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ABSTRACT 

A rough estimation for avoidable losses in the European Union (EU) is 280 kg per capita per year, 

of which 13%  can arise from agricultural production, 31% from product processing and 45% from 

households. The role of packaging in preserving fresh and processed foods is well known and 

documented but little research is available about the relation existing among new packaging 

solutions, shelf life extension and Food Loss, and waste reduction at different levels at the supply 

chain. Techniques as Life Cycle Assessment (LCA) have been largely used to determine the 

Environmental Impact of food production and processing and packaging materials. However,  the 

assessment taking into account the food and its packaging as a whole system, and of Food Loss 

reduction is necessary. In fact, from a life cycle perspective, no assessment of the Environmental 

Impact of food packaging showed the positive benefits of reduced Food Losses in the value chain.  

In this PhD project, the shelf life extension of red raspberries (Rubus idaeus L.) and strawberries 

(Fragaria x Ananassa Duch) using active packaging solutions was investigated. The shelf life 

extension, critical indicators and cut-off criteria were defined as a tool to point out the time at 

which the lifetime ended and they were elaborated by multivariate approach. The final aim was to 

estimate the role of a new packaging technology in reducing the Environmental Impact along the 

supply chain in relation to the benefits of the Food Loss reduction derived from the actual Shelf 

Life Extension.  

For raspberries trial, three packaging solutions was studied: a) Lidded macro-perforated PET trays 

containing 125 g of berries, stored in air and considered as ―traditional‖ packaging; b) lidded 

macro-perforated PET trays containing 125 g of berries inserted into master bags made of plastic 

materials with different permeabilities to gas and water vapour. This solution was referred to a 

passive modified packaging solution. c) macro-perforated PET trays containing 125 g of berries 

inserted into a master bag unit made of LDPE (OTR 4000 cm
3
*m

-2
*day

-1
 at 23 °C and 0 %RH). 

Before sealing, a defined volume of compressed dry air (moisturized by using distilled water 

applied onto paper towels), one oxygen scavenger, and a different number of pre-activated carbon 

dioxide emitters were added to the master bag.  

For strawberries trial three packaging solutions was studied: a) Lidded PET macro-perforated trays 

containing 250 g of fruits and stored in air were considered as ―traditional‖ packaging; b) lidded 

PET macro-perforated trays (250 g of berries/tray) were inserted into an LDPE (OTR 4000 cm
3
*m

-

2
*day

-1
 at 23 °C and 0 %RH) master bag. c) A different number of PET macro-perforated trays 

were inserted into an LDPE master bag. A central composite design (CCD) with four factors 

(number of CO2 emitters, number of O2 scavengers, ratio between packaging surface area and 

unfilled volume, storage time) at five levels was performed to optimize the active packaging 

solution. 

All the samples were stored in a cold chamber (5±1 °C; 70±5 %RH). 

Different physical-chemical and sensorial analyses were performed as following to identify for 

each packaging solution the shelf life value: Damaged berries (%), Mouldy berries (%); Weight 

loss (%); Colour (CIE L*, a* and b* parameters); Total solids (g/100g); Soluble solids (g/100g); 

pH; Titratable acidity (g citric acid/100 g); Consistency determined by single compression test 

(force*deformation at 60% of deformation); Volatile compounds by SPME-GC-MS  technique;  

Sensorial global and Visual acceptability.   In order to analyze the results from a multidimensional 

point of view, the obtained data were analyzed by Principal Component Analysis (PCA). 

Il ciclo di vita per ogni soluzione di imballaggio è stata valutata utilizzando il software 8.0.1 

SimaPro®. The boundaries of the system was set from the berries production until the retailer 

storage, take into consideration also the operations to disposal of the packaging materials. The 

functional unit for this study was set as the day of shelf life. 
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In the raspberries studies, the active packaging solution allowed the raspberries storage up to 11 

days. This value was almost three times longer than the ―traditional‖ packaging solution that 

allowed a shelf life value of 4 days. The Passive packaging solution allowed lead to a shelf life 

extension as 2 days in comparison to the traditional packaging.   

For each packaging solution have been done the assessment of the environmental impact using the 

LCA methodology. 

The ―traditional‖ packaging solution determined the highest daily impact among the packaging 

solutions evaluated. The passive and active packaging solutions determined a significative 

reduction, in terms of environmental load, up to 55% and 70%, respectively. The extension of the 

lifetime of berries contribute also to reduce the food loss even if the environmental impact of 

packaging system (active devices and master bag) was increased. This increment was balanced 

from the environmental impact of food saved by using the new packaging solution. 

The assessment of strawberries shelf life stored in the traditional packaging systems established 

only 2 days as value, while in the passive packaging solution lead to a shelf life extension up to 4 

days longer. The optimization of the packaging factors in the active packaging solution extended 

the berries storage until 12 days. 

The ―traditional‖ packaging determined the highest daily impact than the other packaging solutions. 

The passive and active packaging solutions determined a significative reduction in environmental 

load respect to the ―traditional‖ solution up to 66% and 82%, respectively.  

The implementation of LCA methodology with lifetime data assessed by experimental shelf life 

trials and multivariate analyses allowed the definition of the impact of new technologies based on 

active packaging, taking into account their role in shelf life extension. Although based on some 

assumptions, this PhD study tried to explain and measure how new packaging can affect fruits 

losses directly or indirectly by influencing the scenarios at different levels of the supply chain. The 

lack of economic and logistic information about Food Losses (and specific data on this kind of 

fruits) in the Italian supply and distribution chain should open to new and more useful 

considerations.  
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1-INTRODUCTION 

 

Preface 

The issue of overall Food Losses and Waste (FLW) has lately received much consideration and it 

was given high visibility. In fact the number of papers dedicated to this topic has increased 

considerably in recent years (Figure 1.1).  

 

Figure 1.1. Articles written from 2000 to 2015 about the Food Waste and Loss; research conducted 

in SciFinder using  Food Waste and Loss as key words. Environmental, Food waste, and Food 

systems are used as limits of research. 

 
 

This preface considers two main aspects:  

First, a concern related to food insecurity and hunger. The Food and Agriculture Organization 

estimates that about 795 million people of the 7.3 billion people in the world suffer from chronic 

undernourishment in 2012-2014 (FAO, 2014). This situation seems to indicate that something is 

wrong in the food system, the efficiency of the food chain have  chronic problems, although no one 

has yet established the direct link between the issue of FLW and the food insecurity. The reduction 

of FLW is now presented as essential to improve food security (HLPE, 2011; FAO, 2012a,b). 

However, real causes of hunger and malnutrition are very complex and cannot be reduced to the 

existence of FLW. 

Second, a concern related to the impact of FLW on environment, i.e. the capacity of ecosystems 

and natural resources to sustain an increasing demand for food, driven by population and income 

growth and changing consumption patterns (FAO, 2012a). In this perspective, FLW represents at 

the same time a loss of natural resources and an environmental impact described as Ecological-

Carbon and Water footprint.  

The consequences of FLW have an important effect not only on the environmental but also on the 

social and economic perspectives. FLW tend to become a symbol of the inefficiency, unfairness 

and unsustainability of food systems. Their reduction seems a priority to improve the sustainability 

of food systems (HLPE 2014). 

The proposal of the United Nations is the zero-food loss and waste challenge to reach the 100% 

sustainable food systems. ―The key to better nutrition, and ultimately to ensuring each person’s 

right to food, lies in better food systems – smarter approaches, policies and investments 

encompassing the environment, people, institutions and processes by which agricultural products 
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are produced, processed and brought to consumers in a sustainable manner‖, Secretary General 

Ban Ki-Moon said in his message for the World Food Day on 16 October 2013 (UN, 2013).  

 

In the recent past the most significant efforts in food science and technology have been addressed 

to extend the commercial life of foods and beverages. In this context, however, very little or null 

attention has been paid to the possible positive contribution, coming from a shelf life extension 

(SLE) to the overall sustainability of a food product along its entire supply chain. Nevertheless, a 

shelf life extension can contrast food losses and the distribution logistic impacts and several studies 

stressed the importance of increasing the knowledge about these issues. 

 

The overall aim of this PhD project is to match a Shelf Life Extension (SLE), due to a  packaging 

innovation, to the possible increase of global sustainability of a food system along the supply chain 

in terms of environmental load and food loss reductions. It means to learn how to use the SLE as an 

Indicator of Sustainability, i.e. to demonstrate, when possible and feasible, that a longer shelf life 

means also higher sustainability (PRIN, Piergiovanni 2014). Red small fruits (raspberries and 

strawberries) will be presented as case studies as  shelf life extension due to packaging technologies 

has not been yet investigated and  food losses along the supply chain still represent an important 

issue in the sustainability .  

 

1.1 FOOD LOSSES-WASTE AND SUSTAINABLE FOOD SYSTEMS  

1.1.1 Definition of FLW 

The terms of Food Waste and Food Loss have been defined in different ways in literature it is 

common to find a distinction between these two terms (FAO, 2011a; Parfitt, Barthel and 

Macnaughton, 2010) but in some cases the distinction is not so clear and  unambiguous. 

A first definition is based on the distinction between Food Loss and Food Waste taking into 

account the step of the food chain at which the loss or waste of food physically happens (HPLE 

2014); food loss happens along the food supply chain, and food waste happens at the end of the 

supply chain, towards the consumer step. 

A second definition take into account the source and the cause of loss or waste. In particular, some 

Authors tried to link it to the nature or origin of the cause of loss or waste, considering whether its 

cause is ―behavioural‖ (waste) or not (loss); ―voluntary‖ (waste) or not (loss); the result of an 

explicit choice (waste) or not (HPLE 2014). 

This approach amplifies the issue giving a different and often subjective attitude towards what 

these terms mean in different contexts. 

A third definition has been coined by some authors that use ―food waste‖ or ―food wastage‖ as a 

generic mean for ―food losses and waste‖, which has the limitation that often some of this ―waste‖ 

is in fact, under other approaches, a ―loss‖. This gets further confusing when authors expand the 

scope to all ―food-related‖ waste, which includes non-edible parts (WRAP, 2008) 

In this thesis, definitions ascribed to first group will be used as follows:  

 

Food losses (FL) refers to a decrease, at all stages of the food chain prior to the consumer level, in 

mass, of food that was originally intended for human consumption, regardless of the cause.  

 

Food waste (FW) refers to food appropriate for human consumption being discarded or left to 

spoil at consumer level, regardless of the cause.  

 

In this last definition the main distinction between FAO and Waste and Resources Action Program 

(WRAP, 2009) focuses the attention on the ―Avoidable‖ and ―Unavoidable‖ food waste, where in 

the first case (Avoidable) the food that is thrown away still being edible (for example, slices of 
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bread, apples meat, etc.), while  the Unavoidable food waste concerns the waste deriving from the 

preparation of food or drinks (for example, meat bones, egg shells, pineapple skin, etc.). 

Nevertheless, it is necessary to highlight that in the estimation of the food waste the Unavoidable 

food is not taken into account in the FAO approach while in the WRAP reports it is. This diatribe 

could lead to a divergence problem in those works that try to evaluate food waste. 

  

1.2 THE DATA OF THE ISSUE OF FLW 

Data about FLW are reported in different reports and, as mentioned above, it is difficult to match 

data coming from different studies. For this reason some discrepancies among the data presented 

below could occur.   

 

1.2.1 The global scenario 

One of the few global analyses available is a study carried out in 2011 by FAO, which estimated an 

annual global waste at approximately 1.3 billion of tons that correspond roughly to one third of the 

whole world food production.  

The distribution of food waste and loss depends on the country and the phase of supply chain. 

Gustavsson et al. (FAO, 2011) defined an estimation of FLW for different world macro-area and 

for steps of supply chain as shown in Figure 1.2. 

 

Figure 1.2. The bars represent the percentages of food lost or wasted at each step of the chain, 

expressed in percentage of the initial production (edible part originally intended for human 

consumption). Source: elaborated from Gustavsson et al. (FAO, 2011a). 

 
 

The distinction between the two macro-areas can be summarized in the shift of the FLW in 

different stages along the supply chain. The main step where the FLW happens is during the 

harvest but at this stage it is difficult to reduce the amount because, in most of cases, it depends on 

the climatic conditions. After this step, the developing countries lost and wasted the food during the 

post-harvest step due to the lack of facilities (e.g. cold chambers and refrigerated trucks), 

infrastructure (e.g. highway and railway), and knowledge of the food storage (e.g. using the 

modified atmosphere). In the developed countries the issues that occur in the developing countries 

has been resolved;  FLW in the developed countries are located in the consumption step due to the 

abundance of food in household and the incorrect respect on the value of food that lead to spoil the 

food in the fridge or in the pantry. 
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1.2.2 Europe scenario 

In Europe, the Eurostat (2010) estimates that the quantity of food wasted in Europe every year 

amounts to 89 million tons, or 180 kg per capita. The average came from a large range of food 

waste amount starting from Greece with 44 kg per capita per year,  passing though Italy with 149 

kg per capita per year and ending with Netherland with 579 kg per capita per year).  

In table 1 the percentage of FLW during the different steps is represented. For example, in the fruits 

and vegetables category, the FLW is more than 50 % taking into account the overall system 

(Table1.1). This estimation is in agreement with other studies that report the same results for this 

category (WRAP 2008 and BCFN 2012). 

 

Table 1.1 Estimated/assumed waste percentages for each commodity group in each step of the FSC 

for Europe including Russia. Source: from Gustavsson et al. (FAO, 2011a). 

 
 

As mentioned above, the food waste and loss determine economic and social impacts but in 

recently years the attention was shifted also to environmental load. 

Recent studies have estimated the amount of natural resources used when food is lost or wasted. 

Most of these works uses a simple proportional estimation of the environmental load of food 

production, applying the same average value to the amount of food estimated to be lost, without 

taking into account the step where the FLW happened (HLPE 2014). Unfortunately this correlation 

denotes a very roughly estimation due to the approximation of the data.  

Life cycle analysis methodologies can be used to estimate better the environmental load of FLW 

taking into account the step where this issue happens and the ―end of life‖ of the system. In 

common and advertisement perspective this study can be called ―footprints‖ that measure the 

various ways resources used or needed, or external impacts generated throughout the life cycle 

leading to the production and discard of food. 

The carbon footprint of global FLW, without accounting for Greenhouse Gases (GHG) emissions 

from land-use change, is estimated to be 3.3 Gtonnes of CO2 equivalent, an amount equivalent to 

6–10 percent of anthropogenic greenhouse gas emissions (Vermeulen et al., 2012). In Italy, in 

2009, the fruits and vegetables lost during the distribution step produced 8.4 million of kg of CO2 

(Segrè and Falasconi, 2011). 

Food loss and waste include also water ―waste‖ (Lundqvist, de Fraiture and Molden, 2008), as 

large quantities of water are used to produce the food. From the environmental perspective, food 

losses and waste account for more than one-quarter of the total consumptive use of finite and 

vulnerable fresh water and more than 300 million barrels of oil per year (HLPE, 2014). In Italy, in 

the distribution step, the fruits and vegetables lost have used to grow 73.8 million of m3 of water 

(Segrè and Falasconi, 2011). 

Foods
Agricultural 

production

Postharvest 

handling and 

storage

Processing 

and packaging

Distribution: 

supermarket 

retail

Consumption

Cereals 2% 4% 10% 2% 25%

Roots and tubers 20% 9% 15% 7% 17%

Oilseeds and pulses 10% 1% 5% 1% 4%

Fruits and vegetables 20% 5% 2% 10% 19%

Meat 3.1% 0.7% 5% 4% 11%

Fish and seafood 9.4% 0.5% 6% 9% 11%

Milk 3.5% 0.5% 1.2% 0.5% 7%

Steps
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According to FAO (2013a), the surface used to growth the crops and the animals, that became 

FLW, occupied about 1.4 billion hectares of land; this represents close to 30 percent of the world‘s 

agricultural land area. In a study on global resource productivity practices by the McKinsey Global 

Institute (Dobbs et al., 2011), reducing food loss and waste was ranked in the top three measures 

that will contribute to improve productivity of resources, pointing to the fact that a reduction of 

consumer food waste in developed countries by 30 percent would save roughly 40 million hectares 

of cropland. In Italy the fruits and vegetables lost during distribution step have occupied 390 

million of m
2
 of global land (Segrè and Falasconi, 2011). 

Finally, in terms of environmental impacts, it is important to note that consumer food waste has a 

greater carbon, GHG, land-use, water, nitrogen or energy footprint than a similar mass of post-

harvest loss. This is due to the inclusion of the footprints of transport, packaging, processing, 

distribution and preparation at home, all of which is finally ―embedded‖ in consumer waste. For 

instance, an average consumer waste is equivalent to eight times more energy ―waste‖ than post-

harvest loss (Dobbs et al., 2011). 

The performance of food systems can be increased in term of economic, social and environmental 

effects by increasing the efficiency of the systems. Therefore FLW is an important issue when 

considering the challenge of feeding the world in 2050 (Bruinsma, 2009), as well as challenge of 

ensuring food security in a context of climate change (HLPE, 2012). The estimation of efficiency 

improvements in the food system is a key point for the evolution towards sustainability. 

 

1.3 CAUSES AND DRIVERS OF FOOD LOSSES AND WASTE 

The knowledge of the causes of food loss and waste is the first step to plan the actions to decrease 

this issue.  

The causes of FLW were located in different steps along the supply chain from harvest to consumer 

and, in a macro scale, in the management of food system and chain, and also in the social, 

economic and environmental policies and international cooperation.  

The following paragraphs will explain the causes and drivers of FLW for each step along the 

supply chain of fruits and vegetables: 

PRE-HARVEST: the factors that drive the FLW can be divided into four categories: 1) the choice 

of crop species and cultivars taking into account the pedoclimatic conditions  can contribute to 

reduce the food loss due to the resistance of variety against environmental condition and plant 

disease/pest, meeting the target of market requirements; 2) good management of agronomic activity 

like fertilization, pest treatment and irrigation, can contribute to increase the quality and quantity of 

production preventing also the metabolic disorder and resistance against environmental and plant 

disease/pest; 3) biological factors such as diseases or nutritional deficiency can produce  or reduce 

the FLW; 4) environmental factors, i.e. too wet or too dry periods can develop physiological 

disorder or growth of disease. Biological (internal) causes of deterioration include respiration rate, 

ethylene production and action, rates of compositional changes (associated with color, texture, 

flavor, and nutritive value), mechanical injuries, water stress, sprouting and rooting, physiological 

disorders, and pathological breakdown. The rate of biological deterioration depends on several 

environmental (external) factors, including temperature, relative humidity, air velocity, and 

atmospheric composition (concentrations of oxygen, carbon dioxide, and ethylene), and sanitation 

procedures 

Sometimes failure to harvest is due to the economic reasons such as low market price at the time of 

harvest and high labour cost. If the crop matures when the demand is low some producers opt to 

leave the crop in the field as the returns do not justify the cost of harvesting and transport. In Italy 

in 2009, 17.7 million tonnes of agricultural produce were left in the fields, representing 3.25% of 

total agricultural production (Segrè and Falasconi, 2011). 
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HARVEST: The period of harvest is decided not only by nature (biologic and weather) but also by 

market requirements and economic factors. Often these elements do not find the correct point of 

interaction to reach the redaction of the food waste and loss. The perishable products like fruits and 

vegetables have to be harvested in a short period but in the case of a too wet  weather,  inadequate 

product quality, or when there is no market demand for these products, the vegetables and fruits 

can be left of the field; in same case to avoid this problem the products are collected before the 

mature but the quality is lower than requirements (Kader 2005). In other case the technique of 

harvest can contribute to the loss because the market requirements are too strict.  

STORAGE: In developed countries the storage facilities are well organized from harvest to retailer. 

Cold storage with post-harvest technologies can be able to extend the shelf life and marketing 

period especially for perishable foods. In this condition the FLW occur due to a breakdown of 

refrigeration systems or temperature abuse. 

In developing countries the main cause for FLW is the lack of storage facilities (FAO 2011). 

Without that equipment (e.g. cold chamber to control the correct temperature and humidity and gas 

composition) the perishable products can be thrown away due to the acceleration of degradation or 

the growth of hazardous microorganisms and substances. 

TRANSPORT-LOGISTIC: In developed countries, as above described, the facilities of logistic are 

well organized and coordinate. In this condition only trouble or breakdown during transport or 

coordination can cause loss. 

In developing countries lack of proper transportation vehicles, poor infrastructure and inefficient 

logistical management make the improper condition for product conservation (Roll 2006). The 

difficult weather conditions during particular periods of the year can stop the transportation of food 

product which gets spoiled. It is estimated that post-harvest losses of fruits and vegetables can 

range from 35 to 50 percent annually due to poor infrastructure (IMechE, 2013). 

PROCESSING AND PACKAGING: Loss of proper process management or inadequate knowledge 

or inefficient structures to process the product can cause unsafe and nutritionally poor products. For 

example an improper blanching of fruits or vegetables doesn‘t arrest the enzymatic activity and 

causes off-flavour and discoloration of the processed product, which may be discarded. 

Packaging can be an important element to extend shelf life and prevent FLW (FAO 2011) in 

particular due to the adequate design or technologies used to made it (Williams et al 2012). 

RETAIL: The facilities and technologies used during retail step can contribute to extend or 

decrease the shelf life of product; in fact using cold display or not can alter the conservation of 

fruits and vegetables. Using MAP solution in the packaging system can maintain the product at 

good quality for a longer period. 

In the USA, it was estimated that the in-store food losses were 10% of the total food supply (Buzby 

2014).  

The tendency to propose homogenous and perfect product (in terms of colour, shape, size, freedom 

from blemishes) have led most retailers to set high standards for products. The failure in fitting 

these standards determines a rejection at delivery or a negative consumer judgement. Moreover, 

these strict conditions impose a high grading by the growers causing food loss. 

CONSUMPTION: The consumption step is one of the most important phases in food waste 

especially in the developed countries. As shown above the numbers related to this problems are 

important but the causes can be gathered in few points collected (WRAP 2009; HISPACOOP 2012; 

Baptista et al. 2012). 

- no planning or incorrect planning of purchases often leading to buy more than needed (impulsive 

or advance purchasing of food that is not required immediately improved by the advertising at 

retailer such as ―economic packaging‖ or ―discount‖ or ―three-for-two) ; 

- discarding food due to confusion over ―the best-before‖ and used-by‖ dates (Table 1.2); 
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- improper food storage or stock management at home, e.g. keeping the fruit out of the fridge 

during the warm-hot seasons; 

- excess portions prepared and not eaten; 

- inadequate wrapping and use of materials, which affect a healthy preservation of food and reduce 

the consumption period, e.g. changing the original proper packaging material with another 

considered more ―healthy‖; 

- poor food preparation techniques often leading to less food being eaten, to food quality losses and 

to waste due to the preparation method; lack of knowledge on how to consume/use food more 

efficiently, e.g. use of the leftovers inspired by different recipes instead of discarding.  

- lack of awareness of the amount of waste one produces and its economic and environmental 

impact. 

 

Table 1.2. Correct meaning of ―Best Before‖ and ―Used-by Data‖ Source: HLPE, 2014 

―Date of Minimum Durability‖ (―Best 

Before‖) 

the date that signifies the end of the period under 

any stated storage conditions during which the 

product will remain fully marketable and will retain 

any specific qualities for which tacit or express 

claims have been made. However, beyond the date 

the food may still be perfectly satisfactory 

―Use-by Date‖ (Recommended Last 

Consumption Date, Expiration Date) 

the date that signifies the end of the estimated 

period under any stated storage conditions, after 

which the product probably will not have the quality 

attributes normally expected by the consumers. 

After this date, the food should not be regarded as 

marketable. 

 

Moreover, other aspects in meso-macro scale exist that have an effect on the production of FLW. 

One of this is the improper definition of the shelf life because the potential inaccuracies in its 

definition may be responsible of two different scenarios: a shelf-life overestimation that could 

cause consumer complaints, product recalls, ineffective logistic impacts, food losses, etc… and a 

shelf-life underestimation that could cause serious, expensive food losses and wastes. 

All foods are susceptible to quality and safety losses. The shelf-life can be defined as a finite length 

of time after production and packaging during which the food product retains a required level of 

quality under well-defined storage conditions; therefore, shelf life should reflect only the quality 

loss dynamics (Nicoli, 2012). The definition of shelf life requires a multidisciplinary approach 

because different driving forces are involved: regulatory, economics, marketing, social. Since the 

pioneer work from Labuza and co-workers (Labuza, 1982) many articles in literature focused the 

attention on the shelf life of packaged food products; unfortunately, few papers only assessed the 

shelf life in a correct way determining the date where product was failing.  

The first step in assessing the shelf life is to identify the main parameter that describes the food 

quality decay of packaged food during storage time. It is possible to use traditional techniques (e.g. 

chemical analyses, physical analyses or sensory attributes) or to exploit otherwise an innovative 

procedure gathering different decay-parameters as multivariate analysis (Pedro and Ferreira; 2006) 

or assessing the maximum rate of degradation reactions (Limbo et al., 2009). 

The second step is to set the acceptability limit determining the value (or the range of values) that 

describes whether one product is acceptable or not from the consumers. Usually industry and 

researchers do not specify this depletion index in a measurable way; its determination is 

complicated and in many papers this index is not evaluated or is arbitrary set. In agree with the 

recent book of Nicoli (2012) many ways to determine the acceptability are available; regulation 
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parameters and consumer satisfaction with sensory feature or nutritional aspect determined by 

instrumental analysis can be used. In the last years, the role of food-consumer interaction has 

progressively increased, driving the shelf life approach from the food product to the consumer‘s 

judgments (Gacula, 1975). 

The last step in shelf-life assessment is to monitor the critical indicator under real-time or 

accelerated conditions of storage to evaluate quality changes. Data collected during testing are 

modeled to obtain parameters able to describe the kinetics behaviors, thus to predict the shelf life 

once the acceptability limit has been defined. These models should take into account the effects of 

environmental factors like gas pressure, moisture, light intensity temperature, gas permeability of 

packaging materials, etc… that can interfere with the food quality over the storage. Therefore few 

strategies have been outlined, especially when more than one accelerating variable or when 

accelerating factors different from temperature are used to speed up the quality decay during 

experiment.  

From this point of view there is a need of defining a protocol to identify the correct shelf life and to 

develop a sustainability-trend.  

Techniques such as Life Cycle Assessment (LCA) can be used to quantify environmental impact of 

the food losses and waste arising from an incorrect definition of shelf life. This approach is in 

accord with a recent study (Wikström and Williams, 2010) which stressed the importance of 

increasing the knowledge about the amount of food losses, the environmental impact due to losses 

and the reasons why losses arise. In fact about 15-25% of the climate impact of consumption is 

caused by food and nutrition (Seppälä et al.,2009). 

Finally, knowing quite well the shelf life of a packaged product, it might be possible to re-design 

the package or the distribution logistics, in order to save time and reduce environmental burden. 

After the evaluation of the food waste causes, the solutions are easier to be identified but often 

difficult to be applied. At each step of the supply chain the causes of FLW are reduced applying the 

good practices of production, managing the resources, and improving the whole food system also in 

terms of facilities and infrastructures There is not only one way to present this problem and correct  

bad-manners of consumers. Many organizations and associations explain the problem at each level, 

trying to educate the people, children and adults, to reduce the food waste and improve the good-

manner to reach a sustainable food system. 
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2- AIM OF THE THESIS 

 

A rough estimation for avoidable losses in the European Union (EU) is 280 kg per capita per year, 

of which 13% can arise from agricultural production, 31% from product processing and 45% from 

households. The role of packaging in preserving fresh and processed foods is well documented, but 

little is known about the relation existing among new packaging solutions, shelf life extension and 

waste reduction at different levels at the supply chain.  

The PhD project was firstly focused on the shelf life assessment of strawberries (Fragaria x 

Ananassa Duch) and raspberries (Rubus idaeus L.) using new packaging solutions based on master 

bag and active packaging in order to extend the shelf life of these fruits. Critical indicators and cut-

off criteria were defined and they were elaborated by multivariate approach in order to point out the 

time at which the lifetime ended allowing the set up the shelf-life extension. 

Secondly, the Shelf Life Extension (SLE) obtained through packaging innovation, was matched 

with the possible increase of global sustainability of a food system along the supply chain in terms 

of environmental load and food loss reductions for both strawberries and raspberries. The SLE can 

be considered an Indicator of Sustainability since the evidence that a longer shelf life means also 

higher sustainability, when possible and feasible, exists. Moreover, the Environmental Impacts of 

the new packaging solutions adopted were calculated by means of the Life Cycle Assessment. The 

benefits of the Food Loss reduction derived from the actual Shelf Life Extension can be estimated.  
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3 - SHELF LIFE ESTIMATION OF RASPBERRIES PACKAGED IN “TRADITIONAL” 

PET TRAY 

  

3.1 INTRODUCTION 

As defined above, the shelf life is the time at which the product is not acceptable from consumer or 

it is not safe for consumption and the concept of shelf life estimation can have effect on the 

production of food waste and loss. In this PhD thesis section, a protocol to determine the shelf life 

of raspberries packaged in ―traditional‖ solution is presented. In fact the improper definition of 

shelf life may be responsible of two different scenarios: a shelf life overestimation that could cause 

consumer complaints, product recalls, ineffective logistic impacts, food losses, etc and a shelf life 

underestimation that could cause serious, expensive food losses and wastes. 

Many reviews and books have been written to describe the methodologies applied for the definition 

of the shelf life value but each author use a specific grouping for the possible methodologies 

(Nicoli 2012; Hough 2010; Robertson 2009). The most used methodology starts with the 

determination of the critical indicators, evaluating the experimental data (which is the main factor 

that represents the quality decay) or consumer satisfaction or historical market data (especially in 

the industrial field). To define the time at which the critical indicator reaches its limit it is necessary 

to define the critical limit (acceptability limit). In this contest, it is possible to follow different 

strategies. The first is the use of an arbitrary value, defined by the authors or the company. It is 

clear that this approach is not so efficient to determine the shelf life (Portela and Cantwell, 2001). 

The second approach is based on sensorial tests performed by trained panels or by consumers to 

determine a sensorial value at which the samples are still acceptable; this procedure can be 

expensive and does not necessarily represent the rejection of product (Gambaro et al., 2006). A 

third approach is based on the failure criteria in survival analysis where the shelf life is a time limit 

at which a given percentage of food products is expected to fail and the acceptability limit is then 

chosen by selecting the percentage of food failure considered tolerable (Hough 2009). Another 

approach is based on a legislative limit, for example the maximum concentration of microorganism 

accepted to grow on the surface of product or the respect of the values presented on the label, for 

example the value of vitamin C in fruit juice (Polydera et al., 2005).  In some cases it is possible to 

determine the limit using the time at which the kinetic of degradation of the critical indicator has 

the maximum acceleration or the maximum rate (Limbo et al., 2009). 

After the definition of the acceptability limit it is necessary to model the critical indicator and set 

the limit on the model to define the shelf life value. This procedure can be adopted in the real 

condition but it can be applied also on accelerated storage conditions. 

For these reasons it is not easy to define with high accuracy the shelf life value, especially in those 

products where the expired date is not expressed (see the whole fruits).  

For example, in this case the problem becomes even more complex because numerous factors have 

to be studied together and for each one of they, the limit have to be defined. Especially in the 

sensory analysis, is not easy define which is the most appropriate to estimate the shelf life value 

(Pedro and Ferreira, 2006). Multivariate techniques of analysis present a set of useful tools for 

shelf-life studies in which several properties need to be monitored. One of the most applied 

techniques is Principal Component Analysis (PCA), which aims at finding a new set of axes in 

multivariate space that better describe the structure in the data. These new axes are called Principal 

Components (PC) and are built by linear combinations of the original variables (Malinowski 1991; 

Wold et al., 1987). 

In this part of the work, two different approaches to determine the shelf life value of raspberries 

packed in the traditional system (defined as the macro-perforated PET tray with macro-perforated 

PET lid) were compared. The objectives of this work were, also, the definition of the critical 

quality index (or indices) and its limit (or their limits). The small red fruits and in particular 
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raspberries (Rubus idaeus L.) have very short storage life due to the physiological aspects such as 

high respiration rate, loss of firmness, mould susceptibility and breaking down tissues.  

 

3.2 MATERIALS  

Red Raspberries (Rubus idaeus L.) cv. Erika from Northern Italy picked at a commercial ripening 

state were provided by a local supermarket in Milan and transported to the laboratory where they 

were immediately stored in a dark cold chamber (5±1 °C, 70 %RH) before packaging. The 

raspberries were purchased in a macro-perforated PET tray (9.5x14x4.5 cm) with a PET rigid lid: 

this is the traditional sale unit containing 125 g of fruits.  

The changes in quality during storage were monitored in 3 different periods, July and October  

2013 and October 2014.  

 

3.3 METHODS 

 

3.3.1 Sensory Shelf life 

 

Survival analysis: Forty consumers, approximately balanced between males and females, were 

recruited among students and employees from the University of Milan (Italy); they were between 

21 and 60 years old and they regularly consumed raspberries. At each sampling time, consumers 

were asked to visually evaluate the acceptability of raspberries in each packaging condition, 

responding ―yes‖ or ―no‖ to the following question: ―Imagine you are in the supermarket to buy 

raspberries, would you normally consume this product?‖.  

The parametric model was used to define the time at which the 50% of consumers rejected the 

product (Lareo et al., 2009; Gámbaro et al. 2006; Giménez et al. 2007), when stored in the 

traditional sale unit (macro-perforated PET tray). Then, this limit was applied to identify the 

instrumental limit of acceptability of the main quality parameter and thus estimate the shelf life. 

For the survival analysis the software R (Bell Laboratories, University of Auckland, New Zealand) 

was used. 

 

Consumer acceptability: Forty consumers, approximately balanced between males and females, 

were recruited among students and employees from the University of Milan (Italy); they were, 

between 21 and 60 years old and they regularly consumed raspberries, approximately balanced 

between males and females. At each sampling time, consumers were asked to visually evaluate the 

acceptability of raspberries in each packaging condition. The consumers were asked to give an 

overall appreciation of raspberries quality on a 1-9 scale: 1 -extremely bad- to 9 -extremely good- 

(Ares et al. 2008). In the case of  acceptability scores 1–5  the rating was transformed to the word 

―no‖, indicating that the consumer disliked the product. In contrast, if a consumer's score for a 

sample was 6–9, it was replaced by the word ―yes‖, indicating that the consumer liked the product 

(Giménez et al. 2008). The data were used to calculate the percentage of the consumer that 

appreciated the berries at each storage time.  

 

Visual colour evaluation: The berries colour was also assessed by the same forty consumers using 

a 1 to 5 visual rating scale (Perkins-Veazie and Nonnecke, 1992).  

 

3.3.2 Chemical and Physical analyses  

 

Unacceptable berries: Both physically damaged and mouldy berries were visually estimated at 

each sampling time with results expressed as percentage of unacceptable berries (Van deer Steen et 

al., 2002).  
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Colour: At each sampling time, superficial colour of the berries (L*, a* and b* parameters) was 

measured on 30 fruits taken from three different packages using a handheld Tristimulus colorimeter 

(Konica Minolta CR-300, Tokyo, Japan) with a 8 mm diameter, 2° standard observer and a C as 

illuminant source. Before each measurement, the apparatus was calibrated on the Hunterlab color 

space system using a white ceramic tile (Minolta calibration plate, Y = 92.6, x = 0.3136, 

y = 0.3196). Colour was described as Hue angle (H°, expressed as arctg b*/a*) and Chroma (C, 

expressed as (a*
2
 + b*

2
)

1/2
) indices.  

 

Weight loss: A gravimetrical determination was performed by weighting each PET tray at time 

zero and during the storage using a Technical balance (MP-3000 Chyo Balance corp., Japan). 

Changes in fruit weight were expressed as percentage.  

 

Firmness of raspberries: A single compression test on each berry (modified method from Sousa 

et al., 2007 and Giovanelli et al., 2014) was performed using a dynamometer (Zwick Roell 

Instrumental Z010, Zwick GmbH & Co. KG, Ulm, Germany). At least 30 berries were assessed per 

period. Each berry was positioned under the probe plate (80 mm diameter) and compressed to 60 % 

deformation using a load cell of 10 kg (100 N), at 2 mm/s test speed and with 5 g pre-load. The 

method used to assess product firmness intended to measure the structure resistance against the 

compression applied to the top (peak)-bottom direction. The labour was measured at 60 % of 

deformation, describing the cavity complete collapse, when the deformation overcomes 60 %, the 

instrument measures the drupelets resistance to compression. 

 

Dry matter content: Determinations were made on 5 g of fruit pulp by drying samples in an oven 

set at 105 °C. The samples were weighed after about 16 hours. The measurements were done in 

triplicate. The results were expressed as g of dry matter per 100 g of sample. 

 

Titratable Acidity (TA): After thawing of samples at 4 °C overnight, TA was determined by 

titrating sample (2 g of homogenate + 40 mL of CO2-free distilled water) with standardized 0.1 N 

NaOH to pH 8.2 by use of a pH meter (Basic 20+, Crison Instruments SA, Barcelona, Spain). TA 

was expressed as citric acid equivalents (grams of citric acid per 100 grams of berries). 

 

Total soluble solids (TTS): After thawing of samples at 4°C overnight, measurements were done 

on berries pulp using an Automatic Refractometer model SMART-1 Atago®, (Atago CO.LTD, 

Tokyo, Japan). The results was expressed as BRIX°. 

 

3.3.3 Statistical analysis 

Data were statistically evaluated by one-way ANOVA and multiple range test (Tukey method) to 

put in evidence significant differences among samples, using Statgraphics Plus v. 5.1 package 

(Statpoint Technologies, Inc. Warrenton, VA 20186, USA). The differences were considered 

significant at P < 0.05. In order to analyse the results from a multidimensional point of view, the 

quality parameters data were analysed by Principal Component Analysis (PCA), using the 

Unscrambler v.9.7 software (CAMO, Norway). Correlation analysis was performed by using 

Statgraphics Plus v. 5.1 package (Statpoint Technologies, Inc. Warrenton, VA 20186, USA). 
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3.4 RESULTS AND DISCUSSION  

 

3.4.1 Definition of Shelf Life by Survival Analysis 

Generally, survival analysis is a collection of statistical procedures for data analysis for which the 

outcome variable of interest is the time until an event occurs (Kleinbaum 1996). The problem of 

analysing time to event data arises in a number of applied fields, such as medicine, biology, public 

health, epidemiology, engineering, economics, and demography (Klein and Moeschberger 1997).  

The survival analysis approach was used in the shelf life estimation to process the data coming 

from the consumer acceptability test; in other words, this is a method that evaluates the time at 

which an event of interest occurs taking into account the presence of censored data (Hough et al., 

2003).  

The variable T was assumed as the storage time at which the consumers reject the sample. The 

rejection function F(t) can be defined as the probability P to reject a product before time t, i.e., F(t) 

= P(T).  

Censoring was defined as follows: at a given storage time t two possible answers could be given by 

the panelists: (a) the sample was perceived as acceptable, indicating that it would be rejected 

beyond time t, thus the data is right censored; (b) the sample was perceived as unacceptable, 

indicating that consumer would start rejecting the product before time t, thus the data is left 

censored. Since each consumer evaluated only one sample, no interval censoring was present. 

Usually, rejection times are not normally distributed; on the contrary their distribution is often 

right-skewed.  

For the data under study, the following standard distributions were compared: smallest extreme 

value, normal, logistic, Weibull, log-normal, and log-logistic. Details about each of these 

distributions can be found in the literature (Klein and Moeschberger 1997; Meeker and Escobar 

1998). To date, there are no statistical tests to compare the goodness-of fit of different parametric 

models used for interval-censored data. Therefore, visual assessment of how parametric models 

adjust to the nonparametric estimation is the common practice in choosing the most adequate 

model (Hough et al., 2003). An alternative and more objective approach to estimate the best fitting 

is proposed by Hough (2010). This is an empiric system to define the best equation to fit the 

experimental data. The loglikehood test proposed by Meeker and Escobar (1998) allows the 

goodness of fit comparison of two models, one of which (the null model) is a special case of the 

other (the alternative model). The test is based on the likelihood ratio, which expresses how many 

times more likely the data are under one model than the other. Lower this value better will be the 

fitting of the model on the experimental data. The model that gives the lowest loglikelihood would 

be the best. 

Once the likelihood function is formed for a given model, specialized software can be used to 

estimate the parameters that maximize the likelihood function for the given experimental data.  

As reported in the Table 3.1 the Weibull equation has the lowest value indicating the best fitting 

among the applied equations. In many cases the distribution that follows the consumer product 

rejection in studies on food is the Weibull distribution (Calligaris et al. 2007, Araneda  et al, 2008; 

Cadelli and Labuza 2001).  

 

Table 3.1. Value of loglikehood test 

Equation Value 

Lognormal 56.63 

Exponential 67.99 

Loglogistic 57.72 

Weibull 52.68 
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The Weibull equation (3.1) was reported below, in this equation F(t) was expressed as acceptability 

function: 

 ( )     (
 

 
) 

  (3.1) 

where α is the scale parameter of distribution and β is the shape parameter of the distribution 

(Gacula and Kubala, 1975). 

The Weibull parameters were calculated (Table 3.2; R
2
=0.9998) and shown in Figure 2.1. By 

reading the graph in Figure 2.1, taking into consideration a 50% consumer accepatability (vertical 

axis), the corresponding shelf life can be read on the horizontal axis. Calculated shelf life was 

estimated with 95% confidence intervals.  

 

Table 3.2. Equation parameters of Weibull distribution with 95% of confidential interval. 

 α Β 

Average: 4.83 2.37 

Lower: 4.21 3.11 

Upper 5.55 1.80 

 

Figure 3.1. Interpolation of experimental data using the Weibull equation with confidential interval 

(95%). 

 

 
 

The shelf life assessment at 50 % of acceptance was around day 4.1±0.7 for the sample stored in 

PET trays. In most studies the sensory shelf life of minimally processed vegetables has been 

estimated considering the time necessary to reach an arbitrary score of 50% of the scale used to 

evaluate a certain sensory attribute (Piagentini et al., 2005; Li et al., 2001; Zhou et al., 2004). 

Comparing this result in terms of shelf life value with assessments presented in literature, this 

criterion seems strict enough to assure the products‘ quality at the end of its shelf life.  

 

3.4.1.1 Chemical and physical analyses during storage 

 

The physical and chemical analyses were performed to determine the changes in raspberries 

quality, using the following quality indices: Visual mouldy berries, colour -in terms of Hue angle-, 

weight loss and firmness of raspberries.  

The raspberries during storage lost quickly the weight due to metabolic activity (i.e. respiration and 

transpiration rates) of fruits (Figure 3.2). However, in this study, weight loss was not over the 
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marketability limit reported as 6–8% (Haffner et al., 2002; Nunes, Emond & Brecht, 2003) but the 

loss can contribute to define a worse appearance to consumer. 

 

Figure 3.2. Weight loss changes of raspberries stored in traditional packaging. Different letters  

indicate significant differences (p<0.05). 

 
 

The colour, showed a slightly reduction in terms of Hue angle during storage (Figure 3.3). The 

colour of the fruits became more red due to the over-ripening and senescence. 

 

Figure 3.3. Hue changes of raspberries stored in traditional packaging. Different letters indicate 

significant differences (p<0.05). 

 
 

The mould growth on berries during storage is one of the most important limiting factors. In fact as 

reported in literature the Botrytis infection in the small red fruit has the potential to cause up to 

50% loss (Hertog et al., 1999; Wszelaki and Mitcham, 2003). This parameter was considered 

unacceptable when 5% of the berries were visibly affected by mycelium growth (Hertog et al., 

1999; Sanz et al., 1999). In this study the limit was reached quickly (around 2 days) and confirms 

the assumption that this parameter has an important role during storage. 
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Figure 3.4. Visual mouldy berries of raspberries stored in traditional packaging. Different letters 

indicate significant differences (p<0.05). 

 

 
 

Firmness is a main quality attribute that is critical in determining the acceptability of fruits and 

vegetables. It is convenient to define quality as the composite of intrinsic characteristics that 

differentiate units of the commodity - individual pieces of the product - and to think of 

acceptability as people‘s perceptions of and reactions to those characteristics (Abbott and Harker, 

2013). In this study the firmness decreases quickly reaching values around 16 Nmm at the end of 

storage (Figure 3.5).  

 

Figure 3.5. Firmness of raspberries stored in traditional packaging. Different letters indicate 

significant differences (p<0.05). 

 

 
 

3.4.1.2 Correlation between consumer acceptability and quality indices 

In order to find the most useful indicator that could be associated to the consumer acceptance, a 

correlation analysis between the predicted percentage of consumer acceptability (F%) and the 

chemical and physical indices was carried out (Table 3.3). Soluble solids, acidity, and dry matter 

were scarcely correlated with the predicted percentage of consumer acceptability (R<0.70). By 

contrast, the consumer acceptability was strongly correlated with firmness properties suggesting 

this variable to be potentially available as critical indicator as reported in Table 3.3.  
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Table 3.3. Correlation coefficients between the percentage of consumer acceptability (F%) and 

quality parameters of raspberries during storage 

Quality indices R 

Firmness (Nmm) 0.999
a
 

Weight loss (%) 0.952 

Visual Mouldy berries (%) 0.922 

Hue angle (°) 0.913 

a
p<0.05.  

 

Firmness is a quality attribute that is critical in determining the acceptability of fruits and 

vegetables. In the protocol for the determination of the shelf life value, the second step after 

choosing the critical indicator is the evaluation of the critical limit. 

The changes in firmness during storage follow a common degradation as shown in the Figure 3.5. 

The experimental data were interpolated with a linear regression model identifying the relationship 

between the critical index and time as a pseudo-zero order kinetic (Oduse and Danny, 2012). The 

linear regression can be expressed as follows: 

 

Where: A is Firmness (Nmm), t is storage time (day), k and A0 are regression parameters as 

reported -2.03 and 31.95 respectively (0.99 R
2
). 

 

By substituting in Eq. (3.2) the independent variable t defined in survival shelf life, the following 

relationship can be obtained (Eq. 3.3): 

 

A = k * α * [ - ln( F(t) ]1/β + A0 (3.3) 

Where: A is Firmness (Nmm), t is storage time (day), k and A0 are regression parameters, α is the 

scale parameter of distribution and β is the shape parameter of the distribution (Hough, 2009). 

This equation allows defining the firmness limit related to the end of lifetime of raspberries; taking 

into consideration the industrial policy, a food company can choose to expose to more or less risk 

by selecting a certain percentage of consumers rejecting the product. 

By using the Eq. 3.3 with the defined parameters (k, α, β, A0) the estimated firmness value was 

calculated in correspondence of 50 % of consumer rejection.   

The value of the firmness using this equation corresponds to 23.4±1.4 Nmm taking into account a 

95% of confidence level.  

The last step consists in applying the pseudo-zero kinetics to define the t at which the initial value 

of firmness reaches its critical limit (Eq. 3.4). In this case this time correspond to the shelf life 

value (Manzocco and Lagazio, 2009).  

 

   
    

 
 (3.4) 

Where: A is the acceptability limit of firmness chosen on the basis of 50% of consumer rejection, 

A0 is the initial value of the parameter and the k is the rate of firmness decrease.  

 

At = k * t + A0                                          (3.2) 



26 

 

The shelf life value, taking into consideration the 95% as confidence level resulted in 4.1±0.7 days. 

This lifetime value is in the same range reported in literature, taking into consideration the same 

temperature of storage, which was stated between 2-3 days by Hardenburg et al. (1986) and 5 days 

by Nunes et al. (2003). 

 

3.4.2 Definition of Shelf Life by Multivariate analysis 

Multivariate analysis (MVA) is based on the analysis of more than one statistical outcome variable 

at a time. This technique can be used to assess the shelf life value considering many different 

parameters and taking into account the effects of all variables on the responses of interest. 

One of the most useful techniques based on this approach is the Principal Component Analysis 

(PCA), which aims at finding a new set of axes in multivariate space that better describe the 

structure in the data set. These new axes are called Principal Components (PC) and are built by 

linear combinations of the original variables (Malinowski., 1991; Wold et al., 1987). 

Following the steps defined by Pedro and Ferreira (2006) study the multivariate approach was 

performed.  

Firstly a matrix was carried out collecting in the columns the results of physical and sensorial 

analyses while rows represent the time at which the results were obtained. In this matrix 3 

replicates of the raspberries analysis performed along 2 years for different batches of samples were 

taken into account. This structure of the columns is necessary in order to keep samples spread in a 

single multivariate space which would reveal time dependence in the PCA; the variables present 

different scales, and the auto-scale procedure was performed to obtain to obtain the Xa matrix. The 

columns of Xa have means equal to zero and unit variance (Eq. 3.5):  

 

   
      ̅ 

  
 

         (3.5) 

where Xk and Sk are, respectively, the mean and the standard deviation of the elements of the k-th 

column of X and Xa, k and Xn,k are typical elements of Xa and X. n is the number of points in 

time where evaluations were conducted. 

Secondly build up shelf-life charts (PC scores vs. time) for the first R PC and identify the scores 

which are time-related and for each of the time-related PC, identify their reaction order and 

determine the kinetic parameters using the PC scores as properties. 

Thirdly to identify gathering the cut-off criteria for the score time-related PC using the loading 

values of the PCA should be used the following procedure (Eq. 3.6):  

1) Place the reference values for each property into the x vector and pre-process it using the 

parameters determined in equation 3.5 to obtain Xa.  

2) Use the loadings matrix to calculate the cut-off criteria that is the maximum acceptable scores 

for each time-related PC: 

 

            (3.6) 

where Xa is the row vector of reference values and Lm is the loadings matrix of the time-related 

PC for storage condition (Pedro and Ferreira 2006).  

The changes in raspberries quality indices stored in traditional packaging can be described by using 

few quality indices with respect to all the parameters tested in this study. The analysis of loading of 

the original matrix established that the loading that have an impact more than 0.3 was collected to 

use it in the final matrix and to estimate the global quality indices. This selection was carried out to 

determine the best quality indices that describe the changes in the berries during storage. In fact 
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only 5 indices were used to evaluate the shelf life of berries using PCA approach respect to all 

parameters measured in this work as reported in Table 3.4. The selection defined the weight loss, 

firmness, visual mouldy berries, visual colour evaluation and visual acceptability as the main 

quality indices to describe the quality decay.  

As reported in literature, the berries can loss quickly the weight during storage due to metabolic 

activity (i.e. respiration and transpiration rates) of fruits. In our study, weight loss was around 3%  

which is lower than the marketability limit (6–8 %; Haffner et al., 2002; Nunes, Emond & Brecht, 

2003).  In this study the firmness limit found (23 Nmm) in previous section has been reached and 

define an important limit to describe the lifetime value. As described above the firmness decrease 

its value following the pseudo-zero order kinetic. 

The mould growth during storage on berries is one of the most important limiting factors. In fact as 

reported in literature the Botrytis infection in the small red fruit with the potential to cause up to 50 

% loss (Hertog et al., 1999; Wszelaki and Mitcham, 2003). This parameter was considered 

unacceptable when 5 % of the berries was visibly affected by mycelium growth (Hertog et al., 

1999; Sanz et al., 1999). In this study the limit was reached quickly (around 2 days) and confirms 

the assumption that this parameter has an important role in the storage. The acceptability limit has 

been individuated in literature as the best combination between the economic and marketable 

sustainability of berries and the limit was fixed at 50 %  (Labuza et al., 1999). This index can 

contribute to define an overview assessment of berries quality. The berries reached this value 

during storage after 4-5 days. The visual colour reached the limit expressed as score 3 in a 1-5 scale 

(Hertog et al., 1999)  after around 6-7 days of storage. 
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Table 3.4: The matrix of quality indices used in the PCA to identify the best parameters to estimate the shelf life value 

SAMPLE Weight 

loss 

(%) 

TSS 

(Brix°) 

a* b* Hue 

angle 

(°) 

Croma 

(C*) 

Acidity 

(g/100g) 

Firmness 

(Nmm) 

Visual 

acceptability 

(%) 

Visual 

moulded 

berries 

(%) 

Visual 

colour 

evaluation 

(score) 

Dry 

matter 

(%) 

A0 0.0 10.1 23.7 14.6 31.5 27.8 2.0 25.1 100 0 1.00 13.3 

A2 1.6 10.9 24.1 14.8 31.5 28.3 1.7 21.3 85 6 2.00 12.6 

A4 2.1 10.0 26.7 16.5 31.8 31.4 1.6 19.4 35 21 2.00 12.1 

A7 3.0 9.2 26.6 16.2 31.3 31.2 1.5 18.1 20 30 3.00 11.4 

B0 0.0 8.0 27.2 17.7 33.1 32.4 1.5 30.9 100 0 1.00 10.9 

B2 0.8 8.7 27.1 16.5 31.4 31.7 1.4 28.3 79 8 2.00 12.4 

B6 2.2 8.3 27.0 16.0 30.7 31.4 1.3 20.5 33 37 3.00 11.8 

B8 3.0 8.9 27.5 16.3 30.7 32.0 1.3 15.9 6 70 3.00 12.4 

C0 0.0 9.2 36.3 18.3 26.8 40.6 1.7 70.4 100 0 1.00 11.4 

C5 1.9 10.0 32.3 13.5 22.6 35.0 1.6 34.6 45 5 2.00 11.1 

C7 3.0 10.6 30.2 13.5 24.0 33.1 1.4 26.6 20 13 3.00 11.8 

C10 4.4 9.9 28.2 11.9 22.9 30.6 1.5 22.4 0 45 4.00 12.0 
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Limits used for each quality index, taking into consideration only selected parameters, are reported 

in Table 3.5  

 

Table 3.5. Limit values for different quality parameters to identify the PC critic 

Variable Unit Limit References 

Visual mouldy berries % 5  Hertlog et al., 2009 

Weight loss  % 6  Robinson et al. 1975 

Visual colour evaluation Score 3  Nunes et al. ,2003 

Firmness Nmm 23  Adobati et al. 2015 

Visual acceptability % 50  Lareo et al., 2009 

 

To identify the general limit to estimate the shelf life value a useful method was used as described 

in the work of Pedro and Ferreira (2006). The matrix of the data from the 5 selected parameters was 

analyzed in the principal component analysis.  

In PCA two principal components have accounted for 82% of the variation in the original data set, 

a reasonable amount of information considering the intrinsic variability of the original properties. 

Figure 2.6 shows the scores chart for the first two PC. Samples are labelled with their respective 

times (t) and the name of batch in order to visualise the correlation of each PC with time-related 

degradation. The PC1 is time structured, in fact the samples were distributed along this line in 

function of the time while the PC2 describes the variation among samples A-B versus C. The batch 

C is different from the others due to the higher firmness values as described by ―texture‖ in the 

loading  plot (Figure 3.7). At the end of the storage the sample C was characterized by a higher 

weight loss and higher visual colour evaluation. The samples A and B at the end of the storage 

were described by a higher mould growth than in sample C. 

The loadings chart in Figure 3.7 reveals the key attributes responsible for product degradation. It 

can be seen that those variables which increase in time have positive PC1 loadings whilst those 

which decrease present negative values. The Texture and the Visual acceptability have shown 

negative values defining a decrease trend during storage, while Weight loss, Visual colour score 

and the Visual mouldy berries have shown positive values defining an increase trend during berry 

storage. 

 

Figure 3.6. Scores plot of Principal Component 
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Figure 3.7. Loadings plot of Principal Component 

 
 

The multivariate approach can use all parameters that have effect on the quality changes in 

raspberries. Considering the property of time-structure of PC1 it was possible to define an overall 

degradation reaction with pseudo-zero-order kinetic (Table 3.6) for different batch samples . 

 

Table 3.6. Fitting of linear equation the PC1 data in order to obtain the pseudo-zero order kinetic.  

Batch a b R
2
 

1 0.6551 -2.5047 0.9987 

2 0.5558 -1.9697 0.9797 

3 0.5964 -3.232 0.9782 

 

Figure 3.8. PC 1 versus time for each batch samples 

  
 

Applying the reference values reported in Table 5 for each quality attribute and using the equation 

(3.6), a critical PC1 score value of -0.2 was obtained (refer to Figure 3.8), which corresponds to 4 ± 

1 days of storage. Also in this case the shelf life value of raspberries evaluated with multivariate 

approach is in the range between 3-5 days as defined in the above approach. 

 

3.5 CONCLUSIONS 

 

In this study the two methodologies to assess the shelf life value were applied.  

The survival analysis approach can predict the shelf life of foods on the basis of the consumer 

acceptance requirements and the changes of quality indices by an easier, faster and ―cheaper‖ 
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methodology (no need for expensive instrument). Once the instrumental analyses have been 

assessed and correlated with proper survival analysis results, further time-costing consumer tests 

can be skipped and the detection of such indices may be routinely applied to evaluate shelf life in 

the industry quality control programs (Manzocco and Lagazio 2009). Although in many works 

(Curia et al., 2005; Calligaris et al., 2007; Giménez et al. 2007) this procedure is useful due to the 

standardization of food in terms of formulation and process, in this kind of food (small red fruit) 

the variability among batches could have a negative effect on the estimation of shelf life using this 

approach. The factors of fruit variability derive from the cultivar but also from environmental 

condition of picking, growing and post-harvest cooling. Therefore the definition of instrumental 

limit correlated with the consumer acceptance can have an inaccurate evaluation due to the 

changing in the critical index that defines the overall quality. It is not sustainable, in terms of time 

and cost, to repeat with a large numbers of people the test for each cultivar or each environmental 

condition. There is the need to find a more representative and suitable indicator to estimate the 

shelf life, taking into consideration the variability of this type of fruit, in terms of the cultivar and 

the batch.  

This problem can be resolved successfully determining the actual shelf-life by using the 

multivariate technique (Principal Component Analysis). By gathering the kinetics of main 

parameters into a single variable, it provided a reduction of the number of calculations performed, 

giving the information on what are the main parameters affecting berries degradation during cold 

storage. The critical cut off was calculated using more than one reference value and this technique 

can contribute to increase the reliability of shelf life value calculated. This is extremely 

advantageous since, in industry, scientists, managers and marketers often struggle to define 

individual criteria for each measured property.  
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4- PASSIVE AND ACTIVE PACKAGING IN MASTER BAG SOLUTIONS TO EXTEND 

THE SHELF LIFE OF RED RASPBERRIES (RUBUS IDAEUS L.) 

 

4.1 INTRODUCTION 

Small red fruits and in particular raspberries (Rubus idaeus L.) have very short shelf-life due to 

physiological aspects such as high respiration rate, loss of firmness, mould susceptibility and tissue 

breaking down. In fact, the most common reasons of customer complaints are the expired, smashed 

and leaky fruits (Nunes et al., 2009). The high perishable characteristics can contribute to an 

important food loss and waste along the supply chain up to 75% from field to retailer and also 3-

5% during distribution (WRAP, 2011).   

The growers and the researchers have been studying different techniques to extend the shelf-life of 

fruit including the atmosphere modification controlling the oxygen and carbon dioxide levels 

around the fruits. This technique is useful for the transport and storage of berries (Kader,1989). The 

atmosphere modification in packaged fruit can follow two main strategies:  

a) matching the correct film permeability and the fruit respiration rate in terms of oxygen 

consumption and carbon dioxide production in order to produce a steady condition inside the 

package (Kader et al. 1989) 

b) establishing the proper conditions extending the shelf life of fruits by means either of packaging 

modified atmosphere or by using active devices (e.g. carbon dioxide emitters and oxygen 

scavengers). In the latter case, the devices are inserted into the packaging and they modify actively 

the atmosphere, more quickly and better than the previous system (Agar et al., 1999; Robbinson 

and Fellman, 1993). 

The use of oxygen absorber and carbon dioxide emitters, in combination with a specific film 

permeability, allow to reach the correct oxygen and carbon dioxide concentrations which are 

recommended for each type of fruits. In particular, for raspberries, these concentrations are 

between 5-10 kPa for O2 (Joles et al. 1994) and 15-20 kPa for CO2 (Beaudry, 1999). In fact, low 

levels of oxygen can reduce the respiration and decay (Beaudry, 1999), moreover high 

concentration of CO2 can contribute to reduce the fungal growth (Brown, 1992), loss of firmness 

(Jacxsens et al., 2000; Day, 2001) and, to a lesser extent, the respiration rate. Those gas limits can 

promote the off-flavour production (e.g. acetaldehydes, ethanol and ethyl acetate) and fruit injury 

(Pesis, 2005).  

In this study, the possibility of extending the shelf life of red raspberries (Rubus idaeus L.) using 

active packaging solutions were investigated, after the definition of the most suitable plastic 

material to be used as master bag. Critical indicators and cut-off criteria were also investigated and 

data were used in pointing out the time at which the raspberry lifetime ended in order to evaluate 

the potential extension of shelf-life due to different packaging solutions. The final aim was to 

estimate the role of a new packaging technology in reducing environmental impact along the 

supply chain, whilst taking into account the benefits of the food loss reduction derived from the 

actual shelf-life extension. Moreover, the study on active packaging compared with traditional and 

passive atmosphere solutions from a whole perspective could really contribute in improving the 

active packaging technologies and making the food supply chain more efficient. 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 Fruits 

Red raspberries (Rubus idaeus L.) cv. Erika, originated from North Italy were provided by a 

distributor in Milan the day following the harvest and transported to the laboratory where they were 

immediately stored in a dark cold chamber (5±1°C, 70% RH). At this stage, the fruits were packed 

in macroperforated PET trays (125 g, dimensions: 14x9x5 cm) closed with PET cover that 
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represented the commercial unit. In order to simulate the real conditions, fruits were maintained in 

their original PET trays without sorting. 

 

4.2.2 Packaging solutions and Storage 
 

4.2.2.1 Passive atmosphere packaging solution 
Table 4.1 describes the packaging materials used in the experimental plan, including the gas 

permeability for oxygen transmission rate (O2TR), carbon dioxide transmission rate (CO2TR) and 

water vapour transmission rate (WVTR). 

 

Table 4.1: Characteristics of plastic films used in the master bag form 

Code Material Thickness 

(µm) 

O2TR  

(ccm
-2

day
-1

)* 

CO2TR 

 (ccm
-2

day
-1

)* 

WVTR  

(gm
-2

day
-1

)** 

A LDPE 500 500 2600 1.1 

B PA/PE**

* 

150 20 40 3.4 

C LDPE 25 4000 30000 21.7 

* 23°C-0 % RH; ** 38°C-90 % RH.,*** Polyamide/Polyethylene 

 

4.2.2.2Active atmosphere packaging solution 
For the experimental plan, fruits in their macro-perforated PET trays were packed inside a master 

bag containing carbon dioxide emitter and oxygen scavenger sachets.  

A master bag unit made by LDPE film was used as packaging unit. The characteristics of the bag 

are the follow: 25 µm thickness, 30x35 cm dimensions, oxygen transmission rate at 23°C and 

0%RH equal to 4000 cc m
-2

 day
-1

, carbon dioxide transmission rate at 23°C and 0%RH equal to 

30000 cc m
-2

 day
-1

, water vapour transmission rate at 38°C and 90%RH equal to 21.7 g m
-2

 day
-1

.   

Inside the master bag unit, two macro-perforated PET trays, containing 125g of berries each one, 

were inserted and before sealing, a defined volume of compressed dry air (moisturized by using 

distilled water applied onto paper towels), one oxygen scavenger (FreshPax® CR4, Multisorb 

Technologies Inc., Buffalo, NY, USA), and a different number of pre-activated carbon dioxide 

emitters (BioFresh®, Multisorb Technologies Inc., Buffalo, NY, USA; nominal capacity of 500 

cm3) were added to the master bag.  

Table 4.2 summarizes the combinations used in this set. The control sample was represented by 

raspberries stored in the commercial PET tray.  

 

Table 4.2. Solutions tested in the experimental plan 

Code S/UFV*  

(cm
2
*cm

-3
) 

Number of O2 

scavengers 

Number of CO2 

emitters 

A 1.077 1 2 

B 1.077 1 3 

C 0.506 1 3 

D 0.506 1 4 

E 0.506 1 5 

* UFV: unfilled volume inside master bag 
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4.2.3 Physical and chemical analyses 

 

Head space measurement: Headspace gas composition was periodically sampled by means of a 

gas-tight syringe, putting an adhesive septum on the film before opening. Oxygen and carbon 

dioxide were detected and quantified by a gas chromatograph (Hewlett-Packard HP 5890 series II) 

equipped with a thermoconductivity detector (TCD) set at 105 °C and a steel column (2 m x 6 mm 

CTR I Alltech, Milano, Italy). The GC oven was set isothermally at 50 °C.  

To better manage the evolution of carbon dioxide inside the master bag in the response surface 

methodology, the volume of carbon dioxide was used as the response. The volume of carbon 

dioxide was estimated by determine the area below the best curve that interpolates the experimental 

points of carbon dioxide concentration in master bag multiplied by the % with the head space 

volume (0.004m
3
) as show in Figure 4.1. The results were expressed as m

3
 of carbon dioxide 

produced over the storage time. 

 

Figure 4.1. Interpolation of carbon dioxide concentration evolution by best fit simple curve 

 
 

Respiration rate: Apparent respiration rate (RR) of the raspberries was measured at 5°C using the 

closed system method. The measurements were carried out in triplicate. Berries and the jars were 

equilibrated for 1 h at 5°C. Samples (100 g) were then placed in air in 0.5 L glass jars and tightly 

covered with metal caps equipped with silicone sampling ports. Headspace gas was periodically 

sampled (20-30 min) by means of a gas-tight syringe. Oxygen and carbon dioxide were detected 

and quantified by a gas chromatograph (Hewlett-Packard HP 5890 series II) equipped with a 

thermoconductivity detector and a steel column (2 m × 6 mm. CTR I Alltech), until the CO2 level 

inside the jars reached 5%. Respiration rate was calculated from the linear regression of O2 and 

CO2 concentrations measured during the time of experiment and it was expressed as ml kg
−1

 h
−1

.  

      
 [   ]   

(        )
 

       
 [    ]   

(        )
 

Where: 

V= Head space volume, ml 

M= Mass of product, kg 

t= Time, hours 

 

Percentage of rejected berries: Physically damaged and mouldy berries were visually estimated 

at each sampling time and the results were expressed as percentage of rejected berries respect to 
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total berries inside each tray. In particular, raspberry fruits showing surface mycelia development 

were considered decayed. 

 

Weight loss: The net (Wraspberries) and gross (W0) weights of each package unit (PET tray) before 

and after the storage in master bag were recorded at day 0 with a technical balance (MP-3000 Chyo 

Balance corp., Japan) and the gross weight were recorded over the storage time. The weight loss 

percentage was obtained as follows: 

       (     )                 

Where: 

W0: weight of raspberries at time 0 (initial), expressed in g 

Wt: weight at raspberries at a specific time, expressed in g 

 

Superficial colour of berries: At each sampling time, superficial colour of the berries (L*, a* and 

b* parameters) was measured on 30 fruits taken from three different packages by an handheld 

Tristimulus colorimeter (Konica Minolta CR-300, Tokyo, Japan) with a diameter 8 mm, 2° 

standard observer and a C as illuminant source. Before each measurement, the apparatus was 

calibrated on the Hunterlab color space system using a white ceramic tile (Minolta calibration plate, 

Y = 92.6, x = 0.3136, y = 0.3196). Colour was described as Hue angle (H°, expressed as arctg 

b*/a*) and Chroma (C, expressed as (a*
2
 + b*

2
)

1/2
) indexes.  

 

Colour by clustering: Many approaches to image segmentation have been proposed over the years 

(Pal and Pal, 1993; Bhanu and Rarvin, 1987) but clustering is one of the simplest, and has been 

widely used in segmentation of grey level images (Coleman and Andrews, 1979). The aim of this 

method is to define the minimization of the sum of squared distances between all points and the 

cluster centre. k-means algorithm was the method to resolve the clustering procedure of the images. 

The calculation steps were described by Tou and Gonzalez (1974).  

In this study the collected imagines were processed to transform RGB space into the CIEL*a*b* 

colour space at the beginning. The data coming from this conversion were analysed by k-means 

algorithm to define the number of clusters in which split the collected image. In the analysis, the a* 

and b* parameters and 3 clusters were used as clustering factors. One of these clusters represented 

the background of the image while the others defined the two different colorations of raspberries. 

The analysis was performed by MATLAB® v. R2012b (MathWorks, Natick, MA,USA). 

 

Texture: Texture of raspberries was determined using a dynamometer (Zwick Roell Instrumental 

Z010, Zwick GmbH & Co. KG, Ulm, Germany) by a single compression test on single berry 

(modified method from Sousa et al., 2007). At least 30 berries were evaluated at each time. The  

berry was positioned under the probe plate (80 mm diameter) and compressed to 60% deformation 

using a load cell of 10 kg (100 N), at 2 mm/s test speed and with 5 g pre-load. Firmness of samples 

was evaluated as energy at 60% deformation (Nmm), which corresponds to the labour needed to 

compress the berries to 60% of initial height.  

 

Volatile compounds: Volatile compounds were assessed using a SPME-GC-MS technique. The 

raspberries were homogenized with a commercial blender (Sc 300 N Black & Decker Inc. New 

Britain CT, USA ) for 10 seconds (Buttery, 1987) and then frozen at -20°C.  Twenty grams of this 

mixture was thawed overnight at 4°C before analysis. 2-Methyl-1-pentanol (99%, Sigma-Aldrich, 

St. Louis, MO, USA) was added as internal standard (IS) and stock solution (500 mg/L) was 

prepared in methanol. Three gram of thawed samples was placed in a 20 ml vial and 1.5 ml of 

distilled  and filtered water containing the IS (0.6 mg/kg) was added. 
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Extraction was performed as follows: SPME fiber with PDMS-DVB-CAR phases (50/30 μm film 

thickness); incubation 10min at 40°C; extraction 40 min at 40°C. The analysis of volatile 

compounds was carried out using Perkin-Elmer Autosystem XL gas chromatograph equipped with 

a TurboMass selective detector (Perkin-Elmer Inc., Waltham, MA, USA). The analytes were 

thermally desorbed at 250°C for 10 min in splitless mode (at -0.5min with 0 ml/min of flow and at 

2 min opened with 20 ml/min). The Helium column flow was 1ml/min. Separation was achieved 

using DB-WAXTER column (60m x 0.25mm x 250µm film thickness, Agilent, Santa Clara CA, 

USA). The oven temperature was programmed at 45°C for 3 min, then ramped to 70°C at rate 

2°C/min, to 230 °C at rate 6°C/min and, held at final temperature for 6 min. Standard EI mode was 

used at 70eV. The total mass ion chromatography was obtained from 35 to 300amu. System 

software control and data management/analysis were performed through TurboMass 5.4.2 software 

(Perkin-Elmer Inc.). Compounds were identified through mass spectra and comparison of their 

retention index with the pure standards.  

Volatile quantification:  

External quantification was carried out with the same equipment described previously, using 

standard solutions of the main off-flavor compounds: ethyl acetate and ethanol, 0,5- 11 µl/kg and 

10-2300 µl/kg respectively in methanol (Sigma-Aldrich, St. Louis, MO, USA).    

 

4.2.4 Statistical analysis  

Data were statistically evaluated by one-way ANOVA and multiple range test (Tukey method) with 

Statgraphics Plus v. 5.1 package (Statpoint Technologies, Inc. Warrenton, VA, USA). Significant 

differences among treatments were determined.  

 

4.2.5 Multivariate approach using Principal Component Analysis 

Following the steps defined by Pedro and Ferreira (2006) study the multivariate approach was 

performed.  

Firstly a matrix was carried out collecting in the columns the results of physical and sensorial 

analyses while rows represent the time at which the results were obtained. In this matrix 3 

replicates of the raspberries analysis performed along 2 years for different batches of samples were 

taken into account. This structure of the columns is necessary in order to keep samples spread in a 

single multivariate space which would reveal time dependence in the PCA; the variables present 

different scales, and the auto-scale procedure was performed to obtain to obtain the Xa matrix. The 

columns of Xa have means equal to zero and unit variance (Eq. 4.1):  

 

   
      ̅ 

  
 

         (4.1) 

where Xk and Sk are, respectively, the mean and the standard deviation of the elements of the k-th 

column of X and Xa, k and Xn,k are typical elements of Xa and X. n is the number of points in 

time where evaluations were conducted. 

Secondly build up shelf-life charts (PC scores vs. time) for the first R PC and identify the scores 

which are time-related and for each of the time-related PC, identify their reaction order and 

determine the kinetic parameters using the PC scores as properties. 

Thirdly to identify gathering the cut-off criteria for the score time-related PC using the loading 

values of the PCA should be used the following procedure (Eq. 4.2):  

1) Place the reference values for each property into the x vector and pre-process it using the 

parameters determined in equation 4.1 to obtain Xa.  

2) Use the loadings matrix to calculate the cut-off criteria that is the maximum acceptable scores 

for each time-related PC: 
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            (4.2) 

where Xa is the row vector of reference values and Lm is the loadings matrix of the time-related 

PC for storage condition (Pedro and Ferreira 2006).  

The changes in raspberries quality indices stored in traditional packaging can be described by using 

few quality indices with respect to all the parameters tested in this study. The analysis of loading of 

the original matrix established that the loading that have an impact more than 0.3 was collected to 

use it in the final matrix and to estimate the global quality indices. This selection was carried out to 

determine the best quality indices that describe the changes in the berries during storage 
In order to analyse the results from a multidimensional point of view, the obtained data were 

analyzed by Principal Component Analysis (PCA) using the Unscrambler v.9.7 software (CAMO, 

Norway). 

 

4.2.6 Experimental Plan 

In the first part of the work, the influence of different films (A, B and C, described in Table 4.1) on 

raspberries shelf-life using the passive solution was studied. Master bags containing two PET sale 

units, heat-sealed without gas flushing were produced using those films. Raspberries were 

subsequently stored at 5±1 °C (70 %RH) and their quality monitored after storage days 2, 4 and 7. 

After the selection of the best master bag material, in the second part of the work the active solution 

using carbon dioxide emitters and oxygen scavenger into the master bags in comparison with 

passive solution was investigated. At this step, two trays were inserted inside a master bag, with 

active devices as explained in Table 4.2 and different ratio between surface of the film and unfilled 

volume. In addition, in this case, master bags were heat-sealed without gas flushing, subsequently 

stored at 5±1 °C (70 %RH) with quality monitored after 2, 6, 8 and 13 days of storage. 

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 Passive atmosphere packaging solution 

The respiration rate was determined on the fresh fruits at 5°C and values obtained were RRO2=20 

ml O2 kg
-1

 h
-1

 and RRCO2=19 ml CO2 kg
-1

 h
-1

. In general, high respiration rates are associated with 

poor quality after harvest: the respiration rate determined on raspberries was in the little high for 

raspberry (Perkins Veazie and Nonnecke, 1992), with an respiratory quotient RRCO2 / RRO2 equal 

to 0.97. This value can be associated with an aerobically respiration due to the consumption of 

carbohydrates (Saltveit et al., 2014). 

During storage in master bag, using different packaging materials, the decrease in O2 and the 

increase in CO2 were registered for all the samples (Figure 4.2). Master bags A and B (medium and 

high oxygen and carbon dioxide barrier, respectively) indicated a faster accumulation of carbon 

dioxide and a rapid decrease in oxygen reaching values under 5 % during storage time. These 

conditions could induce the cells to switch from aerobic to anaerobic metabolism (Joles et al., 

1994). Differently, sample C (the lowest gas barrier film) presented slower oxygen decrease 

reaching an optimal concentration around 10 % after 4 days in master bag, while CO2 reached a 

roughly 5 % concentration maintained until storage day 7.  
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Figure 4.2. Headspace gases evolution in master bags made with materials A, B and C (a: oxygen; 

b: carbon dioxide). Different letters for the same time indicate significant differences (p<0.05). 

 

a) b)

 
  

The senescence process of raspberries is well known to cause colour changes, especially on the red 

(positive values of a*) and blue (negative values of b*) coordinates of the CIELab colour space 

(Haffner et al., 2002). The colour trends of samples stored in master bag  A  (medium gas barrier 

master bag) were very similar, whereas those stored in the lowest gas barrier master bag (C) 

maintained the initial colour until day 7, probably due to the respiration processes deceleration and 

the avoidance of anaerobic conditions (Figure 4.3). An intermediate behaviour between samples 

stored in film A and C was found for samples stored in film B (high gas barrier).  

 

Figure 4.3. Colour changes in terms of a* and b* of raspberries stored in master bag A, B, and C. 

Different letters for the same time indicate significant differences (p<0.05). 

 

a) b)

 
Raspberries packed with medium and high barrier films (A-B) did not present any mould 

development since the level of carbon dioxide was above the mould toxicity limit (Joles et al.; 

1994); however, they were affected by the softening and breakage of drupes (fruits) reaching 
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percentage of rejection higher than 15% after 7 days of storage. In raspberries storage the most 

satisfactory behaviour was found by using the lowest barrier master bags (C) with maximum 

rejection of 10 % at the final stage of the test.  

Fruit firmness is defined as the ability of fruit to maintain integrity, shape and avoid the release of 

juices. Consumers are able to assess fruit texture through a simple visual evaluation before 

purchasing; if the product does not meet their requests in term of firmness and colour consumers 

reject it.  

The use of a master bag had a positive impact on raspberries firmness (Figure 4.4), especially when 

the film with the greatest gas permeable feature was used (C); this is probably due to a lower 

respiration rate influenced by the gas evolution (Aday et al. 2011). In fact, the latter solution was 

able to maintain the initial quality of berries in terms of firmness until the end of the test (day 7), 

whereas the control samples were strongly degraded after only 2 days of storage.  

In addition, the films with higher WVTR seemed to affect the fruits softening process: as shown in 

Figure 2, a quickly change occurred in samples stored in film A presenting the lowest WVTR (1.1 

g m
-2

 day
-1

). The presented quality indices showed that the use of master bags film with low barrier 

to oxygen, carbon dioxide and water vapour provided a passive atmosphere modification able to 

maintain the quality of raspberries longer than the traditional packaging in air, up to at least 7 days 

storage. 

 

Figure 4.4. Firmness changes of raspberries stored in master bag A, B, and C. Different letters for 

the same time indicate significant differences (p<0.05). 

 
 

The master bag, can protect the raspberries against the dehydration of fruit due to the transpiration. 

The low water vapour permeability of films allowed to maintain a high level of relative humidity in 

the head space, thus this system (passive packaging) generating a weight loss closed to the 1,5 % at 

the end of the storage (Figure 4.5). This value was lower than the one showed in the traditional 

solution (3%).  
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Figure 4.5. Weight loss changes of raspberries stored in master bag A, B, and C. Different letters 

for the same time indicate significant differences (p<0.05). 

 
 

4.3.1.1 Determination of shelf life by Multivariate approach 

All the data obtained from the experimental trials were analysed by means of Principal Component 

Analysis. Five attributes were considered at each time of analysis for each packaging solution (A-

B-C), respect to all parameters measured in this work as reported in Table 4.3. 

The selection defined the weight loss, firmness, visual mouldy berries, and concentration of oxygen 

and carbon dioxide were the main quality indices to describe the quality decay. 

The first of two principal components explain the 73% of variability. A separation of the samples 

according to the storage conditions is shown on the scores plot (Figure 4.6), where the number 

beside each point represents the storage time in days. In particular, samples were distributed along 

PC1 according to the storage time. The advantage of using the loadings plot is that it visually 

presents the correlations between variables. For instance, the number of mouldy berries, the weight 

loss and the carbon dioxide concentration are strictly correlated. Loadings revealed also the weight 

of attributes responsible for product degradation (Figure 4.7).  

Fruits stored in plastic film with high or medium OTR were characterized by an increase of carbon 

dioxide as showed in the Figure 4.2. This condition generated high percentage of rejected berries 

due to the damages caused by the toxic effect of carbon dioxide on the berries surface and on the 

metabolism of fruit. 

The samples C and B were characterized by higher firmness than the sample A. This parameter 

seems to split the samples in two groups following the PC2. This evaluation seemed correlated with 

the lowest water vapour permeability of the film where the sample A was stored. When in pack RH 

is very high (>95%) the proliferation and spread of microorganisms can occur during the storage 

(Rahman et al., 2007).    
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Figure 4.6. Scores plot of the first two Principal Components 

 

  
 Figure 4.7. Loadings plot of the first two Principal Components 

 

  
The multivariate approach uses all parameters that have effect on the quality changes in raspberries. 

PC1 was time structured and therefore this is the most suitable PC for estimating shelf-life 

parameters, as it can be seen in  Figure 4.6. In other words, the overall degradation reaction 

followed a pseudo-zero-order kinetic, defining a linear equation for all the packaging solutions  

with different parameters as reported in Table 4.4. 

 

Table 4.4. Pseudo-zero-order equation parameters.  

Solution a b R
2
 

A 0.8135 -1.9679 0.9989 

B 0.7109 -2.1298 0.9897 

C 0.3783 -2.0863 0.9396 

 

The limit used for estimating the critical PC for passive packaging solutions was reported in Table 

4.5. With the multivariate approach, using five quality indices simultaneously, the efficacy of the 

critical indicator determination can be improved respect to the classical protocol that identifies only 

one limit for each parameter. When the quality attributes of foods like small red fruits are quickly 
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altered for the effect of several degradative processes, the multivariate approach based on a single 

cut-off criterion could be a useful tool to estimate the shelf life value. 

 

Table 4.5. Limit values for different quality parameters to identify the PC critic for passive 

packaging solution 

Indices Unit Limit References 

Visual Rejected Berries % 10 Sanz et al., 1999 

Weight loss  % 6 Robinson et al., 1975 

Texture N*mm 23 Adobati et al.,2015 

Concentration of O2 % 5 Joles et al., 1994 

Concentration of  CO2 % 25 Watkins, 2000 

 

Figure  4.8. PC 1 versus time for each packaging system 

  
 

Applying the reference values for each quality attribute expressed above and using the Eq. 4.2, a 

critical PC1 score value of 0.12 was obtained (see Figure 4.8), which corresponds to berries stored 

in solution A at 2.6 days, in solution B at 3.2 days and in solution C at 6 days.  The last value 

suggests that the berries packaged in LDPE 25 µm with high OTR (4000 cc m
-2

day
-1

) had an higher 

shelf-life compared to fruits stored in ―traditional‖ solution (4 days) as defined in the first chapter 

and reported in literature (Giuggioli et al. 2015).  

The multivariate approach defined successfully  the shelf-life of raspberries stored in a passive 

packaging system. The material selected in this part of the study (material C) was used in the 

experiment described in the next paragraphs and related to the active packaging solution.  
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Table 4.3: The matrix of quality indices used in the PCA to identify the best parameters to estimate the shelf life value 

Samples Visual 

Moulded 

berries 

(%) 

Weight 

loss 

(%) 

Texture 

(Nmm) 

Concentration 

of O2  (%) 

Concentration 

of CO2  

TSS 

(Brix°) 

l* a* b* Hue 

(°) 

Chrome 

(C*) 

Acidity 

(%) 

A0 0,00 0,00 25,08 20,90 0,03 10,09 30,25 23,72 14,565 31,23 27,88 2,01 

B0 0,00 0,00 25,08 20,90 0,03 10,09 30,25 23,72 14,565 31,23 27,88 2,01 

C0 0,00 0,00 25,08 20,90 0,03 10,09 30,25 23,72 14,565 31,23 27,88 2,01 

A2 3,00 0,15 15,43 14,93 7,34 9,87 29,73 25,01 14,71 30,36 29,03 1,92 

B2 4,00 0,07 28,81 11,02 10,33 10,03 29,22 23,82 14,76 31,45 28,05 1,98 

C2 6,00 0,01 28,22 15,37 3,48 10,17 28,76 25,02 15,80 32,03 29,62 1,7 

A4 12,00 0,51 16,19 6,91 14,38 9,99 30,40 27,54 17,36 31,92 32,61 1,80 

B4 7,00 0,07 28,25 3,79 19,27 10,3 29,55 25,39 16,08 32,25 30,07 1,93 

C4 5,00 0,11 29,44 11,93 4,12 10,2 28,19 23,98 14,85 31,56 28,23 1,65 

A7 22,00 1,00 12,02 1,58 25,79 10,13 31,87 26,67 16,98 32,31 31,64 1,67 

B7 10,00 1,40 19,08 1,19 29,87 10,43 28,20 25,42 15,89 31,90 30,00 1,78 

C7 14,00 1,00 28,09 8,68 4,57 10,03 28,94 24,38 14,89 31,18 28,59 1,57 
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4.3.2 Active atmosphere packaging solution 

 

The respiration rate was determined on the fresh fruits at 5°C and the obtained values were 

RRO2=13 ml O2 kg
-1

 h
-1

 and RRCO2=18 ml CO2 kg
-1

 h
-1

. In general, high respiration rates are 

associated with poor quality after harvest: the respiration rate determined on raspberries was lightly 

high (Perkins Veazie and Nonnecke, 1992), with a quite aerobically respiratory quotient (RRCO2 / 

RRO2=1.36) but with a metabolism that prefers the organic acid to produce energy (Saltveit et al., 

2014). 

 

The gas evolution inside the master bags is shown in Figure 4.9a-d for oxygen and carbon dioxide, 

respectively. For both the gases, the curve‘s shape is quite different with respect to that obtained in 

open air: in that case, a steady oxygen concentration of O2  and CO2 is achieved when fruit O2 

uptake and CO2 production rates are equal to the rates of O2 and CO2 flux through the film (Joles et 

al., 1994). 

During storage in master bag, using different combinations between the number of carbon dioxide 

emitters and the ratio between film surface and unfilled volume, different changes in the headspace 

and also in the quality changes were obtained.  

In the Figure 4.9 the combinations B, D and E highlighted a faster accumulation of carbon dioxide, 

in some cases higher than 20%. These conditions can induce the cells to switch from aerobic to 

anaerobic metabolism, generating damaged and off-flavour (Joles et al., 1994). Differently, sample 

stored in the combinations A and C presented a lower carbon dioxide value in the first part of the 

storage, reaching the optimal concentration (10-15%; Joles et al., 1994) to reduce the mould growth 

without side-effect of the fruit quality. In these two cases the fast and short period of carbon 

dioxide exposure (from 1 to 4 days) have contributed to reduce the fruit metabolism and the 

spoilage.  
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Figure 4.9 Gases concentrations evolution of CO2 and O2 inside the master bag for different 

number of active devices and head space volume  

a) b) 

c) d) 

e)  

The senescence process of raspberries is well known to cause colour changes, especially on the red 

(positive values of a*) and blue (negative values of b*) coordinates of the CIELab colour space 

(Haffner et al., 2002). Using the clusterization technique it was possible to define the change from 

the red colour associate to an appreciate colour (ripe fruit) to purple indicating an over-

ripe/senescent product. 

The two cluster was defined by the a and b colour value as represented in the Figure  4.10. 
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Figure 4.10. Graphical representation of the clusters derived from the imagine clusterization and 

the respective coordinate a* and b*. 

 

Cluster 1 Cluster 2 

 
 

a*= 41  b*= 22 a*= 26  b*= 11 

 

As expected, all samples showed a changes of the colour linked to the ripe fruit (cluster 1) in 

function of an increase of colour correlated with the over-ripening (cluster 2). In fact the area on 

the berries surface occupied by the appreciate colour (cluster 1) showed a changes in the colour 

developing unacceptable value. As reported by Sanz et al., (1999) if the surface raspberry shows 

more than 1/3 in damaged, defined as over-ripe colour, the consumer rejects the product.   

For all samples the surface represented by ripe colour decreased during storage from about 60% up 

to 45%, on the contrary the surface that showed the inacceptable colour increase from 40% to 55% 

(Figure 4.11).  

 

Figure 4.11. Changes of Clusters1 and 2 values over time (a: cluster 1; b: cluster 2).  

a) b) 
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High percentages of visual rejected berries characterized sample A due to the incorrect evolution of 

gases inside masterbag, low concentration of carbon dioxide and too low oxygen concentration (< 

5% Joles et al. 1994; Figure 4.12 a, b). Sample with high level of carbon dioxide (B,D,E ) showed a 

high level of damaged berries and also mould growth except in sample E. In this case the highest 

value of CO2 (>25%) at 5 days of storage leads to inhibit the mould growth.  As define by Haffner 

et al., (2003) the moulds don‘t growth above 20 % of carbon dioxide.  

 

Figure 4.12. Visual rejection of berries for each packaging solution – a) damaged berries; b) 

moulded berries. Different letters for the same time indicate significant differences (p<0.05). 

a) b)

 
 

Fruit firmness is defined as the ability of fruit to maintain integrity, shape and avoid the release of 

juices. Consumers are able to assess fruit texture through a simple visual evaluation whilst 

purchasing; if the product does not meet their requirement in term of firmness and colour 

consumers reject it.  

The changes in the texture of different packaging solution showed a decrease of  firmness in the 

samples C and E , in the first case due to the normal senescence of fruits and in the second case due 

to the toxical effect of carbon dioxide of products (Figure 4.13. Whereas the sample B and D 

maintained the firmness level probable due to the effect of high level, but not toxic, of carbon 

dioxide. Regarding other fruits like strawberries, the short exposure of carbon dioxide can maintain 

the firmness or in some case increase it (Larsen and Watkins, 1995).  
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Figure 4.13. Firmness changes of raspberries stored in master bag A, B, C, D and E. Different 

letters for the same time indicate significant differences (p<0.05). 

    
 

The off-flavour compounds are good indicators to evaluate the changing in the metabolism, 

especially the ethyl-acetate compound is the most important compound correlated to the consumer 

perception of off-flavour in the strawberries (Larsen et al., 1999). 

It is well known that the appreciation of flavour by the consumer depends on many compounds but 

some compounds define mostly the unappreciated flavour.  

The high concentration of carbon dioxide (Figure 4.9 b,c,d,) inside the master bag in B, D, E 

samples determined an increase in the ethanol and ethyl-acetate production during storage (Figure 

4.14). In master bag C the fruit showed an increase in off-flavour at 5 days of storage due to the 

changing in the atmosphere respect to the room atmosphere (21% O2 and 0.03 % CO2). In 

accordance with the gas evolution inside the master bag (Figure 4.9), after this short period (5 days) 

the fruit returns to the aerobic metabolism until 10 days; finally the senescence of fruit and the 

consumption of oxygen lead to an increase of ethyl acetate that defines the anaerobic condition of 

fruit (Larsen and Watkins, 1995). The samples stored in master bag with 2 carbon dioxide emitters 

showed a similar behaviour with the sample C in terms of  ethanol production but reaching higher 

value of ethyl-acetate compound. 
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Figure 4.14. Volatile compounds (Ethanol (a) and Ethyl acetate (b) changes of raspberries stored in 

master bag A, B,  C, D and E. Different letters for the same time indicate significant differences 

(p<0.05). 

a) b)

 
 

The master bag, as described in passive packaging solution, can protect the raspberries against the 

transpiration thanks to the low water vapour permeability; the loss of soluble metabolites can 

decrease the consumption of sugar and acid to produce  energy. The master bag contributes to 

reduce the weight loss reaching close to the 1 % but extremely lower than the marketable limit set 

to 6% (Figure not shown) 

 

4.3.2.1 Definition of the shelf life by the Multivariate approach 

 

To define the shelf life value, also for active packaging solution the multivariate approach was used 

as described from Pedro and Ferreira (2006). This technique can gather the limit of many quality 

indices to define the time at which the samples don‘t satisfied the quality requirement.  

In the preliminary section, all the collected parameters (Visual damaged and moulded berries, 

Weight loss, firmness, Cluster 1 and 2, Off-flavour compounds, Oxygen concentration and quantity 

of CO2; Table 4.6)  were used for the berries stored with master bag. Using the loading value from 

PCA matrix , the selection was performed to identify the best indicators to describe the quality 

changes in the raspberries and to increase the explained mostly the PC variation.   

A total of 10 PCs were retained from the PCA applied to the ratings of the 6 attributes used for 

quality attributes of raspberries.  

The first of two principal components explain the 80% of variability. A separation of the samples 

according to the storage conditions is shown on the scores plot (Figure 4.15), where the number 

beside each point represents the storage time in days. In particular, samples were distributed along 

PC1 according to the storage time. Loadings revealed the weight of attributes responsible for 

product degradation (Figure 4.16). The fruits stored with E and D are characterized by fermentative 

off-flavour and high value of carbon dioxide during storage while the samples A, C and B show an 

increase in damaged and mould during storage.  
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Figure 4.15. Scores plot of the two Principal Components 

  
 

Figure 4.16. Loadings plot of the two Principal Components 
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Table 4.6. The matrix of quality indices used in the PCA to identify the best parameters to estimate the shelf life value 

 

Sample Visual  

damage 

berries 

 (%) 

Visual  

moulded 

berries 

(%) 

Weight 

loss % 

Work (Nmm) Color 

Cluster 

1 (%) 

Color 

Cluster 

2 (%) 

Ethanol 

(µg/kg)  

Ethyl 

acetate 

(µg/kg)  

O2(%) CO2(%) Volume 

of CO2 

(m
3
*day) 

A0 0 0 0 69,95 57 43 160 0 22 0 0.00 

A5 19 4 0,66 58,74 55 45 210 5 9 8 0.22 

A7 21 16 0,66 77,77 53 45 274 5 9 4 0.27 

A10 20 20 0,94 68,91 52 48 251 2 5 4 0.32 

A12 20 22 0,96 48,75 49 51 298 4 5 3 0.35 

B0 0 0 0 69,95 57 43 160 0 22 0 0.00 

B5 15 7 0,63 65,54 55 45 547 5 10 8 0.27 

B7 12 10 0,76 62,95 49 51 528 4 8 4 0.32 

B10 13 11 0,98 63,56 42 52 427 4 6 3 0.37 

B12 24 18 1,01 58,06 47 53 443 5 4 5 0.40 

C0 0 0 0 69,95 57 43 160 0 22 0 0.00 

C5 9 4 0,46 69,86 53 47 480 6 10 9 0.24 

C7 4 8 0,75 53,67 53 47 241 3 5 7 0.30 

C10 5 13 0,86 43,21 53 47 173 1 5 7 0.38 

C12 6 18 1,06 36,93 48 52 229 5 5 4 0.43 
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Sample Visual  

damage 

berries 

 (%) 

Visual  

moulded 

berries 

(%) 

Weight 

loss % 

Work (Nmm) Color 

Cluster 

1 (%) 

Color 

Cluster 

2 (%) 

Ethanol 

(µg/kg)  

Ethyl 

acetate 

(µg/kg)  

O2(%) CO2(%) Volume 

of CO2 

(m
3
*day) 

D0 0 0 0 69,95 57 43 160 0 22 0 0.00 

D5 5 3 0,64 58,14 54 46 552 5 9 8 0.29 

D7 7 3 0,81 52,00 50 50 422 5 8 6 0.36 

D10 9 4 1,08 61,85 47 53 760 8 8 5 0.43 

D12 22 17 1,15 59,73 47 53 769 8 7 4 0.46 

E0 0 0 0 69,95 57 43 160 0 22 0 0.00 

E5 0 0 0,46 52,81 51 44 480 6 10 19 0.32 

E7 11 0 0,80 54,34 51 49 500 4 8 15 0.41 

E10 13 0 1,09 57,13 51 49 722 4 9 6 0.51 

E12 30 0 1,26 37,19 50 50 788 5 9 5 0.56 
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The multivariate approach can be able to use all parameters that have effect on the quality changes 

in raspberries. Using the property of time-structure of PC1 in function of time, the Figure 4.15 was 

defined. The overall degradation reaction followed power-law (y=a+bx
c
) for samples and define the 

kinetics of degradation for different samples (Table 4.7).  

 

Table 4.7. Fitting of linear equation the PC1 data in order to obtain the power-law model 

 a b c 

A -4.52 1.34 0.63 

B -4.54 1.86 0.55 

C -4.52 1.32 0.59 

D -4.54 1.25 0.76 

E -4.53 2.22 0.47 

 

The power law is able to explain the degradation of some food components in relation with an 

isothermal condition (Peleg et al., 2002 and Kong et al., 2007). These different changes in the fruit 

quality parameters could be explained observing the interaction between the food and the 

packaging system in terms of the gases permeability and the oxygen and carbon dioxide scavenging 

and emitting respectively by the active devices inserted into the master bag before bag-sealing. The 

changes in the raspberries' quality parameters collected in the PC1 are the result of the fast 

changing of gases composition in the bag headspace and the metabolism of berries, affecting the 

different changes in the senescence changes.  

 

Figure 4.17. PC 1 versus time for each batch samples. 

 

   
 

Applying the reference values for each quality attribute expressed below in the Table 4.7 and using 

the equation (2), a critical PC1 score value of 0.75 was obtained (refer to Figure 4.17), which 

corresponds to different shelf-life value for each packaging solution. As expected the solution B, D 

and E reach a lower value of shelf life, in particular 7.3, 7.0 e 6.9 respectively. The samples A and 

C reach the best extension reaching 9.3 and 11.3 days of shelf life, respectively.  
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Table 4.7. Limit values for different quality parameters to identify the PC critic for active 

packaging solution 

Indices Unit Limit References 

Visual Damaged Berries % 10 Sanz et al., 1999 

Visual Moulded Berries % 5 Hertog et al., 1999 

Weight loss % 6 Robinson et al., 1975 

Firmness N*mm 23 Adobati et al., 2015 

Colour Cluster 1 % 67 Sanz et al., 1999 

Colour Cluster 2 % 33 Sanz et al., 1999 

Ethanol µl/kg 414 Larsen and Watkins, 1995 

Ethyl acetate µl /kg 467 Larsen and Watkins, 1995 

O2 Concentration  % 5 Joles et al., 1994 

Volume of  CO2   m
3
*day 100 Almenar et al., 2008 

 

The multivariate approach has successfully defined the shelf life of raspberries stored in traditional 

packaging. By gathering the kinetics of main parameters into a single variable, it provided a 

reduction of the number of calculations performed, giving the information on what are the main 

parameters affecting berries degradation during cold storage. The critical cut off was calculated 

using more than one reference value and this technique can contribute to increase the reliability of 

calculated shelf life value.  

 

4.4 CONCLUSION 

The aim of this work was to determine the shelf-life of red raspberries and find new packaging 

solution to extend their shelf-life. The evaluation of the quality indicator using the multivariate 

approach allowed to define with an high level of reliability the value of shelf-life for berries stored 

in different packaging solution. 

The changes of berries in different environmental conditions don‘t permit to use the same indicator 

or the same critical limit for the indicator. Every time the study have been adjusted to evaluate the 

new packaging conditions and the new changes in the fruit quality, in other words finding the 

correct approach for each packaging solution. 

At the end of the study it can be defined, objectively, the role of packaging system to extend the 

shelf-life of raspberries. This ―new‖ packaging solution have used the active device to reach 

quickly the optimal conditions, in terms of  oxygen and carbon dioxide, and  it has been optimized 

taking into consideration the link with the fruit metabolism and the gas permeability.  

The active packaging solution can allow to store the raspberries at least until 11 days almost three 

times more than the ―traditional‖ packaging solution that reach a shelf-life value of 4 days. The 

Passive packaging solution can allow to store the berries until 6 days, thus extending the shelf-life.  

Finally, the new packaging solution can extend the shelf life and probable reduce the environmental 

impact of food chain thanks to the reduction of food loss due to the preserved quality of raspberries 

longer than the ―traditional‖ packaging solution.  
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5- COMPARATIVE LIFE CYCLE ASSESSMENT OF RASPBERRIES STORED IN 

DIFFERENT PACKAGING SOLUTIONS 

5.1 INTRODUCTION 

Small red fruits and in particular raspberries have very short storage life due to physiological 

aspects. The production of raspberries (Rubus idaeus L.), in Italy consists in 1500 tons per year 

(FAO, 2012) and ranks 16th in Europe, after the main East European states (Russian Federation, 

Poland, Serbia). The market, in this sector, has been increasing due to the production 

differentiation, profitability and sustainability of cultivation in terms of economy and environment 

preservation (Agronotizie 2008). The high perishable characteristics such as high respiration rate, 

loss of firmness, mould susceptibility, and breaking down tissues define the most common reasons 

of customers' complaints (Nunes et al., 2009). These characteristics can contribute to important 

food loss and waste along the supply chain up to 75% until its arrival at the retailer (Martin et al. 

2010) and in particular WRAP study (2011) estimated the loss and waste in different steps of the 

supply chain in the UK. The loss of these berries during harvest was from 2-20% depending on 

different factors such as harvest methodology and weather conditions, 2-3 % during the packaging 

step and 2-3 % at retailer. In addition about 2-5 % can be wasted at storage level due to the 

inefficiency of cold chain or logistic management.   

The growers and the researchers have been studying different techniques to extend the shelf life of 

fruit including the atmosphere modification to control the oxygen and carbon dioxide levels around 

the fruits. These techniques are useful to transport and store berry fruits (Kader,1989). The 

atmosphere modification in packaged fruit can follow two principal strategies: by matching the 

correct film permeability and the fruit respiration rate of oxygen and carbon dioxide of packaged 

fruit it is possible to produce a steady-state condition of oxygen and carbon dioxide (Kader et al. 

1989) and establish the correct conditions to extend the shelf life of fruits. In the second case the 

devices (e.g. carbon dioxide emitters and oxygen scavengers) are inserted in the packaging to 

modify the atmosphere more quickly and better than the previous system (Agar et al., 1990; 

Robbins and Fellman, 1993). 

The use of oxygen absorbers and carbon dioxide emitters, in combination with a correct film 

permeability, can reach the correct concentration of oxygen and carbon dioxide which are 

recommended between 5-10 kPa for O2 (Joles et al. 1994) and 15-20 kPa for CO2 (Beaudry, 1999). 

The lower levels of oxygen can reduce the respiration and decay (Beaudry, 1999), moreover the 

high concentration of CO2 can contribute to reduce fungal growth (Brown, 1992), loss of firmness 

(Jacxsens et al., 2000; Day, 2001) and, in lower proportion, reduce the respiration rate.  

Using this system it is possible to extend the shelf life of berries define a possible environmental 

impact reduction. As defined in different works (Williams et al. 2012, Christiansen 2014, Bowling 

2013, Fao, 2011) the packaging can contribute to reduce the food loss and the environmental load 

of the whole system. To measure this possible reduction associated to shelf life extension the Life 

Cycle Assessment (LCA) methodology was applied to different packaging solutions.  

 

5.2 MATERIALS AND METHODS 

 

The raspberry fruits are cultivated in Europe especially in the East due to the climatic aspect and 

traditions in those area. In Italy their production is located, in particular, in the Alpine Valley and 

has grown in recent years. The raspberry production considered in this work takes place in Trentino 

region (Northern Italy). In this area the pedoclimatic conditions support the small red fruits 

production (Agnolin 2007).  
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5.2.1 Goal and scope of application 

The goal of this study was to evaluate the environmental impact of production and distribution of 

fresh raspberry fruits packaged with different methods: ―Traditional‖ sale unit (Base scenario, A), 

and Passive Atmosphere Modification solution in master bag (B scenario) and Active Atmosphere 

Modification solution in master bag with devices (C scenario) as two alternative scenarios. The 

characteristics of packaging solutions are  the following:  

A) Lidded macro-perforated PET trays containing 125 g of berries, stored in air and considered as 

―traditional‖ packaging. This solution has 4 days as shelf life (Chapter  3).  

B) Two lidded macro-perforated PET trays containing 125 g of berries inserted into master bags 

(34cm*25.5cm) made of plastic materials Low Density Polyethylene (LDPE; oxygen transmission 

rate at 23 °C and 0 %RH equal to 4000 cc m
-2

 day
-1

, carbon dioxide transmission rate at 23 °C and 

0 %RH equal to 30000 cc m
-2

 day
-1

, water vapor transmission rate at 38 °C and 90 %RH equal to 

21.7 g m
-2

 day
-1

). This solution was referred to as a passive modified packaging solution and has 6 

days as shelf life (Chapter  4) 

C) Two macro-perforated PET trays (each containing 125 g of berries) inserted into a master bag 

unit (30cm*35cm) made of LDPE (as described above). Before sealing, one oxygen scavenger 

(FreshPax® CR4, Multisorb Technologies Inc., Buffalo, NY, USA), and three pre-activated carbon 

dioxide emitters (BioFresh®, Multisorb Technologies Inc., Buffalo, NY, USA; nominal capacity of 

500 cm
3
) were added to the master bag. All the samples were stored in a cold chamber (5±1 °C; 

70±5 %RH). This solution has 11 days as shelf life (Chapter  5). 

To compare and evaluate the environmental load of the packaging system, taking into account the 

shelf life of berries the LCA methodology was applied. Life Cycle Assessment (LCA) is a 

standardized methodology used for estimating environmental burdens associated with life cycle of 

products or processes (ISO 14040, 2006). This methodology is considered to be effective for 

evaluating environmental performance in the agro-food and beverage sector (Roy et al. 2009). 

In general in the LCA study in agro-sector (Nalley et al. 2011; Gan et al. 2011; Gonzalez-Garcia et 

al., 2012) the functional unit (FU) was defined as mass (kg) but in this case, the unit was expressed 

as a day of shelf life. This choice allows referring the environmental impact to one day of shelf life 

considering 250 g of raspberries as market quantity. For raspberries production and for packaging 

environmental impact evaluation the FU was considered as 250 g of product, identifying two sale 

units. 

This work has been carried out from a ―cradle to grave‖ view. The LCA model was carried out by 

including  two subsystems: Crop production (SS1) and post-harvest management of raspberries 

(SS2). 

SS 1 involves the crop cultivation: the system boundary was set from the grower (that also provides 

for the packaging of fruits in PET trays) to the distribution center, taking into account all of the 

processes required for cultivation and transport to central distribution. Concerning the crop 

production all data were referred to the hypothetical 1-hectar plot and a 10 t of berries production in 

an annual production season during full plant growth, this yield was agreed for literature (Girgenti 

et al. 2013).  

SS 2 involves the post-harvest management of fruits: the system boundary was set from gate of 

center distribution to consumer home. The phase of consumption is not included in the system, nor 

the transportation from the supermarket to the consumers' home. However, the disposal of the 

packaging material is taken into account as municipal management. 

 

5.2.2 LCA inventory  

For SS 1 the data were collected from a farm that produces only small fruits and in particular 

raspberries (70 % of entire production).  



63 

 

The hypothetical hectare of orchard was set using 0.5 m distance from one plant to another in a row 

and 2.2 m distance between two rows and about 7300 raspberry plants have been implanted in the 

orchard. The data were collected through questionnaires submitted to technical workers in the farm. 

The crop production was divided into three steps: Field operations, Fertilizing and Crop protection. 

The information from workers in the farm was collected and applied to the 1 PET trays of 

raspberries.  

 

5.2.2.1 Field operations: The operations required for the production were calculated taking into 

account the surface required to produce 125g of berries (one tray of product), the information is 

summarized in the Table 5.1. 

 

Table 5.1. Principal field operations concerned in raspberries production analysis  

Field operation Quantity Unit 

Mowing, by rotary mower 0.088 m
2 

Tillage, harrowing, by rotary harrow  0.051 m
2 

Tillage, ploughing  0.051 m
2 

Application of plant protection product, by field sprayer  0.051 m
2 

Mulching 0.051 m
2 

Irrigation  0.015 m
3 

Solid manure loading and spreading, by hydraulic loader and 

spreader  

13.890 g 

 

To reduce the growth of weed a mulching film made by polypropylene was used and the quantity 

referred to 125 g of raspberries was equal to 292g. 

For the fruit production fertilization and plant protection, treatments were applied. The base 

fertilization was applied as manure in order to improve the organic compounds in the soil, the 

quantity added every year was estimated in 1 ton per hectare. For the mineral fertilization, 

ammonium sulphate was applied as nitrogen compound (600 kg per hectare); single 

superphosphate was applied  as phosfate compound (200 kg per hectare) and potassium sulphate 

was applied as potassium compound (300 kg per hectare; Table 5.2). Concerning the fertilization, 

the information about nutrient (nitrogen) removal from fruits was taken from De Gennaro work 

(2012). Emissions due to the fertilizer application were also included in the inventory. Nitrogen 

emissions (nitrate, ammonia and nitrous oxide) were modeled following the IPCC Guidelines 

(2006); while phosphate emissions were calculated in accordance with Smil (2000) losses of P 

equal to 1% of the total applied phosphorus.  

Pesticide derived emissions were estimated according to the approach expressed in Ecoinvent 3.0. 

Using this assumption, the fraction of active substances entering into the soil is assumed to be 

100% of the total mass applied quantity (Nemecek and Schnetzer; 2011). The background data for 

the production of raspberries, the fertilizers, pesticides and field operations were obtained from the 

Ecoinvent 3.0 database.   
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Table 5.2. Principal emissions from fertilizers and pesticides in raspberries production  

Operation Compound Quantity Unit 

Plant protection treatments Pesticide, unspecified 0.0375 g 

 Pyrethroid 0.0028 g 

 Potassium bicarbonate 0.0694 g 

Base fertilization Manure 13.89 g 

Mineral fertilization Ammonium Sulphate 8.33 g 

 Single Superphosphate 2.78 g 

 Potassium Sulphate 4.17 g 

Output Compound Quantity Unit 

Emission to air    

 Dinitrogen monoxide 0.02 g 

 Ammonia 0.17 g 

Emission to water Nitrate 0.5 g 

 Phosphate 0.01 g 

Emission to soil Potassium bicarbonate 0.0694 g 

 Copper 0.0208 g 

 Lambda-Cyhalothrin 0.0028 g 

 Abamectin 0.0187 g 

 

5.2.2.2 Transport  

Concerning the transportation of trays, the distance from packaging producer industry (located in 

Emilia Romagna region) to the producer was 220 km. It was assumed that all the transportations 

involved a full load trucks. Master bag -film low density polyethylene (LDPE) 25 µm- was 

transported between local company and the central of distribution (60 km). 

For the transport of fruit in the trays from grower to distributional center located in Milan, 

commercial truck (32 t) was considered (Euro 3). The distance was calculated by Web software 

(Google Maps, Google inc., Parkway Mountain View, CA ) and it was about 240 km. It is assumed 

that all the transportations involved a full load trucks. 

The second SubSystem (SS2) involves the post-harvest management of fruits. The fruits were 

stored in a cold chamber to maintain the quality of products. In a distributional center the 

raspberries were delivered to retailer as function of their requests while in the alternative scenarios, 

in distributional center, the fruits were packed in master bags before storage.  

 

5.2.2.3 Refrigeration 

The second SubSystem (SS2) involved the post-harvest management of fruits. The fruits were 

stored in a cold chamber to maintain their quality for longer times. In a distributional center the 

strawberries were delivered to retailer as function of their requests, while, in the alternative 
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scenarios, the fruits could be packed in master bags before storage to extend their shelf life at 

distributional center.  

The products were refrigerated from field temperature, estimated, in the spring-summer condition 

at 25°C to reach the storage temperature closed 4°C by cooler. In literature the optimal temperature 

to store the strawberries is -0.5 - 0°C (Cantwell, 2002) but in traditional chamber the fruits were 

refrigerated from 2 to 4°C (Nunes et al. 2009).  

A computational approach was performed to estimate the electrical energy required for cooling the 

raspberries and to maintain the temperature during the storage (Bonauguri and Miari, 1988). The 

calculation took into account different heat sources presented in the cooler system: the air inside the 

refrigerated chamber and the air exchange due to door opening during the fruits movement, the heat 

coming from walls, ceiling and floor, (considering 25 °C as external temperature) and from fruit 

metabolism (0.08 W/kg; Sharma et al., 2013), the energy utilized by lights and other devices used 

inside the cooler. The calculation was determined 4.63 Wh per kg of product.  

 

5.2.2.4  Packaging components 

 

5.2.2.4.1 Active devices 

Oxygen scavenger 

To estimate the environmental burden of active devices it was used the common formulation found 

in literature, because the recipe is covered by industrial secret. The oxygen scavengers are self-

activate devices and their functionality is performed through the oxidation reaction presented in 

Equation 5.1 (Schroeder et al. 2001). Usually, the well-known coformulants were the silica gel and 

sodium chloride (Brody et al., 1995).  

The high density polyethylene (HDPE) is the film where these compounds are contained (0.49g). 

 

The iron powder to scavenge 400 cc of O2 (maximum scavenging for this device, CR4 as reported 

in M&M) was 1.32 g and 0.648 g of pure water.  

 

 

 

   

 

 

For the silica gel, the absorption of water was estimated at 15 % (w/w) that correspond at 50 % of 

their maximum absorption value equal to 30 % (Afonso & Silveira, 2005). To absorb the 0.648g of 

pure water (used in the reaction 1) 4.3416g of silica gel were required. 

As well known in the oxygen scavenger  the chlorine ion was required as chemical catalyzer of the 

oxidation reaction: the sodium chloride added  was 1.6 g. 

 

Carbon dioxide emitter 

For a Carbon Dioxide Emitter, the reaction presented Equation 5.2 was used to determine the 

weight of each ingredient. 

 

 

 

 

 

 

 

Fe  Fe
2+

 + 2e
-
                   (5.1) 

½ O2 + H2O + 2 e
-
 2 OH

-
 

Fe
2+

 +2 (OH)
-
  Fe (OH)2 

Fe (OH)2 + ¼ O2 + ½ H20  Fe (OH)3 

C6H8O7 (Citric acid, 1.45g) + 3 NaHCO3 (Sodium carbonate, 1.91g)   

3 CO2 + 3 H2O + Na3C6H5O7 (Sodium citrate)        (5.2) 
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5.2.2.4.2 Tray 

The tray was made by polyethilentereftalate (PET) and in the inventory analysis 13g of the raw 

materials (made in Europe) were considered for its production and the thermoforming energy 

requirement was defined as 1.12 Wh for each tray. 

 

5.2.2.4.3 Master bag film 

The film was made by low density polyethylene and in the inventory 7.72g of film were inserted as 

quantity, with an efficiency of production from raw material (pellet) to film up to 97.6%. The 

extrusion energy requirement was defined as 2 kWh/kg of product. 

 

5.2.2.5 End-life 

In the end-life step only the packaging disposal was considered. The Lombardy was considered a 

region where the packaging waste was collected. 

 

Plastic collection 

As Grosso at al. (2012) described, the plastic collection is made in two different ways: kerbside 

collection in the 33% of collection cases while in the remaining cases (67%) using waste containers 

on road.  

In kerbside collection, the management of characteristics is explained in Table 5.3.  

 

Table 5.3. The management kerbside collection  

Transporter Van < 3.5 t Lorry 16-32 t 

Percentage of used in collection 59.4 40.6 

Distance 48.8 48.8 

 

Plastic recycle 

Before recycling, the plastics have to be selected to remove the undesirable items and unrecyclable 

plastics. This phase requires per 1 ton of plastic about 26.6 kWh of electricity and 84 MJ of diesel 

(Grosso et al., 2012). The efficiency of plastic selection system was assumed as 100% due to the 

high purity of plastic material. 

 

For PET tray, a 95% of recycling was assumed as efficiency of systems and the remaining 5% was 

collected in the municipal waste. The whole impact generated for PET production was considered 

as an avoided impact for the system (Levi et al. 2011).   

For LDPE bag, a 95% of recycling was assumed as efficiency of systems and the remaining 5% 

was collected in the municipal waste. In this case, the study described by Rigamonti and Grosso 

(2009) was used to model the energy and material necessary for recycling the LDPE (Table 5.4). 

 

Table 5.4. Consumption of energy and raw materials used in recycle process of LPDE.  

Input for 1 ton of LDPE Quantity 

Electricity for recycle 381 kWh 

Electricity for produce the rod 200 kWh 

Natural gas 650 MJ 

Water 1.78 m
3
 

 

5.2.3 Impact assessment 

The software SimaPro® 8.0.1 (PRé Consultants bv. Netherlands) was used for the computation of 

the inventories data. Among the steps defined within the LCA, only the classification and 
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characterization stages were undertaken (ISO, 14040, 2006). According to other studies concerning 

the agricultural-packaging systems (Levi et al., 2011 and Perego et al., 2014) ReCiPe Midpoint (H) 

V1.08 - Europe Recipe H was used and the following categories were selected to evaluate the 

environmental load of raspberries supply chain: Climate change, Ozone depletion, Terrestrial 

acidification, Freshwater eutrophication, Marine eutrophication, Human toxicity and Fossil 

depletion (Table 5.5). 

 

Table 5.5. Impact categories considered in the analysis according to the ReCiPe Midpoint (H) 

V1.08 - Europe Recipe (Hierarchy) method. 

Impact category Unit 

Climate change kg CO2 eq 

Ozone depletion kg CFC-11 eq 

Terrestrial acidification kg SO2 eq 

Freshwater eutrophication kg P eq 

Marine eutrophication kg N eq 

Human toxicity kg 1,4-DB eq 

Fossil depletion kg oil eq 

 

5.3 RESULTS AND DISCUSSION  

 

5.3.1 Production  

Many authors agree that the food production step is the main factor in the environment load along 

the supply chain (Peano et al. 2015; Girgenti et al. 2014; and Seppala et al. 2009, Roy at al. 2009). 

Figure 4.1 reports the results concerning  the environmental load of the raspberries production. In 

the figure, the impacts of 250 g of raspberries (2 trays) can be shared in different phases. The main 

step that produces a burden is the use of fertilizers due to the run off of the nutrient compounds 

from soil to water (MuÑoz et al. 2010) emission in air (N2O and NH3). 

The emissions associated with fertilizer application had a significant impact over all the impact 

categories and, in particular, in the eutrophication (97%) and in climate change (56%). The film 

used as mulch had a high effect on the fossil depletion (38%) in relation to the production of the 

petroleum used to produce the polyethylene.   

Table 5.6 was reported the values of the environmental load for different impact categories 

associated to different steps of the raspberries production. As mentioned above, the fertilizer 

application had the most important effect on environmental load and this LCI (Life Cycle 

Inventory) analysis can contribute to improve the knowledge in order to develop a better 

production system reducing, where it is possible, the loss of nutrient, for example using 

fertirrigation or more natural fertilizers. Another step to make it possible to improve the crop 

production is the changing in mulching film material for example using bio-based material as 

suggested by Girgenti et al. (2014). 
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Table 5.6. Environmental results for the Raspberry production 

Impact 

category 

Unit Mulching 

Film 

Field 

operations 

Plant 

protection 

Fertilizer 

Climate change kg CO2 eq 2.94*10
-2

 2.31*10
-2

 1.23*10
-3

 6.84*10
-2

 

Ozone 

depletion 

kg CFC-11eq 3.81*10
-10

 2.09*10
-9

 1.49*10
-9

 4.38*10
-9

 

Terrestrial 

acidification 

kg SO2 eq 1.15*10
-4

 1.02*10
-4

 9.63*10
-6

 1.26*10
-3

 

Freshwater 

eutrophication 

kg P eq 3.00*10
-6

 5.21*10
-6

 6.25*10
-7

 3.93*10
-4

 

Marine 

eutrophication 

kg N eq 3.16*10
-6

 4.33*10
-6

 1.06*10
-6

 3.28*10
-4

 

Human toxicity kg 1,4-DB eq 3.90*10
-4

 1.61*10
-3

 2.36*10
-3

 8.75*10
-3

 

Fossil depletion kg oil eq 1.82*10
-2

 7.32*10
-3

 3.95*10
-4

 2.18*10
-2

 

 

Figure 5.1. Impact of the production subsystems on the environmental load 

 
 

The total amount of carbon dioxide emitted for the production of raspberries was agreed with life 

cycle assessment of the production in Spain of similar fruit such as strawberries (0.35 kg CO2 eq/kg 

Williams et al., 2008) and the production developed in Northern Italy (0.053 kg CO2 eq/125g of 

berries; Girgenti et al., 2013). 
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5.3.2 Packaging  

As expected, the analysis of packaging systems demonstrates the increasing of the environmental 

burden due to the material used and the active compound utilized in the systems called C (Table 

5.7).  

The absolute amounts of the impacts categories showed similar values but considering the relative 

impact value (Figure 5.2) the small difference has generated a big share, in particular in ozone 

depletion, terrestrial acidification, marine and freshwater eutrophication (Figure 5.2). In the results, 

the contribution of the disposal phase of the packaging showed a big effect due to the collection 

and recycle process. These results were much higher than Girgenti et al. work reported (2013) on 

―traditional‖ tray. This difference was attributed  to the different packaging materials considered, in 

fact in this study the tray was made by PET that had more environmental impact than PE material. 

Moreover, in the Girgenti et al. (2013) study, the system of disposal was not defined, for this reason 

the effect of disposal has not contributed as in this study on environmental load. 

 

Table 5.7. Environmental results for different packaging solutions 

Impact category Unit Pack A Pack B Pack C 

Climate change kg CO2 eq 2,17*10
-1

 2,29*10
-1

 2,50*10
-1

 

Ozone depletion kg CFC-11 eq 5,22*10
-9

 5,38*10
-9

 6,70*10
-9

 

Terrestrial acidification kg SO2 eq 4,92*10
-4

 5,39*10
-4

 6,42*10
-4

 

Freshwater eutrophication kg P eq 3,30*10
-5

 3,43*10
-5

 4,14*10
-5

 

Marine eutrophication kg N eq 1,12*10
-4

 1,13*10
-4

 1,43*10
-4

 

Fossil depletion kg oil eq 4,64*10
-2

 5,38*10
-2

 5,95*10
-2

 

 

Figure 5.2. Comparison of the environmental impact among different packaging systems 
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5.3.3 LCA Comparison among different packaging solutions taking into account the shelf life 

value of the raspberries packaging solution 

 

The choice of using one day of shelf life as the functional unit means that the impacts were shared 

along the lifetime. In other words, in this way, it is possible to define a ―daily‖ impact for 

packaging solutions. 

For each impact categories, the differences between base scenarios and alternative scenarios were 

evaluated. The packaging solution called A has only 4 days of shelf life value and this condition 

determines the highest daily impact among the packaging solutions studied. Whereas the packaging 

solutions B and C determine a significative reduction in terms of environmental load up to 55% and 

70%, respectively (Figure 5.3). As assumed by different authors (Willliams et al. 2011, Roy et al. 

2009, FAO, 2011) a correct packaging can contribute to reduce the overall impact of the system 

linked also to the reduction of food waste (Almenar et al, 2010). The small differences among 

packaging solutions for each impact categories were ascribable to the relative impact of the active 

compound or the master bag film used in the estimation of the environmental impact. These 

demonstrate that the components of the passive and active atmosphere define a relative high effect 

on the environmental load of the packaging solution, as showed in Table 5.8. 

 

Table 5.8. Percentage of environmental load referred to the highest value of impact of different 

packaging solutions 

Impact category Unit A B C 

Climate change kg CO2 eq 1.23*10
-1

 8.45*10
-2

 5.68*10
-2

 

Ozone depletion kg CFC-11 eq 4.30*10
-9

 2.92*10
-9

 2.38*10
-9

 

Terrestrial acidification kg SO2 eq 5.52*10
-4

 3.77*10
-4

 2.63*10
-4

 

Freshwater eutrophication kg P eq 1.12*10
-4

 7.49*10
-5

 4.70*10
-5

 

Marine eutrophication kg N eq 1.38*10
-4

 9.24*10
-5

 6.00*10
-5

 

Human toxicity kg 1,4-DB eq 6.69*10
-3

 4.50*10
-3

 3.44*10
-3

 

Fossil depletion kg Oil eq 2.64*10
-2

 1.89*10
-2

 1.28*10
-2

 

 

The differences in the packaging among three scenarios was minimized due to the biggest impact 

of food production on the entire impact. This means that the packaging could be improved to 

reduce the environmental load. In fact, in same case, an increase in the environmental load of 

packaging is needed to reduce the entire impact (Willliams et al. 2011). 
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Figure 5.3. Comparison of the environmental impact among different packaging solutions taking 

into account the shelf life value 

 
 

5.3.4 Tentatively definition of the potential role of the packaging system in reducing the 

environmental load of food loss 

 

 As declared in the FAO work (Gustavsson et al.  2011), one-third of the total amount of food that 

we produce becomes waste or gets lost during the supply chain. This issue has not only a social and 

economic component but also an impact on the environmental system, in fact food and drinks 

production, together with their distribution, represents 20-30% of the total consumption 

environmental load in the EU (Tukker and Jansen, 2006). Several studies have stressed the 

importance of increasing the knowledge about the amount of food losses (Carlsson-Kanyama et al., 

2002; Davis and Sonesson, 2008) due to the high variation in the literature studies and the lack of 

identification of the reason why the food waste and loss arise.  

Some authors have also highlighted the weight of packaging in the environmental load 

demonstrating that the environmental impact of packaging is usually relatively small compared to 

the entire product-package system. The contribution of the whole food chain to the greenhouse 

gases production, from agriculture to food processing, is predominant. The food production chain 

and the waste management of packaging are usually 5% of the total environmental loads and in 

many cases  the environmental impact of packaging is as low as 2%, thus having a small effect on 

the environmental load compared to the food production (Silvenius et al. 2011). The quality 

attributes appreciated by consumer are often such as to prevent food losses e.g. prevention of 

leakages, open-dating, protection, declaration of contents, hygiene, instructions, easiness to empty 

completely, to dose and to storage, as well as resealability and the optimal quantity of the product 

in the packaging (Williams et al., 2008).  

In recent years, the environmental issues in the packaging area have been fought by using the 

reduction or changing in the material or following the recycling possibilities, unfortunately not 

focusing on the food loss. The new and added function of packaging is defined as the tool to reduce 

the food loss along the supply chain. In the best case, the ―designer‖ of new packaging solutions 
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has to take in consideration the reduction of environmental packaging and food loss at same time, 

but in the majority of situations it could be necessary to increase the environmental impact link to 

packaging to reach a lower global environmental load due to the reduction of food loss.   

The aim of this section is to define objectively the role of packaging to reduce the food loss and 

thus the environmental load of each product-packaging solution through a specific model to 

determine the balance between the environmental impact of packaging and the environmental 

impact of the food losses due to changes in packaging. 

The model used in this study was developed by Wikström and Williams in 2011 and can help to 

analyse packaging solutions with the porpoise of minimizing the environmental load of the 

packaging system. Using the LCA data from food supply chain and packaging production collected 

and analysed above in combination with food loss for the two different packaging solutions (active 

and traditional) it can be calculated the possible advantage of packaging solution to reduce global 

environmental load.  

The model showed different adaption for this study, respect on the original one, due to the 

necessity to restrict the field of the investigation and the lack of information about the LCA 

evaluation of waste handling of food losses in the life cycle. 

The boundaries of the LCA analysis was showed in the Figure 5.4 and represent the supply chain of 

raspberries, form agricultural step where the fruits were grew and harvested to the retailer without 

the consumer phase. As expressed above the Food waste management was not take into 

consideration, and  the Fraction of food loss for each type of food packaging was calculated along 

supply chain and not in the consumption step as defined in the original model.  

 

Figure 5.4. Boundaries of LCA analysis from berries production to packaging disposal.  

 

 
 

The model used in this study is the following: 

 
  

  
 
    

    
 
     

    
 
 

  
 

 

Where: 

 T1: Environmental Impact of ―traditional‖ packaging 

 T2: Environmental Impact of ―new‖ packaging in this study the active packaging solution 

in master bag 

 L1: Fraction of Food Loss (―traditional‖ packaging) 

 L2: Fraction of Food Loss (active packaging solution in master bag) 

 F: Environmental Impact of food without packaging 
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The environmental load of packaging solution and food (raspberries) are expressed in kg of CO2 

equivalent taking into consideration as the functional unit in the LCA study the 2 sale units (250 g 

of  raspberries). 

The choice of this impact category was related to the need to provide an evaluation of the impact of 

the examined system in relation to climate change that can be readily communicated to and 

understood by consumer.  

The fraction of the food loss was collected from literature for the ―traditional‖ tray by WRAP 

report (2008, Figure 5.5). In the model was used the average value (20%). The fraction of food loss 

was assumed by interview on raspberries grower and retailer defining the possible reduction in the 

steps along supply chain (Figure 5.6). It was assumed that the reduction of loss was carried out in 

the field step due to the better management of the harvest, considering the possibility to storage the 

product for longer time coping the fluctuation in the consumer demand. At the retailer step, the 

increase of shelf life determine an food loss reduction due to the better management of the 

stockpile and the reference rotation on the shelves.  

 

Figure 5.5. Food loss percentage along the raspberries supply chain in UK using the ―traditional‖ 

packaging solution. 

 
 

 

Figure 5.6. Food loss percentage along the raspberries supply chain in Italy using the ―new‖ 

packaging solution (Active packaging solution). 

 
 

The model used in this work are able to define the balance between the environmental impact of 

packaging and the environmental impact of the food losses due to changes in packaging. For this 

reason the increase in environmental impact from ―new‖ packaging respect to the ―traditional‖ 

must be below the environmental impact generated by the food loss reduction. In other words, the 

disequation is satisfied if the contribution of the food ―saving‖ is higher than the larger 

environmental load of a new packaging solution. 

The data came from the LCA analysis performed in the above section was showed in the Table 5.9. 

In the food value was estimated also the energy to refrigerate the products.  
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1% 
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2% 
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 6% 
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Table 5.9. Values inserted into the model to define the satisfaction of the disequation 

Code Definition Value Source 

T1 Environmental Impact of ―traditional‖ 

packaging 

0.22 kg 

CO2eq 

LCA results 

T2 Environmental Impact of ―new‖ packaging 

(active atmosphere solution) 

0.25 kg 

CO2eq 

LCA results 

L1 Fraction of Food Loss (―traditional‖ 

packaging) 

0.20 WRAP (2008) 

L2 Fraction of Food Loss 

(active packaging solution in master bag); 

0.10 Preliminary results 

F Environmental Impact of food without 

packaging 

0.12 kg 

CO2eq 

LCA results 

 

Using the data collected and shown in the Table 5.9 have been satisfied the disequation, determine 

the value of the ratio between T2 and T1 lower than the food loss saved in the right part of the 

disequation. The value came from the ratio of T2/T1 was 1.15 and the value of the food saved was 

1.19.  

In this study, the environmental load of the ―new‖ packaging have an increase about 14% respect to 

the ―traditional‖ one while the food loss saved correspond to the 10 %.  

There is no doubt that the environmental impact can be significally reduced if the food losses 

decrease, it is still unclear, however, to what extent new packaging can influence food losses 

directly or indirectly by influencing consumer behavior. It is not easy to separate these interacting 

factors.  

One preliminary conclusion that can be drawn from these results follow the importance to study 

whether there is a risk that food losses increase when packaging design changes, for example, when 

the aim is less packaging material. The total environmental impact will most certainly increase if 

food losses increase, even if the impact from the packaging decrease. If the authorities want to 

reduce the total environmental load of the food packaging system, the next operation carried out to 

define a new legislation that take into consideration this approach.  

 

5.4 CONCLUSION 

The LCA evaluation was permitted to define which are the phases have an important role in the 

environmental load, the packaging system denoted an higher impact due to the collecting and the 

recycling processes, and the high quantity of packaging in comparison the fruit stored. It is clear 

that in this sector can be use different materials o different packaging solutions to reduce this load, 

for example reducing the weight of pack or following the  biodegradable materials way that have a 

lesser impact (Razza et al., 2010).  

The values of shelf life identified in this study came from the experimental evaluation and those 

values can able to define better the environmental sustainability of the systems due to the reduction 

of environmental impact correlate to the increase of shelf life value.  

As a result of this study, it is possible to assess the environmental impact of the raspberries 

products stored in different packaging solution to identify the best solution to reduce the 

environmental burned. The LCA methodology was permitted to define as the best solution the 

raspberries packaged inside master bag with active devices.  
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Over the last years, the interest in the environmental impacts associated with food systems has 

strongly grown. Several studies have confirmed the relative importance of ―food and beverages 

consumption‖ in contributing to environmental impacts (Bacenetti et al. 2015). Within the food 

chain, also the waste management processes contribute to the overall environmental burden of food 

products (FAO, 2013). Among the different mitigation strategies, several studies highlighted that 

the optimization of packaging solution can be an effective solution to decrease the environmental 

load of the food systems (Williams et al. 2011 and Piergiovanni, 2014). The future researches are 

need to define better the effect of the extension shelf life of this kind of product on the supply chain 

and the consumer habits. It is necessary improve the knowledge of the effect of the extension of 

shelf life on the sustainability in terms of environmental load, social and economic effect. One of 

goal of the FAO in the fight against the fame is the  reduction of the global food waste as a 

contribution to feeding nine billion people by 2050. The limiting of this virtuoso process is the lack 

of knowledge of the causes and the reticence of the authorities and the politicians (Parfitt et al., 

2010).     
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6 - SHELF LIFE ESTIMATION OF STRAWBERRIES STORED IN TRADITIONAL AND 

PASSIVE MODIFIED ATMOSPHERE: A MULTIVARIATE APPROACH AS RELIABLE 

PROCEDURE 

 

6.1 INTRODUCTION 

 

Strawberry is a non-climacteric fruit and it must be harvested at full maturity to achieve the 

maximum quality in relation to flavour and colour (Peano et al., 2014). The fruits have short shelf-

life due to physiological aspects such as high respiration rate, loss of firmness, mould susceptibility 

and breaking down tissues. In fact the most common reasons to complain by costumers are the 

expired, smashed and leaky fruits (Nunes et al., 2009) or, during the supply-chain, the Botrytis 

infection that is the  major  limiting factor in relation to quality of strawberries, potentially  causing 

up to 50% loss (Hertog et al., 1999; Wszelaki and Mitcham, 2000). Many studies have been aimed 

to find the best food packaging in order to optimize the O2 and CO2 concentrations inside the 

packages, thus maintaining fruit and vegetable quality for a long period (Gomes et al., 2010).  

To determine the efficacy of the packaging system, the most important aspect is the estimation of 

the shelf-life. This value can objectively define a gap between two or more packaging systems to 

extend the lifetime of product. To correctly estimate this value, it is necessary to follow a protocol 

to define the critical indicator that describes the most important relevant changes in the fruits 

during storage, and define its critical limit. The shelf life in this case is identified as the time at 

which the critical indicator reaches its critical limit.  

Many reviews and books describe the methodologies applied to determine the shelf-life value but 

each author uses a specific grouping for the possible methodologies (Nicoli 2012; Hough 2010; 

Robertson 2009). Therefore the definition of which is the best methodology to determine the shelf 

life value seems ―arbitrary―. In the fresh-fruits sector, the identification of the critical attribute and 

its limit can go through the simultaneous evaluation of different parameters due to the high 

variability of the products. In this study the estimation of the shelf-life  has followed a multivariate 

approach as reported by Pedro and Ferreira (2006), taking into consideration different parameters at 

the same time. Once defined the shelf life of the traditional system,  referred to macro-perforated 

PET tray with macro-perforated PET lid, the reached value was compared with shelf- life obtained 

storing strawberries in a passive atmosphere solution using a simple material (LDPE); a simple 

equipment was tested to offer a reliable packaging solution for small productions. In Italy in fact 

there are many small growers (Rava et al, 2002) which are exporting their products to various 

countries. 

6.2 MATERIALS AND METHODS 

 

6.2.1 Fruits: The strawberries were purchased in a macro-perforated PET tray with a PET rigid lid: 

this is the traditional sale unit containing 250 g of fruits. Strawberries (Fragaria x Ananassa 

Dutch.) cv. Asia from Northern Italy, picked at commercial ripening, were provided by a local 

supermarket in Milan and transported to the laboratory where they were immediately stored in a 

dark cold chamber (5±1 °C, 70 %RH) before packaging. 

 

6.2.2 Packaging material: A macro-perforated PET tray with a PET rigid lid was used as 

―traditional‖ solution in this study.  

The master bag (52*31 cm) used in the experimental plan was made from LDPE with the 

characteristics described in Table 6.1 including the gas permeability for oxygen transmission rate 

(O2TR), carbon dioxide transmission rate (CO2TR) and water vapour transmission rate (WVTR). 
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Table 6.1: Characteristic of plastic film 

Material Thickness 

(µm) 

O2TR 

(cc*m
-2

*day
-1

)* 

CO2TR 

(cc*m
-2

*day
-1

)* 

WVTR 

(g*m
-2

*day
-1

)** 

LDPE 25 4000 30000 21.7 

* 23°C-0 % RH; ** 38°C-90 % RH.  

 

6.2.3 Sensorial analysis: 

Global acceptability: The consumers, after berries consumption, judged the global acceptability of 

berries indicating the positive opinion with  ―yes‖ or negative opinion with ―no‖. The global 

acceptability was expressed as the percentage of the positive acceptance judgment respect to the 

total consumers‘ answer. 

 

Sensory quality evaluation: A trained taste panel, with a minimum of six persons, evaluated the 

sensory quality of the packaged fruit. All sensory tests were performed in a room with artificial 

light, and sensorial properties such as bitterness, fermented taste, sweetness, acidity taste and visual 

calyx freshness were evaluated. A numerical score between 1 and 9 was given for each property to 

describe the sensory quality of the fruit. For negative quality bitterness, fermented taste, acidity 

taste scores 1–5 were associated with appreciated taste, whilst 6-9 scores were associated with off-

taste or over-ripe. Score 6 represented the limit of these factors. For positive indicator as sweetness 

and visual calyx freshness, on the other hand, scores 6-9 represented a very good and fresh value, 

score 6 was still acceptable and scores 1-5 were associated with a non-acceptable taste or freshness. 

The cut-off score was fixed at 6 (Giménez et al. 2008). 

 

Visual acceptability and Score acceptability: Fifty regular consumers of strawberries (nearly half 

male, half female) were recruited among students and employees of the University of Milan (Italy), 

between 21 and 60 years old. At each sampling time, the visual assessment of the acceptability was 

carried out in a 9-point hedonic scale (score acceptability). If the result was more than 6 points the 

berries were judged as acceptable, as established by Ares, et al., (2006) and Giménez et al. (2008). 

The visual acceptability was expressed as the percentage of the acceptance judgment respect to the 

total consumers answers.  

  

6.2.4 Chemical and physical analyses 

Maximum Force: The method used to assess product firmness intended to measure the structure 

resistance against the penetration. Firmness of strawberries was established using a dynamometer 

(Zwick Roell Instrumental Z010, Zwick GmbH & Co. KG, Ulm, Germany) through a single 

penetration test on each half berry on the equator of fruit (modified method from Gunnessa at al. 

2009). Gunnessa at al. (2009) found that measurements taken on the equator (typically the highest 

point of the half fruit) gave more consistent results than from other positions. 

The maximum force was assessed at least on 20 half strawberries per each sampling time. Each 

berry was positioned under the probe (3 mm diameter) and penetrated until 4 mm using a load cell 

of 10 kg (100 N), at test speed as 0.2 mm/s and with a trigger force as 5 g.  

 

Percentage of rejected berries: Physically damaged and mouldy berries were visually counted  at 

each sampling time and the results were expressed as percentage of rejected berries with respect to 

the total berries inside each tray. In particular, strawberry fruits showing surface mycelial 

development were considered decayed (Van deer Steen et al., 2002). 
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Colour: At each sampling time, colour of the berries  was measured on 30 fruits taken from three 

different packages by an handheld Tristimulus colorimeter (Konica Minolta CR-300, Tokyo, Japan) 

determining L*, a* and b* parameters with a diameter 8 mm, 2° standard observer and a C as 

illuminant source. Before each measurement, the apparatus was calibrated on the Hunterlab color 

space system using a white ceramic tile (Minolta calibration plate, Y = 92.6, x = 0.3136, y = 

0.3196). Colour was described as Hue angle (H°, expressed as arctg b*/a*) and Chroma (C, 

expressed as (a*
2
 + b*

2
)

1/2
) indexes.  

 

Weight loss: The weight loss was determined gravimetrically by weighting each PET tray at time 

zero and during the storage using a Technical balance (MP-3000 Chyo Balance corp., Japan). 

Changes in fruit weight were expressed as percentage of weight loss.  

 

Pureé preparation: For biophysical and chemical analyses, the strawberries (100g) were puréed 

by handheld blender (Braun MR 4050 CA) for 30 s at high speed at each time of storage and kept 

frozen until the analyses were performed. The thawing was carried out in refrigerator overnight at 

5±1 °C . 

 

Dry matter content: Determinations were made on 5g of fruit pulp by drying samples in oven set 

at 105°C. The samples were weighed after about 16 hours. The measurements were replicates three 

time. The results were expressed as g of dry matter for 100g of samples. 

 

Titratable Acidity (TA): After thawing of samples at 4°C overnight, TA was determined by 

titrating sample (2 g of homogenate + 40 mL of CO2-free distilled water) with standardized 0.1 N 

NaOH to pH 8.2 (Phenolphthalein toning) by use of a pH meter (Basic 20+, Crison Instruments 

SA, Barcelona, Spain). TA was expressed as citric acid equivalents (grams of citric acid per 100 

grams of berries) 

 

Total soluble solid (TTS): After thawing at 4°C overnight, the berries pulp was put in the 

Automatic Refractometer model SMART-1 Atago®, (Atago CO.LTD, Tokyo, Japan). The results 

were expressed as BRIX°. 

 

Respiration rate: Apparent respiration rate (RR) of the strawberries was measured at 5°C using 

the closed system method. The measurements were carried out in triplicate. Berries and the jars 

were equilibrated for 1 h at 5°C. Samples of about 100 g were then placed in open air in 0.5 L glass 

jars and tightly covered with metal caps equipped with silicone sampling ports. Headspace gas was 

periodically sampled (20-30 min) by means of a gas-tight syringe. Oxygen and carbon dioxide were 

detected and quantified by a gas chromatograph (Hewlett-Packard HP 5890 series II) equipped with 

a thermoconductivity detector and a steel column (2 m × 6 mm. CTR I Alltech, Milano), until the 

CO2 level inside the jars reached 5%. Respiration rate was calculated from the linear regression of 

O2 and CO2 concentrations measured during the time of experiment and it was expressed as 

ml*kg
−1

*h
−1

.  

 

RRO2=   (∆[%O2]*V)/((∆t*100+M)) 

RRCO2=   (∆[%CO2]*V)/((∆t*100+M)) 

Where: 

V= Head space volume, ml 

M= Mass of product, kg 

t= Time, hour 
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6.2.5 Statistical analysis: Data were statistically evaluated by one-way ANOVA and multiple 

range test (Tukey method) to put in evidence significant differences among samples, using 

Statgraphics Plus v. 5.1 package (Statpoint Technologies, Inc. Warrenton, VA 20186, USA). The 

differences were considered significant at P < 0.05. In order to analyse the results from a 

multidimensional point of view, the quality parameters data were analyzed by Principal Component 

Analysis (PCA), using the Unscrambler v.9.7 software (CAMO, Norway). 

 

6.3 RESULTS AND DISCUSSION 

 

6.3.1 Shelf- life definition of strawberries in PET macro-perforated tray (“traditional” 

solution)  

 

The respiration rate was determined on the fresh fruits at 5°C and values obtained were RRO2 = 19 

ml (27.63 mg) O2*kg
-1 

h
-1

 and RRCO2 = 20 ml (40 mg) CO2*kg
-1

*h
-1

; these values were in 

agreement with the values reported by Mitcham (2000; 20-50 mg CO2*kg
-1

*h
-1

 ) but higher than 

values found in 3 different cultivars by Pelayo et al. (2003; 6-9 mg CO2*kg
-1

*h
-1

). The RRCO2 / 

RRO2 equal to1.05 means that the fruits were in a good shape with an aerobically quotient. This 

value can be associated with an aerobically respiration due to the consumption of carbohydrates 

(Saltveit et al., 2014).  

The water loss due to the transpiration involves a negative effect on the appearance of fruit, leading 

to shrivelling and a damaged on the surface. The limit of this loss for strawberries before 

marketability has been established to be approximately around 6% (Robinson et al., 1975). In this 

study the fruits lost around 3 % at the end of the storage (Figure 6.1); these values were lower than 

those found by Van der Steen et al. (2002; 5%) but the same loss was found in the strawberries held 

at 2 °C for 3 days + 4 days at 20 °C.  

 

Figure 6.1. Weight loss of fruit during storage. Different letters show significant differences 

(p<0.05). 

 

 
 

The fungal infection on the surface tissue was visually assessed during storage. In this study, 

incidence of fungal growth gained high level after 4 days of storage, later the lag phase of fungi. 

The limit for this indicator is set at 5 % (Hertog et al., 1999), thus between 0 and 4 days the 

samples can be considered unacceptable (Figure 6.2). During storage the berries develop a leakage 

or damage on surface due to the weight loss, loss of firmness and enzymatic reactions. The limit for 

percentage of visual mouldy berry (10 % Sanz et al., 1999) has been reached between 4 and 7 days 

when the percentage of damaged berries arrived at 18 % at 7 days. 
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Figure 6.2. Visual rejected berries during storage, a) moulded, b) damaged. Different letters 

indicate significant differences (p<0.05). 

 

a) b) 

 

One of the most important factor that defines the changes in the strawberries quality is the sensorial 

analyses. Sensory quality is related to the characteristics of the food and how consumers perceive 

them (Costell, 2002). With increasing of the storage time, deterioration starts with decay, 

fermentation and bruising (Ares et al., 2009). Figure 6.3 a-d summarizes the results of the sensory 

attributes. Panelists detected two main off-flavours: the bitterness and the fermented taste; and one 

visual quality index refers to the browning of the sepals in the calyx. This last indicator defines the 

freshness of the fruits due to the browning of the sepals that change their colour from green to 

yellow-brown. 

The development of sensory defects contributed to reduce the global acceptability of fruits as 

showed in the Figure 6.3-d.  

 

Figure 6.3 a-d. Sensory attribute (Visual calyx appearance, bitterness, fermented and global 

acceptability). Different letters indicate significant differences (p<0.05). 

 

a) b) 
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c) d) 

 

The changes in colour parameters during storage were cultivar dependent as reported by Pelayo et 

al., (2003). In this study any evolution was defined, the colour saturation (Chroma) and the Hue 

angle didn‘t change during storage as showed in Figure 6.4. This behaviour could be correlated 

with the conservation of the anthocyanins and the pH of the fruits that maintain the starting  values 

as found in different works (Sanz et al., 1999 and the Pelayo et al., 2003).  

 

Figure 6.4 a-b. Colour evaluation (chroma and hue). Different letters indicate significant 

differences (p<0.05). 

a) b) 

 

The maximum force is a very important indicator of strawberries‘ quality and it can be used to 

determine the texture changes. As reported for other quality indicators the firmness changes can be 

correlated with the cultivar used in the experiment; in fact, as reported by Pelayo et al., (2003) the 

firmness, in terms of the maximum force of penetration, changed during storage in different ways 

in relation to various cultivars used in the experiment. In this study there was a significant variation 

during storage that  could be correlated with the high intrinsic sample variability (Figure 6.5). 
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Figure 6.5. Firmness change during storage of strawberries. Different letters indicate significant 

differences (p<0.05). 

 
 

For an acceptable taste, a maximum 0.8% Titratable Acidity (TA) and/or a minimum 7% total 

soluble solid (TTS) have been recommended (Mitcham et al., 1996). In this study the strawberries 

fitted within the recommended TA value and the TTS. The acidity decreased after 4 days and 

reached a value similar that found at beginning, while the TTS showed a different behaviour, 

maintaining the same value for the entire experimentation, in fact not significant difference was 

found (Figure 6.6). 

 

Figure 6.6.  Changes in titratable acidity and soluble solid content  in strawberries stored in 

traditional system. Different letters indicate significant differences (p<0.05). 

a) b) 

 

The changes in the dry matter was ascribed to the product variability and continuous senescence of 

fruits that loss water (transpiration) and solid (catabolism). The values obtained in this study 

(Figure 6.7) were in the range between 7.4-10.8 as also described by Skrede et al. (2011) for 

strawberry fruits. 
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Figure 6.7. Changes in titratable acidity and soluble solid content in strawberries stored in 

traditional system.  Different letters indicate significant differences (p<0.05). 

 
 

6.3.1.1 Definition of shelf life by Multivariate analysis 

 

Multivariate analysis (MVA) is based on the analysis of more than one statistical outcome variable 

at a time. This technique can be used to assess the shelf life value considering many different 

parameters and taking into account the effects of all variables on the responses of interest. 

One of the most useful techniques based on this approach is the Principal Component Analysis 

(PCA), which aims at finding a new set of axes in multivariate space that better describes the 

structure in the data. These new axes are called Principal Components (PC) and are built by linear 

combinations of the original variables (Malinowski., 1991; Wold et al., 1987). 

Following the steps defined by Pedro and Ferreira (2006) study the multivariate approach was 

applied.  

Firstly a matrix was carried out collecting in the columns the results of physical and sensorial 

analyses while rows represent the time at which the results were obtained. In this matrix 3 

replicates of the raspberries analysis performed along 2 years for different batches of samples were 

taken into account. This structure of the columns is necessary in order to keep samples spread in a 

single multivariate space which would reveal time dependence in the PCA; the variables present 

different scales, and the auto-scale procedure was performed to obtain to obtain the Xa matrix. The 

columns of Xa have means equal to zero and unit variance (Eq. 6.1):  

 

   
      ̅ 

  
 

         (6.1) 

where Xk and Sk are, respectively, the mean and the standard deviation of the elements of the k-th 

column of X and Xa, k and Xn,k are typical elements of Xa and X. n is the number of points in 

time where evaluations were conducted. 

Secondly build up shelf-life charts (PC scores vs. time) for the first R PC and identify the scores 

which are time-related and for each of the time-related PC, identify their reaction order and 

determine the kinetic parameters using the PC scores as properties. 

Thirdly to identify gathering the cut-off criteria for the score time-related PC using the loading 

values of the PCA should be used the following procedure (Eq. 6.2):  

1) Place the reference values for each property into the x vector and pre-process it using the 

parameters determined in equation 3.5 to obtain Xa.  

2) Use the loadings matrix to calculate the cut-off criteria that is the maximum acceptable scores 

for each time-related PC: 

 

            (6.2) 
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where Xa is the row vector of reference values and Lm is the loadings matrix of the time-related 

PC for storage condition (Pedro and Ferreira 2006).  

The changes in raspberries quality indices stored in traditional packaging can be described by using 

few quality indices with respect to all the parameters tested in this study. The analysis of loading of 

the original matrix established that the loading that have an impact more than 0.3 was collected to 

use it in the final matrix and to estimate the global quality indices. This selection was carried out to 

determine the best quality indices that describe the changes in the berries during storage 

A total of 3 PCs were retained from the PCA applied to the ratings of the 6 attributes used to 

describe the quality attributes of strawberries. Visual mouldy berries, visual damaged berries, 

weight loss, bitterness and fermented taste and global acceptability. 

The first of the two principal components explain 88% of variability. A separation of the samples 

according to the storage conditions is shown on the scores plot (Figure 6.8), where the number 

beside each point represents the storage time in days. In particular, samples were distributed along 

PC1 according to the storage time. Loadings revealed the weight of attributes responsible for 

product degradation (Figure 6.9) and the selected components represent the most important factor 

in the quality decay identification. It can be seen that those variables which increase in time have 

positive PC1 loadings whilst those which decrease present negative values. All parameters studied 

in this analysis have shown a positive values defining an increase trend during berries storage 

except the global acceptability that have shown a negative effect. 

As expected, the samples closed to initial value of the study were characterized by high value of 

global acceptability whereas the sample at the end of the storage were characterized by high values 

of the other quality parameters (visual mould and damaged berries, weight loss and bitterness 

fermented taste) due to the senescent. These considerations are in agreement with the changes of 

quality indices reported above. 

 

Figure 6.8. Scores plot of Principal Component 
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Figure 6.9. Loadings plot of Principal Component 

 
 

Table 6.2: The matrix of quality indices used in the PCA to identify the best parameters to estimate 

the shelf life value 

Time 

(day) 

Weight 

loss (%) 

Visual 

mouldy 

berries (%) 

Visual 

damaged 

berries (%) 

Chroma 

(C*) 

Hue 

angle 

(°) 

Maximum 

Force (N) 

0 0.00 0.00 0.00 53.02 38.21 0.57 

4 1.50 6.59 7.87 46.60 35.58 0.95 

7 2.57 39.24 18.03 53.94 37.60 0.50 

8 2.75 66.71 19.00 51.60 37.39 0.80 

 

Time 

(day) 

Firmness 

evaluation 

(Score) 

Sweetness 

(Score) 

Bitterness 

(Score) 

Fermented 

Evaluation 

(Score)  

Global 

acceptability 

(%) 

0 1.76 2.78 1.00 1.22 70.00 

4 2.31 3.08 1.39 1.42 70.00 

7 2.08 2.25 1.75 1.89 50.00 

8 2.33 2.14 1.89 1.42 40.00 

 

The multivariate approach is able to consider the main quality parameters that have effect on the 

quality changes in strawberries. Using the property of time-structure of PC1 in function of time, the 

Figure 6.8 was defined. Given that the overall degradation reaction followed pseudo-zero-order 

kinetics for berries stored in this packaging solution, the linear equation with parameters was 

reported in Table 6.3. 

 

Table 6.3. Linear equation parameters and fitting of pseudo-zero-order kinetic  

a b R
2
 

0.6349 -3.0157 0.989 

 

The limits used for estimating the PC critic for passive packaging solution was reported in Table 

6.4. Using 6 parameters simultaneously the efficacy of the critical indicator is improved in 
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comparison with the classical protocol that identify only one parameter at time. For this kind of 

products is necessary to use more than one quality indicator to estimate the shelf life value due to 

the high intrinsic variability of samples. 

 

Table 6.4. Limit values for different quality parameters to identify the critic PC for passive 

packaging solution 

Variable Unit Limit References 

Visual mouldy berries % 5  Hertog et al., 1999 

Visual damaged berries  % 10  Sanz et al., 1999 

Weight loss  % 6  Robinson et al. 1975 

Bitterness Score 6  Jouquand et al., 2008 

Fermented taste Score 6 Jouquand et al., 2008 

Global acceptability % 50  Lareo et al., 2009 

 

Applying the reference values for each quality attribute expressed above and using the equation 

(6.2), a critical PC1 score value of 1.68 was obtained (refer to Figure 6.10), which corresponds to a 

shelf life value about 2.2±0.5 days. This value is lower than that identified by Mitcham (2000; 7 

days) and Pelayo et al. (2003) that found for different cultivars values ranging from 5 to 7 days. 

The shelf life value depends on different factors and, among others, the cultivar and the disease 

pressure (Pelayo et al. 2003).  

 

Figure 6.10. Plot of PC 1 versus storage time  

 
 

6.3.2 Definition of shelf life for Passive packaging solution  

  

The modified atmosphere packaging (MAP) and the low storage temperature are some of the most 

used methods to preserve quality and safety of fruit and vegetable products (Bogaert et al., 2004; 

Sandhya, 2009). Passive modified solution consists in an atmosphere modification thank to the 

relationship between product respiration and film permeability during storage (Mangaraj et al., 

2009). Inside packages, O2 is used by the fruits in respiration metabolism to produce CO2. The 

closed condition due to the film permeability allows lower concentration of oxygen and higher 

concentration of CO2 to be reached, causing a reduction in product‘s respiration rate and a 

consequent slowing down of senescence and decay phenomena (Das et al., 2006). Unfortunately 

reaching and maintaining the optimal gases conditions  is a slow process that allows alteration in 

the fruits before selling.  

In order to extend the shelf life and maintain the quality, the MAP solution requires careful design. 

In fact, an excessive O2 depletion carried out under anaerobic conditions and CO2 accumulation 

(toxic condition), for example, allows a fast quality degradation.  
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The aim of this study was to define the shelf life of strawberries stored in passive modified 

atmosphere following the most important quality indices during storage in a master bag solution. 

The effect of the film used to package the strawberries on the evolution in the headspace gases 

composition is shown in the Figure 6.11. The changes in gases concentration inside the master bag 

moved differently from the normal atmosphere composition  (21% O2 and 0.03% CO2). The 

oxygen value went down reaching the danger limit for the strawberries (2%, Kader, 1997) after 10 

days, across the optimal limit (10% Van der Steen et al., 2002). The carbon dioxide level of 5 % 

was reached at 5 days and kept until the end of storage. This value was not enough to reduce the 

growth of  moulds and yeasts for longer time and reduce the fruit respiration. In fact the 

recommended level for carbon dioxide is in the range from 10 to 15 % (Van der Steen et al., 2002; 

Almenar, 2005 and Joles et al., 1994). 

 

Figure 6.11. Gases evolution inside the master bag with strawberries 

 
 

The water loss involves a negative effect on the appearance of strawberries leading to shrivelling 

and a dull-looking berry surface. The maximum limit for strawberries before marketability has 

been reported to be approximately 6% (Robinson et al., 1975).  During storage, the weight loss 

didn‘t reach the limit and, as expected, didn‘t show any significant differences thanks to the plastic 

film that maintained the high humidity level inside the master bag, delaying the fruits dehydration 

as reported in Figure 6.12. The value recorded at the end of the storage was in the same range 

found in other works (Peano et al. 2014; Nielsen and Leufve´n, 2008). 

 

Figure 6.12. Weight loss of strawberries changes during storage. Different letters indicate 

significant differences (p<0.05). 

 
 

A berry was considered damaged (unacceptable) if it was visibly affected by any form of 

deterioration, visible fungal growth not included, on at least 1/3 of the surface (Sanz et al., 1999) 

and the limit of the acceptance was set at 10% referred to a package. While the visual fungal 
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growth, in most of the case by Botrytis, was observed in the study and its limit was set at 5% 

Hertog et al., 1999). In this study the damaged berries exceed the limit between 10 to 14 days and 

reached an high level of damaged fruits at the end of the storage (60%, Figure 6.13a); these 

changes can be correlated with the low oxygen concentration causing the switch the fruit 

metabolism from aerobic to anaerobic (Beaudry, 2000). The incidence of visual mould on berries 

was detected since the 6th day and exceed the limit between 10 to 14 days of storage. The head 

space  gases concentration during storage allowed the delay of  mould growth. These condition, 

unfortunately, haven't blocked the mould growth recording a value at the end of the storage around 

12 % (Figure 6.13b). 

 

Figure 6.13. Changes in visual unacceptable berries during storage in passive solution, a) represents 

the visual damaged berries b) the visual mouldy berries. Different letters indicate significant 

differences (p<0.05). 

a) b) 

 

The most important factor for consumers to choice the fruit is colour (Del-Valle et al., 2005). The 

changes in colour parameters during storage are cultivar dependent as reported by Pelayo et al., 

(2003). In this study and for this strawberry cultivar the Hue didn't show any changes during 

storage as showed in Figure 6.14 while the Chroma showed an increase from time 0 to day 2 due to 

the quickly changing in the headspace of CO2 concentration. This behaviour could be correlated 

with the slight variation of the intracellular pH of the fruits allowing to modification of the colour 

from anthocyanins (Sanz et al., 1999 and the Pelayo et al., 2003).  

 

Figure 6.14. Colour changes for two colour indices chroma (a) and hue (b).
 
Different letters 

indicate significant differences (p<0.05). 

a) b) 

 

Fruit firmness is defined as the ability of fruit to maintain integrity, shape and avoid the release of 

juices. Consumers are able to assess fruit texture through a simple visual evaluation before  
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purchasing; if the product does not meet their requirements in term of firmness and colour, the 

consumers reject it. The firmness of fruits stored in the passive modified atmosphere recorded an 

slightly increase after only 2 days, probably due to the effect of the CO2 concentration, being this 

gas involved in increasing or maintaining the firmness of fruits (Larsen and Watkins, 1995). 

Usually, this increase happens by higher carbon dioxide concentration (15-20%) but in this study 

the effect on the fruits seems proportional to the CO2 concentration. In fact the mechanism by 

which both low temperature and CO2 affect strawberries firmness is not yet understood. A possible 

explanation of this phenomena regards an indirect effect of CO2 on the apoplastic pH with the 

consequent precipitation of soluble pectins and the improvement of cell-to-cell bonding (Harker et 

al., 2000). Following this theory the proportional effect of the CO2 concentration might explain the 

firming response observed in this study. After 6 days until the end of the storage the berries become 

soft due to the senescence of the fruit carried out from the enzymes presented inside the cells, 

reaching limit for this indicator set at 1.05 N (Hietaranta and Linna 1999) (Figure 6.15). 

 

Figure 6.15. Firmness changes of strawberries during storage.
 
Different letters indicate significant 

differences (p<0.05). 

 

 
 

The total titratable acidity (TTA) calculated as citric acid, which is the dominant acid in 

strawberries. In this study the TTA have been shown any significant differences and did not exceed 

too much the optimal condition to sell the strawberries, fixed at 0.7 % (Kader 1999; Figure 6.16). 

 

Figure 6.16. Acidity changes of strawberries during storage.
 
Different letters indicate significant 

differences (p<0.05). 

 
 

Total soluble solids is a critical factor for determining fruit quality and consumer acceptability 

(Kafkas et al., 2007). Sugars are the main soluble metabolites, and include glucose, fructose and 

sucrose comprising the 99% of the total sugar content (Kafkas et al., 2007). The TTS significantly 
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decreased throughout storage reaching a value around 8.5° and never exceeded the consumer 

acceptability limit fixed at 7° (Kader, 1999; Figure 6.17). This reduction could be explained by the 

hydrolysis of sugar and utilization of the corresponding reducing sugars in fruit respiration; data 

were in agreement with some results obtained for strawberries stored in MAP (Almenar et al., 2007 

and Garcia et al., 1998). 

 

Figure 6.17. Soluble solid changes of strawberries during storage.
 
Different letters indicate 

significant differences (p<0.05). 

 
 

One of the most important factor that defines the changes in the strawberries quality is the sensorial 

analysis. Sensory quality is related to the characteristics of the food and how consumers perceive 

them (Costell, 2002). Figure 6.18a-e summarizes the results of sensory attributes.  

Panelists detected two main off-flavours: the bitterness and the fermented taste; and one visual 

quality index refers to the browning of the sepals in the calyx. This last indicator defines the 

freshness of the fruits due to the browning of the sepals that change their colour from green to 

yellow-brown. Acidity taste and Firmness taste didn‘t show any significant evolution (data not 

shown). 

The off-taste indices reached the limit (6 score) around 18 day of storage (Figure 6.18c-d). The 

acceleration of the production in off-taste happened after 6 days of storage when the fruit reached 

the limit of the tolerance for oxygen concentration lead to the anoxic condition for the fruit. Also 

the global acceptability reached its limit after 10 days of storage. The visual calyx freshness (Figure 

6.18a-b) showed a decrease of the green appearance of the sepals after 6 days of storage, defining 

this period as the common point where the sensorial indicators record the change in the evaluations. 

 

Figure 6.18a-e. Sensory attribute (Visual acceptability, Visual calyx, Bitterness, Fermented taste 

and Global acceptability). Different letters indicate significant differences (p<0.05). 

 

a) b) 
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c) d) 

e) 

 

To define the shelf life value, also for passive packaging solution the multivariate approach as 

described from Pedro and Ferreira (2006)was used. The proposed approach aims to combine the 

limit of several quality indices to define only one critical indicator to estimate the time at which the 

samples don't satisfy the quality requirements. 

The changes in strawberries quality indices stored in passive packaging solution can be described 

by using few quality indices with respect to all the parameters tested in this study. The analysis of 

loading of the original matrix established that the loading that have an impact more than 0.3 was 

collected to use it in the final matrix and to estimate the global quality indices. This selection was 

carried out to determine the best quality indexes that describe the changes in the berries during 

storage. In fact 10 indices were used to evaluate the shelf life of berries using PCA approach 

respect to all parameters measured in this work as reported in Table 6.5. The selection defined the 

visual acceptability, bitterness, fermented taste, global acceptability, maximum force, visual 

damaged and mouldy berries, weight loss and oxygen concentration as the main quality indices to 

describe the quality decay.  
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Table 6.5. Quality indices recorded for strawberries 

 

Time 
Acceptability 

(score) 

Visual 

calyx 

(score) 

Taste 

texture 

(score) 

Sweetness 

(score) 

Bitterness 

(score) 

Taste 

Acidity 

(score) 

Fermented 

taste (score) 

Global 

acceptability 

(%) 

0 7.10 6.1 5.0 7.0 2.0 3.0 2.5 100 

2 7.00 6.1 4.8 6.2 2.0 3.3 2.5 90 

6 6.83 6.8 5.7 4.4 2.0 3.9 2.4 75 

10 6.03 5.3 6.0 4.3 3.5 3.8 3.8 60 

14 5.90 5.6 4.6 4.0 3.8 3.0 4.8 50 

18 5.85 4.4 5.4 5.3 5.3 5.1 6.6 50 

 

Time 
TTS 

(BRIX°) 

TA         

(%) 

Max Force     

(N) 

Croma 

(C*) 

Hue 

(°) 

Visual mouldy 

berries (%) 

Visual 

damaged 

berries (%) 

Weight loss 

(%) 

O2 

(%) 

CO2 

(%) 

0 9.33 0.68 1.10 40.38 56.00 0.00 0.00 0.00 21.00 0.03 

2 8.93 0.70 1.08 45.50 51.50 0.00 2.85 0.15 15.91 3.65 

6 8.77 0.74 1.09 45.37 56.11 1.59 4.49 0.20 7.31 6.21 

10 8.17 0.74 0.99 46.51 56.85 3.42 5.18 0.19 3.61 6.33 

14 9.27 0.65 1.03 46.54 59.54 9.55 17.48 0.23 1.86 6.26 

18 8.57 0.62 0.65 44.53 57.64 11.76 60.27 0.39 1.53 6.35 
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The first of the two principal components explain 81% of total variability. A separation of the 

samples according to the storage conditions is shown on the scores plot (Figure 6.19a), where the 

number beside each point represents the storage time in days. In particular, samples were 

distributed along PC1 according to the storage time. Loadings revealed the weight of attributes 

responsible for product degradation (Figure 6.19b). 

The samples at beginning of the study were characterized by high value of oxygen concentration 

and global acceptability. During the storage, the samples showed an increase of the negative 

indices, in fact the samples after 18 days were characterized by high value of visual damaged 

berries, and off-flavour (bitterness and fermented taste).  

The loadings plot in Figure 6.19b reveals the key attributes responsible for product degradation. It 

can be seen that those variables which increase in time have positive PC1 loadings whilst those 

which decrease present negative values. The Texture, the Visual acceptability and Score and 

oxygen concentration have shown a negative values defining a decrease trend during storage, while 

Weight loss, Fermented and Bitterness taste, Carbon dioxide concentration and Rejected berries 

have shown a positive values defining an increase trend during berries storage. 

 

Figure 6.19a-b. Plot of the Scores and Loadings of the PC analysis 

a) 

b) 

The selected quality parameters permitted to evaluate the best indicators to estimate the shelf life 

value.  
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The multivariate approach can be able to use all parameters that have effect on the quality changes 

in strawberries. The overall degradation reaction followed pseudo-zero-order kinetics for samples 

and define the kinetics of degradation (Figure 6.20).  

Applying the reference values reported in Table 6.5 for each quality attribute expressed above and 

using the equation (6.2), a critical PC1 score value of -0.61 was obtained (refer to Figure 20), 

which corresponds to a 6.6± 0.5 days of shelf life. In other words, the passive solution can extend 

the shelf life of berries, from about 2 days to about 6 days.  

 

Table 6.6. Limits used to calculate the PC critic in the multivariate analysis. 

Quality indicator Unit Limit References 

Visual acceptability  Score 6 Giménez et al., 2007 

Bitterness Score 6 Jouquand et al., 2008 

Fermented Taste Score 6 Jouquand et al., 2008 

Global Acceptability  % 50 Piagentini et al., 2005 

Maximum force N 1.05 Hietaranta and Linna 1999 

Visual damaged Berries % 10 Hertog et al., 1999 

Visual mouldy Berries % 5 Sanz et al., 1999 

Weight loss  % 6 Robinson et al., 1975 

O2 concentration % 2 Beaudry, 2000 

CO2 concentration % 25 Kader, 1997 

 

Figure 6.20. The interpolation of the pseudo-zero order kinetic for PC 1 value with the critic PC 

(red line) 

 
 

6.4 Conclusion 

 

The use of Principal Component Analysis is a useful technique to combine different quality indices 

into only one simplifying the decision making process by the definition of a single cut-off criterion.  

This is advantageous to define and compare the shelf life values of fruits stored in different 

conditions, in terms of environmental, packaging or cultivar. Using more than one quality 

indicators the variation of fruits can be evaluated using this technique without exploring all 

parameters that determine the quality value.  

The strawberries stored in ―traditional‖ solution had a shorter shelf life, as defined in this study, but 

passive and active atmosphere solutions could allow the shelf life extension (Peano et al., 2014, 

Hertog et al., 1999 and Aday et al., 2011). In the second part of this study the passive solution has 
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been investigated evaluating the effectiveness of the packaging film in maintaining the quality 

attributes of fresh strawberries. The passive packaging solution can extend the shelf life of 

strawberries with respect to the ―traditional‖ solution. The master bag, in addition, can contribute to 

better manage the fruit in the warehouse, at grower, at distribution center or at retailer point.    
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7-ACTIVE PACKAGING IN MASTER BAG SOLUTIONS OF STRAWBERRIES 

 

7.1 INTRODUCTION 

 

Nowadays the consumer requests better fresh-like products with longer shelf life (Guynot et al., 

2003).  To reach this goal, the food packaging technology should be improved. The use of modified 

atmosphere protection and active packaging for fresh fruits and vegetables is of particular interest. 

The combination of storage at low temperature and modified atmosphere in pack with different 

levels of oxygen and carbon dioxide allows the achievement of the shelf life extension of fresh 

products maintaining the quality traits.  

The proper concentrations of oxygen and carbon dioxide range from 5 kPa to10 kPa for O2 (Joles et 

al. 1994) and 15-20 kPa for CO2 (Beaudry, 1999) and they can be reached through the use of 

oxygen absorbers and carbon dioxide emitters with a suitable film in terms of oxygen permeability. 

Lower levels of oxygen can reduce the respiration and decay (Beaudry, 1999), moreover high 

concentrations of CO2 can contribute to reduce  fungal growth (Brown, 1992), loss of firmness 

(Jacxsens et al., 2000; Day, 2001) and, in lower proportion, reduce the respiration rate. Under or 

over, respectively, the concentration of those gases can promote the off-flavour production (e.g. 

acetaldehydes, ethanol and ethyl acetate) and fruit injury (Pesis, 2005). This phenomena can limit 

the use of this techniques.  

The optimization of an active packaging solution for fruits and vegetables, based on the insertion of 

oxygen absorbers and carbon dioxide emitters into master bags, requires the knowledge of the 

responses in terms of quality evolution but it is also dependent on the primary packaging features, 

like gas permeability, volume, quantity of food product etc. 

In this part of the work, the Response Surface Methodologies (RSM)  have been applied in order to 

define which factors,  together with their interactions, can really contribute to  reach  the optimal 

conditions in terms of  gases concentration inside the master bag. RSM is a collection of 

mathematical and statistical procedures  based on the fitting of a polynomial equation to the 

experimental data describing the behavior of a data set with the objective of making statistical 

previsions. The goal is to simultaneously optimize the values of some factors to realize the best 

system performance (Bezzerra et al., 2008). In our study, the number of carbon dioxide emitters 

and oxygen absorbers, the unfilled volume of the master bag and the storage time were selected as 

factors to be optimized in order to extend the shelf life of strawberries. 

 

7.2 MATERIALS 

 

Fruits: Fresh strawberries were purchased in a macro-perforated PET tray with a PET rigid lid, 

containing 250 g of fruit (traditional packaging). Along the supply chain, the trays were transported 

into cardboard crates (40x30x9 cm) in which eight trays fit. Strawberries (Fragaria x Ananassa 

Dutch.) cv. Asia from Northern Italy picked at a commercial ripening were provided by a local 

supermarket and transported to the laboratory where they were immediately stored in a dark cold 

chamber (5±1 °C, 70 %RH) before packaging. 

 

Packaging material: The master bag (52*31 cm) used in experimental plan was made from low 

density polyethylene (LDPE) with the characteristics (Table 7.1) including the gas permeability for 

oxygen transmission rate (O2TR), carbon dioxide transmission rate (CO2TR) and water vapour 

transmission rate (WVTR). 
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Table 7.1: Characteristic of plastic film 

Material Thickness 

(µm) 

O2TR 

(ccm
-2

day
-1

)* 

CO2TR 

(ccm
-2

day
-1

)* 

WVTR 

(gm
-2

day
-1

)** 

LDPE 25 4000 30000 21.7 

* 23°C-0 % RH; ** 38°C-90 % RH.  

 

The trays were inserted in the master bag which was closed with a packaging machine CVP 

System, Inc. (Downers Grove, Illinois, USA) filling the master bag with air gas through snorkels, 

which are retracted from the pouch prior to sealing. The atmosphere inside the master bag was 

evacuated  in order to prevent the crash of fruit trays, filled with gas air and sealed. The air inserted 

into master bags created a pillow pouch that never collapsed into the trays during the storage. The 

gas volume inside each bag was approximately 9500 c m
3
. To reach the optimal relative humidity 

(about 90%) a blotting paper with 6 ml of de-ionized water was placed inside the master bag.   

The fruits were stored in a dark cold chamber at 5±1 °C, 70 %RH and their quality was monitored 

at the times defined by the  design of experiment (Tables 7.2 and 7.3). 

 

7.3 METHODS 

 

Score acceptability & Visual acceptability: Fifty regular consumers of strawberries (nearly half 

male, half female) were recruited among students and employees of the University of Milan (Italy), 

between 21 and 60 years old. At each sampling time, the visual assessment of the acceptability was 

carried out in a 9-point hedonic scale (defining the score acceptability). If the result is more than 6 

points the berries are judged as acceptable, as established by Ares, et al. (2006) and Giménez et al. 

(2007). The visual acceptability was expressed as the percentage of the acceptance judgment 

respect to the total consumers‘ answers.  

 

Global acceptability: The consumers, after berries consumption, judged the global acceptability of 

berries indicating the positive opinion writing ―yes‖ or negative opinion indicating ―no‖. The 

global acceptability was expressed as the percentage of the positive acceptance judgment respect to 

the total consumers‘ answers. 

 

Maximum Force: The method used to assess the product firmness intended to measure the 

structure resistance against the penetration. strawberries Firmness  was established using a 

dynamometer (Zwick Roell Instrumental Z010, Zwick GmbH & Co. KG, Ulm, Germany) through 

a single penetration test on each half berry on the fruit equator  (modified method from Gunnessa at 

al. 2009). Gunnessa at al. (2009) found that the measurements taken on the equator (typically the 

highest point of the half fruit) gave more consistent results than  in other positions. 

The maximum force was assessed at least on 20 half strawberries per each sampling time. Each 

berry was positioned under the probe (3 mm diameter) and penetrated  up to 4 mm using a load cell 

of 10 kg (100 N), at test speed  of 0.2 mm/s and with a trigger force  of 5 g.  

 

Percentage of rejected berries: Physically damaged and mouldy berries were visually counted  at 

each sampling time and the results were expressed as the percentage of rejected berries  respect to 

the total berries inside each tray. In particular, strawberry fruits showing surface mycelial 

development were considered decayed (Van deer Steen at al., 2002). 

 

Colour: At each sampling time, the berries colour was measured on 30 fruits taken from three 

different packages  through a handheld Tristimulus colorimeter (Konica Minolta CR-300, Tokyo, 
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Japan) determining L*, a* and b* parameters with a diameter 8 mm, 2° standard observer and a C 

as illuminant source. Before each measurement, the apparatus was calibrated on the Hunterlab 

colour space system using a white ceramic tile (Minolta calibration plate, Y = 92.6, x = 0.3136, y = 

0.3196). The Colour was described as Hue angle (H°, expressed as arctg b*/a*) and Chroma (C, 

expressed as (a*
2
 + b*

2
)

1/2
) indexes.  

 

Weight loss: The weight loss was determined gravimetrically by weighing each PET tray at time 

zero and during the storage using a Technical balance (MP-3000 Chyo Balance corp., Japan). 

Changes in fruit weight were expressed as percentage of weight loss.  

 

Pureé preparation: For biophysical and chemical analyses, the strawberries (100g) were puréed  

using a handheld blender (Braun MR 4050 CA) for 30 s at high speed at each time of storage and 

kept frozen until the analyses were performed. The thawing was carried out overnight in a 

refrigerator at 5±1 °C . 

 

Dry matter content: Determinations were made on 5 g of fruit pulp by drying samples in an oven 

set at 105 °C. The samples were weighed after about 16 hours. The measurements were replicates 

three times. The results were expressed  in g of dry matter  over 100 g of samples. 

 

Titratable Acidity (TA): After the overnight thawing of samples at 4°C, TA was determined by 

titrating sample (2 g of homogenate + 40 mL of CO2-free distilled water) with standardized 0.1 N 

NaOH to pH 8.2 (Phenolphthalein toning) by the use of a pH meter (Basic 20+, Crison Instruments 

SA, Barcelona, Spain). TA was expressed as citric acid equivalents (grams of citric acid per 100 

grams of berries) 

 

Total soluble solids (TTS):  After the overnight thawing at 4°C, the berries pulp was put in the 

Automatic Refractometer model SMART-1 Atago®, (Atago CO.LTD, Tokyo, Japan). The results  

were expressed as BRIX°. 

 

Respiration rate: The Apparent respiration rate (RR) of the strawberries was measured at 5 °C 

using the closed system method. The measurements were carried out in triplicate. The Berries and 

the jars were equilibrated for 1 h at 5°C. Samples of about 100 g were then placed in air in 0.5 L 

glass jars and tightly covered with metal caps equipped with silicone sampling ports. Headspace 

gas was periodically sampled (20-30 min) by means of a gas-tight syringe. Oxygen and carbon 

dioxide were detected and quantified  through a gas chromatograph (Hewlett-Packard HP 5890 

series II) equipped with a thermoconductivity detector and a steel column (2 m × 6 mm. CTR I 

Alltech, Milano), until the CO2 level inside the jars reached 5%. The Respiration rate was 

calculated from the linear regression of O2 and CO2 concentrations measured during the experiment 

time  and it was expressed  in ml*kg
−1

*h
−1

.  

 

RRO2=   (∆[%O2]*V)/((∆t*100+M)) 

RRCO2=   (∆[%CO2]*V)/((∆t*100+M)) 

Where: 

V= Head space volume, ml 

M= Mass of product, kg 

t= Time, hour 

 

Gases concentration: Headspace gas composition was periodically sampled through a gas-tight 

syringe. Oxygen and carbon dioxide were detected and quantified through a gas chromatography 
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(Hewlett-Packard HP 5890 series II) equipped with a thermoconductivity detector (TCD) and a 

steel column (2 m x 6 mm CTR I Alltech, Milano). The GC oven was set isothermally at 50 °C.  

To better manage the evolution of carbon dioxide inside the master bag in the response surface 

methodology, the Volume of carbon dioxide was used as the response. The volume of carbon 

dioxide was estimated measurement the area below the best curve that interpolate the experimental 

points of carbon dioxide concentration multiplying the % with the head space volume (0.0095m
3
) 

as show in Figure 7.1. The results are expressed as m
3
 of carbon dioxide produced over the storage 

time. 

 

Figure 7.1. Interpolation of carbon dioxide concentration evolution by best fit simple curve 

    
 

Experimental plan 

The Response Surface Methodology (RSM) was employed for optimizing the packaging conditions 

to extend the fruit shelf life. The relationship between responses (Visual acceptability and Score 

acceptability, Global acceptability, Maximum Force, Colour, Weight loss, Dry matter content, 

Titratable Acidity, °Brix and Gases concentration) and four independent variables: number of 

Oxygen Scavengers (N°), number of Carbon Dioxide Emitters (N°), ratio between Surface (S) and 

Unfilled Volume (UFV) expressed as cm
2
*cm

-3
 and, Time expressed as day (Table 7.2) were 

assessed. The results from the 26 runs design including all responses studied are shown in the Table 

7.3 (1-2).  

 

Table 7.2. Design of the experiment matrix for 4 Factors at 5 levels 

Factors Unit Low 

Star 

Low 

Cube 

Center High 

Cube 

High 

Star 

CO2 emitters 
*
 N° 0 1 2 3 4 

O2 scavengers
 **

 N° 0 1 2 3 4 

Ratio 

(Surface/UFV) 
***

 
cm

2
*cm

-3
 0.352 0.362 0.367 0.372 0.377 

Time Day 2 6 10 14 18 
*
BioFresh® nominal capacity 500 cm

3
; 

**
CR-1FreshPax® Multisorb Technologies Inc., Buffalo, 

NY, USA; 
***

 UFV: unfilled volume  
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Table 7.3. Experimental design matrix and responses 1/2 

 

Run 
 

CO2 

EMITTERS 

O2 

SCAVENGERS 
RATIO TIME 

Visual 

acceptability 

Visual 

score 

Global 

acceptability 

Maximum 

force 

Visual 

mouldy 

berries 

Viual 

damaged 

berries 

  
N° N° cm2*cm-3 day % score % N % % 

1 Low star 1 3 0.372 14 70 6.20 30.00 0.98 9.80 1.96 

2 High star 3 3 0.372 14 60 6.10 45.00 0.99 5.56 3.70 

3 Low star 2 4 0.367 10 50 5.83 60.00 0.99 0.00 1.92 

4 High star 1 1 0.362 14 75 5.83 65.00 0.92 25.64 0.00 

5 Low star 3 1 0.362 14 70 6.25 65.00 0.79 7.69 0.00 

6 High star 1 1 0.372 14 75 6.38 70.00 0.84 8.20 1.64 

7 Low star 1 1 0.372 6 60 6.08 55.00 1.06 1.89 0.00 

8 High star 1 3 0.362 6 65 6.13 50.00 1.09 0.00 0.00 

9 Fact 2 2 0.377 10 80 6.98 70.00 0.97 3.28 1.64 

10 Fact 1 3 0.372 6 75 6.45 50.00 1.02 0.00 0.00 

11 Fact 2 2 0.367 2 85 7.08 92.00 1.15 0.00 0.00 

12 Fact 3 1 0.362 6 55 5.83 40.00 1.04 0.00 0.00 

13 Fact 1 1 0.362 6 65 5.73 60.00 0.94 0.00 0.00 

14 Fact 0 2 0.367 10 80 6.50 55.00 0.79 2.04 0.00 

15 Fact 2 2 0.367 10 70 6.45 65.00 0.82 2.08 2.08 

16 Fact 2 2 0.367 18 80 6.78 85.00 0.99 19.00 8.00 

17 Fact 3 3 0.362 14 65 5.95 85.00 0.81 8.11 18.92 

18 Fact 3 1 0.372 14 55 5.55 50.00 0.92 1.59 11.11 

19 Fact 3 3 0.372 6 65 6.30 60.00 1.13 0.00 0.00 

20 Fact 3 1 0.372 6 55 5.43 15.00 1.10 0.00 5.17 

21 Fact 3 3 0.362 6 60 5.93 30.00 1.07 0.00 5.26 

22 Fact 2 0 0.367 10 70 5.75 40.00 0.92 2.17 6.52 

23 Fact 2 2 0.357 10 55 5.45 35.00 1.01 0.00 0.00 

24 Center 1 3 0.362 14 55 5.80 45.00 1.10 6.82 0.00 

25 Center 4 2 0.367 10 63 5.79 55.00 1.04 0.00 2.22 

26 Center 2 2 0.367 10 85 6.78 70.00 0.97 7.69 0.00 
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Experimental design matrix and responses 2/2 

Run 
 

CO2 

EMITTERS 

O2 

SCAVENGERS 
RATIO TIME TA TTS Croma Hue 

Dry 

matter 

Weight 

loss 
O2 CO2 

Quantity 

of CO2 

  
N° N° cm2*cm-3 day g/100g BRIX° C* H° g/100g % % % m3*day 

1 Low star 1 3 0.372 14 0.74 7.20 39.28 31.89 7.91 0.53 4.58 7.83 68.50 

2 High 

star 

3 3 0.372 14 0.73 6.40 43.86 34.60 6.98 0.86 5.95 6.21 106.50 

3 Low star 2 4 0.367 10 0.76 7.85 38.32 30.84 8.49 0.85 7.56 5.95 65.30 

4 High 

star 

1 1 0.362 14 0.77 8.30 42.33 31.38 8.60 0.61 11.91 5.15 64.79 

5 Low star 3 1 0.362 14 0.71 7.20 40.67 31.03 8.00 0.68 8.80 6.00 108.70 

6 High 

star 

1 1 0.372 14 0.68 7.65 42.13 31.86 8.32 0.48 4.95 6.20 76.40 

7 Low star 1 1 0.372 6 0.82 7.35 41.25 31.82 8.33 0.29 13.05 5.77 31.10 

8 High 

star 

1 3 0.362 6 0.72 7.00 43.13 33.41 8.20 0.74 13.17 4.26 25.05 

9 Fact 2 2 0.377 10 0.72 7.00 37.64 31.26 7.47 1.28 8.03 6.83 72.30 

10 Fact 1 3 0.372 6 0.81 7.85 42.71 31.92 8.50 0.23 11.72 6.53 33.70 

11 Fact 2 2 0.367 2 0.73 8.85 42.64 32.72 9.23 0.47 15.23 9.12 12.00 

12 Fact 3 1 0.362 6 0.75 8.75 38.83 33.62 8.85 0.71 13.96 8.96 40.94 

13 Fact 1 1 0.362 6 0.81 8.10 41.77 31.83 8.56 0.48 14.27 5.56 29.70 

14 Fact 0 2 0.367 10 0.76 8.50 38.22 31.10 8.96 0.69 6.33 5.80 33.80 

15 Fact 2 2 0.367 10 0.80 8.30 38.93 31.02 8.54 0.77 8.63 6.82 71.40 

16 Fact 2 2 0.367 18 0.69 8.10 37.04 38.27 8.00 0.87 3.32 6.05 123.70 

17 Fact 3 3 0.362 14 0.72 7.45 47.32 47.64 7.90 1.08 6.52 5.50 101.10 

18 Fact 3 1 0.372 14 0.74 8.60 39.87 35.44 8.97 0.87 4.17 6.82 129.42 

19 Fact 3 3 0.372 6 0.71 8.45 40.32 39.46 9.14 0.48 9.46 10.33 54.60 

20 Fact 3 1 0.372 6 0.76 7.85 42.72 46.17 8.64 0.47 12.41 10.18 57.50 

21 Fact 3 3 0.362 6 0.72 8.85 44.41 47.39 9.32 0.51 12.82 8.48 52.10 

22 Fact 2 0 0.367 10 0.77 7.80 40.10 43.26 7.90 7.69 10.34 7.14 72.50 

23 Fact 2 2 0.357 10 0.79 7.80 38.39 42.03 8.63 0.74 11.50 4.60 57.70 

24 Center 1 3 0.362 14 0.83 6.45 43.87 49.05 7.64 0.72 6.07 4.88 60.20 

25 Center 4 2 0.367 10 0.70 7.00 42.23 45.07 7.19 0.79 10.22 7.67 110.80 

26 Center 2 2 0.367 10 0.75 7.05 40.36 45.77 7.46 0.55 10.11 5.48 67.30 
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7.4 RESULTS AND DISCUSSION 

 

The initial characterization of strawberries is important to compare the evolution during storage 

among other experimental data.  

 

The Respiration Rate (RR) is the most important index to define the ―health‖ of fruit; in fact the 

Respiration Quotient (RQ) can be derived from it in order to verify the fruit metabolism. If the RQ 

is close to1 it means that the fruit is using the sugar as feed energy. 

The RR is useful to predict the carbon dioxide accumulation and the oxygen depletion during 

storage in a closed or semi-closed system. The production of carbon dioxide was 13 ml*kg
-1

* h
-1

 

while the oxygen consumption was 15 ml*kg
-1

* h
-1

. The RQ was 0.88 that means the fruits were 

not in an optimal metabolic condition suggesting a mix of fat and carbohydrates as energetic 

resources.  

 

Total soluble solids is one of the most important parameter to assess the fruits quality (Aday et al., 

2011), and in traditional packaging condition this index decrease due to the hydrolysis of sucrose in 

order to maintain physiological activity and cell respiration (Aday et al., 2011; Li, Zhang, & Wang, 

2008). The initial value was 7,80 ±0.01% lower than some authors found (Peano et al., 2014) 

 

7.4.1 Response Surface results 

 

The response surface methodology (RSM) explores the relationships between several response of 

interest, y1, y2,yi and a number of associated control (or input) variables denoted by x1, x2, xk. 

The main idea of RSM is to use a sequence of designed experiments to obtain an optimal response. 

In general, a relationship is unknown but can be estimated and approximated by a low-degree 

polynomial model (e.g. linear or square; Teófilo and Ferreira, 2006). The application of RSM 

consists in an optimization technique following different steps: (1) select the independent variables 

of the main effects on the process studied taking into account the goal of the work; 2) choice the 

proper experimental design and carrying out the experiments according to the selected 

experimental matrix; 3) treat the data by using the mathematic–statistical techniques to obtain the 

best fitting through the polynomial function; 4) evaluate the model's fitting and (5) obtain the 

optimum results for each studied factors. 

 

In this study, the relationship between response (fruits quality parameters and head space gases 

evolution) and four independent parameters (Oxygen scavengers, carbon dioxide emitters, ratio and 

time) were studied.  

Using the Design Expert software, different models were fitted to the experimental responses.  

 

7.4.1.1 Visual acceptability 

 

The fit summary selected the quadratic model where the additional terms were significant and the 

model was not aliased.  

Table 7.4 shows the ANOVA results. The statistical analysis of variance revealed an overall model 

p-value (probability of error value) less than 0.05 which is significant. On the other hand, lack of fit 

testing produced a p-value greater than 0.01 that indicates the model well fitted all data. The 

adjusted R
2
 of 0.7333 and predicted R

2
 of 0.5874 are satisfactory. Adequate precision of the model, 

which is a measure of signal to noise ratio (measure the model robustness), was 8.475 greater than 

4 and indicated an adequate signal (the factors considered in the model were useful to predict the 

response).   

https://en.wikipedia.org/wiki/Design_of_experiments
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The results of the ANOVA for Visual acceptability model showed that the four parameters and 

interaction A, BD, B
2
, C

2
 were significant model terms. The other terms were held in the models 

due to the respect of hierarchy of the terms, - hierarchy is ancestral linkage of effects flowing from 

main effects (regarded as parents) down through successive generations of higher-order interactions 

(children) - avoiding erroneous predictions when converted to actual terms (Peixoto, 1990). If C^2 

is significant it is not possible to delete the factor C, because removing the term it would reduce the 

precision and accuracy of the model. 

This model can be reduced somewhat by eliminating the insignificant interaction terms AD, CD 

and quadratic terms D^2 (p>0.1). Some statisticians caution against such elimination of specific 

terms, advocating instead that modelers maintain the entire quadratic polynomial as standard 

practice (Myers and Montgomery, 2002). However, in this case by taking out terms the predicted, 

R
2
 increases from 0.27 to 0.58. 

 

Table 7.4. ANOVA for response surface reduced quadratic model. 

Source 
Sum of 

 Squares 
df 

Mean  

Square 
F Value 

p-value 

Prob > F 
Remarks 

Model 2051.96 11 186.54 6.75 0.0013 significant 

A-CO2 emitters 330.04 1 330.04 11.94 0.0048  

B-O2 scavengers 1.74 1 1.74 0.063 0.8062  

C-Ratio 1.58 1 1.58 0.057 0.8149  

D-Time 9.38 1 9.38 0.34 0.5711  

AB 39.06 1 39.06 1.41 0.2575  

AC 76.56 1 76.56 2.77 0.1219  

BC 126.56 1 126.56 4.58 0.0536  

BD 189.06 1 189.06 6.84 0.0226  

A^2 98.60 1 98.60 3.57 0.0833  

B^2 744.44 1 744.44 26.93 0.0002  

C^2 472.06 1 472.06 17.08 0.0014  

Residual 331.66 12 27.64    

Lack of Fit 219.16 11 19.92 0.18 0.9633 not significant 

Pure Error 112.50 1 112.50    

 

The final model in terms of coded factors is shown in Equation 7.1. The equation in terms of coded 

factors can be used to make predictions about the response for given levels of each factor. By 

default, the high levels of the factors are coded as +1 and the low levels of the factors are coded as -

1. The coded equation is useful for identifying the relative impact of the factors by comparing the 

factor coefficients. Greater the number greater the influence.  

In this case the number of carbon dioxide and the quadratic factors of the oxygen scavenger and 

ratio perform the most important factors for this quality index. The coefficients for each factor 

represent in the equation 7.1 define the effect on the model. Positive value of coefficients establish 

that increasing the value of the factor (e.g. number of oxygen scavenger) will be generated an 

increase on the response (e.g. visual acceptability), on the contrary negative coefficient generate a 

decrease of the response value. Increasing the number of oxygen scavengers and the Time of 

storage and, the amount of product (Ratio) the Visual acceptability value increases while increasing 

the numbers of carbon dioxide emitters the berries show a decrease in acceptance by the consumer.  
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Equation 7.1.  

 

Visual Acceptability = +79.9  -3.7* A +0.3* B +0.3* C +0.6* D +1.6* AB -2.2* AC +2.8* BC -

3.4* BD -2.1* A^2 -7.7* B^2 -6.1* C^2 

 

The final model in terms of actual factors is shown in Equation 7.2. The equation in terms of actual 

factors can be used to make predictions about the response for given levels of each factor. Here, the 

levels should be specified in the original units for each factor. This equation should not be used to 

determine the relative impact of each factor because the coefficients are scaled to accommodate the 

units of each factor and the intercept is not at the center of the design space. 

 

Equation 7.2.  

 

Visual Acceptability = -32805.2 +162.2* CO2emitters -169.9* O2scavengers +1.8E+5* Ratio 

+1.9* Time +1.6* CO2 emitters * O2 scavengers -437.5* CO2 emitters * Ratio +562.5* O2 

scavengers * Ratio -0.9* O2 scavengers * Time -2.1* CO2 emitters ^2  -7.7* O2 scavengers^2 -

2.4E+5* Ratio^2 

 

Figure 7.2 shows the relationship between the actual and predicted values of the visual 

acceptability. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  

 

Figure 7.2. Scatter diagram for Visual Acceptability 

 

 
 

One of the RSM advantages over the one factor at a time experimental procedure is its ability to 

specify the interaction effect between any two factors. Figure 7.3 shows the 2-D contour graphs, 

highlighting the interaction effect between the number of oxygen scavengers and number of carbon 

dioxide emitters at different Ratio at 10 days of storage. It is clear from the figures that a master 

bag with an average amount of the product (750g) determine an higher visual acceptability from 

consumers. In this conditions (Figure 3 b), the maximum acceptability (more than 80%) occurs at a 

combination of about 2 oxygen scavengers and from 1 to 2 carbon dioxide emitters. 

 

The Figure 7.4 shows the 2-D contour graphs, highlighting the interaction effect between the 

number of oxygen scavengers and the number of carbon dioxide emitters considering the average 

ratio and different storage times a) 10 days b) 14 days. 
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The same combination of active devices (using average ratio) proposed above maintain the visual 

acceptability more than 80% of oxygen scavenger also at 14 days of storage.  

 

Figure 7.3. 2D contour plot of Visual Acceptability at 10 days of storage with different Ratio a) 

0.362 b) 0.367 and c) 0.372. 

a) b) 

c) 

 

Figure 7.4 Contour plot of visual acceptability at 10 days (a) and 14 days (b) with average Ratio. 

  a) b) 
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7.4.1.2 Score acceptability 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 

quadratic model where the additional terms are significant and the model is not aliased.  

Table 7.5 presents the ANOVA results and as it can be seen the statistical analysis of variance 

revealed an overall model p-value (probability of error value) less than 0.05 which is significant. 

On the other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model 

well fitted  all data. The adjusted R
2
 of  0.7559 and predicted R

2
 of 0.5381 are satisfactory. 

Adequate precision of the model, which is a measure of signal to noise ratio, was 8.475 greater than 

4 and indicated an adequate signal.   

The results of the ANOVA for score acceptability model shows that the four parameters and 

interaction A, AC, A
2
, B

2
, C

2
 were significant model terms. 

This model can be reduced somewhat by eliminating some insignificant interaction terms CD, AB,  

AD and D^2 (p>0.1). However, in this case by taking out terms the predicted R
2
 increases from 

0.26 to 0.53. 

 

Table 7.5. ANOVA for response surface reduced quadratic model. 

Source Sum of 

Squares 

df Mean 

Square 

F Value p-value 

Prob > F 

Remark 

Model 3.71 10 0.37 8.43 0.0002 significant 

A-CO2 emitters 0.30 1 0.30 6.78 0.0208  

B-O2 scavengers 0.16 1 0.16 3.57 0.0795  

C-Ratio 0.051 1 0.051 1.15 0.3009  

D-Time 6.803E-003 1 6.803E-003 0.15 0.7003  

AC 0.30 1 0.30 6.83 0.0204  

BC 0.13 1 0.13 3.01 0.1048  

BD 0.18 1 0.18 4.13 0.0616  

A^2 0.57 1 0.57 12.98 0.0029  

B^2 1.38 1 1.38 31.28 < 0.0001  

C^2 1.34 1 1.34 30.48 < 0.0001  

Residual 0.62 14 0.044    

Lack of Fit 0.56 13 0.043 0.82 0.7101 not significant 

Pure Error 0.053 1 0.053    

 

The final model in terms of coded factors is shown in Equation 7.3.  

 

Equation 7.3.  

Visual Score = +6.75 -0.11* A +0.081* B +0.054* C -0.02* D -0.14* AC +0.09* BC -0.11* BD -

0.16* A^2 -0.25* B^2-0.32* C^2 

 

The final model in terms of actual factors is shown in Equation 7.4.  

 

Equation 7.4  

Visual Score = -1726.0+10.6* CO2 emitters -5.3* O2 scavengers +9402.4* Ratio+0.05* Time-

27.4* CO2 emitters * Ratio +18.2* O2 scavengers * Ratio -0.03* O2 scavengers * Time -0.2* CO2 

emitters ^2 -0.2 * O2 scavengers^2 -12769.9* Ratio^2 

The coefficients for each factor represent in the equation 7.3 define the effect on the model. 
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The negative quadratic factors of the model show an important effect in the prediction of the score 

acceptability identifying a maximum area on the response surface.  

 

Figure 7.5 shows the relationship between the actual and predicted values of the score 

acceptability. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  

 

Figure 7.5. Scatter diagram for Score Acceptability 

 

 
 

Figure 7.6 shows the 2-D contour graphs, highlighting the interaction effect between the number of 

oxygen scavengers and  number of carbon dioxide emitters at different Ratio at 10 days. In this 

condition (Figure 7.6b), the maximum acceptability (more than 6.7) occurs at a combination of  

about 2-2.5 oxygen scavengers and from 1.5 to 2 carbon dioxide emitters. 

The Figure 7.7 shows the 2-D contour graphs, highlighting the interaction effect between the 

number of oxygen scavengers and  number of carbon dioxide emitters considering an average ratio 

value but at different times a) 10 days b) 14 days. The same combination of active devices (using 

average ratio) proposed above maintain the visual acceptability more than 80% of oxygen 

scavenger also at 14 days of storage.  

 

Figure 5. 2D contour plot of  Score Acceptability at 10 days of storage with different Ratio a) 0.362 

b) 0.367 and c) 0.372. 

a) b) 
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c) 

 

Figure 5.1. Contour plot of score acceptability  at 10 days (a) and 14 days (b) with average Ratio. 

 

a) b) 

7.4.1.3 Global Acceptability 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 

quadratic model where the additional terms are significant and the model is not aliased.  

Table 5 shows the ANOVA results and as it can be seen the statistical analysis of variance revealed 

an overall model p-value (probability of error value) less than 0.05 which is significant. On the 

other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model well 

fitted to all data. The adjusted R
2
 of  0.8804 and predicted R

2
 of 0.7037 are closed to each other 

which are satisfactory. Adequate precision of the model, which is a measure of signal to noise ratio, 

was 15.407 greater than 4 and indicated an adequate signal.   

The results of the ANOVA for score acceptability model shows that the four parameters and 

interaction B, C, AB, AC, BD, B
2
, C

2
, D

2
 were significant model terms. The other terms were held 

in the models due to the respect of hierarchy of the terms. However, in this case by taking out terms 

the predicted R
2
 increases from 0.63 to 0.70. 
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Table 7.5. ANOVA for response surface reduced quadratic model. 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Remark 

Model 6942.92 13 534.07 14.02 0.0001 significant 

A-CO2 emitters 26.07 1 26.07 0.68 0.4274  

B-O2 scavengers 221.77 1 221.77 5.82 0.0365  

C-Ratio 925.29 1 925.29 24.29 0.0006  

D-Time 15.19 1 15.19 0.40 0.5419  

AB 1912.63 1 1912.63 50.21 < 0.0001  

AC 509.95 1 509.95 13.39 0.0044  

AD 106.50 1 106.50 2.80 0.1254  

BC 117.32 1 117.32 3.08 0.1098  

BD 878.09 1 878.09 23.05 0.0007  

A^2 144.91 1 144.91 3.80 0.0797  

B^2 295.79 1 295.79 7.77 0.0192  

C^2 1598.52 1 1598.52 41.97 < 0.0001  

D^2 508.08 1 508.08 13.34 0.0044  

Residual 380.91 10 38.09    

Lack of Fit 368.41 9 40.93 3.27 0.4060 not significant 

Pure Error 12.50 1 12.50    

 

The final model in terms of coded factors is shown in Equation 7.5.  

In this case the interaction between the number of oxygen scavengers and carbond dioxide emitters  

and the quadratic effect of the Ratio determins the main effects on the changes of global quality of 

strawberries during storage. The numbers of carbon dioxide emitters, the number of oxygen 

scavengers and, the time have a positive effect on global acceptability while  the Ratio  have a 

negative impact on the quality index. 

 

Equation 7.5.  

 

Global acceptability = +67.5 +1.1* A +3.2* B -7.7* C +0.8* D +11.6* AB -6.0* AC +2.7* AD -

2.9* BC -7.9* BD -2.9* A^2 -4.2* B^2 -11.5* C^2 +5.5* D^2 

 

Equation 7.6.  

 

Global acceptability = -62839.3 +423.4* CO2 emitters +227.7* O2 scavengers +3.4E+5* Ratio -

4.0* Time +11.6*CO2 emitters * O2 scavengers -1201.1* CO2 emitters * Ratio +0.7* CO2 

emitters * Time -576.1* O2 scavengers * Ratio -2.0* O2 scavengers * Time -2.9* CO2 emitters ^2 

-4.1* O2 scavengers^2 -4.6E+5* Ratio^2 +0.3* Time^2 

 

Figure 7.8. Shows the relationship between the actual and predicted values of the Global 

acceptability. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  
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Figure 7.8. Scatter diagram for Global acceptability 

 
 

Figure 7.9 shows the 2-D contour graphs, highlighting the interaction effect between the number of 

oxygen scavengers and number of carbon dioxide emitters at different Ratio at 14 days. In the 

conditions with low Ratio value (Figure 7.9a), the maximum level of global acceptability occurs at 

a combination of about 3 oxygen scavengers and 3 carbon dioxide emitters. Whereas using the 

average value of Ratio the Global acceptability reached the similar value in two different 

combinations, using about 1 oxygen scavenger and 1 carbon dioxide emitter or using 3 oxygen 

scavengers and 3 carbon dioxide emitters. Taking into account the cost of the active devices and the 

results obtained for the other visual indicators, it is clear that the first choice of this solution should 

be used.  

On the contrary the higher quantity of products inside the master bag can generate an incorrect 

gases evolution in the head space, in terms of low oxygen and high carbon dioxide concentration, 

and determine a lower Global acceptability at the end of the storage.  

The difference in the combination of active devices (oxygen scavenger and carbon dioxide emitter) 

for the global acceptability respect to the visual acceptability can be explained by the different taste 

(bitterness or fermented) evaluated by the consumer.  

 

Figure 7.9. 2D contour plot of  Global Acceptability at 14 days of storage with different Ratio a) 

0.362 b) 0.367 and c) 0.372. 

 

a) b) 
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c) 

 

7.4.1.4 Visual mouldy berries  

 

The primary statistical tool for identifying the need for transformations and for pinpointing which 

one works best, is the Box-Cox plot, which Anderson and Whitcomb (2005) detail in their Chapter 

5 appendix. The Box-Cox plot is a tool to help in determining the most appropriate power 

transformation to apply to the response data. The plot shows the minimum lambda values, as well 

as lambdas at the 95% confidence range. The plot also shows the current power transformation so 

you can see where that fits. If the fit goes over the limit the software suggests the transformation. In 

this case, as showed in Figure 7.9a, the fit went over the limit and the software suggested a 

logarithmic transformation (Log10). In figure 7.9b the results of this transformation was shown. 

 

Figure 7.9: Percentage of visual mouldy berries without transformation a) and with logarithmic 

transformation b)  

a) b) 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 

linear model where the additional terms are significant and the model is not aliased.  

Table 7.6 shows the ANOVA results and as it can be seen the statistical analysis of variance 

revealed an overall model p-value (probability of error value) less than 0.05 which is significant. 

On the other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model 

well fitted to all data. The adjusted R
2
 of  0.6954 and predicted R

2
 of  0.6181 are satisfactory. 

Adequate precision of the model, which is the measure of signal to noise ratio, was 13.213 greater 

than 4 and indicated an adequate signal.   

The results of the ANOVA for Percentage of visual mouldy model shows that only the factor D 

was a significant model term. The other terms were held in the models because they improved the 

prediction of the model on the quality index. 
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Table 7.6. ANOVA for response surface linear model. 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Remark 

Model 27.46 4 6.86 14.70 < 0.0001 significant 

A-CO2 emitters 1.96 1 1.96 4.19 0.0539  

B-O2 scavengers 1.25 1 1.25 2.68 0.1174  

C-Ratio 1.30 1 1.30 2.79 0.1104  

D-Time 23.24 1 23.24 49.77 < 0.0001  

Residual 9.34 20 0.47    

Lack of Fit 9.18 19 0.48 3.03 0.4274 not significant 

Pure Error 0.16 1 0.16    

 

The final model, in terms of coded factors, is shown in Equation 7.7.  

 

Equation 7.7.  

Log_10(Percentage of visual mouldy berries +0.02) = -0.3 -0.3* A -0.2* B +0.2* C +1.0* D 

 

Equation 7.8.  

Log_10(Percentage of visual mouldy berries +0.02) = -19.3 -0.3* CO2 emitters -0.2* O2 

scavengers +47.8* Ratio +0.2* Time 

 

Analysing the equation 7.7, an increase on the number of carbon dioxide emitters and  the number 

of oxygen scavengers produced a adverse gases concentration condition in the head space of the 

master bag reducing the mould growth, while during storage and with higher amount of berries 

inside the master bag the mould have found the favourable condition to grow. in terms of the gases 

concentration reaching the advantageous situation to growth the mould on the berries surface.  

 

Figure 7.10 shows the relationship between the actual and predicted values of the visual mouldy 

berries. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  

 

Figure 7.10. Scatter diagram for Visual mouldy berries 
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Figure 7.11 shows the 2-D contour graphs, highlighting the interaction effect between the number 

of oxygen scavengers and  number of carbon dioxide emitters at different Ratio at 14 days. It is 

clear that using a low value of Ratio, the quality of berries (in terms of mouldy growth) was 

maintain longer. In particular, using a low Ratio value (Figure 7.11), the combination with more 

than 2 oxygen scavengers and 2 carbon dioxide emitters allows a low value of percentage of  

mouldy berries, keeping the value under the limit (5% Hertog et al., 1999).  

Increasing the amount of product the berries generate a optimal condition for mould growth in 

terms of the high humidity inside the master bag and the inappropriate gases concentration.  

 

Figure 7.11. 2D contour plot of  Visual mouldy berries at 14 days of storage with different Ratio a) 

0.362 b) 0.367 and c) 0.372. 

a) b) 

 

c) 

 

7.4.1.5 Concentration of Oxygen inside the master bag 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 

linear model where the additional terms are significant and the model is not aliased.  

Table 7.7 shows the ANOVA results and as it can be seen the statistical analysis of variance 

revealed an overall model p-value (probability of error value) less than 0.05 which is significant. 

On the other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model 

well fitted to all data. The adjusted R
2
 of  0.9132 and predicted R

2
 of 0.9022 are closed to each 

other which are satisfactory. Adequate precision of the model, which is the measure of the signal to 

noise ratio, was 30.745 greater than 4 and indicated an adequate signal.   

The results of the ANOVA for score acceptability model shows that the four parameters and 

interaction B, C, D were significant model terms. As expected the number of carbon dioxide 

emitters had insignificant effect on this parameters. 
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Table 7.7. ANOVA for response surface reduced linear model 

Source Sum of 

Squares 

df Mean  

Square 

F 

Value 

p-value 

 Prob > F 

Remark 

Model 270.61 3 90.20 85.14 < 0.0001 significant 

B-O2 scavengers 8.45 1 8.45 7.98 0.0102  

C-Ratio 22.79 1 22.79 21.51 0.0001  

D-Time 228.94 1 228.94 216.10 < 0.0001  

Residual 22.25 21 1.06    

Lack of Fit 21.15 20 1.06 0.97 0.6790 not significant 

Pure Error 1.10 1 1.10    

 

The final model in terms of coded factors is shown in Equation 7.9. The factor time and the Ratio 

define an important effect on the model. This result is correlated with the consumption of the 

oxygen by the fruits, increasing the amount of berries inside the master bag the oxygen value 

decrease quickly (High Ratio) and the metabolism of the fruit continues to decrease the 

concentration of oxygen in the package during storage 

 

Equation 7.9.  

 

Oxygen concentration = +9.3 -0.6* B -1.0* C -3.2* D 

 

The final model in terms of actual factors is shown in Equation 7.10.  

 

Equation 7.10  

 

Oxygen concentration =+91.7 -0.6* O2 scavengers -199.7 * Ratio -0.8* Time 

 

The equation 7.09 shows that the all factors have a negative influence on oxygen concentration, in 

fact during storage and with higher amount of product the oxygen decrease the concentration due to 

the fruit respiration. As expected The increasing of the number of scavenger decrease the amount 

of the oxygen in head space.  

 

Figure 7.12 shows the relationship between the actual and predicted values of the oxygen 

concentration. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  
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Figure 7.12. Scatter diagram for oxygen concentration 

 

  
 

Figure 7.13 shows the 2-D contour graphs, highlighting the interaction number of oxygen 

scavenger and Time. It is clear from figures that during storage the oxygen concentration decrease 

and the presence inside the master bag of fruit accelerates this phenomena due to the respiration of 

berries. In fact at higher Ratio value the oxygen value went under 2% at the end of the storage. For 

some authors, this value has been considered as the limit at which the fruit develops an injury 

(Beaudry 2000 and Kader et al., 1989).  

The oxygen scavenger had a rule in the depletion of oxygen as function of the number of device 

due to the scavenging capacity that each device can capture. This conclusion is well demonstrated 

in the figures by the slightly rate of the iso-response towards the number of oxygen scavenger. It is 

clear that higher is the number of scavenger, lower is the oxygen value. 

 

Figure 7.13. 2D contour plot of oxygen concentration with different Ratio a) 0.362 b) 0.367 and c) 

0.372. 

a) b) 
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c) 

7.4.1.6 CO2 concentration 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 2 

factor interaction model where the additional terms are significant and the model is not aliased.  

Table 8 shows the ANOVA results and as it can be seen the statistical analysis of variance revealed 

an overall model p-value (probability of error value) less than 0.05 which is significant. On the 

other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model well 

fitted to all data. The adjusted R
2
 of  0.8053 and predicted R

2
 of 0.7448 are closed to each other 

which are satisfactory. Adequate precision of the model, which is a measure of the signal to noise 

ratio, was 14.650 greater than 4 and indicated an adequate signal.   

The results of the ANOVA for CO2 concentration model shows that the four parameters and 

interaction A, C, D and AD were significant model terms. The other terms were held in the models 

due to the respect of hierarchy of the terms. 

 

Table 7.8. ANOVA for response surface reduced 2 factor interaction model. 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Remark 

Model 56.12 6 9.35 18.23 < 0.0001 significant 

A-CO2 emitters 16.72 1 16.72 32.59 < 0.0001  

B-O2 scavengers 0.38 1 0.38 0.73 0.4032  

C-Ratio 10.06 1 10.06 19.62 0.0003  

D-Time 12.95 1 12.95 25.25 < 0.0001  

AD 14.76 1 14.76 28.79 < 0.0001  

BC 1.25 1 1.25 2.43 0.1352  

Residual 9.75 19 0.51    

Lack of Fit 8.85 18 0.49 0.55 0.8067 not significant 

Pure Error 0.90 1 0.90    

 

The final model in terms of coded factors is shown in Equation 7.11.  

In this case the interaction between Time and number of carbon dioxide emitters showed a highest 

influence on the CO2 concentration. This can be explain due to the kinetics of CO2 production from 

the emitter device, thus, increasing the time the gas production increases too. This equation shows 

that also the Ratio can have a effect on the model, due to the respiration of the fruit that produce 

carbon dioxide inside the master bag. 
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Equation 7.11.  

 

% CO2  = +6.7 +0.8* A -0.1* B +0.6* C -0.7* D -1.0* AD +0.3* BC 

 

The final model in terms of actual factors is shown in Equation 7.2.  

 

Equation 7.12.  

 

CO2 = -4.2 +3.2*CO2 emitters -20.6* O2 scavengers +17.7* Ratio -0.3* Time -0.2* CO2 emitters * 

Time +55.9* O2 scavengers * Ratio 

 

Figure 7.13 shows the relationship between the actual and predicted values of the CO2 

concentration. This figure indicates that the developed model is adequate, since the residuals in the 

prediction of each response are small, with the residuals tending to be close to the diagonal line.  

 

Figure 7.13. Scatter diagram for CO2 concentration 

 
 

Figure 7.14 shows the 2-D contour graphs, highlighting the interaction effect between the number 

of oxygen scavengers and  number of carbon dioxide emitters at different Ratio at 10 days. It is 

clear from figures that the increasing in the amount of the fruit (Ratio) inside the master bag, the 

carbon dioxide concentration increase due to the respiration of the berries. The emitter device has a 

high effect on the carbon dioxide concentration, in fact in Figures 7.14, the iso-responses have an 

orthogonal trend respect on the increase of the emitter device numbers. A slightly effect by the 

oxygen scavenger device could be observed especially in Figure 13c, where the amount of the 

fruits inside the master bag was lower and the effect of carbon dioxide scavenging by the oxygen 

scavenger was highlighted due to the presence of silica gel inside the formulation that could absorb 

also the CO2.   

Figure 7.15 shows the 2D contour graphs highlighting the interaction effect between the number of 

oxygen scavengers and number of carbon dioxide emitters at different times, considering an 

average Ratio value, to demonstrate the effect of time on the evolution in the CO2 concentration. In 

fact, with respect of the Figure 7.15b, this figure shows lower value indicating that during storage 

the CO2  decrease due to the permeation of gas throw the plastic film and the depletion of the 

carbon dioxide emitter. 

The carbon dioxide concentration has an important role to extend or maintain the fruit quality in 

packaging system. The optimal concentration of carbon dioxide is established between 15-20% 

(Kader 1980 and 1992). This range can change as function of the storage temperature, cultivar, 

fruits healthiness and the concentration of carbon dioxide. In other works (Kader and Salveit, 2002 
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book; Kader 1997) the concentration to inhibit the mould growth start from 10%: this concentration 

may avoid the fermentation flavour production that may be perceived by the consumer as off-

flavour. To maintain the minimum concentration to inhibit the mould growth also at 10 day of 

storage it is necessary increase the amount of the berries inside the master bag with highest number 

of CO2 emitter taking into consideration the effect of gases production by emitters in the initial part 

of the storage. In fact the range of interest of DOE modelled the evolution of carbon dioxide from 6 

to 14 days, this interval didn‘t show the peak of production by the carbon dioxide emitters at 

beginning of the experiment. The exceed of the limit (>25%) also for short time can contribute to 

generate off-flavour and damaged on the berries surface. 

For these reason the modelling of only the CO2 concentration didn‘t allow to evaluate the evolution 

at initial period of storage. In the following paragraph the Volume of CO2 was used to model more 

efficiency the evolution of this gas inside the master bag.  

 

Figure 7.14. 2D contour plot of  carbon dioxide concentration at 10 days of storage with different 

Ratio a) 0.362 b) 0.367 and c) 0.372. 

 

a) b) 

c) 
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Figure 7.15. 2D contour plot of  carbon dioxide concentration at 14 days of storage with 0.365 as 

Ratio  

 
 

7.4.1.7 Volume of Carbon Dioxide 

 

As a result of analyzing the responses using the specific software, the fit summary selected the 2-

factor interactions model where the additional terms are significant and the model is not aliased.  

Table 9 shows the ANOVA results and as it can be seen the statistical analysis of variance revealed 

an overall model p-value (probability of error value) less than 0.05 which is significant. On the 

other hand, lack of fit testing produced a p-value greater than 0.01 that indicates the model well 

fitted to all data. The adjusted R
2
 of  0.9746 and predicted R

2
 of 0.9626 are closed to each other 

which are satisfactory. Adequate precision of the model, which is the measure of the signal to noise 

ratio, was 42.139 greater than 4 and indicated an adequate signal.   

The results of the ANOVA for Volume of CO2 model shows that all parameters were significant  

 

Table 7.9. ANOVA for response surface reduced 2-factor interactions model. 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Remark 

Model 2.18 6 0.36 161.01 < 0.0001 significant 

A-CO2 emitters 0.65 1 0.65 287.78 < 0.0001  

B-O2 scavengers 9.858E-003 1 9.858E-3 4.37 0.0502  

C-Ratio 0.041 1 0.041 18.15 0.0004  

D-Time 1.42 1 1.42 629.32 < 0.0001  

AD 0.046 1 0.046 20.37 0.0002  

BD 0.014 1 0.014 6.06 0.0236  

Residual 0.043 19 2.255E-3    

Lack of Fit 0.042 18 2.338E-3 3.08 0.4240 not significant 

Pure Error 7.586E-004 1 7.586E-4    

 

The final model in terms of coded factors is shown in Equation 7.13. In this case, as expected, the 

time and the number of carbon dioxide emitters perform the main factors in the increase of carbon 

dioxide inside the master bag, due to the initial production of the device that gives a great 

contribute in the carbon dioxide concentration in the head space.  

All factor have a positive influence of Volume of CO2 due to the effect of emitters device and 

respiration of the fruits inside the master bag. Only the interaction between oxygen scavenger and 
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time shows a negative effect on the volume of CO2, probably due to the absorption of the carbon 

dioxide gas, during storage, from silica gel contained inside the oxygen scavenger device. 

 

Equation 7.13.  

 

Volume of CO2 = +0.6 +0.2* A -0.02* B +0.04* C +0.2* D +0.05* AD -0.03* BD 

 

The final model in terms of actual factors is shown in Equation 7.14 

 

Equation 7.14  

Volume of CO2 = -3.2 +0.03* CO2 emitters +0.05* O2 scavengers +8.2* Ratio +0.05* Time +0.01 

* CO2 emitters * Time -7.3E-3* O2 scavengers * Time 

 

Figure 7.16 shows the relationship between the actual and predicted values of the Volume of CO2. 

This figure indicates that the developed model is adequate, since the residuals in the prediction of 

each response are small, with the residuals tending to be close to the diagonal line.  

 

Figure 7.16. Scatter diagram for Volume of CO2 

  
 

Figure 7.17 shows the 2-D contour and 3D surface graphs, highlighting the interaction number of 

carbon dioxide emitter and Time. It is clear from figures that during storage the carbon dioxide 

quantity increases due to the respiration of fruit and the carbon dioxide released by the emitters 

inserted into the master bag and the synergistic effect of combination between the number of 

carbon dioxide emitter and time.  

Figure 7.17. 2D a) contour plot and 3D surface of Volume of carbon dioxide 

 a) b) 
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There were other quality parameters studied in this work such as, Colour indices, Total Solid 

Soluble (°brix), Total Solid (g/100g) and Titratable Acidity (g/100g) but no one resulted significant  

on the  evolution of strawberries quality.  

Moreover, the percentage of fruits weight loss had an effect on the quality of fruits but this effect 

was comparable in all the tested conditions because the master bags were made by the same 

materials that offered  a right water vapour barrier and maintained the correct value of relative 

humidity into the packaging. For this reasons the weight loss was not used  in the optimization step.  

 

7.4.2 Optimization of the selected parameters 

 

Eleven criteria (CO2 emitters; O2 scavengers; Ratio; Time; Visual Acceptability; Visual Score;  

Global Acceptability; Visual Mouldy Berries; O2  concentration;  CO2 concentration; Volume of 

CO2) were introduced in the numerical optimization. The first four criteria were correlated the 

factors used in the design of experiment and the second six were connected with the responses of 

design. The numbers of carbon dioxide emitters, the number of oxygen scavengers and the Ratio 

were selected in a range for the goal of optimization because in the study area this is the normal 

condition of use. While the factor ―Time‖ was maximize to reach the best condition to store of 

fruits. In this case the importance was set at 5 points to emphasize the role of this parameter respect 

the others.  

For responses constraints, the Visual acceptability, Visual score and Global acceptability were 

maximize while the  percentage of mouldy berries that obviously was minimized. The oxygen 

concentration have been constrained in the range between 2 to 21%, that represent respectively the 

down limit at which the berries show a damage and upper limit is the oxygen concentration in air. 

The ―quantity‖ and for concentration of CO2 was selected in range from the lowest and highest 

value measured in the experiment.  

This conditions were summarized in Table 7.10. The Goal of optimization was combine all 

parameters to reach the best condition to extend the shelf life of strawberries. 

 

Table 7.10. Determination of limit and goal of factors and the responses to optimize the RSM   

 

Name Goal Lower 

Limit 

Upper 

Limit 

Lower 

Weight 

Upper 

Weight 

Importance 

A:CO2 emitters is in range 1 3 1 1 3 

B:O2 scavengers is in range 1 3 1 1 3 

C:Ratio is in range 0.362 0.372 1 1 3 

D:Time maximize 6 14 1 1 5 

Visual Acceptability maximize 50 85 1 1 3 

Visual Score maximize 6 7.08 1 1 3 

Global Acceptability maximize 50 92 1 1 3 

Visual Mouldy Berries minimize 0 5 1 1 3 

O2  concentration is in range 2 21 1 1 3 

CO2 concentration is in range 4.26 10.3 1 1 3 

Volume of CO2 is in range 0.114 1.229 1 1 3 

 

The models described above for each responses were used in the optimization procedure to define 

which is the best combination of the factors that produces the best results (response) in terms of the 

maintenance of quality traits and storage time. In Figure 7.18 the combination of factors to obtain 

the best results are presented. The combination among 2.5 carbon dioxide, about 2 oxygen 
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scavengers and using about 0.365 as a volume ratio can perform a shelf life of strawberries at least 

12 days, determining a visual and global acceptability up to 76 % and 74 %, respectively, a 6.5 as 

visual score, keeping low the visual mould growth (a visual presence around 1.9%). In this 

condition after 12 days of storage, the head space gases concentration in the master bag will be 

composed by about 7.5% of oxygen and 6.2% of carbon dioxide. During this time will be expose to 

about 0.88m
3
*day CO2.  

 

The goodness of responses optimization can be defined using the satisfaction index (desiderability) 

that evaluates the fitting between the constrains and the results of optimization. The index assumes 

values from 0 to 1. If the results satisfy the constrains, the value will be 1; in opposite case the 

value will be 0. In this study the result was 0.64 defining a good matching between constrains and 

the results (Figure 7.19). 

 

 Figure 7.18. Results of the numerical optimization for each variables considered. 

 

  
 

Figure 7.19. Result of the optimization in terms of the desirability of the result 
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7.5 CONCLUSIONS  

This study investigated and measured the effectiveness of carbon dioxide emitters and oxygen 

scavengers to maintain the quality attributes of fresh strawberries. The use of active packaging 

solutions  permits to reach 12 days of shelf life, definitely more than the berries stored in air 

without master bag solutions as reported in the previous chapter (2 days). 

According to the results, the correct concentration of oxygen and carbon dioxide inside the master 

bag  has been reached using 2.5 carbon dioxide, 2 oxygen scavengers and  placing about 750 g of 

product inside the master bag. The easy solution proposed in this study can be applied in real 

conditions and verifies  its efficacy  to extend the shelf life. 

In particular this study showed the potential of the Response Surface Methodology for 

understanding the evolution of the responses of the RSM and optimize the factors of packaging 

systems (active devices and surface-unfilled volume ratio) to reach the best conditions to prolong 

the shelf life of berries. 

The correct packaging design  can contribute  not only to extend the shelf life but also to reduce the 

food loss  thanks to the extension of the  number of days in which the product can be consumed at a 

high quality level .  

  



132 

 

7.6 REFERENCES 

 

Aday M.S., Caner C., Rahvali F. 2011. Effect of oxygen and carbon dioxide absorbers on 

strawberry quality. Postharvest Biology and Technology. 62: 179–187. 

 

Anderson M.J., Whitcomb P.J. 2005. RSM simplified – optimizing processes using response 

surface methods for design of experiments. Productivity Press.  

 

Ares G., Parentelli C., Gámbaro A., Lareo C., Lema P. 2006. Sensory shelf life of shiitake 

mushrooms stored under passive modified atmosphere. Postharvest Biology and Technology. 41: 

191–197. 

 

Beaudry R.M. 1999. Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit 

and vegetable quality. Postharvest Biology and Technology. 15 (3): 293–303. 

 

Beaudry R.M. 2000. Responses of horticultural commodities to low oxygen: limits to the expanded 

use of modified atmosphere packaging. HortTechnology. 10(3): 491-500. 

 

Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. 2008. Response surface 

methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. 

 

Brown W. 1922. On the germination and growth of fungi at various temperatures and in various 

concentrations of oxygen and carbon dioxide. Annals of Botany. 36: 257-283. 

 

Giménez A., Varela P., Salvador A., Ares G., Fiszman S., Garitta L. 2007. Shelf life estimation of 

brown pan bread: A consumer approach. Food Quality and Preference. 18: 196–204. 

 

Gunness P., Kravchuk O., Nottingham S.M., D‘Arcy B.R., Gidley M. J. 2009. Sensory analysis of 

individual strawberry fruit and comparison with instrumental analysis. Postharvest Biology and 

Technology. 52 (2): 164-172.  

 

Guynot M.E., Sanchis V., Ramos A.J., Marin S., 2003. Mold-free shelf-life extension of bakery 

products by active packaging. Journal of Food Science. 68 (8): 2547-2552. 

 

Hertog M.L.A.T.M., Boerrigter H.A.M., Van den Boogaard G.J.P.M. 1999. Predicting keeping 

quality of strawberries (cv. ‗Elsanta‘) pace under modified atmospheres: an integrated model 

approach. Postharvest Biology and Technology. 15: 1–12. 

 

Jacxsens L., Devlieghere F., De Rudder T., Debevere J. 2000. Designing equilibrium modified 

atmosphere packages for fresh-cut vegetables subjected to changes in temperature. Food Science 

and Technology. 33 (3): 178–187. 

 

Joles D.W., Cameron A.C., Shirazi A., Petracek P.D., Beaudry R.M. 1994. Modified-atmosphere 

packaging of ‗heritage‘ red raspberry fruit: respiratory response to reduced oxygen, enhanced 

carbon dioxide, and temperature. Journal of American Society Horticultural Science. 119 (3): 540–

545. 

 



133 

 

Kader A.A. 1980. Prevention of ripening in fruits by use of controlled atmosphere. Food 

Technology of Fruits & Vegetables. 34 (3) : 51. 

 

Kader A.A. 1992. Division of agriculture and natural resources. Postharvest Technology of 

Horticultural Crops (2
nd

 ed). 

 

Kader A.A. 1997. Biological bases of O2 and CO2 effects on postharvest life of horticultural 

perishables. In CA'97 Proceedings. 4: 160-163. 

 

Kader A.A. and M.E. Salveit. 2002. Atmosphere modification 229-246. In:J.A. Bartz and J.K. 

Brecht (eds.), Postharvest physiology and pathology of vegetables. Marcel Dekker, New York. 

 

Kader A.A., Zagory D., Kerbel E.L. 1989. Modified atmosphere packaging of fruits and 

vegetables. CRC Critical Review of Food Science and Nutrition. 28: 1-30.  

 

Li X., Wang X., Zhang L., Lee S., Dai H. 2008. Chemically derived, ultrasmooth graphene 

nanoribbon semiconductors. Science. 319 (5867): 1229-1232. 

 

Myers R.H., Montgomery D.C. 2002. Response surface methodology process and product 

optimization using designed experiments. John Wiley & Sons. Inc., 2nd ed., New-York, USA. 

 

Peano  C., Girgenti V, Giuggioli N.B. 2014. Change in quality and volatile constituents of 

strawberries (cv. Evie2) under MAP storage. Journal of Food Agriculture and Environment. 12 (2): 

93-100.  

 

Peixoto  J. L. 1990. A property of well-formulated polynomial regression models. The American 

Statistician. 44 (1): 26-30. 

 

Pesis E. 2005. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, 

enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology. 37(1):1-

19. 

 

Teófilo R.F., Ferreira M.M. 2006. Quimiometria II: planilhas eletrônicas para cálculos de 

planejamentos experimentais, um tutorial. Química Nova. 29 (2): 338. 

 

Van der Steen C., Jacxsens L., Devlieghere F., Debevere J. 2002. Combining high oxygen 

atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of 

strawberries and raspberries Postharvest Biology and Technology. 26:49–58. 

  



134 

 

8-COMPARATIVE LIFE CYCLE ASSESSMENT OF STRAWBERRIES STORED IN 

DIFFERENT PACKAGING SOLUTIONS 

 

8.1 INTRODUCTION 

 

Numerous studies have been focused on the environmental load of protected crops in greenhouses 

(Van Woerden, 2001; Williams et al., 2008) and tunnel greenhouses in the Mediterranean area 

(Vallejo, 2004; Romero- Gámez et al., 2009; Torrellas et al., 2012). Compared to herbaceous crops 

the production of fruits is commonly considered a field of low environmental impact due to the 

lower requirements in terms of raw materials and energy than the animal products (Granatstein and 

Kupferman, 2006). The plant implant has amortised for trees having long production (i.e. 15 year), 

while for annual crop, as strawberries, the environmental load can increase. Traditionally, 

environmental costs in orchards have been studied in terms of both consumption of resources 

(water, soil, air, energy, etc.) and impacts (pollution, risks to human health and ecosystems, 

reduced biodiversity, etc.; Reganold et al., 2001; Mordini et al., 2009). 

As reported by FAO in 2012 the first strawberry grower in the word has been the USA with a 

production covering the 30% of the world market (about 1.300.000 tons).The Italian production has 

a small piece of this market with 110.000 tons produced in 2013 (ISTAT 2014). The production of 

strawberries has been still increasing but these fruits are very perishable and transport for long 

distance can cause a large amount of food loss. In particular, a WRAP study (2011) estimated the 

loss and waste in different steps of supply chain in UK country up to 30 %. The principal loss 

happened during harvest (2-20 %) depending on different factors such as harvest methodology and 

weather condition; other losses of products were 2-3 % during packaging step and 2-3% at retailer. 

In addition, about 2-5 % of strawberry can be wasted during the storage mainly due to the 

inefficiency of cold chain or logistic management. Moreover, the food waste during the 

consumption step of fresh fruits and vegetables up to 19% should be considered (FAO, 2011).   

Packaging and its functions may play a significant role for limiting the amount of food waste in 

households and along supply chain. Williams et al. (2012) emphasizes the importance of learning 

more about how the packaging attributes can affect the food waste in households. In that study, 

food waste up to 25 % was related to the packaging design attributes, either those observed by 

consumers (i.e. easy to empty, too big packaging) or that one considered by the authors 

(information attribute best-before-date). 

The growers and the researchers have been studying different techniques to extend the shelf life of 

fruit including the packaging under atmosphere modification to control the oxygen and carbon 

dioxide concentrations around the fruits. The atmosphere modification in packaged fruit can be 

obtained following two principal strategies: matching the suitable correct film permeability with 

the fruit respiration rate of packaged fruit at steady-state condition of oxygen and carbon dioxide 

(Kader et al. 1989) and establish the correct conditions to extend the shelf life of fruits by means 

active packaging devices. The former system is known as passive atmosphere solution. In the latter 

case the active devices (e.g. carbon dioxide emitters and oxygen scavengers) can be placed in the 

packaging in order to modify the atmosphere around the fruits quicker than the passive solution 

(Agar et al., 1990; Robbins and Fellman, 1993). 

The use of oxygen absorbers and carbon dioxide emitters, in combination with an adequate film 

permeability, allows the proper concentrations of oxygen and carbon dioxide to be reached. The 

recommended gas partial pressures for the strawberries are in the range between 5-10 kPa for O2 

(Joles et al. 1994) and 15-20 kPa for CO2 (Beaudry, 1999). Lower levels of oxygen can slow down 

the respiration and decay (Beaudry, 2000), and higher concentration of CO2 can inhibit the fungal 

growth (Brown, 1992), and reduce the loss of firmness (Jacxsens et al., 2000; Day, 2001) and the 

respiration rate.  
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Using these systems (passive and active packaging) the shelf-life extension of berries can be 

achieved and so, an environmental load reduction can be obtained. The measurement of the 

possible decreasing in environmental load associated to the shelf life extension was carried out with 

the Life Cycle Assessment (LCA) methodology which was applied to the different packaging 

solutions.  

 

8.2 MATERIALS AND METHODS 

 

The strawberries were cultivated in Veneto region (north of Italy) and harvested at ripening. This 

area shows the pedoclimatic conditions supporting the production of strawberries (Agnolin, 2007).  

 

8.2.1 Goal and scope of application 

 

The goal of this study was to evaluate the environmental impact of production and distribution of 

fresh strawberries fruits packaged in different methods: ―Traditional‖ sale unit (Base scenario, A), 

Passive Atmosphere Modification solution in master bag (B scenario) and Active Atmosphere 

Modification solution in master bag with devices (C scenario) as two alternative scenarios of the 

―Traditional‖ packaging. The characteristics of packaging solutions are as follows:  

A) Lidded macro-perforated PET trays containing 250 g of berries, stored in air and considered as 

―traditional‖ packaging. Strawberries stored in this solution have a shelf life of  2 days (Chapter 6);  

B) Three lidded macro-perforated PET trays containing 750 g of berries inserted into master bags 

(52*31 cm) made of Low Density Polyethylene (LDPE; oxygen transmission rate at 23 °C and 0 

%RH equal to 4000 cc m
-2

 day
-1

, carbon dioxide transmission rate at 23 °C and 0 %RH equal to 

30000 cc m
-2

 day
-1

, water vapour transmission rate at 38 °C and 90 %RH equal to 21.7 g m
-2

 day
-1

). 

This solution was referred to a passive modified packaging solution; Strawberries stored in this 

solution have a shelf life of  6 days (Chapter 6);  

C) Three macro-perforated PET trays (containing 735 g of berries) inserted into a master bag unit 

(52*31 cm) made of LDPE (as described above). Before sealing, two oxygen scavenger 

(FreshPax® CR1, Multisorb Technologies Inc., Buffalo, NY, USA), and two carbon dioxide 

emitters (BioFresh®, Multisorb Technologies Inc., Buffalo, NY, USA; nominal capacity of 500 

cm
3
) were placed into the master bag. Strawberries stored in this solution have a shelf life of 12 

days (Chapter 7). 

All the samples were stored in a cold chamber (5±1 °C; 70±5 %RH). 

The methodology of Life Cycle Assessment (LCA) was applied in order to compare and evaluate 

the environmental load of the packaging systems taking into account the estimated shelf life of 

berries. The LCA is a standardized methodology used for estimating environmental burdens 

associated with life cycle of products or processes (ISO 14040, 2006). This methodology is 

considered to be effective for evaluating environmental performance in the agro-food and beverage 

fields (Roy et al. 2009). 

In general, in LCA studies applied to  the agro-sector,  the functional unit (FU) was defined as mass 

of product (e.g. kg; Nally et al. 2011; Gan et al. 2011; Gonzalez-Garcia et al., 2012). For this study, 

FU was express as day of shelf life. In this way, the environmental impact was determined at one 

day of shelf life considering 750 g of strawberries (three sale units). Moreover for strawberry 

production, FU was considered as 1 hectare of orchard, while for packaging environmental impact 

evaluation, the FU was considered as 3 sale units (750 g of product). 

This work was carried out from a ―cradle to grave view‖. The LCA model was carried out on two 

subsystems: Crop production (SS1) and post-harvest management of strawberries (SS2). SS 1 

involved the crop cultivation: the system boundary was set from the grower (that also provides for 

the packaging of fruits in PET trays) to the distribution center, taking into account all of the 
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processes (tillage, harrowing and ploughing, mulching, planting, fertilization, application of plant 

protection product and harvesting) required for cultivation and transport to central distribution. 

Concerning the crop production, all data were referred to the hypothetical 1-hectar plot and a 33 t 

of berries production in season production during full plant growth, according to the literature 

(Girgenti et al. 2014). SS 2 involved the post-harvest management of fruits: the system boundary 

was set from gate of center distribution to consumer home. The transportation from the 

supermarket to the home of the consumers and the consumption of strawberries were not included 

in the LCA system. However, the disposal of the packaging material was taken into account as 

municipal management. 

 

8.2.2. LCA inventory  

 

For SS 1 the data were collected from a medium farm that produces only small fruits and in 

particular strawberries (90% of production).  

The hypothetical hectare of orchard was set using 0.2 m as distance from two plants along rows and 

0.50 m as distance from two rows and about 55000 plants have been implanted in the orchard. The 

data were collected through questionnaires submitted to the technical workers in the farm. The crop 

production was separated in three steps: Field operations, Fertilizing and Crop protection. The 

information collected in SS1 from farm workers was referred to the 750 g of product. The data for 

raw materials were selected in database Ecoinvent 3.0. 

 

8.2.2.1 Field operation: The operations for strawberry production were defined from combing 

questionnaires information and  literature data from the Italian average production of strawberries 

(Enama, 2005) for 1 hectare. These information were summarized in the Table 8.1. 

 

Table 8.1. Principal field operations concerning the strawberry production analysis  

Field operation Consumption in diesel l/ha 

Tillage, harrowing, and ploughing + sub soiling 100 

Mulching 15 

Planting 20 

Fertilization 27 

Application of plant protection product by field sprayer 63 

Harvesting 40 

 

The environmental impact was estimated taking into account the emissions in air of diesel burning 

using the results showed by the Argonne National Laboratory (Argonne 1996) as described in 

Table 8.2. For calculation the MJ from litre of diesel was considered 40 MJ/kg as energetic load 

and 0.832 kg/l as density. 

 

Table 8.2. Emission factors for diesel fuel combustion in a farming diesel tractor 

Emission factors (g/MJ diesel fuel burned) 

Hydrocarbons CO NOx PM10 SO2 CH4 N2O CO2 

0.085 0.32 0.89 0.041 0.12 0.0042 0.0019 75.5 

 

For greenhouses structure, the data were obtained from the questionnaires submitted to the grower 

and summarized in the Table 8.3. The life span of the greenhouse was estimated at 15 years 

according to the European Committee for Standardization (CEN 2001). For the metal structure, the 

steel production (unalloyed) was considered in the LCA inventory, the quantity was related to the 
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lifetime previously defined. For covering of greenhouse the Low Density Polyethylene (LDPE) 

film was used and 5 years correspond to  their lifetime which was longer than that one used in other 

study (Torrellas et al., 2012). For irrigation in the field, the sprinkler drip systems were used to 

increase the efficiency of irrigation; the material of the tubing was polyvinylchloride (PVC). For 

the mulching a thick layer made by LDPE was used.   

 

Table 8.3. Structure processes included in the inventory. Values are total amount of material per 

hectare: the life span was not considered. 

Materials Quantity (Unit) 

Metal steel – unalloyed- 19500 kg/ha 

LDPE – Film for covering the greenhouse- 1200 kg/ha 

PVC – Tubing and piping- 100 kg/ha 

LDPE – Film for mulching 620 kg/ha 

 

Concerning the irrigation, the water was also estimated to maintain the production and humidity in 

the soil. The frequency of irrigation was established in twice a week for 16 weeks and 6 hours for 

each event. The flow in the tubing was calculated in 1 l/h. The result of these assumptions lead to 

1056 m
3
 of waters to produce about 33000 kg of berries. The energy utilized was set in 44.2 

kWh/ha (Girgenti et al., 2014).  

For the fruit production, the fertilization and the plant protection treatments were applied. The base 

fertilization was applied as manure in order to improve the organic compounds in the soil, the 

quantity added every year was estimated in 50 tons per hectare. For the mineral fertilization, 

ammonium nitrate was used as 95 kg per hectare, single superphosphate as 70 kg per hectare, and 

potassium sulphate as 75 kg per hectare. Concerning the fertilization, the information about nutrient 

(nitrogen) removal from fruits was taken from literature. Emissions due to the fertilizer application 

was also included in the inventory. Nitrogen emissions (nitrate, ammonia and nitrous oxide) were 

modelled following the study reported by Brentrup et al. (2000). Phosphate emissions were 

calculated in accordance to Smil (2000), the losses of P was equal to 1% of the total applied 

phosphorus. This calculation was carried out using the  EFE-So software (Version 2.0.0.1) and the 

values were reported in the Table 8.4. The emissions were reported in Table 8.5 as resulted by the 

EFE-So software.  
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Table 8.4. Conditions and values used in the EFE-So software to calculate the emission from 

fertilizers. 

Solid Manure Quantity/ 

Characteristics 

References 

N content in applied dose (kg/ha) 250 IPCC 2006 

Ammonia content in applied dose (kg/ha) 25 IPCC 2006 

Time between application and precipitation or 

incorporation (h) 

4 Farmer 

questionnaire 

Temperature (°C) 5-10 Farmer 

questionnaire 

Precipitation (mm) 0-2 Farmer 

questionnaire 

Ammonium nitrate   

N content in applied dose (kg/ha) 95 IPCC 2006 

European country  Italy 

Nitrogen deposition (kg/ha) 18.9 Sheffield et al., 

2006 

Yield (t/ha) 33 Farmer 

questionnaire 

Nitrogen content in crop harvest (kgN/t) 1.067 Giampieri et al., 

2012 

Other output (t/ha) 0.3 Farmer 

questionnaire 

Nitrogen content in other output (kgN/t) 27.6 Jurik et al., 1982 

Soil type Sandy loam Farmer 

questionnaire 

Summer precipitation (mm) 194 Frontero, 2010 

Winter precipitation (mm) 270 Frontero, 2010 

 

Table 8.5. Results of the EFE-So software: emissions of fertilizers into water and soil. 

Output Compound Quantity Unit 

Emission to air    

 Dinitrogen monoxide 3.96 kg 

 Ammonia 28.44 kg 

Emission to water Nitrate 163.3 kg 

 Phosphate 0.14 kg 

 

In this study pesticides were selected in the database Ecoinvent 3.0: the ―pesticide unspecific‖ 

made in Europe and, for potassium carbonate, the global production was used. 

Pesticides used in agriculture can cause undesirable effects on humans and the natural environment. 

One of the objectives of integrated agriculture is the elimination or reduction of possible sources of 

environmental pollution such as pesticides. To achieve this objective, farmers need a method to 
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assist them in estimating the environmental impact of pesticide use (Van der Werf, 1996). The 

LCA methodology can define the environmental impact of pesticides used in the agricultural. For 

this study the type and quantity of pesticides used in this crop production are summarized in Table 

8.6.   

Emission of pesticides into the air was calculated on the basis of the research carried out by Van 

den Berg et al. (1999). These authors indicated that 30–50 % of total sprayed pesticides were 

emitted into the air due to spray drift and volatilization. 

This study adopted 40 % to calculate the emission from pesticides into the air, considering the crop 

type and growing method used. This percentage balanced two considerations. Firstly, some of the 

pesticides into the air end up on the greenhouse linings in which the plants are cultivated, which 

reduces the emission to the (outside) air. Secondly, the high dose of chemicals applied and the 

hotter weather conditions in the greenhouse increases the emission of pesticides into the air. The 

pesticides fall down into the soil for 15 % and the runoff into the water was estimate in the 10 % of 

the pesticides presented into the soil (Sahle and Potting; 2013). The emissions were summarized 

into Table 8.7. 

 

Table 8.6. Principal compound used as pesticides in strawberries production  

Operation Compound Quantity Unit 

Plant protection treatments Abamectin 1.2 kg/ha/year 

 Cyprodinil+Fludioxinil 1.6 kg/ha/year 

 Potassium bicarbonate 10 kg/ha/year 

 Fenitrotion 1.5 kg/ha/year 

 

Table 8.7. Emissions into air, soil and water of pesticides used in strawberries production for 1 ha; 

the values were expressed in kg  

Compounds  Air Soil Water 

Abamectin 0.48 0.18 0.018 

Cyprodinil 0.32 0.12 0.012 

Fludioxinil 0.32 0.12 0.012 

Potassium bicarbonate 4 1.5 0.15 

 

8.2.2.2 Transport  

 

Concerning the transportation of trays, the distance from packaging producer industry (located in 

Emilia Romagna region) to the producer was 220 km. It was assumed that all the transportations 

involved a full load trucks. Master bag -film low density polyethylene (LDPE) 25 µm- was 

transported between local company and the central of distribution (60 km). 

For the transport of fruit in the trays from grower to distributional center located in Milan, 

commercial truck (32 t) was considered (Euro 3). The distance was calculated by Web software 

(Google Maps, Google inc., Parkway Mountain View, CA ) and it was about 240 km. It is assumed 

that all the transportations involved a full load trucks. 

The second SubSystem (SS2) involves the post-harvest management of fruits. The fruits were 

stored in a cold chamber to maintain the quality of products. In a distributional center the 
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strawberries were delivered to retailer as function of their requests while in the alternative 

scenarios, in distributional center, the fruits were packed in master bags before storage.  

 

8.2.2.3 Refrigeration 
The second SubSystem (SS2) involved the post-harvest management of fruits. The fruits were 

stored in a cold chamber to maintain their quality for longer times. In a distributional center the 

strawberries were delivered to retailer as function of their requests, while, in the alternative 

scenarios, the fruits could be packed in master bags before storage to extend their shelf life at 

distributional center.  

The products were refrigerated from field temperature, estimated, in the spring-summer condition 

at 25°C to reach the storage temperature closed 4°C by cooler. In literature the optimal temperature 

to store the strawberries is -0.5 - 0°C (Cantwell, 2002) but in traditional chamber the fruits were 

refrigerated from 2 to 4°C (Nunes et al. 2009).  

A computational approach was performed to estimate the electrical energy required for cooling the 

strawberries and to maintain the temperature during the storage (Bonauguri and Miari, 1988). The 

calculation took into account different heat sources presented in the cooler system: the air inside the 

refrigerated chamber and the air exchange due to door opening during the fruits movement, the heat 

coming from walls, ceiling and floor, (considering 25 °C as external temperature) and from fruit 

metabolism (0.08 W/kg; Sharma et al., 2013), the energy utilized by lights and other devices used 

inside the cooler. The calculation was determined 4.63 Wh per kg of product.  

 

8.2.2.4  Packaging components 

 

8.2.2.4.1 Active devices 

 

Oxygen scavenger 

To estimate the environmental burden of active devices it was used the common formulation found 

in literature, because the recipe is covered by industrial secret. The oxygen scavengers are self-

activate devices and their functionality is performed through the oxidation reaction presented in 

Equation 8.1 (Schroeder et al. 2001). Usually, the well-known coformulants were the silica gel and 

sodium chloride (Brody et al., 1995).  

The high density polyethylene (HDPE) is the film where these compounds are contained (0.49g). 

 

The iron powder to scavenge 100 cc of O2 (maximum scavenging for this device, CR1 as reported 

in M&M) was 0.33 g and 0.162 g of pure water.  

 

 

 

   

 

 

For the silica gel, the absorption of water was estimated at 15 % (w/w) that correspond at 50 % of 

their maximum absorption value equal to 30 % (Afonsoa & Silveira, 2005). To absorb the 0.162g 

of pure water (used in the reaction 1) 1.08 g of silica gel were required. 

As well known in the oxygen scavenger  the chlorine ion was required as chemical catalyzer of the 

oxidation reaction: the sodium chloride added  was 1.6 g. 

 

 

 

Fe  Fe
2+

 + 2e
-
                   (8.1) 

½ O2 + H2O + 2 e
-
 2 OH

-
 

Fe
2+

 +2 (OH)
-
  Fe (OH)2 

Fe (OH)2 + ¼ O2 + ½ H20  Fe (OH)3 
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Carbon dioxide emitter 

For Carbon Dioxide Emitters, the reaction presented equation  was used to determine the weight of 

each ingredient. 

 

 

 

 

8.2.2.4.2 Tray 

The tray was made by polyethilentereftalate (PET) and in the inventory analysis 13 g of the raw 

materials (Europe) were considered for its production and the thermoforming energy requirement 

was defined as 1.12 Wh for each tray. 

 

8.2.2.4.3 Master bag film 

The film was made by low density polyethylene and in the inventory 7.72g of film were inserted as 

quantity, with an efficiency of production from raw material (pellet) to film up to 97.6%. The 

extrusion energy requirement was defined as 2 kWh/kg of product. 

 

8.2.2.5 End-life 

In the end-life step only the packaging disposal was considered. The Lombardy was considered a 

region where the packaging waste was collected. 

 

Plastic collection 

As Grosso at al. (2012) described, the plastic collection is made in two different ways: kerbside 

collection in the 33% of collection cases while in the remaining cases (67%) using waste containers 

on road.  

In kerbside collection, the management of characteristics is explained in Table 8.8.  

 

Table 8.8. The management kerbside collection  

Transporter Van < 3.5 t Lorry 16-32 t 

Percentage of used in collection 59.4 40.6 

Distance 48.8 48.8 

 

Plastic recycle 

Before recycling, the plastics have to be selected to remove the undesirable items and unrecyclable 

plastics. This phase requires per 1 ton of plastic about 26.6 kWh of electricity and 84 MJ of diesel 

(Grosso et al., 2012). The efficiency of plastic selection system was assumed as 100% due to the 

high purity of plastic material. 

 

For PET tray, a 95% of recycling was assumed as efficiency of systems and the remaining 5% was 

collected in the municipal waste. The whole impact generated for PET production was considered 

as an avoided impact for the system (Levi et al. 2011).   

For LDPE bag, a 95% of recycling was assumed as efficiency of systems and the remaining 5% 

was collected in the municipal waste. In this case, the study described by Rigamonti and Grosso 

(2009) was used to model the energy and material necessary for recycling the LDPE (Table 8.9). 

 

 

 

 

C6H8O7 (Citric acid, 1.45g) + 3 NaHCO3 (Sodium carbonate, 1.91g)   

3 CO2 + 3 H2O + Na3C6H5O7 (Sodium citrate)        (8.1) 
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Table 8.9. Consumption of energy and raw materials used in recycle process of LPDE.  

Input for 1 ton of LDPE Quantity 

Electricity for recycle 381 kWh 

Electricity for produce the rod 200 kWh 

Natural gas 650 MJ 

Water 1.78 m
3
 

 

 8.2.3 Impact assessment 

The software SimaPro® 8.0.1 (PRé Consultants bv. Netherlands) was used for the computational of 

the inventories data. Among the steps defined within the LCA, only classification and 

characterization stages were undertaken (ISO, 14040, 2006). According to other studies concerning 

the agricultural-packaging systems  ReCiPe Midpoint (H) V1.08 - Europe Recipe H model was 

used and the following categories were selected to evaluate the environmental load of strawberries 

supply chain: Climate change, Ozone depletion, Terrestrial acidification, Freshwater 

eutrophication, Marine eutrophication, Human toxicity and Fossil depletion (Table 8.10). 

 

Table 8.10. Impact categories considered in the analysis according to the ReCiPe Midpoint (H) 

V1.08 - Europe Recipe (Hierarchy) method. 

Impact category Unit 

Climate change kg CO2 eq 

Ozone depletion kg CFC-11 eq 

Terrestrial acidification kg SO2 eq 

Freshwater eutrophication kg P eq 

Marine eutrophication kg N eq 

Human toxicity kg 1,4-DB eq 

Fossil depletion kg oil eq 

 

8.3 RESULTS AND DISCUSSION  

 

8.3.1 Production  

Many authors agree that the food production is the main factor in the environment load along the 

supply chain (Peano et al. 2015; Girgenti et al. 2014; and Seppala et al. 2009, Roy at al. 2009). 

Figure 8.1 shows the results concerning to the environmental load of the strawberries production. 

In the figure, the impacts of 750 g of strawberries (3 trays) can be share in the different crop 

production phases mentioned as above related to the fruit growth. For each impact categories, it is 

possible to define the main steps mainly affecting the environmental burden. For climate change, 

the greenhouse structure (30 %) and the film for mulching (25 %) created a large amount of the 

greenhouse gases. The ozone layer decreased its thickness due to the substances emitted for 

production the greenhouse structure (23 %) and the pesticides emissions (20 %). In the Terrestrial 

acidification and the Marine eutrophication, the fertilizers used to cultivate the strawberries lead to 

the highest role on environmental impact up to 74 % and 97 %, respectively for Terrestrial 

acidification and the Marine eutrophication. This is probably due to the run off the nutrients from 

soil to water (MuÑoz et al. 2010) and emission in air of nitrogen and sulphur compounds. 

For freshwater eutrophication, the most important step was the material of greenhouse due to the 

substances used in the metal production process (50 %). The greenhouse structure showed an high 

load in different impact categories as reported in literature (Torrellas et al., 2012). 
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The plant protection compounds generated not only an environmental damage but also a Human 

toxicity due the hazard molecules used against the pest and fungi. For this category, the plan 

protection compounds generate the highest impact, about 38 %.  

For covering the crop and protect it against the weeds in the farm the LDPE film was used, and its 

production needs to use the Fossil compounds as oil reducing the availability of this substance. 

In Table 8.11 was reported the values of environmental load for different impact categories 

associated to different steps of strawberry production. As mentioned above, for each impact 

category the most important factor on the environmental load was defined. The Life Cycle Analysis 

can contribute to improve the knowledge about the development of more performing fruit 

production systems where it is possible to reduce the loss of nutrient, for example using 

fertirrigation system or organic fertilizer. The mulching film material could be replaced with other 

materials having lower environmental load, for example using Bio-based material as suggested by 

Girgenti et al. (2014). 

The total amount of carbon dioxide emitted for production of strawberries agreed with life cycle 

assessment of production in Spain of strawberries (0.35 kg CO2 eq/kg Williams et al., 2008) and 

the production developed in the north of Italy  (0.053 kg CO2 eq/250g of berries; Girgenti et al., 

2013). 

 

Figure 8.1. Impacts of the production subsystems on the environmental load expressed as relative 

contribute  
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Table 8.11. Environmental results for the strawberries production for each impact category 

Impact category Unit Total Mulching Covering Irrigation Distribution 

water 

system 

Climate change kg CO2  

eq 

1.6*10
-1

 4.1*10
-2

 1.6*10
-2

 7.2*10
-4

 4.8*10
-3

 

Ozone depletion kg CFC-

11 eq 

6.3*10
-9

 5.3*10
-10

 2.0*10
-10

 1.5*10
-10

 1.8*10
-11

 

Terrestrial 

acidification 

kg SO2  

eq 

2.3*10
-3

 1.6*10
-4

 6.2*10
-5

 3.1*10
-6

 1.3*10
-5

 

Freshwater 

eutrophication 

kg P 

 eq 

3.6*10
-5

 4.2*10
-6

 1.6*10
-6

 3.4*10
-7

 1.6*10
-7

 

Marine 

eutrophication 

kg N  

eq 

9.5*10
-4

 4.4*10
-6

 1.7*10
-6

 1.7*10
-7

 8.2*10
-7

 

Human toxicity kg 1,4-

DB eq 

1.3*10
-2

 5.4*10
-4

 2.1*10
-4

 1.1*10
-4

 3.6*10
-4

 

Fossil depletion kg oil  

eq 

5.8*10
-2

 2.5*10
-2

 9.8*10
-3

 2.4*10
-4

 2.5*10
-3

 

 

8.3.2 Packaging  

 

As expected, the analysis of packaging systems demonstrated the increase of the environmental 

burn due to the material and the active compounds used in the active packaging systems (Table 

8.12).  

The absolute amount of the different impacts was negligible among the three packaging systems, 

but in relative graph the small difference generated an important difference in particular in ozone 

depletion, terrestrial acidification, marine and freshwater eutrophication (Figure 8.2).  

 

Table 8.12. Environmental results for different packaging solutions 

Impact category Unit “Traditional”  

package 

Passive  

package 

Active  

package 

Climate change kg CO2 eq 2.17*10
-1

 2.29*10
-1

 2.5*10
-1

 

Ozone depletion kg CFC-11 eq 5.22*10
-9

 5.38*10
-9

 6.70*10
-9

 

Terrestrial acidification kg SO2 eq 4.92*10
-4

 5.39*10
-4

 6.42*10
-4

 

Freshwater 

eutrophication 

kg P eq 3.30*10
-5

 3.43*10
-5

 4.14*10
-5

 

Marine eutrophication kg N eq 1.12*10
-4

 1.13*10
-4

 1.43*10
-4

 

Human toxicity kg 1,4-DB eq 1.8*10
-2

 2.1*10
-3

 3.12*10
-3

 

Fossil depletion kg oil eq 4.64*10
-2

 5.38*10
-2

 5.95*10
-2
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Figure 8.2. Comparison among the environmental impact of different packaging systems 

 
 

8.3.3 Environmental daily load of packaging solution 

 

The choice of using the day of shelf life as the functional unit means that the environmental 

impacts were shared along the lifetime. In this way, a ―daily‖ impact can be defined for each 

packaging solution adopted. 

For each impact category, the differences between base scenarios and alternative scenarios were 

evaluated. The packaging solution A had only 2 days of shelf life and this condition determined the 

highest daily impact among the packaging solutions studied. Whereas the packaging solution B and 

C determined a significative reduction in terms of environmental load around 66 % and 82 %, 

respectively (Figure 8.3). As assumed by some authors (Williams et al. 2010, Roy et al. 2009, 

FAO, 2011), a correct packaging can contribute to reduce the overall impact of the system linked 

also the reduction of food waste (Almenar et al, 2010). The differences among packaging systems 

for each impact categories were ascribable to the relative high impact of the active compounds or 

the master bag film in the estimation of the environmental impact. The values for each impact 

categories showed a big differences when food product was took into account (Table 8.13). The 

packaging systems differences among the three scenarios were minimized due to the biggest weight 

of food production, in terms of the environmental load, on entire impact. This means that the 

packaging environmental load could be improved to reduce the entire environmental load 

(Willliams et al. 2011). 
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 Table 8.13. The percentage of environmental load of different packaging solutions 

Impact category Unit “Traditional” 

solution 

Passive  

solution 

Active 

solution 

Climate change kg CO2 eq 5.80*10
-1

 1.98*10
-1

 1.02*10
-1

 

Ozone depletion kg CFC-11 eq 1.46*10
-8

 5.09*10
-9

 2.77*10
-9

 

Terrestrial acidification kg SO2 eq 1.98*10
-3

 6.82*10
-4

 3.25*10
-4

 

Freshwater 

eutrophication 

kg P eq 7.14*10
-5

 2.45*10
-5

 1.29*10
-5

 

Marine eutrophication kg N eq 7.9*10
-4

 2.64*10
-4

 1.34*10
-4

 

Human toxicity kg 1,4-DB eq 2.3*10
-2

 7.77*10
-3

 4.02*10
-3

 

Fossil depletion kg oil eq 8.7*10
-2

 3.18*10
-2

 1.66*10
-2

 

 

Figure 8.3. Comparison among the environmental impact of different packaging solutions taking 

into account the shelf life value 

 

8.4 CONCLUSION 

The shelf life values estimated in this study allowed a clear definition of  the environmental 

sustainability of the packaging systems due to the reduction of environmental impact correlated to 

the increase in shelf life. 

As a result of this study, the environmental impact was assessed for the strawberries stored in 

different packaging solutions identifying the best option in terms of lower environmental burn. The 

LCA methodology also permitted to define the best solution for strawberry storage in terms of the 

lowest environmental impact: with the active packaging solution the reduction of the environmental 

load can be reached with a consequent reduction in food chain. 

Over the last years, the interest in the environmental impacts associated with food systems has been 

strongly growing. Some studies have confirmed the relative importance of ―food and beverages 
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consumption‖ in contributing to environmental impacts (Bacenetti et al. 2015; Williams et al 2011). 

Within the food chain, also the waste management contributes to the overall environmental burden 

of food products (FAO, 2013). Among the different mitigation strategies, some studies highlighted 

that the optimization of packaging solution can be an effective solution to decrease the 

environmental load of the food systems (Piergiovanni et al., 2014; Williams et al 2011). Future 

researches need to better specify the effect of the extension shelf life of this fresh product on the 

supply chain and the consumer habits. The knowledge concerning the shelf life extension should be 

improved as a response of sustainability in terms of environmental load, social and economic 

effect. One of the goal imposed by FAO in contrasting the fame is the reduction of the global food 

waste as a contribution to feeding nine billion people by 2050. The limitation of this virtuoso 

process is the lack of knowledge about the causes and the reticence of the authorities and the 

politicians (Parfitt et al., 2010). 
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The aim of this PhD research project is double: a) to develop new protocols to compute the shelf-life dating of 

representative foodstuffs which are characterized by novelties in packaging technologies and environmental exposition 

and b) to define innovative indicators that could be useful to implement the traditional LCA approaches for the 

estimation of a packaged food sustainability along the supply chain. 

 

Approcci integrati per la valutazione della shelf-life di alimenti confezionati a supporto di strategie 

di sostenibilità  
 

Lo scopo del progetto di dottorato è duplice: a) sviluppare nuovi protocolli per la valutazione della shelf-life di alimenti 

confezionati, b) definire innovativi indicatori che possono essere usati per implementare il tradizionale approccio LCA 

al fine di stimare il peso di modifiche della shelf-life sulla sostenibilità lungo l‘intera filiera di produzione e 

distribuzione. 
 

1. State of Arts 

All foods are susceptible to quality and safety losses. The shelf-life can be defined as a finite length of time after 

production and packaging during which the food product retains a required level of quality under well-defined storage 

conditions; therefore, shelf-life should reflect only the quality loss dynamics (Nicoli, 2012). The definition of shelf-life 

requires a multidisciplinary approach because different driving forces are involved: regulatory, economics, marketing, 

social. From the beginning of shelf-life studies many scientific works in literature focused the attention on this value in 

packaged food products; unfortunately, few papers only assessed the shelf-life in a correct way determining the limit of 

quality where product was failing.  

The first step in assessing the shelf-life is to identify the main parameter that describes the food quality decay of 

packaged food during storage time. It is possible to use traditional techniques (e.g. chemical analyses, physical analyses, 

microbiological indexes or sensory attributes) or to exploit otherwise an innovative procedure gathering different decay-

parameters as multivariate analysis (Pedro and Ferreira, 2006).  

The second step is to set the acceptability limit determining the value (or the range of values) that discriminate whether 

one product is acceptable or not by consumers, otherwise defined as the point where all decay reactions reach their 

maximum acceleration (Limbo et al., 2009). Usually industry and researchers do not specify this depletion index in a 

measurable way; its determination is complicated and in many papers this index is not evaluated or is arbitrary set.  

The last step in shelf-life assessment is to monitor the critical indicator under real-time or accelerated conditions of 

storage to evaluate quality changes. Data collected during testing are modeled to obtain parameters able to describe the 

kinetics behaviors, thus to predict the shelf-life once the acceptability limit has been defined. These models have to take 

into account the following effects on overall storage: a) environmental factors like gas concentration, moisture, light 

intensity and temperature; b) packaging factors like gas permeability of plastic materials; c) food or process factor like 

ingredients or thermal treatments. In this sense few strategies have been outlined, especially when more than one 

accelerating variable or when accelerating factors different from temperature are used to speed up the quality decay 

during experiment.  

From this point of view there is a need of defining a protocol to identify the correct shelf-life and to develop a 

sustainability-trend. Shelf-life studies are expensive for food companies but methods to define the date of fail has  to be 

improved. The potential inaccuracies in its definition may be responsible of two different scenarios: a shelf-life 

overestimation that could cause consumer complaints, product recalls, ineffective logistic impacts, food losses, etc… 

and a shelf-life underestimation that could cause serious, expensive food losses and wastes, obstructing the optimization 

of formulation, processing and packaging solutions, therefore the potentiality for a shelf-life extension. Techniques such 

as Life Cycle Assessment (LCA) can be used to quantify environmental impact of the food losses and waste arising 

from an incorrect definition of shelf-life. This approach is in accord with a recent study (Wikström & Williams, 2010) 

which stressed the importance of increasing the knowledge about the amount of food losses, the environmental impact 

due to losses and the reasons why losses arise. In fact  
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The second year activities of this PhD project focus on the shelf life assessment of small red fruits (strawberry and 

raspberry). These products are non-climacteric highly perishable fruits because susceptible to mechanical injury during 

picking and transportation. Water loss, mould growth and off-flavour production during storage limit their shelf life to 

few days. In particular, raspberries have a high added value and high nutritional value, but unfortunately the mass loss 

during  distribution and  domestic storage has been estimated around 50%. The adoption of a suitable packaging 

material and/or technology could prolong the shelf life, reducing the waste along the supply chain. 

Estensione della vita di scaffale di piccoli frutti: utilizzo di atmosfere modificate attive e 

passive all’interno di sacchi madre 

La prima attività del progetto di dottorato descrive la valutazione della shelf life in prodotti freschi come piccoli frutti 

(fragole e lamponi). Questi prodotti sono non-climaterici, altamente deteriorabili perché suscettibili ai danni meccanici 

durante il trasporto e la raccolta. Inoltre la perdita di peso, la crescita di muffe e gli odori sgradevoli durante la 

conservazione limitano la loro vita di scaffale a pochi giorni (meno di una settimana). In particolar modo per i lamponi, 

si stimano perdite fino al 50% durante la distribuzione e lo stoccaggio domestico. L‘adozione di un materiale di 

confezionamento adeguato e/o di una opportuna tecnologia di packaging può contribuire al prolungamento della shelf 

life e, quindi, alla riduzione delle perdite di questi frutti lungo la supply chain. 

 

Key words: shelf life extension, small fruits, master bag, active and passive atmosphere. 

1. Introduction 

The general purpose of this study was to investigate the ability of passive and active atmosphere in extending the shelf 

life of red raspberries. During storage, the fast decay of quality could be controlled by means of packaging technologies 

able to modify the gas composition inside the package, slowing down the fruit metabolism and the microorganisms 

growth. The modification of atmosphere can be achieved through the passive or active solutions. In the first case, the 

permeability of  the packaging material and its selectivity towards gas can be combined with the fruit metabolism to 

control the equilibrium between fruit respiration and head space composition. In the second case, it is possible to 

introduce an active device that changes the gas composition inside the packaging, releasing or absorbing oxygen and/or 

carbon dioxide.  

2. Materials and Methods 

Fruits 

Red Raspberries (Rubus ideasu L.) cv. Erika (ripening period July - August ) were provided by a local supermarket in 

Milan; the berries were picked at commercial ripening stage, packaged in lidded PET macro-perforated trays (125g) and 

transported to the laboratory as quickly as possible. The fruits were immediately stored in a cold chamber, after their 

packaging in different solutions. 

1) Passive atmosphere: packaging and storage  

For each trial, two PET trays (125g of berries) were packed using a master bag solution, made of plastic materials with 

different permeability to oxygen and carbon dioxide (high, medium and low barrier), as reported in Table  1. The 

control sample consisted in PET shell claim: this package does not provide any gas barrier effect due to the presence of 

macro-holes. The following analyses were carried out: Damaged berries, both physically damaged and mouldy berries 

(%); Weight loss, (%); Colour  (CIE L*, a* and b* parameters); total solids (g/100g); soluble solids (g/100g); pH ; 

Titratable acidity (g citric acid/100 g); consistency by single compression test (energy at 60% deformation). For each 

test trial, the sampling and analyses were performed at time 0 and after 2,4 and 7 days of storage in a cold dark chamber 

(5±1°C).  
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The PhD project focuses on the shelf life assessment of strawberries and raspberries and aims to find new 

packaging solutions based on master bag and active packaging to extend their shelf life. The methodology used 

in this study allowed the knowledge of quantitative information on Shelf Life Extension conferred by active 

packaging. Moreover, the Environmental Impacts of these packaging solutions, calculated by means of the Life 

Cycle Assessment, have been taken into account considering the benefits of the Food Loss reduction derived 

from the actual Shelf Life Extension. 

Imballaggio attivo in soluzioni master bag ed estensione della Shelf Life: una strategia 

affidabile per la riduzione delle perdite alimentari 

Il progetto di dottorato ha come obiettivo generale quello di stimare la vita di scaffale di fragole e lamponi e di 

trovare nuove soluzioni di confezionamento basate sull‘impiego di master bag e di dispositivi attivi per  

prolungarne la vita. L‘approccio metodologico utilizzato ha consentito di ricavare informazioni quantitative circa 

l‘estensione della shelf life apportata grazie all‘impiego di soluzioni di imballaggio attivo. Inoltre, l‘impatto 

ambientale delle soluzioni a confronto, calcolato grazie alla ―Life Cycle Assessment‖, è stato stimato 

considerando i benefici che la reale estensione della shelf life apporta alla riduzione delle perdite di questi 

alimenti.   
 

Key words: Raspberries; Strawberries; Shelf Life Extension; Active Packaging; LCA; Food Loss  

1. Introduction 

A rough estimation for avoidable losses in the European Union (EU) is 280 kg per capita per year, of which 13%  

would arise from agricultural production, 31% from product processing and 45% from households (Beretta et al., 

2013). The role of packaging in protecting fresh and processed foods is well known and documented but little 

research is available about the relations existing among new packaging solutions, shelf life extension and Food 

Loss, and waste reduction at the different levels of the supply chain. Techniques such as Life Cycle Assessment 

(LCA) have been largely used to quantify Environmental Impact of food production, processing and packaging 

operations or materials but a new assessment taking into account the food and its packaging as a whole system 

and incorporating the effect of Food Loss reduction is nowadays necessary. In fact, from a life cycle perspective, 

any assessment of the Environmental Impact of food packaging must take into account the positive benefits of 

reduced Food Losses in the value chain (McMillin, 2008). 

In this PhD project, the possibility of extending the shelf life of red raspberries (Rubus idaeus L.) and 

strawberries (Fragaria x Ananassa Duch.) using active packaging solutions has been investigated, after the 

definition of critical indicators and cut-off criteria useful in pointing out the time at which the lifetime ends. The 

final aim was to estimate the role of a new packaging technology in reducing Environmental Impact along the 

supply chain but taking into account the benefits of the Food Loss reduction derived from the actual Shelf Life 

Extension. Raspberries and strawberries have a very short shelf life due to the physiological aspects such as high 

respiration rate, loss of firmness, susceptibility to mould and breaking down tissues. Currently, the high 

perishable characteristics of these fruits contribute to Food Loss along the supply chain (up to 75% until retailer, 

WRAP, 2011). The study on active packaging compared with traditional and passive atmosphere solutions from 

a whole perspective could really contribute in improving the active packaging technologies and making more 

efficient the food supply chain.   

2. Materials and Methods  

2.1 Raspberries trial 

In this study Red Raspberries (Rubus ideaus L.) cv. Erika were used. Fruits were hand-harvested at commercial 

ripening stage and were packaged within 24 h; only berries with comparable colour and absence of defects and 

mould were selected. 

Packaging solutions 

A) Lidded macro-perforated PET trays containing 125 g of berries, stored in air and considered as ―traditional‖ 

packaging; B) Two lidded macro-perforated PET trays containing 125 g of berries inserted into master bags 

(34cm*25.5cm) made of plastic materials with different permeabilities to gas and water vapour. This solution  
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