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Abstract

Background

Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide

and its prognosis remains poor. Clinical observations indicate that estrogen receptor β

(ERβ) is expressed in melanoma tissues and its expression decreases with tumor progres-

sion, suggesting its tumor suppressive function. These experiments were performed to

investigate the effects of ERβ activation on melanoma cell growth.

Methods and Results

Protein expression was analyzed by Western blot and immunofluorescence assays. Cell

proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional

activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by

restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated

that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375,

WM1552). In BLM (NRAS-mutant) cells, ERβ agonists significantly and specifically inhibited

cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and tran-

scriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated

with an altered expression of G1-S transition-related proteins. In these cells, global DNA

was found to be hypomethylated when compared to normal melanocytes; this DNA hypo-

methylation status was reverted by ERβ activation. ERβ agonists also decreased the prolif-

eration of WM115 (BRAF V600D-mutant) cells, while they failed to reduce the growth of

A375 and WM1552 (BRAF V600E-mutant) cells. Finally, we could observe that ERβ iso-

forms are expressed at different levels in the various cell lines. Specific oncogenic muta-

tions or differential expression of receptor isoforms might be responsible for the different

responses of cell lines to ERβ agonists.
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Conclusions

Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ ago-

nists differentially regulate the proliferation of these cells. These data confirm the notion that

melanoma is a heterogeneous tumor and that genetic profiling is mandatory for the develop-

ment of effective personalized therapeutic approaches for melanoma patients.

Introduction
The incidence of cutaneous melanoma is increasing worldwide [1] and its prognosis is still
poor [2]. Cytotoxic drugs, dacarbazine or temozolomide, were reported to be associated with
serious side effects and with development of resistance. Interleukin-2 or interferon-α yielded
limited response rates with no benefit on overall survival or progression-free survival [3].
Patients treated with either mutated BRAF or MEK inhibitors, despite initial excellent response
rates, showed a rapid relapse [4]. The anti-CTLA-4 (cytotoxic T-lymphocyte antigen 4) mono-
clonal antibody ipilimumab, despite its effectiveness, has side effects that can be non-reversible
(autoimmune responses, bowel perforation) [5]. Thus, the elucidation of the molecular mecha-
nisms of melanoma growth and progression is urgently needed for the identification of novel
targets of intervention for the prevention and therapy of this disease [6].

The association of estrogens with tumor development has been investigated for many years.
Estrogens exert their effects through the binding to two estrogen receptor (ER) subtypes, ERα
and ERβ. These receptors are structurally similar, however they differ in the ligand binding
domain and this confers them selectivity for different ligands [7]. After being activated by the
binding of 17β-estradiol (E2) or of synthetic compounds these receptors exert their effects at
the nuclear level through the binding to estrogen response elements on DNA to regulate the
expression of specific target genes [7,8].

Both ER subtypes are expressed in different cells/tissues where they are involved in the con-
trol of specific physiological functions [9]. In addition, the activation of the two receptor sub-
types elicits opposite effects on cancer growth and progression. ERα is associated with a
proliferative activity while ERβ exerts a significant antitumor effect, being considered a protein
with tumor suppressive functions [7,10,11]. These observations indicate that the actions of
estrogens on cancer growth might depend on the relative ERα/ERβ ratio in a given tumor cell/
tissue [12]. The expression of ERβ was found to be reduced in several cancer cells [13,14].
Moreover, overexpression of ERβ or its activation by means of agonistic ligands were reported
to inhibit cell proliferation in different tumor cells, both classically related (breast, ovarian, and
prostate cancer) [15–17] and unrelated (colon cancer, mesothelioma, cholangiocarcinoma,
lymphoma) [18–21] to the reproductive system. Research is now focusing on the development
and evaluation of selective ERβ ligands that might increase the activity of this receptor in
tumors [8]. The expression of the different variants of this receptor (ERβ1, corresponding to
ERβ, ERβ2 and ERβ5) and their specific role in tumor growth are also under investigation [22].

Increasing evidence suggests that ERβmight play a fundamental role also in the develop-
ment and progression of melanoma [23]. Population data have established that women have
survival advantage over men [24,25]. Moreover, men were reported to express lower levels of
ERβ than women in both melanoma and healthy tissues [26]. More importantly, the expression
levels of ERβ inversely correlate with melanoma progression [26,27]. These observations
strongly support an antitumor activity of ERβ also in melanoma.

Differential Antitumor Effects of ERβ in Melanoma Cell Lines
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Alterations of DNA methylation, histone modifications, and modified expression of micro-
RNAs are well-established epigenetic mechanisms of cell neoplastic transformation. In particu-
lar, melanoma cells present aberrant DNAmethylation patterns with DNA hypermethylation
at the level of CpG islands in the promoter of tumor suppressor genes (leading to their inactiva-
tion) and global DNA hypomethylation (contributing to genomic instability). Hypomethyla-
tion of specific genes was also shown, leading to the overexpression of normally silenced
oncogenes [28,29]. Global DNA hypomethylation was reported to correlate with melanoma
progression to the most aggressive phase and with less favourable clinical outcomes [28,30].
Epigenetic modifications and their reversibility by means of pharmacologic interventions
might offer promising novel therapies for melanoma patients.

In this paper, we demonstrate that ERβ (but not ERα) is expressed in a panel of human mel-
anoma cell lines (BLM, WM115, A375, WM1552). In BLM (NRAS-mutant) cells, activation of
this receptor, by means of agonistic ligands, induces its translocation into the nucleus and initi-
ation of transcriptional activity, thereby significantly and specifically decreasing melanoma cell
proliferation. This antitumor activity is accompanied by an altered expression of the proteins
involved in the G1-S progression of the cell cycle, but not by triggering of the apoptosis path-
way. Moreover, in these cells, ERβ agonists increase global DNAmethylation, reverting the
observed DNA hypomethylation status of melanoma cells compared to normal melanocytes.

ERβ agonists also exert a tumor suppressor activity in WM115 (BRAF V600D-mutant)
cells, while they fail to reduce cell proliferation in A375 and WM1552 (BRAF V600E-mutant)
cells. Moreover, ERβ isoforms show different levels of expression in the various cell lines. The
possible reasons for the differential effects of ERβ agonists on the growth of the melanoma cells
(oncogenic mutations, receptor isoform expression) are discussed.

Materials and Methods

Cell culture and reagents
The human BLM (NRAS-mutant, BRAF-wild type) melanoma cell line was provided by Dr. G.
N. van Muijen (Department of Pathology, Radbound University Nijmegen Medical Center,
Nijmegen, The Netherlands). This cell line is a subline of BRO melanoma cells isolated from
lung metastases after subcutaneous inoculation of nude mice with BRO cells [31]. This cell line
was previously utilized in the authors' laboratory to study the antitumor activity of gonadotro-
pin-releasing hormone receptors in melanoma cells [32,33]. The humanWM115 (BRAF
V600D-mutant) and WM1552 (BRAF V600E-mutant) melanoma cell lines, kindly provided
by Dr. R. Giavazzi (Department of Oncology, Mario Negri Institute for Pharmacological
Research, Milano, Italy) were originally from Dr. M. Herlyn (Wistar Institute, Philadelphia,
PA) [34,35]. The human IGR-39 (BRAF V600E-mutant) melanoma cell line, kindly provided
by Dr. C.A. La Porta, was originally from Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen and Zellkulturen GmbH (38124 Braunschweig, Germany). The human
MCF-7 breast cancer, A375 (BRAF V600E-mutant) and embryonic kidney (HEK) 293 cells
were from American Type Culture Collection (ATCC, Manassas, VA, USA). Primary human
melanocytes were provided by Dr. F. Crovato (Regional Reference Centre for Human Epider-
mis in vitro Culture and Bank for Tissue Crypreservation, Niguarda Hospital, Milano, Italy).
Stocks of cells were stored frozen in liquid nitrogen and kept in culture for no more than 10–12
weeks.

MCF-7 andWM115 cells were routinely grown in RPMI-1640 medium supplemented with
10% FBS, glutamine (1 mmol/l) and antibiotics (100 IU/ml, penicillin G sodium and 100 μg/ml
streptomycin sulfate). BLM, A375, WM1552, IGR-39 and HEK293 cells were routinely
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cultured in DMEMmedium supplemented with 10% FBS, glutamine and antibiotics, as
described above. Cells were cultured in humidified atmosphere of 5% CO2/95% air at 37°C.

17β-Estradiol was purchased from Sigma-Aldrich (Milano, Italy); the ER antagonist ICI
182,780 and the ERβ agonist DPN (diarylpropionitrile) were from Tocris Biosciences (Bristol,
UK). The selective ERβ agonists KB1, KB2, and KB4 were kindly provided by Dr. S. Nilsson
(Karo Bio AB, Novum, SE-141 57 Huddinge, Sweden). KB1 (also known as KB9520) was previ-
ously utilized in different studies as the specific ligand of ERβ to investigate the antitumor
activity of the receptor in cancer cells [14,20,21,36]. The selective activity of this class of com-
pounds as ERβ ligands was previously demonstrated [37]. The compounds can be obtained fol-
lowing contact with Karo Bio AB and after signing of a Material Transfer Agreement together
with a detailed protocol of planned study. A fee covering the cost of compound synthesis will
be charged.

ERβ overexpression
The plasmid pCMV5-hERbeta, expressing human wild type ERβ, was kindly provided by Dr.
A. Maggi (Department of Pharmacological and Biomolecular Sciences, University of Milano,
Milano, Italy). BLM cells were plated (8 x104 cells/dish) in 6-well plates in DMEM complete
medium. After 48 h, the medium was replaced with DMEMmedium and the cells were tran-
siently transfected using Lipofectamine 2000 (Invitrogen, Monza, Italy), according to the man-
ufacturer’s protocol. After 24–72 h of transfection the cells were lysed in RIPA buffer for
protein extraction.

Western blot analysis
Cells were lysed in RIPA buffer (0.05 M Tris-HCl pH 7.7, 0.15 M NaCl, 0.8% SDS, 10 mM
EDTA, 100 μMNaVO4, 50 mmol/L NaF, 0.3 mM PMSF, 5 mM iodoacetic acid) containing
leupeptin (50 μg/ml), aprotinin (5μl/ml) and pepstatin (50 μg/ml). Protein concentration in
lysates was determined using the BCA method. Protein extracts (20–30 μg) were resuspended
in Sample buffer (0.5 M Tris.HCl pH 6.8, 20% glycerol, 10% SDS, 0.2% 2β-mercaptoethanol,
0.05% blue bromophenol) and heated at 95°C for 5 min. Following electrophoretic separation
by 10% SDS-PAGE, proteins were transferred onto nitrocellulose membranes. Membranes
were blocked in nonfat dry milk (7.5% for ERβ and 5% for ERα) prior to incubation at 4°C
overnight with the primary antibodies (1:1000): rabbit polyclonal antibody SC 8974 (clone H-
150, Santa Cruz Biotechnology, Santa Cruz, CA) and mouse monoclonal antibody ab288
(clone 14C8, Abcam, Cambridge, MA) for ERβ; rat monoclonal antibody Ab-21 (clone H222,
Thermo Scientific, Waltham, MA) for ERα. Detection was done using a horseradish-peroxi-
dase-conjugated secondary antibody and enhanced chemiluminescence reagents (GE Health-
care, Life Sciences, Milano, Italy).

To investigate the effects of ERβ activation on the expression of cell cycle/apoptosis-related
proteins, BLM cells were plated (5x105 cells/dish) in 10-cm dishes, in standard culture condi-
tions, for 48 h. Medium was then changed to phenol red free medium supplemented with 10%
charcoal stripped FBS and treated with DPN (10−8 M) for 24, 48, or 72 h. Protein preparations
were then processed for Western blotting, as described above, with the following primary anti-
bodies: mouse monoclonal antibody against cyclin D1 (1:2000; clone DCS-6), mouse monoclo-
nal antibody against cyclin D3 (1:1000; clone DCS22), rabbit monoclonal antibody against
p21Waf1/Cip1 (1:1000; clone 12D1), rabbit monoclonal antibody against p27Kip1 (1:1000; clone
D69C12), rabbit monoclonal antibody against CDK4 (1:1000; clone D9G3E), mouse monoclo-
nal antibody against CDK6 (1:2000, clone DCS83), rabbit monoclonal antibody against cas-
pase-3 (1:500, clone 8G10), and rabbit monoclonal antibody against cleaved caspase-3
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(Asp175; 1:500, clone 5A1E). All these primary antibodies were from Cell Signaling Technol-
ogy (Danvers, MA). Detection was done using a horseradish peroxidase-conjugated anti-
mouse or a horseradish peroxidase-conjugated anti-rabbit secondary antibody (Santa Cruz
Biotechnology), according to the primary antibody used, and enhanced chemiluminescence
ECL-Prime reagents (GE Healthcare, Life Sciences). In each experiment, actin expression was
evaluated as a loading control, using the goat polyclonal anti-human antibody (1:1000; I-19,
sc-1616, Santz Cruz Biotechnology) as the primary antibody. Detection was done using a
horseradish peroxidase-conjugated anti-goat secondary antibody (Santa Cruz Biotechnology)
and enhanced chemiluminescence reagents, as described above. The experiments were
repeated three times.

Cell proliferation assays
BLMmelanoma cells were plated (15x103 cells/dish) in 6-cm dishes in DMEM complete
medium. After 48 h, the medium was replaced with phenol red free medium supplemented
with 10% charcoal stripped FBS. Cells were then treated as follows: i) DPN (10−9, 5x10-9, 10−8,
5x10-8, 10−7 M); E2 (10

−9,10−8, 10−7 M); KB1, KB2, or KB4 (10−9, 10−8, 10−7 M); KB1 (10−9,
5x10-9, 10−8, 5x10-8, 10−7 M) every 48 h, for three times; ii) ICI 182,780 (10−6 M) for 1 h, fol-
lowed by DPN, E2, or K1 (10

−8 M) every 48 h, for three times. Cells were then harvested and
counted by hemocytometer.

Experiments were also performed on IGR-39 (expressing almost undetectable levels of ERβ)
and on A375, WM1552 and WM115 melanoma cells. IGR-39, A375 andWM1552 cells were
treated with DPN (10−9, 10−8, 10−7 M); WM115 cells were treated with DPN, E2 or KB1 (10

−10,
10−9, 10−8, 10−7 M) as described above. Each proliferation assay was repeated three-five times.

Immunofluorescence assay
BLM cells (2x104 cells) were seeded on 13-mm diameter coverslips in DMEM complete
medium. After 48 h, the medium was replaced with phenol red free medium supplemented
with 10% charcoal stripped FBS. Cells were then treated with either DPN or E2 (10

−8 M) for 24
h, fixed with 4% paraformaldehyde in 2% sucrose-PBS for 15 min and permeabilized with 0.2%
PBS/Triton buffer (1 mM PBS, 300 mM sucrose, 50 mM NaCl, 3 mMMgCl2, 0.5% Triton X-
100) for 20 min at room temperature and stained with the primary rabbit anti-human ERβ
polyclonal antibody SC 8974 (1:50; clone H-150, Santa Cruz Biotechnology), followed by
FITC-conjugated goat anti-rabbit secondary antibody Alexa Fluor 488 (1:2000; Molecular
Probes Inc., Eugene, OR). Labeled cells were examined under a Zeiss Axiovert 200 microscope
with a 63x/1.4 objective lens linked to a Coolsnap Es CCD camera (Roper Scientific-Crisel
Instruments, Roma, Italy). The experiment was repeated three times.

ERβ transcriptional activity assay
BLM cells, seeded in 24-well plates (5x104 cells/well) in phenol red free DMEMmedium sup-
plemented with 10% charcoal stripped FBS, were transfected using Lipofectamine 2000 (Life
Technologies, Monza, Italy), according to the manufacturer’s protocol [38]. The following con-
structs were cotransfected: pVERE-tk-Luc (1μg), the reporter plasmid encoding the firefly
luciferase reporter gene under the control of the estrogen response element (ERE; kindly pro-
vided by Dr. A. Maggi, Department of Pharmacological and Biomolecular Sciences, University
of Milano, Milano, Italy), to evaluate the transcriptional activity of ERβ, and pCMVβ (0.4 μg),
the reporter plasmid encoding the β-galactosidase (Clontech, Jesi, Italy), as the internal control
plasmid. Efficiency of transfection was evaluated by fluorescent microscopy by transfecting the
plasmid vector pCMV-pEGFP-N1 (Clontech).
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ERβ transcriptional activity was measured using the neolite system (PerkinElmer, Boston,
MA), according to the manufacturer’s protocols. Briefly, 6 h after transfection, BLM cells were
treated with DPN (10−8 M), E2 (10

−8 M), or ethanol (controls) for 24 h. Cell medium was
removed and 175 μl of fresh medium were added to each well. Neolite luciferase reagent
(175 μl) was added to each sample and firefly luminescence was read after 10 min. At the end
of this step, 100 μl of the lysate were added in a microcentrifuge tube containing the assay
buffer with ortho-Nitrophenyl-β-galactoside (ONPG). If β-galactosidase is present, it hydro-
lyzes the ONPG molecule into galactose and ortho-nitrophenol (yellow color). The samples
were transferred into a 96-well plate and analyzed in an EnSpire Multimode Plate reader (Per-
kinElmer) at 420 nm. Data are expressed as the mean of the ratio (± SE) between luminescence
of the experimental reporter (firefly luciferase activity) and that of the control reporter (β-
galactosidase activity) and are the mean values from three replicates of three distinct
experiments.

Methylation analysis of GC-rich regions
DNA from human melanocytes and BLM cells was extracted using Qiagen column methods
(Qiagen, Milano, Italy) according to the manufacturer's protocol. DNA quality and concentra-
tion was evaluated by measuring the 260/280 nm optical ratio using Nanodrop 2000 (OD260/
280).

Digestion of genomic DNA with restriction enzymes RsaI, MspI and HpaII (Euroclone,
Pero, Milano, Italy) was performed, as previously described [39]. For each DNA sample, 2
restriction digests were performed: one with RsaI and MspI, and one with RsaI and HpaII. RsaI
is methylation insensitive, while MspI and HpaII are sensitive to DNAmethylation and are
able to cut only unmethylated restriction sites. In general, MspI will not cut if the external cyto-
sine is methylated, and HpaII will not cut if any of the two cytosines is methylated [39,40].
Global DNA digestion was performed o/n at 37°C. Restriction digests were performed with
1 μg of DNA and 5 units of RsaI in Roche buffer L. After 1 h incubation at 37°C, 2.5 unit ali-
quots of MspI or HpaII were added, 2 h apart. Total incubation time was 18 h. The enzymes
were inactivated by 10-min incubation at 65°C, and the digests were used for PCR using a sin-
gle primer (50-AACCCTCACCCTAACCCCGG-30) that arbitrarily binds within GC-rich
regions of DNA. Samples were resolved on 1% agarose gel. The intensity of the band was deter-
mined using ImageLab (Chemidoc Imager, Bio-Rad, Segrate, Milano, Italy). Data are expressed
as the MspI/RsaI or HpaII/RsaI ratios relative to the intensity of the bands.

To investigate the effects of ERβ activation on the global DNA methylation profile of mela-
noma cells, BLM cells, seeded in 6-well plates (3x104 cell/well), in phenol red free DMEM
medium supplemented with 10% charcoal stripped FBS, were treated with DPN (10−8M), E2
(10−8M), or ethanol (controls) for 24 or 48 h. The analysis of DNAmethylation profile was per-
formed as described above. Each experiment was repeated three times.

ERβ isoform expression by quantitative PCR
Total RNA from BLM, A375 and WM115 cells was isolated by RNeasy MINI kit (Qiagen) for
the evaluation of the expression of ERβ isoforms; RNA pellets were dissolved in sterile distilled
water and their concentrations were assessed using Nanodrop 2000 (OD260/280). Specific set
of primers for each ERβ isoform were synthesized (Sigma-Aldrich) and utilized, as previously
described by Collins and coworkers [41]. Real time-DNA amplification for ERβ was performed
in CFX96 Bio-Rad using 20 μl of total volume. The efficiency of each set of primer was evalu-
ated in preliminary experiment and it was found close to 100% for target genes and for the
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 600 ng of total
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RNA were retrotranscribed using the IScript Supermix kit (Bio-Rad), according to the manu-
facturer’s protocol. The reaction was carried out on 40 ng of total cDNA using SYBR chemistry
(iTAQ Universal SYBR green supermix, Bio-Rad) according to the manufacturer’s protocol.
Real-time PCR was run according to the following protocol: an initial step of 30 sec at 95°C fol-
lowed by 40 cycles of 5 sec at 95°C and 30 sec at 60°C. A dissociation stage with a melt curve
analysis was also performed. Three replicates were performed for each experimental point and
experiments were repeated three times. Gene expression was quantified using the comparative
threshold-cycle (Ct) method considering that the targets and the reference genes have the same
amplification efficiency (near to 100%) [42]. In each cell line, ΔCt values (difference between
target and reference gene Ct) for ERβ2 or ERβ5 were compared with ERβ1 ΔCt value in the
same cell line.

Statistical analysis
When appropriate, data were analyzed by Dunnet's or Bonferroni's test, after one-way analysis
of variance. A P value<0.05 was considered statistically significant.

Results

Expression of ERβ in human melanoma cell lines
The expression of ERβ in human melanoma cell lines was analyzed by Western blot assay uti-
lizing two primary antibodies: H-150 (Santa Cruz Biotechnology) and 14C8 (Abcam). First, in
order to obtain an appropriate positive control, ERβ was evaluated in BLMmelanoma cells
engineered to overexpress the receptor protein. Fig 1A shows that a protein band, correspond-
ing to the molecular weight of 59 kDa, is expressed in BLM cells either in normal culture condi-
tions (C) or in the presence of Lipofectamine (Lipo), at 24–72 h. More importantly, Fig 1A also
shows that the expression levels of this protein band are sharply increased in BLM cells overex-
pressing the receptor (ERβ) at 24 after transfection, and slightly decrease at 48 and 72 h. These
data, obtained with the two different antibodies, confirm that the molecular weight of this
receptor subtype corresponds to 59 kDa, as previously reported [43,44].

ERβ expression was then analyzed, utilizing the two primary ERβ antibodies (H-150 and
14C8) in a panel of human melanoma cell lines. Fig 1B shows that a specific band correspond-
ing to the molecular weight of 59 kDa, is expressed in BLM (lane 3; confirming the data
reported in Fig 1A), A375 (lane 4), WM115 (lane 5) and WM1552 (lane 7) human melanoma
cells. Fig 1B also shows that in the human IGR-39 melanoma cell line (lane 6) the receptor is
expressed at almost undetectable levels. The molecular weight of the protein band detected in
the melanoma cell lines corresponds to that found in human MCF-7 breast cancer cells (posi-
tive control; lane 1). As expected, no band of this size could be detected in the HEK293 cells
(negative control; lane 2), confirming previous observations [45]. It should be underlined that,
when evaluated with the 14C8 primary antibody, the level of expression of the receptor in
MCF-7 cells was found to be low, and this agrees with previous data in the literature [46,47].
On the other hand, in these cells the receptor seems to be expressed at higher levels when evalu-
ated with the H-150 antibody. At present, the reason for this discrepancy is unclear; however,
it might be due to a different degree of specificity of the two antibodies.

No band corresponding to ERα (67 kDa) could be detected in any of the melanoma cell
lines analyzed (Fig 1C, lanes 2–6), confirming previous observations [48]; as expected, this
estrogen receptor subtype was expressed at high levels in human MCF-7 breast cancer cells
(positive control; Fig 1, lane 1). These data indicate that ERβ, but not ERα, is the estrogen
receptor subtype expressed in most human melanoma cells.

Differential Antitumor Effects of ERβ in Melanoma Cell Lines

PLOS ONE | DOI:10.1371/journal.pone.0134396 July 30, 2015 7 / 22



ERβ agonists inhibit the proliferation of BLMmelanoma cells
Experiments were first performed to investigate the effects of ERβ activation on the growth of
BLMmelanoma cells, expressing ERβ. The selective ERβ agonist DPN decreased BLM cell pro-
liferation at the concentrations of 10−9 and 5x10-9 M, being significantly effective at the dose of

Fig 1. ERβ, but not ERα, is expressed in humanmelanoma cells. (A) As a positive control, the expression
of ERβ was evaluated byWestern blot analysis in human BLMmelanoma cells engineered to overexpress
the receptor subtype protein, utilizing two primary antibodies: H-150 (Santa Cruz) and 14C8 (Abcam). A band
corresponding to the receptor protein (59 kDa) was detected in basal conditions, both in control (C) and in
Lipofectamine (Lipo) treated BLM cells. As expected, the intensity of this band was found to be significantly
increased after ERβ overexpression (24–72 h), with the highest level of expression at 24 h. (B) ByWestern
blot analysis, utilizing the two primary antibodies H-150 and 14C8, ERβ was found to be expressed at high
levels in human BLM, A375, WM115, WM1552 melanoma cell lines (lanes 3, 4, 5, 7), while the human IGR-
39 melanoma cell line expressed the receptor at almost undetectable levels (lane 6). ERβ was also
expressed in humanMCF-7 breast cancer cells, utilized as a positive control (lane 1), but it was not
expressed in the human HEK293, utilized as a negative control. (C)On the other hand, all the human
melanoma cells lines tested (lanes 2–6) did not express the ERα receptor isoform, which was expressed only
in the control cell line (MCF-7, lane 1). β-actin was utilized as a loading control. For each analysis, one
representative of three different experiments, which gave similar results, is shown.

doi:10.1371/journal.pone.0134396.g001
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10−8 M (Fig 2A). This significant effect was followed by a decline at concentrations of 5x10-8

and 10−7 M. Accordingly, the natural estrogenic ligand E2 exerted a significant antiproliferative
effect on BLM cell proliferation at the concentration of 10−8 M (Fig 2B). The antiproliferative
activity of both DPN and E2 (10

−8 M) was completely counteracted by cotreatment of the cells
with the ER antagonist ICI 182,780 (10−6 M) (Fig 2C).

Experiments were also performed with different ERβ agonists (KB1, KB2, KB4). We found
that all these compounds significantly inhibit BLM cell proliferation at the concentration of
10−8 M (Fig 2D); the dose-response curve obtained after treating the cells with different con-
centrations of KB1 was similar to that obtained with DPN (Fig 2E vs. Fig 2A). This effect was
completely counteracted by the ER antagonist ICI 182,780 (10−6 M) (Fig 2F).

These data demonstrate that ERβ activation is associated with antiproliferative activity in
BLMmelanoma cells, with 10−8 M being the most effective dose, as previously reported for dif-
ferent tumor cells [14,18,20,21,49–51]. A curve of the dose-response effect of ERβ agonists on
cancer cell proliferation, similar to that here shown, has been previously reported for

Fig 2. ERβ agonists significantly and specifically inhibit the proliferation of BLMmelanoma cells. (A) BLM cells were treated with different doses of
the classical ERβ agonist DPN every 48 h for three times. DPN significantly decreased cell proliferation at the dose of 10−8 M. (B) Similar results were
obtained when the cells were treated with E2. (C) The antiproliferative effect of both ERβ ligands (10−8 M) was found to be specific since it was completely
abrogated by cotreatment of the cells with the ER antagonist ICI 182,780 (10−6 M). (D) BLM cells were treated with KB1, KB2, or KB4 (10−9, 10−8, 10−7 M)
every 48 h for three times. All three ERβ ligands significantly reduced cell proliferation at the dose of 10−8 M. (E) BLM cells were treated with KB1, at different
doses (109−10−7 M). The ERβ agonists decreased cell growth, being significantly effective at the dose of 10−8 M. (F) The antiproliferative activity of KB1 (10−8

M) was found to be specific since it was completely abrogated by cotreatment of the cells with the ER antagonist ICI 182,780. Each experimental group
consisted of six replicates and each experiment was repeated three-five times. Results are given as cell number/plate. Data represent mean values ± SEM.
*P<0.05. C, controls.

doi:10.1371/journal.pone.0134396.g002
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cholangiocarcinoma and mesothelioma cells [14,20]. On the basis of these results, the concen-
tration of 10−8 M was selected for the subsequent studies.

Activation of ERβ induces its cytoplasmic-to-nuclear translocation and
transcriptional activity in BLM cells
Experiments were performed to verify whether, in BLMmelanoma cells, ERβmight function
according to the classical model of estrogen action [11]. By immunofluorescence analysis, we
could show that, in BLM cells, most of the ERβ staining was confined in the cytoplasm (Fig
3A); treatment of melanoma cells (24 h) with both DPN and E2 (10

−8 M) induced its nuclear
translocation (Fig 3A). Then, we analyzed the effects of ERβ ligands on the transcriptional
activity of the receptor in melanoma cells. Fig 3B shows that treatment of BLM cells with either

Fig 3. ERβ ligands trigger cytoplasmic-to-nuclear translocation of ERβ and induce its transcriptional
acitivity in BLMmelanoma cells. (A) Immunofluorescence assay of ERβ intracellular localization. In control
BLMmelanoma cells, ERβ is mainly localized at the cytoplasmic level. Treatment of the cells with either DPN or
E2 (10

−8 M, for 24 h) induces ERβ translocation into the nucleus. A representative picture from three
experiments done independently, which gave the same results, is reported. (B) The transcriptional activity of the
ERβ protein in BLM cells was analyzed using the pVERE-tk-LUC plasmid (cotransfected with pCMVβ). The
results were normalized for β-galactosidase activity. Treatment of the cells with either DPN or E2 (10

−8 M, for 24
h) significantly increased ERβ transcriptional activity. Each experimental group consisted of three replicates and
each experiment was repeated three times. Data represent mean values ± SEM. *P<0.05. C, controls.

doi:10.1371/journal.pone.0134396.g003
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DPN or E2 for 24 h significantly increased the transcriptional activation of the ERE-Luc
reporter plasmid (normalized for β-galactosidase) indicating that, in BLMmelanoma cells,
ERβ is associated with the classical transcriptional activity at the nuclear level.

ERβ agonists affect the expression of cell cycle-related proteins in BLM
cells
Estrogens have been shown to affect cancer cell growth through the regulation of proteins
involved in cell cycle progression [52]. Experiments were performed to investigate whether
ERβ agonists might affect melanoma cell proliferation through alteration of the expression of
cell cycle-related proteins. BLM cells were treated with the ERβ agonist DPN (10−8 M) for dif-
ferent time intervals (24–72 h). By Western blot assay, we could demonstrate that treatment
with DPN induced a significant reduction in the expression of G1 cyclins, such as cyclin D1
and D3 (at 72 h of treatment), and a significant increase in the expression of the CDK inhibitor
p27 (at 48 h of treatment) (Fig 4A). On the other hand, the expression of the cyclin D partners
CDK4 and CDK6 was not modified by the treatment; the CDK inhibitor p21 was found to be
expressed at almost undetectable levels in BLM cells and its expression was not affected by
DPN treatment (Fig 4A). Interestingly, DPN did not modify the expression of procaspase-3 as
well as that of the cleaved (active) form of caspase-3 (Fig 4B). Taken together, these results
indicate that ERβ activation in melanoma cells decreases cell proliferation, through the modu-
lation of the expression of proteins involved in the G1-S progression of the cell cycle, and that
the apoptosis pathway is not involved in this activity.

ERβ activation induces global DNA methylation reprogramming in BLM
cells
Experiments were first carried out to analyze the global DNA methylation status of human
BLMmelanoma cells when compared to that of human melanocytes. To this purpose, a restric-
tion enzymatic assay, utilizing the two methylation sensitive restriction enzymes MspI and
HpaII, was performed. These enzymes recognize the same tetranucleotide sequence (5'-CCGG-
3') but display different sensitivity to DNAmethylation. In particular, MspI does not cut when
the external cytosine is methylated while HpaII does not cut when any of the two cytosines is
methylated [39,40]. Fig 5A shows that BLM cells are globally hypomethylated when compared
to human melanocytes (hMEL), when both MspI and HpaII restriction enzymes are utilized.
These data confirm that melanoma cells are characterized by an aberrant global DNA hypo-
methylation, which is known to be associated with genome instability.

We then evaluated whether activation of ERβmight affect the DNAmethylation status of
melanoma cells. BLM cells were treated with either DPN or E2 (10

−8 M) for 24 or 48 h; the
DNAmethylation status was analyzed as described above. Fig 5B shows that DPN significantly
increased DNAmethylation at 24 and 48 h of treatment, when the MspI restriction enzyme
was utilized. On the other hand, E2 significantly increased the methylation degree of CG-rich
regions at 24 h of treatment, when both restriction enzymes were utilized. These data indicate
that ERβ activation reverts the DNA hypomethylation status in melanoma cells and suggest
that different ERβ ligands might increase the methylation of the different cytosines of the CG-
rich regions (internal vs. external) in a specific way.

ERβ agonists differentially affect the proliferation of melanoma cell lines
Based on the results obtained in BLMmelanoma cells (expressing the ERβ receptor subtype
and harboring the NRAS mutation), further experiments were performed to assess the effects
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of ERβ activation on the proliferation of different melanoma cell lines, either lacking the
expression of ERβ or expressing ERβ while harboring different oncogenic mutations (e.g.,
BRAF). Specifically, the effects of ERβ agonists were assessed on the proliferation of the follow-
ing human melanoma cell lines: IGR-39 cells (expressing almost undetectable levels of ERβ),

Fig 4. The specific ERβ ligand DPN affects the expression of cell cycle-related proteins in BLMmelanoma cells. BLM cells were treated with DPN
(10−8 M) for 24, 48, or 72 h. Western blot analysis was performed on whole cell extracts by using specific antibodies against cell cycle-related proteins, such
as cyclin D1, cyclin D3, p21, p27, CDK4, CDK6 (A), procaspase-3 and cleaved caspase-3 (B). Actin expression was evaluated as a loading control. The
treatment with DPN reduced the expression of cyclin D1 and cyclin D3 and increased that of p27, while the levels of cleaved (active) caspase-3 were not
affected by the treatment. One representative of three different experiments, which gave similar results, is shown. A statistical evaluation has been performed
on the densitometric analysis of the results obtained from the three Western blot experiments performed on cell cycle-related proteins (A).

doi:10.1371/journal.pone.0134396.g004
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A375 andWM1552 cells (expressing ERβ and harboring the BRAF V600E mutation), and
WM115 cells (expressing ERβ and harboring the rare BRAF V600D mutation). IGR-39, A375
andWM1552 cells were treated with DPN (10−9–10−7 M) while WM115 cells were treated
with DPN, E2 and KB1 (10

−10–10−7 M), as described for BLM cells. As expected, we found that
DPN does not affect the proliferation of IGR-39 cells, lacking ERβ expression (Fig 6A). Unex-
pectedly, and interestingly, the ERβ agonist also failed to affect the growth of A375 and
WM1552 melanoma cells, expressing the receptor subtype (Fig 6B and 6C). On the other hand,
the proliferation of WM115 cells was reduced by the treatment with DPN, E2 and KB1, with a
dose-response curve similar to that observed in BLM cells (Fig 6D). Taken together, these
results indicate that ERβ activation differentially affects the proliferation of melanoma cell
lines. The reasons for these observations are still unclear; however, we might speculate that the
efficacy of ERβ agonists in reducing melanoma growth might depend not only on the presence
of the receptor but also on other particular features of each melanoma, such as the oncogenic
mutation status (NRAS, BRAF) of the tumor.

Expression of ERβ isoforms in melanoma cell lines
So far, five alternatively spliced transcript variants of the ERβ gene have been described (ERβ1–
5) in humans [53]. ERβ wild type, also referred to as ERβ1, is the main variant and ERβ2 and

Fig 5. ERβ activation induces global DNAmethylation reprogramming in BLMmelanoma cells. (A) Preliminary experiments were carried out to
analyze the global DNAmethylation status of BLM cells when compared to that of human normal melanocytes (hMel). To this purpose, a restriction
enzymatic assay was employed. For each DNA sample, two restriction digests were performed: one with RsaI and MspI, and one with RsaI and HpaII. RsaI
is methylation insensitive, while MspI and HpaII are sensitive to DNAmethylation and are able to cut only unmethylated restriction sites. The digests were
then amplified by PCR. Data are expressed as the MspI/RsaI or HpaII/RsaI ratios relative to the intensity of the bands. BLMmelanoma cells were found to be
globally hypomethylated when compared to normal melanocytes, when both MspI and HpaII restriction enzymes were utilized. One representative of three
different experiments, which gave similar results, is reported. (B) Experiments were performed to evaluate whether activation of ERβmight affect the global
DNA hypomethylation status observed in melanoma cells. BLM cells were treated with either DPN or E2 (10

−8M) for 24 or 48 h; the DNAmethylation status
was then evaluated as described above. Both DPN (at 24 and 48 h) and E2 (at 24 h) increased the DNAmethylation profile of BLM cells, indicating that ERβ
activation reverts the DNA hypomethylation status in melanoma cells. One representative of three different experiments, which gave similar results, is
reported.

doi:10.1371/journal.pone.0134396.g005
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ERβ5 are the most studied splice variants [22]. The expression of these variants has been
shown to be tissue-specific and to differentially modulate E2 signaling [54].

As discussed above, the reasons for the differential effects of ERβ agonists on the prolifera-
tion of melanoma cell lines are still unclear. In addition to the proposed correlation with spe-
cific oncogenic mutations, these effects might also be related to the differential expression of
ERβ isoforms in the various melanoma cell lines. Based on these observations, by quantitative
RT-PCR we analyzed the expression of ERβ1, ERβ2, and ERβ5 in BLM, A375 andWM115 mel-
anoma cell lines.

Fig 7 shows that the pattern of expression of the ERβ isoforms is similar in BLM and in
WM115 cells, with ERβ1and ERβ5 being expressed at similar levels and ERβ2 showing a higher
level of expression. On the other hand, in A375 cells, both ERβ2 and 5 are expressed at higher
levels than the ERβ1 isoform.

Discussion
Increasing evidence strongly suggests that ERβ plays a fundamental role in the development
and progression of melanoma. In particular, the expression of ERβ was shown to inversely cor-
relate with melanoma progression, being significantly lower in thick melanoma compared with
thin melanoma tissues [23,26,27,55]. These observations point toward a potential role of ERβ
as a protein associated with suppressive function in this tumor.

Fig 6. ERβ agonists differentially affect the proliferation of melanoma cell lines. (A) IGR-39, A375 andWM1552melanoma cells were treated with DPN
(10−9–10−7 M) every 48 h for three times. No effect on cell proliferation could be observed in any cell line tested. (B)WM115 cells were treated with DPN, E2,
or KB1 (10−10–10−7 M) every 48 h for three times. DPN was significantly effective in decreasing cell proliferation at the doses of 10−9 and 10−8 M. On the other
hand, both E2 and KB1 significantly reduced cell proliferation at the dose of 10−8 M. Each experimental group consisted of six replicates and each experiment
was repeated three times. Results are given as cell number/plate. Data represent mean values ± SEM. *P<0.05. C, controls.

doi:10.1371/journal.pone.0134396.g006
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In this study, we first investigated the expression of ERβ in a panel of melanoma cell lines;
we demonstrated that this estrogen receptor subtype (but not the ERα subtype) is expressed in
most of these cell lines.

Then, we analyzed the effects and the possible mechanisms of action of ERβ activation in
BLM cells. We could demonstrate that activation of ERβ, achieved by treating the cells with E2
or ERβ subtype-selective agonists (the classical ERβ agonist, DPN, or more recently synthesized
agonists, KB1, KB2, and KB4) significantly decreased BLMmelanoma cell proliferation. This
tumor cell inhibitory activity was found to be target protein specific since it was completely
abrogated by cotreatment of the cells with the ER antagonist ICI 182,780.

In these experiments, the ERβ agonists displayed bell-shaped responses with growth inhibi-
tion at low doses and opposite effect at high doses, as previously reported for cholangiocarci-
noma and mesothelioma cells [14,20]. As underlined by Pinton and coworkers [14], this kind
of response in not unusual for hormones. The term 'hormesis' has been widely used to describe
a biphasic dose response phenomenon characterized by a low dose stressful stimulation and a
high dose adaptive response that increases the resistance of the cell to evoked stress [56,57]. A
possible explanation could be that cells may increase the production of cytoprotective and
restorative proteins which can mediate their adaptive response to the stress induced by ERβ
agonists.

In BLM cells, activation of ERβ induced its translocation from the cytoplasm into the
nucleus and triggered its transcriptional activity. These data demonstrate that, in these mela-
noma cells expressing ERβ, this receptor subtype exerts its repressive activity through the clas-
sical genomic action of steroid receptors at the nuclear level.

In this paper, we could also show that, in BLMmelanoma cells, ERβ agonists exert their
antiproliferative activity through the modulation of cell cycle progressing factors (cyclin D1,
cyclin D3, p27), without triggering the apoptosis pathway. These data suggest that ERβ activa-
tion may inhibit melanoma growth by blocking the G1-S transition phase. Specifically, we
could observe that the ERβ agonist DPN significantly reduces cyclin D1 and cyclin D3 protein
expression at 72 h of treatment, while increasing the expression of p27 at 48 h of treatment.
Since ERβ nuclear translocation and transcriptional activity occur 24 h after treatment of the
cells with DPN, we hypothesize that these cell cycle-related proteins might not be directly regu-
lated by ERβ but, more likely, they might be the target of the activity of other direct ERβ

Fig 7. ERβ isoforms (1, 2, and 5) are differentially expressed in melanoma cell lines. The relative
expression of ERβ1, 2, and 5 isoforms was evaluated by quantitative RT-PCR, utilizing specific sets of
primers. BLM andWM115 cells showed a similar expression of ERβ1 and 5, while expressing higher levels of
ERβ2. On the other hand, a high expression of both ERβ2 and 5 isoforms (when compared to ERβ 1) was
observed in A375 cells. One representative of three different experiments, which gave similar results, is
shown.

doi:10.1371/journal.pone.0134396.g007
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downstream proteins. For instance, Wu and coworkers [58] have recently reported that, in
bladder cancer cells, the ERβ ligand resveratrol inhibits cell growth through decreased phos-
phorylation, nuclear translocation and transcription of STAT3, resulting in the downregulation
of the expression of STAT3 downstream genes (cyclin D1, survivin, c-Myc and VEGF). More-
over, Nakamura and coworkers demonstrated that, in prostate cancer cells, activation of ERβ
induces cyclin D1 expression through increased expression of FOS and JUN; however, accord-
ing to the data reported, the authors conclude that the interaction of ERβ with the two tran-
scription factors is not direct and likely involves early responsive genes which still need to be
identified [59].

Taken together, our results obtained in BLM cells agree with the concept that the antitumor
effect of ERβ is associated with altered expression of proteins involved in the cell cycle progres-
sion [10,11]. In agreement with the data here reported, ERβ agonists, as well as phytoestrogens
(such as apigenin, resveratrol) have been shown to arrest breast cancer cell growth by causing a
cell cycle arrest, through the regulation of cell cycle-related proteins, such as cyclin D1 and the
CDK inhibitors p21 and p27 [60–62]; more recently, it has been reported that preferential ERβ
ligands reduce the expression of the antiapoptotic protein Bcl-2 to increase autophagy in hor-
mone-resistant breast cancer cells [63]. In prostate cancer cells, ERβ agonists inhibit the prolif-
eration rate and the invasive behavior [64,65]. Moreover, ERβ agonists impede prostate cancer
epithelial-to-mesenchymal transition, by repressing VEGF-A expression [66]. ERβ ligands
were also shown to exert suppressive effects, through modulation of the expression of cell cycle
progression proteins, on the growth of tumor cells classically unrelated to the reproductive sys-
tem, such as colon [18], malignant pleural mesothelioma [14,19,36], lymphoma [21], glioma
[67], and cholangiocarcinoma [20] cells. More recently, ERβ agonists have been reported to
prevent the development of UVB-induced nonmelanoma skin cancer in mice [68].

It is now well accepted that epigenetic mechanisms play a central role in tumor develop-
ment. In particular, melanoma cells have been reported to present global DNA hypomethyla-
tion, contributing to the genomic instability of tumor cells, when compared to normal cells
[28,30]. Thus, reversibility of these epigenetic modifications might represent an effective strat-
egy of treatment for this aggressive form of cancer. In this study, we first confirmed that DNA
is globally hypomethylated in human BLMmelanoma cells when compared to normal human
melanocytes. Then, we could show that treatment of BLM cells with both DPN and E2 signifi-
cantly increased global DNA methylation.

Taken together, our data demonstrate that, in BLMmelanoma cells, ERβ activation reduces
cell growth, through the modulation of cell cycle related proteins, and that this antitumor activ-
ity is associated with the reversal of the global DNA hypomethylation status of these cancer
cells.

In this paper, as expected, we could show that ERβ agonists did not affect the proliferation
of melanoma cells expressing almost undetectable levels of ERβ (IGR-39).

On the other hand, suprisingly, we found that ERβ agonists were also ineffective in reducing
the proliferation of A375 andWM1552 melanoma cells, shown to express the estrogen receptor
isoform. At present, the reason for these unexpected results is unclear. However, a possible
explanation is that ERβ agonists differentially affect the proliferation of various cell lines,
expressing ERβ, according to the cell line-specific oncogenic mutation status. Actually, NRAS
and BRAF mutations are very frequently found in melanoma tumors; in particular, BLM cells
are NRAS-mutant (a mutation present in about 30% of patients), while both A375 and
WM1552 cells harbor the BRAF V600E mutation (the predominant BRAF mutation, occurring
in about 50% of cases) [31,69,70]. In melanoma cells, NRAS mutations have been shown to be
associated with increased activation of two main downstream signaling pathways: the PI3K/
Akt and the MEK/ERK cascades [70,71]. On the other hand, in melanoma cells harboring
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BRAF mutations, only the MEK/ERK pathway results to be overactivated. Interestingly, ERβ
agonists have been shown to exert their significant antitumor/proapoptotic effect through RAS
inactivation and specific inhibition of its downstream PI3K/Akt pathway in different cancer
cells [11,72,73]. Wang and coworkers [74] have recently reported that ERβ expression inversely
correlate with PTEN/PI3K/Akt pathway in triple-negative breast cancer. Moreover, in breast
cancer cells, calycosin-induced ERβ activation was associated with a decreased activity of the
PI3K/Akt pathway, while the ERK1/2 cascade was not affected by the natural compound [72].
Based on our results as well as on these recently reported observations, we hypothesize that
ERβ agonists might effectively reduce the proliferation of melanoma cells harboring the NRAS
mutation, through the specific inhibition of the activity of one of the two downstream signaling
pathways: the PI3K/Akt cascade. On the other hand, ERβ agonists will not reduce the growth
of melanoma cells harboring the BRAF (V600E) mutation, which is associated with the overac-
tivation of the MEK/ERK signaling pathway. Studies are ongoing in our laboratory to confirm
this hypothesis.

Taken together, these data would suggest that, in melanoma patients harboring the NRAS
mutation, ERβmight represent a novel molecular target for personalized therapeutic strategies,
based on ERβ agonists, either alone or in combination with a specific inhibitor of the MEK
pathway (i.e., trametinib). Moreover, these results support the notion that not only the expres-
sion of ERβ, but also the genetic analysis of the concurrent oncogenic mutations should be con-
sidered to predict the possible response of melanomas to ERβ targeted therapeutic approaches.

In this paper we could also show that ERβ agonists are able to decrease the proliferation of
WM115 melanoma cells harboring the BRAF V600D mutation. However, no hypothesis can
be suggested in this case, since this is considered a very rare BRAF mutation and very little is
known about its associated intracellular signaling alterations; it has actually been reported that,
in melanoma cells, BRAF mutations can be associated to different intracellular pathways, in
addition to the MEK/ERK cascade [75]. Moreover, whether BRAF inhibitors might have the
same effectiveness in patients with this rare BRAF mutation still has to be evaluated [76].

The differential effect of ERβ agonists on the proliferation of the various melanoma cell
lines here reported might also be associated with the relative expression of the ERβ isoforms in
each cell line. We found that BLM andWM115 cells show a similar pattern of expression of
the isoforms with similar levels of ERβ1 and ERβ5, but higher expression of ERβ2. On the
other hand, in A375 cells both ERβ2 and ERβ5 are expressed at higher levels than ERβ1. The
possible correlation between the expression of the ERβ isoforms and the differential effects of
ERβ agonists on melanoma cells is at present unclear. ERβ isoforms have been shown to be co-
expressed in various types of tumors, (including breast, ovarian, endometrial, prostate, colon
and lung cancers); however, conflicting results have been so far reported on the potential col-
lective effect of their co-existence [41,43,77–81]. In agreement with Hapangama and coworkers
[82], we believe that the lack of commercially available specific antibodies for the different
receptor isoforms represents a major obstacle in the investigation and clarification of their
functions. Based on this observation, most of the functional data so far reported in the litera-
ture are only related to ERβ (ERβ1), with little reference to the other alternatively spliced
variants.

In conclusion, the data presented in this paper demonstrate that ERβ subtype is expressed
in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552). In BLM cells, as
well as in WM115 cells, activation of ERβ is associated with a significant and specific antiproli-
ferative effect. In particular, in BLM cells, this antitumor activity is associated with the modula-
tion of the expression of G1-S cell cycle-related proteins and with the reprogramming of global
DNAmethylation. On the other hand, ERβ agonists failed to affect the proliferation of A375
andWM1552 cell lines. This differential effect of ERβ agonists on the growth of the different
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melanoma cell lines might be related either to the specific oncogenic mutational status (NRAS,
BRAF) or to the relative expression of receptor isoforms in each cell line.

These data confirm that melanoma is a very heterogeneous tumor and support the concept
that genetic profiling is mandatory for the development of novel and effective personalized
therapeutic strategies for melanoma patients.
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