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ABSTRACT 
 
In this Ph.D project, some natural N6 – substituted adenosine derivatives, cytokinin 

ribosides (CKRs) have been investigated with the aim to draw a profile of their biological 

activity. CKRs belong to a class of plant hormones playing various roles in many aspects 

of plant development. We chose the most representative among natural cytokinin 

ribosides, namely  N6 – isopentenyl adenosine (iPAdo), kinetin riboside (KR), N6-benzyl 

adenosine (BA) and its hydroxylated derivative, ρ- topolin riboside (p-TR). 

In the first part of the thesis, the platelet anti aggregation activity CKRs has been 

evaluated in vitro as inhibitors of platelet aggregation. The activity has been interpreted by 

in silico docking experiments as due to interaction of CKRs with P2Y12 receptor. ρ -Topolin 

riboside showed the best platelet anti aggregation activity and in silico interaction with 

P2Y12 receptor, followed by N6 – benzyladenosine. 

Some synthetic N6 – substituted adenosine derivatives have been synthesized and 

investigated as antagonists toward the human adenosine receptors A1, A2A, A2B, A3. p-TR 

again was the best antagonist of A2A and A2B  adenosine receptors, both involved in the 

platelet aggregation mechanism. Synthetic N6 – substituted adenosine derivatives were 

antagonists of A3 adenosine receptor much stronger than natural CKRs. 

In a structure-activity study, the cytotoxic activity of natural CKRs and the synthetic 

analogues of p-TR were evaluated on 661W and Neuro2A cell lines trough Trypan blue 

and Tunel assays. Synthetic N6 – substituted adenosine derivatives showed a cytotoxic 

activity stronger than p-TR itself, that, in turn, exhibited the best apoptotic property.  

Many biological activities shown by the CKRs examined in this thesis could be related to 

an effect of these compounds on the cellular oxidative stress. Thus, as a part of the PhD 

project, the antioxidant profile of natural and synthetic CKRs has been investigated using 

the most common antioxidant tests in vitro. The heterogeneity of the results suggests in 

some instance a possible structure – activity relationship. However, since not all the 

compounds are active in every antioxidant assay, further characterization of the 

antioxidant profile of CKRs seems desirable, including suitable cellular assays.  
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1. INTRODUCTION 

1.1 BIOLOGICAL ROLE AND FUNCTION IN PLANTS OF N
6
-

SUSBTITUTED ADENINE DERIVATIVES (CYTOKININS) 

Sixty years ago the first cytokinin (CK), N6-furfuryladenine (kinetin, K) was isolated in 

autoclaved products of herring sperm DNA and was demonstrated to be able to promote 

cell division in plants [1]. Since that discovery, a number of compounds with CK activity 

have been identified and subsequent studies have clarified many structural requirements 

for CK activity.  

In general, the term cytokinin identifies N6-substituted adenines with plant hormone activity 

that are able to promote cell division and differentiation, playing various roles in many 

aspects of plant and development [2]. Naturally occurring CKs are adenine derivatives 

carrying either an isoprene-derived [2] or an aromatic side chain  [3] at the N6-terminus 

(Fig. 1.1). Conventionally, these families are called isoprenoid CKs and aromatic CKs, 

respectively.  

Despite the wealth of information concerning cytokinin chemistry and physiology, the 

transition from descriptive studies to molecular biology has been relatively slow compared 

with other plant hormones, such as  ethylene or gibberellins. For instance, only a few 

years ago, candidates for cytokinin receptors begun to emerge [4, 5] while it is still 

uncertain how cytokinins are synthesized in plants. 

Both isoprenoid and aromatic CKs are naturally occurring, with the former more frequently 

found in plants and in greater abundance than the latter. Common natural isoprenoid CKs 

are N6-(Δ2-isopentenyl)adenine, trans-zeatin (t-Z) and the related cis-isomer  (c-Z) (Fig. 

1.1).   

Among the aromatic CKs so far discovered,  N6-furfuryladenine (kinetin, K),  the first 

cytokinin discovered in 1955 [1], N6-benzyladenine (B) and the three isomeric 

hydroxybenzyl adenines (topolins, T) (Fig. 1.1) were identified in several plant species 

including poplar and Arabidopsis [3, 6, 7].  

Although the general differences in biological activity of aromatic cytokinins and isoprenoid 

cytokinins in plants have not been fully characterized and understood, there are some 

emerging trends that are noteworthy [8-11]. It appears that aromatic cytokinins are 

implicated in the developmental and morphogenetic events, whereas isoprenoid cytokinins 

play a greater role in growth processes including the control of plant cell cycling. 

Usually, for all natural CK nucleobases the corresponding nucleosides, nucleotides, and 

glycosides (Fig. 1.2) have been isolated [12]. Glycosylation of CK has been observed at  
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Figure 1.1 Structure of naturally occurring cytokinins CKs.  

 

the N3, N7, and N9-position of the purine moiety as N-glycosides, and at the hydroxyl group 

of the side chains of t-Z, c-Z, and dihydrozeatin  as O-glucosides or O-xylosides (Fig. 1.2). 

O-glycosylation is reversible and the de-glycosylation is catalyzed by a β-glucosidase. On 

the contrary, N-glycoconjugates are not efficiently cleaved by  β-glucosidase [13] and N-

glycosylation results  in a practically irreversible process. The physiological consequences 

of the differences in stability of N-glycosides and O-glycosides are not fully understood to 

date. However, it has been suggested that the readily cleaved O-glycosides represent 

inactive, stable storage forms of CKs [12]. 
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Figure 1.2 CK conjugates with sugars, sugar phosphates and others. O-Glycosylation of side chains colored in 

blue and N-glycosylation of adenine moiety in red (reported from ref. [5]). 
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1.2 BIOLOGICAL ROLE AND FUNCTION IN PLANTS OF CYTOKININ 

RIBOSIDES 

The structures of the  β-ribosides of previously shown CKs, cytokinin ribosides (CKRs),  

are shown in Figure 1.3.  

 

 

Figure 1.3 Structure of naturally occurring cytokinin β- ribosides CKRs. 
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CKRs and their  5’-phosphates (nucleotides) predominantly represent the primary products 

of  CK biosynthesis and their occurrence in plant tissues suggests that important metabolic 

steps are shared with the purine metabolic pathway, i.e., salvage pathway [2].  

Thus, the metabolic flow from CK nucleotides to the active nucleobases is probably not 

unidirectional but circular (Fig. 1.4).  

 

Figure 1.4 Current model of isoprenoid CK biosynthesis pathway in Arabidopsis. Methylerythritolphosphate 

(MEP) and mevalonate (MVA) pathways as isoprenoid side chain sources of cytokinins (reported from ref. [5]). 

 

Isoprenoid CKs may be formed by N-prenylation of adenosine 5'-phosphates (AMP, ADP, 

or ATP) at the N6-terminus with dimethylallyl diphosphate (DMAPP) or 

hydroxymethylbutenyl diphosphate (HMBDP); catalyzed by adenosine phosphate-

isopentenyltransferase (IPT; EC 2.5.1.27) [14]  (Fig. 1.5). Further biosynthetic steps 

involve enzyme-catalyzed hydrolysis of nucleotides to nucleoside CKRs and to CKs.   

Alternatively, CKs may derive from tRNA prenylation and successive degradation [15-17].  

In addition to the biosynthetic relevance of CKRs as precursors or deriving from of CKs, 

the ribosides can be considered the major translocation form of CKs in plants. The CK 
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transport is achieved by the translocation systems that also mediate the transport of purine 

derivatives and nucleosides [12].  

Among aromatic CKRs,  ortho-toplin riboside (o-TR), is present at micro-molar 

concentrations in poplar leaves after daybreak [18],  kinetin riboside (KR) and its   free 

base (K) have been recently detected in the endosperm liquid of fresh young coconut fruits 

at concentrations of 0.31 and 0.33 nM, respectively [19].   

 

 

Figure 1.5 Biosynthesis of N6-isoPentenyl Adenosine in plants. AMP and DMAPP (dimethylallylpyrophosphate) 

are converted in (iPAMP) isoPentenyl Adenosine-5'-monophosphate and iPAdo. IPT (isopentenyl transferase) is 

the key regulatory enzyme of the biosynthesis (reported from ref. [36]). 

 

 

 As a result of this bulk of research carried out during the last two decades, it has been 

established that  CKs play a key role in the hormonal regulation of plant growth and 

differentiation, but  and can also induce cell death in plant cell cultures after  intracellular 

conversion to their monophosphates [20]. 

In plants, most of the studies on the biological activity of cytokinins have been 

concentrated on cytokinin bases (CKs) that, although occurring at low concentration in 

plant-tissue extracts [2,12] are generally more abundant than the corresponding ribosides 

CKRs. 
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1.3 BIOLOGICAL ACTIVITY OF CYTOKININ RIBOSIDES IN MAMMALIAN 

CELLS 

 

The effects observed on plant cells have led to the hypothesis that CKs could also affect 

growth and differentiation in animals. Consequently, these natural compounds could have 

potentiality for treating human diseases related to dysfunctional cell proliferation and/or 

differentiation. Abundant experimental evidences supporting these hypotheses have 

subsequently been obtained. The ability of CKs to induce or promote the differentiation of 

human cells has been demonstrated in both keratinocytes [21] and a few leukemia cell 

lines, including HL-60 and K-562 [22].  

However, while CKs  induce differentiation at relatively high concentrations (25–100 µM), it 

was soon observed that their ribosides CKRs cause rapid apoptosis of leukemia cell lines 

at lower micro-molar concentrations than CKs [22, 23]. As in plant cells, cell death in HL-

60 is preceded by depletion of adenosine triphosphate, activation of caspases and 

mitochondrial depolarization [23, 24]. 

Interestingly, the anticancer activity of CKRs requires the intracellular conversion of CKRs 

to their respective monophosphates [25]. 

CKRs have attracted further studies on their  antitumor  activity and it has recently been 

demonstrated that kinetin riboside (KR) is a potential drug for the treatment of multiple 

myelomas because in these tumor cells KR induces a rapid suppression of cyclin D1 and 

D2 transcription factors, followed by arrest of the cell-cycle and selective apoptosis [26].  

Several authors have reported cytotoxic effects of N6-isopentenyladenosine (iPAdo), KR 

and N6-benzyladenosine (BA) on human cell lines derived from solid tumors [27-33]. 

Whether treatments resulted in cell cycle block and/or apoptosis, this was dependent on 

the cell line and the cytokinin used. The first report of the activity of o-TR has been 

published by Strnad et al. [34].   

A general observation is that he concentrations of CKRs required to produce cytotoxic 

effects are higher than those found endogenously in plant tissues, but they do fall within 

the range used in plant bioassays [25, 35, 36]. 

Compared to the tested CKRs, the free bases CKs  typically had much weaker effects on 

cell proliferation, with IC values either over the highest concentration used (>166 µM) or at 

least 50 times higher than the IC50  values determined for their respective ribosides. 

Similar differences between the cytotoxic activity of cytokinin bases (K, iPado, and B) and 

their corresponding ribosides were reported by other authors [24, 25]. 
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The observation that cytokinin bases and cytokinin glucosides showed limited activity, or 

none at all, supports the hypothesis that the presence of a ribose moiety at N9 of the 

purine ring is essential for potent anticancer activity in cytokinins.  
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2. THE Ph.D PROJECT 
 

The Ph.D project reported in the present thesis has been designed in view of exploring a 

few specific biological activities of CKRs. We selected the isoprenoid N6-(Δ2-isopentenyl) 

adenosine (iPA) and the aromatic  N6-furfuryladenosine (kinetin riboside, KR), N6-

benzyladenosine (BA) and topolin riboside (p-TR) as the most  representative natural 

CRKs (Fig. 2.1). 

 

 

Figure 2.1 Structures of N
6
-(Δ

2
-isopentenyl) adenosine, kinetin riboside, N

6
-benzyladenosine and topolin riboside. 

 

In the chapter 1, the wide spectrum of biological activities of CKs and CKRs has been 

reviewed. In this thesis we have mainly investigated: 

1. the effect CKRs on platelet aggregation (in collaboration with the laboratory of 

hematology and thrombosis directed by Prof. Marco Cattaneo, Full Professor of 

Internal Medicine at Università degli Studi di Milano, Department of Health Sciences  

c/o San Paolo Hospital of Milan). 

2. the in silico interaction between CKRs and P2Y12 receptor, a chemoreceptor for 

adenosine diphosphate (ADP) that has been recently recognized to have a key role 

in platelet activation and thrombogenesis. This part of the thesis has been 

developed in collaboration with Prof. Giulio Vistoli, Associated Professor of 

Pharmaceutical Chemistry at Department of Pharmaceutical Sciences, Università 

degli Studi di Milano). 

 

3. the effect of CKRs  and some synthetic N6 substituted adenosines on A1, A2A, A2B, 

A3 adenosine receptors. The synthesis of adenosine derivatives was performed 
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during six months of the Erasmus placement fellowship spent in Portugal under the 

supervision of Prof. Fernanda Borges (Department of Chemistry and Biochemistry, 

University of Porto, Portugal). CKRs were evaluated for their activity as antagonists 

of adenosine receptors also under the supervision of Prof. Borges and in 

collaboration with Prof. Karl N. Klotz of the Institute of Pharmacology and 

Toxicology of the University of Würzburg, Germany. 

 

4. Other biological activities of natural and non-natural CKRs: under the supervision of 

Prof. Borges, CKRs were tested as inhibitors of acetylcholinesterase and of 

monoamine oxidase B. In collaboration with Dott. Alberto Scarafoni, we evaluated 

the capacity of Kinetin and Kinetin riboside to inhibit the oxidation/glycoxidation of 

bovine serum albumin (BSA) 

 

5. the in vitro antioxidant activity of CKs, CKRs and synthetic N6-substituted 

adenosines using various antioxidant tests. The antioxidant activity was carried out 

in collaboration with Prof. Marina Carini, Full Professor of Pharmaceutical 

Chemistry at Department of Pharmaceutical Sciences, Università degli Studi of 

Milano. 

 

6. the effect  of topolin riboside (p-TR) and its synthetic analogs on 661W cell line.  

 

7. the anticancer activity of topolin riboside (p-TR) and its synthetic derivatives 

analogs on Neuro2A cell line. 

The first four points of this Ph.D project were developed under the supervision of Prof. 

Enzo Santaniello, Full Professor of Medical Chemistry (BIO/10) (Università degli Studi of 

Milan, Department of Health Sciences  c/o San Paolo Hospital of Milan). 

The last part of the project was performed under the guide of Prof. Riccardo Ghidoni, Full 

Professor of Biochemistry (Università degli Studi of Milan, Department of Health Sciences  

c/o San Paolo Hospital of Milan) after the official retirement of Prof. E. Santaniello on 

November 1st, 2014.  
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3. IN VITRO ACTIVITY OF CYTOKININ RIBOSIDES AS 
PLATELET AGGREGATION INHIBITORS AND IN SILICO 
EVALUATION OF THEIR INTERACTION WITH THE P2Y12 
RECEPTOR 

 

3.1 PLATELET AGGREGATION MECHANISM 

3.1.1 Platelet adhesion  

Platelets are cytoplasm fragments that originate from megakaryocytes in the bone marrow 

and circulate to maintain the integrity of the vascular system [1]. Platelets are found only in 

mammals while in others animals, such as birds or reptiles, thrombocytes circulate as 

intact cells. They don’t interact with the inner surface of vessels but adhere promptly where 

the endothelium is altered or extracellular matrix substrates are exposed [2]. This is a 

critical step in hemostasis and thrombosis mechanisms, as in inflammatory and 

immunopathogenic responses [3-5]. The functions of mammalian platelets are conserved 

throughout evolution and reflect those of nucleated thrombocytes in the other vertebrates 

[6–9]. After the adhering to damaged vessel, platelets can rapidly recruit to the site of 

injury another platelets, which are necessary to achieve hemostasis, or different cell types 

of immune system, which set off host defense responses.  

Membrane receptors operate independently of cellular activation mediate the initial binding 

of platelets to the injured vessel wall. This facilitates rapid interactions to overcome the 

constraints on bond formation inducted by blood flow, leading to a monolayer of activated 

platelets being firmly adherent to the area of injury. Depending on the depth of the lesion, 

platelets come into contact with different extracellular matrix components that may be 

associated with other molecules in response to injury or derived from plasma, as in the 

case of collagen with blood glycoproteins. Proteoglycans, collagen type IV, entactin, 

laminin and fibulin are the main basement membrane constituents, exposed to circulating 

blood after a superficial breaking of endothelium integrity. Proteoglycans play a key role in 

the coagulation modulation, but may not be directly involved in platelet adhesion [10]. 

Collagen type IV, similar to many other types [11], can induce platelet responses but might 

be less effective than other collagen types, found in the vascular wall, especially types I, III 

and VI. Two platelet membrane glycoproteins (GPs), integrin-α2β1 and GPVI, interact 

directly with collagen. Other GPs are supposed collagen receptors, some selective for 

specific types, but their identification and functional properties have not yet been 

established clearly [12]. Platelets seem to have a mechanism with which to inhibit the 
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response to collagen and avoid the risk of unregulated thrombus formation and vascular 

occlusion [13]. Collagen receptors can’t start and propagate thrombus formation in 

conditions of high blood flow unless platelets are initially bound to the surface through the 

interaction between GPIbα and Von Willebrand factor (vWF) glycoprotein to collagen 

[14,15]. Platelets express laminin receptors and have the potential to join to this substrate 

through α2β1 receptor, but it’s uncertain if the interaction has pathophysiological relevance 

with regard to hemostasis and thrombosis. Fibulins can combine with fibronectin [16] and 

fibrinogen [17] and possibly regulate the thrombogenic activity of these substrates. In 

particular, fibrinogen bound to fibulin may exhibit high capacity to promote platelet 

adhesion and thrombus formation [18]. Several types of fibulin, present in circulating 

blood, may be localized at sites of vascular injury, potentially influencing platelet 

interaction with fibrinogen and fibrin. Fibrinogen and fibrin aren’t normal components of the 

vessel wall. Fibrinogen may become immobilized on the exposed extracellular matrix, and 

insoluble fibrin strands are generated as a consequence of the local induction of 

coagulation. Integrin-αIIbβ3 can selectively regulate platelet adhesion to both fibrinogen and 

fibrin, showing a greater specificity on unstimulated platelets than after activation [14]. 

Additional matrix constituents that become exposed to platelets include fibronectin. 

Fibronectins [19] are modular macromolecules that support platelet adhesion and interact 

with α5β1 and activated αIIbβ3 [20]. Optimal platelet adhesion to fibronectin may require 

vWF and its GPIbα receptor [21], and the synergistic interactions between these adhesive 

substrates may contribute to the initiation of thrombus formation. 

 

3.1.2 Platelet activation and procoagulant activity 

A stimulation originated from the initial adhesive interactions and from the agonists 

released or generated at a site of vascular lesion act through signaling networks the 

adhesive and procoagulant properties of the platelets binding to a injury or circulating in 

close proximity [22] (Fig. 3.1a). The activation starts with the binding of adhesive ligands 

and excitatory agonists to specific receptors on the platelet membrane, and is propagated 

by intracellular signaling reactions, involving enzymes, substrates and co-factors engaged 

in specific protein–protein and protein–lipid interactions. Activation is under tight negative 

control, especially through the action of inhibitory substances, such as prostacyclin and 

nitric oxide, that contribute to limit the thrombus formation within the boundaries of a lesion 

in the vessel wall. 
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Figure 3.1 Platelet adhesion (a), activation and aggregation (b) (from ref. [1]). 

Among the adhesive substrates, the main inducers of platelet activation are collagen and 

vWF, α-thrombin generated on the membrane of stimulated platelets, ADP released from 

vascular cells and stimulated platelets, epinephrine, a hormone involved in response to 

stress and thromboxane A2. The serine protease α-thrombin activates platelets through G 

protein–linked protease-activated receptors (PARs) that convert an extracellular proteolytic 

cleavage event into an intracellular signal [23, 24]. ADP is a weak agonist that directly 

induces only a form change and reversible platelet aggregation, whereas the consequent 

secretion and secondary aggregation are caused by the ADP-induced synthesis of 

thromboxane A2. On the other hand, ADP is essential in platelet function because, after its 

secretion from the platelet-dense granules where it is stored, ADP amplifies the responses 

induced by other agonists. ADP interacts with two specific receptors on platelets surface. 

The transduction of its signal involves both a transient rise in free cytoplasmic calcium, 

mediated by the Gq-coupled P2Y1 receptor, and inhibition of adenylyl cyclase, mediated 

by the Gi-coupled P2Y12 receptor. The activation of both the Gq and Gi pathways is 

necessary to induce normal ADP-induced aggregation [25]. Adrenaline and thromboxane 
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A2 also activate platelets through specific G protein–coupled transmembrane domain 

receptors. Thus, the procoagulant activity of activated platelets leads to the generation of 

thrombin and facilitates the deposition of fibrin within the aggregates to contribute to 

thrombus stability. 

 

3.1.3 Platelet aggregation 

Aggregation is the amplification step that leads to the accumulation of platelets into the 

hemostatic thrombus. It is mediated by adhesive substrates bound to the membranes of 

activated platelets. The main effect of activation is a change in the ligand-binding function 

of integrin αIIbβ3 [26]. Activation of this receptor contributes to stable adhesion and 

mediates the immobilization of soluble adhesive proteins, vWF, fibrinogen and fibronectin, 

on the surface of adherent platelets. This is the substrate where more platelets are 

recruited. The multiplicity of αIIbβ3 ligands may explain the residual, but limited, ability to 

generate thrombi after concurrent obliteration of the fibrinogen and vWF genes [27], in 

which case fibronectin may support aggregation. Stability of the aggregates is crucial as 

the rate of growth in determining whether a thrombus will occlude an artery, and recent 

findings have shown that CD40 ligand, expressed on the membrane of activated platelets, 

is involved in this process by binding to αIIbβ3 [28]. CD40 ligand is also involved in the 

pathogenesis of atherosclerosis, and might represent a connection between platelets and 

the development of atherosclerotic plaques [29].  
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3.2 PLATELET ANTI AGGREGATION ACTIVITY OF CYTOKININ 

RIBOSIDES  

 

3.2.1 Platelet role in thrombosis diseases  

Intravascular thrombosis is one of the main causes of a wide variety of cardiovascular 

diseases. Initiation of a thrombosis is believed to involve platelet adherence and 

aggregation. In normal conditions, platelets can't aggregate by themselves. However, 

when a blood vessel is injured, platelets adhere to the disrupted surface, and release 

some biologically active constituents and aggregates [30]. Platelet thrombi can occlude 

the coronary arteries of the heart. This event is precipitated by unstable atherosclerotic 

plaques or altered vascular surfaces after coronary angioplasty.  

The extension to which platelet thrombi contribute to cause disturbances in the arterial 

circulation of the limbs is also not fully clear. In cases not directly resulting from embolism, 

which is usually cardiac in origin, there is a generally opinion that the cause is thrombosis, 

triggered by underlying atherosclerotic lesions, and thus that the pathogenesis is similar to 

that of coronary artery disease [31]. The essential aspects of thrombus formation are 

probably to be the same whether it is in response to hemorrhage or to a pathological 

lesion in the arterial wall. However, it’s reasonable to assume that differentiating factors 

may exist, and their identification would be important to find new approaches to the 

treatment of thrombosis that don’t interfere excessively with normal hemostasis. The 

composition of an atherosclerotic plaque differs from that of the normal arterial wall, but 

not all lesions are thrombogenic in the same way. The property of inducing a platelet 

response may be an attribute of unstable or vulnerable plaques, probably in connection 

with breaking. Local dysfunction of endothelial cells, potentially associated with 

inflammatory responses, might be important in increasing thrombogenicity, as is the 

exposure of tissue factor and highly reactive collagens [32]. 

Platelets react to a variety of activating and inhibitory stimulations that may distinctly 

influence how an occluding thrombus will form. This variety of responses to environmental 

conditions indicates that the consequences of inhibiting specific platelet agonists may 

differ in normal hemostasis and pathological thrombosis, depending on the vessel 

involved. For example, blood-borne tissue factor localizes at the site of a developing 

thrombus, where it may contribute substantially to platelet activation through the 

generation of thrombin [33]. The nature and extent of a vascular lesion may influence the 

deposition and activity of this tissue factor and the rate of thrombus growth. All aspects of 
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platelet response to vascular injury may be controlled by genetic variations in the many 

proteins involved in adhesion, activation and aggregation. The search for polymorphisms 

in the relevant genes and the evaluation of their correlation to the risk of thrombotic events 

might prove useful in the identification of suitable targets for pharmacological modulation 

[34, 35]. 

 

3.2.2 Platelet anti aggregation agents 

Thrombotic diseases and their consequences may have severe effects. Platelets play a 

key role in thrombosis, and anti-platelet therapies may prevent as well the thrombotic 

diseases. Therefore, anti-platelet drugs that can inhibit platelet adhesion, aggregation, 

release, and activation need to be developed (Fig. 3.2). The anti platelet drugs can be 

classified on the base of the action mechanism [36]. 

 

 

Figure 3.2 Different drugs for anti platelet therapy (from ref. [62]). 

It's possible to block platelet aggregation inhibiting GP IIb/IIIa receptors. After the platelet 

activation, GP IIb/IIIa receptors on the surface of platelets transform into their active 

states, which can combine with fibrinogen and the von Willebrand factor (vWF). The GP 

IIb/IIIa receptor operates in the final pathway of platelet aggregation. Blocking the GP 
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IIb/IIIa receptor, it is possible to inhibit platelet aggregation induced by activating factors. 

Once platelet aggregation is blocked, platelet thrombi can’t form. The development of GP 

IIb/IIIa antagonists, such as the recently approved abciximab, eptifibatide, and tirofiban, is 

crucial in anti-platelet therapy. Pharmacodynamic studies on these three agents have 

revealed their capabilities of establishing and maintaining more than 80% inhibition of 

platelet aggregation [36, 37].  

Platelet aggregation can be also inhibited by the blocking of membrane receptors or 

interaction with intracellular signaling pathways. cAMP and cyclic guanosine 3’-5-

monophosphate (cGMP) are two important intracellular second messengers for platelet 

function. Phosphodiesterase (PDE), which is obtained by catalyzing the hydrolysis of 

cAMP and cGMP, limits the intracellular levels of cyclic nucleotides to regulate platelet 

function. Therefore, the inhibition of PDEs might confer a strong inhibitory effect on 

platelets: cilostazol was developed in this way. Unlike aspirin, cilostazol is a reversible 

platelet inhibitor that can prevent both primary and secondary aggregation. A combination 

of aspirin and cilostazol might be a good treatment option for these patients [36, 38-39]. 

Between many natural and synthetic agents available in literature [40-44], only two papers 

reported results of cytokinins on platelet aggregation. Specifically, only the N6 -modified 

nucleobase kinetin was investigated   [30, 45]. 

 

3.2.3 Platelet anti aggregation activity of N6-furfuryladenine (kinetin)  

Sheu investigated the platelet anti aggregation activity of kinetin, a cytokinin characterized 

by the presence of an aromatic furane ring at the N6-substituion.  Results showed kinetin 

the concentration-dependent (50-150 µM) inhibition of platelet aggregation in human 

platelets by kinetin. The inhibitory effect was stimulated by agonist such as collagen 

(1µg/ml) and arachidonic acid (60 µM). Kinetin inhibited intracellular Ca2+ mobilization and 

phosphoinositidine breakdown in platelets stimulated by collagen in a concentration-

depend manner. In addition, kinetin inhibited thromboxane A2 formation stimulated by 

collagen and arachidonic acid and increased the formation of cyclic AMP. The anti platelet 

activity of kinetin may be involved in the following pathways: kinetin's effect may initially be 

due to inhibition of the activation of phospholipase C and Na+/H+ exchanger. This leads to 

lower intracellular Ca2+ mobilization, followed by inhibition of TxA2 formation and then 

increased cyclic AMP formation, followed by a further inhibition of the Na+/H+ exchanger, 

ultimately resulting in markedly decreased intracellular Ca2+ mobilization and 
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phosphorylation of P47, a platelet protein that is  a marker of protein kinase C activation 

[30].  

Based on these results, the authors believe that kinetin could be a potential therapeutic 

agent for arterial thrombosis, once its toxicity was further assessed [45]. 

Relying on these results, the first part of this Ph.D project has been focused to investigate 

the platelet anti-aggregation of the natural kinetin riboside (KR) and other natural CKRs. 
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3.3 PLATELET ANTI AGGREGATION EXPERIMENTAL SECTION 

 

3.3.1  MATERIALS 

 N6-(Δ2-isopentenyl) adenosine (iPA) and the aromatic kinetin riboside (KR), N6-

benzyladenosine (BA) and topoline riboside (p-TR) were obtained from OlChemIm Ltd. 

(Olomouc, Czech Republic). 

All reagents were purchased from Sigma–Aldrich Italy and were of analytical grade. 
 
 

3.3.2 METHODS 
 

3.3.2.1 Platelet anti aggregation test  

Washed platelets were prepared from autologous platelet-poor plasma according to 

Mustard et al. [46] and counted. In this study, human volunteers gave informed consent. 

Blood was collected from healthy human volunteers who had taken no medicine during the 

preceding two weeks.  Washed platelets were pre-warmed in the presence of a 0.5% 

DMSO solution of the CKRs at study and then collagen (2 µg/ml) was added. The 

inhibitory activity of CKRs was evaluated using a 25–750 µM range of concentration and 

was expressed as percentage of platelet aggregation. The aggregation response was 

recorded after 3 min and monitored by a light transmission aggregometer (Chrono-Log 

560, Havertown, PA, USA). All the measurements were performed in quadruplicate.  

For each compound, the concentration of 50% platelet aggregation inhibition (IC50 value) 

was extrapolated from the related curve using GraphPaD 6 software. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Platelet anti aggregation activity of cytokinin ribosides 

The inhibitory activities of kinetin and of the corresponding riboside KR were evaluated 

within a 25–750 µM concentration range and the results are reported in Figure 3.3.  

 

 

Figure 3.3 Activity of kinetin (K) and kinetin riboside (KR) on collagen-induced aggregation in washed human 

platelets. 

As shown in the graphic, kinetin riboside has been found to be more effective than the 

corresponding kinetin at tested concentrations. These data are in line with other reported 

observations, confirming that CKRs are often more active than the corresponding CKs [47-

50].  

We then evaluated the in vitro inhibition of platelet aggregation by The results of this study 

are shown in Figure 3.4, while the calculated values of IC50 for the CKRs are collected in 

Table 3.1. 
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Figure 3.4 Inhibition of collagen-induced platelet aggregation in washed human platelets by CKRs. 

 

The N6-4-hydroxybenzyl substituted adenosine (p-topolin riboside) seems the most 

effective compound in the adopted in vitro model of platelet aggregation. The activity of p-

topolin riboside is higher than that of kinetin riboside and N6-benzyl adenosine, that, in  

 

Table 3.1 IC50 of CKRs against in vitro platelet aggregation. 

Compounds IC50 (µM) 

IPAdo 141.87 ± 4.3 

KR 41.16 ± 1.8 

BA 37.12 ± 1.4 

TR 6.77 ± 0.31 

a
 IC50 value is defined as the concentration of 50% platelet aggregation inhibition and expressed as mean ±SD (n = 3). 

 

turn, show similar activity. The non-aromatic N6-substituted adenosine, isopentenyl 

adenosine is less efficient as inhibitor.  
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3.5  IN SILICO INTERACTION OF CYTOKININ RIBOSIDES WITH THE 

P2Y12 RECEPTOR  

 

The structures of CKRs have in common a structural characteristic at the N6-position that 

makes them similar to other N6-substituted adenosine derivatives that have been 

investigated for their interaction with the four adenosine receptors A1, A2A, A2B and A3. [51-

53]. Although, recent binding studies showed that the N6-substitution is particularly 

detrimental for the A2 recognition [54], the involvement of other receptors can be proposed 

for explaining the anti-aggregation properties of CKRs. For instance, N6-substituted 

adenosine derivatives, 2-methylthio and 2-ethylthio-6-phenethyl aminoadenosine (BF061 

and BF066, Figure 3.5) have been recently studied as anti-platelet and antithrombotic 

agents.  

Their activity has been explained through a dual action on a phosphodiesterase and the 

P2Y12 receptor [55, 56].  

 

 

Figure 3.5 Structure of the P2Y12 antagonist compounds BF066 e BF061. 

 

 

 

3.5.1 The P2Y12 Receptor 

P2Y12 belongs to the Gi class of a group of G protein coupled (GPCR) purinergic receptors 

(Fig. 3.6) and it is a chemoreceptor for adenosine diphosphate (ADP) [57, 58].  
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Figure 3.6 Scheme of P2 platelet receptors (ref. [60]). 

 The overall fold of the P2Y12 receptor structure consists of a seven transmembrane (7TM) 

bundle of a-helices and a carboxy-terminal helix VIII that is parallel to the membrane 

bilayer. Several loops, especially ECL2, appear to be flexible and result in a total of 24 

unmodelled loop residues (88–91 in ECL1, 133–135 intracellular loop 2 (ICL2), 163–178 

ECL2 and 230 in ICL3). Only one disulphide bond is clearly observed in the structure, 

connecting the amino terminus (C17) with helix VII (C2707.25). Two receptor molecules 

from adjacent unit cells form receptor–receptor interactions in a parallel orientation 

mediated by helix V. Two cholesterol molecules are observed bound to each receptor: one 

is at the interface of helices III and V, stabilizing the receptor–receptor interaction, and the 

other is at the interface of helices I and VII and does not participate in crystal contacts [59, 

60].  

However, the importance of P2Y12 lies in its capacity to amplify and sustain platelet 

activation responses to not only ADP, but also other platelet agonists, including TxA2, 

thrombin, and collagen, since activation of platelets by these agonists inevitably lead to 

release of ADP from dense granules [61].  

During the platelet activation, ADP is released from the dense granules, following platelet 

activation in response to several agonists and stimulates the P2Y receptors on the source, 
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and near platelets. As a result, this nucleotide, when bound to the P2Y12 receptor, begins 

the Gi signaling pathway, and brings about irreversible GPIIb/IIIa activation and complete 

aggregation in response to any platelet agonist [62]. Synergistic activation of the Gq, G13, 

GPVI, or GPIb-IX pathways, in addition to Gi stimulation, is crucial for these effects [63-

66].  Thus, in the absence of P2Y12 activation, platelet aggregation is readily reversible, 

with GPIIb-IIIa reverting to its inactive form [65, 67]. 

P2Y12 potentiates these activation responses by sustaining elevated Ca2+ levels within the 

platelet, which would otherwise diminish [61]. This is thought to be mediated by inhibition 

of adenylyl cyclase (AC) activity and stimulation of PI3K [68]. Induced via endothelial PGI2, 

adenylyl cyclase regulates platelet activity in vivo by the production of cyclic adenosine 

monophosphate (cAMP), which inhibits intracellular Ca2+ release [69]. Consequently, 

P2Y12 inhibition of AC removes the inhibitory effects of cAMP on Ca2+ mobilization; 

however, Hardy et al. demonstrated this was only partially responsible for the calcium 

levels [68]. P2Y12-mediated activation of PI3K was also shown to contribute the sustained 

Ca2+ levels via activation of Phospholipase C (PLC) [68, 70]. In summary, the P2Y12 

receptor is extremely influent in platelet activation, by potentiating platelet secretion and 

aggregation [62]. Furthermore, P2Y12 activation also promotes procoagulant responses by 

improving surface membrane phosphatidylserine (PS) expression and contributing to 

platelet microparticle formation, which are another source of PS and Transferrin. As a 

result, P2Y12 activity plays an important role in thrombosis. [62, 71, 72].  

P2Y12 is an attractive target for anti-aggregation drug discovery [73, 74], due to its 

essential role in potentiating platelet responses initiated by other important activators such 

as thrombin and thromboxane, thus representing a critical regulator of hemostasis and 

thrombosis.  

P2Y12 receptor antagonists are anti-thrombotic agents that inhibit platelet function by 

blocking the ADP at P2Y12 receptor sites. Adenine nucleotides act on platelets via three 

distinct P2 receptors, namely, two G protein- coupled ADP receptors, P2Y1 and P2Y12, as 

well as a P2X1 receptor ligand-gated cation channel activated by adenosine triphosphate 

(ATP). The P2Y1 receptor initiates platelet aggregation, but is not sufficient in response to 

ADP. On the other hand, the P2Y12 receptor is responsible for the completion of 

aggregation in response to ADP. The P2Y12 receptor is the molecular target of anti-

thrombotic drugs such as clopidogrel, prasugrel, cangrelor, and ticagrelor. This receptor is 

responsible for most of the potentiating effects of ADP when platelets are activated by 

agonists such as collagen, thrombin [75, 76]. These platelet antagonists blocking the ADP-



 

32 

 

receptor P2Y12 decrease myocardial infarction, stroke, thrombosis and mortality in the 

patients with cardiovascular diseases [77]. 

In addition to all previously cited  P2Y12 antagonists, the recent report that N6-substituted 

adenosine derivatives, 2-methylthio and 2-ethylthio-6-phenethyl aminoadenosine (BF061 

and BF066, Fig. 2.5) have shown an action on the P2Y12 receptor [55, 58] prompted us to 

study in silico the interaction of CKRs with the P2Y12 receptor through the docking 

simulations described below. This modeling approach was further fostered by recent 

resolution of the P2Y12 receptor in complex with an antithrombotic drug (ethyl 6-{4- 

[(benzylsulfonyl) carbamoyl]piperidin-1-yl}-5-cyano-2-methylpiperidin- 3-carboxylate, AZJ) 

[60].  We investigated the in silico interaction between CKRs and P2Y12 receptor in 

collaboration with Prof. Giulio Vistoli, Associated Professor  of Pharmaceutical Chemistry 

at Department of Pharmaceutical Sciences, Università degli Studi of Milan. 

 

3.6 MODELLING EXPERIMENTAL SECTION 

3.6.1 Modelling experiment  

The recently resolved structure of the P2Y12 receptor in complex with an antithrombotic 

drug was retrieved from PDB. To remain compatible with physiological pH value, the side-

chains of Arg, Lys, Glu, and Asp were ionized, while His and Cys residues were 

considered neutral by default. The complete structure was carefully checked and then 

underwent a minimization with backbone fixed until RMS = 0.01 kcal mol_1 A_1 to 

preserve the resolved folding. The conformational behavior of adenosine, the two known 

P2Y12 inhibitors (BF066 e BF061) and the four analyzed ribosides was investigated by a 

Monte Carlo procedure (as implemented in the VEGA suite of programs) which generated 

1000 conformers by randomly rotating the rotors. For each ligand, the so obtained lowest 

energy structure was then exploited in the following docking simulations which were 

performed by using the PLANTS software, which finds plausible ligand poses through ant 

colony optimization algorithms (ACO) as reported by Korb et al. [78].  

For all docking simulations, PLANTS was used with default settings and without geometric 

constraints. The search was focused on an 8.0 A radius sphere around the co-crystallized 

ligand thus encompassing the entire binding cavity. The simulations were carried out using 

ChemPlp as score function with speed equal to 1 and 10 pose were generated for each 

ligand. The so obtained best complexes were minimized keeping fixed all atoms outside a 

10 A radius sphere around the bound ligand to favor the mutual adaptability between 
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ligand and receptor. The optimized complexes were then used to re-calculate the reported 

ChemPlp scores as well as the shared volumes. 

 

3.6.2 Results of docking simulation of cytokinin ribosides with P2Y12 receptor 

Results obtained from docking simulations show that cytokinin ribosides and 2-methylthio 

and 2-ethylthio-6-phenethyl aminoadenosine (BF061 and BF066) assume a binding mode 

rather similar to that of the co-crystallized inhibitor AZJ and are engaged in clear contacts 

within the P2Y12 binding cavity. All simulated ligands show a common interaction pattern 

which can be summarized as follows: (i) the sugar ring stabilizes reinforced H-bonds with 

Lys280 and Arg256; (ii) the purine base elicits an extended network of π–π stacking 

interactions with Tyr105, Tyr109, and Phe252, (iii) the N6 amino group (ANH) generates a 

H-bond with Cys194, while the N6-linked unsaturated moiety is engaged in π–π stacking 

with Tyr105 and Tyr109. The above mentioned interactions are clearly documented in 

Figure 3.7 which shows the putative complex between the P2Y12 receptor model and the  

 

 

Figure 3.7 Main interactions stabilizing the putative complexes between P2Y12 and topolin riboside. 

 
topolin riboside. whose anti platelet activity is the highest among the CKRs tested by us, 

as suggested by the IC50 values (Table 3.1). Besides the common contacts, the phenolic 

hydroxyl group elicits H-bonds with Ser156 and Asn159. Overall, such an interaction 



 

34 

 

pattern can explain the beneficial role of an aromatic ring connected to the N6 atom which 

can stabilize π–π stacking contacts with the above mentioned aromatic residues. Also the 

iso-pentenyl moiety of the CKR iso-pentenyl adenosine  can elicit stacking interactions 

through its double bond although their role is less relevant if compared to aromatic CKRs.  

Table 3.2 reports the ChemPlp docking scores as computed for the minimized complexes. 

Except for adenosine (Ado), all compounds show docking scores which are comparable 

with (or at most a little worse than) that of AZJ. The successful poses of the tested 

 
Table 3.2 Plp95 docking scores (kcal/mol) and shared volumes as computed for the simulated P2Y12 complexes. 

Compound ChemPlp score (Kcal/mol) 
Shared Volume with AZJ 

(Å3) 

AZJ -99.93 ---- 

Ado -72,61 139,4 

iPAdo -83,07 187,9 

KR -93,08 205,4 

BA -95,11 205,2 

TR -85,57 183,4 

   
 
compounds within the P2Y12 binding site are further witnessed by the significant shared 

volumes with the co-crystallized antagonist, AZJ. These results overall emphasize the 

capacity of N
6
-substituted adenosine derivatives CKRs to interact with P2Y12 assuming a 

binding mode in line with that of ligands. Notably, the analyzed ribosides show score 

values markedly better than that of adenosine, which is indeed unable to stably bind 

P2Y12. This emphasizes the markedly beneficial effect of N6 substitution on the P2Y12 

affinity.  

Of note, the reported scores are in line with the observed in vitro anti-aggregation activity 

values thus indicating that the measured biological activity may be roughly ascribed to the 

interaction with the P2Y12 receptor. In particular, docking scores emphasize the beneficial 

role played by the phenolic function thus justifying the highest activity of p-topolin riboside, 

as expressed by its IC50 value. 
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3.7 CONCLUSIONS 

In conclusion, we have shown that naturally occurring cytokinin ribosides are inhibitors of 

in vitro platelet aggregation (IC50 6.77–141 µM). The docking study herein reported 

suggests a putative affinity of CKRs for the ADP receptor P2Y12, an attractive target for 

drug discovery of platelet anti-aggregation agents. The results obtained from the 

coagulation assay could be caused by a number of different events, including blockade of 

target related signaling present in platelets [72, 73]. Further investigations are required in 

order to clarify this and other aspects of the anti-aggregation effect of cytokinin ribosides 

activity herein described.  

In this context, we have carried out preliminary experiments aimed to evaluate the platelet 

anti aggregation activity of previously tested CKRs on human washed platelets from 

autologous platelet-poor blood. This is a simplified model for the absence of many 

components of the blood. Consequently, the true efficacy of a compound as anticoagulant 

should be evaluated using tests carried out on the whole blood. We used only a single 

concentration of 50 µM for each compound. The procedure was the same described 

above, except that we used in this case the blood with all its components. The results are 

reported in Figure 3.8. We found that only aromatic CKRs (BA, KR and p-TR) were active 

as anti platelet aggregation agents. Similarly to the previous results obtained from washed 

platelets from plasma, p-TR shows the highest value of inhibition (26%), while the activity 

of BA and KR were similar, but lower than TR (8% and 9%, respectively). The activity of p-

TR might be explained as due to the phenolic group in N6-position, a functional group  

 

Figure 3.8 Inhibition of platelet aggregation of CKRs in whole blood. 
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present in many other natural anti platelet aggregation compounds such as hydroxytyrosol, 

resveratrol [40-41] and per se endowed with antioxidant activity. 
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4. SYNTHESIS OF NATURAL AND NON-NATURAL N
6
 – 

SUBSTITUTED ADENOSINE DERIVATIVES  

 

Two main procedures can be followed for the preparation of CKRs and we have 

experimentally applied both synthetic approaches to the preparation of N
6
 –

isopentenyladenosine (iPA). The general scheme is reported in Figure 4.1.  

 

 

Figure 4.1: Synthesis of iPA. Reagent and conditions: (a) 3,3-dimethylallylamine,K2CO3, DMF, 120°C, 3h; (b), 

isopentenylbromide, BaCO3, DMF, NH4OH, reflux, 5h 

 

In the first way (path a), iPado was prepared following the general procedure for chlorine 

substitution starting from 6-chloropurine riboside and 3,3 – dimethylallylamine. Thus, 

K2CO3 (4.5 mmol) and 3,3 – dimethylallylamine (4.5 mmol) were added to a solution of 6-

chloropurine riboside (1.5 mmol) in DMF (20 ml). The mixture was heated at 120- 130°C 

for 3h, cooled to room temperature, filtered on celite pad and the solvent was removed 

under vacuum. 

In the second path (b), the alkylation of adenosine with isopentenylbromide was 

performed, followed by the alkaline rearrangement called Dimroth rearrangement.  The 

Dimroth rearrangement is an isomerization of the purine nitrogen atoms that consists in a 

translocation of endo- or exocyclic heteroatoms through a ring-opening/ring-closure 

sequence. It can be catalyzed by acids, bases, heat or light [1-3].  
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Taking into account all the described procedures in literature [4-9], we have found that a 

combination of the two was more efficient than the previously described protocols [5, 9]. 

More specifically, we have used ammonium hydroxide for the basic Dimroth 

rearrangement. The reagent is less expensive and easy-to-use than a solution of gaseous 

NH3 whose preparation requires a specific chemical apparatus. When performing the 

conversion, we operated some simplifying changes, e.g. by avoiding laborious filtration of 

reaction mixture after N1-alkylation, evaporation of toxic DMF, co-evaporation of solvent 

[6], that, however, did not significantly influenced the yield. 

 Finally, we have later observed that the reaction can be performed N,N-

dimethylacetamide (DMA) rather than in N,N-dimethylformamide (DMF). This can be 

advantageous because the boiling point of DMA is lower than of DMF and DMA seems to 

be less toxic than DMF.  

 

4.1 EXPERIMENTAL SECTION 

4.1.1 MATERIALS 

6-chloropurinoribosides and adenosine were obtained from OlChemIm Ltd. (Olomouc, 

Czech Republic).  

All the other reagents and solvents were purchased by Sigma-Aldrich and were of 

analytical grade. 

 

4.1.2 INSTRUMENTS 

Melting points were determined with a Stuart Scientific SMP3 melting point apparatus and 

left uncorrected. 

1H-NMR spectra of FEA and 2HFEA were registered in Portugal on a Bruker AVANCE III 

HD spectrometer equipped with a 5 mm broadband reverse probe with field z-gradient 

operating at 400 MHz while 1H-NMR spectra of 2FEA was registered on a Bruker 

AVANCE 500 equipped with a 5 mm broadband reverse probe with field z-gradient 

operating at 500 MHz.  13C-NMR spectra were also registered on the Bruker AVANCE 500 

spectrometer with field z-gradient operating at 125.76 MHz. 

All NMR spectra were recorded at 298 in DMSO-d6 (isotopic enrichment 99.95%) solution 

and the chemical shifts were reported on a δ (ppm) scale and coupling constants (J) are 

given in Hertz. 

Mass spectra were obtained from a Bruker ICR-FTMS APEX II mass spectrometer using 

an ESI (Electrospray Ionization) source. 
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4.1.3 SYNTHESIS OF NATURAL CITOKININ RIBOSIDES 

4.1.3.1 N6-isopentenyladenosine (iPa) 

To a solution of adenosine (0.075 mmol) in DMF (1.5 ml), BaCO3 (0.128 mmol) and 3,3-

dimethylallylbromide (0.128 mmol) were added. The mixture was stirred at room 

temperature for 37 h, while protected from light and humidity. TLC indicated that N1-

alkylation was about 90% complete. To the heterogeneous reaction medium water (1.5 ml) 

was added and the pH was adjusted to 10.0 with ammonium hydroxide and the solution 

was refluxed for 5.0 hr. The pH of the solution was maintained at 10.0 by periodic 

additions of ammonium hydroxide. The solution was cooled to room temperature and was 

extracted with three 5-ml portions of ethyl acetate. Chromatographic analysis 

(MeOH:CH2Cl2 10:90) showed complete extraction of iPAdo into the ethyl acetate while 

adenosine remained in the aqueous phase. The ethyl acetate solution was dried over 

sodium sulfate, evaporated to dryness in vacuo, and the residue was, crystallized from 0.8 

ml of acetonitrile-ethanol (3:1), furnishing 18.0 mg crystals. On recrystallization from 1 ml 

of acetonitrile-ethanol (3:1) pure crystalline iPAdo (14.8 mg, 59% yield) was obtained, 

which showed identical physico-chemical properties with the previously described 

compound [5, 8, 9] and with commercial sample.  

 

4.1.3.2 p-Topolin Riboside (p-TR)  

Topolin ribosides was obtained according to the general procedure described by 

Tarkowská et al. [10] with slight modification. Briefly, 858 mg (3 mmol) of 6-

chloropurinoriboside were heated with 494 mg (4 mmol) of 4-hydroxybenzylamine and 

triethylamine (695 µl, 5 mmol) in 15 ml of 2-propanol to 82 °C for 7 hours. The reaction 

was monitoring by TLC (CHCl3/MeOH/NH4OH 70:30:3). After cooling, the precipitated 

product was collected by filtration, washed with cold water and 2-propanol, and crystallized 

from ethanol or DMF. The obtained product showed identical physico-chemical properties 

with the commercial sample. 

 

4.1.4 SYNTHESIS OF NON-NATURAL CITOKININ RIBOSIDES 

4.1.4.1 ρ-hydroxyphenylethyladenosine (FEA) 

Title compound was prepared according to Doležal et al. [11], with some modifications, 

from the reaction between 6-chloropurino riboside and tyramine. In a two neck balloon, 

143 mg (0.5 mmol) of 6-chloropurino riboside and 434 mg (2.5 mmol) of tyramine 
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monochloride salt were suspended to 25 ml of ethanol. Then, 2 ml of diisopropylamine 

(12mmol) were added to the mixture under stirring. The reaction was refluxed for 6 hours, 

monitoring with TLC (CH2Cl2:MeOH 80:20), cooled overnight, filtered on filter paper and 

concentrated with the rotavapor. The solid residue was extracted two times with ethyl 

acetate and the organic phase was dried with Na2SO4, filtered and concentrated with 

rotavapor. The raw compound was crystallized with methanol. Compound: white/yellow 

solid (100 mg, 50% yield), mp: 194 °C  ; ESI-MS m/z 388,16243 (M+1); 1H-NMR (DMSO-

d6 400 MHz): 9.15 (s, 1H, OH), 8.34 (s, 1H, CH), 8.23 (s, 1H, CH), 7.04 (s, 2H, CH), 6.67 

(s, 2H, CH), 5.89 (s, 1H, CH), 5.4 (s, 1H, NH), 5.18 (s, 1H, CH),  4.62 (s, 1H, OH), 4.61 (s, 

1H, CH), 4.16 (s, 1H, OH), 3,97 (s, 1H, OH), 3.78 (s, 2H, CH2), 3.57 (s, 2H, CH2), 2.81 (s, 

2H, CH2). 13C-NMR (DMSO-d6, 125,76 MHz): 148.68 (C-6), 146.62 (N6, C-2), 139.07 (C-

2), 129.81 (C-4), 124.95 (C-8), 115.62 (N6, C-5), 88.02 (N6, C-4), 86.13 (N6, C-6), 74.54 

(N6, C-3), 70.82 (N6, C-1), 61.82 (C-1’), 58.84 (C-4’), 40.55 (C-2’), 40.38 (C-3’), 40.21 (C-

5’), 25.96 (CH2), 8.47 (CH2). 

 

4.1.3.4 3,4-dihydroxyphenylethyladenosine (2HFEA)  

Title compound was synthesized with a similar procedure to that of FEA. Briefly, 500 mg 

(1.75 mmol) of 6-chloropurino riboside and 445 mg (2.35 mmol) of dopamine monochloride 

salt were suspended in 20 ml of 2-propanol. Then, 405 µl of triethylamine were added to 

the mixture under stirring. The reaction was refluxed for 4 hours, monitoring with TLC 

(CH2Cl2:MeOH 80:20), cooled overnight and concentrated with the rotavapor. The raw 

compound was purified on a silica column using CH2Cl2:MeOH 80:20 as mobile phase. 

The product was dried with Na2SO4, filtered and concentrated with rotavapor. The 

compound was crystallized with hexane and methanol. Compound: white/yellow solid (568 

mg, 83% yield), mp: 196 °C; ESI-MS m/z 404.1384 (M+1); 1H NMR (DMSO-d6 400 MHz): 

8.94 (s, 2H, OH), 8.33 (s, 1H, CH), 8.23 (s, 1H, CH), 6.64 (s, 1H, CH), 6.62 (s, 1H, CH), 

6.49 (s, 1H, CH), 5.90 (s, 1H, CH), 4.61 (s, 1H, CH), 4.60 (s, 1H, CH), 4.14 (s, 1H, OH), 

3.97 (s, 1H, CH), 3.96 (s, 1H3., OH), 3.95 (s, 1H, OH), 3.57 (s, 2H, CH2), 2.74 (s, 2H, 

CH2), 2.08 (s, 2H, CH2). 13C-NMR (DMSO-d6, 125.76 MHz): 155.0 (C-6), 152.9 (C-2), 

145.5 (C-4), 144.0 (N6, C-6), 140.0 (N6, C-1), 130.7 (C-8), 119.7 (N6, C-4), 116.5 (N6, C-

2), 116.0 (N6, C-5), 88.4 (N6, C-4), 86.4 (C-5), 74.0 (C-1’), 71.1 (C-4’), 62.2 (C-2’), 46.2 

(C-3’), 42.1 (C-5’), 39.5 (CH2), 34.9 (CH2).   
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4.1.3.5 3,4-dihydroxyphenyladenosine (2FEA)  

Title compound was synthesized with a similar procedure to that of 2HFEA. Briefly, 250 

mg (0.77 mmol) of 6-chloropurino riboside and 575 mg (2.60 mmol) of 3,4-

dihydroxybenzilamine monochloride salt were suspended in 20 ml of 2-propanol. Then, 

405 µl of triethylamine were added to the mixture under stirring. The reaction was refluxed 

for 4 hours, monitoring with TLC (CH2Cl2:MeOH 80:20), cooled overnight and concentrated 

with the rotavapor. The raw compound was purified on a silica column using CH2Cl2:MeOH 

80:20 as mobile phase. The product was dried with Na2SO4, filtered and concentrated with 

rotavapor. The compound was crystallized with ethanol and DMF. Compound: white/yellow 

solid (149.8 mg, 50% yield), mp: 186 °C; ESI-MS m/z 390.1420 (M+1); 1H NMR (DMSO-d6 

500 MHz): 9.71 (s, 2H, OH), 8.36 (s, 1H, CH), 8.18 (s, 1H, CH), 8.18 (s, 1H, CH), 6.94 (s, 

1H, CH), 6.65 (s, 1H, CH), 6.64 (s, 1H, CH), 6.60 (s, 1H, CH), 6.06 (s, 1H, CH), 5.89 (s, 

1H, NH) 4.61 (s, 1H, CH),  4.60 (s, 1H, CH), 4.21 (s, 1H, OH), 4.01 (s, 1H, CH), 4.00 (s, 

1H, OH), 3.70 (s, 1H, OH), 3.59 (s, 1H, OH), 3.59 (s, 1H, CH2), 3.57 (s, 1H, CH2). 13C-

NMR (DMSO-d6, 125.76 MHz): 152.8 (C-6), 152.2 (C-2), 152.1 (C-4), 149.7 (C-8), 146.2 

(N6, C-6), 145.4 (N6, C-1), 131.8 (N6, C-4), 118.7 (N6, C-3), 118.6 (C-5), 115.8 (N6, C-2), 

115.5 (N6, C-5), 88.6 (C-1’), 88.4 (C-4’), 74.4 (C-2’), 70.6 (C-3’), 61.5 (C-5’), 45.9 (CH2). 
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5. INTERACTION OF NATURAL AND SYNTHETIC CYTOKININ 

RIBOSIDES WITH THE ADENOSINE RECEPTORS A1, A2A, A2B, 

A3 

 

5.1 ADENOSINE RECEPTORS 

The adenosine receptors, also called P1 receptors, are a class of purinergic G protein-

coupled receptors with adenosine as endogenous ligand [1, 2]. They are metabotropic 

type monomers, composed by a single peptide chain crossing seven times the cell 

membrane and interacting with a G protein (Fig. 5.1). 

 

Figure 5.1 Schematic representation of Adenosine receptors. 

 In 1978 it was proposed the existence of at least two types of receptors for purines, 

named P1 and P2. P1 indentified the receptor family more sensible to adenosine whereas 

P2 receptors are mainly activated by ATP and ADP [3]. The functional antagonism 

between ATP and adenosine is very interesting, because the ATP present in the synaptic 

and parasynaptic terminals activates the production of adenosine. ATP induces rapid and 

excitatory activities while adenosine produces slow and inhibitor effects. Therefore, 

adenosine rules both the ATP excitatory activities and those of neurotransmitters with ATP 

release through a mechanism of feedback inhibition. This complex regulation suggests the 
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amount of released ATP is directly proportional to the inhibitor effect of adenosine because 

ATP induces the production of adenosine [4]. Another differentiation between P1 and P2 

receptors is based on sensitivity to different xanthine-type antagonists: in fact the P1 

receptors are competitively inhibited by compounds such as xanthine, caffeine, 

theophylline and theobromine, which are inactive on P2 receptors. Both the receptor 

families include several receptor subtypes, differentiated on the base of pharmacology 

profile, translation mechanism and molecular structure [2].  

Adenosine interacts with receptor subtypes (P1), distributed on the cytoplasmic membrane 

(A1, A2A, A2B, A3) and present in the principal tissues of the human body (central nervous 

system, cardiovascular, renal, respiratory, immune and gastroenteric apparatus) where 

regulate the biological functions [5]. Each subtype is coupled to a G-protein that can have 

a stimulator (Gs) or inhibitor (Gi) effect. These receptors can activate or inhibit adenylate 

cyclase, respectively. In some tissue, A1 and A3 receptors can regulate the activity of 

phospholipase C activity and, in the case of A1 receptor, that of Ca2+ and K+ ionic channels 

[2]. 

 

5.1.1 A1 Receptor 

A1 receptor (Fig. 5.2) is distributed throughout the entire body but it's mainly localized in 

central nervous system, cardiac apparatus and adipose tissue [6]. This receptor is coupled 

to Gi protein and its activation leads to a decrease of intracellular cAMP levels trough the 

inhibition of Adenylate cyclase (AC). This in turn regulates the activity of cAMP-dependent 

protein kinase, which phosphorylates different protein targets. A1 coupling to AC has been 

described in several tissues including brain, adipose tissue. In addition to direct modulation 

of signaling pathways downstream to cAMP, inhibition of AC via A1 receptors blocks the 

effects of other agents which operate by stimulating AC activity in cells. Further studies 

showed different pathways associated with the activity of this receptor including the 

activation of K channels and the inactivation of those of Ca2+. Another effects include the 

activation of phospholipase C and the adjustment of several mitogenic kinases [2, 5]. 

A1 receptors are involved in sleep promotion by inhibiting wake-promoting cholinergic 

neurons in the basal forebrain. In sleep deprived subjects, some authors found an 

increase of the apparent equilibrium total distribution volume in a region-specific pattern in 

all examined brain regions with a maximum increase of A1 receptor in the orbitofrontal 

cortex. The regional distribution of adenosine receptors is a crucial aspect related to the 

local control of sleep–wake organization. Another important discovery is the increase  



 

48 

 

 
Figure 5.2 Schematic representation of A1 receptor (from ref. [5]). 

of A1 density occurs all over the brain, which is consistent with a global effect, connected 

to basic cell functions. In man, the cerebral A1 exhibits highest densities in the thalamus 

and the neocortex, both of which are important structures in the promotion and 

maintenance of slow-wave sleep [7]. 

A1 receptors are also present in smooth muscle throughout the vascular system [8].  A1 

receptors mediate cardiac depression through negative chronotropic, dromotropic, and 

inotropic effects. Slowing of the heart rate occurs via A1 receptors on sinoatrial and 

atrioventricular nodes, leading to bradycardia and heart block, respectively, while the 

inotropic effects include a decrease in atrial contractility and action potential duration. This 

aspect of A1 receptor mediated effects has found application in the medical use of 

adenosine to treat supraventricular tachycardia, and in the use of adenosine receptor 

antagonists in the treatment of bradyarrhythmias. Direct effects on blood vessel tone via 

adenosine action on A1 receptors are rare. A more significant role of A1 receptors with 

regard to regulation of blood vessel tone appears to be prejunctional modulation of 

neurotransmitter release [5].  
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5.1.2 A2A Receptor 

A2A receptor (Fig. 5.3) is a member of the G protein-coupled receptor (GPCR) family which 

possesses seven transmembrane alpha helices. The crystallographic structure of the 

adenosine A2A receptor shows a ligand binding pocket different from that of other 

structurally determined GPCRs [9]. The gene encodes a protein that is one of several 

receptor subtypes for adenosine. The activity of the encoded protein, a G protein-coupled 

receptor family member, is modulated by G proteins which activate AC and induce 

synthesis of intracellular cAMP. The encoded protein is abundant in basal 

ganglia, vasculature, T lymphocytes and platelets and it is the main target of caffeine, a 

competitive antagonist of this protein [10]. 

 

Figure 5.3 Scheme of A2A receptor. 

A2A receptors have a wide-ranging but restricted distribution, including immune tissues, 

platelets, the CNS, and vascular smooth muscle and endothelium. 

As the A1 receptor, the A2A receptors are believed to play a key role in regulating 

myocardial oxygen consumption and coronary blood flow. The A2A receptor is responsible 

for regulation of myocardial blood flow through a vasodilation of the coronary arteries, 

which increases blood flow to the myocardium, but may lead to hypotension. In the 

vasculature, A2A receptors have been described on both the smooth muscle and 

endothelium, where they are associated with vasodilatation. This seems to be a 

considerable variation in A2A receptor expression between blood vessels, although it is 

possible that vessels unresponsive to A2A-selective agonists don’t express the receptor but 

at very low levels, or that the receptor is not coupled to a functional response [2].  



 

50 

 

Platelets express only one adenosine receptor subtype, the A2A receptor. Activation of this 

receptor in platelets causes an increase in cAMP accumulation and a decrease of platelet 

aggregation. In a recent study, with A2A receptor– knockout mice, it was reported the 

increasing of platelet aggregation, indicating the importance of this receptor subtype in 

platelet function [11]. Biaggioni et al. found that a repeated dosing regimen with caffeine in 

human volunteers produces a significant change in the functional response of platelets to 

the adenosine receptor agonist 59-Nethylcarboxamidoadenosine (NECA) while Varani et 

al. investigated the changes in the density and affinity of A2A adenosine receptors in 

human  platelet membranes of control (before caffeine somministration) and caffeine-

treated subjects. Caffeine is one of antagonist of this receptor and this might explain the 

functional change in platelet responsiveness to activation of A2A receptors. The results of 

this study support the hypothesis that chronic caffeine consumption results in sensitization 

and/or upregulation of endogenous adenosine receptors in sane subjects. The 

upregulation of adenosine A2A receptors caused by chronic intake of caffeine could be 

interpreted as indicator of influence of endogenous adenosine on human platelets, and the 

presence of the antagonist is counterbalanced by the upregulation of A2A receptors. [12, 

13]. 

A2A receptors in the CNS and especially in the peripheral nervous system (PNS) generally 

facilitate neurotransmitter release and important roles in the modulation of glutamate and 

dopamine release. The negative interactions, observed between A2A and dopamine D2 

receptors, involve a reduced affinity of agonist binding to dopamine D2 receptors upon 

stimulation of A2A receptors in rat striatal membranes. This raises the possibility of using 

A2A receptor antagonists as a novel therapeutic approach in the treatment of Parkinson's 

disease, to reduce the profound disabling effects arising from degeneration of 

dopaminergic nigrostriatal neurons of the basal ganglia in this disease, making it a 

potential therapeutic target for the treatment of conditions such as insomnia, pain, 

depression, drug addiction and Parkinson's disease [2, 14-16]. 

 

5.1.3 A2B Receptor 

A2B receptors (fig. 5.4) are found practically in every cell in most species. On the other 

hand, the number of receptors is small and relatively high concentrations of adenosine are 

generally needed to generate a response [2].  
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Figure 5.4 A2B Adenosine receptor. 

Expression of adenosine A2B receptors has been found in bronchial epithelium in cultured 

human smooth muscle, in human mast cells, monocytes and fibroblasts [17]. Signal 

transduction occurs through a Gs protein that induces an increase in cAMP levels and a 

subsequent activation of protein kinase [18]. The A2B receptor has also the capacity to 

increase the levels of IP3, suggesting a coupling with a Gq protein type and determining 

the release of calcium ions from cell stores [19]. 

In human lung fibroblasts activation of A2B adenosine receptor increases the release of IL-

6 and induces differentiation into myofibroblasts thus suggesting that adenosine, via A2B 

receptors, participates in the remodelling process occurring in chronic inflammatory lung 

diseases. Adenosine, via A2B receptors, increases the release of IL-6 and monocyte 

chemotactic protein-1 from bronchial smooth muscle cells. Recently, the pro-inflammatory 

role of adenosine A2B receptor has been confirmed by a study showing that activation of 

these receptors up-regulates Th2 cytokines (IL-3, IL-4, IL-8, IL-13) in mast cells and 

promotes IgE synthesis by lymphocytes B.  The produced high level of IgE, as compared 

with B lymphocytes co-cultured with non-stimulated mast cells, suggests a more specific 

role for these receptors in the allergic inflammation occurring in asthma. Taken together 

these evidences suggest that adenosine A2B receptors are deeply involved in the 

mechanisms underlying mediators release by mast cells, the major mechanism by which 

adenosine induces bronchoconstriction and airway inflammation in asthma [17]. 

A recent study confirmed that A2BAR mRNA is expressed in human platelets at similar 

levels to A2AAR mRNA. This study also employed pharmacologic ligands to detect an 

active A2BAR on human platelets [20]. Ravid et al. determined whether A2BAR ablation or  
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Figure 5.5 Schematic representation of the regulatory mechanism of platelet aggregation described by Ravid et al. 

(from ref. [21]). 

 

activation is associated with changes in ADP receptor expression in mices. Their results 

we showed that a mild elevation in P2Y1R mRNA in MKs and platelets in vivo leads to 

increased platelet aggregation and confirmed that elevated cAMP downregulates P2Y1R 

expression. It is, then, conceivable that the lifelong lower basal cAMP level in A2BAR KO 

platelets could contribute to greater basal expression of ADP receptors, which would 

induce higher aggregation activity. They investigated the induction of the platelet A2BAR 

under stress, and to its role in inhibiting platelet aggregation, associated with changes in 

cAMP level and a newly identified regulation of the ADP receptor by A2BAR-mediated 

changes in cAMP level (Fig. 5.5) [21]. 

 

5.1.4 A3 Receptor 

 A3AR is widely expressed in the testis, lung, kidneys, placenta, heart, brain, spleen, liver, 

uterus, bladder, jejunum, proximal colon, and eye of rats, sheep, and humans [22].  
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A3ARs have been shown to couple to classic or G protein–dependent second messenger 

pathways through activation of both Gi and Gq family G proteins. This receptor subtype 

has a transduction mechanism similar to that of A1 receptors, where the protein is G-type 

inhibitor with the ability to block the activity of adenylate cyclase by reducing levels of 

cAMP. However, this doesn't seem to be the only pathway, since it has been shown that 

increased levels of IP3, resulting in activation of the calcium channels, through the 

activation of a Gq protein (fig. 5.6) [23].  

 

Figure 5.6 Schematic representation of second messengers and intracellular signaling pathways, downstream 

targets, mediated by A3ARs stimulation (from ref. [22]). 

 

A3ARs are present in immune cells and are involved in the physiopathologic regulation of 

inflammatory and immune processes mediated by adenosine. The A3 receptor on mast 

cells facilitates the release of allergic mediators including histamine, suggesting a role in 

inflammation [2, 22]. Neutrophil behavior is strongly affected by the A3AR mediating 

inhibition of the oxidative burst and chemotaxis with anti-inflammatory activity. Accordingly, 

these effects have also been observed in a model of severe IR injury after lung 

transplantation. However, it was also reported that, together with P2Y2, A3AR guides 
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neutrophil chemotaxis after ATP release and also plays a role in neutrophil migration by 

positively affecting innate immune response. Especially, this adenosine subtype 

aggregates in immunomodulatory microdomains on human neutrophil membranes and 

promotes the formation of bacteria-tethering cytonemes, which are important for 

phagocytosis, thus suggesting a key role in innate immune response [22]. Adenosine is an 

endogenous regulator of monocyte macrophage functions, first producing high amounts of 

inflammatory mediators during the first stage of inflammation and later participating in the 

resolution of the inflammatory process. Another macrophage functions regulated by A3AR 

include the reduction of the chemokine macrophage inflammatory protein (MIP) and the 

inhibition of interferon regulatory factor 1, inducible nitric oxide synthase, and CD36 gene 

expression in RAW264.7 murine and THP-1 human cells [22, 24]. Several studies indicate 

a role for A3AR agonists as inhibitors of inflammation, a recent novel application of A3AR 

antagonists was discovered for a novel series of truncated nucleosides that of inhibiting 

TGF-b1–induced collagen type I upregulation, making them appear as good therapeutic 

candidates for treating renal fibrosis [25]. More recently, A3ARs were found to be 

overexpressed in different autoimmune disorders such as Crohn’s disease and psoriasis. 

The upregulation observed in these pathologies could be attributed to adenosine, which, 

under conditions of stress, accumulates in the extracellular environment. Most 

transcription factors, such as NF-kB and CREB, have been revealed as promoting 

inflammation and being inversely associated with A3AR upregulation. Accordingly, CF101 

was tested in a phase II, multicenter, randomized, double-blind, dose-ranging, placebo-

controlled trial in patients with moderate to severe chronic plaque-type psoriasis. In this 

study the drug was found to be safe and well tolerated, and the improvement was 

progressive and linear throughout the period examined [26, 27]. Overall, the data in the 

literature suggest that A3AR activation can induce important anti-inflammatory effects in 

several cellular models. The results achieved thus far with A3AR agonists in clinical studies 

on such major inflammatory conditions as arthritis and psoriasis are quite promising, with 

the possibility that they will be translated into treatments for other flogosis-related 

pathologies [22]. 

A very interesting area of possible application for A3AR ligands is in cancer therapy. 

Adenosine is present at high levels in cancer tissues and in the interstitial fluid of several 

tumors, in sufficient concentration to interact with adenosine receptors and they are 

present in several cancer cell types [22]. Several authors observed that both pro- and 

antiapoptotic as well as pro- and antiproliferative effects have been reported trough 
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different mechanisms depending on the level of receptor activation with selected ligands 

[28-33]. At first, telomerase activity inhibition and cytostatic effects were observed in tumor 

cells and, then the intracellular pathway involved in A3AR-mediated tumor growth inhibition 

was identified [34, 35]. In contrast, some studies showed that A3AR agonist inhibition of 

cell proliferation was only obtained by micromolar concentrations [29, 36]. Other works 

reported that A3ARs reduces the ability of prostate cancer cells to migrate in vitro and 

metastasize in vivo. Accordingly, in the same cells, N6-(3-iodobenzyl)adenosine-59-N-

methyluronamide (IB-MECA) inhibits cell proliferation and induces G1 cell cycle arrest, 

apoptosis, and migration [22, 37]. Stimulation of A3ARs exerts a cytotoxic and pro-

apoptotic effect on malignant mesothelioma cells [33]. Interestingly, the antitumor effect of 

A3ARs is potentiated by PEMFs in cultured neural cancer cells such as PC12 and U87MG 

glioblastoma cells, thus decreasing NF-kB activation and cell proliferation. Moreover, 

PEMF and A3AR stimulation are able to significantly increase p53 levels, cytotoxicity, and 

apoptosis in tumor cells [22].  

A3AR agonists have also been investigated in vivo studies. In all the experimental models, 

given their stability and bioavailability profile, the drugs were administered orally. The 

studies included syngenic, xenograft, orthotopic, and metastatic experimental animal 

models utilizing IB-MECA and Cl-IB-MECA (2-chloro-N6-(3-iodobenzyl)-adenosine-59-N-

methyluronamide) in melanoma, colon, prostate, and hepatocellular carcinomas. A3AR 

agonists prevented the growth of primary B16-F10 murine melanoma tumors in syngenic 

models. In combination with some chemotherapeutic agents, IB-MECA and Cl-IB-MECA 

induced an additive antitumor effect on the development of B16-F10 melanoma lung 

metastatic foci and caused significant cytotoxicity on two melanoma cell lines through 

multiple mechanisms of cell death [38]. Several studies reported that the combined 

treatment with IB-MECA and 5-fluorouracil or taxol, respectively, resulted in an enhanced 

antitumor effect. IB-MECA prevented the growth of primary and liver metastases of CT-26 

colon carcinoma cells inoculated in the spleen. Finally, Cl-IB-MECA treatment dose 

dependently inhibited hepatocellular tumor growth and reduced liver inflammation [39, 40]. 

Overall, these data suggest that A3ARs might be a biologic tumor marker and that A3AR 

modulation could be used to treat cancer. 
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5.2 CYTOKININS RIBOSIDES AND ADENOSINE RECEPTORS 

In connection with the anti-aggregation activity of N6-substituted adenosine derivatives 

many studies have been carried out in order to establish the interaction of a big variety of 

N6-substituted adenosines with adenosine receptors, especially A2A or A3 subtypes [41-

44]. However, available data about the interaction, as agonists and/or antagonists, 

between cytokinins and adenosine receptors are very poor.  

Chao-Lee et al evaluated the interaction between a cytokinin riboside, zeatin riboside, and 

A2A adenosine receptor. In this study the authors found that zeatin riboside can prevent 

pheochromocytoma (PC12) cells from serum deprivation-induced apoptosis by acting on 

the adenosine A2A receptor which was blocked by an A2A antagonist and a protein kinase A 

(PKA) inhibitor, demonstrating the functional ability of zeatin riboside by mediating through 

A2A signaling event. Since the A2A was implicated as a therapeutic target in treating 

Huntington’s disease (HD), a cellular model of HD was applied by transfecting mutant 

huntingt in PC12 cells. On this data, zeatin riboside might have therapeutic potential as a 

novel neuroprotectant and a lead for treating neurodegenerative disorders [45].  

Blad et al. evaluated the A3 receptor antagonist activity of N6- isopentenyl adenosine 

(iPAdo) and trans zeatin riboside.  In a functional assay in Chinese hamster ovary cells 

transfected with A3 receptor, IPA and zeatin riboside inhibited forskolin-induced cAMP 

formation at micromolar concentration. They demonstrated strong and highly similar 

antiproliferative effects of IPA and on human and rat tumor cell lines LNCaP and N1S1. 

The antiproliferative effect of low concentrations of IPA on LNCaP cells could be fully 

blocked by the selective A3R antagonist MRS1523 while higher concentrations of IPA 

appeared to inhibit cell growth by an A3R-independent mechanism [46]. At our knowledge, 

no study has been performed yet on the interaction of aromatic CKRs and adenosine 

receptors. Therefore, one of the aim of this Ph.D project was the investigation on the 

interaction between the aromatic  N6-furfuryladenosine, N6-benzyladenosine and topoline 

riboside and the A1, A2A, A2B, A3 adenosine receptors. Due to the structural similarity of 

CKRs with adenosine, we tested the affinity of these compounds as antagonists. Then, we 

evaluated the affinity of two synthetic N6-substituted adenosines to confront them with 

natural CKRs in a structure-activity study. Due to the high price of zeatin riboside, the less 

expensive N6-substituted adenosine (N6-(Δ2-isopentenyl) adenosine was used as 

reference prenylated CKR.  
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5.3 EXPERIMENTAL SECTION 

 

5.3.1  MATERIALS 

Natural CKRs were obtained from OlChemIm Ltd. (Olomouc, Czech Republic). 

Synthesis of N6- substituted adenosines FEA and 2HFEA was described in Chapter 4. 

All reagents were purchased from Sigma–Aldrich and were of analytical grade.  

 

5.3.2 METHODS 

5.3.2.1 Evaluation of natural and non-natural cytokinin ribosides as antagonists 

toward A1, A2A and A2B adenosine receptors 

CKRs and synthetic N6-substituted adenosine derivatives FEA and 2HFEA were evaluated 

as antagonists with A1, A2A, A2B and A3 adenosine receptors. Tests with A1, A2A, A2B 

receptors were performed according to Klotz et al. [47]. Dissociation constants of 

unlabeled compounds (Ki-values) were determined in radioligand competition 

experiments. All binding data were calculated by non-linear curve fitting with the program 

SCT-FIT. This protocol was adapted to a microplate format utilizing a 96-well microplate 

filtration system (Millipore MultiScreen MAFC). For saturation binding of the assay at A1 

adenosine receptor, increasing concentrations of the radioligands [3H]DPCPX (8-

cyclopentyl-1,3-dipropylxanthine) or [3H]CCPA (2-chloro-N6-cyclopentyladenosine) were 

incubated in a total volume of 200 ml containing 0.2 U/ml adenosine deaminase and 20 

mg of membrane protein in 50 mM Tris/HCl pH 7.4. In competition experiments the wells 

contained 1 nM [3H]- DPCPX and the compound to be tested at different concentrations. 

Samples were incubated for 3 h at 25° C, filtered through the builtin filter at the bottom of 

the wells and washed three times with 200 ml of ice-cold binding buffer. After addition of 

20 ml of scintillator to the dried filter plates samples were counted in a Wallac Micro- Beta 

counter. The conditions for A2A adenosine receptor binding were essentially the same as 

for A1 receptor binding. In competition experiments [3H]NECA (N-

ethylcarboxamidoadenosine) at 30 nM was used as radioligand. Samples with a protein 

concentration of 50–80 mg were incubated for 3 h at 25° C and filtered individually as 

described for conventional radioligand binding [47]. 
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5.3.2.2 Evaluation of natural and non-natural cytokinin ribosides as antagonists 

toward A3 adenosine receptor 

For the assay with A3 adenosine receptor, the protocol was performed according to Klotz 

et al. [48]. Radioligand binding experiments with [3H]5′-N-ethylcarboxamidoadenosine  

were carried out at room temperature. Competition binding studies were done at a 

concentration of 1 nM, in saturation experiments a radioligand concentration in the range 

of 0.2–10 nM was used. In kinetic experiments, the tested compounds were added at 

several concentrations after 90 min of association to induce radioligand dissociation. 

Nonspecific binding was determined in the presence of 100 μM (R)-N6-

phenylisopropyladenosine (R-PIA). For incubation and separation of bound from free 

ligand a 96-well microplate filtration system (Millipore Multiscreen MAFC) was used. Ki-

values were calculated from competition curves by nonlinear curve fitting with the program 

SCT-FIT [48]. 
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5.4 RESULTS AND DISCUSSION 

The results of the assays of CKRs and synthetic N6-substituted  adenosine derivatives with 

A1, A2A, A2B and A3 adenosine receptors are reported in Table 5.1. Then Ki (inhibition 

constant) values were calculated from competition curves by nonlinear curve. 

CKRs are good antagonists of A1 receptor with a Ki range from 21.7 to 52.4 nM. The best  

 

Table 5.1 Ki values of CKRs and synthetic N
6
-substituted adenosine derivatives with adenosine receptors. 

 
A1 A2A A2B A3 

Compound Ki (nM) 
 
95% confidence limits Ki (nM) 

  
95% confidence limits Ki (nM)  95% confidence limits Ki (nM)  95% confidence limits 

IPAdo 52,4 45,4 60,5 11.000 10.300 11.700 >20.000     146 114 185 

BA 33,2 29,5 37,3 1.620 1.500 1.760 2.560 2.320 2.820 114 101 130 

KR 34,9 32,2 37,9 2.880 2.500 3.330 3.720 3.210 4.300 159 141 179 

ρ-TR 21,7 20 23,6 583 444 764 952 770 1.180 124 101 152 

FEA 10,8 6,2 18,9 1.260 1.150 1.370 1.640 1.250 2.160 4,51 4,30 4,74 

2-HFEA 27,1 22,3 33 458 405 517 1.280 949 1.720 6,96 5,81 8,33 

 

 

value of CKRs is that of ρ- topolin riboside. A similar value has been observed for 2HFEA 

while FEA shows a lower Ki than ρ- topolin riboside.  

The affinity of CKRs for A2A was poor with the exception of ρ- topolin riboside that showed 

a Ki value of 583 nM. Only 2HFEA has a better value. Probably, the addition of an OH 

groups in the aromatic ring might improve the activity of the compounds as antagonist of 

A2A receptor, involved in the platelet aggregation mechanism.  The good antagonist 

property of ρ- topolin riboside with respect to the receptor A2A could partially explain the 

previously described activity of TR as inhibitor of platelet aggregation (Chapter 3). The 

same trend has been observed for A2B receptor, also involved in platelet aggregation with 

a different mechanism, related to cAMP levels. The best value is that of ρ- topolin riboside 

with a Ki of 952 nM. 

Similarly to what has been observed with A1, CKRs are good antagonist with A3 adenosine 

receptor with a Ki range from 114 to 146 nM. The best value was that of benzyl adenosine. 

The synthetic compounds FEA and 2HFEA were antagonist of A3 receptor much stronger 

than natural CKRs. This affinity for this receptor may explain in part the anticancer activity 

of cytokinin ribosides, reported in several works. 
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5.5 CONCLUSIONS 

We have shown that naturally occurring cytokinin ribosides are antagonists of adenosine 

receptors. The good interaction between A2 receptors and topolin riboside confirmed its 

high anti platelet aggregation activity. Only 2HFEA showed a similar antagonist activity 

and only with A2AAR. The synthetic N6-substituted adenosines were antagonists of A3AR 

much stronger than natural CKRs but not with the other adenosine receptors. Further 

investigations and structure-activity studies are required in order to clarify the antagonist 

activity of cytokinin ribosides and other natural or synthetic N6-substituted adenosines 

toward the adenosine receptors herein described. 
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6. PRELIMINARY RESULTS ON NEW BIOLOGICAL ACTIVITIES 

OF  NATURAL AND NON-NATURAL CYTOKININ RIBOSIDES 

In addition to the previously reported results, we evaluated other biological activities of 

natural and non-natural CKRs. During my stay in Portugal, the enzymatic inhibition activity 

of natural CKRs and synthetic N6-substituted adenosines toward acetylcholinesterase 

(AChE) and monoamine oxidase B (MAO-B) were investigated. Both these enzymes are in 

the field of interest of my Portuguese supervisor, Prof. Fernanda Borges [1-4].  

 

6.1 Natural and syntethic N6 – substituted adenosine derivatives as 

Acetylcholinesterase inhibitors 

Acetylcholinesterase (AChE) is a hydrolytic enzyme that catalyzes the break-down of 

acetylcholine (ACh) and several other choline esters that function as neurotransmitters. 

AChE is distributed mainly in neuromuscular junctions and in chemical synapses of the 

cholinergic type where its activity serves to terminate the synaptic transmission [5]. During 

the neurotransmission, acetylcholine is released from the nerve into the synaptic cleft and 

binds to the ACh receptors on the post-synaptic membrane, relaying the signal from the 

nerve. AChE, also located on the same membrane, terminates the signal transmission 

through the hydrolysis of ACh (Fig. 6.1). 

 

 

Figure 8.1 after signaling, ACh is released from receptors and broken down by AChE to be recycled in a 

continuous process. 
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The liberated choline is taken up again by the pre-synaptic nerve and ACh is synthesized 

by combining with acetyl coenzyme A through the action of choline acetyltransferase [6, 

7].  

If the AChE activity is hampered or blocked, the accumulation of acetylcholine at 

cholinergic receptor sites can generate an excessive stimulation of cholinergic receptor 

and cause a variety of clinical complications, such as paralysis, convulsions, bronchial 

constriction leading ultimately to the death by asphyxiation [8]. Organophospates (OP) are 

esters of phosphoric acids that are irreversible inhibitors of AChE through a mechanism 

that starts from the AChE-catalyzed cleavage of OP. The slow hydrolysis (within days) 

leaves a phosphoryl group in the esterasic site where it covalently binds to the enzyme in 

an irreversible mode [9]. 

Others irreversible AChE inhibitors are compounds, used as insecticides (e. g. malathion) 

[10], and herbicides such as MCPA, mecoprop, 2,4-D and dichlorprop [1]. These 

compounds can interact with DNA causing modifications such as adducts or strand breaks 

and, consequently, damaging the nucleic acid [11].  Reversible AChE inhibitors that are 

able to occupy the esterasic site for a limited time (seconds to minutes) have attracted 

interest for applications in the treatment of the central nervous system diseases.  

Tetrahydroaminoacridine (THA) and donepezil are used to improve cognitive functions in 

Alzheimer’s disease. Rivastigmine is also used to treat the Alzheimer’s and Lewy body 

dementia and pyridostigmine is used to treat the myasthenia gravis.  Alzheimer disease 

drugs donepezil, galantamine and rivastigmine are inhibitors of acetylcholinesterase as 

well [4, 12, 13]. 

In relation with the research interests of Prof. Borges in this area [1], natural and non-

natural CKRs were investigated as AChE inhibitors.  Acetylcholinesterase inhibition assay 

was based on Ellman’s method [14] where the substrate acetylcholine was hydrolyzed by 

AChE to thiocholine that reacted with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to form 2-

nitrobenzoate-5-mercaptothiocholine and 5-thio-2-nitrobenzoate, detected at 412 nm (Fig. 

6.2).  

 

Figure 6.2 Reaction of DTNB of a compound with thiol groups. 
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The analysis was carried out according to Pereira et al. [15]. The percentage of inhibition 

was calculated by comparing the rates of the sample with the blank. Donepezil, one of the 

previously cited inhibitors of AChE was used as positive control. Natural and synthetic 

CKRs didn’t show any acetylcholinesterase inhibition activity.  

 

6.2 Natural and synthetic N6 – substituted adenosine derivatives as 

Monoamine oxidase B (MAO-B) inhibitors 

L– Monoamine oxidases are a family of enzymes that are distributed on the outer 

membrane of mitochondria where they catalyze the oxidation of monoamines. In the 

mammals, there are two types of monoamine oxidase, MAO-A and MAO-B, both types 

involved in the oxidation of endogenous and exogenous monoamine neurotransmitters 

[16, 17]. MAO-A degrades amine neurotransmitters such as dopamine, norepinephrine 

and serotonin. As a result, it is a key regulator for normal brain function. This enzymes is 

highly expressed in neural and cardiac cells, liver, gastrointestinal tract and placenta.  Its 

expression is regulated by the transcription factors SP1, GATA2 and TBP via the cAMP 

pathway in response to stress such as ischemia and inflammation [18]. MAO-B also 

degrades dopamine but it breaks mainly phenethylamine and benzylamine [18, 19].  MAO-

B are mostly found in blood platelets [20]. Because of the vital role that MAOs play in the 

inactivation of neurotransmitters, MAO dysfunction is thought to be responsible for a 

number of psychiatric and neurological disorders. For example, unusually high or low 

levels of MAOs in the body have been associated with schizophrenia, depression, 

attention deficit disorders [21-23]. MAO-A inhibitors are one of the major classes of drug 

prescribed for the treatment of depression and anxiety, although they are often last-line 

treatment due to risk of the drug's interaction with diet or other drugs [24].  

Alzheimer’s and Parkinson’s are both associated with elevated levels of MAO-B in the 

brain [25, 26]. The normal activity of MAO-B creates ROS that directly damage cells [27]. 

MAO-B levels have been found to increase with age, suggesting a role in natural age 

related cognitive decline and the increased likelihood of developing neurological diseases 

later in life [28]. MAO-B inhibitors are used alone or in combination with L-Dopa to treat 

Alzheimer’s and Parkinson’s diseases [17, 24].  

Due to the interests of Prof. Borges in this area of research [3], natural and synthetic 

CKRs were investigated as inhibitors of Monoamine oxidase B, mostly found in blood 

platelets, using an Amplex® Red Monoamine Oxidase Kit assay (A12214). The analysis 

was carried out according to the manufacturer’s instructions, supplied with the kit.  This 
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assay was based on the detection of hydrogen peroxide in a horseradish peroxidase-

coupled reaction with the Amplex Red reagent, a high sensitive probe for H2O2. Pargyline 

was used as positive control. Only 2HFEA was active as inhibitor of MAO-B with an I50 

value of 5.35 µM, similar to that of pargyline 

 

6.3 Kinetin and Kinetin ribosides as inhibitors of protein oxidation and glycoxidation 

Oxidized proteins are important factors in the ageing process as glycation and 

glycoxidation products accumulate in cells and tissues during ageing. Glycation results 

from the linking of sugars or of intermediate metabolic products to free amino groups of 

amino acids or nucleotides whereas glycoxidation is due to a sequential glycation and 

oxidation reaction [29]. The extracellular glycation/glycoxidation process is slow because it 

depends mainly on the concentration of glucose, which is the least reactive sugar. 

However, the intracellular process is much faster because it is due to an increase of the 

cytosolic concentration of more reactive glycation agents such as pentoses [30] and α-

oxoaldehydes [31]. The end-result of this post-translational protein modification process is 

the formation of the so-called advanced glycation/glycoxidation end products (AGE) such 

as pentosidine [29]. 

In collaboration with dr. Alessio Scarafoni, (Department of Food, Environmental and 

Nutritional Sciences, Università degli Studi of Milano), we investigated the capacity of 

kinetin (K) and kinetin riboside (KR) to protect the bovine serum albumin (BSA) from the 

oxidative and glycoxidative damage caused by sugar through the inhibition of BSA-

pentosidine formation. The glycation/glycoxidation inhibition activity of kinetin had been 

recently reported by Verbeke et al. [32]. The experiments with kinetin and kinetin were 

performed according to Verbeke et al. [32].  

In contrast with reported results, in our hands K did not show the ability to decrease the 

glycosilation of BSA and similar negative results were obtained with the riboside KR. 

These controversial need further investigations. 

6.4 CONCLUSIONS 

In general, further investigations on biological activity of CKRs and their synthetic 

analogues seem desirable. These researches should include uptake of the compounds in 

the cell, their mechanisms of action and metabolic pathways. Taken altogether, the results 

would help to shed more light in the biological role of this class of compounds, structurally 

related to adenosine. 
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7. ANTIOXIDANT ACTIVITY OF  N
6
-SUBSTITUTED ADENOSINE 

DERIVATIVES 
 
7.1 OXIDATIVE STRESS   
 
The oxidation of macromolecules such as DNA, proteins, lipids, is the unavoidable 

consequence of their existence under an oxygen-rich atmosphere, and it mainly occurs by 

a free-radical-mediated process called autoxidation. This condition concerns also man-

made materials like plastics, pharmaceuticals, processed food, or cosmetics to 

biomolecules in a living organism, and the chemistry underlying the autoxidation of such 

different compounds, through different mechanisms, bears an amazing similarity [1].  

Reactive oxygen species (ROS) are oxygen derived free radicals that involve a series of 

oxidants such as hydrogen peroxide (H2O2), lipid peroxides (LOOH), singlet oxygen (1O2), 

hydroxyl radical (•OH), peroxyl radical (ROO•), peroxynitrite (-OONO), superoxide anion 

(O2
2-) among which the radicals attract much attention because they can lead to 

carcinogenesis by damaging DNA and proteins and cause cardiovascular diseases by 

oxidizing LDL [2-4]. ROS can be produced trough exogenous or endogenous way.  

Exogenous ROS can be produced from pollutants, tobacco, smoke, drugs, xenobiotics, or 

radiation. Ionizing radiation can generate damaging intermediates through the interaction 

with water, a process termed radiolysis. Since the human body contains 55-60 % of water, 

the probability of radiolysis is quite high under the presence of ionizing radiation. In the 

process, water loses an electron and becomes highly reactive. Through a three-step chain 

reaction, water is sequentially converted to hydroxyl radical (·OH), hydrogen 

peroxide (H2O2), superoxide radical (·O2
2−) and ultimately oxygen (O2) [1].  

Endogenous ROS are produced through multiple mechanisms and depending on the cell 

and tissue types, in cell membranes, mitochondria, peroxisomes, and endoplasmic 

reticulum.  Mitochondria convert energy for the cells into a usable form, adenosine 

triphosphate (ATP). This process, called oxidative phosphorylation, involves the transport 

of protons across the inner mitochondrial membrane by means of the electron transport 

chain. In the electron transport chain, electrons are passed through a series of proteins via 

oxidation-reduction reactions, with each acceptor protein along the chain having a greater 

reduction potential than the previous. The last acceptor for an electron along this chain is 

an oxygen molecule.  In normal conditions, the oxygen is reduced to produce water; 

however, in about 0.1–2% of electrons passing through the oxygen is instead prematurely 
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and incompletely reduced to give the superoxide radical (·O2
2−), most well documented 

for  Complex III (Fig. 7.1).  

 

Figure 7.1 Scheme of electron transfer chain (from ref. [5]). 

Superoxide is not particularly reactive by itself, but can inactivate specific enzymes or 

trigger lipid peroxidation in its protonated form, hydroperoxyl  [5-7]. 

If too much damage is present in mitochondria, a cell undergoes apoptosis or programmed 

cell death. Bcl-2 proteins are layered on the surface of the mitochondria, detect damage, 

and activate a class of proteins called Bax, which punch holes in the mitochondrial 

membrane, causing cytochrome C to leak out. This cytochrome C binds to Apaf-1, or 

apoptotic protease activating factor-1, which is free-floating in the cell cytoplasm. Using 

energy from the ATPs in the mitochondrion, the Apaf-1 and cytochrome C bind together to 

form apoptosomes. The apoptosomes bind to and activate caspase-9, another free-

floating protein. The caspase-9 then cleaves the proteins of the mitochondrial membrane, 

causing it to break down and start a chain reaction of protein denaturation and 

eventually phagocytosis of the cell [8]. 

Oxidizable organic molecules present a great structural variety and in biological systems, 

they are represented by lipids, proteins, and carbohydrates. Linoleic acid is the most 
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investigated and most representative oxidizable substrate, and its autoxidation can be 

taken as a model to classify antioxidants (Fig. 7.2) [1].  

Autoxidation is occurred by some radical species X • , able to react with the substrate RH 

(normally by H-atom abstraction), sometimes in presence of UV radiation or metal cations, 

to yield an alkyl radical R •, which will react at a diffusion-controlled rate with oxygen to 

form a peroxyl radical (ROO •). The peroxyl radical ROO • attacks another molecule of the 

substrate to give a hydroperoxide ROOH (the oxidized substrate) and another radical, 

therewith establishing the chain-reaction. The chain reaction proceeds for many cycles 

(propagation) and is ended by termination reactions in which free radicals collide and 

combine their odd electrons to form a new bond. [1].  

During the propagation, short-chain alcohols, aldehydes and ketones are generated, with 

the production of bad smells and tastes.  

 

Figure 7.2 Simplified chain-reaction of autoxidation for a substrate RH and mode of interference by direct 

Antioxidants (from ref. [1]). 

Some of these small molecules are used as marker of lipid oxidation such as 

malonaldehyde (MA) [9-11]. Its determination is still based on spectrophotometric assays 

and, among these, the one that relies on UV-evaluation of the adduct formed between 

malonaldehyde and thiobarbituric acid (TBA) is very popular and frequently used for 

oxidative stress evaluation [12]. More specific methods have been developed using HPLC 

techniques to detect MA derivatives. Among these, HPLC analysis of MA with the UV 
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detection can be realized using as a derivatizing reagent 2,4-dinitrophenylhydrazine 

(DNPH) [13]. 

In this respect we have recently reported that DAN (2,3-diaminonaphtalene) can be used 

as alternative to DNPH for the HPLC-based assay [13, 14]. This analytical method is 

based on the reaction between MA and DAN to afford a naphtodiazepinium ion that 

present a UV absorption optimum at 311 nm, useful for MA determination by HPLC with 

UV detector.  

 
7.2 THE ROLE OF ANTIOXIDANTS   
 

In nature, as in manufacture, the most effective and convenient approach to protect 

molecules from oxygen reactivity is to use antioxidants. 

Antioxidants attract much attention since age-related and degenerative diseases are 

connected to the oxidation of biological macromolecules induced by reactive oxygen 

species (ROS). Trough recent studies, aging, cancer, atherosclerosis, and some other 

serious diseases have been confirmed to correlate with low density lipoprotein (LDL), cell 

membranes, and DNA exposed to oxidative stress [15, 16].  

Compounds able to break the radical chain reaction are called primary antioxidants and 

are divided into two groups. Preventive antioxidants interfere with the initiation process 

blocking the formation of free radicals [17]. One of the most common sources of initiation 

is the Fenton reaction occurring between the reduced state of transition metal ions (Fe2+, 

Cu
2+

 ) and hydrogen peroxide (H2O2) or organic hydroperoxides (ROOH) [18].  Products of 

their decomposition are hydroxyl and alkoxyl radicals which initiate the chain [17]. Several 

enzymes, such as gIutathione peroxidase, phospholipid hydroperoxide, and catalase 

reduce hydroperoxide and hydrogen peroxide, blocking the formation of free radicals [17, 

19, 20]. Proteins such as transferrin, ferritin, lactoferrin, and ceruloplasmin are known to 

prevent formation of free radicals by sequestering transition metal ion and they are also 

called iron-binding proteins. Carotenoids act as a quencher of singlet oxygen which 

oxidizes unsaturated lipids to give hydroperoxides initiating the lipid peroxidation. Some 

inhibitors of lipoxygenase that also oxidizes unsaturated lipids specifically could have a 

similar effect [21]. The chelation of transition metal is the another mechanism witch the 

primary antioxidants stop the formation of free radicals. By blocking redox-active metal 

ions in an oxidized form ( Fe
3+

, Cu
3+

), metal chelators may prevent the occurrence of 

Fenton-type chemistry. Catalase (CAT) similarly blocks initiation by removing hydrogen 

peroxide, which is decomposed into non-radical species [22]. Phytic acid, present in edible 



 

73 

 

legumes, cereals and seeds, forms an iron chelate which greatly accelerates Fe2+- 

mediated oxygen reduction yet blocks iron-driven hydroxyl radical generation and 

suppresses lipid peroxidation [23]. Another important metal chelator is lipoic acid. Lipoic 

acid can have antioxidant activity by chelating Fe2+ and Cu2+, and DHLA (reduced form of 

lipoic acid) by chelating Cd2+ Lipoic acid may provide antioxidant activity by chelation of 

iron. This conclusion is based on results in a hydroxyl radical scavenging assay in which 

deoxyribose was used as a detector molecule. Deoxyribose binds to iron, inducing site-

specific degradation of deoxyribose. However, after addition of lipoic acid, it was 

concluded that lipoic acid displaces the deoxyribose from the deoxyribose-iron complex. 

Therefore, it can be deduced that lipoic acid chelates Fe2+, thus diminishing the amount of 

OH. detectable by deoxyribose [24]. 

The second type of antioxidants is called chain-breaking antioxidants or radical-trapping 

antioxidants. They block the autoxidation by competing with the propagation reaction 

chain. They react with peroxyl radicals more rapidly than they can attack the oxidizable 

substrate, and their products of reaction don’t propagate the autoxidation chain reaction. 

The most important and effective small-molecule antioxidants are chain-breaking. 

Polyphenols and phenols are the prototypical examples: they are able to trap several 

peroxyl radicals per molecule of antioxidant, depending on the stoichiometry behind the 

antioxidant activity [1]. 

The third class of antioxidants is that of indirect antioxidants as they can only operate by 

increasing the activity of true endogenous antioxidants. Many dietary antioxidants don’t 

show relevant antioxidant behavior, for example in the protection of linoleic acid in model 

systems. Nonetheless, they increase the antioxidant defenses in living systems, for 

example by inducing the expression of antioxidant enzymes such as glutathione reductase 

and glutathione peroxidase [25]. 

The distinction between antioxidants and pro-oxidants should not be seen as a dichotomy, 

since it often depends on the system conditions, and known antioxidants in a model 

chemical system not infrequently can act as pro-oxidants in living cells or a different model 

system [25, 26]. Compounds that are able to increase the rate of autoxidation in a system 

or the oxidative damage in a living system by depleting antioxidants or increasing the 

radical generation. A typical mechanism by which antioxidants can act as prooxidants is 

the reduction of the transition metals such as Fe3+ and Cu3+. By their reduction, 

antioxidants might make these reduced forms available to reduce hydrogen peroxide or 

organic hydroperoxides in a Fenton-type reaction, increasing the rate of initiation [26]. The 
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mixture of iron salts and ascorbic acid is a well-known pro-oxidant system (in the presence 

of H2O2) that turns into an antioxidant at a high concentration of ascorbic acid [27]. On the 

other hand, some antioxidants like flavonoids can simultaneously operate with different 

mechanisms, preventive, chain-breaking, and indirect, with relative contributions that 

depend on experimental conditions. These aspects are actually a major source of 

controversy in antioxidant testing capacity. 

 

 

7.3 ANTIOXIDANT ACTIVITY OF CYTOKININS AND CYTOKININ 

RIBOSIDES 

In addition to the role of plant hormones, several evidences indicate that cytokinins may 

act as antioxidant or regulator of antioxidant. Kinetin has been shown to have a direct 

effect on superoxide dismutase, prevent oxidation of unsaturated acids in plant membrane, 

stimulate the biosynthesis of isoprenoid and tocopherols to alleviate the salt stress in the 

plants [31-33]. Similar activity is that of N6-benzyladenine:  exogenous 6-BA also 

significantly reduces the production rate of superoxide anion and malondialdehyde 

content. N6-benzyladenine can markedly increase the activity of antioxidant enzymes 

superoxide dismutase and peroxidase, the antioxidant metabolites ascorbate and reduced 

glutathione (GSH), and proline in both genotypes under salt stress [34]. Kinetin may act as 

antioxidant: at the concentration which kinetin inhibits in vitro platelet aggregation, the 

electron spin resonance (ESR) signal intensity of hydroxyl radical has been reduced in a 

concentration dependent manner [35]. Hydroxyl radical and the other free radicals are 

involved in several pathological events related to inflammatory processes. This could be 

extended to pathologies related to altered platelet functions.  

Although the few papers here reported can be related to an antioxidant activity of 

cytokinins, the characterization of the antioxidant profile of cytokinin is at present lacking. 

One of the purposes of this PhD project was the evaluation of the antioxidant capacity of 

natural and non-natural CKRs by a panel of antioxidant assays. The study considered also 

the antioxidant activity of the bases CKs that are devoid of the ribose moiety. By this 

approach the influence of ribose on the antioxidant capacity of CKRs could be eventually 

be assessed. 
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7.4 ANTIOXIDANT CAPACITY ASSAYS 

The antioxidant methods in foods, cosmetics and biological systems are mainly classified 

into two groups. In the assays that evaluate lipid peroxidation using lipid or lipoprotein 

substrate under standard conditions, the rate of inhibition of oxidation is measured and 

tests that investigate free radical scavenging ability necessarily to measure the rate of 

scavenging of the preformed free radicals [28]. Normally, two different approaches have 

been considered. The first are inhibition assays, for which the extent of the scavenging of 

a free radical by hydrogen atom or electron donation is the marker of antioxidant activity. 

These methods are an indirect measure of total antioxidant power [29]. The second 

approach include assays involving the presence of antioxidant systems during the 

generation of the radical, for which the activity is measured and compared with the rate of 

oxidation of a target molecule in presence and absence (blank) of the antioxidant [30]. In 

both approaches, a reference compound for each antioxidant assay should be used to 

check the correct procedure of the test. In this section, only the assays used to 

characterize the antioxidant profile of CKs and CKRs, will be described. 

 

7.4.1 Hydroxyl radical 

Among ROS, hydroxyl radicals (HO•) are the most instable and aggressive radicals known 

in biology [36]. Hydroxyl radical is generated under various chemical conditions, 

essentially consisting of a mono-electronic reduction of hydrogen peroxide (H2O2) 

(equation 1) or through a Haber-Weiss reaction which generates hydroxyl radicals from 

hydrogen peroxide and superoxide radicals (equation 2): 

H2O2 + e
-
 →

 
OH

-
 + HO

•
                                                                                                                    (1) 

H2O2  + O2
•-  

→
 
 HO

•
 + OH

-
 + O2                                                                                                      (2) 

However, it has been pointed out that this reaction cannot take place under physiological 

However, it has been pointed out that this reaction cannot take place under physiological 

conditions [37], whereas O2
•- can in vivo reduce ferric ions (Fe3+) present in iron storage 

proteins. Therefore, Fe2+ ions are liberated in solution according to the equation 3: 

Fe
3+

 + O2
•- 

→ Fe
2+

 + O2                                                                                                                     (3) 

Ultimately, the mono-electronic reduction of H2O2 can take place with Fe2+ ions to generate 

HO• according to the well known Fenton reaction (equation 4) [17]: 
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Fe
2+

 + H2O2 → Fe
3+ 

+ HO
-
 
 
+ HO

• 
                                                                                                    (4)   

In most of the chemical assays of the hydroxyl radicals (HO•), the reducing specie (Fe2+) is 

bound to  a variety of ligands (equation 5) and the formed oxidized specie Fe3+ is in situ  

reduced in order to regenerate the Fe2+ specie.  

Fe
2+

-ligand + H2O2 → Fe
3+

-ligand + HO
-
 + HO

•
                                                                              (5) 

For this specific purpose, ascorbic acid can be efficiently used as a reductant agent 

(equation 6) [38]: 

Fe
3+

-ligand + ascorbate → Fe
2+

-ligand + oxidized ascorbate                                                            (6) 

Among various methods currently available for the in vitro quantitative detection of ROS in 

various aqueous environments [28, 39], the 2-deoxyribose (2-DR) degradation assay is 

commonly used for the evaluation of HO• scavenging activity of a given compound and a 

great number of relevant applications has been reported up to now [40]. The method was 

introduced in 1981 [41, 42] and has been used as a suitable approach to determine the 

HO• scavenging activity of a great number of compounds [43]. 

The 2-DR assay is conceptually simple, although the generation of the hydroxyl radicals 

itself is not a simple process so that many variables of the experimental protocol might 

influence the final outcome of the assay. The assay relies on the reaction of hydroxyl 

radicals with 2-DR and the formation of malondialdehyde (MA) [44] and other carbonyl 

reacting species generally referred to as MA-like products arising from abstraction of 

hydrogen radical H• from 2-DR. The amount of MA-like products depends on the 2-DR 

concentration and/or the HO• supply dose and ranges from less than 2% for MA to variable 

yields for other carbonyl compounds [45]. 

MA and MA-like products react with thiobarbituric acid (TBA) and for this reason are called 

TBA-reactive substances (TBARS, Fig. 7.3) that can be evaluated spectrophotometrically 

at 532 nm. The required pink color for the spectrophotometric determination can be 

developed through the reaction between TBA and TBARS. It should be noted that this 

reaction requires strongly acidic conditions and also has to be carried out at 90-95 °C and 

this is one of the limits of the method.  
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Figure 7.3 Scheme of the 2-deoxy ribose (2-DR) degradation assay. 

 

Another very import point arises from the consideration that the range of reaction rates 

with the HO• radical is estimated to be 107-1010 M-1 s-1 for any organic compound [17] that 

nearly approaches the diffusion controlled limit [46]. As early as in 1990, Gutteridge and 

Halliwell had already raised other problems of the assay, suggesting that addition of metal 

ions, H2O2, antioxidants and chelating agents can influence not only peroxidation in the 

incubation medium but also peroxide decomposition during the assay itself [47]. 

For all of the above reasons, there are still difficulties to standardize or validate the method 

as a general hydroxyl radical scavenging assay [48].This issue has been critically 

examined in a recent paper [40] that discusses various parameters influencing the 

reliability of the assay and it was demonstrated that how a careful control of some 

variables provided a correction to the antioxidant capacity of compounds that were 

underestimated without this control.  

 

7.4.2 Peroxyl radical 

Hydroperoxyl radicals are generated through the transfer of a hydrogen atom to molecular 

oxygen, an oxygen atom to a hydroxyl radical or a proton to a superoxide anion [49]. 

Unlike the superoxide anion which mainly acts as reductant, peroxyl radical can act as 

oxidant in several important biological reactions such as the abstraction of hydrogen atoms 
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from α-tocopherol and polyunsaturated fatty acids [50] in the lipid peroxidation in the lipid 

bilayer of cell membrane.  

Peroxyl radicals are generated as intermediates in the enzymatic and in the non enzymatic 

induced LPO reactions (Fig. 7.4). But in the enzymatic reaction the generated LOOS 

radicals are transformed within the enzyme complex to LOOH molecules. On the other 

hand, in the non enzymatic reaction the LOOS radicals remove a hydrogen radical from 

any other activated C–H bond to form an LOOH molecule. As long as the reaction is 

carried out in an environment consisting of other polyunsaturated fatty acids (PUFA), the 

only available hydrogens are those of activated CH2 groups of other PUFA molecules. 

Because of their high reactivity the LOOS radicals abstract the closest available hydrogen 

or react with any double bond in their environment by epoxidation. As a consequence, a 

great variety of secondary products and radicals is generated such as short-chain 

alcohols, aldehydes and ketones, leading finally to total destruction of biomolecules unless 

the chain reaction is blocked by antioxidants that act as radical scavengers. Tocopherols 

operate as peroxyl radical scavengers blocking the propagation of free radicals by reacting 

with them to form the tocopheryl radical which will be reduced by a hydrogen donor such 

as the ascorbic acid and return to its reduced state [51]. 

 

Figure 7.4 Hydrogen removal from a PUFA with generation of peroxyl radicals. 
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The peroxyl radical scavenging activity of compounds supposed to be antioxidants is 

determined by ORAC (Oxygen Radical Absorbance Capacity) assay. In this assay, 

antioxidants prevent the reaction between peroxyl radicals and an oxidizable probe (Fig. 

7.5), whose reaction can be easily detected by some spectroscopic techniques (UV-Vis, 

fluorescence, EPR) [1].  

The antioxidant capacity is quantified by recording the fluorescence decay of  β-

phycoerythrin (β-PE) or fluorescein in the presence of antioxidants. Being a protein, the 

limit of β-phycoerythrin is due to its variable reactivity to peroxyl radical and its short 

photostability during the exposition to excitation light [28]. To solve these problems, β-PE 

was replaced by fluorescein (FL) a synthetic phenolic derivative with a fluorescent 

emission at 520 nm on excitation at 480 nm [52]. FL is a synthetic non protein probe, 

created to overcome the limitations of β-PE. In addition, the reaction products of FL with 

peroxyl radical have been characterized, and the product pattern was consistent with a 

classic HAT (Hydrogen Atom Transfer) reaction mechanism. The improved ORAC assay 

provides a direct measure of the hydrophilic and lipophilic chain-breaking antioxidant 

capacity versus peroxyl radicals [53, 54]. AAPH (2,2′-azobis-(2-amidinopropane 

hydrochloride) as a peroxyl radical generator (ORACROO
.) or Copper (II)-H2O2 as a 

hydroxyl radical generator (ORACHO
.) are used in the method (Fig. 7.6). 

 

Figure 7.5 Principle of ORAC assay by using a fluorescent probe. 
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The ORAC combines both inhibition time and inhibition percentage of free radical action by 

antioxidants and expresses the results as Trolox equivalents [55]. Typically, samples,  

 

 

Figure 7.6 AAPH radical generator mechanism. 

controls, and  Trolox are mixed with fluorescein solution before AAPH solution is then 

added to initiate the reaction. The fluorescence intensity is measured at ambient 

conditions (pH 7.4, 37 °C). As the reaction progresses, fluorescein is consumed and FL 

intensity decreases. In the presence of antioxidant, the FL decay is inhibited [56]. Data 

reduction from the ORAC assay is achieved by calculating of the area under the kinetic 

curve (AUC) and net AUC (AUCsample - AUCblank), obtaining a standard curve by plotting the 

concentration of Trolox and the AUC and calculating the Trolox equivalents. The 

advantage of the AUC approach is that it applies equally well for both antioxidants that 

exhibit distinct lag phases and those samples that have no lag phases. There is a direct 

linear correlation of AUC and a broad range of sample types, including raw fruit and 

vegetable extracts, plasma, and pure phytochemicals [57]. 

 

7.4.3 Superoxide Anion 

Superoxide anion is a one-electron (e−) adduct of molecular oxygen (dioxygen, O2) formed 

by the combination of O2 and e
−
. It is produced  in response to environmental factors such 

as UV light, cigarette smoke, environmental pollutants or enzymes such as xanthine 

oxidase (equation 7)  and NADPH oxidase (equation 8) [58, 59]. 
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RH + H2O + 2O2 ↔ ROH + 2O2
-
 + 2H

+
                                                                                           (7) 

NADPH + 2O2 ↔ NADP
+
 + 2O2

-
 + H

+    
                                                                                         (8) 

Through a Haber-Weiss reaction, superoxide radicals generate hydroxyl radicals reacting 

with hydrogen peroxide (equation 2). Although associated with oxidative stress, O2
2- is an 

unusual species in that it can act as a reducing agent, donating its extra electron, to form 

ONOO- with NO (equation 9) [60]. 

 

O2
-
  + NO

˙
 → ONOO

-
                                                                                                                        (9) 

To determinate the superoxide scavenging activity of a compound, two approaches are 

available: the first is an enzymatic assay while the second is chemical. In the first case, 

superoxide anions are generated by a Xanthine \ Xanthine oxidase system to induce the 

reduction of nitro blue tetrazolium (NBT). In the presence of an antioxidant, the rate of NBT 

reduction decreases in respect to the blank [61]. In the second method, superoxide anions 

are generated by a non enzymatic (phenazine methosulfate - NADH) system [62]. 

The major advantage of this method is the use of physiologically relevant radical system 

and reaction pH. Other techniques such as DPPH and ABTS cation radical scavenging 

assays use free radical systems without resemblance to those involved in oxidative 

processes in biological systems. On the other hand, this assay presents several 

disadvantages. First, it is known that nitro blue tetrazolium (NBT) can be directly reduced 

by some antioxidants [63] with the risk to overestimate the antioxidant capacity using this 

method. Second, the enzymatic reaction of xanthine oxidase can generate another ROS, 

hydrogen peroxide and they can interfere with the assay [64]. Third, common to any 

antioxidant activity method using an enzymatic radical generating system, antioxidant 

capacity overestimation can result from test compounds directly interfering with the 

enzyme reaction. Fourth, the calculation of the results is based only on the kinetics of the 

antioxidant-radical reaction and doesn’t considerer the thermodynamic properties. This 

may do hard to compare the results between complex matrix samples such as food 

extracts or cross laboratory analysis. To overtake these disadvantages, ESR has been 

used to generate on superoxide anions, compatible with hydrophilic and lipophilic extracts 

and compounds to be able to efficiently screen the antioxidant capacity of sample against 

this important radical [56]. 
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7.4.4 DPPH Assay 

The DPPH (2,3-diphenyl-1-picrylhydrazyl) is a stable free radical in methanol or ethanol 

solution and the assay is based on its reaction with a specific compound or extract to 

measure the scavenging activity of antioxidants [28, 66]. The odd electron of nitrogen 

atom in DPPH is reduced by a hydrogen atom to form antioxidants to the corresponding 

hydrazine (Fig. 7.7) [28]. 

 

Figure 7.7 α,α Diphenyl-β-Picryl hydrazyl [DPPH] (a), α,α Diphenyl-β-Picryl hydrazine (b). 

 

The DPPH assay was believed to involve hydrogen atom transfer reaction, but a recent 

study suggested another explanation. On the basis of the kinetic analysis of the reaction 

between phenols and DPPH, Foti et al. suggest that the reaction in fact behaves like an 

electron transfer (ET) reaction (Fig. 7.8).  

 

Figure 7.8 Electron transfer scheme in reaction between DPPH and phenols. 
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The authors found that the rate-determining step for this reaction consists of a fast ET 

process from the phenoxide anions to DPPH. The hydrogen atom abstraction from the 

neutral ArOH by DPPH becomes a secondary reaction path, because it occurs very slowly 

in strong hydrogen-bond-accepting solvents, such as methanol and ethanol [67]. 

The reduction of DPPH˙ (equation 10-11) is following by monitoring the decrease of the  

DPPH˙ + AH → DPPH-H + A˙                                                                                                        (10) 

DPPH˙ +  R
˙
 → DPPH-R                                                                                                                  (11) 

absorbance during the reaction. In its radical form, DPPH˙ absorbs at 515-517 nm [68], 

but upon reduction by an antioxidant (AH) or a radical species (R˙), the absorption 

disappears in a concentration dependent manner [66]. The DPPH method is a valid, easy, 

accurate, sensitive, and economic method to evaluate scavenging activity of antioxidants, 

since the radical is stable and need not to be generated as in other scavenging assays. 

The results are highly reproducible and comparable to other scavenging methods such as 

ABTS [69]. The DPPH assay is technically simple, but some limitations reduce its 

applications. First, DPPH is a long-lived nitrogen radical, which bears no similarity to the 

highly reactive and transient peroxyl radicals involved in lipid peroxidation. Many 

antioxidants that react quickly other radicals might react slowly or might even be inert to 

DPPH. Consequently, the antioxidant capacity is not properly rated and it’s necessary to 

find an adequate incubation time to allow the reaction between antioxidants and radical. 

The reaction kinetics between DPPH and antioxidants are not linear to DPPH 

concentrations and it’s rather arbitrary to express antioxidant capacity using EC50 [28, 70]. 

Second, DPPH is sensitive to some Lewis bases and solvents [71]. However, the rate of 

reaction of DPPH depends strongly on the solvent. In dioxane or CCl4, reactions obey 

second- or third-order kinetics. Recently, kinetic solvent effects on hydroxyl hydrogen 

abstraction from α-tocopherol or phenol were obtained in several solvents. The increased 

reactivity of DPPH in alcohols has been hypothesized due to the formation of an H-bond 

between DPPH nitrogen and the alcohol, decreasing radical delocalization and thus 

increasing its reactivity [72]. Third, DPPH is only soluble in organic solvents and 

interference of absorbance from sample compounds could be a problem for quantitative 

analysis. The method has a limitation in reflecting the partitioning of antioxidants in 

emulsion systems and is not useful for measuring the antioxidant activity of plasma as 

proteins are precipitated in the alcoholic medium [28].  
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7.4.5 Trolox Equivalence Antioxidant Capacity (TEAC) 

The TEAC Test (Trolox Equivalent Antioxidant Capacity) is based on the reaction with the 

colored and relatively persistent 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)  

(ABTS+˙) radical cation (or monoanion, if the two sulfonate groups are considered), which 

has a strong absorption band at 734 nm ( ε 734 = 0.015 μ M-1 cm-1, where ε is the molar 

extinction coefficient) (Fig. 7.9). 

 

Figure 7.9 Reaction of ABTS cation with an antioxidant compound. 

 

The radical is generated in buffered water just before the test, by reacting ABTS with an 

oxidizer such as potassium persulfate or MnO2. The antioxidant activity is defined as the 

amount of ABTS˙+ quenched after a fixed time, and is compared with that produced by 

Trolox [73].  

ABTS˙+ radical cation can be dissolved in aqueous and acidified ethanol medium and thus 

can be used for determining the antioxidant capacity of both hydrophilic and lipophilic 

compounds, food products, extracts, and biological fluids. The method is rapid and easy to 

perform, avoids unwanted reactions and does not require drastic conditions to generate 

radicals, and antioxidant activity can be studied over a pH range [74]. However, the time 

interval should be taken into account, as different time intervals give different TEAC values 

because the time required to reach the stationary concentration, which inversely depends 

on the rate constant for the reaction between antioxidants and ABTS˙+, widely varies 

among antioxidants [75-77]. An important limitation of this assay is that ABTS˙
+
 is a radical 

cation while the peroxyl radical is neutral, so antioxidants react with ABTS˙+ by an electron 

transfer mechanism, whereas with peroxyl radicals they react by formal H-atom transfer 

[78]. 
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7.5 EXPERIMENTAL SECTION 

7.5.1 MATERIALS  

 The following CKs N6-(Δ2-isopentenyl) adenine (iPAdo), kinetin (K), N6-benzyladenine (B) 

and ρ-topoline  (p-T) and their correspondent ribosides N6-(Δ2-isopentenyl) adenosine 

(iPA), kinetin riboside (KR), N
6
-benzyladenosine (BA) and p-topolin riboside (p-TR) were 

obtained from OlChemIm Ltd. ( Olomouc, Czech Republic). 

The synthesis of the N6-substituded adenosine derivatives FEA, 2HFEA and 2FEA has 

been described in Chapter 4. 

All reagents were purchased from Sigma–Aldrich Italy and were of analytical grade. 
 
 

7.5.2 METHODS 

7.5.2.1  2-deoxyribose degradation assay (2-DRA) 

7.5.2.1.1 Reagent preparation 

Stock solutions of 2-deoxyribose (25 mM) and phosphate buffer 10 mM (pH 7.4) were 

prepared and kept in a cold room at 4-6 °C. Stock solution of EDTA (10 mM) was prepared 

at pH 7.0 according to the methods of Lopes et al. [79] and kept at room temperature. 

Fresh aqueous stock solutions of 10 mM FeCl3, 2 mM H2O2 and 0.5 mM ascorbic acid 

were prepared daily. FeCl3 was dissolved in 0.1 M HCl, as described by Lopes et al. [79].  

0.5 ml of 10 mM FeCl3 was mixed with 9.5 ml of 10 mM EDTA to obtain Fe3+-EDTA 

complex (500 μM Fe3+). Fresh solutions of the tested compounds were prepared daily. The 

cytokinins were dissolved in water by adding 1M HCl to obtain a clear solution of their salt. 

Then 1M NaOH was added to reach pH 7.4. CKRs were suspended in water and 

solubilised with ultrasound bath at the temperature of 50 °C for 15 minutes. Stock solution 

of 1% TBA (w/v) was prepared in 50 mM NaOH and used within 1 week.  

 

7.5.2.1.2 Procedure 

The hydroxyl radical scavenging activity of the cytokinins was evaluated as described by 

Aruoma [43] with some modifications. In a screw capped glass tube, 100 μl of Fe3+-EDTA, 

100 μl of H2O2, 200 μl of  2-deoxyribose and 200 μl of 10 mM phosphate buffer (pH 7.4) 

were sequentially added.  

To the reaction mixture, 200 μl of a solution of the tested compound  was added in order to 

reach the final concentrations from 10μM to 500 μM (10, 20, 50, 100, 200, 300, and 500 

µM) At the end, 200 μl of ascorbic acid was added to a final volume of 1 ml to start the 

reaction at 25 °C.  
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After 40 min the reaction was stopped by addition of 1 ml of 4% (v/v) phosphoric acid and 

then 1 ml of 1% (w/v) TBA was added. The tubes were placed in hot water (90–95 °C) to 

develop a pink color. After 15 min, the tubes were removed from the hot water, cooled at 

room temperature and the absorbance was recorded at 532 nm. The used apparatus was 

a spectrophotometer UV/VIS DU 640 (Beckman, Pasadena, USA). Each assay was 

performed in triplicate and the percentage of hydroxyl radical scavenging activity was 

calculated from the relationship: 

Scavenging activity (%)= [(A0 – As) / Ab] × 100 

where A0 is the absorbance of the blank and As is the absorbance of the sample. All the 

measurements were performed in triplicate. Results are expressed by reporting the 

percentage scavenging activities versus tested compound concentrations. 

 

7.5.2.2 ORAC (Oxygen Radical Absorbance Capacity) assay 

7.5.2.2.1 Reagent preparation 

Stock solutions of 1mM 2,7-dichlorofluorescein and  56.67 mg/ml ABAP  were prepared in 

phosphate buffer 75 mM (pH = 7.0) and distilled water  respectively and kept at -30°C. For 

the assay, 1mM solution of 2,7-dichlorofluorescein was daily diluted with phosphate buffer   

to obtain a 500 nM solution. Trolox solution was prepared daily in a water : ethanol mixture 

50:50  to obtain a 200 µM solution. Fresh solutions of the tested compounds were 

prepared daily, dissolving each cytokinin and cytokinin riboside in the same mixture used 

for Trolox. The concentration range of the cytokinins was from 5 to 50 µM. 

 

7.5.2.2.2 Procedure  

The assay was carried out at 37°C according to Cao et al. [80] with modifications. A 24-

well plate was used for the analysis of the compounds. Briefly, in a plastic tube, a mixture 

containing 2 ml of 75 mM phosphate buffer pH = 7.0, 250 µl of 500 nM 2,7–

dichlorofluorescein, 250 µl of Trolox 200 μM or of the sample at different concentrations 

was prepared. Then, the volume of every tube was divided in four rates of 475 µl and 25 µl 

of a solution of ABAP (2.83 mg/ml final concentration) was added to each aliquot to start 

the reaction. Before the addition, ABAP was activated in a dry bath for 10 minutes at 37 

°C. The used apparatus was a spectrophotometric plate reader Victor2 1420 Multilabel 

counter (Wallac, Turku, Finland) with fluorescence filters. The analyzer was programmed 

to record the fluorescence of 2,7-dichlorofluorescein (λex = 485 nm / λem = 535 nm)  every 

5 min after ABAP was added until the fluorescence disappeared (8 h).  Experimental data 
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were calculated using the differences between areas under the blank 2,7-

dichlorofluorescein decay curves  and those obtained with sample or Trolox and 

expressed as Trolox equivalents (μmol/L). The data obtained by the ORAC assay were 

elaborated with GraphPad Prism version 6. The final results were presented by reporting 

Trolox equivalent versus tested compound concentrations. 

 

7.5.2.3 Superoxide anion assay 

7.5.2.3.1 Reagent preparation 

Phosphate buffer 50 mM (pH = 7.4) was prepared and kept in a cold room at 4-6 °C. 

Aqueous solutions of 2.34 mM NADH, 300 µM phenazine methosulfate and 750 µM nitro 

blue tetrazolium (NBT) were prepared daily. Fresh solutions of CKs and CKRs were also 

prepared daily dissolving the compounds in DMSO. The concentration range of the CKs 

and CKRs was from 0.3 to 15 mM. 

 

7.5.2.3.2 Procedure  

The assay was carried out at room temperature according to Yen et al. [81] with 

modifications. In a plastic tube, 1,195 ml of phosphate buffer 50 mM (pH = 7.4), 5 µl of 

sample at different concentrations, 100 µl of 2.34 mM NADH, 100 µl of 300 µM phenazine 

methosulfate were mixed. Then 100 µl of 750 µM NBT were added to start the reaction. 

The reduction of NBT was monitored with a kinetic of 2 minutes. Caffeic acid was used as 

reference compound. At the end, the absorbance using a UV/VIS spectrophotometer Cary 

50 Bio (Varian, Palo Alto, CA, USA). The percentage of inhibition was calculated using the 

following formula: 

Inhibition (%) = [(A0 – As)/A0] 

where A0 is the absorbance of the control and As is the absorbance of the sample or of the 

standard compound. All the measurements were performed in triplicate. Results are 

reported as percentage of inhibition of the superoxide anion versus tested compound 

concentrations. 

 

7.5.2.4 Trolox Equivalence Antioxidant Capacity (TEAC) assay 

7.5.2.4.1 Reagent preparation 

ABTS was dissolved in water to give a 14 mM solution, according to Re et al. [73]. 

Potassium persulfate was dissolved in water to give a 4.9 mM solution. ABTS radical 

cation (ABTS●+) was produced by mixing same volumes of ABTS and potassium 
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persulfate stock solutions and allowing the mixture to stand in the dark at room 

temperature for 16 h before use. Tested compounds were prepared daily dissolving in 

ethanol in a concentration range from 5 to 100 μM. Trolox was used as positive control in 

the same concentration range. 

 

7.5.2.4.2 Procedure 

The antioxidant activity was assessed according with Re et al. [73] with slight 

modifications.  

The ABTS˙+ solution was diluted with ethanol to an absorbance of 0.70 ±0.02 at 734 nm.  

After addition of 900 μl of diluted ABTS•+ solution (A734 = 0.700 ± 0.02) to 100 µl of CKs or 

Trolox standard (final concentration 0.5-5 µM), the absorbance was taken after 15 minutes 

of incubation at 25 °C, using a UV/VIS spectrophotometer Cary 50 Bio (Varian, Palo Alto, 

CA, USA). The percentage of inhibition was calculated using the following formula: 

 

Inhibition (%) = [(A0 – As)/A0] 

where A0 is the absorbance of the control and As is the absorbance of the sample or of the 

standard compound. All the measurements were performed in triplicate. Results are 

reported as percentage of inhibition of ABTS radical versus tested compound 

concentrations. 

 

7.5.2.5 DPPH Scavenging Assay 

7.5.2.5.1 Reagent preparation 

317.5 µM solution of DPPH was prepared daily dissolving 7.5 mg of 2,2-diphenyl-1- (2,4,6-

trinitrophenyl) hydrazyl radical in 50 ml of ethanol. Then, a 1:5 dilution was effectuated to 

obtain a 65 µM work solution. The work solution was stable for 24h hours [82].  Fresh 

solutions of tested CKs and CKRs were daily dissolved in ethanol under ultrasound for 15 

minutes. The concentration range of the CKs and CKRs was from 100 to 750 µM. 

 

7.5.2.5.2 Procedure 

The antioxidant activity was assessed according with Lavelli et al. [83] with slight 

modifications. Briefly, 300 µL of different concentrations of the samples in ethanol were 

added to 2.5 ml of 65 µM ethanolic solution of DPPH and 700 µl of ethanol. Trolox was 

used as reference antioxidant. The decrease in absorbance at 515 nm was determined 

after 30 min of incubation at room temperature (when a constant value was reached). The 
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percent decrease of DPPH concentration was calculated with respect to the initial value 

using the following formula: 

Inhibition (%) = [(A0 – As)/A0] 

where A0 is the absorbance of the control and As is the absorbance of the sample or of the 

standard compound. Triplicate solutions were analyzed for each sample. 
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7.6 RESULTS AND DISCUSSION 

7.6.1 Hydroxyl radical scavenging activity  

The hydroxyl radical scavenging activity of iPAdo and other cytokinins was determined at 

the concentration of 10 – 500 μM and the results are reported in figure 7.10.  

All tested CKs react with this radical and that the scavenging activity of iPAdo is slightly 

higher, probably because of the allylic methylene group present in the N6-isopentenyl 

moiety that typically stabilizes the radical formation caused by the hydroxyl radical attack. 

It should be mentioned that the CKs did present problems of water solubility that is a 

necessary prerequisite for the 2-DR assay [84]. 

 

Figure 7.10 Hydroxyl radical scavenging activity of CKs. 

Only iPAdo is soluble in water. The problem of water solubility of compounds to be tested 

by the assay is one of the major limitations of the method and this has received only a 

scant attention by a few researchers. In order to evaluate possible interferences of the 

above treatment of the bases on the result of the 2-DR assay, an aqueous solution of iPA 

and one with the compound dissolved with HCl/NaOH were compared and the results are 

reported in Figure 7.11. Figure 7.11 shows that the treatment of the N6-substituted adenine 

with NaOH/HCl does not interfere with the assay and the insoluble CKs were treated with 

NaOH/HCl as described above to be tested by the 2-DR assay. 
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Figure 7.11 Hydroxyl radical scavenging activity of iPAdo dissolved in HCl/NaOH and in water only. 

Then, we tested the corresponding CKRs against the hydroxyl radical in the same 

concentration range. Results are collected in Figure 7.12 and show that all compounds 

exhibit a similar activity with a maximum of 26-29%.  

 
Figure 7.12 Hydroxyl radical scavenging activity of CKRs. 

 

Unlike the CKs, the natural cytokinin ribosides iPa, BA, KR and p-TR were soluble in water 

However, the synthetic N6-substituted adenosine derivatives, prepared as described in 

Chapter 4, were not soluble in water and it was not possible to dissolve 2HFEA and 2FEA 

with HCl/NaOH for the developing of a intense red color, due to the reaction of the 
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catechol with NaOH, that interfered with the 2-deoxyribose assay. Therefore, we could not 

perform the 2-deoxyribose degradation assay on these compounds. 

Since all CKRs are N6-derivatives of adenosine, we have evaluated the in vitro scavenging 

activity against the hydroxyl radical of adenosine. The scavenging activity of adenosine 

and that of iPA taken as a reference compound, has been assayed, in order to establish 

the difference, if any, between the two compounds. This could furnish some information 

about the contribution of the N6-moiety to the antioxidant activity. In fact, the result 

reported in Figure 7.13 suggests that the isopentenyl moiety contributes to the antioxidant 

properties of iPA. This is confirmed by the iPAdo/adenine couple, whereas the known low 

scavenging power of ribose is confirmed by the results shown, all together, in Figure 7.13.    

 

Figure 7.13 Hydroxyl radical scavenging activity of adenine, adenosine, ribose, iPA and iPAdo. 

 

Additional contribution of the substitution at N6 in the different CKRs has been investigated 

as well and we can conclude that the good scavenging activity of kinetin riboside and 

topolin riboside  can be explained by the chemical nature of N6 substitution. In fact, in 

kinetin contribution of the furane ring is related to the scavenging activity of this moiety, as 

previously reported for other  furane-containing compounds [85-88].  For topolin riboside  

the presence of the phenolic OH in N6 can help to explain the good activity of this riboside.  

 

 



 

93 

 

7.6.2 Peroxyl radical scavenging activity 
 

The peroxyl radical scavenging activity of CKs has been evaluated with the ORAC (O With 

the exception of benzyladenine (B), all the evaluated CKs are active against the peroxyl 

radical and the p-topolin (p-T) shows the highest activity. However, at lower 

concentrations, kinetin (K) is more active (Figure 7.14).  

Due to the high antioxidant activity of K at low concentration, on a separate experiment, 

we evaluated also the antioxidant activity of kinetin (K) in a concentration range from 50 to 

500 nM and the resulting data show a good peroxyl scavenging capacity (oxygen radical 

antioxidant capacity). The details of these results are reported in Figure 7.14 (part b) and 

show that the scavenging effect of kinetin is concentration dependent until 1 µM. After this 

value, at concentrations higher than 1 µM, the graphic goes to plateau.   

 

Figure 7.14 Peroxyl radical scavenging activity of CKs. 

 

As recently observed by Amorati and Valgimigli, not always the evaluation of AUC (area 

under kinetic curve) values obtained by the ORAC test is sufficient to express the real 

antioxidant capacity of a given compound. It has been suggested that AUC values should 

be integrated with kinetic data in order to achieve more consistent information about the 

stoichiometry behind an antioxidant activity [1].  We have, therefore, recorded the time 

course of CKs and Trolox activities at 5.0 μM concentration (Fig. 7.15). 

b 
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Figure 7.15 Decrease of fluorescence of CKs, control and Trolox in the ORAC assay. 

 

As reported in Fig. 7.15, different kinetics characterize each compound and the activity of 

p-T is more persistent along the time. This behavior can be related to a different 

stoichiometry in the formation of radicals by each antioxidant at a given concentration [14]. 

Specifically, at higher concentrations the antioxidant activity of p-T is more efficient due to 

its stoichiometry higher than that of other CKs. This could be related to the presence of 

two sites of oxidation like the benzylic methylene and the phenolic OH groups that 

characterize the molecule. At lower concentrations, mainly the trapping capability of 

peroxyl radicals can be observed, as in the case of K.  

A similar trend was observed for natural CKRs as shown in figure 7.16. 

 

Figure 7.16 Peroxyl radical scavenging activity of natural CKRs. 
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If the antioxidant activity of benzyladenosine and N6-isopentenyl adenosine is similar to 

that of their corresponding bases, kinetin riboside is more active than its base, with a 

peroxyl scavenging capacity near to the one that characterizes topolin riboside.  

We, then, compared the antioxidant activity of topolin riboside with that of its synthetic 

derivatives, FEA, 2FEA and 2HFEA and the results are reported in figure 7.17.  

.  

Figure 7.17 Peroxyl radical scavenging activity of synthetic N
6
-substituted adenosine derivatives. 

 

Compared to topolin riboside, all synthetic derivatives show a higher antioxidant. The 

highest value is that of 2HFEA, probably due to the presence of the catechol moiety in N6 

position. Compared to 2FEA, the distance (two methylene groups) of the catechol moiety 

from the purine ring than probably has a specific influence. It should be mentioned that 

catechols are strong peroxyl radical scavengers, since a catechol group forms two 

hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very 

compact reactant complex.  In this way, the catechol moiety of catechins becomes able to 

trap the lipid peroxyl radicals in a dominant competition with the very damaging free-

radical chain-lipid peroxidation reaction [89-90]. 

 

7.6.3 Superoxide anion scavenging activity 

CKs have been investigated as scavengers of superoxide anion, generated by a non 

enzymatic system with phenazine methosulfate-NADH but they don’t express any 

antioxidant activity toward this radical. Among the natural CKRs, only the N6-isopentenyl 
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adenosine has some activity against the superoxide radical while the synthetic N6 – 

substituted adenosine show a stronger antioxidant activity than iPAdo (Figure 7.18).  

iPAdo is active probably because of the allylic methylene group present in the  N6-

isopentenyl moiety that typically stabilizes the  radical formation caused by the superoxide 

anion, in a way similar to that of the hydroxyl radical. 2FEA, the synthetic N6 – substituted 

adenosine with two hydroxyl groups on the aromatic ring, shows a similar antioxidant 

activity, due to the presence of these groups. The superoxide scavenging activity of 

2HFEA is higher than 2FEA and iPAdo and analogous to that of caffeic acid, used as 

positive control. We calculated the I50 of the two compounds and the values are very 

 

Figure 7.18 Superoxide anion scavenging activity of iPA, 2FEA, 2HFEA and Caffeic acid (positive control). 

 

similar: 45 µM for 2HFEA and 47 µM for caffeic acid. This aspect may be explained with 

the analogy between the structure of the N6 substituted group of 2HFEA and that of caffeic 

acid, reported in Figure 7.19. The only important difference is the presence of a double 

carbon-carbon double bound. The strong antioxidant activity is probably due to the 

catechol system, as in the case of the peroxyl radical scavenging activity. 
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Figure 7.19 Comparison between N6 substituted group of 2HFEA and Caffeic acid. 

 

 
 
 
7.6.4 TEAC (Trolox Equivalence Antioxidant Capacity) assay 
 

The ABTS radical scavenging activity of natural CKs and CKRs has been investigated and 

the results, reported in Figure 7.20 with Trolox as reference compound, evince that only p-

topolin and its corresponding riboside are active against this synthetic radical. This result 

suggests that the electron transfer from the ABTS radical is efficient only when a phenolic 

OH is present in the tested compound. 

 

Figure 7.20 ABTS scavenging activity of p-topolin, p-topolin riboside compared with Trolox. 
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At a concentration range from 0.5 to 5 µM, the antioxidant capacity of ρ-topolin and ρ-

topolin riboside is greater than Trolox. At higher concentrations their values go to plateau 

while those of Trolox grow in a concentration-depend manner. This result may be 

explained by a higher reactivity of the phenol moiety of p-T with the sterically hindered 

reactive site of ABTS radical. We evaluated also ABTS scavenging activity of synthetic N6 

– substituted adenosines and reported the data in Figure 7.21.  

All the synthetic adenosine derivatives are active as scavenger of ABTS radical. FEA and 

2FEA have an antioxidant activity lower than topoline riboside while 2HFEA is more active 

only at concentration higher than 5µM. The contribution to the antioxidant capacity derives 

only from the N6 substituted group being adenosine inactive toward the ABTS radical.  

 

 

Figure 7.21 ABTS scavenging activity of synthetic N
6
 substituted adenosines compared with that of TR. 

 

7.6.5 DPPH Scavenging Assay 

Natural CKs, CKRs and the adenosine derivatives were investigated for their total 

antioxidant activity using the synthetic 2,2-diphenyl-1- (2,4,6-trinitrophenyl) hydrazyl radical 

and the results are reported in Figure 7.22. Natural CKs and CKRs don’t have any 

scavenging antioxidant activity as the N6 substituted adenosine FEA. Only the another 

synthetic adenosine derivatives 2FEA and 2HFEA exhibit some DPPH scavenging activity. 

The antioxidant 2HFEA is slightly higher than 2FEA and similar to that of Trolox, using as 

reference compound. The antioxidant activity is probably due to the catechol system 

because, similar to the TEAC assay, the adenosine isn’t a scavenger of the DPPH radical. 
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The antioxidant activity of 2FEA and 2HFEA may be explained the high reactivity of the 

catechol group of these compounds with the sterically hindered reactive site of DPPH 

radical in way similar to that of ABTS radical. 

 

Figure 7.22 DPPH scavenging activity of 2FEA and 2HFEA compared to that of Trolox. 

 

 

7.7 CONCLUSIONS 
 
The antioxidant properties of natural purine bases CKs, their corresponding ribosides 

CKRs and some synthetic N6-substituted adenosine were investigated for their antioxidant 

activity, based on different chemical mechanisms. The heterogeneity of the results 

suggests in some instance a possible structure – activity relationship, although not all the 

compounds are active in every antioxidant assay at the same concentration range. This 

has been partially demonstrated for iPA where a part of the biological activity of CKRs can 

be related to an intrinsic antioxidant capacity of the purine system and in part due to the 

N6-substitution. This difference can be, in part, due to different chemical mechanisms, in 

turn depending on the chemical structure of the group present at the N6-position. 

Many biological activities of CKs and CKRs in plants or in mammals can be explained by 

an intrinsic antioxidant activity of the compounds that could affect various biochemical 

parameters, in turn involved in the oxidative stress of cells. Further characterization of the 

antioxidant profile using other in vitro tests or, more significantly, specific cellular assays 

might contribute to explain some of the biological activities evidenced for this important 

class of compounds.  
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8. ANTIPROLIFERATIVE ACTIVITY OF TOPOLIN 
RIBOSIDE AND ITS SYNTHETIC DERIVATIVES 
 
8.1 ANTIPROLIFERATIVE ACTIVITY OF CYTOKININ RIBOSIDES  

Crown gall disease is caused by the soil bacterium Agrobacterium tumefaciens and 

consists in the development of neoplastic growth on the infected plants belonging to the 

Magnoliopsida class [1]. A region of the Ti plasmid (tms locus), probably involved in 

Agrobacterium tumefaciens-transformed plant tissue, may encode IPT, the enzyme that 

catalyzes the first step in cytokinin biosynthesis [2]. This established a connection 

between CKs and induction of callus, a cluster of differentiated plant cells that are immortal 

and proliferate indefinitely, to re-differentiate into adventitious buds.  Plant callus cells are 

similar to human cancer cells and CKs were expected to be able to affect the 

differentiation in some human cancer cells, probably, through a common signal 

transduction system [3]. This connection between CKs/CKRs and antiproliferative activity 

has been confirmed recently by the investigation on the control of differentiation and 

apoptosis of human myeloid leukemia HL-60 (Human promyelocytic leukemia cells) cells 

by CKs and their CKRs. Using HL-60 cell lines, it has been shown that CKs such as 

Kinetin, Benzyladenine and N6-isopentenyladenine are very effective in inducing nitroblue 

tetrazolium reduction and morphological changes of the cells into mature granulocytes [4]. 

Examining the corresponding ribosides CKRs, these compounds were more potent than 

the corresponding CKs for growth inhibition and apoptosis. CKRs greatly reduced the 

intracellular ATP content and disturbed the mitochondrial membrane potential, 

consequentially impairing the accumulation of reactive oxygen species. The same effect 

was not observed for CKs. When the cells were incubated with CKRs in the presence of 

ROS scavengers, antioxidant or caspase inhibitor, apoptosis was significantly reduced and 

differentiation was greatly enhanced. Among the CKRs, it has been shown that 

Benzyladenosine, Kinetin Riboside and N6-isopentenyladenosine are more effective than 

their corresponding bases [4]. 

 

8.1.1 N6- Isopentenyladenosine antitumor activity  

In the 60’s years, Gallo et al. observed N6- Isopentenyladenosine could exert a promoting 

or inhibitory effect on human cell growth, on the bases of used concentration and the cell 

cycle phase, reporting that iPAdo is a potent inhibitor or a stimulator of the DNA synthesis. 

At μM concentration, iPAdo produced inhibition while at lower values (nM concentration) 
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had a stimulatory effect [5]. It was demonstrated that iPAdo is cytotoxic for Sarcoma 180 

cells as for the majority of the mammalian cells. It was observed that iPAdo at µM 

concentration inhibited the growth of Sarcoma 180 cells acting as a potent inhibitor of the 

uptake of purine and pirimidine nucleosides. The authors suggested that iPAdo cytotoxicity 

for these cells might be due to its conversion into 5'- monophosphate that is cytotoxic at 

high intracellular levels affecting the enzymes involved in purine metabolism [6].  

The ability of cytokinins to induce apoptosis was studied in several human cell lines and it 

was observed that iPAdo was the most active cytokinin, especially with respect to Caco-2 

and HL-60 cancer lines [7]. Laezza et al. demonstrated that iPAdo in thyroid cell FRTL-5 

influences the cAMP dependent organization of the microfilaments. The same authors 

have later demonstrated that iPAdo caused a dose-dependent arrest of G0-G1 cell phase 

transition associated with a reduction of cells in S phase. iPAdo is able to inhibit farnesyl 

diphosphate synthase (FPPS) and to affect protein prenylation. This may explain the arrest 

of tumor cells proliferation in a reversible mode, since the addition of farnesol could 

reverse the process. This effect was not mediated by the adenosine receptors but was due 

to a direct modulation of FPPS enzyme activity as a result of its uptake inside the cells [8]. 

This aspect remains controversy because another author [9], studying the antiproliferative 

activity of iPAdo in 9 human 17 epithelial cancer cell line derived from different types of 

malignant tissue, showed FPPS downregulation in A549 cells was not involved in the 

antiproliferative activity of iPAdo [9]. Dragani et al. observed complete suppression of 

clonogenic activity in 8 of the cell lines after exposure, at µM concentration, to iPAdo 

where a clonogenic assay is a microbiology technique for studying the effectiveness of 

specific agents on the survival and proliferation of cells. Specifically, iPAdo was effective 

with human lung cancer cell lines NCI-H520 and NCI-H596, with breast cancer cell lines 

MDAMB-361 and MCF7, and nasal septum squamous cell carcinoma cell line RPMI 2650. 

Human lung cancer cell lines A549 and Calu-3, hepatocellular carcinoma cell line HepG2, 

and colorectal adenocarcinoma cell line HT-29 were also examined. Only the cell line HT-

29 derived from a colorectal cancer showed a significant but incomplete inhibition upon 

iPAdo treatment, with about 70% colony inhibition as compared to untreated control cells 

[9]. Differently from the results obtained with the human myeloid leukemia cell line HL-60 

only a modest increase in apoptosis after iPAdo treatment was revealed in epithelial 

cancer lines. Indeed, in lung cancer cells tumor growth suppression appears to be 

mediated by inhibition of cell proliferation due to a block of DNA synthesis rather than 

apoptosis [4, 9].  
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Laezza et al. studied iPAdo effects on DLD1 human colon cancer cells. iPAdo suppressed 

the proliferation of cells through inhibition of DNA synthesis, causing a cell cycle arrest that 

correlated with a decrease in the levels of cyclins A, D1 and E with a concomitant increase 

in the levels of cyclin-dependent kinase inhibitor p21waf and p27kip1. iPAdo induced 

apoptosis through an increase in the number of annexin V-positive cells, a downregulation 

of anti apoptotic products and caspase-3 activation. The apoptotic effects of iPAdo were 

accompanied by sustained phosphorylation and activation of c-jun N-terminal kinase (JNK) 

that induced phosphorylation of cjun. The authors concluded that JNK could play an 

important role in iPAdo-mediated apoptosis in DLD1 human colon cancer cells [10].  

Recently, the apoptotic activity of iPAdo has been investigated on Bladder Carcinoma T24 

cells where induces the alteration of cell morphology and the disorganization of the actin 

cytoskeleton. The inhibition of the growth is related to the arresting of the cells in G0/G1 

phase of the cell cycle [11]. Blad et al. [12] evaluated the A3 receptor antagonist activity of 

N6- isopentenyl adenosine (iPAdo). A3 receptor might be involved in the anticancer 

response [13].  In a functional assay in Chinese hamster ovary cells transfected with A3 

receptor, IPA and zeatin riboside inhibited forskolin-induced cAMP formation at micromolar 

concentration. They demonstrated strong and highly similar antiproliferative effects of IPA 

and on human and rat tumor cell lines LNCaP and N1S1. The antiproliferative effect of low 

concentrations of IPA on LNCaP cells could be fully blocked by the selective A3R 

antagonist MRS1523 while higher concentrations of IPAdo appeared to inhibit cell growth 

by an A3R-independent mechanism [12]. 

 

8.1.2 Anticancer activity of Aromatic cytokinin ribosides 

Only a few, recent reports are available in literature about in vitro antitumor activity of 

Kinetin riboside. It has been reported that KR along with iPAdo and BA were more potent 

than the corresponding N6-substituted purines for growth inhibition and apoptosis of 

human myeloid leukemia HL-60 cells [4]. 

KR shows also cytotoxic effects on M4 Beu human and B16 murine melanoma cells 1.5 

and 0.2 μM concentration. At these concentrations, cell growth is reduced by 50%, 

respectively, but there was no effect on the growth of mice leukemia P388 [14]. More 

recent results have shown that KR induces apoptosis in HeLa and mouse melanoma 

B16F-10 cells [15]. The apoptotic effect of KR in HeLa and mouse melanoma B16F-10 

cells was explained through disruption of the mitochondrial membrane potential, induction 

of the release of cytochrome c, and activation of caspase-3 [15]. Mc Dermott et al. tested 
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KR against leukemia-initiating cells (L-ICs) in acute myeloid leukemia (AML). KR 

demonstrated comparable efficacy to standard therapies against blast cells in 63 primary 

leukemias. In vitro, KR targeted the L-IC–enriched CD34+ CD38- AML fraction, while 

sparing HSPC (Hematopolietic stem/progenitor cells) enriched fractions, although these 

effects were mitigated on HSC assayed in vivo. KR reduced proliferation and induced 

apoptosis via caspase-3 cleavage and loss of mitochondrial membrane potential and 

induced cleavage of Bcl2, which may switch it from antiapoptotic to proapoptotic [16]. KR 

eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the 

importance of in vivo L-IC and HSC assays to measure function.  

In contrast, human skin fibroblast CCL-116 and bovine primary fibroblast cells show 

resistances to KR and no significant changes in Bad, Bcl-XL, and cleaved PARP were 

observed. Reported data suggest that KR selectively induces apoptosis in cancer cells 

through the classical mitochondria dependent apoptosis pathway [15]. Dudzic et al. 

investigated the antiproliferative and proapoptotic properties of KR on normal and cancer 

cell lines finding that KR inhibited growth (20–80%) of not only human cancer, but also 

normal cells and that this effect strongly depended on the type of cells. The anti-apoptotic 

Bcl-2 protein was downregulated, while proapoptotic Bax was upregulated in normal as 

well as in cancer cell lines, upon exposure to KR. Cytochrome c level increased in the 

cytosol upon treatment of cells with KR. The activity of caspases increased especially in 

cancer cells. The expression of procaspase 9 and its active form in the nucleus as well as 

in cytosol of KR-treated cells was elevated. In contrast, no effect of KR on caspase 8 

expression was noted. The results indicated that non-malignant cells were less sensitive to 

KR then their cancer analogs and that KR most likely stimulated apoptosis mechanism of 

cancer cells through the intrinsic pathway [17].  

In another recent study, a hypothesis about the cytotoxic effects of KR was tested. KR 

effects may involve interference with DNA integrity and cellular energy status leading to 

stress response gene expression and cell cycle arrest. Results obtained from MiaPaCa-2 

pancreas carcinoma, A375 melanoma, and various other human cancer cell lines indicate 

that massive ATP depletion and induction of genotoxic stress occurs rapidly in response to 

KR exposure. This is followed by early upregulation of HMOX1, CDKN1A, and other DNA 

damage/stress response genes. These data suggest that early induction of genotoxicity 

and energy crisis are causative factors involved in KR cytotoxicity and anticancer activity 

[18]. Recently, Rajabi et al investigated the antiproliferative activity of KR on HCT-15 

human cells. KR is able to inhibit the proliferation in HCT-15 human colon cancer cells in a 
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dose-dependent manner with a concentration of 2.5 μM, which causes 50% inhibition of 

cell viability. The cell cycle analysis by flow cytometry showed that KR arrested cell cycle 

progression in the S Phase by blocking through G2/M and G0/G1 phase in HCT-15 colon 

cells but the mechanisms conferring KR-induced cell death in cancer cells remain elusive 

[19].  

Very scarce are the works about the anticancer activity of the other natural aromatic 

CKRs, benzyladenosine and its hydroxylated derivatives, topolin riboside.  

Several authors have reported cytotoxic effects of  N6-benzyladenosine on human cell 

lines derived from solid tumors [10, 15, 18]. Whether treatments resulted in cell cycle block 

and/or apoptosis was dependent on the cell line and the cytokinin used. Dolezăl et al 

evaluated the anticancer activity of several synthetic derivatives of N6 -benzyladenosine 

against cancer lines such as HOS, K-562, MCF7, CEM, HL-60 G-361, B16 and NH 3T3 

with various results. Several of them were much stronger than BA suggesting a strong 

relation with the chemical groups on the aromatic ring [20]. The anticancer activity of 

iPado, KR and BA has been demonstrated in vivo using several animal and xenograft 

models of cancer [15, 21-22]. iPado and BA have also shown promising activity against a 

diverse range of cancers in a limited clinical trial [23].  

Furthermore, the activity pattern of ortho-topolin riboside (o-TR) against NCI60, a 

thoroughly characterized panel of 59 human cancer cell lines was analyzed. Finally, we 

report results of in vivo tests of the anticancer activity of o-TR against models 

representative of human tumors in hollow fibre assays [24].  

The last part of this Ph.D project is the study of the effect of topolin riboside (TR) and its 

synthetic derivatives FEA, 2FEA and 2HFEA on 661W cell line and the anticancer activity 

on Neuro2A cell line. 
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8.2 EXPERIMENTAL SECTION 

8.2.1 MATERIALS 

p-Topolin riboside (p-TR) was synthesized by us and purchased from OlChemIm Ltd. ( 

Olomouc, Czech Republic). N6- substituted adenosine derivatives FEA, 2FEA and 2HFEA 

were synthesized following the procedure described in Chapter 4. 

Trypan blue dye was purchased from Sigma-Aldrich (S. Louis, Missouri USA). Penicillin 

and streptomycin (Invitrogen) were obtained from Life Technologies Italia (Monza, Italy). 

DMEM (Dulbecco’s modified Eagle’s medium) culture media and fetal bovine serum were 

purchased from EuroClone Life Science Division (Milano, Italy). Tunel was performed 

using a specific Kit, In situ Cell Death Detection Kit (TMR Roche Diagnostic, Mannheim, 

Germany). 

 

8.2.2 CELL CULTURES 

Cone-derived cell line (661W cells) was kindly provided by Dr. Muayyad Al-Ubaidi 

(Department of Cell Biology, University of Oklahoma, Oklahoma City, USA). 661W were 

cloned from retinal tumor of transgenic mouse line expressing the SV-40 T antigen under 

control of the inter-photoreceptor retinal binding protein promoter (IRBP) [25]. 

661W growth doubling time is of ~24 hours in Dulbecco’s modified Eagle’s medium 

(DMEM), supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

solution as preserving system. They were maintained in a sterile and controlled 

atmosphere incubator at 5% CO2, 95% humidity at 37 °C. Experiments were performed in 

60mm Petri dishes (3x105 cells in 3 ml) starting treatments after about 24 hours. 

Neuroblastoma fast- growing mouse cell line (Neuro2A cells) was obtained from LGC 

Standards (Teddington, U. K.). Neuro2A cells were cloned from a spontaneous tumor in an 

albino strain A mouse [26]. Neuro2A cells and experiments were growth in the same way 

of 661W cells. 

 

8.2.3 CELL TREATMENT 

p-Topolin riboside and the synthetic adenosines FEA, 2FEA and 2HFEA were dissolved in 

DMSO.  

661W and Neuro2A were seeded and left to grown for about 24 hours in 10% FBS/1% 

penicillin/streptomycin DMEM. Before the treatment, the tested compounds were added to 

the culture media. The final concentration range of each compound was from 0 (control) to 

10 µM. During the treatment, the DMEM culture media was replaced with that containing 
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the compounds and the dishes were incubated in a sterile and controlled atmosphere 

incubator at 5% CO2, 95% humidity at 37 °C for 48 hours. At proper time point, they were 

collected and processed according to different assays. Each compound was tested in 

double.  

 

8.2.4 METHODS 

8.2.4.1 Trypan blue dye exclusion test 
 

Trypan blue assay was used to evaluate the number of viable cells after treatments. 661W 

and Neuro2A cells were seeded in tissue culture Petri dishes (600mm) at 3x105 cells/Petri, 

treated and after 48 hours, counting was evaluated in experimental and control groups. 

For that, cells were detached using 1% trypsin for 661W cells and 2% for Neuro2A cells, 

for 1.5 minutes at 37°C, collected and resuspended in 1.5 ml of Phosphate buffered saline 

(PBS) solution, 90 μl aliquots of this cell suspension were added to 10 μl of 0,4% Trypan 

blue dye (1:10). Next, live and dead cells were counted using Bürker chamber under a 

MoticAE31 optical inverted microscope. Live and dead cells were reported as both number 

of cells and percentages over the control. 

 

8.2.4.2 Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) 
assay 
 

Apoptosis degree was evaluated by means of TUNEL test, trypsinized cells were washed 

in 1 ml cold PBS and centrifuged 5 min at 4000 rpm at room temperature. The pellet was 

resuspended in 500 μl of 4% cold buffered formalin for 20 min, washed in PBS two times 

for 5 min, and stratified on microscope glasses. After drying at room temperature, slides 

were maintained at –20 °C until use. Apoptosis was determined by the TdT assay in an 

inverted fluorescence microscope (40x magnification) Axiovert25 CFL (Zeiss, Göttingen, 

Germany) equipped for the detection of rhodamine (filter set 15, excitation band pass 546 

nm, emission low-pass 590 nm). Nuclei were stained with the karyophilic dye Hoechst 

33258 (250 ng/µl) for 3 minutes at room temperature in the dark, followed by rinsing twice 

in PBS and coverslipping. Slides were examined using a filter for Hoechst staining (filter 

set 02, excitation band pass 365 nm, emission low-pass 420 nm). Images were acquired 

by a digital camera (DS-2MV; Nikon, Tokyo, Japan) and the number of TdT-labeled nuclei 

counted (8-10 random fields in a blinded procedure). Results are expressed as number of 

TdT-labeled nuclei/total nuclei. 
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8.3 RESULTS AND DISCUSSION 

The antiproliferative activity of p-TR and the synthetic CKRs FEA, 2FEA has been 

investigated on 661W and Neuro2A cell lines performing Trypan blue assay to evaluate 

the number of viable cells after treatment with each compound and the results are reported 

in Figure 8.1. 

 

Figure 8.1 Trypan blue assay results on 661W (A) and Neuro2A (B) of p-TR and synthetic CKRs. 

 

Trypan test results on 661W cell line show that p-TR and the synthetic adenosine 

derivatives FEA, 2FEA, 2HFEA have cytotoxic properties.  FEA is the most cytotoxic 

compound followed by 2HFEA, while p-TR and 2FEA have similar cytotoxic activity. A 

similar trend is observed in the graph of the trypan blue assay on the Neuro2A cell line. 

FEA is the most effective compound respect to the other compounds that are similar 

among them. 

The Table 8.1 reports the I50 values calculated for each compound. In both cell lines, FEA 

 

Table 8.1 I50 values of Trypan blue assay of TR and non-natural CKRs. 

Compound 661W Neuro2A 

p-TR 8.62 ± 0.96 >10 

FEA 5.30 ± 0.66 6.58 ± 0.83 

2FEA >10 >10 

2HFEA 6.13 ± 0.59 9.14 ± 0.99 

 

is the most effective compound followed by 2HFEA.  
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The same compounds have been tested for their apoptotic induction capacity and the 

results are showed in Figure 8.2. 

Tunel assay results and related microscope pictures on 661W cell line suggest that the 

examined compounds have a similar apoptotic capacity. p-TR was the best compound 

with a peak of 27 % at the concentration of 10 µM. A greater difference between p-TR and 

 

 

Figure 8.2 Tunel assay results on 661W (A) and Neuro2A (B) of TR and synthetic CKRs. 

 

the synthetic adenosine derivatives was found with the test on Neuro2A cell line. The 

apoptotic grade of TR was 56.5% at the concentration of 10 µM while the lowest value was 

that of FEA (25.5 %). 

The cytotoxic and apoptotic properties of natural CKRs and synthetic adenosine 

derivatives might explain partially their antagonist activity toward the A3 receptor, involved 

in the anticancer response. It seems to be an inverse proportion between the cytotoxic 

activity and the apoptotic capacity in the case of Neuro2A cell line. Another difference 

consists in the presence of two methilene groups of the synthetic CKRs respect to the one 

of p-TR. Further experiments will be necessary to understand the mechanism of action of 

this class of compounds. 

 

8.4 CONCLUSION 

This study was focused on structure-activity investigation with the aim of understanding 

the effect of a modification in the aromatic ring of the N6 group can improve the cytotoxic 

and apoptotic properties and for a correlation with the A3 receptor antagonist activity. We 

found there is an inverse correlation between cytotoxic and apoptotic activity, especially 

with Neuro2A cells. p-TR showed the best apoptotic activity but weak cytotoxic activity 
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whereas FEA was the most cytotoxic compound but exhibited the lowest apoptotic values, 

following by 2HFEA. Both the compounds are antagonists of the A3 adenosine receptor 

much stronger than p-TR, as reported in Chapter 5. The study of specific marker involved 

in the apoptotic process can contribute to explain the anticancer properties of CKRs. 
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9. CONCLUSIONS 
 
In this Ph.D project, several biological activities of few natural occurring cytokinin ribosides 

(CKRs), N6-isopentenyladenosine (iPAdo), Kinetin riboside (KR), N6-benzyladenosine (BA) 

and ρ-Topolin riboside (TR) were investigated.  

Starting from a recent observation that kinetin (K) was able to inhibit the platelet 

aggregation in washed human platelet (PRP), we evaluated the platelet anti aggregation 

activity of kinetin riboside (KR) using the simplified model of PRP. We confirmed initially 

the reported data on K activity (12,8 – 56,4% inhibition at 25 to 500 μM) and found  KR 

showed a higher activity at the  same concentration range (51,3 -76,3%). As an extension 

of this preliminary result, the platelet anti-aggregation activity of other CKRs on PRP was 

evaluated. All examined CKRs revealed an anti -aggregation activity with ρ - Topolin 

riboside showing the highest values (54 – 83% inhibition at  25 to 250 μM range) followed 

by N6-benzyladenosine. Through molecular modelling studies, realized in collaboration 

with Prof. Giulio Vistoli (associated professor of pharmaceutical chemistry, Department of 

Pharmaceutical Sciences, Università degli Studi of Milan), we demonstrated a good affinity 

for the receptor  P2Y12, for which a key role in platelet activation and thrombogenesis has 

been recently recognized. Results obtained from docking simulations showed that CKRs 

assumed a binding mode rather similar to that of the co-crystallized inhibitor AZJ (ethyl 6-

{4- [(benzylsulfonyl) carbamoyl]piperidin-1-yl}-5-cyano-2-methylpiperidin- 3-carboxylate, 

AZJ) and are engaged in clear contacts within the P2Y12 binding cavity. The best in silico 

interaction was observed with, p-TR and BA, the same CKRs that showed the highest 

platelet anti aggregation activity. A preliminary study on whole blood was performed using 

the same procedure for PRP. All the CKRs were tested at the concentration of 50 µM and 

only those with an aromatic N6 substituted group showed an anti platelet aggregation 

activity with p-TR showing the best value, 26 %. 

During my stay in Portugal, at the Departamento de Quìmica  e Bioquìmica, Universidade 

doPorto (Erasmus Placement Fellowship, Tutor: Prof. Fernanda Borges),  I synthesized 

two adenosine derivatives from 6 – chloropurineriboside as starting material using 

tyramine and dopamine as N6 substituted group. The chemical reaction was a nucleophilic 

substitution and the obtained products were phenylethyladenosine (FEA) and 3,4-

dihydroxyphenylethyladenosine (2HFEA). Both the compounds have one methylene group 

more than ρ- topolin riboside and 2HFEA has an additional phenolic OH group. This 

synthesis was performed in structure-activity investigation with the aim of understanding 
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the effect of a modification in the aromatic ring of the N6 group could improve the 

biological properties with respect to the natural CKRs. We tested the affinity of these 

compounds with the human adenosine receptors A1, A2A, A2B, A3, a class of purinergic 

receptors, G protein-coupled  with adenosine as endogenous ligand. The experimental part 

was performed during my stay in Portugal with the collaboration of Prof. Fernanda Borges 

and Prof. Karl N. Klotz of the University of Wurzburg, Germany. The compounds were 

tested on Chinese hamster ovary cell membranes in competition binding conditions using 

[3H]-DPCPX (8-cyclopentyl-1,3-dipropylxanthine) as marked antagonist compound  and 

the CKRs to be tested at different concentrations. Then K i (inhibition constant) values were 

calculated from competition curves by nonlinear curve. CKRs were good antagonists of A1 

receptor with a Ki range from 21.7 to 52.4 nM. The best value was that of ρ- topolin 

riboside. The affinity of CKRs for A2A was poor with the exception of ρ- topolin riboside that 

showed a Ki value of 583 nm. This result might partially explain the good anti platelet 

aggregation activity of TR. The same trend was observed for A2B receptor. Similarly to 

what was observed with A1, CKRs were good antagonist with A3 receptor with a Ki range 

from 114 to 146 nM. The best value was that of benzyl adenosine. This affinity for this 

receptor may explain in part the anticancer activity of cytokinin ribosides. We tested these 

new compounds with the adenosine receptors in the same conditions of CKRs. Results 

showed the synthetic compounds were antagonist of A3 receptor much stronger than 

natural CKRs with a Ki range from 4.51 to 6.96 nM. 2HFEA was the best antagonist of A2A 

with a Ki value of 458 nM while FEA was the best antagonist of A1 with a Ki value of 10.8 

nM.   

During my stay in Portugal, I evaluated also the capacity of natural and non-natural CKRs 

to inhibit the Acetylcholinesterase (AChE) and the Monoamine oxidase B (MAO-B). We 

found natural and synthetic N6-substituted adenosine derivatives didn’t show any AChE 

inhibition activity whereas only 2HFEA was a MAO-B inhibitor, showing a I50 value of 5.35 

µM, similar to that of pargyline, used as positive control. In Italy, we investigated the 

glycation/glycoxidation inhibition activity of kinetin and kinetin riboside on the bovine serum 

albumin (BSA). In contrast with reported results, in our hands K did not show the ability to 

decrease the glycosilation of BSA and similar negative results were obtained with the 

riboside KR. These controversial need further investigations. In general, further 

investigations on biological activity of CKRs and their synthetic analogues seem desirable. 

These researches should include uptake of the compounds in the cell, their mechanisms 
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of action and metabolic pathways. Taken altogether, the results would help to shed more 

light in the biological role of this class of compounds, structurally related to adenosine. 

Many biological activities shown by the CKRs examined by us could be related to an effect 

of these compounds on the cellular oxidative stress, as recently demonstrated for iPA. 

Since a part of the biological activity of CKRs can be related to an intrinsic antioxidant 

capacity, we have determined their scavenging activity against different radicals by 

spectrophotometric assays. Initially, we evaluated the activity against the hydroxyl radical 

OH., using lipoic acid as positive control. At the concentration range of 10 – 500 μM, the 

hydroxyl radical scavenger activity of CKRs reached a maximum of 26-29%. In Portugal, I 

started to study the total antioxidant power of CKs and CKRs using assays that rely on the 

formation of the ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical 

cation and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assay. Both tests 

used Trolox as standard reference compound. In the first method, the total antioxidant 

activity was determined by the decolourization of the ABTS•, through measuring the 

reduction of the radical cation as the percentage inhibition of absorbance at 730 nm. Only 

p-T and its riboside (p-TR) were able to reduce ABTS radical (ρ-T 7 - 35%, ρ-TR 5– 48%, 

at 0.5 – 5 μM). At this concentration range, their activity was higher than that of Trolox 

itself. Also the synthetic adenosine derivatives were scavengers of ABTS. 2HFEA showed 

the best activity slightly higher than Trolox. The DPPH assay evaluated the inhibition of the 

synthetic radical DPPH at 517 nm.  

Whereas natural CKs and CKRs were not scavengers of DPPH, 2HFEA exhibited an 

activity similar to that of Trolox (2HFEA, 13 - 77%, Trolox, 13-79% at 5 – 50 μM). A similar 

trend was observed for 2FEA.  

To complete the antioxidant profile of CKs and CKRs, ORAC (Oxygen Radical Antioxidant 

Capacity) and superoxide anion assays were performed. Among CKs, only B was not 

active whereas for the remaining CKs the activity depends on the concentration range of 

the assay. Specifically, in the range up to 1.0 µM, K exhibited the highest antioxidant 

capacity, while p-T appears as the most efficient at 2.5 µM and 5.0 μM. Among CKRs, the 

antioxidant activity of BA and iPAdo was similar to that of their corresponding CKs, KR 

was more active than its base, with a peroxyl scavenging capacity similar to ρ-TR. All the 

synthetic N6-substituted adenosine derivatives showed an antioxidant activity more intense 

than ρ-TR, especially 2HFEA probably for the presence of its catechol group. In the 

superoxide anion scavenging assay, natural CKs did not show activity, whereas among 

their corresponding CKRs, only iPAdo was a moderate scavenger of superoxide anion. 
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With the exception of FEA, 2FEA and 2FEA were active against superoxide anion. The 

antioxidant activity of 2FEA was similar to that of iPAdo whereas 2HFEA was a good 

superoxide anion scavenger, similar to caffeic acid, used as reference compound. The 

heterogeneity of the results suggests in some instance a possible structure – activity 

relationship but not all the compounds are active in every antioxidant assay. Further 

characterization of the antioxidant profile using in vitro models might contribute to explain 

some of the biological activities evidenced of CKs and CKRs. 

During the third year of my PhD thesis, I have been involved in studies on the anti-

proliferative activity of CKRs on two types of cell lines. The selected cell lines were the 

Murine 661W cone-like cell line and Neuroblastoma fast- growing mouse cell line 

(Neuro2A). Trypan blue assay was used to evaluate the number of viable cells after 

treatment with each compound while the terminal deoxy-nucleotidyl transferase dUTP nick 

end labelling (TUNEL) assay was performed to evaluate the apoptosis degree expressing 

the results as number of TdT-labeled nuclei/total nuclei. All the compounds were tested in 

a concentration range from 0 (control) to 10 µM in both tests. Trypan test results on 661W 

cell line showed that p-TR and the synthetic adenosine derivatives FEA. 2-FEA, 2HFEA 

have cytotoxic properties.  FEA was the most cytotoxic compound with a I50 value of 5.3 

µM. A similar trend was observed for the Trypan test on Neuro2A cell line where the best 

value was always that of FEA (I50 = 6.5 µM). The same compounds were investigated for 

their apoptotic induction capacity. Tunel results and related microscope pictures on 661W 

cell line suggest that the examined compounds have a similar apoptotic capacity. p-TR 

was the best compound with a peak of 27 % at the concentration of 10 µM. A greater 

difference between p-TR and the synthetic adenosine derivatives was found with the test 

on Neuro2A cell line. The apoptotic grade of TR was 56.5% at the concentration of 10 µM 

while the lowest value was that of FEA (25.5 %). The cytotoxic and apoptotic properties of 

natural CKRs and synthetic adenosine derivatives might explain partially their antagonist 

activity toward the A3 receptor, involved in the anticancer response.  
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