPDF3.0 NLO  = 0.118SαLHC 13 TeV - NNPDF3.0 NLO 

Monte Carlo

Hessian

G
en

er
at

ed
 w

it
h

 A
P

F
E

L
 2

.4
.0

 W
eb

Fig. 16 Same as Fig. 8 but now with the Hessian representation constructed using the method discussed in this Appendix
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Fig. 17 Same as Fig. 12 but now with the Hessian representation constructed using the method discussed in this Appendix

Since the replicas of a MC set are continuous functions
with finite correlation length, the general problem of finding
a Hessian representation of a MC set can be interpreted as that
of finding a representation of a discrete covariance matrix of
the form Eq. (2): the sampling in the space of x needs only to
be fine grained enough that differences between neighboring
points are non-negligible.

Such representation can be directly constructed in terms
of Monte Carlo replicas, in the following way. We define the
rectangular (Nx N f ) × Nrep matrix

Xlk = f (k)
α (xi , Q0) − f (0)

α (xi , Q0), (16)

where we adopted the same convention for indices as in
Eq. (5): α labels PDFs, i points in the x grid, l ≡ Nx (α−1)+i
runs over all Nx N f grid points, and k runs over all MC repli-
cas. The covariance matrix Eq. (2) is equal to

covpdf
i j,αβ = 1

Nrep − 1
XXt . (17)

A diagonal representation of the covariance matrix in
terms of replicas is found by SVD of the matrix X . Namely,
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we can write X as:

X = USV t . (18)

Assuming that Npdf Nx < Nrep, U is an orthogonal matrix
of dimensions Npdf Nx × Nrep which contains the orthogonal
eigenvectors of the covariance matrix with nonzero eigen-
values; S is a diagonal matrix of real positive elements, con-
structed out of the singular values of X , i.e. the square roots
of the nonzero eigenvalues of covpdf multiplied by the nor-

malization constant (Nrep − 1)
1
2 ; and V is an orthogonal

Nrep × Nrep matrix of coefficients.
Because

XXt = US2Ut = (US)(US)t , (19)

the matrix

Z = US (20)

has the property that

Z Zt = XXt . (21)

But also,

Z = XV (22)

and thus Z provides the sought-for representation of the
covariance matrix as a linear combination of MC replicas.

We have thus arrived at an exact Hessian representation of
the covariance matrix in terms of replicas, but with the disad-
vantage that the number of Hessian eigenvectors parameters
is now equal to N (0)

eig = Npdf Nx , which is generally large.
However, in practice many of these eigenvectors will lead to
a very small contribution to the covariance matrix. We can
then select a smaller set of Neig < N (0)

eig eigenvectors which
still provides a good approximation to the covariance matrix.

A possible strategy is, for example, to select the Neig

eigenvectors with largest singular values. Denoting with u, s,
and v the Npdf Nx ×Neig, Neig×Neig and Neig×Nrep reduced
matrices computed using these eigenvalues, for a given value
of Neig, using v instead of V in Eq. (22) minimizes the dif-
ference between the original and reduced covariance matrix


 ≡ ‖US2Ut − us2ut‖. (23)

We have verified that the method described in this
Appendix provides comparable results to those of the main
strategy discussed in the paper. To this purpose, we have
selected the set of Neig = 120 eigenvectors that minimize
the figure of merit Eq. (23). To illustrate the quality of the
new method in Fig. 16 we show a comparison of PDF lumi-
nosities, analogous to Fig. 8, and in Fig. 17 a comparison of
LHC differential distributions, analogous to Fig. 12, but now
obtained with the new method. Is clear that the agreement is
comparable as that found with the previous method.

The main shortcoming of this method is that minimiz-
ing Eq. (23) is not necessarily the best strategy for the con-
struction of an optimal general-purpose eigenvector set, in
that it does not always lead to also minimizing the figure of
merit Eq. (13) which was shown in Sect. 2.2 to be physically
advantageous. Some tuning of the methodology would thus
be required.
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