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ABSTRACT  

Multiple myeloma (MM) is a plasma cell malignancy that accounts for more than 
10% of all blood cancers. Despite a wide variety of available lines of treatment, 
virtually all patients experience cycles of remission/relapse or become 
unresponsive to treatment. A growing body of evidence highlights the contribution 
of clonal heterogeneity to disease progression and resistance to therapy. In recent 
years the importance of post-transcriptional regulatory mechanisms (such as RNA 
editing) in cancer has emerged. RNA editing is particularly intriguing as a potential 
source of genetic diversity, as can affect several mRNA features, including stability, 
localization, nuclear retention, and alternative splicing. In mammals, most RNA 
editing is carried out by Adenosine Deaminases acting on dsRNA (ADAR) that 
catalyze the hydrolytic deamination of adenosines (A) to inosines (I). In particular, 
ADAR1 has been associated with disease progression and cancer stem cell 
maintenance in both solid tumors and hematopoietic malignancies. The central aim 
of this work was to investigate ADAR1 as a mechanism of clonal heterogeneity and 
drug resistance in MM. We postulated that ADAR1-dependent aberrant A-to-I RNA 
editing in MM cells could drive transcriptome “reprogramming” in MM tumor cells, 
thus contributing to disease relapse and drug resistance. We also sought to identify 
cell-intrinsic and microenvironment-derived mechanisms that promote aberrant 
ADAR1-mediated RNA editing. We hypothesized that BM inflammatory signals, 
promoted by MM deregulated pathways such as Notch, sustain ADAR1-mediated 
reprogramming. We observed significantly increased ADAR1 expression in plasma 
cell leukemia (PCL), the advanced, highly drug-resistant stage of MM, and 
detected aberrant RNA editing in GLI1 and APOBEC3D transcripts by a novel RNA 
editing site-specific qPCR assay (RESSqPCR) that we developed. Furthermore, 
we established successful MM xenografts by intrahepatic transplantation of 
ADAR1-enriched PCL samples, thus providing a robust new in vivo model and 
platform for testing new therapeutic strategies aimed at treating drug-resistant 
forms of MM. We showed that continuous in vitro exposure to the anti-MM agent 
and immunomodulatory drug (IMiD), lenalidomide, induced ADAR1 expression and 
widespread aberrant RNA editing activity in MM cells, coupled with increased self-
renewal capacity and a cancer stem cell phenotype. Furthermore, we observed 
that pro-inflammatory IL-6 promoted RNA editing, suggesting that MM-associated 
microenvironmental factors may play a key role in triggering ADAR1-associated 
malignant transcriptome recoding. Notably, IL-6 production from human BM 
stromal cells and from MM cells can be inhibited by silencing the overexpressed 
Notch ligands Jagged1 and Jagged2 in MM cells. In keeping with these findings, 
ADAR1 overexpression and deregulated RNA editing represents a unique source 
of RNA and protein diversity, and may endow survival advantages to MM cells in 
selective environments, such as the BM niche or under the pressure of 
chemotherapy. This work therefore identifies ADAR1 as a potential new diagnostic 
and therapeutic target in MM, and inhibition of this pathway, or its regulators and 
editing substrates, could provide a dynamic avenue to prevent disease relapse and 
disease progression and achieve long-term survival. 
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SOMMARIO 

Il Mieloma Multiplo (MM) è un tumore delle plasma cellule che rappresenta più del 
10% dei tumori del sangue. Nonostante gli approcci terapeutici disponibili, quasi 
tutti i pazienti affrontano cicli di remissione/ricaduta e/o sviluppano resistenza 
farmacologica. Un numero crescente di osservazioni sottolinea il contributo 
dell’eterogeneità clonale nella progressione tumorale e nella refrattarietà alla 
terapia. Negli ultimi anni l’importanza dei meccanismi di regolazione post-
trascrizionale (come l’RNA editing), è emersa in oncologia. L’RNA editing è 
particolarmente interessante come potenziale fonte di diversità genetica, poichè 
può influenzare diverse caratteristiche dell’mRNA, compreso stabilità, 
localizzazione, retenzione nucleare e splicing alternativo. Nei mammiferi la maggior 
parte dell’RNA editing avviene ad opera delle adenosina-deaminasi che agiscono 
sull’RNA a doppio filamento (ADAR), enzimi che catalizzano la deaminazione delle 
adenosine in inosine. In particolare, ADAR1 è stato associato alla progressione 
tumorale e al mantenimento delle cellule tumorali staminali in tumori solidi ed 
ematologici. Lo scopo principale di questa tesi è stato quello di investigare ADAR1 
come meccansimo di supporto all’eterogeneità clonale e alla farmaco-resistenza 
nel MM. Abbiamo ipotizzato infatti che la deregolazione dell’RNA editing 
dipendente da ADAR1 possa portare alla “riprogrammazione” del trascrittoma delle 
cellule di MM, contribuendo alla ricaduta. Inoltre, abbiamo cercato di identificare 
meccamismi intrinseci e derivanti dal microambinete che potessero promuovere la 
deregolazione dell’RNA editing mediata da ADAR1. Abbiamo ipotizzato che segnali 
infiammatori nel midollo osseo, indotti da pathyway deregolati come quello di 
Notch, sostengano la riprogrammazione ADAR1-mediata. Abbiamo osservato un 
significativo aumento dell’espressione di ADAR1 in campioni di leucemia delle 
plasma cellule (PCL), la fase avanzata e altamente resistente alla terapia del MM, 
e rilevato aberrante RNA editing negli trascrittidi GLI1 e APOBEC3D, grazie ad un 
nuovo metodo per quantificare RNA editing in siti specifici da noi sviluppato 
(RESSqPCR). Inoltre, abbiamo xenotrapiantato con successo cellule di PCL, 
esprimenti alti livelli di ADAR1, tramite inienzione intraepatica, così fornendo un 
robusto e innovativo modello in vivo e piattaforma per testare nuove strategie 
terapeutiche finalizzate a trattare le forme refrattarie di MM. Abbiamo mostrato 
come l’esposizione prolungata in vitro al farmaco immunomodulatorio (IMiD) anti-
MM lenalidomide induce l’espressione di ADAR1 e deregolata attività di RNA 
editing nelle cellule di MM, accompagnate da aumentata capacità di auto-
rinnovamento e da un fenotipo tipico delle cellule tumorali staminali. Inoltre 
abbbiamo osservato che la stimolazione con interleuchina pro-infiammatoria 6 (IL-
6) promuove l’RNA editing, suggerendo come fattori microambientali associati al 
MM possano giocare un ruolo nell’innescare la riprogrammazione maligna 
associata ad ADAR1. Di particolare rilevanza, la produzione di IL-6 da parte delle 
cellule midollari stromali e delle cellule di MM può essere inibita dal silenziamento 
dei ligandi di Notch Jagged1 e Jagged2, overespressi dalle cellule di MM. In linea 
con questi risultati, l’overespressione di ADAR1 e il deregolato RNA editing 
rappresentano una eccezionale fonte di diversità a livello trascrizionale e proteico, 
e portebbero avvantaggiare la sopravvivenza delle cellule di MM in ambienti 
selettivi, rappresentati dalla nichia midollare o dalla pressione selettiva della 
chemioterapia. Questo lavoro di conseguenza identifica ADAR1 come potenziale 
nuovo target diagnostico e terapeutico nel MM; l’inibizione di questo pathway, o dei 
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suoi regolatori e dei target soggetti ad editing, potrebbe fornire un approccio 
dinamico per prevenire ricadute, l’avanzamento della patologia e raggiungere la 
sopravvivenza a lungo termine dei pazienti.  
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1. Multiple Myeloma 

Multiple myeloma is a neoplastic plasma-cell disorder that is characterized 

by clonal proliferation of malignant plasma cells (PCs) in the bone marrow 

(BM) microenvironment, monoclonal protein in the blood or urine and 

associated organ dysfunction. It belongs to a group of related 

paraproteinaemias, namely diseases that produce an immunoglobulin from 

a single clone that is present at high levels in the serum. They include 

multiple myeloma (MM), monoclonal gammopathy of undetermined 

significance (MGUS) and Waldenstrom’s macroglobulinaemia (WM). 

MM accounts for 1% of all cancers and 13% of all hematologic cancers [1]. 

In Western countries the annual incidence is 5.6 cases per 100.000 

persons [2], and the median age at diagnosis is about 65 years [3]. The 

disease is slightly more common in men than in women and is twice as 

common in African-Americans compared to Caucasians [4]. Almost all 

patient with MM evolve from the asymptomatic premalignant stage of 

MGUS, which affects at least 3% of adults older than 50 years [4]. 

Moreover, in some cases, MM arises from another asymptomatic but more 

advanced premalignant stage, referred as smoldering multiple myeloma 

(SMM). The risk to progress from SMM to MM is 10% per year in the first 5 

years, 3% per year for the next 5 years and 1% per year for the last 10 

years, reaching a cumulative probability of progression of 75% at 15 years 

[5]. Tumor cells then can accumulate further cytogenetic and molecular 

alterations that contribute to disease progression to secondary plasma cell 

leukemia (PCL), the leukemic transformation of end-stage MM [6]. 
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Figure 1.1: Multistep pathogenesis of Multiple Myeloma (adapted from [2]). 

Early chromosomal abnormalities are shared by plasma cells in MM and in MGUS. 

Secondary translocations and mutations involving MYC, RAS and TP53 play a role 

in tumor progression and drug resistance. Moreover, abnormal interactions 

between plasma cells and bone marrow are hallmarks of disease progression. 
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1.1 Diagnosis 

The diagnosis of MM requires at least 10% or more clonal plasma cells on 

bone marrow examination or a biopsy-proven plasmacytoma and evidence 

of end-organ damage, such as hypercalcemia, renal insufficiency, anemia 

and bone lesions that are felt to be related to the underlying plasma cell 

disorder. Moreover, the presence of 60% or more clonal plasma cells in the 

marrow should also be considered as myeloma, regardless of the 

presence/absence of end-organ damage [7]. When MM is clinically 

suspected, patients should be tested for the presence monoclonal proteins 

(M proteins) through a series of tests, such as serum protein 

electrophoresis, serum immunofixation and serum-free light chain (FLC) 

assay [1]. However, approximately 2% of patients with MM have non-

secretory disease and no evidence of M protein on any of the mentioned 

assays [8]. Three main staging systems have been developed during the 

years, namely Durie&Salmon system, the International Staging System 

(ISS) [9] and the latest Mayo Stratification of Myeloma and Risk-Adapted 

Therapy (mSMART) guidelines [10]. All the three systems split the patients 

in three risk categories, termed as stage I, II and III by Durie&Salmon and 

ISS classifications, while low, standard and high-risk by mSMART 

classification. While the previous staging systems evaluated mainly blood 

parameters such as hemoglobin, M proteins, calcium, albumin, creatinine 

and β2-microglobulin, mSMART guidelines introduced molecular 

cytogenetic markers to assess disease aggressiveness, taking into 

consideration hyperdiploidy and several recurrent chromosomal 

aberrations. Patients with standard-risk have a median overall survival (OS) 

of 6-7 years, while those with high-risk disease have a median OS of less 

than 2-3 years, despite therapy (autologous stem-cell transplantation) [11]. 

Risk stratification also helps to design specific risk-adapted therapeutic 
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regimens that will be discussed more accurately in the following 

paragraphs. 

1.2 Pathogenesis 

As MM is a tumor of antibody-producing PCs, it is fundamental to 

understand how B cells develop. During the early B cell differentiation in the 

BM, the variable (V), diversity (D) and joining (J) gene segments of the 

immunoglobulin (Ig) genes are rearranged to generate the primary Ig 

repertoire. Ig heavy chain gene (IGH) rearrangement precedes Ig light 

chain, and DH to JH joining precedes VH to DJH joining. The assembly of a 

functional IgH-IgL complex on the cell surfaces (the so-called pre B-cell 

receptor, BCR), allows B cells to escape apoptosis and exit the BM 

environment and move to secondary lymphoid organs. In the lymph node 

virgin B cells reach the germinal center (GC), where cells expressing a 

functional BCR undergo affinity maturation in response to antigen-

presenting cells (APCs). This process requires the IGH locus to undergo 

somatic hypermutation (SHM), to produce highly specific and avid 

antibodies, and class switch recombination (CSR), namely the mechanism 

that changes the IgM isotype to IgG-, IgA- or IgE-generating antibodies with 

different functional characteristics. If illegitimate CSR occurs in the GC, the 

cell can still undergo maturation to a memory B cell, and it may exit the 

lymph node with an acquired ability to survive and proliferate as a 

consequence of oncogene deregulation. The acquired survival/proliferative 

ability would allow this premalignant clone of PCs to accumulate secondary 

hits, which will eventually occur in and deregulate critical genes, leading to 

emergence of a malignant myeloma clone in the BM. The malignant PCs 

observed in MM are localized to the BM in the earlier stages of the disease 

and most closely resemble long-lived PCs. These cells have undergone 

antigen selection outside the BM, as demonstrated by their isotype-
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switched and somatically hypermutated Ig genes. Myeloma cells have 

significantly lower rates of Ig secretion compared with normal PCs; 

therefore it appears that critical tumor transformation events take place 

after or do not interfere with most of the normal B-cell differentiation 

process, leading to long-lived PCs [12],[13]. Moreover, a critical feature 

shared by MGUS and MM is an extremely low rate of proliferation [14][15], 

usually with no more than a small percentage of cycling cells until 

advanced stage disease. This suggest the existence of a malignant, self-

renewing precursor cell as a result of oncogenic transformation and 

selection, but the phenotype and features of this population have not yet 

been fully elucidated, as discussed in the next paragraphs.  

 

 

Figure 1.2: The B cell development (adapted from [16]). In the germinal center, 

affinity maturation occurs through somatic hypermutation and antigen selection. 

Subsequently, class switch recombination leads to the development of 

immunoglobulin (Ig) isotypes. After this, the plasmablast migrates to the BM were it 

becomes a long-lived plasma cell that produces antibody. The machinery 

necessary to generate these physiological DNA rearrangements can malfunction, 

leading to malignant change. 
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1.3 Genetic alterations 

Myeloma is thought to evolve most commonly from the asymptomatic stage 

of MGUS through a multistep process that involves both genetic and 

epigenetic changes. 

Karyotypes normally seen in this disease are extremely complex; indeed, 

while most blood cancer present with single chromosomal translocations, 

MM cells from newly diagnosed have an average of seven different 

abnormalities in chromosome number and/or structure and the karyotypic 

complexity is thought to increase during tumor progression [17].  

Genomic instability is intrinsic to B lymphoid cells; thus it is not surprising 

that a primary event in many B cell tumors is the translocation of an 

oncogene near one of the potent Ig enhancers. MM is a paradigmatic case 

as well, indeed primary translocation involving the immunoglobulin heavy 

chain locus (IGH) are present in 50% of MGUS tumors, 60% of 

intramedullary and 70-80% of PCL tumors. Ig kappa translocations are less 

frequent, they are present only in 17% of intramedullary MM, whereas Ig 

lambda translocation are very rare [18].  

Primary translocations are mediated mainly by errors in the IgH switch 

recombination, while sometimes by errors in SHM during PC generation in 

GC. As B-cell DNA- modification mechanisms seem to be inactive in 

normal and neoplastic PCs, secondary translocations must be mediated by 

other mechanisms [19]. Five partner oncogenes commonly placed under 

the control of the Ig loci are: cyclin D1 (CCND1) on chromosome 11q13, 

CCND3 on 6p21, fibroblast growth factor receptor 3 (FGFR3) and multiple 

myeloma SET domain (MMSET) [20],[21] on 4p16, c-MAF (16q23) and 

MAFB (20q11). Together, the combined prevalence of these five IgH 

translocation partners is about 40% in MM, with approximately 15% 11q13, 

3% 6p21, 15% 4p16, 5% 16q23 and 2% 20q11 [22]. 
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While primary translocations involve B-cell-specific mechanisms and are 

frequently already present in MGUS, secondary translocations happen later 

in disease progression. These events are often non reciprocal and can 

involve more than two different chromosomes. c-MYC (8q24) is typically 

deregulated by such events, and its rearrangements correlate with the 

severity of the disease [23]. MYC translocations are absent or rare in 

MGUS, but occur in 15% of MM tumors, 45% of advanced tumors and 90% 

of human myeloma cell lines (HMCL) [22]. 

Another common mutation that increases in frequency with disease stage is 

the monoallelic loss of 13q, which occurs in approximately 60% of MM. 

Nearly half of MM tumors are hyperdiploid (HRD; 48-75 chromosomes) and 

often have multiple trisomies. Non HRD tumors (<48 or >75 chromosomes) 

are associated to a poorer prognosis than HRD tumors [24]. 

Moreover, activating mutations of NRAS or KRAS2, mutations in TP53 and 

the inactivation of cyclin-dependent kinase inhibitors CDKN2A and 

CDKN2C are other secondary late-onset mutations implicated in disease 

progression [18],[19]. 
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Figure 1.2: The key genetic changes in MM genome (adapted from [16]). The 

Circos plot shows the key translocations, copy number abnormalities and mutation 

in MM. Chromosome are arranged around the circle starting from chr.1 (brown) 

and continuing clockwise. IgH translocations (IGH@) are presented as lines 

emerging from chr.14 to their partner chromosomes. Copy number data is 

presented on the inside of the circle, while deletions and/or mutations are labeled 

outside of the circle. 
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1.3.1 Low versus high risk MM 

The advent of new technologies, such as interphase fluorescence in situ 

(FISH), comparative genomic hybridization and gene-expression profiling 

(GEP) have provided the necessary tools to stratify MM patients in deeper 

detail. The combination of the International Staging System (ISS), based on 

serum albumin and beta-2 microglobulin, with genetics helped to segregate 

patients in three risk groups. Accordingly to the International Myeloma 

Working Group (IMWG) high-risk patients with either ISS stage II or III and 

the presence of either t(4;14), and/or 17p13 deletion have a median overall 

survival of about 2 years, whereas low-risk patients with ISS stage I or II 

and absence of these high-risk genetics have 5-and 10-year overall survival 

rates of 70% and 51%, respectively [25]. Recent prognostic models include 

several other genetic lesions. For example, according to the Medical 

Research Council Myeloma IX trial, patients can be classified in three 

genetic risk groups as follows: a favorable risk group with no adverse FISH 

lesions, an intermediate group with one adverse genetic lesion involving the 

immunoglobulin heavy chain gene (IGH) –t(4;14), t(4;16), t(14;20), 17p 

deletion, or 1q gain, and a high-risk group with more than one adverse 

genetic lesion [26]. 

A particularly interesting high-risk mutation is represented by 1q21 gain. In 

recent years, several independent groups pointed out its importance in 

disease progression and prognosis [27]–[29]. Amplifications in 1q21 are 

very common, 30-45% of MM patients harbor +1q21, and its frequency 

increases in relapsed MM [28],[29]. Moreover, +1q21 were found to co-

segregate with other IGH-involving translocations, thus lowering overall 

survival to 1 year [26]. Such strong association with adverse prognosis 

stresses the importance of clearly correlate 1q21 mutations with 

overexpressed genes on 1q, in order to identify new therapeutic targets. 

Chromosomal gains of 1q21 region can occur in the form if 
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isochromosome, duplications or jumping translocations [30],[31]. One of the 

genes located at 1q21 is CKS1B: it codes for an accessory protein to the 

E3 ligase SCF-Skp2, which induces degradation of the CDK inhibitor 

p27Kip1 by ubiquitination. Elevated expression of CKS1B may lead to 

inappropriate degradation of p27, which regulates Cdk2-cyclin E activity 

and G1/S cell cycle transition [32]. CKS1B expression increases with 1q21 

amplification and elevated levels are associated with more proliferative MM 

[29],[34]. CKS1B overexpression may be from increased copy number of 

1q21, however, other genes located in this region have been associated 

with poor prognosis and/or drug resistance in MM, including IL-6 receptor 

(IL-6R), Bcl-2 family member Myeloid Cell Leukemia 1 (MCL-1)[35],[36], 

and other not yet identified genes could play a critical role in MM 

progression. Furthermore, most of the studies so far focused on isolated 

bulk tumor cells, defined as syndecan-1 (CD138) expressing-plasma cells, 

while still little is known about 1q overexpressed genes in the context of 

myeloma cancer stem cells. 

 

Figure 1.4: Genetic 

classifications of MM (adapted 

from [37]). The most common 

high-risk genetic features are 

t(4;14), del17p and gain 1q21. 

Detection of these chromosomal 

abnormalities is achieved by FISH 

on CD138-selected BM cells or in 

clonally restricted plasma cells stained for cytoplasmic light chain immunoglobulin. 
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1.4 Current therapies 

Initial treatment for newly diagnosed MM depends on eligibility for 

autologous stem cell transplant (ASCT) and risk-stratification. If the patient 

is younger than 70 years ASCT is taken into consideration, while for 

persons older than 70 years, or younger patients in whom transplantation is 

not feasible, chemotherapy is the initial treatment of choice. Moreover, 

based on risk-stratification, is preferred to achieve complete remission (CR) 

in high-risk patient, while standard and low-risk patients have similar overall 

survival regardless of whether CR is achieved [38]. 

ASCT is applicable to more than half of MM patients and has very low 

mortally rates (1-2%) [39], but this approach has some pitfalls: on one hand 

post-transplantation CR rate is between 30-35% despite large doses of 

chemotherapy and/or radiation [40] and on the other hand ASCT could be 

contaminated by myeloma cells and/or myeloma cancer stem cells. 

Typically patients are treated with two to four cycles of induction therapy in 

order to harvest CD34 positive hematopoietic stem cells (HSCs). After 

harvest, patients can immediately undergo ASCT or resume induction 

therapy delaying the transplant until first relapse [41]. 

Initial treatments include combination regimens with two/three different kind 

of drugs, such as recently introduced immunomodulatory agents (IMiDs), 

proteasome inhibitors, and classical chemotherapeutics like alkylating 

agents and corticosteroids. While IMiDs and proteasome inhibitors will be 

discussed in further detail in the next paragraphs, I will provide here a brief 

description about alkylating agents and corticosteroids.  
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The most common alkylating drug used in MM is melphalan, which acts 

adding an alkyl group to DNA, inducing DNA damage and duplication 

arrest. It is commonly used at low doses in combination with prednisone 

and/or bortezomib, or in high doses as part of the condition regimen for 

ASCT. As any alkylating agent, this drug cannot distinguish healthy cells 

from tumor cells, therefore is associated with severe side effects, such as 

myelosuppression and gastrointestinal effects. 

Dexamethasone and prednisone are corticosteroids commonly used in MM 

therapy: Beside their anti-inflammatory properties, they can also induce 

apoptosis in MM cells, by activation of death-inducing genes and by 

repression of transcription factor activity [42]. Dexamethasone was shown 

to synergize with thalidomide and lenalidomide, prolonging time to 

progression and overall survival [43]; notably its activity as single agent was 

shown to be reduced by IL-6 [44].  
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Figure 1.5: Treatment approaches of newly diagnosed myeloma patients 

(adapted from [1]). Abbreviations: ASCT, autologous stem-cell transplantation; 

CR, complete response; Dex, dexamethasone; Rd, lenalidomide plus low-dose 

dexamethasone; VCD, bortezomib, cyclophosphamide, dexamethasone; VGPR, 

very good partial response; VRD, bortezomib, lenalidomide, dexamethasone. 
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1.4.1 Proteasome Inhibitors  

Bortezomib is a first-in-class proteasome inhibitor, it targets the 26S 

proteasome, a multicatalytic proteinase complex involved in degradation of 

cyclin and cyclin-dependent kinase inhibitor (CKI) proteins, thereby 

regulating cell-cycle progression. 

Bortezomib inhibits NF-κB activation and nuclear translocation by 

protecting from 26S degradation its inhibitor IκBα, a protein that is 

constitutively bound to cytosolic NF-κB. Degradation of IκBα by proteasome 

activates NF-κB , which in turn up-regulates the transcription of pro-survival 

proteins, modulates MM cell-adhesion-induced cytokine transcription and 

secretion in BM stromal cells (BMSC), decreases apoptosis susceptibility, 

influences the expression of adhesion molecules on BMSCs/MM cells and 

their related binding, and induces drug resistance in myeloma cells [45]. 

Bortezomib can also induce myeloma cell apoptosis through caspase-8 and 

-9 activation, inhibits IL-6 and BMSC–MM cell adherence-induced p42/p44 

MAPK phosphorylation and proliferation in MM cells. Adverse effects 

include lymhopenia, neuropathy, thrombocytopenia and anemia [41]. 

Second generation proteasome inhibitors, i.e. carfilzomib, have been 

recently approved for relapsed patients in order to overcome bortezomib 

resistance. 
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1.4.2 Immunomodulatory drugs 

Immunomodulatory drugs (IMiDs) are a group of compounds analogue to 

thalidomide, derivative of glutamic acid with anti-angiogenic and anti-

inflammatory properties. The two leading IMiDs compounds are 

lenalidomide (commercial name Revlimid) and pomalidomide (Actimid); first 

tested in clinical trial in MM in 1999 and then expanded for other conditions, 

i.e. low-risk myelodysplastic syndrome [46].  

Thalidomide (α-N-phthalimido-glutaramide) is a synthetic derivative of 

glutamic acid, which was unfortunately famous for causing birth defects 

when used as antiemetic in pregnancy in the late ‘50s and early 60’s. After 

its withdrawal from markets, it was subsequently found to be effective in the 

treatment of erythema nodosum leprosum, a cutaneous complication of 

leprosy and its efficacy was proved to be related to TNFα expression 

inhibition. Thalidomide was also found to have anti-angiogenic and 

immunomodulatory properties, including T-cell stimulation [47]–[49]. 

Lenalidomide and pomalidomide were then developed in order to achieve 

TNFα inhibition with less toxicity compared to thalidomide. These features 

helped resurrect thalidomide as potential anti-cancer treatment. In MM 

patients, immune surveillance against tumor antigens is impaired, including 

antibody responses, impaired antigen-presenting cells and dysfunction of 

NK, T and B cells [50]. 

 

Figure 1.6: Chemical structure of thalidomide and its analogues, 

lenalidomide and pomalidomide (adapted from [50] ). Lenalidomide and 

pomalidomide were derived by adding an amino group to the fourth carbon of the 

phthaloyl ring of thalidomide. 
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IMiDs can induce proliferation and enhance cytokine production, i.e. IL-2 

and IFNγ in partially activated CD3+ T cells [51], increase dendritic cell-

induced NK T cell expansion and NK T IFNγ secretion [52], increase NK 

cell proliferation and enhance antibody-dependent cellular cytotoxicity 

(ADCC) [53]. Outside the context of MM, other immunomodulatory effects 

include downregulation of TNFα production in LPS-stimulated monocytes 

[54], therefore IMiDs activity may vary in a disease/cell type-specific 

context. Furthermore, IMiDs have a major role in disrupting MM-BM 

protective interactions: they were found able to abrogate VEGF and βFGF 

secretion in in vitro MM-BMSCs co-cultures (from both cell types) [55] and 

to inhibit the expression of cyclo-oxigenase (COX)-2, which synthesize pro-

inflammatory prostaglandins. Lastly, IMiDs also exert direct anti-

proliferative effects on myeloma cells via inhibition of the cyclin-dependent 

kinase pathway, activation of Fas-mediated cell death and downregulation 

of anti-apoptotic proteins. In HMCL lenalidomide induced the expression of 

cyclin-dependent kinase inhibitor p21, thus leading to a G1 cell cycle arrest. 

Lenalidomide activity was thought to be dependent on Interferon 

Regulatory Factor (IRF) 4 inhibition: IRF4 is a transcription factor required 

for the generation of immunoglobulin-secreting plasma cells, which is often 

upregulated in MM in coordination with upregulation of MYC [56]. 

Lenalidomide treatment induces a downregulation of IRF4 mRNA and 

protein levels [57]. However, how lenalidomide would inhibit IRF4 was not 

fully elucidated. Preclinical studies identified an E3 ligase protein, cereblon 

(CRBN) as the direct molecular target of IMiDs. CRBN is a component of 

the cullin ring E3 ubiquitin complex, that contains DNA damage-binding 

protein 1 (DDB1), cullin (Cul) 4a and regulator of cullins (Roc) 1 [58]. In 

vitro long-term selection for lenalidomide resistance is accompanied by a 

reduction in CRBN [59]; very interestingly CRBN does not appear to be 

frequently mutated in MM patients [60],[61], thus suggesting that 

transcriptional or post-transcriptional factors may influence IMiDs 
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responsiveness. Recently two independent groups found that lenalidomide-

bound CRBN acquires the ability to target for proteasomal degradation two 

lymphoid transcription factors, Ikaros family zinc finger protein IKZF1 and 

IKZF3, essential transcription factors in myeloma [62],[63]. IMiDs are used 

both for newly diagnosed as well as relapsed patients, in combination with 

other agents, i.e. dexamethasone and/or bortezomib. Side effects include 

neutropenia, deep vein thrombosis, infections and increased secondary 

tumors [64] 

1.4.3 Risk-adapted regimens 

Standard-risk patients can be treated with lenalidomide plus low-dose 

dexamethasone (Rd) or a bortezomib-containing triplet, such as 

bortezomib-cyclophosphamide-dexamethasone (Velcade-Cyclo-Dex). 

Standard and high-risk patients require a bortezomib-based triplet regimen, 

such as VCD, bortezomib-thalidomide-dex (VTD) or bortezomib-

lenalidomide-dex (VRD). In patients with newly diagnosed MM not eligible 

for transplant, initial therapies include the previously mentioned and 

melphalan-based regimens, which are falling out of favor due to concerns 

about stem cell damage. Unfortunately, almost all MM patients face relapse 

and/or become refractory to treatment, with a remission period shortening 

with each regimen [65]. The median OS for relapsed/refractory MM is 

around 5-9 months. Treatment for these patients include doxorubicin 

(topoisomerase inhibitor), carfilzomib (a novel proteasome inhibitor) and 

pomalidomide, as single/combination agents [41]. Furthermore novel 

agents such as monoclonal antibody (Mab)-based therapies and histone 

deacetylase inhibitors are under pre-clinical and clinical evaluation [66],[67]. 
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2 The Bone Marrow niche 

The bone marrow (BM) microenvironment consists of cellular and non-

cellular elements. Cell components include HSCs, progenitor cells, immune 

cells, erythrocytes, BM fibroblast-like stromal cells (BMSCs), vascular 

endothelial cells, osteoclasts (OCs) and osteoblasts (OBs). The non-

cellular elements are represented by extracellular matrix (ECM) proteins, 

such as fibronectin, collagen, laminin and osteopontin. The direct 

interaction of MM cells with BM microenvironment cells activate signaling 

pathway mediating growth, survival, drug resistance and the migration of 

MM cells [68], as well as osteoclastogenesis [69] angiogenesis [70] and 

secretion of several soluble factors, such as interleukin 6 (IL-6) [71], 

vascular endothelial growth factor (VEGF) [72], stromal cell-derived factor 1 

(SDF-1) [73] and insulin-like growth factor (IGF1) [74]. Both homotypic and 

heterotypic adhesion of MM cells to either BMSCs or ECM are mediated 

through several adhesion molecules, i.e. CD44, very late antigen 4 (VLA-4, 

also known as integrin α4β1), VLA-5 (α5β1), intracellular adhesion 

molecule (ICAM-1), NCAM, syndecan 1 (CD138) and MPC-1. Furthermore, 

several developmentally conserved signaling pathways have emerged as 

important signaling circuits for tumor bulk and cancer stem cells, including 

Notch, Wingless-type (Wnt) and Sonic hedgehog (Shh), thus contributing in 

the creation of a niche that balances signals of differentiation and self 

renewal [75]. 
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Figure 2.1: Interactions between tumor plasma cells and the BM in MM 

(adapted from [2]). Interactions are mediated by cell-adhesion molecules such as 

VCAM1 and integrin VLA-4. Cell-cell contact increases the production of growth 

factors IL-6 and VEGF. Chromosomal abnormalities can cause overproduction of 

cytokines receptors, such as IL-6 receptor (1q21). 
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2.1 Pro-inflammatory signals in MM BM 

Since MM mainly progresses in the BM, signals from this microenvironment 

play a critical role in maintaining plasma cell growth, survival, migration, 

drug resistance and angiogenesis. Reciprocal interactions between PCs 

and BM cells are mediated by an array of cytokines and receptors. PCs in 

the BM secrete tumor necrosis factor-α (TNFα), transforming growth factor-

β (TGF-β), VEGF, angiopoietin-1, FGF-2 and matrix metalloproteases 

(MMPs). Moreover, the cell-cell interactions mediated by adhesion 

molecules between PCs and BM cell trigger transcription and secretion by 

the latter of cytokines, such as IL-6, VEGF, SDF-1 (CXCL12), Hepatocyte 

growth factor-scatter factor (HGF-SF) and IGF-1[70],[73],[76]–[79]. 

One of the most important cytokines in myeloma is IL-6: in the 90’s IL-6 

was shown to induce in vitro growth of freshly isolated MM cells, which 

expressed IL-6 receptor (IL-6R). In the same decade, many studies showed 

that BMSCs are the major source of IL-6 and that, virtually all human MM-

derived cell lines express IL-6R mRNA [71],[80],[81]. Notably, several MM 

cell lines have also been described to produce IL-6, thus leading to 

hypothesize also an autocrine signaling pathway. 

Various soluble factors have been shown to mediate IL-6 secretion by 

BMSCs or MM cells, e.g. IL-1α, IL-1β, TNFα and VEGF. In MM, VEGF is 

expressed and secreted by tumor cells as well as BMSCs. It induces 

proliferation through Raf-1-MEK-extracellular-signal-regulated protein 

kinase (ERK) pathway, it triggers migration of human MM cells through a 

protein kinase C (PKC)-dependent cascade [72] and it stimulates the 

expression of IL-6 by microvascular endothelial cells and BMSCs [77]. 

IL-6 is not only important for myeloma cell proliferation but also plays a 

critical role in OC development. Bone lesions are a hallmark of myeloma, 

leading to hypercalcemia, bone pain and increased risk of fractures. 

Myeloma growth is associated with increased numbers of OCs and 



22 

 

suppression of osteoblastogenesis in areas adjacent to tumor foci. OCs 

play an active role, cooperating with MM cells to produce VEGF, 

osteopontin and stimulating BM niche cells to secrete IL-6 [82],[83]. 

Another potent mediator of inflammation and bone resorption expressed by 

BMSCs and PCs from myeloma patients is TNFα. Several studies 

confirmed a central role for this cytokine in the growth and survival of MM 

cells in the BM milieu, given that TNFα induces proliferation expression of 

ICAM-1, VCAM-1 and VLA-4 and MAPK/ERK activation in MM cells, and 

on the other hand IL-6 secretion, NF-κB activation and expression of ICAM-

1 and VCAM-1 in BMSCs [84].  
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2.2. Relapsed and refractory MM 

In spite of current efficient therapies drug resistance (DR) is a major 

concern in MM. During the past years many studies were focused on the 

mechanisms underlying DR, and several factors appear to contribute to this 

process, including cytogenetic and epigenetic alterations, deregulated 

signaling in the BM niche and MM cancer stem cells maintenance. As 

discussed previously, MM has a high level of genomic instability, indeed 

patients who relapse or become refractory to therapy carrying any high-risk 

marker may be referred as intrinsically drug-resistant. 

In the following paragraphs we will discuss more extensively 

microenvironment-induced and cancer stem cell-dependent drug 

resistance. 

2.2.1 BM-dependent drug resistance 

The contribution of BM niche components such as BMSCs and extracellular 

ECM proteins is critical in MM pathogenesis. The mechanisms of MM drug-

resistance due to BM niche effects can be grouped in soluble factor-

mediated DR (SFM-DR) and in cell-adhesion-mediated DR (CAM-DR). 

SFM-DR can be highly ascribed to IL-6, but also other cytokines, including 

Insulin-like Growth Factor (IGF) 1 [85] and TGF-β (Hideshima et al., 2007) 

have been implicated in drug-resistance.  

MM cells exhibit preferred adhesion to several ECM constituents, including 

laminin, collagens and fibronectin (FN), via β1 integrin-mediated adhesion. 

Adhesion molecules are responsible for the development of MM cells 

resistance to front-line chemotherapeutic drugs.  

CAM-DR to doxorubicin, melphalan, bortezomib and mitoxantrone has 

been induced in vitro through adhesion to fibronectin (FN) or BMSCs, which 

is mostly mediated by VLA-4 [86]–[88], and by other integrins, i.e. β7 [89]. 
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2.2.2 Myeloma Cancer Stem Cells 

The high relapse rates in MM led researcher to investigate the hypothesis 

of a quiescent, tumor-initiating cancer stem cell population within the bulk of 

malignant plasma cells. In the early 90’s studies on the B cell repertoire in 

MM patients led to believe that clonotypic B cells were represented by a 

proportion of circulating CD19+ B cells since these peripheral blood B cells 

shared the same IgH rearrangements of BM plasma cells. Scientific 

literature on myeloma cancer stem cells (CSC) is highly conflicting. On one 

hand, a convincing amount of data supports the fact that tumor-initiating 

cells expressing syndecan-1 on their surface (CD138+) (CD138+/CD19-

/CD38+/CD45low in primary human samples) have increased clonogenic 

ability in vitro, are able to propagate in immunocompromised mice and in 

syngenic immunocompentent mouse model of MM (5T33) [90]–[92]. On the 

other hand, several groups confirm Matsui’s studies, which identified 

CD138- (CD138-, CD19+ and CD20+) as myeloma putative CSCs. His 

work suggests that MM cells contain a rare subpopulation which is 

clonotypic, drug resistant and expressing memory B cell-like phenotypic 

markers (CD138-/CD19+/CD20+/CD27+). CD138- cells appear to have 

clonogenic potential, are able to propagate MM tumor in NOD/SCID mice, 

are drug-resistant and enriched in a side population (SP) with high ALDH1 

activity and drug-efflux pump [93]–[97].  
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2.3. Notch pathway alterations in MM 

Normal stem-cell fate is controlled by several developmental conserved 

pathways, such as Sonic hedgehog (SHH), Wingless-type (Wnt) and Notch 

[98]. Notch is an evolutionary conserved pathway that regulates stem cell 

fate and self-renewal, both in physiological and malignant 

contexts[99],[100]. Notch receptors are single pass type I transmembrane 

proteins that are evolutionary conserved. Four paralogs exist in mammals, 

namely NOTCH1, NOTCH2, NOTCH3 and NOTCH4, which display both 

redundant and unique functions. The mature form of Notch on the cell 

surface is a large heterodimer, held together by non-covalent calcium-

dependent interactions through the heterodimerization domain (HD). Most 

Notch ligands are themselves type I transmembrane proteins. They can be 

grouped based on the presence or absence of a cysteine-rich domain in 

Jagged/Serrate or Delta, respectively. Mammals display five Notch ligands, 

JAGGED1-2 and DELTA-like -1,-3,-4 (DLL-1, DLL-3; DLL-4).  

It is well established that Notch activation occurs in a ligand-dependent 

fashion and it involves a series of proteolytic events that culminate with a 

cleavage within the transmembrane domain mediated by γ-secretase, a 

multi-component protease complex [101],[102]. This cascade of proteolytic 

activation releases the NICD (Notch IntraCellular Domain), which is able to 

translocate in the nucleus, where it binds to CLS (CBF-1/Suppressor of 

Hairless/Lag1) proteins, through RAM and ANK domains. In absence of 

activation by Notch, CSL acts as a transcriptional repressor. Upon NICD 

binding, co-repressor complexes are removed and CSL is converted into a 

transcriptional activator by SKIP (Ski-interacting protein). Additional 

engagement of co-activator Mastermind-like 1 (MAML1), histone 

acetyltransferases p300, PCAF and GCN5 might occur through the ANK 

domain [103]. 
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Given that Notch receptor can only signal once after proteolytic-activation, 

regulation of either ligand or receptor availability at the cell surface are 

tightly regulated. DSL ligand endocytosis is triggered by monoubiquitination 

mediated by the E3 ubiquitin ligases Neuralized (which preferentially 

recognizes Delta ligands) and Mindbomb (which recognizes 

Serrate/Jagged). Endocytosis of the Notch receptor is controlled in time 

and space by Numb, a conserved membrane-associated protein that acts 

upstream of the γ-secretase cleavage, to block Notch signaling in 

daughters of a asymmetric dividing cells. Moreover, several E3 ubiquitin 

ligases, e.g. Deltex, API/Itch and Su(dx), can control Notch receptor 

trafficking either towards lysosomal degradation or recycling [104]. 

At the nuclear level, during the transcriptional activation process, NICD is 

phosphorylated on its PEST domain by the CDK8 kinase and targeted for 

proteasomal degradation by the E3 ubiquitin ligase Fbw7Sel10 [105]. 
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Figure 2.2: The Notch pathway (adapted from [100]). Notch receptors are 

single-pass, hetero-dimeric proteins consisting of two peptides: one extracellular 

(extracellular domain (ECD)) and one intracellular, the latter containing a 

transmembrane domain (TD) and an intracellular domain (ICD). The ECD blocks 

Notch activation, unless it binds the ligands (Jagged or DLLs) expressed by an 

adjacent cell (4). Such interaction disrupts the hetero-dimer conformation (5), 

allowing the ADAM (a disintegrin and metallo- proteinase domain) proteinase to cut 

the TD-ICD extracellularly (6). Immediately after that, the g-secretase complex cuts 

the TD-ICD (7) releasing the ICD, which translocates to the cell nucleus (8). This 

third proteolytic processing is inhibited by gamma secretase inhibitors (GSI). Here, 

the ICD interacts with the CSL DNA-binding proteins (from CBF1/RBP-J in 

vertebrates), converting CSL from a transcriptional repressor to an activator (9) by 

displacing corepressors (Co-R) and recruiting histone acetyltransferases and co-

activators, such as mastermind- like proteins (MAML). Notch targets genes, such 

as HES-1 and C-MYC, are then activated. 
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MM cells express Notch-1, -2 and-3 receptors and their ligands, leading to 

homotypic interactions. Among ligands, Jagged-2 is overexpressed in MM 

and MGUS patients, and its levels of expression increase with the stage of 

the disease. Moreover, in vitro interaction between stromal cells and MM 

cells that overexpressed Jagged-2 can increase secretion of IL-6, VEGF 

and IGF-1 by the stromal cells [106]–[109]. Notch ligands are also 

expressed by stromal cells and macrophages, which can activate Notch in 

MM cells thorough heterotypic interactions [110].  

Noteworthy, Notch signaling promotes β1 integrins activation and the 

expression and function of several chemokine receptors involved in MM 

[111],[112], thus contributing to BM-dependent drug resistance [113],[114]. 

In the last few years the importance of Notch signaling in bone remodeling 

has emerged. Indeed Notch overexpression blocks the maturation of OB 

precursors by opposing canonical Wnt/ β-catenin signaling [115]. On the 

other side, myeloma can drive osteoclastogenesis by activating Notch 

signaling in tumor cells and OCs, through RANKL secretion and direct 

interactions. 
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3. RNA editing 

In the mid-80’s the term RNA editing was coined to describe a novel 

phenomenon in which uridine (U) residues in protozoa mitochondrial RNA 

molecules were inserted and deleted. Since then, the term has been used 

to describe many cellular processes of enzymatic post-transcriptional RNA 

modification. The main types of RNA editing are deletion/insertion of one or 

multiple C or U residues, or the substitution of one base by another [116]. 

In highly developed eukaryotic cells it commonly happens with the 

hydrolytic deamination of either C-to-U or A-to-I bases [117],[118]. In 

mammals the most prevalent form of RNA editing is the deamination at the 

C6 position of adenosine that is subsequently converted into an inosine (A-

to-I). Inosine behaves like guanosine with respect to its base-pairing 

properties and translational potential. As a result, any A-to-I modification 

within RNA has the same consequence as an A-to-G mutation. The 

enzymes responsible for this conversion are the Adenosine Deaminase 

Acting on RNA (ADAR) family of editases that catalyze A-to-I editing in 

structured or double stranded RNAs. 

 

Figure 3.1: Mechanism of adenosine to inosine modification catalyzed by 

ADAR proteins (adapted from [119]). 
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3.1 A-to-I editing effects 

The functional consequences of specific RNA editing events depend on 

where within the RNA molecule the modification takes place. An edited 

base within a translated exon may result in a non synonymous codon 

change that will lead to a single aminoacid substitution in the resulting 

protein. Alternatively, a change that involves a pre-mRNA splice site may 

create or destroy a consensus slicing signal as well as miRNA biogenesis 

could be affected by site-selective editing events. Furthermore, A-to-I 

changes may influence the folding properties of a RNA molecule, its half 

life, transport and interaction with other nucleic acids or proteins. 

Until recently only a very small number of proteins with aminoacid 

substitutions caused by A-to-I editing were known, but thanks to improved 

bioinformatics analysis and deep sequencing approaches, new evidences 

support the notion that hundreds of gens undergo recoding editing resulting 

in aminoacid substitution [120]. However, the experimental validation of 

predicted editing sites is tricky because of RNA editing regulation in space, 

time and cell-specific context, as well as by the fact that only a small subset 

of transcripts from a given gene may undergo editing, thus representing a 

low frequency event.  

By far the most widespread activity of A-to-I editing affects repetitive 

elements within primate transcripts, in particular Alu-type retrotransposon 

sequences (Kim et al. 2004; Athanasiadis et al. 2004). Alu sequences are 

transcribed by RNA polymerase III and encode for not functional protein. 

More than one million copies of Alu elements are interspersed in the human 

genome and had no obvious function, but were thought to be implicated in 

creation of new exons and donation of new regulatory elements. Alu 

elements can form structures in which one Alu in the (+) sense of 

orientation base pairs with another Alu sequence that is in the opposite (-) 

orientation. Alu sequences are not uniformly distributed in the human 
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genome, but rather are more frequent in GC-rich and gene-rich regions 

[121]. Considering the high sequence similarity between Alu elements, 

such highly base-paired double stranded RNA structures are very likely 

targets for RNA editing enzymes. Alu editing may be responsible for the 

significant differences between inosine levels detected in mRNAs 

compared to the few edited transcripts identified so far [123]. Most Alu 

repeats are located in introns and non-translated exons (UTRs). The 

outcome of editing events in such regions is not immediately predictable. 

Several mechanisms have been recently described: on one hand, Alu-

edited RNA can be sequestered in the nucleus by a protein complex with 

particular affinity for inosine in RNA molecules[124], while other studies 

suggest that other Alu-edited transcripts are exported and associate with 

polysomes despite being edited [125],[126]. 

Non-coding RNAs represent others potential RNA editing targets, 

considering that miRNAs go through a base-paired intermediate as part of 

their maturation process. miRNAs are constituted by 20-22 nuculeotide 

long single stranded RNA molecules regulating the translation of target 

mRNAs. The primary transcripts of miRNA genes, called pri-miRNAs, are 

generated by RNA polymerase II as long transcript containing an hairpin 

structure. Then pri-miRNAs are processed within the nucleus through 

cleavage by the RNAse III Drosha into 70-100 nucleotide (nt) pre-miRNA. 

Pre-miRNA are exported to the cytoplasm and further processed into a 

short 22-25 nt RNA duplex by the RNAse III Dicer. The resulting single 

stranded mature miRNA from one of the two strands is incorporated into a 

functional complex, named RNA-induced silencing complex (RISC), ready 

to target complementary mRNAs. A-to-I editing events can affect the ability 

of Drosha and Dicer to bind and cleave pri and/or pre-miRNAs [127]. 

Hyperedited transcripts are specifically recognized by the RNAse III Tudor-

SN (part of the RISC), leading to their degradation. Editing changes have 

also been described to downregulate the downstream processing of the pri- 
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or pre-miRNA, thus repressing miRNA biogenesis (Yang et al. 2006). If the 

base alteration occurs within the sequence of the mature miRNA then 

editing is able to alter the miRNA target spectrum [129]. 

 

 

Figure 3.2: Illustration of the three major types of A-to-I RNA editing targets 

and their fates (adapted from [118]). (a) The pre-mRNA editing of protein-coding 

genes with a composite RNA secondary structure leads to highly site-selective 

recoding if it affects a non-synonymous codon site. (b) Pairs of repetitive elements, 

such as primate Alus located in coding or non-coding exons or introns, can 

generate RNA secondary structures targeted by the RNA editing machinery. (c) 

The characteristic secondary structure of pre-miRNAs is a frequent target of 

ADARs.  
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3.2 Adenosine Deaminases Acting on RNA: ADARS  

ADARs were originally identified in Xenopus laevis eggs and embryos as 

dsRNA unwinding enzymes, and shortly after it was discovered that this 

family encodes for dsRNA-specific adenosine deaminases [130]. In 

humans the ADAR family is composed of three highly conserved members, 

ADAR1 (chromosome 1), ADAR2 (chromosome 21) and ADAR3 

(chromosome 10). They share common domains, namely double-stranded 

RNA-binding domains (dsRBD) and the catalytic adenosine deaminase 

domain. ADAR1 and ADAR2 are the only ones with confirmed deaminase 

activity, while ADAR3 apparently lacks of function, despite its conserved 

functional domains. 

One to three repeats of the dsRBD, forming a highly conserved α-β- β- β- α 

configuration structure, are present among ADARs. The dsRBD makes 

direct contact with the dsRNA [131] and it is required for dsRNA binding 

[132]. The C-terminal region contains the catalytic domain, consisting of 

amino acid residues that are conserved in other deaminases, including the 

cytidine deaminases APOBEC1, involved in the C-to-U mRNA editing 

mechanism [133],[134]. By crystallography, histidine H394, glutamic acid 

E396 and other two cystein residues C451 and C516 were indentified to be 

involved in the coordination of a zinc atom and in the formation of the 

catalytic center [135]. 

On the other hand, other structural features are unique to particular ADAR 

members. For example, ADAR1 contains two additional Z-DNA binding 

domains, Zα and Zβ [136], that have still unclear functional significance. 

Notably, ADAR1 maps on chromosome 1q21, a genomic location involved 

in high-risk myeloma, and exists in two different isoforms: the constitutively 

and ubiquitously expressed ADAR1 p110 and the inducible ADAR1 p150 

[137]–[139]. ADAR1 p150 is under an interferon (IFN)-inducible promoter 

and contains the Z-DNA binding domain Zα and a unique nuclear export 
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signal, not present in p110. Therefore, while p110 is usually only found in 

the nucleus, p150 can localize to both nucleus and cytoplasm 

[136],[138],[140],[141]. ADAR1 p150 has also been showed to be induced 

by other inflammatory signals, such as TNFα [142]. 

 

 

Figure 3.3: The ADAR family of editases (adapted from [127]). (A) ADAR1 

maps to chr.1q21 and can be expressed in two isoforms, p110 and p150. ADAR1 

p150 is expressed from an IFN-inducible promoter using a translational start-site in 

exon 1A, located after the IFN-inducible promoter. ADAR1 p110 is generated from 

mRNA using either exon 1b or exon 1C that follow a constitutive promoter. Exons 

1B and 1C do not contain any translational start-sites, and ADAR1 p110 is 

produced from a start codon located in exon 2. Exon 1A, exon 1B and exon1C are 

spliced to exon 2 at the same junction. (B) ADAR2 maps to chromosome 21 and, 

although several different transcript variants have been identified, only one protein 

product has been confirmed. (C) ADAR3 maps to the short arm of chromosome 10. 

Although it has a deaminase domain, no editing activity has been reported for this 

family member.  
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3.3 ADAR1 in cancer 

A growing body of evidence shows that A-to-I editing is an important 

contributor in tumors, occurring both in hematological and solid 

malignancies. The levels of editing in tumors can be either increased or 

decreased. For example, A-to-I editing in Alu repeats in the glutamate 

receptor subunit 2 (GluA2) has been linked to glioma progression. In this 

context, the decrease in editing correlated with the grade of malignancy 

[143],[144]. In other solid tumors, especially in epithelial tissues, disease 

progression has been associated with increased editing: in hepatocellular 

carcinoma and in esophageal squamous cell carcinoma, A-to-I editing led 

to a single amino acid substitution in antizyme inhibitor (AZIN) 1, thus 

increasing tumor invasiveness and tumorigenic potential [145],[146]. 

Notably, increased editing was associated with ADAR1 upregulation. 

Beside solid tumors, aberrant ADAR1-dependent RNA editing has been 

observed also in hematological malignancies, such as acute myeloid 

leukemia (AML) [147] and chronic myeloid leukemia (CML). In particular, in 

CML RNA editing was linked to therapy resistant leukemia stem cell 

generation. Indeed, the progression from chronic to blast crisis phase was 

associated with an increased expression of inflammation-responsive 

ADAR1 p150 and of IFNγ pathway gene expression in malignant progenitor 

cells[148]. 
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Multiple myeloma (MM) is the second most common hematological 

malignancy after leukemia, affecting a significant percentage of the aging 

population. Autologous stem cell transplant is still considered the best 

therapeutic option, which is highly limited by the average patient’s age. 

Both transplant-eligible and ineligible patients face high dose 

chemotherapy, painful adverse effects and the almost 100% chance of 

relapse and/or drug unresponsiveness. Myeloma therapy is extremely 

expensive, averaging several thousands of dollars per month for a single 

therapy cycle; therefore it is crucial to determine the best therapeutic 

regimen according to patient-specific risk factors. The mutation patterns of 

MM are complex, and more similar to those found in epithelial tumors and 

the blast phase of chronic myelogenous leukemia than to those in other 

hematopoietic tumors. In these cancers, the contribution of post-

transcriptional mechanisms such as RNA editing have recently emerged as 

a key factor in cancer progression, especially in the context of protective 

niches such as the BM microenvironment. This study aimed to investigate 

post-transcriptional niche-responsive drug escape mechanisms that could 

drive MM progression and emergence of malignant clones refractory to 

therapy. In particular, we investigated the Adenosine Deaminase Acting on 

RNA (ADAR1) RNA editing enzyme as mechanism of drug resistance and 

a novel therapeutic target. We postulated that ADAR1-dependent aberrant 

A-to-I RNA editing in MM cells could drive transcriptome “reprogramming” 

in MM tumor cells, thus contributing to disease relapse and drug resistance. 

Moreover, we evaluated whether BM inflammatory signals promoted by 

deregulated cell survival pathways in MM cells, such as aberrant Notch 

activation, sustain ADAR1-mediated reprogramming. 
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Materials and methods 

  



39 

 

Primary sample processing 

MM patient samples and normal age-matched control bone marrow (BM) 

samples were obtained from consenting patients in accordance with 

Institutional Review Board approved protocols at University of California-

San Diego (UCSD). Peripheral blood (PB) or BM samples were processed 

by Ficoll density centrifugation in a SepMate conical tube (StemCell 

Technologies). Viable total mononuclear cells (TMNC) were collected for 

further analyses and stored in liquid nitrogen. Purified plasma cell leukemia 

samples were a kind gift by Dr. Mark Minden, University of Toronto. 

Cell lines and culture conditions 

NCI-H929 cells (ATCC) were grown in RMPI-1640 Glutamax medium (Life 

Technologies) supplemented with 10% FBS and 0.05 mM β-

mercaptoethanol. OPM2 and U266 (from Dr.C.Carlo Stella, University of 

Milano, Italy) cells were maintained in complete RPMI-1640 medium 

supplemented with 10% V/V FBS, 2mM L-glutamine, 100U/mL penicillin 

and 100µg/mL streptomycin. Human bone-marrow derived stromal cell line 

HS5 (from Dr. E. Ferrero, University of Milan) and murine stromal cell line 

NIH3T3 (ATCC) were grown in DMEM medium supplemented with 10% 

V/V FBS, 2mM L-glutamine, 100U/mL penicillin and 100µg/mL 

streptomycin. 

All cell lines were maintained in T-25 or T-75 culture flasks and were 

cultured at dilutions of 1:3-1:6 every 2-4 days. 

To generate lenalidomide-resistant NCI-H929 cells, cells were treated twice 

a week with fresh lenalidomide (AvaChem Scientific) at a final 

concentration of 1µM. Lenalidomide-treated and vehicle-treated control 

cells were sub-cultured for up to 10 weeks at the optimal concentration of 

5x105 cells/mL (log phase). Once the proliferation of cells was no longer 

inhibited by lenalidomide at 1 µM (10 weeks), as determined by Trypan 
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Blue viability, lenalidomide treatment was scaled up to 10 µM, as previously 

described. 

In IL-6 exogenous stimulation experiments, NCI-H929 wild type cells were 

plated at 0.3x106 cells/ml, then IL-6 (R&D Systems) was added to the 

complete growth media at 0-5-10-20ng/ml. Cells were collected for further 

analysis after 24h/48h of incubation. 

In order to discriminate stromal cells from OPM2 and U266 cells in co-

culture experiments, HS5 cells were transduced with a GFP-expressing 

lentiviral vector. GFP+ HS5 were selected by puromycin and maintained in 

cultured as described for parental cell line. 

Nucleic acid isolation, reverse transcription and quantitativePCR  

Cell lines (0.5-2 x 106 cells) or primary purified TMNCs (50-10x104 cells) 

were harvested in lysis buffer (Qiagen). RNA was purified using RNeasy 

extraction kits with a DNase (Qiagen) incubation step to digest any trace 

genomic DNA present. For RNA extraction from cell line lysates, samples 

were extracted using RNeasy mini columns, and for primary cells, samples 

were lysed and extracted using RNeasy micro columns. Immediately prior 

to reverse transcription of RNA samples, nucleic acid concentrations were 

quantified on a NanoDrop 2000 spectrophotometer (Thermo Scientific).For 

standard qPCR analysis of relative mRNA expression levels, cDNA was 

synthesized using 50 ng - 1 µg of template RNA in 20-40 µL reaction 

volumes using the First-Strand SuperScript III Reverse Transcriptase 

Supermix (Life Technologies) followed by incubation with RNase H 

according to the manufacturer’s protocol. All cDNA products were stored at 

-20°C. 

Primers were synthesized by ValueGene (San Diego, CA) and diluted to 10 

µM working dilutions in DNase/RNase-free water. qPCR was performed in 

duplicate using cDNA (1-2 µL reverse transcription product per reaction) on 

an iCycler (Bio-Rad) using SYBR GreenER Super Mix (Life Technologies) 
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in 25-µL volume reactions containing 0.2 µM of each forward and reverse 

primer. Cycling conditions were as follows: 50°C for 2 minutes, then 95°C 

for 8 minutes and 30 seconds, followed by 40 cycles of 95°C for 15 

seconds and 60°C for 60 seconds. Melting curve analysis was performed 

on each plate according to the manufacturer’s instructions. For standard 

qPCR, HPRT mRNA transcript levels were used to normalize Ct values 

obtained for each gene, and relative expression levels were calculated 

using the 2-ddCt method. To ensure validity of results, only Ct values <35 

were used in gene expression analyses. All primer sets were tested in a no-

template control (NTC) reaction containing only water instead of cDNA, and 

all gave Ct values >35 in NTC reactions. For all experiments, assays were 

repeated at least three times using separate RNA extracts and cDNA 

preparations.  

RESSqPCR 

RESSq-PCR assay primer design was carried out for specific cancer and 

stem cell-associated loci. For this assays, allele-specific primers were 

designed using Primer1, generating two outer and two inner primers for 

each editing site with melting temperatures ranging from 60-68°C. The 

forward (FW) outer and reverse (REV) outer primers flank the editing site 

and can be used for Sanger sequencing validation of each editing site, and 

also as a qPCR positive control to ensure that the editing region is 

detectable in cDNA. The 3’ ends of the FW inner and REV inner primers 

match either the WT A or edited G nucleotide, and include an additional 

mismatch two nucleotides upstream of the 3’ primer end to enhance allelic 

discrimination. All RESSq-PCR primer sequences (outer, WT, edit) are 

provided in the following Primers table. RESSq-PCR was performed in 

duplicate using cDNA (1-5 µL reverse transcription product per reaction) on 

an iCycler (Bio-Rad) using SYBR GreenER Super Mix (Life Technologies) 
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in 25-µL volume reactions containing 0.2 µM of each forward and reverse 

primer. Cycling conditions were the same as for standard qPCR. Relative 

RNA editing rates (Relative Edit/WT RNA) were calculated using the 

following calculation: 2-(Ct Edit – Ct WT). 

High-fidelity PCR and Sanger sequencing analysis 

For PCR and targeted Sanger sequencing analysis, 1-2 µL of first-strand 

cDNA templates were prepared for PCR in 25-50 µL reaction volumes 

using the high-fidelity KOD Hot Start DNA Polymerase kit according to the 

manufacturer’s instructions (EMD Millipore). “Outer” primers used for 

sequencing produce predicted amplicons of approximately 150-250 

nucleotides in length, and flank each editing site with approximately 50-100 

bp on either side of the editing site to facilitate successful sequencing 

analysis. PCR cycling conditions were as follows: 95°C for 2 minutes, 

followed by 35 cycles of 95°C for 20 seconds, 62°C for 10 seconds and 

70°C for 10 seconds, with a final extension step of 70°C for 30 seconds. 

Production of amplicons of the predicted size was verified for each outer 

primer set by DNA gel electrophoresis using 10-20 µL of the reaction 

mixture separated on 2% agarose gels containing ethidium bromide and 

visualized under UV light. Then, 15 µL of each reaction was processed 

within 24 hrs for PCR purification and Sanger sequencing was performed 

on ABI 3730xl DNA Sequencers (Eton Bioscience, San Diego, CA). Sanger 

sequencing was carried out using the reverse outer primer used for PCR 

amplification, so edited loci are identified in the reverse complementary 

sequence as T/C nucleotides, except in cases where the gene products are 

transcribed from the reverse strand (e.g. AZIN1). Sequence 

chromatograms were analyzed using Chromas and peak heights calculated 

using ImageJ. For RNA editing analysis of sequencing chromatograms, 
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ratios of edited/WT peaks were calculated using the raw peak amplitude of 

each sequence trace. 

Primers table: 
Gene  Forward primer 5’>3’ Reverse primer 5’>3’ 

ADAR1 (total) TGCTGCTGAATTCAAGTTGG TCGTTCTCCCCAATCAAGAC 

ADAR1 (p150)  AACGAAAGCGAAATTGAACC GGGTGTAGTATCCGCTGAGG 

ADAR1 (p110) GACTGAAGGTAGAGAAGGCTACG TGCACTTCCTCGGGACAC 

ADAR2 TGTTCCGTGTGTGTCCAGTT CGGCAGGTCAGAGTTTTCTC 

HPRT1 TCAGGGATTTGAATCATGTTTGTG CGATGTCAATAGGACTCCAGATG 

IRF4 GACATCTCAGACCCGTACAAAG GAAGGGTAAGGCGTTGTCAT 

APOBEC3D wild 
type 

GTCCAGGCTGGAATGCAATGTCA GAGGCTGAAGCAGAAGAATCGCT

TAAAC 

APOBEC3D edit CTCTGGGATCTCTCTGCCTCCAAAT

ATC 

GAGGTTGCAGTGAGTCCAGATG

GC  

GLI1 wild type GGGGAGGACAGAACTTTGATCCTTA

CCT 

CTGGCTCTTCCTGTAGCCCGCT 

GLI1 edit ACTGAGAATGCTGCCATGGATGATG AAGTCCATATAGGGGTTCAGACC

ACTGC 

AZIN1 wild type CATTCAGCTCAGGAAGAAGACATCT AATACAAGGAAGATGAGCCTCTG

TTTAC 

AZIN1 edit ACTGAATGACATCATGTAATAAATG

GCT 

GAGCTTGATCAAATTGTGGCAG 

MDM2 wild type ATAGGACTGAGGTAATTCTGCACAG

CA 

ATAATGCTTGGAGGACCTCCACA

TGT 

MDM2 edit CTCTGGGATCTCTCTGCCTCCAAAT

ATC 

AAGAGATTCTGCTTGGTTGTAGC

TGAAG 

IL-6  TTCAATGAGGAGACTTGCCTGGTGA TCTGCACAGCTCTGGCTTGGTTC

C 

HES1 GATGCTCTGAAGAAAGATAGCTCG GTGCGCACCTCGGTATTAAC 

JAGGED1 TTCGCCTGGCCGAGGTCCTAT GCCCGTGTTCTGCTTCAGCGT 

JAGGED2 CCGGCCCCGCAACGACTTTT CCTCCCTTGCCAGCCGTAGC 
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Western blot 

A total of 5-10x106 cells were harvested in RIPA buffer for total protein 

extraction. After cell lysis, samples were centrifuged to clear insoluble 

material. Protein concentrations were determined using a detergent-

compatible Bradford assay (Bio-Rad). 20 µg of each sample were loaded 

onto precast polyacrylamide gels for gel electrophoresis at 100 V. Proteins 

were transferred to 0.45 µm PVDF membranes at 400 mA for 1 hr. 

Membranes were blocked for 1 hr at room temperature in 5% nonfat milk in 

Tris-buffered saline (TBS) containing 0.5% Tween-20 (TBS-T). Primary 

antibodies (rabbit anti-ADAR1, 1:2500, Abcam; and chicken anti-actin, 

1:1000, Abcam) were prepared in 5% bovine serum albumin (BSA) in TBS-

T. Membranes were incubated overnight at 4°C with primary antibodies, 

followed by three 10-minute washes in TBS-T, and secondary antibody 

incubation (anti-rabbit HRP, 1:5000, Cell Signaling Technology; and anti-

chicken HRP, 1:5000, Abcam) in 5% nonfat milk in TBS-T for 1 hr at room 

temperature. Blots were developed using enhanced chemiluminescence 

(Femto Detection kit, Promega) on a Chemidoc digital imaging machine. 
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Flow cytometry analysis 

Flow cytometry assays were performed using a BD LSRFortessa Cell 

Analyzer, BD FACSVerse™ System (BD Biosciences) and MACSQuant 

(Miltenyi). Data were analyzed using FlowJo (Treestar Inc.) software. For 

CD138 surface expression on MM cell lines, 1-0.5x106 cells were stained 

with anti-human CD138 APC antibody (BD Biosciences) in 

PBS+2%FBS+2mM EDTA, while DAPI (1:5000 in PBS) was used for 

live/dead cell discrimination. For intracellular IL-6 staining, cells were fixed 

in 4% formaldehyde, permeabilized in 0.5% saponin and stained with anti-

human IL-6 APC antibody (eBioscience) or isotype matched control. Single 

cells derived from mouse tissues were stained with LIVE/DEAD fixable 

near-IR viability dye (Thermofisher) at 1:1000 in PBS. Samples were then 

washed and non-specific Fc receptor-mediated antibody binding was 

blocked by incubation with mouse and human FcR blocking reagent (BD 

Biosciences). Then samples were stained with anti-human CD138-APC 

(Miltenyi), CD319-PE (Miltenyi), CD38 PECy7 (BD Biosciences) and CD45 

Brilliant Violet 450 (BD Biosciences). All staining were performed at 4°C in 

dark. Lastly, samples were washed and fixed with 1% PFA for 10 minutes 

at 4°C, then acquired by MACSQuant (Miltenyi). 

Colony assay formation assay 

Lenalidomide treatment was withdrawn from culture for 5-7 days prior 

colony assay as described[57]. A total of 500 wild type or drug-resistant 

NCI-H929 cells were plated in methylcellulose (Miltenyi) in 6-well plates. 

Colonies (more than 40 cells) were scored after 14 days and serial 

replating assays were performed for an additional 14 days in culture. RT-

qPCR on replated cells was performed on RNA extracted from 10 colonies 

of the same type (fast/slow). 
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RNA interference 

Specific knock-down of Notch ligands Jagged1 and Jagged2 was achieved 

by transient Stealth Select RNAiTM siRNA expression (Life Technologies). 

SiRNA sequences were designed according to the Manufacturer’s 

guidelines. HMCLs were plated at 3,5x105 cells/ml, then after 24h Jagged1 

and Jagged2 gene expression was simultaneously silenced by shRNA 

transfection; scrambled shRNAs were used as negative control. Optimal 

silencing was achieve at 96h (cell were re-transfected at 48h from plating). 

Intrahepatic inoculation of tumor cells and tissues collection 

New born (1-3 days) Balb/c Rag2-/-γc-/- mice were intrahepatically injected 

with a 30 gauge Hamilton syringe (Hamilton Company). Each animal 

received 1-2x106 TMNCs isolated from primary samples. Animals were 

weaned at 3 week of age and monitored regularly by heath status 

assessment; IVIS imaging and peripheral blood screening were regularly 

performed until signs of disease were observed, including significant loss of 

weight, limited mobility and presence of palpable tumors. Mice were 

euthanized by CO2 inhalation. PB was collected by cardiac puncture 

immediately after sacrifice. Bones, spleen (SP), liver (LI) and tumors (TU) 

were collected in ice cold PBS. Bones were flushed in order to isolate BM, 

while SP and LI were manually dissociated in order to obtain a single cell 

suspension. TUs were either manually dissociated and incubated with 

collagenase IV (Sigma), or processed with a Tumor Dissociation kit 

(Miltenyi) according to the Manufacturer’s guidelines. 
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Transduction of primary PCL-derived TMNC 

Prior to transplant TMNCs were transduced with a lentiviral GFP-luciferase 

(GLF) encoding vector at 100 Multiplicity of Infection (MOI). Cells were 

plated in U-bottom 96-well plate and incubated with GFL lentivirus for 48h 

in StemPro complete media (ThermoFisher). 

In vivo bioluminescence imaging 

Mice were i.p. injected with luciferin (1.5mg/mouse, Caliper Life Science) 

and anesthetized using isofluorane. Mice were imaged 6-8 minutes after 

i.p. injection and images were acquired after 1-5 minutes of exposure by 

Xenogen IVIS-200 (PerkinElmer). 

Measurement of serum immunoglobulin light chain levels 

Peripheral blood was collected from each mouse by retro-orbital bleeding 

while animals were anesthetized with isofluorane. 10-50ul of serum were 

used in enzyme linked immunosorbent assay (Human lambda or kappa 

ELISA kits, Bethyl Laboratoris Inc.) The assay was carried out according to 

Manufacturer’s guidelines.  

Statistical analysis 

Data are represented as mean ± SEM of independent experiments 

performed in duplicates or triplicates. Two-tailed Student's t-test or 1-way 

ANOVA tests were used to compare the means of normally distributed 

values.  
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1. Analysis of ADAR1 expression in MM 

1.1 In silico correlation of ADAR1 expression with 1q21 copy number 

alterations 

Previous reports in newly-diagnosed MM patients showed that 20-30% of 

cases harbor copy number amplification at chromosome 1q21, which is 

associated with more proliferative disease and poor-risk cytogenetic 

categories. This genomic region includes the CKS1B gene locus, which is 

located directly adjacent to the ADAR1 gene locus on chromosome 1q21. 

 

Figure 3.1: Schematic representation of ADAR1 locus on chromosome 1q21 

and distance from prognostic factor CKS1B location. 

In order to investigate whether ADAR1 gene expression was correlated 

with 1q21 amplification status, we performed in silico analysis of an ADAR1 

gene expression dataset from the Multiple Myeloma Genomics Initiative 

(MMGI) database [27],[149]. 

We analyzed expression and array comparative genomic hybridization 

(aCGH) data on CD138-enriched cells derived from a well-characterized 

cohort of patient samples. 

Our analysis revealed an interesting finding: as displayed in Fig.1.2, 

ADAR1 gene expression levels were increased in primary patient samples 

corresponding with copy number amplification of the 1q21 locus. Indeed, 

ADAR1 relative expression was significantly higher in patients with more 
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than 4 copies of the 1q21 locus compared to normal controls. This was the 

first evidence that the poorer prognosis associated with 1q21 amplification 

may be linked to aberrant ADAR1 expression and/or activity. 

 

Figure 1.2: ADAR1 expression correlates with CKS1B score. Microarray 

datasets publicly available through the Multiple Myeloma Genomics Initiative were 

analyzed in this study. ADAR1 relative expression correlates with copy number 

amplification of 1q21 CKS1B locus (on the x axis as 2, 3 or >4+ copies) which 

correlates with poor prognosis; *p<0.05 by unpaired, two-tailed Student’s t-test. 
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1.2 Validation of ADAR1 expression in primary MM patient samples 

To confirm our findings in a separate set of primary patient samples, we 

investigated ADAR1 expression in total mononuclear cells (TMNCs) 

isolated from a collection of primary MM samples (n=11). Patients’ disease 

stage and clinical annotations are shown in Table1. In order to evaluate 

how ADAR1 expression was modulated in different disease stages, we 

collected samples from smoldering MM, newly diagnosed, relapsed BM MM 

and extramedullary PCLs. TMNCs from aged-matched (mean age=60,6 /-

16,8 years old) BM (n=3) collected from patients undergoing hip 

replacement therapy for reasons other than cancer were used as normal 

healthy controls.  

 

Table 1: Clinical information on primary samples used in this study. Diagnosis 

was confirmed at the time of the biopsy. DEX, dexamethasone; CyVD, 

cyclophosphamide-lenalidomide-dexamethasone; RVD, lenalidomide-bortezomib-

dexamethasone. *=2 years off therapy at the time of biopsy; **=started 

dexamethasone, previously on lenalidomide, bortezomib and thalidomide. 
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As shown in Fig.1.3. MM patients expressed significantly higher levels of 

ADAR1 compared to age-matched normal controls. In particular, ADAR1 

expression was consistently higher in PCL samples while newly diagnosed 

and relapsed MM samples had variable expression levels. Interestingly, 

smoldering MM patients had similar ADAR1 expression levels compared to 

normal controls, suggesting that ADAR1 overexpression may be a later 

event related to disease progression or emergence of drug-resistance.  

 

 

Figure 1.3: ADAR1 expression in primary MM and PCL patient samples. 

Histograms represent relative ADAR1 mRNA levels assessed in freshly 

isolated/biobanked TMNC from primary samples (M1-M11) compared to normal 

controls (C1-C3) of at least three independent qPCR experiments. HPRT gene 

expression was used as normalization factor. **p<0.01 compared to normal 

controls by unpaired two-tailed Student’s t-test. 
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As anticipated, ADAR1 exists in two isoforms, the constitutively expressed 

p110 and the inflammation responsive p150. Considering the central role of 

pro-inflammatory signals in MM BM, we performed quantitative PCR to 

measure the relative expression of ADAR1 isoforms.  

Among the patients analyzed, expression of ADAR1 isoforms was 

heterogeneous (Fig.1.4); notably most patients overexpressed both 

isoforms (M3, M6, M9, M11), compared to healthy controls, thus suggesting 

that transcriptional activation possibly related to amplification at the 1q21 

locus along with microenvironmental inflammatory signals may affect 

ADAR1 expression in MM. 

 

 

Figure 1.4: Isoform-specificADAR1 expression analysis in primary MM and 

PCL patients. Histograms represent relative ADAR1 inflammation-responsive 

p150 (A) and constitutively-expressed p110 (B) mRNA levels in MM and PCL 

TMNCs compared to HPRT mRNA levels in at least three qPCR experiments. 
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1.3 Detection of aberrant RNA editing by RESSqPCR 

RNA editing is usually detected by traditional Sanger sequencing or by 

whole-transcriptome sequencing. Both techniques have significant pitfalls: 

Sanger sequencing is generally affordable but is not sufficiently sensitive to 

detect rare editing events (rare transcripts per se or normally abundant 

transcripts in rare cell populations), while transcriptome-wide profiling is 

costly, technically challenging and requires expertise in specialized 

bioinformatics methods. To overcome a lack of cost-effective, quantitative 

methods to detect endogenous RNA editing activity, we developed a novel 

assay, named RNA editing site specific quantitative real time PCR 

(RESSqPCR), specifically designed to detect RNA editing even in rare 

transcripts/ rare cell populations[150]. 

Considering our finding that ADAR1 expression was increased in primary 

plasma cell neoplasm samples at advanced stages of disease, we sought 

to determine whether we could detect increased ADAR1 activity in primary 

MM samples. Therefore, we measured RNA editing in four specific cancer 

stem cell-associated transcripts: APOBEC3D, GLI1, AZIN1 and MDM2. 

These transcripts were previously identified by whole-transcriptome 

sequencing and showed to be more edited in response to increased 

ADAR1-dependent A-to-I editing during malignant reprogramming and 

disease progression in chronic myeloid leukemia (CML)[148] 
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Consistent with increased mRNA levels, MM patients displayed significantly 

higher levels of edited transcripts compared to age-matched controls 

(Fig.1.5). Among the four targets, editing rates in APOBEC3D and GLI1 

were notably higher than controls, and similar to ADAR1 expression levels, 

tended to be higher in more advanced stages of disease. Indeed, 100% of 

patients showed high levels of editing in APOBEC3D mRNA, while 54% 

(6/11) showed increased editing of GLI1 mRNA. AZIN1 and MDM2 

transcripts editing rates were more variable among samples. 

 

Figure 1.5: RESSqPCR analysis showed increased APOBEC3D AND GLI1 

RNA editing in MM and PCL TMNCs. Horizontal dashed lines represent 

comparative average RNA editing activity normal TMNCs. RESSqPCR analysis 

was carried out to evaluate relative expression of RNA-edited (G/I) and wild-type 

transcripts of APOBEC3D (A) GLI1 (B), AZIN1 (C) and MDM2 (D). 
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We confirmed aberrant RNA editing by Sanger sequencing in the highest 

ADAR1-expressing PCL samples. Consistent with RESSqPCR results, we 

detected a double peak in APOBEC3D and GLI1 chromatograms, A/G in 

GLI1 (editing site on the sense strand) and T/C in APOBEC3D (cDNA 

antisense strand). Notably, peak height quantification correlated with 

RESSqPCR ratios of wild-type/edited RNA. 

 

 

Figure 1.6: Representative chromatograms from Sanger sequencing analysis 

in high-ADAR1 samples. High-fidelity PCR products were amplified with primers 

flanking the APOBEC3D or GLI1 editing site and sequenced using a reverse primer 

(APOBEC3D) or a forward primer (GLI1). Chromatograms shows a dual C (=G in 

sense strand)/T peak in APOBEC3D cDNA (A) and a dual G/A peak in GLI1 (B). 

 

Figure1.7: Quantification 

of peak height ratios in 

M9 and M11 PCL 

samples. Peak height 

ratios of edit (C/G) versus 

wild-type (T/A) nucleotides 

calculated using ImageJ. 

  



57 

 

2. Continuous IMiD exposure induces ADAR1 

expression and activity 

Among therapies available for MM, IMiDs are first line treatments used 

alone or in combination with other agents for relapsed and refractory MM 

and they have been recently approved for newly diagnosed patients. The 

ability of this class of drugs to modulate the immune system and pro-

inflammatory signaling is dual: for example lenalidomide can downregulate 

TNFα production in monocytes while induce IFNγ secretion in T cells 

[47],[49]. 

We hypothesized that exposure to IMiDs could have cell-intrinsic effects on 

inflammation-responsive genes such as ADAR1. Therefore, we 

investigated whether prolonged lenalidomide exposure could directly affect 

the expression and activity of ADAR1, promoting transcriptome 

“reprogramming” of tumor cells. In this context, we speculated that aberrant 

RNA editing could promote tumor cell survival and/or the emergence of 

drug-resistant malignant clones. Moreover, the combination of a pro-

inflammatory BM niche, together with IMiD treatment, could exacerbate the 

disease, especially in high risk patients harboring copy number 

amplifications of the ADAR1 gene locus.  
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2.1 Long-term lenalidomide increases ADAR1 mRNA and protein 

levels in H929 cells 

In order to model the effects of prolonged immunomodulatory therapies in 

patients, we derived a lenalidomide-resistant NCI-H929 myeloma cell line. 

Cells were continuously exposed to low dose lenalidomide (1µM) until cell 

growth was no longer inhibited (data not shown). Then the treatment dose 

was increased to 10µM in order to develop fully resistant cells [57]. We 

evaluated total ADAR1 expression and expression ofp150 and p110 

isoforms expression by qPCR periodically throughout generation of the 

drug-resistant cell line.  

Prolonged lenalidomide induced a significant increase in ADAR1 

expression. Notably, the inflammation-isoform p150 was significantly 

upregulated in treated cells compared to controls. Continuous lenalidomide 

treatment selectively affected ADAR1 expression, while ADAR2 levels were 

not altered (Fig.2.1).  

To confirm the efficacy of lenalidomide treatment we assessed the mRNA 

levels of interferon regulatory factor 4 (IRF4). Consistent with previous 

reports, long-term lenalidomide exposure induced a downregulation ofIRF4 

in treated cells[57]. To determine whether increased ADAR1 mRNA 

expression coincided with higher protein levels, we investigated ADAR1 

protein expression. Western blot analysis revealed that lenalidomide-

treated H929 cells showed increased levels of both isoforms p150 and 

p110 (Fig.2.2), thus suggesting possible drug-dependent mechanism 

affecting protein stability/degradation of both isoforms.  
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Figure 2.1: qPCR analysis of H929 cells after continuous Lenalidomide (Len) 

or vehicle (WT) treatment. (A) ADAR1 increased mRNA expression in 

lenalidomide-treated (1 µM, 5-50 weeks; 10 µM, 5-40 weeks) H929 cells and 

reduced IRF4 levels in response to treatment. (B) Specific ADAR1 isoform 

expression and ADAR2 levels in treated H929 versus vehicle (WT).*p<0.05, 

**p<0.01, # not significant by 1-way ANOVA test. 

Figure 2.2: Increased protein levels of ADAR1 

in H929 after continuous lenalidomide 

treatment by Western blot analysis. Upper blot: 

anti-ADAR1 antibody reveals two bands at 150kDa 

and 110kDa corresponding to isoforms p150 and 

p110 in lenalidomide-treated cells (1 µM Len, 20 

weeks; 10 µM Len, 10 weeks). Bottom blot: anti-

actin antibody for normalization. 
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2.2 Lenalidomide induces aberrant RNA editing in H929 cells  

Consistent with increased levels of mRNA and protein, cells expressing 

high ADAR1 levels showed increased RNA editing by RESSqPCR (Fig.2.3) 

and Sanger sequencing (Fig.2.4). All four transcripts, APOBEC3D, GLI1, 

AZIN1 and MDM2 displayed a higher edited/WT ratio in lenalidomide-

resistant cells.  

 

Figure 2.3 Aberrant RNA editing after continuous Len treatment. cDNA 

derived from lenalidomide-treated cells (1 µM, 5-50 weeks, n=8; 10 µM, 5-40 

weeks, n=6) compared with H929 WT at paired passages (n=8) was analyzed by 

RESSqPCR. *p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA and Dunnett’s 

post test. 
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Figure 2.4: Validation of aberrant RNA editing by Sanger sequencing. (A) 

Representative chromatograms from Sanger sequencing analysis in Len-treated or 

WT H929. (B) Edit allele burden was measured by peak height quantification as 

edited/edited+WT. 
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2.3 ADAR1-overexpressing cells show increased self renewal capacity  

To assess the functional effects of lenalidomide-associated aberrant 

ADAR1 activity, we determined H929 self-renewal and proliferation 

capacity by colony formation assay. After withdrawal (3-5 days) from IMiD 

treatment, the low-dose (1 µM) lenalidomide-resistant cell lines formed a 

significantly higher number of colonies compared to control cells (Fig.2.5).  

 

Figure 2.5: Increased colony formation potential of lenalidomide resistant 

H929. (A) The survival capacity of Len-resistant versus WT-H929 was evaluated by 

methylcellulose colony formation assay; ***p<0.0001 by unpaired two tailed 

Student’s t test. (B) Representative pictures of colonies after 1 week of culture (20X 

magnification). 
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Notably, in serial replating assays, both low and high dose lenalidomide-

exposed cells displayed increased self-renewal abilities. Moreover, we 

could discriminate between “fast” growing colonies, visible after 1 week of 

re-plating, and “slow” colonies that could be counted after 2 weeks 

(Fig.2.6). When we assessed ADAR1 expression by qPCR in individual 

colonies from serial replating assays, we consistently observed that “fast” 

growing colonies had higher ADAR1 mRNA levels compared to “slow” 

colonies and controls from the parental cell lines. 
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Figure 2.6: Serial replating assay of lenalidomide-resistant H929. (A) 

Increased replating ability of Len-treated cells was assessed by percentage of 

replated colonies/colonies plated at day0 (30 colonies). Red represents % of 

colonies detectable after 1 week of culture, blue represents % colonies grown after 

2 weeks. (B) qPCR analysis of ADAR1 expression in “fast” vs “slow” colonies 

grown after replating in H929 WT or Len 1µM conditions (n=2). Grey columns 

represent the corresponding mRNA values in parental cell lines. *p<0.05; 

**p<0.001 by unpaired two tailed Student’s t test 
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2.4 Lenalidomide-resistant cells harbor a CD138dim cancer stem cell-

like subpopulation 

Therapeutic failure in MM can be caused by several factors, i.e. high risk 

genetic background, protective microenvironment and drug-resistant 

dormant cancer stem cells. Cancer stem cells (CSCs) in MM have been a 

subject of some debate over the last decade, but most of the scientific 

literature supports the existence of a CSC-like subpopulation bearing a 

CD138negative/dim immunophenotype[94],[151]. Therefore, to further 

investigate the stem-like potential of drug-resistant cells, we assessed the 

cell surface expression of CD138 in H929 WT versus Len-resistant cells by 

flow cytometry. As shown in Fig.2.7, we observed an increase of CD138dim 

(stem cells enriched) sub-fraction in cultures exposed to continuous 

lenalidomide treatment compared to wild type controls.  

 

Figure 2.7: Cell surface 

expression of CD138 after 

prolonged lenalidomide 

exposure. (A) Representative 

density plots of WT or Len-

treated H929 displaying a 

higher fraction of CD138dim 

subpopulation in Len-H929. 

(B) Quantification of 

CD138dim cell percentage 

from flow cytometry assays. 

*p<0.05 by unpaired two-

tailed Student’s t test 
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3. Bone marrow niche-dependent factors contribute to 

ADAR1 activation 

In the pro-inflammatory microenvironment that characterizes MM BM, 

tumor cells could be at further risk for deregulated activation of malignant 

stem cell self-renewal factors such as ADAR1 through cytokine-dependent 

stimulation, as represented in Figure 3.1. 

One fundamental cytokine is MM is IL-6, which promotes cell survival and 

proliferation and whose levels correlate with disease severity and 

stage[71],[76],[81],[152] 

 

 

Figure 3.1: Schematic representation of BM-tumor cell interactions triggering 

ADAR1 expression and activity in MM cells. Patients carrying 1q21 amplification 

and/or exposed to prolonged immunomodulatory therapies may be at further risk of 

aberrant transcriptome reprogramming. 
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3.1 Exogenous IL6 induces ADAR1-dependent RNA editing activity 

ADAR1 p150 isoform transcription is under the control of an Interferon 

Signaling Responsive Element (ISRE) in its promoter. Inflammatory signals, 

such as IFN or TNFα, trigger a signaling cascade through the JAK/STAT 

pathway, ultimately culminating in the binding of phosphorylated STAT 

homo/hetero dimers to ISRE elements, thus promoting downstream target 

gene transcription. Similarly, IL-6 signaling triggers JAK/STAT pathway 

activation, and thus it could contribute to inflammation-induced ADAR1 

expression. Moreover, a very interesting direct link between IL-6 production 

and ADAR1 expression has been described in the context of intestinal stem 

cell maintenance, as inducible-ADAR1 knocked out mice showed 

progressive intestinal inflammation and increased expression of 

inflammatory cytokines IL-6, TNFα and IL-1 in the intestinal mucosa[153], 

suggesting a negative feedback mechanism between ADAR1 and 

inflammation.  

In order to test this hypothesis, H929 wild type cells were stimulated in vitro 

with increasing concentrations of IL-6. Cells were collected at different time 

points and RNA was isolated to evaluate changes in ADAR1 expression 

and in RNA editing activity by qPCR and RESSqPCR. 

We observed a dose-dependent increase in ADAR1 mRNA expression 

when cells were exposed to IL-6 for 24h (Fig.3.2A), in both p150 and p110 

isoforms (Fig.3.2B-C). Notably, we observed an increase in RNA editing 

activity after 48h (Fig.3.2D-G). Most CSC-associated sites showed a 

significantly higher edit/WT RNA ratio, including APOBEC3D, GLI1 and 

AZIN1. 
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Figure 3.2: IL-6-dependent ADAR1 expression and effects on RNA editing in 

H929 cells. (A-C) qPCR analysis of total ADAR1 and isoform- specific expression 

in H929 WT after IL-6 (0-20ng/ml) stimulation at 24-48 hours (n=3). (D-G) 

Evaluation of RNA editing by RESSqPCR in IL-6-stimulated cells after 48h. 

*p<0.05, ***p<0.001 compared to vehicle-treated (0 ng/ml IL-6) controls by 

unpaired two-tailed Student’s t test. 
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3.2 Notch-overexpressing MM cells trigger IL-6 production in BM 

stromal cells 

Plasma-cell derived IL-6 expression in MM is regulated by tumor-stromal 

interactions. We recently showed that the Notch pathway is a crucial factor 

promoting MM cell survival, modulating major chemokine pathways such as 

CXCR4/SDF1[112], osteoclasts/osteoblasts balance[154] and drug-

resistance [manuscript under preparation]. 

Notch is a developmentally conserved pathway that plays a central role in 

normal and malignant stem cell survival[90],[155]. Tumor cells expressing 

both Notch ligands and receptors find a protective niche in the BM, where 

stromal cells also express Notch receptors.  

In this environment, MM cells can trigger through overexpressed Notch 

ligands[106],[109] the transcription of Notch-downstream targets in nearby 

MM cells and healthy BM cells, acquiring survival advantages and 

stimulating a tumor-supporting behavior by cells of BM microenvironment. 

In order to determine whether BMSCs interactions play a role in pro-

inflammatory cues that might drive malignant reprogramming in MM, we 

investigated the ability of MM cells to induce IL-6 production in BMSC in in 

vitro co-culture models. To facilitate evaluation of IL-6 mRNA expression 

we co-cultured human myeloma cell lines OPM2 and U266 with NIH3T3 

fibroblasts (mouse).  

Consistent with previous observations[106], we observed that MM cells 

overexpressing NOTCH ligands Jagged1 and Jagged2 activate IL-6 

production in BMSCs. As shown in Fig.3.3, co-culture of OPM2 and U266 

cells with NIH3T3 fibroblasts induced expression of the NOTCH-

downstream target gene HES1, as well as IL-6 mRNA expression. Notably, 

these effects were abolished by double silencing of Jagged1 and Jagged2, 

achieved through transient siRNA transfection of myeloma cells.  
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Figure 3.3: NOTCH-dependent BM stromal cell-MM cell interactions. 

Histograms represent qPCR analysis of human IL-6 and HES1 mRNA expression 

in 3T3 mouse stromal cells co-cultured with myeloma cells. OPM2 and U266 cells 

were previously transiently transfected with anti-human Jagged1 and Jagged2 

siRNA (or scrambled controls) for 48h, then co-cultured with 3T3 for an additional 

48h. 
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These observations were then confirmed in myeloma-BMSC co-cultures. 

For co-culture experiments OPM2 or U266 MM cell lines were seeded on a 

monolayer of human BMSC line previously transduced to express green 

fluorescent protein (GFP+HS5) to distinguish the two co-cultured cell types. 

OPM2 or U266 cells induced IL-6 production in HS5 cells as measured by 

flow cytometry analysis, while double Jagged1 and Jagged2 silencing in 

MM cells almost completely abrogated this effect (Fig.3.4). 

 

 

Figure 3.4: MM-induced IL-6 production in BMSCs. Representative histograms 

of intracellular IL-6 levels measured in GFP+ HS5 cells in single culture or in co-

culture with scramble control/ anti-Jagged1 and Jagged2 shRNA transfected OPM2 

(A) and U266 cells (B). Anti-IL-6 APC fluorescent signal displayed in black line; 

isotype-matched control in gray line Histograms are representative of at least 3 

experiments with similar results.  
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4. Establishment of MM in vivo mouse models 

Humanized mouse models developed using human cell xenografts or 

tissue transplants are extremely useful in basic and applied research. Since 

the early 2000’s a series of highly immunodeficient mice has been 

successfully developed by introducing the mutant IL2 receptor gamma 

chain gene (IL2Rγnull) into conventional non-obese diabetic severe 

combined immunodeficient mice (NOD/SCID) or into Balb/c Rag1/2 

deficient mice. These highly immunocompromised strains, NSG and RAG2-

/-γc-/-, respectively, showed extremely high engraftment rates and 

differentiation of human cells [156]. A number of different animal models 

are currently used to study MM, including spontaneous (5T series), 

transgenic (Vk*myc) and xenograft models. 

It is important to emphasize that there are several key limitations and 

obstacles to the existing in vivo models for MM. Most of these models fail to 

recapitulate complex features of the disease such as tumor homing to the 

BM, microenvironment-dependence and support for patient-derived primary 

cell engraftment. 

We experienced firsthand some of the current model limitations; indeed, 

direct intra-femoral injection of CD138-enriched or TMNC from BM MM 

patients resulted in engraftment of very few patient samples and among 

those, only low levels of engraftment were detected in highly 

immunocompromised mice (Rag2-/-γc-/-) (Table 1). Notably, CD138 

expression on the cell surface appeared to be inconsistent, thus deeply 

limiting the ability to trace engrafted human cells by flow cytometry. 

Another transplantation strategy we tested was intravenous transplants, 

which is also limited by the availability of viable primary cells in sufficient 

numbers for this transplantation method (>106 cells per mouse).  
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Table 1: Summary of in vivo primary xenografts transplanted by intra-femoral 

injection. Rag2-/-γc-/- adult (6-8 weeks old) mice were injected directly in the right 

femur with TMNC or Cd138+/- enriched cells from primary BM MM samples.  

Considering our findings that aberrant activation of the malignant 

reprogramming gene ADAR1 might play a crucial role in MM cell survival, 

self-renewal and drug resistance, we hypothesized that primary samples 

expressing high levels of ADAR1 might be more prone to efficient 

engraftment in immunocompromised mice. Therefore, we aimed to 

establish novel MM in vivo models with high ADAR1 expressing primary 

samples by intra-hepatic injection in neonatal Rag2-/-γc-/- mice. 

Neonatal Rag2-/-γc-/-mice (2-3 days old) lack T, B and NK cells[157] and 

support hematopoietic human stem cell (HSC) engraftment by direct 

intrahepatic injection in the liver, without myeloablative regimens. 

Moreover, human blood-derived cells can efficiently migrate from neonatal 

(liver) to adult hematopoietic tissues (BM and spleen).  

While newborn Rag2-/-γc-/- mice have been extensively used to establish 

humanized models of HSC-derived malignancies such as chronic myeloid 

leukemia (CML)[158],[159], no results have been previously reported on 

engraftment of more terminally differentiated cells, such as malignant 

plasma cells in MM. 
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We selected patient-derived samples M9 and M10 (PCLs expressing high 

ADAR1 levels) to assess PCL engraftment capacity after intrahepatic 

injection in Rag2-/-γc-/-neonatal mice. We speculated that ADAR1-

overexpressing PCL samples would have a high engraftment potential and 

the ability to circulate in the peripheral blood to reach hematopoietic niches, 

including the BM, thus recapitulating a critical human myeloma 

characteristic. 

4.1 In vivo monitoring of human cell engraftment 

In order to monitor human cell engraftment in vivo, PCL TMNCs were 

transduced with a lentiviral GFP-luciferase vector approximately 48 hrs 

prior to transplant. As displayed in Fig.4.1, patient-specific human 

immunoglobulin light chains were detected in the serum of the transplanted 

mice beginning around 8 weeks post-transplantation (post-tp). Additionally, 

human cell localization was monitored by in vivo bioluminescent imaging 

(IVIS). Fig.4.2 shows a representative image of M10-transplanted animals 

compared to a naïve control mouse, where luciferase-transduced cells are 

visible in several tissues, including lower limbs and abdomen. Mice were 

then sacrificed when symptoms of distress appeared, including loss of 

weight and presence of palpable tumors. 
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Figure 4.1: Screening of tumor engraftment by detection of human 

immunoglobulin light chains in mouse serum. ELISA was performed on mouse 

serum at a minimum of three separate time points post tp. (A) M9-transplanted 

animals and (B) M10-transplanted animals showed steadily increasing levels of Ig 

light chains. M9 sample appeared to grow faster (80-100 days post tp.) compared 

to M10 sample, which required a longer time frame before animals showed sign of 

tumor burden (120-130 days post tp). 

 

 

Figure 4.2: Representative images of 

M10 tumor engraftment by in vivo 

bioluminescence assay (IVIS). Mice 

were injected intra-peritoneally (i.p.) with 

luciferin, and then luciferase signal was 

acquired by IVIS. In the top panel, 

animals 50 days post transplant show 

few or no detectable human cells; while 

in the bottom panel, animals 130 days 

post tp show human cell migration 

throughout the BM and in the abdominal 

organs. 
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4.2 Evaluation of malignant plasma cell tissue-specific engraftment 

We evaluated primary human cell engraftment by multi-color flow cytometry 

analysis on different hematopoietic tissues. Our screening panel included 

CD138, the standard marker for MM plasma cells, along with other 

malignant plasma cells surface markers, i.e. CD319 and CD38[151],[160]. 

We also included CD45 in order to discriminate engraftment of other blood-

derived human cells.  

We observed that Rag2-/-γc-/-mice successfully supported MM primary 

xenografts: as displayed in Fig.4.3, M9-transplanted animals showed high 

percentages of human CD138+ cells in the bone marrow (BM) and spleen 

(SP), with somewhat lower percentages in the peripheral blood (PB) and in 

the liver (LI, site of injection). Notably, mice developed tumors 

subcutaneously (ascribable to the needle trajectory), in the abdominal 

cavity and in the lower limbs that were constituted by CD138+ plasma cells. 

 

Figure 4.3: Engraftment 

of M9 sample in Rag2-/-

γγγγc-/-mice. Graph shows 

the percentage of human 

CD138 positive cells 

detected out of total live 

cells in BM), SP, PB, Li 

and tumors (TU) of 

individual mice at the end 

of the experiment (n=3; 

105 days post tp). 

Samples from all tissues 

were stained for human 

CD138 and for CD319, CD38 and CD45 (not shown in this panel), acquired on a 

MACSQuant flow cytometer and analyzed by FlowJo. 
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M10-transplanted animals consistently showed clear engraftment 

represented by CD138+ cells detected in the hematopoietic niches of the 

BM and SP, while no measurable engraftment of human cells was detected 

in PB or LI (Fig.4.4). 

 

Figure 4.4: Engraftment of M10 sample in Rag2-/-γγγγc-/-mice. Graph shows the 

percentage of human CD138+cells detected in bone marrow (BM), spleen (SP), 

peripheral blood (PB), and liver (LI) of individual mice at the end point of the 

experiment (n=4; 150 days post tp). Samples were stained, acquired and analyzed 

as previously described for M9-transplanted animals. 
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4.3 Immunophenotype of MM tumorigenic cells  

M9 and M10 PCL samples successfully engrafted in mouse hematopoietic 

niches, therefore we aimed to better define the immunophenotype of 

tumorigenic MM cells. Consistently with previous reports, we observed that 

MM-engrafted cells were CD138+, CD319 (CRACC)+, CD38+ and lacking 

CD45 surface expression (Fig.4.5). Interestingly, this phenotype was similar 

in both models, despite variable behavior of the samples in aggressiveness 

and preference for the vascular and non-hematopoietic niches. 

 

Figure 4.5: Representative flow cytometry analysis of human PCL-derived 

cells in mouse BM. Histograms show fluorescence intensity of CD138-APC, 

CD319-PE, CD38- PECy7 and CD45- Brilliant Violet 450 stained samples (red line 

represents PCL-transplanted mouse; grey dotted line naive control mouse). 
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4.4 Variability of CD138 expression on MM tumor cell surface 

In current practice, MM plasma cells are usually isolated based on CD138 

cell surface expression. This marker is generally preferred because of its 

high plasma cell specificity, as compared with other plasma cell surface 

markers that are also found on the surface of other cell types, such asCD38 

or CD56, for example. Nevertheless, the CD138 antigen has a major 

drawback in that it disappears/decreases rapidly from the cell surface when 

the sample is frozen, or even just after a few hours of processing time post-

collection[160]. Moreover, in light of the somewhat controversial markers 

available for MM tumor cancer stem cell identification, especially regarding 

primary MM xenografts, the stability of CD138 expression on human 

plasma cells in non-human microenvironments remains unclear. 

Overall, this phenomenon reduces sensitivity of immunophenotype-based 

assays, including fluorescence-activated cell sorting (FACS) and magnetic 

separation; therefore more robust MM plasma cells markers would facilitate 

both research and clinical practice in MM. Therefore, using our panel of 

human-specific plasma cell antibodies, we analyzed the variability of 

CD138 cell surface expression in engrafted mice tissues compared to 

plasma cell markers CD38 and CD319. 

In M9-transplanted mice, similar proportions of CD138+, CD319+ and 

CD38+ cells were detected in BM, SP and PB, while there were 

unexpected differences in tumor cell surface expression. Subcutaneous 

and abdominal tumors were processed with two protocols, namely A 

(manual dissociation plus collagenase IV incubation) and B (automated 

dissociation and Miltenyi enzymatic cocktail incubation).  
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Notably, cell surface CD138 expression was lower than CD319 or CD38 

expression when tumors were dissociated with protocol A, while CD138 

completely disappeared after tissues were processed with protocol B. In 

contrast, both CD319 and CD38 surface expression were consistently 

stable, regardless from the dissociation protocol applied, with over 90% of 

cells in the tumors likely being malignant plasma cells. 

 

 

Figure 4.6: Variability of CD138 expression on M9-engrafted tumor cell 

surface. Graphs show the average percentage of cells positive for human CD138, 

CD319 and CD38 in M9-transplated mice BM (A); SP (B), PB (C) and tumors (D-

E). 
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M10 transplanted mice showed a similar expression of CD138 compared to 

CD319 and CD38 in engrafted tissues, as shown in Fig.4.7. This model 

showed lower overall engraftment rates than M9, and did not display any 

tumor development. 

 

 

Figure 4.7: Variability of CD138 expression on M10-engrafted tumor cells. 

Graphs show the average percentage of cells positive for human CD138, CD319 

and CD38 in M10-transplated mice BM (A) and SP (B). 

Overall these observations highlight how sensitive the CD138 marker is to 

ablation from MM plasma cell surface, depending on tissue processing and 

sample handling, thus leading to inconsistent results and underestimation 

of actual tumor burden. In our hands, manual tumor dissociation followed 

by incubation with collagenase IV (protocol A) gave the best compromise 

between cell viability and cell surface marker expression, although CD138 

appeared extremely unreliable. 
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4.5 PCL-derived xenografts are serially transplantable 

In order to functionally demonstrate whether the established MM models 

could serially transplant, thus allowing for future therapeutic treatment 

studies in a robust MM model, we performed intrahepatic injection in 

secondary Rag2-/-γc-/-recipients. Single cells obtained from engrafted BM 

and tumors were pooled together and injected intrahepatically in newborn 

mice. 

As displayed in Fig.4.8, secondary recipient mice successfully recapitulated 

primary M9-transplanted mice. Indeed, after 80 days from transplant, mice 

showed signs of distress and presence of palpable tumors. 

Once sacrificed, human CD138+/CD319+/CD38+/CD45- cells (Fig.4.8A) 

were detected in mouse BM, SP and LI in lower percentages, thus 

reproducing a similar phenotype to primary M9-engrafted samples. Serial 

transplant recipients developed widespread tumors similar to primary 

recipients (Fig.4.8B). Given the more rapid development of tumors, the 

serial transplantation of BM and tumor-derived cells appeared to favor more 

robust tumor development, which will inform future selection of tissue 

sources and timeframes for experimental design with these models. As 

observed in M9-derived tumors in primary recipients, CD138 surface 

expression in tumor-derived cells from serial transplant recipients was 

highly inconsistent compared to CD319 and CD38 markers (Fig.4.8C). 
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Figure 4.8: Engraftment of M9 sample in secondary recipients. (A) 

Representative flow cytometry analysis of M9-derived cells in mouse BM (red line 

serially transplanted mouse; grey dotted line naive control mouse); (B) Percentage 

of human CD138+ cells detected in BM, SP; PB, LI and tumors of individual mice 

at the end point of the experiment (n=6; 80 days post tp); (C-D) Average 

percentage of cells positive for human CD138, CD319 and CD38 in M9-serially 

transplanted mice BM (C) and tumors (D). 
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Discussion 
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Multiple myeloma (MM) is the second most common blood cancer after 

leukemia, accounting for approximately 10% of hematologic 

malignancies[7]. In 2014 the American Cancer Society estimated more than 

24.000 new cases and 11.000 disease-associated deaths[161]. With a 

median age at diagnosis of 65 years, this condition affects a significant 

percentage of the middle-aged and older population. As for other age-

related conditions, MM incidence will have to be kept under a close watch. 

The phenomenon of global aging is changing the demographic composition 

over the coming decades and it has the potential to significantly impact 

healthcare systems, research and medical decision making. Despite the 

introduction of novel therapies and a significant improvement in survival, 

MM has still no cure. Virtually all patients experience cycles of 

remission/relapse and/or become unresponsive to treatment. For patients 

with relapsed or refractory MM (RRMM) many therapeutic options exist but 

an effective standard of care is still missing. With each successive line of 

treatment therapeutic options become increasingly limited due to 

acquisition of drug resistance. Moreover, on each subsequent disease 

relapse patients experience lower rates of clinical response and shorter 

progression-free survival (PFS); which is the time between the start of 

treatment and progression of the disease or death. As more lines of therapy 

are available, patients with RRMM are living longer. However, as treatment 

is prolonged, the costs of therapy have become an increasing burden to 

patients. Autologous stem cell transplant (ASCT) is the current standard of 

care for most patients who are eligible for transplant, with a 12-month 

improvement in overall survival compared to non-transplanted 

patients[162]. The risk of death after ASCT has been declining in the past 

few years and it is estimated that approximately 5000 ASCT are performed 

for MM patients in the U.S. annually, with an average cost of $25.000 

(adjusted to 2012)[163]. Nevertheless, studies endorsing ASCT predated 

novel agents; therefore the value of stem cell transplant is currently under 
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reconsideration in randomized trials that include bortezomib and 

lenalidomide.  

Bortezomib is used as first line therapy and for retreatment in patients who 

had achieved durable response before relapse. Similarly, lenalidomide 

treatment in induction and as maintenance therapy has gained widespread 

use. Lenalidomide-containing regimens are the most expensive in MM 

therapy: a recent study calculated that the total cost of one year of 

treatment would range between $126.000-256.000[164]. Although drug 

costs form a conspicuous portion of treatment cost in MM, myeloma-related 

healthcare costs are also significantly driven by disease complications, 

which result in inpatient hospitalizations, hospital readmissions, and 

medical procedures. Indeed, the same study found that the average length 

of hospital stay associated with MM was among the longest of the cancers 

that were evaluated[165]. Therefore, prolonging the duration of remission 

and/or lengthening PFS remain primary goals of therapy for patients with 

MM. Thus, it is essential to identify the most effective therapeutic regimens 

according to patient-specific risk factors.  

As in other hematologic malignancies, cytogenetic status is one of the most 

important prognostic factors in MM. Advances in high-throughput 

methodologies in genomic analysis greatly helped in investigating genetic 

abnormalities. Nowadays, in addition to the traditional Durie-Salmon 

staging criteria and the International Staging System (ISS), MM patients 

can benefit from a risk-stratification based on recurrent genetic alterations 

in order to make informed decision about treatment. Importantly, the 

survival of a particular subgroup of patients with certain cytogenetic 

abnormalities, collectively called “high-risk” (HR) MM, has remained poor 

despite aggressive therapy. 

According to the International Myeloma Working Group, the term “high-risk” 

MM should include those patients with at least one of the following features: 

deletion of 17p, t(4;14), t(14;16), t(14;20) and 1q gains. In particular, 1q21 
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and del17p were recently described to be associated to a even more 

aggressive MM risk category, defined as “ultra high risk” (UHR)[166]. UHR 

patients have an overall survival of less than 12 months (median 5 months), 

become refractory to therapy after a single induction cycle (30% of cases) 

and frequently develop secondary plasma cell leukemia (PCL, 14% of 

cases).  

Up to 20% of all myeloma patients may be classified as UHR, and while 

ISS stage III has been reported to be an effective prognostic indicator, only 

about 77% of UHR patients would be classified as ISS stage III. 

It is well established that the 1q21 amplification contains numerous 

candidate genes that show amplification or deregulated expression in 

myeloma, including CKS1B, IL-6R and MCL1[30]. In this study we describe 

for the first time the correlation between the expression of the Adenosine 

Deaminase Acting on RNA (ADAR)-1 gene located on 1q21 and copy 

number amplifications of 1q21 locus itself.  

Indeed, our analysis on well-annotated cohorts of patients revealed that 

copy number amplification of 1q21 correlates with increased mRNA 

expression of the RNA editases ADAR1. Notably, ADAR1 expression was 

significantly higher in patients with more than 4 copies of 1q21. These 

results are in line with Boyd’s observations[26], which revealed that more 

than 3 copies of 1q21 independently predicted poor survival, with a 

progression-free survival (PFS) of 17.6 months and a 3-year overall 

survival (OS) rate of 52%, while ≤3 copies were only marginally associated 

with PFS and OS. 

Our new results suggest a novel relationship between ADAR1 expression 

and poor prognosis in plasma cell neoplasms, bringing ADAR1 into the 

spotlight as a new player in myeloma plasma cell clonal evolution and drug 

resistance. 

MM is a genetically complex disease. The basic premise underlying the 

initiation and progression of myeloma is that multiple mutations in different 
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pathways deregulate the physiological biology of the plasma cell, thus 

resulting in the features of myeloma. Many of the genes and pathways 

mediating this transformation process have been characterized, however, 

recent sequencing data made it clear that there is no single genetic change 

underlying this process that can be targeted therapeutically[149]. 

In addition to the genetic changes, intraclonal heterogeneity of myeloma-

initiating cells is emerging as a further level of complexity. In this respect, 

myeloma-initiating cells could acquire additional “survival advantage” both 

by genetic and epigenetic events, thus leading to the evolution of this 

disease. 

Indeed, in the last few decades the Darwinian principles of evolution have 

been applied to cancer: first in 1976, Dr. Peter Nowell pioneered the 

hypothesis that cancer originates from one founder cell, which 

progressively accumulates random somatic genetic mutations, thus giving 

rise to a series of branches of subclonal populations existing in 

equilibrium[167]. Such subclones compete with each other for the limited 

microenvironmental resources and are selected according to their fitness to 

survive.  

A growing body of evidence is supporting this model of tumor evolution 

where several clonal tumor-initiating cells present at diagnosis and 

therapeutic or niche-dependent selection pressure drives the alternating 

dominance of these clones over time[168]–[170]. Interestingly, clonal 

diversity is found to be more prevalent in high-risk MM compared with low-

risk disease[168].  

The majority of these observations have been made possible by mutation-

detection methods such as whole exome sequencing, but still little is known 

about the role played by epigenetic mechanisms such as RNA editing. 

RNA editing provides a post-transcriptional level of genetic regulation that 

allows for the expression of gene variants while preserving the original 

gene sequence and product. This phenomenon generates incredible 
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potential for RNA and protein diversity, that could contribute further survival 

advantages in selective environments, for instance in the context of the BM 

niche or under the pressure of chemotherapy. 

In the present study we examined ADAR1 gene expression in MM and 

PCL-derived mononuclear cells. We showed that ADAR1 was significantly 

overexpressed in PCL, while its levels in smoldering MM were not 

significantly different from normal controls. Since deregulated RNA editing 

can result in transcriptome “recoding”, this could contribute significant 

genetic diversity in plasma cell neoplasms, eventually resulting in the 

generation of dominant clones with a more aggressive transcriptional 

profile. It is believed that CKS1B amplification is associated with 

progression to PCL[171], however, the gain of chromosome band 1q21 has 

been commonly determined by fluorescence in situ hybridization (FISH), 

using a bacterial artificial clone (180kb) carrying the CKS1B gene[29],[172]. 

Hence, 1q21 amplification has been linked to CKS1B overexpression, but 

whether this gene is solely responsible for 1q21 prognostic value is 

arguable: as described by Avet-Loiseau and colleagues, 1q gains can in 

fact involve a more extended region, up to the 1q23.3 chromosomal 

band[173]. As a result of copy number amplifications of the ADAR1 gene 

locus on chromosome 1q, HR MM patients would be at risk for more rapid 

clonal evolution through transcriptome recoding. Interestingly, ADAR1 

appeared to be significantly increased also in a relapsed MM patient (M8) 

previously exposed to immunomodulatory treatment (lenalidomide), driving 

us to hypothesize those agents could provide the selective pressure 

inducing inflammation-responsive ADAR1 isoform expression, as supported 

by higher levels of ADAR1 isoform p150 in the same sample. 

ADAR1 levels were also increased in a newly diagnosed MM patient (M3) 

without previous treatment. In this sample both ADAR1 pro-inflammatory 

p150 and constitutive p110 isoforms were overexpressed. FISH analysis on 

this patient’s BM biopsy revealed the presence of a cyclin D1-IgH 
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(CCND1/IGH) gene fusion, resulting from translocation (11;14) in CD138-

enriched plasma cells. While this translocation is not considered an 

adverse prognostic factor when found in MM BM, it is very common in 

PCL[23],[174]. Unfortunately, we were not able to determine 1q21 copy 

number variations in our set of primary samples as diagnostic assays at the 

time of sample collection did not include this probe. However, future studies 

will clarify whether ADAR1 overexpression could be predicted by 1q 

amplification and/or by recurrent translocations in PCL, such as t(11;14). 

Furthermore, we demonstrated that ADAR1 overexpression was associated 

with increased RNA editing by a novel RNA editing detection assay[150], 

namely RESSqPCR, and validated our findings by Sanger sequencing. 

Identification of a MM-specific RNA editing “fingerprint” would be highly 

valuable to tracking its evolution within the course of the disease and in 

response to treatment. 

In this work we assessed RNA editing in four transcripts previously 

associated with ADAR1-induced malignant transformation in other cancers 

including CML[148],[145]: apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like 3D (APOBEC3D), Glioma- associated oncogene 1 (GLI1), 

antizyme inhibitor 1 (AZIN1) and murine double minute 2 E3 ubiquitin 

protein ligase (MDM2). 

In keeping with increased ADAR1 expression, analysis of endogenous RNA 

editing levels in primary patient samples revealed abnormal RNA editing 

patterns. In particular, APOBEC3D transcripts were highly edited across all 

MM and PCL samples compared to controls, which virtually lacked any 

detectable editing at this locus. In addition, PCL and newly diagnosed MM 

samples showed elevated editing in GLI1 transcript, while editing in AZIN1 

and MDM2 sites were heterogeneous among samples. The potential 

implications of an increase in edited transcripts for these genes appears 

worthy of note as all four genes have been previously associated with 

cancer progression. 
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Interestingly, next-generation sequencing analyses have revealed an 

important role for genome editing by APOBEC3 family members. For 

example, a mutational signature associated with APOBEC3 (A3) has been 

identified several cancers, such as HER2-amplified breast cancer and 

human papilloma virus (HPV)-associated head and neck squamous 

carcinoma [175]–[177]. Notably, a study of B cell-derived chronic 

lymphocytic leukemia (CLL) reported that an A3-like mutation signature 

was found within CLL samples that had undergone somatic hypermutation 

(SHM) but not in samples that had not, whereas the expression of A3 

proteins was unchanged[178]. In light of these observations, it is 

reasonable to hypothesize a role for other APOBEC3 family members with 

genome-editing capacity such as APOBEC3D in post-SHM plasma cell-

derived malignancies as MM as potential driver of further tumor clonal 

variation, and the functional impact of RNA editing in this DNA-modifying 

gene product is under further examination. 

GLI1 is a zinc finger transcription factor downstream of Hedgehog (Hh) 

signaling, a highly conserved pathway essential for embryonic development 

and adult tissue homeostasis. Aberrant activation of Hh signaling has been 

reported in both solid and hematologic tumors, such as cancers of the 

pancreas, prostate, lungin and B-cell lymphoma. Moreover, several groups 

identified its contribution in MM survival by inhibition of chemotherapy- 

induced apoptosis. Notably, bothCD138+[179],[180] and CD138-[181] cell 

populations were described to be major producers and secretors of Hh 

ligands Sonic hedgehog (SHH), thus inducing Hh pathway activation by 

autocrine signaling. Mechanistic studies showed that sonic hedgehog 

(SHH) signaling activated the SHH/GLI1/BCL-2 axis, leading to the 

inhibition of myeloma cell apoptosis[180]. The edited GLI1 has been shown 

to have a higher capacity to activate its transcriptional targets and to be 

less susceptible to inhibition by the negative regulator of Hh signaling, 

suppressor of fused (SUFU)[182]. As a result, an increase of edited GLI1 



92 

 

could support the prolonged activation of Hh signaling in both MM bulk 

tumor and cancer stem cells. 

AZIN1 hyper-editing provided one of the early clues about the functional 

impact of RNA editing in cancerogenesis as Chen and colleagues proved 

that AZIN1 editing results in a single amino acid substitution that confers a 

“gain of function” phenotype, where the edited form results in increased 

protein stability and promotes cell proliferation in hepatocellular carcinoma 

(HCC)[145]. As for MDM2, the editing site in located in the 3’ UTR instead 

that in the coding region. Therefore, rather than a “gain of function” effect, 

increased editing would likely result in a change in microRNA binding site. 

MDM2 is an E3 ubiquitin ligase responsible for the ubiquitination and 

degradation of p53, therefore editing in the 3’ UTR may hamper the ability 

of microRNAs to bind to MDM2, leading to a “lack of inhibition” effect by 

which cells could inactivate p53 in the process of transformation.  

Overall these findings led us to infer that both genetic (1q21 amplification) 

and environmental (inflammation, IMiDs) factors can modulate ADAR1 

expression. Moreover, ADAR1 overexpression is associated with aberrant 

RNA editing in key pro-tumoral transcripts. The functional consequences of 

A-to-I editing are have not been fully elucidated for all of the specific 

transcripts we identified, however studies are under way to provide further 

insights into the mechanisms of ADAR1-associated aberrant editing of 

APOBEC3D, GLI1, AZIN1 and MDM2. 

In a parallel series of experiments, we investigated the ability of 

lenalidomide, an immunomodulatory agent, to modulate ADAR1 expression 

and activity in MM. For this purpose, we developed lenalidomide-resistant 

NCI-H929 cells, a HMCL harboring 4 copies of the 1q21 locus. We 

observed that continuous exposure to lenalidomide significantly increased 

ADAR1 mRNA and protein level, thus sustaining abnormal RNA editing of 

APOBEC3D, GLI1, AZIN1 and MDM2. Remarkably, only ADAR1 levels 
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were modulated, while ADAR2 expression was very low in wild type cells 

and was not increased by continuous lenalidomide treatment. 

Notably, ADAR1-enriched cells harbored increased self-renewal and serial 

replating potential in vitro. These results are consistent with previous 

findings from our collaborators, where Jiang and colleagues demonstrated 

that ADAR1 is an essential self-renewal factor in CML progenitor cells and 

that disease progression from chronic to blast crisis phase is associated 

with increased A-to-I RNA editing[148]. 

Consistent with the reported role for ADAR1 in malignant reprogramming 

leading to generation of leukemia stem cells in advanced stages of CML, 

we demonstrated that prolonged exposure to lenalidomide led to an 

increase in the percentage of stem-like CD138dim cells in H929. Our 

findings are consistent with Matsui and colleagues’ work, who described 

how CD138dim/- subpopulation have been showed to display increased 

clonogenic growth compared to CD138+ when exposed to drugs, including 

lenalidomide and dexamethasone[94]. In addition to cell-intrinsic changes, 

microenvironmental cues could contribute to clonal evolution and drug-

resistance. To address this aspect, we investigated whether pro-

inflammatory signals from the MM BM microenvironment, namely IL-6, 

could modulate ADAR1 expression levels. Indeed, we observed that 

aberrant RNA editing in H929 cells was induced by exogenous IL-6 

exposure. Recently, we and others demonstrated that IL-6 is produced by 

BM stromal cells upon contact with malignant plasma cells and that its 

levels are modulated by the Notch signaling pathway. In fact, IL-6 secretion 

by BMSCs is inhibited when Notch signaling is antagonized by Jagged 1 

and Jagged2 silencing in MM cells. These observations led to the 

identification of important key factors tuning ADAR1 expression and 

consequently RNA editing. In order to further translate these findings in vivo 

we developed primary xenografts in Rag2-/-γc-/- mice. To our knowledge 

this is the first time that a successful primary PCL xenograft by intrahepatic 
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injection is described. We showed that high-ADAR1 PCL samples 

successfully engrafted in primary and secondary Rag2-/-γc-/- recipients and 

demonstrated tropism towards hematopoietic tissues. Human 

CD138+/CD319+/CD38+ plasma cells engrafted the liver in neonatal 

animals and migrated to bone marrow and spleen in adult recipients. We 

believe these models could be further employed to investigate therapeutic 

approaches for drug resistance plasma cell neoplasms, such as treatment 

strategies targeting ADAR1 and aberrant RNA editing, in order to provide 

specific therapeutic approaches for HR and advanced MM patients. 
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MM is a disease that affects elderly people. As it is estimated that by 2029 

more than 20% of the total U.S. population will be over the age of 65[183], 

increased demand for healthcare and long-term care for the aging 

population will be a major challenge for healthcare professionals. Myeloma 

accounts for a small percentage of all cancers (1%) but the associated 

costs over the course of the disease are disproportionately high compared 

to other cancers that invade the bone marrow niche[164]. In recent years 

the Darwinian evolution model proved valid for tumor initiation and 

progression. In fact, the presence of clonal heterogeneity at diagnosis and 

in response to selective pressure represents a novel paradigm in myeloma 

with profound therapeutic implications. RNA editing is an epigenetic 

mechanism with the potential to generate vast RNA and protein diversity of 

key cancer-regulatory and stem cell-associated gene products. These 

molecular alterations can provide further survival advantages to malignant 

cells including tumor-initiating populations in selective environments, for 

instance in the context of the BM niche or under the pressure of 

chemotherapy. In this work we showed that ADAR1, located on the high-

risk associated- 1q21 locus is highly expressed in late stage PCL patient 

samples, and that aberrant RNA editing occurs in cancer stem cell-

associated transcripts APOBEC3D and GLI1. Moreover, we showed that 

environmental factors such as immunomodulatory treatment (lenalidomide) 

or BM niche soluble factors (IL-6) can support ADAR1-induced aberrant 

RNA editing and that lenalidomide-sustained ADAR1 overexpression 

promotes self-renewal and a cancer stem cell-like phenotype in MM cells. 

Together, ADAR1-dependent transcriptome recoding could eventually lead 

to further malignant clonal diversity and disease progression in MM. 

Therefore, a NOTCH/IL-6/ADAR1 axis, together with ADAR1 editing 

substrates, represents novel targets for diagnostic and therapeutic 

development in MM and PCL.  
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