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ABSTRACT 15 

The metallic element pollution is a serious environmental problem but still unsolved since these 16 

contaminants are released mainly by human activity, reaching all the environmental compartments. 17 

Traditional wastewater treatment plants are very efficient in removing metallic elements only when 18 

their concentration is in the order of mg/L, but are not able to remove them until µg/L, as it would 19 

be needed to cope with the water quality standards in low flow receptors. Therefore, the aim of our 20 

study was to evaluate the potential removal of some recalcitrant metallic elements to the classical 21 

treatments, by the natural process of bio-filtration performed by the invasive zebra mussel 22 

(Dreissena polymorpha). For this purpose we built a pilot-plant at the Milano-Nosedo wastewater 23 



2 

treatment plant, where we placed about 40,000 D. polymorpha specimens appointed to the 24 

wastewater bio-filtration. The metallic element removal due to zebra mussel activity was evaluated 25 

in the treated wastewater with a plasma optical emission spectrometry (ICP-OES). Data obtained in 26 

these experiments showed an encouraging metallic element removal due to D. polymorpha activity; 27 

in particular, the total abatement (100%) of Cr after one day of bio-filtration exposure is 28 

remarkable. Therefore, this study encourages further research related with the use of bivalves as a 29 

new tool for the wastewater depuration process; in this regard, the contaminated mollusks used in 30 

the bio-filtration could be incinerated or stored in special landfills, as is also the case of traditional 31 

sewage sludge. 32 
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1. INTRODUCTION 37 

Metallic element (ME) pollution is a major global concern since these inorganic contaminants are 38 

continuously released into the environment by human activities [1,2]. The ability of these 39 

compounds to be accumulated in the organisms and to trig the onset of diseases and disorders 40 

makes MEs very dangerous for many organisms, including humans, at very low concentrations [3]. 41 

In particular, the water pollution due to MEs is a serious and partially unsolved issue because the 42 

removal needed to reach acceptable concentrations in the receiving waters (in the order of µg/L) is 43 

well over the efficiency of wastewater treatment plants (WWTPs), normally reported as between 40 44 

and 90% [4]. Because of this reason, alternative methods for the ME abatement have been identified 45 

in order to be complementarily applied to traditional wastewater treatment processes. However, 46 

most of these techniques, such as precipitation/neutralization, ion exchange, membrane separation, 47 

reverse osmosis, electrodialysis and activated carbon adsorption [5,6,7] have high costs for the 48 

regeneration of resins or activated carbons and/or for the disposal of chemical sludge or 49 
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concentrates [8]. Therefore, the attention of the scientific community need to be focused on the 50 

development of natural methods which were more eco-sustainable and, possibly, less expensive. In 51 

this regard, biosorption is a possible natural method for ME elimination; this term defines the 52 

passive pollutant uptake from an aqueous solution by a dead or non-growing microbial biomass 53 

[9,10]. Although this treatment has the advantage to not undergo inhibition due to the pollutants’ 54 

toxicity, the early biomass saturation by adsorbing contaminants represents an important limitation 55 

for further exploitation of this process [7]. In addition to the biosorption, the bioaccumulation 56 

process of many organic and inorganic contaminants by different aquatic microorganisms such as 57 

fungi, algae, bacteria and yeast [11,12] may be considered. In particular, bioaccumulation due to 58 

microorganisms living on aquatic macrophyte tissues is correlated with ME removal in constructed 59 

wetlands. This methodology is certainly the most used natural system of wastewater treatment, 60 

which couples accumulation in microbial biomass and in macrophytes such as Phragmites australis, 61 

Eichhornia crassipes and Lemna spp. [13,14,15,16]. This alternative method, in addition to the 62 

removal of MEs, also reduces organic matter and nutrients from wastewater [16]. Despite the 63 

existence of these eco-friendly methodologies, in recent years, further studies have been conducted 64 

in order to identify new methods for natural purification of waters from some recalcitrant pollutants. 65 

In this regard, it is of great interest the research carried out by Ledda and co-workers [17] aimed at 66 

assessing how small breeding of Mediterranean sponges Ircinia variabilis and Agelas oroides could 67 

remove some contaminants from marine waters. In the same way, the use of other filtering 68 

organisms can be interesting for the improvement of waters quality. In this context, the freshwater 69 

bivalve Dreissena polymorpha has some characteristics that would make it suitable for the above 70 

mentioned purpose: an enormous filtering capacity, ranging from 5 to 400 mL/bivalve/h [18,19], a 71 

high population density, with more than 700,000 individuals/m
2
 [20], and the ability to produce 72 

faeces and pseudofaeces where many contaminants are adsorbed. In fact, these two D. polymorpha 73 

waste products, being settleable [21], could easily remove from the water column the bounded 74 

pollutants (as MEs). Moreover, taking into account the indirect ability of bivalves to bioaccumulate 75 
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many environmental contaminants, including MEs [22], we can point out the potential of D. 76 

polymorpha to this purpose [23,24,25,26]. In this regard, a study conducted in 1983 by Piesik [27] 77 

highlighted how D. polymorpha is able to remove nutrients from eutrophic waters and a subsequent 78 

research confirmed the potential of D. polymorpha in the reduction of algal density [28]. In the last 79 

two decades, several other studies have demonstrated the filtering capacity of this bivalve, whose 80 

breeding could be developed for an alternative treatment of polluted freshwaters [25,29,30,31]. In 81 

this regard, a recent study conducted by Binelli and co-workers [21] showed the ability of this 82 

mollusk to remove different types of emerging contaminants, such as pharmaceuticals and drugs of 83 

abuse, from wastewaters. Nevertheless, it is important to take into account that D. polymorpha is 84 

considered an invasive alien species all over Europe and the United States, even if this mollusk was 85 

present in Europe before the last glaciation [32] and was then bounded in some basins of Eastern 86 

Europe in the post-glacial period until the 18
th

 century [33]. The human activity has then favored 87 

the distribution of D. polymorpha all over its original European areal; in Italy, for example, this 88 

bivalve has first been found in 1973 [34] and its presence in the Italian inland waters has been 89 

confirmed by subsequent studies [35,36,37]. Therefore, the idea of using this invasive species for 90 

anthropic purposes (bio-filtration, human food, animal feed, fertilizer and biogas) [29] would be of 91 

huge interest, especially in the economic sphere. On the basis of these above mentioned studies on 92 

D. polymorpha, we assessed the efficiency of this bivalve as a new biological method as the last 93 

step of wastewater treatment in a conventional WWTP. For this purpose, we built at the Milano-94 

Nosedo WWTP (Northern Italy) a pilot-plant in which 40,000 D. polymorpha specimens were 95 

added in order to filtrate some types of wastewaters and we subsequently evaluated the abatement 96 

of some MEs, such as Aluminum (Al), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), 97 

Nickel (Ni) and Lead (Pb). This study is particularly innovative because, according to our 98 

knowledge, for the first time, D. polymorpha has been used in a real civil WWTP for the removal of 99 

some micropollutants. In fact, the few studies conducted using D. polymorpha as bio-filtering agent  100 
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mostly evaluated algal or organic matter removal, but not the abatement of emerging contaminants 101 

(as previously reported in Binelli and co-workers) [21] or potentially toxic metals. 102 

 103 

2. MATERIALS AND METHODS: 104 

2.1 Pilot-plant construction and placement at the Milano-Nosedo WWTP 105 

A scuba diver collected the bivalves from the Lake Maggiore and Lake Lugano, both located close 106 

to the Italy-Switzerland border. Since it is well-known that D. polymorpha is a biofouling organism 107 

[38], we placed approximately 40,000 specimens in an attachment tank in order to let them 108 

naturally re-adhered to twenty Plexiglas
® 

panels (size: 70x40 cm; Figure 1) via their byssus over a 109 

period of two weeks. During this acclimatization period, the bivalves were kept in tap water and fed 110 

with the green-blue alga Spirulina spp. The Plexiglas
® 

panels were then placed into the pilot-plant 111 

(Figure 1), a stainless steel tank with a volume of about 1000 L (L=154.0 cm, h=102.0 cm, w =80.5 112 

cm), where were disposed following a zig-zag pathway (yellow line, Figure 2), in order to increase 113 

both the surface and the contact time between the wastewater and each bivalve. In addition to the 114 

steel tank, we installed a recirculation tank (Figure 1) with a volume of 200 L with a submerged 115 

pump to allow a constant wastewater flow (3,500 L/h) into the pilot-plant. The recirculation tank 116 

further increases the contact time between the wastewater and the filter-feeding bivalves placed into 117 

the pilot-plant, as well as limits the efficiency of settling which would remove part of the 118 

contaminants adsorbed on suspended solids. The pilot-plant can directly collect the effluent from 119 

the canal placed between the sedimentation tanks and the sand filters of the Nosedo WWTP using a 120 

submersible pump (0-5,000 L/h). The installation site of the pilot-plant allows to test a clarified 121 

effluent and to avoid the risk that suspended solids can not only compromise the filtration capability 122 

of bivalves but also cause the animal death due to gill occlusion. Moreover, the pilot-plant position 123 

into the Nosedo WWTP guaranteed the lack of any possible accidental release of D. polymorpha 124 

specimens into the surrounding environment because the sand filters and the following process of 125 

disinfection with peracetic acid stop and kill any possible leaked organism. 126 
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2.2 Evaluation of D. polymorpha filtration ability 127 

The preliminary tests designed to evaluate the filtering and purifying performance of D. 128 

polymorpha have been described in detail by Binelli and co-workers [21]. In that study, the 129 

following issues have been discussed: 1) the adaptation of D. polymorpha to wastewater; 2) the 130 

estimation of D. polymorpha filtering efficiency; and 3) the analysis of D. polymorpha capacity in 131 

the removal of a new class of environmental pollutants (PPCPs and illicit drugs). 132 

 133 

2.3 Experimental design and samples collection 134 

As previously described, an important point was the necessity to evaluate the removal efficiency of 135 

D. polymorpha independently from any other settling process, which would remove the metals 136 

adsorbed on suspended solids. The filtering action of D. polymorpha was first evaluated on the 137 

effluent outflowing secondary settling. However, since this effluent had a very low COD (≈10 138 

mg/L) and, consequently, a low suspended solid concentration (on which a relevant amount of MEs 139 

is normally adsorbed) [39,40], the following tests were performed with three other different 140 

wastewater mixtures, previously filtered through a 1 mm mesh bag filter to remove coarse matter. 141 

This allowed us to evaluate the filtration efficiency of D. polymorpha on wastewater with polluting 142 

load and different amounts of suspended particulate, also taking into account that this bivalve 143 

selects particles for food with a diameter ranging between 15 and 40 µm [41]. The mixtures used in 144 

the tests, in addition to 100% outlet, are the following: 25% inlet/75% outlet, 50% inlet/50% outlet 145 

and 100% inlet (wastewater incoming at WWTP). The ME removal evidence from wastewater were 146 

carried out through the measurement of their concentrations in the water samples taken from the 147 

pilot-plant with bivalves inside; at the same time, control tests were conducted into the pilot-plant 148 

without adhering animals. All tests were performed in triplicate. The ME removal progress was 149 

monitored for 4 hours, by sampling the wastewaters every 30 min, which enabled to obtain the 150 

removal slope for each MEs. We chose to evaluate the ME removal within 4 hours, taking into 151 

account that the treated wastewaters remain in the Milano-Nosedo WWTP for about 24 h; thus, the 152 
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selected time seemed to be a fair compromise in view of integrating the conventional treatment with 153 

limited dimensional requirements. To check the practicability of such assumptions, we carried out 154 

further final tests in single for a period of 24 h, taking only two samples, one at the beginning and 155 

one at the end of the tests. The tests were conducted with an initial flow rate corresponding to 3,500 156 

L/h, which would imply 18 minute contact time, recirculating the effluent in the pilot-plant 84 times 157 

to obtain an overall 24 h contact time. After each test, the entire pilot-plant was washed with tap 158 

water, to avoid memory-effects related to the previous tests. For this reason, to minimize this 159 

problem, as well as to decrease the bivalve stress, the test schedule started with the most diluted 160 

waste (100% outlet) and gradually increased its concentration untill 100% inlet. We monitored the 161 

wastewater temperature both at the beginning and at the end of each tests in order to take into 162 

account its possible interference with the filtration activity of zebra mussels. The wastewater 163 

temperature within the pilot-plant during the spring season ranged from 14 to 24 °C, comparable 164 

with the optimal values for D. polymorpha filtration activity (10-20 °C) [42]; we can thus exclude 165 

any negative interference of temperature on the filtration-removal process. Samples were taken 166 

from the pilot-plant at the selected times by the use of a 250 mL plastic bottles, acidified with 1% of 167 

HNO3 and stored at 4 °C at dark until analysis. 168 

 169 

2.4 Evaluation of ME abatement 170 

We evaluated the removal of some MEs relatively abundant in civil wastewaters: Aluminum (Al), 171 

Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Lead (Pb). The samples, 172 

taken from the pilot-plant, were treated according to the CNR IRSA 3010 method. Briefly, an 173 

aliquot of each sample was transferred into a flask and heated up to 100 °C to remove turbidity. 174 

After cooling, samples were brought back to the starting volume with distilled water. Samples were 175 

analyzed in a plasma optical emission spectrometer (ICP-OES; OPTIMA 2100 DV, Perkin Elmer; 176 

detection limits for each ME: Al 0.5 µg/L; Fe 0.2 µg/L; Mn 0.1 µg/L; Ni 0.5 µg/L; Pb 1.0 µg/L; Cu 177 

0.5 µg/L; Cr 0.2 µg/L) equipped with ultrasonic nebulizer (CETAC Ultrasonic Nebulizer, model 178 
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U5000AT +). The ME concentrations were quantified by a calibration curve at two points, starting 179 

from appropriate dilutions of mixed certificate standard (AccuStandard MES 16-1). 180 

 181 

2.5 Statistical analyses 182 

Data normality and homoscedasticity were verified using the Shapiro-Wilk and Levene’s tests, 183 

respectively. We performed a statistical comparison (SPSS 21 IBM software package) between tests 184 

carried out with and without mussels in the pilot-plant, where the dependent variable is the ME 185 

concentration in the wastewater and the fixed factors are the treatment and the exposure time. For 186 

all these cases, we conducted the comparison using the two-way analysis of variance (two-way 187 

ANOVA; *p<0.05; **p<0.01). 188 

 189 

3. RESULTS AND DISCUSSION 190 

3.1 Evaluation of D. polymorpha filtering ability in the ME removal 191 

The results obtained from the tests carried out with a 25% inlet/75% outlet mixture (Figure 3A, B, 192 

C, D, E, F, G) showed a good removal performance by D. polymorpha due to the bio-filtration 193 

effect, probably because of the suitable concentration of the suspended matter. The removals 194 

obtained for each ME tested through the filtering activity of bivalves were always greater than those 195 

related to the natural sedimentation evaluated in controls. In fact, for the majority of the analyzed 196 

MEs, the contribution of the zebra mussel filtration was evident, since the difference between the 197 

removal percentage with and without bivalves in the pilot-plant was statistically significant: Al 198 

(F=36.809, p<0.01); Fe (F=62.686, p<0.01); Mn (F=125.452, p<0.01); Ni (F= 5.695, p<0.05); Pb 199 

(F=16.645, p<0.01); Cu (F=6.220, p<0.05). In detail, observing the trends reported in Figure 3, it 200 

has to be highlighted that the differences between the removal percentages measured at the end of 201 

the tests reached the 30% for Fe and Pb, while for Al, Ni and Mn the removal was about 20-25% 202 

higher than controls. Thus, in only 4 h, zebra mussels have been able to significantly decrease levels 203 

of most of the tested MEs, even if the removal of Cu was only 8% higher than natural 204 
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sedimentation. On the other hand, the time selection to conduct the tests is crucial for the possible 205 

engineering of the process that cannot be longer than few hours, since the entire cycle of the 206 

wastewater treatment ends in about 24 h. Tests carried out by adding 50% of inlet to the WWTP 207 

outlet (Figure 4A, B, C, D, E, F, G) showed a lower difference compared to control than the 208 

previous tests, probably due to an excessive presence of suspended particulate matter that 209 

determined a stress condition to the animals, which may require a longer time than 4 h to acclimate 210 

and begin the filtering process. Moreover, we cannot exclude the possible presence of toxic 211 

compounds into the inlet of WWTP that could have led to a further decrease in the filtration activity. 212 

Despite these possible interfering processes, we found statistically significant difference between 213 

tests carried out with bivalves in the pilot-plant and their respective controls for Al (F=68.587 214 

p<0.01), Mn (F=38.710, p<0.01), Pb (F=26.183, p<0.01), Cu (F=22.861, p<0.01) and Cr (F=4.729, 215 

p<0.01). In this regard, at the end of the test the removal was around 20-25%, comparable to the 216 

results obtained for the mixture 25% inlet/75% outlet for Al, Mn, Pb and Cu, whilst for the other 217 

tested metals it decreased dramatically. The fluctuating values obtained for Ni could be due to the 218 

low concentration of this metal in the analyzed wastewater (<10 µg/L), taking into account the huge 219 

variability of pollutant load in the inlet wastewaters. The role of the initial concentration of metallic 220 

elements into the considered mixtures (Table 1), which depends on the WWTP inlet, must always 221 

be considered when drawing conclusions in terms of percent removal: if these are very low, small 222 

variations (which could also be partly due to analytical reasons) assume relevant percent weight. In 223 

both the considered tests (25% inlet/75% outlet and 50% inlet/50% outlet mixtures) negative values 224 

of sedimentation, comprised in a range of -5 and -10%, are observable; these values are likely to be 225 

related to the coefficient of variation of the method used to perform the wastewater ME 226 

quantification. These data do not appear to be random, because, except for the fluctuating values of 227 

Ni (Fig. 4E), Mn and Pb showed null sedimentation values in both tests performed (Fig. 3D,F and 228 

4D,F). This result can be reasonably related to the chemical speciation phenomenon because these 229 

metals can probably be dissolved in water and not bounded to the particulate. Therefore, the 230 
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observed Mn and Pb removal process carried out by D. polymorpha could mainly be related to 231 

bioaccumulation. Further studies are needed in order to deepen the knowledge about some of the 232 

above-mentioned aspects, as also suggested by Camusso and co-workers [43]. In this regard, the 233 

wastewater pH value, which influences the metal speciation, is kept constant in WWTPs and, 234 

therefore, should not compromise the D. polymorpha purification activity. Finally, with regard to 235 

the test with 100% inlet, there has been a serious decline in the bivalves’ performance related to a 236 

high mortality of the animals (data not shown). This result further confirms how an excessive 237 

suspended particulate matter amount and the possible presence of toxic substances into the WWTP 238 

can decrease the bivalves filtering capacity and even compromise their health status. However, this 239 

aspect does not limit the possible engineering of this method, since it would be sufficient to control 240 

the particulate matter of the wastewater, as suggested by Binelli and co-workers [21]. Moreover, 241 

despite the suspended matter concentration represents a limiting factor of D. polymorpha filtering 242 

capacity, it should be noted that the specimens used in this study are the same used in the 243 

pharmaceuticals and illicit drugs removal process, described by Binelli and co-workers [21]. 244 

Despite an exposure to multiple pollutants, the bivalves’ purifying ability is stable during the whole 245 

experimental trial, representing a sure advantage in the use of this very resistant organism. 246 

Furthermore, the data shown refer to the ME removal within the firsts 4 h of wastewaters exposure 247 

to D. polymorpha, and that the bivalves’ performance can be improved with increasing contact time 248 

between mollusk and wastewater, as described below. 249 

 250 

3.2 Time influence on the ME removal by D. polymorpha 251 

Data obtained by the above-mentioned tests suggested that the contact time between wastewater and 252 

the filter-feeding bivalves was probably one of most crucial parameters, affecting the extent of ME 253 

removal from wastewater. As previously mentioned, although the increase of contact time could be 254 

almost impossible at full scale, we decided to carry out tests 24 h long. On the basis of the results 255 

obtained at 4 h, the 24 h tests were performed only on 25% inlet/75% outlet and 50% inlet/50% 256 
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outlet mixtures. For most of the MEs, the removal due to mussel filtration was about 70% with the 257 

25% inlet/75% outlet mixture (Figure 5A). The natural sedimentation, at the same time, removed 258 

50% of Cr and Fe and, surprisingly, only 10-25% of Cu, Mn and Pb (Figure 5A). Thus, zebra 259 

mussels’ filtration is able to increase the removal of Pb and Mn by about 60% with respect to the 260 

settling effect in blanks. Notably, Cr removal appeared very interesting because of its high toxicity 261 

for aquatic organisms [44,45]; in fact, D. polymorpha completely removed it in 24 h, while the 262 

blank removal was only 50%. Therefore, contact time seems to affect significantly the extent of ME 263 

removal by the filter-feeding bivalves, considering that at the end of the firsts 4 h the mean removal 264 

was 20% higher with D. polymorpha than in the blank tests. This was also confirmed in the test 265 

performed with the 50% inlet/50% outlet mixture (Figure 5B), where the ME removal due to D. 266 

polymorpha was always over 70%. In particular, for Cu, Mn and Pb the net removal due to D. 267 

polymorpha (calculated as the difference from the blank removal) was 50%, 70% and 60%, 268 

respectively. At the same time, the high removal observed for Ni contradicts the results obtained in 269 

the experimental data set. The 24 h tests, although only performed in single and therefore needing 270 

further confirmation, provide first evidence that better ME removal performances may be obtained 271 

by increasing the contact time between the bivalves and the feed. Further, the obtained data may 272 

indicate that the bivalve could need a period of acclimation to the wastewater, especially if 273 

characterized by a considerable amount of suspended particulate material, before starting the 274 

filtration process.  275 

 276 

4. FUTURE PERSPECTIVES 277 

Due to the scarcity of scientific data regarding the use of D. polymorpha in the wastewater 278 

treatment context, we faced many technical and logistical problems during our research, not 279 

foreseeable during the experimental design drafting; in fact, the best performances of bio-filtration 280 

were obtained with prolonged exposure times (24 h) and with moderate amounts of particulates. 281 

Therefore, the ability of D. polymorpha to remove certain types of pollutants from pretreated 282 
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wastewater could suggest, in a possible future research or in an engineered scenario, the placement 283 

of this filter-feeding bivalve as the last step of conventional WWTPs or to include it in other natural 284 

systems, such as constructed wetlands or lagooning, where the hydraulic retention time is of one or 285 

more days, and thus a longer contact time between wastewater and the bivalves is allowed. 286 

Furthermore, in future studies, it would be interesting to investigate the ME removal mechanisms 287 

and to monitorate the fate and presence of MEs in the bivalve soft tissues, shells, feces and 288 

pseudofaeces. 289 

 290 

5. CONCLUSIONS  291 

This work, according to our knowledge, represents one of the very few studies concerning the 292 

possibility to use bivalves in the wastewater treatment processes. The results appear to be very 293 

encouraging, considering that the use of non-native species, such as D. polymorpha, for 294 

anthropogenic purposes, could have interesting economic implications and represents an important 295 

starting point for the alien species exploitation. In this regard, the prevention strategies regarding 296 

the non-native and invasive species introduction determine complex social and ethical implications; 297 

furthermore, while the procedures on how to respond to invasions have been delineated, their 298 

application is still severely limited. Therefore, in the exclusive case of D. polymorpha, it may be 299 

advantageous to exploit the potential of this bivalve, now almost present in  all the Europe inland 300 

waters. This will not certainly be an easy process; in fact, being D. polymorpha considered a serious 301 

threat for the aquatic environment and a dangerous fouling agent of many industrial structures 302 

[46,47], is poorly perceived by the scientific community as a valid filtering factor, despite the 303 

presence of encouraging results in the depuration context [28,48,25,49,30,21]. In this regard, the 304 

construction of appropriate facilities for bio-filtration, followed by further downstream treatment 305 

aimed to contain bivalves accidentally leaked from the plant (such as the peracetic acid treatment 306 

and sand filters) would avoid the problem related to fouling. The ideal condition would be to use 307 

native bivalves, such as unionids; however these mollusks, besides being affected by a serious 308 
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population decline [50], have a parasite larval stage that would be disadvantageous for the 309 

engineering of the bio-filtration process. Once contaminated by the filtration process, the bivalves 310 

may then be dehydrated and stored in dedicated landfills or incinerated, as it is currently the case for 311 

sewage sludges. 312 

 313 
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