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ABSTRACT
The identification of overexpressed miRNAs in multiple myeloma (MM) 

has progressively added a further level of complexity to MM biology. miRNA and 
gene expression profiles of two large representative MM datasets, available from 
retrospective and prospective series and encompassing a total of 249 patients at 
diagnosis, were analyzed by means of in silico integrative genomics methods, based 
on MAGIA2 and Micrographite computational procedures. We first identified relevant 
miRNA/transcription factors/target gene regulation circuits in the disease and linked 
them to biological processes. Members of the miR-99b/let-7e/miR-125a cluster, or 
of its paralog, upregulated in t(4;14), were connected with the specific transcription 
factors PBX1 and CEBPA and several target genes. These results were validated in 
two additional independent plasma cell tumor datasets. Then, we reconstructed a 
non-redundant miRNA-gene regulatory network in MM, linking miRNAs, such as let-
7g, miR-19a, mirR-20a, mir-21, miR-29 family, miR-34 family, miR-125b, miR-155, 
miR-221 to pathways associated with MM subtypes, in particular the ErbB, the Hippo, 
and the Acute myeloid leukemia associated pathways.

INTRODUCTION

Consolidated evidences indicate that microRNAs 
(miRNA) could be markedly modulated in human 

cancers, which leads them to be currently considered both 
emerging therapeutic targets and innovative intervention 
tools [1]. The oncogenic role or tumor suppressor 
activity of a number of miRNAs has been experimentally 
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demonstrated in various tumors, including hematological 
malignancies [2-6]. In multiple myeloma (MM), as well, 
specific miRNAs have been identified as deregulated in 
distinct subgroups of patients mainly in association with 
IGH@ translocations or allelic imbalances, suggesting 
that individual miRNAs may play an important role 
in neoplastic transformation and progression of the 
disease [7-12]. MM is genomically unstable and broadly 
stratified on the basis of ploidy status: hyperdiploidy 
occurs as a primary event in approximately half of MM 
tumors that have a generally better prognosis, whereas 
non-hyperdiploid tumors are enriched in primary IGH@ 
translocations events. Of these, the most prevalent are 
t(11;14) and t(4;14), which cause the deregulation of 
CCND1 and WHSC1/FGFR3 genes, respectively. Other 
genetic abnormalities arise during the evolution of the 
disease (e.g. p53 inactivation and/or deletion, Myc 
deregulation), and are specifically associated with the 
more advanced stages, such as extramedullary disease 
and plasma cell leukemia (PCL). This latter form of 
plasma cell dyscrasia, in particular, may occur de-novo, as 
primary event (pPCL), or derive as secondary evolution 
(sPCL) from primary MM tumor.

In previous investigations [7, 13], we have 
demonstrated that the main molecular prognostic groups 
in MM were characterized by the specific overexpression 
of miRNA or miRNA clusters, as in the case of miR-99b/
let-7e/miR-125a in t(4;14) positive patients. In the same 
reports, we focused on the inference of targets of a few 
miRNAs differentially expressed among MM classes using 
a relatively simple method based on the anticorrelation of 
miRNA predicted targets, which highlighted a number 
of putative transcriptional relationships. The t(4;14) 
translocation is commonly considered as early unfavorable 
prognostic factor [14], but we are far from fully 
understanding its involvement in the disease. Evidences 
have also emerged indicating that clinical and molecular 
heterogeneity within this subgroup of MM patients could 
be present, which might also be associated with miRNA 
expression [15-17]. Finally, in a recent study involving 
a large and prospective cohort, we demonstrated that a 
minimal miRNA-based classifier model (including miR-
17 and miR-886) is capable of improving risk stratification 
in MM [13].

Herein, we take advantage of genomic analyses 
applied to two independent sizeable and representative 
datasets, to generate a transcriptional and post-
transcriptional regulatory networks modulated in MM, 
in order to define microRNAs impacting in regulatory 
circuits with potential functional and clinical relevance. 

RESULTS

In this study, we first considered two large 
independent MM datasets, one retrospective, 
newly obtained by our group (“NewMM96”), and 

one prospective, already available (“MyIX153”), 
encompassing, respectively, 96 and 153 patients at 
diagnosis. Table 1 describes patient data, for each dataset.

We aimed at detecting most significant 
transcriptional and post-transcriptional regulatory 
networks modulated in MM, in order to define microRNAs 
impacting in regulatory circuits with potential functional 
and clinical relevance. The meta-analysis of the two 
miRNA and gene expression datasets were performed 
with a composite pipeline (Figure 1) designed to extract 
information from sequence and expression data, exploiting 
both an “ab initio” and a “knowledge-based” approach. 
The results of the two methods are complementary; the 
“ab initio” approach focusing on the discovery of new 
relations, while the other selecting the most involved 
relations among those described in biological pathways. 
The integrated strategy allowed us: (i) to first identify 
transcriptional and post-transcriptional regulatory 
networks in MM; then (ii) to reconstruct an informative 
and non-redundant miRNA-gene regulatory network 
in MM, linked to gene functions and known pathways; 
and finally (iii) to identify the most relevant pathways 
associated with MM subtypes.

Ab intio reconstruction of miRNA/TF/gene 
transcriptional network

The first step of the pipeline is based on MAGIA2 
method [18], which takes account of miRNAs and 
transcription factors (TF) interplay and allows identifying 
two types of mixed miRNA/TF/gene circuits, namely 
those describing (i) a TF that activates both a miRNA and 
its target gene and (ii) a miRNA that inhibits both a TF and 
its regulated gene. 

MAGIA2 analysis identified 139 and 81 mixed 
miRNA/TF/gene circuits (Supplementary Table 1), 
respectively, from the analysis of the NewMM96 and 
of the MyIX153 datasets. Among circuits detected by 
the two parallel analyses, to strengthen the analysis and 
prevent that results might be affected by batch- or cohort-
specific effects, we focused on the interlaced regulatory 
triplets that were commonly identified in both datasets: 
two most relevant overlaping circuits have been identified 
that involved the members of the miR-99b/let-7e/miR-
125a cluster on chromosome 19 (or of its paralog on 
chromosome 21), which have been demonstrated as 
specifically upregulated in t(4;14) [7, 13], the pre-B-cell 
leukemia homeobox 1 (PBX1) transcription factor, and 
the SH3RF3 and XYLT1 genes. These are linked with 
the CEBPA/let-7e relation in both datasets, but coupled 
with different target genes: FARP1 (in NewMM96) and 
NUP98 (in MyIX153). This observation gives a hint of 
the two-fold advantage of the parallel analysis of two 
datasets: not only the identification of common and strong 
elements, but also the integration and complementation of 
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dataset-specific results, which ultimately provide a broader 
picture of the disease-associated circuits, as previously 
demonstrated [19-21]. To prevent that bridges among 
circuits might be masked by the occurrence of marginally 
significant correlations (concordant but not identified in 
both dataset based on the defined correlation thresholds), 
the results from the two MAGIA2 analyses were merged 
and the nodes sharing relationships in both datasets were 
selected: as shown in Figure 2A, a new “child” network 
have been finally derived that included such eight nodes 
along with their first neighbors (for a total of 13 miRNAs 
and 60 genes) in the mixed circuits network. Figure 2B 
shows the expression levels of the miRNAs included 
in the networks of Figure 2A in t(4;14)-positive and 
-negative patients, respectively in the MyIX153 and in 
the NewMM96 dataset. Expression level of the transcripts 

included in the mixed network, in the two considered 
sample sets, are shown in Supplementary Figure 1. 
Moreover, we investigated if miRNAs and TFs included 
in the Figure 2A network tend to regulate genes associated 
to specific functional categories. The Circos plot in Figure 
3 provides a summary of the main functional categories 
(GO Biological Processes) in which the genes identified 
in the circuits in Figure 2A are annotated: specifically, it 
highlights the correspondence between miRNAs/TFs and 
the functional categories to which the connected genes 
belong.

To strengthen the reliability of the identified 
connections, we ran MAGIA2 analysis under the same 
computational criteria in two independent, publicly 
available, plasma cell tumor datasets. The first one 
(“MM60”) included 60 MM tumors at diagnosis [9], 

Figure 1: Summary of the computational workflow.
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whereas the second dataset (“PCL29”) included 29 patients 
with primary or secondary PCL. Notably, the analysis 
of the two validation sets confirmed the relationships 
involving the miRNA cluster miR-99b/let-7e/miR-125a 
with PBX1 (r = 0.24 in MM60) and CEBPA (r = 0.49 in 
PCL29) TFs. It is worth noting that the associations were 

retained in the PCL dataset, namely in the most aggressive 
form among the plasma cell dyscrasias, suggesting that 
this transcriptional circuit could be identified in tumor 
plasma cells independently of the disease presentation.

The relevance of such findings described in the 
mixed network, involving the miR-99b/let-7e/miR-125a 

Figure 2: Transcriptional and post-transcriptional regulatory circuits in MM. A. The network shows the eight nodes (bold-
outlined larger shapes) included in relationships common to the networks obtained analyzing NewMM96 and MyIX153 datasets in parallel. 
Orange triangles represent microRNAs, green boxes Transcription Factors and light-blue circles the other coding mRNAs, while edges 
represent in-silico inferred relationships, with arrows and T-shaped edges showing respectively positive and negative correlations. Color 
intensities and edge widths are proportional to absolute correlation measures (where the relationship occurred in both datasets, the measure 
from the NewMM96 was chosen for edge attributes visualization). B. Boxplots show the expression levels of the miRNAs included in 
the network in the MyIX153 and the NewMM96 dataset. Red dots refer to t(4;14) patients, while blue ones represent non-t(4;14) patients 
expressions.
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cluster overexpressed in MM patients with t(4;14), 
prompted us to further investigate, through a robust 
in silico approach, at what extent such cluster or other 
miRNAs might be involved in the biology of t(4;14) tumor 
itself.

Characterization of t(4;14)-associated pathways

A topological pathway-based analysis has been 
therefore used to disentangle the t(4;14)-associated 
network. This approach, called Micrographite [22], 
exploits the a priori gene-gene and miRNA-gene 
relations described in pathways and in literature, in 
order to unravel relevant circuits specifically modulated, 
directly or indirectly, in samples stratified according to 
investigated parameters. The procedure, herein, has been 
applied considering miRNA and gene expression data of 
NewMM96 and of the MyIX153 datasets, both stratified 

according to the occurrence of t(4;14). Thus, contrasting 
positive and negative t(4;14) patients for each dataset, 
Micrographite analysis identified the most significantly 
modulated pathways for each dataset.

The analysis of the NewMM96 dataset led to the 
identification of 66 significant pathways, whereas 47 
emerged in MyIX153; of these, 17 were commonly 
detected (26% and 36% of the identified pathways in the 
two datasets, respectively; Supplementary Table 2). This 
is a relevant overlap, considering the different generation 
arrays used in original studies and the intrinsic cohort-
specific differences. 

A single gene can be included in many pathways, 
and different pathways can be highly connected and share 
genes. Moreover, only a portion of the pathways can 
be modulated in a specific condition, as the occurrence 
of the t(4;14) on which we focused. Thus, exploiting 
pathway overlaps, Micrographite has the ability to 
dissect the obtained results highlighting only the most 

Figure 3: Impact of transcriptional and post-transcriptional regulators on biological process in MM. The Circus plot 
shows the correspondence between miRNAs and TFs included in the network of Figure 2A and the main functional categories (Gene 
Ontology Biological Processes) to which their target genes belong.
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important set of interactions inside a pathway. Here, 
aimed at providing a better and a more complete picture 
of regulatory mechanisms in the disease, the results from 

the two datasets were combined. Specifically, the genes 
and microRNAs included in the upper most significant 
10th percentile of the identified pathways were selected 

Figure 4: Union of KEGG path-derived networks associated to t(4;14) phenotype by micrographite analysis of 
NewMM96 and MyIX153 datasets. A. Union network of the two meta-pathways build on the two and four most significant paths 
associated with t(4;14) phenotype in MyIX153 and NewMM96 datasets, respectively. For reader’s convenience, only miRNAs and first 
neighbors are visualized, whereas the complete network is depicted in Supplementary Figure 2. miRNAs are represented with triangles, 
genes with circles. Cyan, blue and orange solid edges connected genes included in ErbB signaling, Hippo and acute myeloid leukemia 
pathways, respectively. The color scale bar (bottom right) is referred to the fill-in color of each node, representing the log2ratio between 
t(4;14) and non-t(4;14) patients mean expression levels. Gray nodes represent elements whose expression levels, measured in the MyIX153 
and NewMM96 dataset, presented a minimal discrepancy, not exceeding ± 0.1. The 23 transcripts that exceeded ± 0.1 threshold were 
discarded from the network. B. Sketch of the genomic structure of four miRNA clusters represented in the network. For each miRNA in a 
cluster, target genes are shown as connected node; miRNA/gene color indicates the log2ratio between t(4;14) and non-t(4;14) patients mean 
expression levels, as is in the network of panel A.
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Table 1: Summary of MM patients’ data and cytogenetic features. P-value indicates the result of 
Fisher's exact test of independence between patient classes and sample distribution.

Description MyIX153 NewMM96 P-value

Sex
M 88 (57.5%) 48 (50%) 0.29F 65 (42.5%) 48 (50%)

Age
≤ 70 109 (71.2%) 63 (65.5%) 0.39> 70 44 (28.8%) 33 (34.5%)

del(13q)
+ 56 (36.6%) 50 (52%)

0.06- 87 (56.9%) 46 (48%)
n.d. 10 -

t(4;14)
+ 22 (14.4%) 13 (13.5%)

0.85- 121 (79.1%) 83 (86.5%)
n.d. 10 -

t(11;14) 22 (14.4%) 22 (22.9%)
0.17+ 121 (79.1%) 74 (77.1%)

- 10 -
n.d.

t(14;16)
+ 4 (2.6%) 4 (4.2%)

0.72- 139 (90.8%) 92 (95.8%)
n.d. 10 -

t(14;20)
+ 2 (1.3%) 1 (1%)

1- 141 (92.2%) 95 (99%)
n.d. 10 -

Hyperdiploidy
+ 83 (54.2%) 32 (33.5%)

0.003- 60 (39.2%) 54 (56%)
n.d. 10 10

1q+
+ 56 (36.6%) 41 (42.7%)

0.22- 87 (56.9%) 45 (46.9%)
n.d. 10 8

del(1p)
+ 25 (16.3%) 6 (6%)

0.1- 118 (77.1%) 67 (70%)
n.d. 10 22
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for each dataset (which corresponded to the genes and 
miRNAs included in the two and four most significant 
pathways in MyIX153 and NewMM96 datasets, 
respectively; Supplementary Table 2) and used to build 
a comprehensive meta-pathway. Finally, the obtained 
meta-pathway has been re-analyzed to rank the portions 
associated mostly with t(4;14) translocation. Figure 
4 shows the union network, ultimately giving a non-
redundant, functionally informative data-driven picture. 
For reader’s convenience, only microRNAs and the first 
nearest neighbors (namely, the primary connections) have 
been visualized, whereas the whole network is reported in 
Supplementary Figure 2. 

Of note, of the 17 pathways common to both 
datasets after the first step of the analysis, seven were still 
represented in the final union network. Three of seven 
were of major interest in the context of MM: namely, 
the ErbB pathway, the Hippo pathway, and the acute 
myeloid leukemia associated pathway. Interestingly, in 
the final network several genes, also largely described 
in MM biology, emerged as interconnected nodes within 
these pathways, and specific miRNAs (most of which 
already known to be involved in MM biology) represent 
the connection between them: let-7g, miR-19a, mirR-20a, 
mir-21, miR-29 family, miR-34 family, miR-125b, miR-
155, miR-221. We also found that CCND1 and the related 
CDK genes network are putatively associated with a large 
number of miRNA species, among which there was the 
miR-125a, a marker of t(4;14) translocation.

Based on the availability of clinical information 
in MyIX153 dataset, we tested whether the differential 
expression of any of these miRNA may somehow be 
associated with clinical outcome in t(4;14), namely if 
their upregulation might hypothetically confer prognostic  
(dis)advantage in terms of OS or PFS. Although the 
limited number of cases prevents the possibility to trace 
definitive conclusions, the results of the analysis indicated 
that the overexpression of members of miR-17~92 cluster 
could be related to increased risk of death (Supplementary 
Table 3A and Supplementary Figure 3A), whereas the 
overexpression of miR-520c-3p could be associated with 
lower risk of early progression (Supplementary Table 3B 
and Supplementary Figure 3B). However, none of the 
miRNAs retained significance after correcting for multiple 
test, which demands for cohorts with higher number of 
t(4;14) patients to confirm this preliminary finding.

DISCUSSION

Herein, we have taken virtue of state-of-the-art 
computational procedure to provide a comprehensive and 
biologically relevant view of the transcriptional regulatory 
networks in MM, highlighting microRNAs with potential 
functional significance and clinical relevance. The present 
study overcomes most of the limitations of our previous 
report [7], which had been focused on the inference of 

targets of a few miRNAs found differentially expressed 
among MM classes: (i) implemented procedures, run 
simultaneously on two different large datasets of MM 
at diagnosis and validated in two additional independent 
datasets; (ii) a refined method for inference of mixed 
miRNA-TFs-target circuits from expression data; (iii) 
updated target predictions and annotations; and (iv) a 
topology based methods considering miRNAs and gene 
expression variations in pathway-derived networks. 
All together, these aspects represented a substantial 
improvement to unravel subtle, but potentially biologically 
meaningful, variations in the expression of miRNA/TFs/
genes. We have recently demonstrated the advantages of 
such novel integrative genomic approaches in disclosing 
the connection between the differential miRNome and 
transcriptome in hyperdiploid versus non-hyperdiploid 
MM tumors [23]. 

Undoubtedly, the major finding involved the miRNA 
cluster miR-99b/let-7e/miR-125a, which represents so far 
one of the most promising field of study in MM given the 
exclusive association with the t(4;14) translocation [7, 13]. 
So far, little is known about the TFs involved in t(4;14)-
associated circuits in myeloma. PBX1 has been largely 
described in acute lymphoblastic leukemia; notably, it 
has been suggested that, in complex with MEIS2, PBX1 is 
involved in transcriptional regulation mediated by KLF4, 
which has been previously shown by us as specifically 
overexpressed in t(4;14) patients [24, 25]. Upregulation 
of CEBPA has been linked to favorable prognosis in both 
adult and pediatric acute myeloid leukemia patients. Based 
on the close relationship that binds the overexpression of 
miR-99b/let-7e/miR-125a and t(4;14), we may speculate 
that the modulation of PBX1 and CEBPA, excluding 
for obvious reasons the direct relationship with the 
translocation event, could be somehow related to t(4;14) 
beyond the WHSC1/FGFR3 deregulation mechanism 
and in tight connection with the overexpression of such 
miRNA cluster.

Therefore, prompted by this hypothesis, in the 
second part of our study we focused on the reconstruction 
of the topological pathways associated with t(4;14) in 
MM, leading to the identification of main interlaced 
pathways. The first two pathways that are worth 
mentioning are associated (i) with the ErbB receptor 
signaling and (ii) with genes (c-KIT, STAT3, AKT3) 
that have been mainly described as increased in acute 
myeloid leukemia, in which the crucial role of CEBPA 
has been widely demonstrated [26, 27]. A bridge could 
be established by the PI3K/AKT/mTOR1 pathway, 
that has been demonstrated to direct the lineage fate 
during myelopoiesis at least in part by controlling the 
phosphorylation of CEBPA [28]. The transcriptional 
network recognized a putative functional association 
interposing miR-125a between ERBB2/ERBB3, TP53 and 
CDKN1A. The relationship between miR-125a and ERBB 
genes family has indeed been demonstrated in several 
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tumors [29], whereas the induction of a p53-dependent 
tumor suppression specifically induced by miR-125a 
inhibition has been recently described by us in MM [30]. 
A parallel connection has been identified between miR-29 
family and CDK6, interaction on which reside the miR-
29-antiproliferative effects reported in B-cell lymphomas 
[31].

Furthermore, the topological map highlighted the 
modulation and the involvement of the Hippo pathway. 
Recently, it has been described that low levels of YAP1, a 
co-activator of the Hippo pathway under the control of the 
serine-threonine kinase STK4, prevents the ABL1-induced 
p53-independent apoptosis stimulated by DNA-damage 
in MM tumor cells [32]. Significantly higher YAP1 levels 
have been identified associated with the large fraction of 
t(4;14) cases; this was more evident in MyIX153 dataset 
(P = 0.00065, Supplementary Figure 4A) although 
a concordant trend was also observed in NewMM96 
(Supplementary Figure 4B). Such higher YAP1 levels 
could be in apparent contrast with what expected in cases 
presenting the t(4;14) translocation, which is commonly 
considered as unfavorable in MM; however, this might 
partially be explained with the known heterogeneity of 
t(4;14) patients, that are stratified in two prognostically 
distinct entities [14-17]. In line with this consideration, 
t(4;14) with higher YAP1 levels in MyIX153 presented 
a slightly, although not significantly, more favorable 
outcome than other cases (Supplementary Figure 5). 
The Hippo network has been connected with miRNAs 
that resulted consistently, albeit faintly, modulated in 
t(4;14). These included the well-known miR-17~92 
cluster, whose miRNAs were linked with members of 
the TGFβ-associated Ser/Thr-kinases pathway, such as 
TGFBR2, BMPR2 and the signal transducer SMAD4. The 
involvement of these correlated genes in bone formation 
[33], together with the documented lower occurrence of 
osteolytic bone lesions in t(4;14) patients [34], hint that 
regulatory mechanisms involving miR-17~92 cluster 
and the TGFβ/Hippo pathways are worthy of further 
investigations.

MATERIALS AND METHODS

Datasets

Proprietary dataset (“NewMM96”)

Samples. Bone marrow aspirates from newly-
diagnosed 96 MM patients were obtained during standard 
diagnostic procedures at the IRCCS Institution in Milan. 
A fraction of these samples (40 cases), whose expression 
had been also analyzed on old-generation array platforms, 
were described in previous report [7]. All patients gave 
their informed consent for molecular analyses. PCs were 
purified using CD138 immunomagnetic microbeads 

(MidiMACS, Miltenyi Biotec, Auburn, CA). The purity 
of the positively selected PCs (≥90%) was assessed by 
means of flow cytometry. All MM cases were investigated 
by fluorescence in-situ hybridization (FISH) for the 
major Immunoglobulin Heavy-Chain locus (IGH@) 
translocations and genetic lesions [13q14 deletion, TP53 
deletion, gain of chromosome 1q21.3 (CKS1B) and 
deletion of 1p33 (CDKN2C)] using appropriate BAC 
clones (selected through UCSC Genome Browser at http://
genome.ucsc.edu/) according to previously described 
procedures [35].

MiRNA and gene expression profiling. The total 
RNA extraction and quality assessment were performed 
as previously described [7]. Samples were profiled in 
accordance with the manufacturer’s instructions on 
GeneChip® miRNA 3.0 arrays. Raw data were extracted 
from CEL files and then normalized using robust multi-
array average (RMA) procedure in the affy package for 
Bioconductor and the miRbase Release 18 annotations 
(www.mirbase.org) included in the corresponding cdf 
definition files available at the University of Michigan 
Brainarray portal (http://brainarray.mbni.med.umich.edu/
Brainarray/Database/CustomCDF/18.0.0/version.html). 
Annotations were then updated to miRBase Release 
20 definition using the mirna.diff files available at the 
miRbase website. The raw and normalized miRNA data 
are available through GEO accession number GSE70254. 

Whole gene transcriptional profiles were then 
generated using GeneChip® Gene 1.0 ST Array 
(Affymetrix Inc., Santa Clara, CA). Preparation of 
DNA single-stranded sense target, hybridization and 
scanning of the arrays (7G Scanner, Affymetrix Inc.) were 
performed according to the manufacturer’s protocols. 
Log2-transformed expression values were extracted from 
CEL files and normalized using RMA procedure in the 
affy package for Bioconductor and the Transcript Cluster 
Annotations included in the cdf definition files version 18 
available at the Brainarray portal. 
MRC myeloma IX dataset (“MyIX153”)

The gene and microRNA expression profiles of 
one-hundred and fifty-three patients included in MRC 
Myeloma IX trial and described in our previous report 
[13] were considered for the present study. The whole 
expression data were publicly available at the Gene 
Expression Omnibus (GEO) repository under accession 
number GSE15695 and GSE41276 and were processed 
as previously described [13], using the Brainarray cdf 
definition files version 18, as done for the proprietary data.
GSE16558 dataset (“MM60”)

The gene and microRNA expression profiles of sixty 
MM patients publicly available under GEO accession 
GSE16558 were considered as validation set for the 
present study. The gene expression data, generated on 
GeneChip® Gene 1.0 ST Array (Affymetrix Inc., Santa 
Clara, CA), were processed as described above for 
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proprietary dataset, using the Brainarray cdf definition 
files version 18, as done for the proprietary data. The 
miRNA expression data, generated on Applied Biosystems 
Human TaqMan® Low Density Array, were dowloaded as 
originally released by the Authors [9] and then reannotated 
to the updated miRBase Release 20 definition using the 
mirna.diff files available at the miRbase website. 
Plasma cell leukemia dataset (“PCL29”)

The gene and microRNA expression profiles of 
twenty-nine plasma cell leukemia patients were considered 
as validation set for the present study. This cohort includes 
primary (pPCL) and secondary (sPCL) cases, the former 
described in previous studies from our group [36, 37]. 
The gene expression data, generated on GeneChip® Gene 
1.0 ST Array (Affymetrix Inc., Santa Clara, CA), and 
the miRNA expression data, generated on GeneChip® 
miRNA 3.0 arrays, were processed as described above for 
proprietary dataset. The raw and normalized RNA data are 
available through GEO accession numbers GSE73452 and 
GSE73454.

MAGIA2 analysis for the identification of mixed 
circuits involving miRNA/TF/mRNA

For each dataset, miRNA and transcripts expression 
data were analyzed using MAGIA2, to identify mixed 
circuits (triplets) involving miRNA/gene/transcription 
factor (TF; http://gencomp.bio.unipd.it/magia2/), as 
previously described [18]. Specifically, Targetscan was 
used as target prediction algorithm, and Pearson coefficient 
was used to measure relationships between microRNA and 
target mRNA expression profiles. Only the most variable 
75% genes according to the coefficient of variation were 
considered. Lower threshold for absolute correlation 
coefficients within circuits was set to 0.2; 0.4 was used for 
miRNA/target binary relationships. Functional annotation 
analysis was performed using the standard procedure in 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) tool [38], version 6.7. Circos plot [39] 
was generated using the online tool at http://mkweb.bcgsc.
ca/tableviewer/

Micrographite analysis to detect most modulated 
pathway-derived networks

Micrographite pipeline allows integrating pathway 
topologies with predicted and validated miRNA-target 
interactions, to perform integrated analyses of miRNA 
and gene expression profiles, for the identification of 
modulated regulatory circuits involved in the disease 
in terms of both expression variations and differential 
strength of inferred interactions [22]. Micrographite has 
two steps: i) the extension of pathway annotation using 
miRNA-target interaction and ii) recursive topological 

pathway analysis on these networks. We considered 
network topologies derived from KEGG database 
by Graphite package [40] and miRNA-target gene 
interactions identified by the above-described MAGIA2 
analysis. Specifically, a miRNA was added to a pathway-
derived network only if one (or more) of its validated or 
predicted target genes is a pathway component. Then, 
a modified recursive version of CliPPER topological 
pathway analysis [41] was applied to the composite 
network, as previously described [22] in order to identify 
the most important and non-redundant circuit modulated 
across groups. Briefly, (i) in the first step, the most 
significant pathways were selected using P < 0.1 as cut-
off value for significance; (ii) for each dataset, the upper-
scored 10th percentile of the portion of these previously 
selected pathways (calculated over a 10,000-permutation 
step) mostly associated with phenotype were selected; 
and (iii) for each dataset a meta-pathway was assembled 
using the pathways extracted from previous step and 
finally re-analyzed. Finally, the genes/miRNAs included 
in the upper-scored 10th percentile of the new generated 
pathways were selected for testing the overlapping 
between the two datasets.

Statistical analysis

To compare the distribution of values between 
two populations, Wilcoxon rank-sum test was applied 
using standard function in base R package. Conventional 
survival analysis was performed using survival package 
for R software. Cox proportional hazards model in the 
globaltest function in the homonymous package for R 
software (under 100,000 permutations) was used to test 
the positive or negative association between miRNA 
expression levels, assumed as continuous variables, and 
overall survival (OS) or progression-free survival (PFS) as 
clinical outcome. Benjamini and Hochberg correction was 
used for multiple testing adjustments.
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