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ABSTRACT

Negr1 is a member of IgLON adhesion protein family but its functions are largely unknown. 

In  our  previous  work  ((Pischedda  et  al.  2014), APPENDIX  I)  we  identified  Negr1  as  a 

developmentally regulated synaptic protein. Thus we examined the consequences of Negr1 acute 

down regulation. Strikingly, we found that Negr1 ablation impairs neuronal maturation in vitro. 

In this project we demonstrated thanks to complementary biochemical and imaging approaches that 

Negr1 organizes trans-synaptic heterodimer and influences neurites outgrowth via MAPK signaling. 

In detail, we demonstrated that ectopic Negr1 is sufficient to improve neurite arborization and to 

rescue the morphological phenotype observed in Negr1 silenced cells.

This function is dependent on the activation of MAPK pathway through tyrosine kinase receptors. 

In fact, we found that Negr1 physically and functionally interacts with FGFR2, modulates FGFR2 

response to FGF and consequently influences MAPK pathway.

FGFR2  pathway  plays  an  important  role  during  brain  development.  Not  surprisingly,  our 

investigation  of  the  radial  migration  of  newly  generated  cortical  neurons  revealed  that  Negr1-

FGFR2 cross-talk controls cortical organization in vivo.

Noteworthy,  mutations  in  NEGR1  and  FGFR2  genes  have  been  recently  identified  as  ASD 

candidates.

Autism spectrum disorder (ASD) affects 0.9% of children and it is recognized as the most genetic 

of all developmental neuropsychiatric syndromes. Connectivity dysfunctions have been suggested 

as causative alterations in ASD.

Given the functional, physical and genetic correlation among Negr1 and FGFR2 and the impact of 

Negr1 on neuron morphology and migration,  Negr1-FGFR2 molecular cross talk might arise as a 

key mechanism during CNS development.
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1. INTRODUCTION

1.1 Neurite outhgrowth

Neurite outgrowth is a fundamental process that allows the establishment of a functional network in

the developing brain.

During development of  the nervous system, axons require a mechanism which guide them to their 

specific targets. This process is  regulated by a large panel of guidance molecules.

Neurons  need  a  permissive  adhesive  substratum  to  extend  their  axons.  There  are  two  major 

categories of adhesive cues: ECM (extracellular matrix) components, whose elements are localized 

in  interstices  or  basement  membrane,  and  CAMs (cell  adhesion  molecules)  expressed  both  on 

neuronal and non-neuronal cells membrane. For example the ECM component laminin promotes 

the extension of those growth cones expressing the  receptors for the integrin family (Bozyczko e 

Horwitz 1986; Jessell 1988; Letourneau 1978).

Neurons demonstrate  selective affinity for different  ECM molecules  according to the particular 

panel of integrine receptors that they express (McKerracher, Chamoux, e Arregui 1996).

Neurons and glia express a wide variety of CAMs that allow the  axons to interact  with other  

cellular component or with themselves. 

CAMs molecules are in fact the physical linkers between ECM and the intracellular cytoskeleton. 

Furthermore, CAMs act also as receptor and activate intracellular cascade, such as  the FAK-MAPK 

pathway (Fiol et al. 1994; Bechara et al. 2007; Maness e Schachner 2007) .

A wide  variety of  CAMs direct  growing axons toward  their  targets  via  growth-promoting  and 

inhibiting effects during development, and maintain the precise patterns of neuronal connectivity in 

the mature nervous system (Doherty, Fazeli, e Walsh 1995).

Thus guidance cues  include  a large variety of molecular signals, including electrical and chemical 

gradients and physical  protein interaction tigthly regulated in a spatio-temporal manner(Raper e 
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Mason 2010). 

Axons  extending  through  the  developing  nervous  system  encounter  many  competing  guidance 

signals arising from a variety of sources that need to be integrated into a single and reproducible 

command.  For  example  axons  simultaneously  interact  with  ECM,  glial  cells  and  neuronal 

membrane, each one expressing multiple permissive, trophic and modulatory signals all at the same 

time (Fig. 1). 

Fig. 1. Neurite outhgrowth modulatory signals. 

Along their path, axons pass contact to both neuronal and non-neuronal cells. These cells expose on their 

surface  or  release  into  interstitial  spaces  and  the  ECM  a  multitude  of  signaling  molecules,  such  as  

differentiation,  modulation  or  tropic  factors.  As  a  result,  a  growth  cone  may  advance,  pause,  collapse,  

withdraw, turn or fasciculate with other axons (adapted  from (Raper e Mason 2010).

Given that many of the molecules and relative receptors involved in axonal growth and neuronal 

maturation have been identified, now the main goal is to understand how they cooperate to guide 

the establishment of a functional neuronal network.
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1.2 IgLON CAMs family

The formation of the neuronal network requires the establishment of functional neuronal contacts, 

the synapse. One of the earliest and most critical steps in the formation of synaptic contact is the  

induction and adhesion of precisely opposed pre-synaptic and post-synaptic structures. Numerous 

neural recognition molecules involved in regulation of synaptic contact formation via homo/-hetero 

dimerization have been now identified.

Neurons exhibit at their cell surface different types of cell adhesion molecules (CAMs) and related 

signalling  molecules.  Many  of  CAMs  belong  to  one  of  three  most  important  families:  the 

cadherin(Takeichi  et  al.  1988),  integrin   (Ruoslahti  1988),  and  immunoglobulin  superfamily 

(Williams e Barclay 1988). Among them, major role is played by the molecules belonging to the 

immunoglobulin  superfamily  (IgSF):  integrins,  receptor  tyrosine  kinases  (including  ephrin 

receptors),  neuroligins,  neurexins,  neuropilins  and  plexins.  These  molecules  interact  in  a 

developmental and spatial specific manner thus allowing the establishment of  the correct pattern of 

synaptic contact. 

The IgSF proteins encompass one or more  extracellular  Ig-like domains  and execute important 

functions in the establishment and remodeling of the CNS (Salzer e Colman 1989). 

IgSF proteins such as neural cell adhesion molecule (NCAM), F3, TAG-1, L1, and NgCAM include 

also several  fibronectin  type-III-like repeats  in addition to five or six immunoglobulin (Ig)-like 

domains, whereas Thy-1, myelin-associated glycoprotein, SC1  and telencephalin are composed by 

only Ig-like domain(s). 

Many  neural IgSF proteins do not include a transmembrane domain and are anchored to the plasma 

membrane via a glycosylphosphatidylinositol (GPI) bridge.

LAMP (Levitt 1984), OBCAM (Schofield et al. 1989), neurotrimin (Ntm) (Struyk et al. 1995) and 

Negr1 (Kilon) (Funatsu et al. 1999) are classified as a subgroup of IgSF named as IgLON. IgLONs 
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are expressed at higher levels in the cerebral cortex and limbic system (Levitt 1984; Struyk et al. 

1995).  Each IgLON member  is  highly glycosylated,  binds the membrane by a GPI-anchor and 

includes three C2-type Ig-like domains (Fig. 2).

Fig. 2. Molecular structure and classification of IgLON family members.

(A) Structure of the three C2-type Ig-like domains in IgLON family members. (B) IgLON family members.

Experimental evidence suggested that IgLONs  modulate synaptic functions, synaptic formation and 

plasticity  (Hashimoto, Maekawa, e Miyata 2009). Furthermore, electron microscopic observations 

showed the synaptic localization of LAMP (Zacco et al. 1990), Negr1 and OBCAM (Miyata et al. 

2003) in adult brains. 

Recently,  in vitro experiments performed in cultured hippocampal neurons have shown that Negr1 

and OBCAM are directly implicated in synapse formation  (Yamada et al. 2007; Hashimoto et al. 

2008). IgLON  members show heterophilic and homophilic binding within the plane of the plasma 

membrane and might function in molecular complexes.

It has been supposed that different  homo/heterophilic dimers of IgLON members characterized by 

different   affinities  exist  within  the  plasma  membrane;  in  vitro  evidences  suggest  that  IgLON 

5



homo/heterodimerization  might  have  a  dual  impact  on neurites  extension  (Schäfer  et  al.  2005; 

Orlando D Gil et al. 2002).

For example LAMP, which is an early marker of cortical and sub-cortical limbic regions, can act in 

two different  ways.  On one hand it  facilitates  the extension of  neurites  from thalamic  neurons 

expressing LAMP and promotes  the  outgrowth of  limbic  axons.  On the  other  hand,  it  inhibits 

branch formation and acts  as repulsive signal during axonal guidance in neurons which do not 

express LAMP (Mann et al. 1998; Pimenta e Levitt 2004). 

Neurotrimin (Ntm) is highly expressed in thalamus, subplate, lower cortical laminae of forebrain, 

hippocampus, olfactory bulb, dorsal root ganglia and spinal cord (Struyk et al. 1995). 

Ntm  binds   neurons  that  express  Ntm  at  high  levels  e.g.,  dorsal  root  ganglion  (DRG)  and 

hippocampal  neurons.  Interestingly,  Ntm  promotes  neurite  outgrowth  of  DRG  neurons,  but  it 

inhibits the outgrowth of sympathetic neurons lacking Ntm expression (Orlando D Gil et al. 2002). 

Thus, both LAMP and Ntm promote  via  homophilic interactions neurite outgrowth, whereas the 

lack  of  homophilic  partner  or  in  presence  of  heterophilic  interactions  they  have  the  opposite 

function  (Orlando D Gil et al. 2002; Hashimoto et al. 2008). OBCAM expression was found in 

dendritic spines of neurons in cerebral cortex and hippocampus (Miyata et al. 2003) and regulates 

proliferation and cell size of cortical astrocytes (Sugimoto, Maekawa, e Miyata 2010).

OBCAM  is  able  to  bind  homophylically  and  heterophilically  with  other  members  of  IgLON 

family(Lodge et al. 2000). In conclusion, each IgLON  is expressed on different neuronal surfaces 

and can form homo and hetero dimers with different functional consequences.

Thus,  IgLON  expression  pattern  may  generate  a  complex  molecular  finger-print  that  can  be 

instrumental  for the establishment of proper neuronal connectivity.
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1.3 Negr1 (Kilon)

Negr1 is a member of the IgLON family. Negr1 mRNA is transcribed from a large gene (> 800 kb)

(NEGR1, 1p31.1) that includes 7 exons for a total of 5809 bp. More than 8000 SNPs have been 

identified in the gene region, 7 in the coding region. NEGR1 gene codes for a protein detected with 

an apparent MW of 50 kDa, but it shifts at 36 kDa after de-glycosylation.

This corresponds to the expected size deduced from the amino acid sequence (Schäfer et al. 2005).

Negr1 is highly expressed in the brain, but not in adult liver, spleen, kidney, or lung (figure 4A).

The expression gradually increased  during postnatal  brain development,  reaching a  steady-state 

level in adulthood (Schäfer et al. 2005). In the adult murine brain, it is expressed quite ubiquitously 

with higher levels in fore-brain regions (hippocampus, frontal cortex, amygdala) (figure 4B).

Western  blotting  analysis  (figure  4C)  and  immuno-histochemistry  approaches  (figure  4D) 

confirmed that Negr1 is expressed by forebrain neurons with higher expression in hippocampus 

(both DG and CA1-3) and frontal cortex (all layers) (Schafer, M., unpublished data). 

Furthermore,  in vitro  studies demonstrated high levels of Negr1 in axonal growth cones in early 

stages, whereas its localization is mostly confined in dendritic spines in late cultures (Hashimoto et 

al. 2008). In vitro studies suggested that Negr1 may act as a trans-neural growth promoting factor in 

regenerative  axon sprouting  (Schäfer  et  al.  2005).  Moreover,  Negr1 over-expression affects  the 

number of synapses with different outcome depending on culture stages: at early stages Negr1 over-

expression decreases the number of synapses, conversely in later stage it is positively associated 

with synapses number (Hashimoto, Maekawa, e Miyata 2009; Hashimoto et al. 2008). 

Recently, we showed that Negr1 also controls dendritic arborization and spine density in cortical  

neurons in vitro and in vivo ( (Pischedda et al. 2014) APPENDIX 1).

Thus, Negr1 appears to be an important cell adhesion molecule involved in the control of neurite 

outgrowth and synapses formation with putative critical function in the adult brain.
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Fig. 3. Analysis of Negr1 Expression.  (A) In situ hybridization with Negr1 specific probes in E 15.5 

mouse embryos. Negr1 mRNA appears expressed in the brain, olfactory bulb and spinal cord. (B) Negr1 

mRNA expression increases during post-natal development. High expression was found in hyppocampus and 

frontal cortex. (C) Western blotting analysis with Negr1 specific antibody (D) Immuno-fluorescence staining 

with Negr1 specific antibodies confirmed Negr1 protein expression in adult brain hippocampus and in frontal  

cortex. Scale bar=150 μm. (Schafer, M., unpublished data)
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1.4 Ectodomain shedding and IgLON

It has been demonstrated that several membrane bound proteins involved in neuronal development 

are released from the membrane and exert their activity as soluble factors activating intracellular 

cascades (Alfandari et al. 2001; Black 2002).

The process  at  the  bases  of  the  release  of  the  extracellular  portion  of  proteins  by proteolitical 

cleavage  is  called  ectodomain  shedding.  This  modification  deeply  influences  protein  function.

(Black 2002).

ADAMs  (for  “a  disintegrin  and  metalloprotease  domain”)  are  a  family  of  transmembrane 

glycoprotein able to execute the ectodomain shedding on different molecules. These protein are 

important for fertilization, myogenesis and neurogenesis (Seals e Courtneidge 2003).

In humans, there are 19 genes coding  for  ADAM  proteins. In total, considering also the other 

species, 34 ADAM gene have been described.

ADAMs  are  composed  by  several  domains.  Starting  from  the  N-terminal:  a  prodomain,  a 

metalloprotease domain, a disintegrine domain, a cysteine rich domain, a EGF-like domain, and a 

cytoplasmic tail (Seals e Courtneidge 2003)(Fig. 4).
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Fig. 4. ADAM domains and ectodomain shedding. (adapted from (Seals e Courtneidge 2003), 
review)

ADAMS proteins are involved in the cleavage of  several proteins.  For example MBP (Myelin 

Basic Protein) is processed exclusively by ADAM10, while TNF (Tumor Necrosis Factor) alpha is 

shed by ADAM 17/ TACE (Tumor Necrosis Factor-α-Converting Enzyme)  (Chantry, Gregson, e 

Glynn 1989).

Furthermore, the proteolytic processing of APP (amyloid precursor protein) is an essential event in 

the ezyogenesis of Alzheimer's disease. Buxbaum, J. D., et al underlined in 1998 the role of ADAM 

9, ADAM 10, and ADAM17  in the cleavage of APP, suggesting an essential role for these proteins 

in CNS (central nervous system) (Buxbaum et al. 1998).  Fibronectin repeats (FN) of IgSF proteins 

could be proteolitically processed by ADAM protein family, leading to the release in the cellular 

media of extracellular  portions of the protein.  One of the first protein identified as a target for 

ectodomain shedding was L1 (Rathjen e Schachner 1984) which is processed by ADAM10 into 85 

and 32 KDa active fragments (Mechtersheimer et al. 2001).

ADAMs may also play a pivotal role in the transfer of information from the cell to its environment 
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and vice-versa. Thus, is clear that ADAMs family members are positioned to play important roles in 

development, cell signaling, and disease pathologies. 

In fact, ADAMs are involved in shedding of cytokines and cytokine receptors (Black 2002), growth 

factor  (Izumi  et  al.  1998;  Merlos-Suárez et  al.  2001;  Sunnarborg et  al.  2002) and extracellular 

matrix  components  such as  type  IV collagen  and fibronectin.  It  has  been speculated  that  such 

activity may assist cellular migration (Alfandari et al. 2001).

Interestingly, recent in vitro data indicates that IgLONs, and Negr1 in particular, can be released via 

shedding into neuronal media and it regulates as soluble factor neurite outgrowth in mature cortical 

neurons (Sanz, Ferraro, e Fournier 2015). 

Combining  mass  spectrometry,  biochemistry  and  neuronal  morphology  analysis  Sanz  and 

colleagues  found  that  the  treatment  of  mature  neurons  with  pan-metalloproteinase  inhibitors 

correlates with a severe impairment in neurite outgrowth.
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1.5 FGFRs role in neuronal morphology

Trophic molecules like neurothrophins and growth factor support growth cone motility (Connolly, 

Seeley, e Greene 1985; Reichardt 2006). In particular, the presence of trophic factor gradient guides 

axonal outgrowth in vitro (Gundersen e Barrett 1979; Letourneau 1978) acting as chemo-attractant 

for axons near-by when they become very close to their target (Patel et al. 2000; Genç et al. 2004).

The mammalian FGF (fibroblast growth factor) family comprises 18 molecules, which exert their 

actions  through four highly conserved tyrosine  kinase receptors  (FGFR 1, FGFR2, FGFR3 and 

FGFR4) (Turner e Grose 2010).

FGFs  are  glycoproteins  secreted  and  generally  sequestered  very  fast  by  heparan  sulphate 

proteoglycans (HPSGs) present in  the extracellular matrix (ECM), as well as on the cell surface.

FGFs are released from the ECM by heparinases, proteases or specific FGF-binding proteins and 

subsequently bind first to cell surface HPSGs and then to FGFRs to trigger signalling cascades.(Ori 

et al. 2009).

Moreover, cell surface HPSGs are important to stabilize the FGF-FGFR interaction. 

In conclusion FGF-FGFR and HPSG exists and executes cellular function as a ternary complex 

(Harmer et al. 2004; Mohammadi, Olsen, e Goetz 2005).

FGFRs control a multitude of cellular processes including cell growth, differentiation, migration 

and survival and have been related to a number of physiological and pathological processes. 

The structure of FGFRs consists of three immunoglobulin (Ig) domains (Ig1–Ig3), a transmembrane 

helix and a cytoplasmic tyrosine kinase domain.

FGFR binding to FGF results in the dimerization of the receptor leading to auto-phosphorylation of 

the intracellular tyrosine kinase domains. This event triggers a complex intracellular pathway that 

involves AKT, Ras and PKC activation (Sternberg e Gullick 1990). 

FGFRs play essential roles in almost every step during axonal elongation  (Goetz e Mohammadi 
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2013) .  Axonal  path-finding in  the visual  system and in the peripheral  nervous system rely on 

guidance mechanisms involving FGFRs  (Haupt  e Huber 2008). In particular,  FGFR2 signalling 

regulates axon patterning modulating the expression of the repulsive guidance cue Sema3A during 

innervation (Kettunen et al. 2007).

The FGFR–ligand interaction occurs through the Ig2 and Ig3 modules, while the Ig1 module is 

thought to have mostly a regulatory function (Christensen et al. 2006).

Fig. 5. FGFR2 signaling cascades. The main intracellular pathway triggered by FGFR2-FGFs 

interaction. FGFR2 transduces FGF signals to 1) ERK, 2) PI3K-Akt, 3) Ca2+, and diacylglycerol (DAG) 

signaling cascades. The FGF–ERK signaling cascade is mainly involved in cell proliferation. The FGF–PI3K 

signaling cascade is important for cell survival and polarity control. The regulator factor Sprouty inhibits the 

FGF–ERK signaling cascade acting on GRB2 and RAF, whereas DUSP (dual-specificity phosphatase) 

inhibits the FGF–ERK signaling cascade at ERK. The regulation of FGFR2 signaling passes by the balance 

of FGFs, heparan-sulfate proteoglycan (HSPG), FGFR2 isoforms, and endogenous inhibitors (adapted from 

(Katoh 2009)).
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FGFs are not the only agonists able to activate FGFRs, for example FGFR1 signaling can also be 

triggered  by cell adhesion molecules such as L1 or N-cadherin.

NCAM  provides  another  example  of  cell  adhesion  molecule  activating  FGFRs  through  direct 

interaction  (Kiselyov et al. 2005; Kochoyan et al. 2008). In 2003 Kielyov  et al. for the first time 

reported  that  NCAM  directly  binds  to  FGFR1  and   activates  an  intracellualr  signalling  that 

stimulates  neurite outgrowth s (Kiselyov et al. 2005). Later Cavallaro’s group reported that NCAM 

is  a  non-canonical  ligand  for  FGFR1 and its  binding  to  the  receptor  induces  different  cellular 

responses than the ones mediated by FGFs (Ditlevsen et al. 2008; Francavilla et al. 2009). 

Whereas FGF induces degradation of the receptor, NCAM promotes its stabilization and recycling 

into the membrane, resulting in FGFR1 sustained activation. Moreover, in contrast to FGF, NCAM 

promotes cell migration inducing FGFR1 recycling and Src kinases activation  (Francavilla et al. 

2009). NCAM binding to FGFRs activates numerous signaling pathways including these requiring 

the activation of PKCβII (protein kinase CβII ), PLCγ (phospholipase Cγ) and Src kinases, which 

ultimately lead to  ERK kinases  (extracellular  signal-regulated  kinases) phosphorylation  (Fig.  6;

(Cavallaro e Dejana 2011; Ditlevsen et al. 2008; Francavilla et al. 2009; Lin et al. 2009)). 

NCAM binds and co-localize also with FGFR2 during early embryonal development. 

However,  the  physiological  role  of  this  interaction  on  neuronal  migration  is  still  not 

resolved(Christensen et al. 2006; Vesterlund et al. 2011).
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Fig. 6. FGFR signaling can be mediated by NCAM and N-cadherin. a) N-cadherin can bind to 

FGFR  in  ligand-independent  manner  and  activate  intracellular  signaling  pathway.  N-cadherin-induced 

activation of PLCγ and calmodulin-dependent protein kinase IIα (CaMKIIα) stimulates neurite outgrowth. 

b) N-cadherin binding to FGFR causes a sustained activation of the receptor by FGF. This leads to the 

phosphorylation of ERK and matrix metalloprotease 9 (MMP9), which in turn promotes cell motility. c) and 

d) FGFR activation by FGF or NCAM triggers different signaling pathway . The interaction of FGFR with 

NCAM ultimately leads to cell migration via activation of proteins belonging to the  Src family and 

subsequent phosphorylation of ERK kinases (adapted from (Cavallaro e Dejana 2011)).
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1.6 Neuronal migration and CAMs

The  correct  positioning  of  newborn  neurons  in  the  cortex  assures  their  proper  identity  and 

connectivity  patterns  (Evsyukova,  Plestant,  e  Anton 2013).  Pyramidal  neurons and interneurons 

migrate remarkably long distances from their place of birth in telencephalon to their final position 

in  the  developing  neocortex.  There  are  two  main  types  of  migration  in  the  cortex:  pyramidal 

neurons  radial  migration  and  interneurons  tangential  migration.  In  1972  Rakic  revealed  that 

pyramidal neurons align with the radial glial fibers during their migration (Rakic 1972). 

This finding shed light on a possible role of radial glia in controlling the lamination of the cortex.

Newborn  pyramidal  neurons  make  their  first  step  in  radial  migration  by  detaching  from  the 

neuroepithelium at the ventricular surface. Then, they move to the SVZ (Subventricular Zone) where 

they extend and retract their processes in all directions to adopt a multipolar morphology. 

Then,  they  “wait”  in  the  SVZ  where  they  move  tangentially  in  a  random  fashion  for  24h. 

Subsequently, many critical signaling cues are activated and neurons acquire a polarized shape with 

a leading process (future dendrite) in the front of the cell and a trailing process (future axon) on the 

rear  of  the  body.  However,  before  acquiring  a  bipolar  morphology  many  neurons  will  move 

retrogradly back to VZ (Ventricular Zone). Finally, when all neurons undergo multipolar-to-bipolar 

transition, they align with the radial glial fibers and begin their glial-driven locomotion through 

dense cellular environment toward the CP (Cortical Plate). 

During this phase of migration, neurons repeat several important behaviors i) extension and 

retraction of the leading process; ii) formation of the membrane swellings in the leading process; iii) 

shift of centrosome into the swelling; iv) nucleokinesis – nucleus and soma movement to the front 

of the cell and v) trailing process retraction (Kriegstein e Noctor 2004; Nguyen e Hippenmeyer 

2014) (Fig. 7).
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Fig. 7. Nucleokinesis of the migrating neuron.  The centrosome is positioned into the neuronal leading 

process.  Subsequently,  the nucleus moves to the front  of the cell  (adapted from Cellular  and Molecular  

Control of Neuronal Migration;  Nguyen, Laurent, Hippenmeyer, Simon 2014). 

When the neuron reaches the correct location within the cortex its leading process attaches to the 

MZ (Marginal Zone) and “pulls” up the soma and nucleus to the top of CP.

This process, called terminal somal translocation, helps the neuron to make final adjustments of its 

position within the specific layer where it will reach the complete maturation (Fig. 8; (Ayala, Shu, e 

Tsai 2007; Kriegstein e Noctor 2004; Nguyen e Hippenmeyer 2014)). 
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Fig. 8. Radial migration of pyramidal neurons. During the migration to their final position, neurons 

1) detach from neuroepithelium at the ventricular zone; 2) move to SVZ and acquire a multipolar 

morphology; 3) undergo multipolar-to-bipolar morphology transition; acquire a polarized morphology with 

the leading process heading toward the pia surface and the trailing process heading toward VZ; 4) continue 

its migration along radial glia fibers; 5) reach the SP and enter the CP where 6) detach from the radial glia 

and the leading process attaches to the MZ; 7) undergo terminal somal translocation to reach its final position 

in the cortex (adapted from (Nguyen e Hippenmeyer 2014)) 
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Cell adhesion molecules (CAMs) play a pivotal role in the contest of  neuronal migration.

For  example,  NCAM  has  been  described  as  a  modulator  of  migration,  axon  growth,  axon 

fasciculation and pathfinding (Bonfanti 2006). Accordingly, also FGFR signaling has a prominent 

role in the migration of a variety of cell types, including neurons (Hasegawa et al. 2004; Lin et al. 

2009; Smith et al. 2006).

NCAM and FGFs are therefore involved in multiple feedback mechanisms through which neurons 

control the specification,  migration,  and differentiation of precursor cells  in the cerebral  cortex. 

Interestingly, recent data pointed out that FGFR2 may play a major role in this respect.

The selective deletion of FGFR2 in radial glial progenitor cells results in decreased cortical volume 

and decreased pyramidal cell  number and density in the neocortex.  Furthermore,  the volume of 

subcortical  white  matter  is  dramatically  reduced  due  to  decreased  number  of  axonal  fibers  in 

FGFR2 KO model (Vaccarino et al. 2009).

1.7 Cerebral Cortex Maldevelopment 

Neuronal  Migration  Disorders  (NMD)  are  caused  by  ectopic  positioning  and  impaired 

differentiation of cortical grey matter (Copp e Harding 1999). NMD are a heterogeneous group of 

disorders with a range of clinical and pathological features. NMD are one of the most significant 

causes  of  neurological,  developmental,  intellectual  disabilities  and  epileptic  seizures  (Copp  e 

Harding 1999; Verrotti et al. 2010).

A wide range of diseases -including common disorders like schizophrenia, developmental epilepsy, 

autism  spectrum  disorder,  bipolar  disorder  or  mental  retardation-  are  caused  by  mutations  in 

specific genes involved in neuronal  migration. 

19



1.7.1 Autism Spectrum Disorders

Autism  refers  to  an  etiologically  and  clinically  heterogeneous  group  of  neurodevelopmental 

disorders which are replaced by one umbrella term “Autism Spectrum Disorder” (ASD). 

The  Diagnostic  and  Statistical  Manual-Fourth  Edition  (DSM-IV),  published  by  the  American 

Psychiatric  Association,  includes  under  ASD:  Autistic  Disorder,  Asperger’s  Disorder,  and 

Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) (Fig.9).

Fig. 9.  ASD 

Studies conducted in twins show that autism is a highly genetic disorder, with average concordance 

of 65% for identical twins and 9% for fraternal twins (Folstein e Rosen-Sheidley 2001; Miles 2011; 

Smalley, Asarnow, e Spence 1988). 

Interestingly,  there is almost 4:1 male to female gender ratio in ASD, with a prevalence of 0.6  

(Banerjee, Riordan, e Bhat 2014; Veenstra-Vanderweele, Christian, e Cook 2004). 

Patients  with  autism  display  three  core  symptoms:  social  behavior  impairment,  language 

impairment and repetitive and stereotyped behaviors. However, they may experience also comorbid 

symptoms  like  anxiety  and  depression,  seizures,  attention  deficits,  aggressive  behavior,  sleep 

disorders and sensory processing impairment (Spooren et al. 2012).

Interestingly, cell adhesion molecules (CAMs) have been largely implicated in ASD (Ye, Liu, e Wu 
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2010). 

The best characterized synaptic CAM pathways implicated in ASDs are those involving neuroligins 

(NLGNs) and neurexins (Tabuchi et al. 2007; Glessner et al. 2009).

Recently, several independent genetic studies have strongly associated a poorly described adhesion 

molecule, Negr1, to ASD (Pinto et al. 2010; Pinto et al. 2010; Casey et al. 2012; Girirajan et al.  

2012; Michaelson et al. 2012) (Table. 1).

Interestingly,  alteration  of  Negr1  protein/gene  expression  has  been  described  in  other  two 

neurological  disorders characterized by marked connectivity dysfunctions,  namely schizophrenia 

(Maccarrone et al. 2013) and dyslexia (Veerappa et al. 2013), suggesting that Negr1 plays pivotal 

role in functional CNS establishment.

Intriguingly,  as  demonstrated  for  Negr1,  also  FGFR2  has  been  recently  associated  to  ASD 

(Hussman et al. 2011; Neale et al. 2012).

Table. 1. ASD gene candidates. A translocation breakpoint has been found in NEGR1 gene in a family 

affected by ASD (adapted from (Pinto et al. 2010).
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2. OBJECTIVE OF THE THESIS

In  our  previous  work  ((Pischedda  et  al.  2014);  appendix  I)  by  combining  d  LC-MS/MS, 

biochemistry and morphological analysis to study synaptic proteins, we discovered that Negr1 is 

highly enriched in synaptosomes and that its expression increases with neuronal maturation.

Next, we demonstrated that Negr1 silencing induced a significant decrease in the number and length 

of neuronal processes in mature neurons, thus causing a severe reduction of the overall complexity 

of neurite arborization in vitro and in vivo.

Strikingly, it has been recently demonstrated that IgLONs family members, including Negr1 can be 

shed from the surface of cortical neurons through a metalloproteases dependent proteolysis (Sanz et 

al., 2015). 

We thus hypothised a triple effect for Negr1: I) the cis effect, in which the protein exerts its activity 

in the  cell expressing the protein; II) the soluble effect, in i.e Negr1 acts as a released factor upon 

shedding;  III)  the  trans  effect,  in  which  Negr1  exposed  on  neuronal  membrane  interacts  with 

proteins present on the juxtaposed cells.

Since Negr1 is a synaptic protein involved in neuronal maturation the objective of this thesis was to 

investigate its role in the development of a mature and functional cortical network.
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3. RESULTS

3.1 Negr1 in morphology

3.1.1 Negr1 modulates neuritic tree acting in cis and in trans

Recent  evidence  suggested  that  IgLONs members,  including  Negr1,  are  released  into  neuronal 

media  via  metalloproteinase  and  that  metalloproteinase  activity  on  IgLONs  has  an  impact  on 

neuronal  maturation  (Sanz,  Ferraro,  e  Fournier  2015).  We have previously  showed that  Negr1 

influences  neuritic  tree  development  (Pischedda et  al.  2014).  At  the light  of all  these findings, 

Negr1 may influence neuronal morphology acting in cis as membrane bound protein and/or in trans 

as a soluble protein. To investigate these two scenarios, we infected cortical neurons at DIV4 with 

viruses expressing GFP marker together with either Negr1 specific siRNA (siNegr1) or scramble 

control (siControl) following two experimental paradigms: 1) cultures infected with a high viral 

titer (MOI= 3); 2) cultures infected with a low viral titer (MOI=0.3). In both cases, cultures were 

processed for subsequent investigation at DIV18. Biochemical and imaging analysis showed that 

the titer of infection was directly correlated to the extent of Negr1 protein reduction and to infection 

efficiency (Fig.  10A-C).  Next  we studied  the  morphology of  GFP positive  neurons in  the two 

different conditions. Interestingly we reported that cultures exposed to high viral titer show a more 

pronounced reduction in terms of neurite number and length than cultures exposed to low viral titer  

(Fig. 10D-E). Given that the two experimental settings were distinguished by the number of down 

regulated neurons in the culture rather than the efficiency of Negr1 silencing at the single cell level,  

such  outcome  may  suggest  that  the  overall  amount  of  Negr1  (membrane  bound and  released) 

influences neuronal morphology.
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Fig 10. Negr1 influences neuritic tree. Cortical neurons were infected at DIV4 with low (MOI= 0.3) or 

high (MOI=3) titer of viruses expressing GFP and scramble siRNA (siControl) or siRNA against Negr1 

(siNegr1). Cells were solubilized and then assayed for western-blotting at DIV18 (A). The graph reports the 

optical density of the band relative to Negr1 protein, normalized versus S6 ribosomial protein (S6 rib) value. 

Data are expressed as mean   ± SEM, n=4. * p<0.05 vs not infected (n.i.), # p<0.05 vs low infection (B).  

Infection with low or high viral titer resulted in different infection efficiency, evaluated as fraction of GFP  

positive cells within the entire population, stained with DAPI. Data are expressed as mean  ± SEM; * p<0.05 

vs siControl (CTRL), # p<0.05 vs low infection. Scale bar= 50 um
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3.1.2 Negr1 shedding by ADAM10 modulates neuritic tree

To  confirm  the  biological  relevance  of  Negr1  as  soluble  factor,  we  investigated  in  detail  the 

presence of Negr1, NCAM and S6 ribosomial protein, a well established cytoplasmic marker, in 

samples prepared from neuronal culture at DIV18 or from the relative conditioned media.

As expected, we detected the three protein in the cellular lysate, but only Negr1 and NCAM in the 

media.  It  is  well  established that  NCAM can be  released  in  media  by shedding via  ADAM10 

(Brennaman, Moss, e Maness 2014). Interestingly, when we treated neurons from DIV10 to DIV18 

with the well established ADAM10 inhibitor, GI 254023X (20mM, every second day), we noticed a 

robust reduction of the fraction of NCAM and Negr1 protein released in the media (Fig. 11A-C). 

These experiments suggest that Negr1 can be shed from neuronal membrane by ADAM10. 

Sanz and colleagues showed that metalloproteinase inhibitors severely impaired proper neuronal 

morphological development in a IgLON dependent manner (Sanz, Ferraro, e Fournier 2015). 

Consequently, we studied the morphological phenotype in cortical cultures treated with DMSO or 

with ADAM inhibitor GI 254023X (20mM, every second day) from DIV10 to 18. 

Noteworthy, we noticed that ADAM chronic inhibition affected neuritic outgrowth (Fig. 11 D-E). 

ADAM10 shed several membrane proteins involved in neurite outgrowth, including NCAM, N-

Cadherin and L1-NCAM (Brennaman, Moss, e Maness 2014; Jorissen et al. 2010; Mechtersheimer 

et al. 2001; Paudel et al. 2013). Thus we assessed the direct contribution of soluble Negr1 to the 

regulation of neuron morphology executed by ADAM10. To this aim we purified on streptavidin 

resin 2XStrep-FLAG Negr1 (rNegr1) from transfected HEK293 cell.

Protein  purity  was  assessed  by  silver-staining  (Fig.  11F).  Negr1  is  highly  and  specifically 

glycosylated in vivo (Miyata et al. 2003).

Upon western-blotting, we detected rNegr1 as a band with an apparent molecular weight (MW) of 

50 KDa, corresponding to  the glycosylated  form of Negr1.  Upon incubation  with the N-linked 
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deglycosilase PNGase, we detected instead a band at apparent MW 38 KDa, corresponding to the 

predicted MW, as annotated in Expasy database (entry: Q80Z24) (Fig. 11G).

Thus, expression of rNegr1 resulted in a protein that resembled the feature of endogenous Negr1. 

Purified rNegr1 was administered to either DMSO or ADAM10 inhibitor treated cortical neuron at 

DIV10  at  concentration  of  40  ng/ml.  Cells  were  fixed  at  DIV18  and  processed  for 

immunofluorescence.  Interestingly,  we  observed  that  rNegr1  treatment  was  able  to  rescue  the 

morphological  phenotype  due  to  ADAM10  inhibition.  Furthermore  rNegr1  treatment  was 

associated to an increase of neurite number and length in DMSO treated neuron (Fig. 11D-E). All 

together these data suggest that soluble Negr1 released by ADAM10 positively modulates neuronal 

morphology.
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Fig. 11. ADAM10 activity modulates neuritic tree. Cortical neurons were infected at DIV4 with

siControl and then treated every second day with DMSO (20 mM, not treated) or with ADAM10 inhibitor GI 

254023X (20 mM) from DIV10 to DIV18. Cells and relative conditioned media were assayed for western-
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blotting to measure NCAM, Negr1 and S6 ribosomial protein level (A). Graphs show NCAM, Negr1level in 

the cellular lysate expressed as optical density, normalized versus and S6 ribosomial protein (S6 rib) value  

(B) and the extent of Negr1 and NCAM release in media expressed as percentage of the relative amount  

measured in cellular lysate (C). Data are reported as mean  ±  SEM; n= 6, * p<0.05 vs not treated. Cortical 

neurons were infected with siControl virus at DIV4 and treated every second day from DIV10 to DIV18 with  

DMSO (not treated, NT) or with ADAM10 inhibitor GI 254023X (20 mM, GI) and/or recombinant Negr1 

(40 ng/ml, single administration at DIV 10, rNegr1). Neurons were processed for immunofluorescence at  

DIV18 and GFP positive neurons imaged via confocal microscopy. Panels show camera lucida tracing (D).  

Graphs show neurite total length and number (E).  Data are reported as mean   ± SEM; * p<0.001 vs  not 

treated (NT); ° p 0.001 vs GI 254023X (GI). Scale bar= 50 um . Protein purity and glicosylation assessed by 

silver-staining (F) and western blotting (G).
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3.1.3 Negr1 impact on neuritic outgrowth requires ERK1/2 phosphorylation

ERK1/2 pathway had been recognized as a key player in neurite outgrowth (Maness e Schachner 

2007). Thus we wondered if soluble Negr1 might influence neuronal morphology via ERK1/2

signalling. To this aim, we administered MEK inhibitor U0126 from DIV10 to DIV 18 (100 nM,

daily) to rNegr1 or control treated neurons. 

As  expected,  MEK  inhibition  significantly  impaired  neuron  morphology.  Noteworthy,  Negr1 

treatment was not able to rescue the morphological effect due to MEK inhibitors, neither in term of 

total process length or number (Fig. 12A-B). All together these data suggest that Negr1 influence 

neuritic tree outgrowth activating a pathway that requires proper ERK1/2 phosphorylation.

Fig. 12. MEK inhibition abolishes morphological effect of Negr1. Cortical neurons were infected 

with siControl virus at DIV4 and treated every second day from DIV10 to DIV18 with DMSO or with MEK 
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inhibitor  U0126  (100  nM,  IN)  and/or  recombinant  Negr1  (40  ng/ml,  single  administration  at  DIV 10, 

rNegr1).  Neurons were processed for immunofluorescence at  DIV18 and infected GFP positive neurons 

imaged via confocal microscopy. Panels show camera lucida tracing (A). Graphs show neurite total length  

and number  (B). Data are reported as mean  ± SEM; * p<0.001 vs not treated (NT), ° p<0.001 vs rNegr1. 

Scale bar= 50 um

The role of Negr1 in neurite guidance has been already characterized (Schäfer et al. 2005).

Therefore,  we investigated further the functional  correlation among ERK1/2, Negr1 and neurite 

outgrowth. First we checked whether rNegr1 was correctly shuffled to the plasma membrane in a 

heterologous cellular system. Thus, we co-transfected HEK293 cells with strep-FLAG Negr1 and 

GFP, fixed and stained them with rat anti-FLAG antibody in non-permeabilizing condition followed 

by incubation with rabbit anti-FLAG in permeabilizing conditions. Laser microscopy demonstrated 

that rNegr1 is expressed at the extracellular membrane (Fig. 13).  

Fig. 13. rNegr1  localization. We tested rNegr1 expression combining both non-permeabilizing (rat anti-

FLAG) and permibilizing (rabbit anti-FLAG) staining. Negr1 is expressed at the extracellular membrane.

Thus,  we  seeded  on  DIV1  cortical  neurons  HEK293  cells  expressing  GFP  or  an  unrelated 

transmembrane protein fused to GFP, GFP-Rhodopsin, or rNegr1.  Mixed cultures of neurons and 

HEK293T cells  were  fixed  at  DIV5 and  processed  for  immunocitochemistry  with  an  antibody 

specific for neuronal-process, β-tubulin-III (Fig. 14 A). In order to statistically estimate the effect of 
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rNegr1  heterologous  expression,  we  quantify  the  number  and  the  length  of  the  β-tubulin-III 

processes  those  approached  and  passes  above  transfected  HEK293  cells  in  the  different 

experimental conditions. We found that  β-tubulin-III positive neurites stopped upon contact with 

rNegr1-expressing HEK293T cells, whereas they were able to pass above control cells, despite an 

overall similar length (Fig. 14B-C). 

To demonstrate the functional correlation between rNegr1 expression on HEK293 cells and neurites 

phenotype,  we  treated  living  mixed  culture  with  rat  anti-FLAG antibody  (AB)  during  the  co-

culturing period. The idea behind this strategy is that once bound to the FLAG epitope fused to 

Negr1, anti-FLAG antibody may mask rNegr1 protein via steric hindrance. 

Interestingly,  in  presence of  the  anti-FLAG antibody,  we experienced  that  neurites  recover  the 

capability to pass above rNegr1 expressing HEK293 cells. No effect was observed upon incubation 

with  rat  IgG (data  not  shown).  Eventually,  we treated  neuron-HEK293 co-cultures  with  MEK 

inhibitor UO126 (100 nM) from DIV1 to DIV4. In presence of MEK inhibitor, we noticed a partial 

rescue of the number of processes able to cross Negr1 expressing cells.  All together these data 

suggest that Negr1 influence neuritic tree outgrowth activating upon the physical interaction of two 

juxtaposed membrane a pathway that requires proper ERK1/2 phosphorylation.
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Fig 14.  Negr1 controls neurite guidance via MAPK. Cortical neurons were co-cultured at DIV1 with

HEK293 cells transfected with GFP, GFP-Rhodopsin or rNegr1. The cultures were fixed at DIV4 and stained 

with antibodies against FLAG (green) and  β-III-tubulin (red). Merge and higher magnification (merge 2.5X) 

are shown. Scale bar= 25 mm (A). Where indicated, co-cultures were treated with anti-FLAG antibodies  

(ABs; 10mg/ml) or MEK inhibitor U0126 (100 nM) for 48 hours before fixation. The graphs report the 

number of β-III-tubulin positive processes able to pass above HEK293 cells  transfected as indicated (B) and 

the average length of neurites (C). Data are reported as mean ±  S.E; n= 24, * p<0.05 vs control, # p<0.05 vs 

rNegr1.

3.1.4 Negr1 induces the formation of gap-junction.

It  is  now clear  that  neuron  communicate  also  through the  formation  of  inter-cellular  channels 

(Cheung, Chever, e Rouach 2014). Inter-cellular connections such as connexin-43 gap junctions 

allow direct electrical and metabolic communication between two adjacent cells; they are therefore 

vital to many physiological processes. Besides connexins, other gap junction forming proteins have 

been recently characterized, the pannexin proteins (Penuela et al. 2014). Although still debated, it 

has  been  shown  that  pannexin  1  and  3  can  form  functional  large  pore  gap  junctions  (Sahu, 

Sukumaran, e Bera 2014). Studies examining the distribution and functional role of connexins and 

pannexins  indicate  that  they  may  allow  cell-to-cell  coupling  among  neurons,  astrocytes  and 

microglia. The process instructing the formation of inter-cellular channels is far from understood. 

Strickingly we discovered that Negr1 is sufficient to instruct the formation of gap-junction between 

neuronal and not neuronal cells. Our experimental strategy implied the co-culture among primary 

neurons and not neuronal HEK293 cells expressing td-Tomato and Negr1 or only td-Tomato. 

Co-cultures  were  left  running  for  two  days,  then  fixed  and  analysed  by  confocal-microscopy. 

Interestingly, we found that neurons in contact with HEK293 over-expressing td-Tomato and Negr1 

became td-Tomato positive. Instead in the co-culture including neurons and HEK293 expressing 

just  the  fluorescent  reporter,  td-Tomato  remained  confined  only  in  HEK293  cells  (Fig.  15). 
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Furthermore, when we treated cortical cultures with conditioned media obtained from td-Tomato 

and Negr1 expressing HEK293 cells, we did not observe td-Tomato positive neurons. Thus we may 

exclude  the  involvement  of  vesicle-driven  DNA/protein  transfer.  Instead  we  deem  that  this 

phenomenon, known as dye coupling, may reflect the formation of physical junction between two 

adjacent cells. 

Fig. 15. Negr1 is sufficient to instruct the formation of intercellular channels. Cortical neurons 

were infected with GFP (green) expressing viruses at DIV4 and then co-coltured from DIV10 to DIV12 in  

presence of HEK cells expressing Td-Tomato (red) and either empty vector (left) or Negr1 construct (right).  

Inserts show HEK-neuron contact point at higher magnification. We observed a transfer of Td-Tomato from 

Negr1 expressing HEK cells to neurons. 

3.1.5 Soluble Negr1 influences neuron morphology acting via FGFR2

Biochemical studies showed that IgLON protein can form stable homodimers (Miyata et al. 2003).

Thus we wondered whether soluble rNegr1 may execute its function via binding with endogenous 

Negr1 expressed on neuronal membrane. To this aim we investigated the impact of soluble rNegr1 

on cortical culture down-regulated for endogenous Negr1 expression. 

Cortical neurons were infected at DIV4 with viruses expressing GFP together with Negr1 specific 

siRNA (siNegr1) or scramble siRNA (siControl)  and treated at DIV10 with soluble rNegr1.  As 

already observed, the abolishment of endogenous Negr1 expression correlated with a reduction of 

neuritic tree complexity  (Pischedda et al. 2014). Interestingly, rNegr1 treatment was able to fully 
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rescue the morphological phenotype due to Negr1 silencing (Fig. 16). This evidence suggests that 

the formation of Negr1 homodimer is not instrumental for the morphological effect associated to the 

treatment with soluble Negr1.
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Fig. 16.  Homodimerization is  not essential  to execute  rNegr1 morphological  effect. Cortical 

neurons were infected with siControl or siNegr1 virus at DIV4 and treated with recombinant  Negr1 (40 

ng/ml, single administration at DIV 10, rNegr1). Neurons were processed for immunofluorescence at DIV18 

and infected GFP positive neurons imaged via confocal microscopy. Panels show camera lucida tracing (A).  

Graphs show neurite total length and number (B). Data are reported as mean   ± SEM; * p<0.001 vs not 

treated, same infection, # p<0.001 vs siControl, same treatment. Scale bar= 50 um

Soluble  Negr1  may  associate  with  other  protein  to  influence  neurite  outgrowth.  It  has  been 

demonstrated that IgLON members are able to influence tyrosine kinase associate receptor (RTK) 

(McKie  et  al.  2012).  Furthermore,  it  is  well  established  that  RTK  can  influence  via  ERK1/2 

pathway neuronal morphology (Hausott et al. 2009). Consequently, we screened a battery of RTK 

agonists for their ability to rescue the phenotype associated to Negr1 silencing. 

Cortical neurons were treated from DIV10 to 18 with IGF (5 ng/ml), FGFb (20 ng/ml) and FGF7 
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(20 ng/ml).  Interestingly,  we noticed a complete  rescue of the morphological  phenotype due to 

Negr1 silencing only upon chronic treatment with FGF7, a specific FGFR2 agonist. 

Similarly, when we administered RTK agonist to control infected cells, only FGF7 treatment was 

associated to a significant increase in neuritic tree complexity (Fig. 17).

Fig. 17. FGFR2 activation ameliorates morphological effect due to Negr1 down-regulation.

Cortical neurons were infected with siControl or siNegr1 virus at DIV4 and treated daily from DIV10 to  

DIV18  with  IGF  (5  ng/ml),  FGFb  (20  ng/ml)  and  FGF7  (20  ng/ml).  Neurons  were  processed  for 

immunofluorescence at DIV18 and infected GFP positive neurons imaged via confocal microscopy. Panels  

show camera lucida tracing (A). Graphs show neurite total length and number (B). Data are reported as mean  

± SEM; * p<0.001 vs siControl, same treatment, ° p<0.001 vs not treated, same infection (NT), # p<0.01 vs  

FGFb, same infection. Scale bar= 50 um 
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To further appreciate the functional correlation among Negr1, FGFR2 and neurite outgrowth, we 

studied neuron morphology upon acute FGFR2 silencing. To this  aim,  we took advantage of a 

selective silencing construct targeting FGFR2 mRNA sequence (Zhou et al. 2006).

Cortical neurons were infected at DIV4 with siFGFR2 or control virus, treated or not with soluble 

rNegr1 at  DIV10 and imaged at DIV18. We noticed that FGFR2 silencing was associated to a 

robust reduction of neuritic tree complexity. Furthermore we did not observe any increase in neurite 

number or total length upon rNegr1 treatment in siFGFRF2 neurons (Fig. 18 A-B). Dendritic spines 

constitute the main postsynaptic elements of excitatory synapses  (Tada e Sheng 2006). Previous 

reports, including our own, indicated that Negr1 modulated dendritic spine number  (Hashimoto, 

Maekawa, e Miyata 2009; Pischedda et al. 2014). Thus we imaged dendritic protrusions treated or 

not with soluble rNegr1. The quantification of spine number and morphology indicated that rNegr1 

treatment correlates with an increase in total spine number.

To investigate the potential involvement of FGFR2 on this effect, we treated or not with rNegr1 

neuronal  cultures  down-regulated  for  FGFR2 expression.  Interestingly  we  noticed  that  FGFR2 

silencing did not have an impact  on spine number in control treated cultures  but abolished the 

positive effect reported upon Negr1 treatment (Fig. 18 C-D). Eventually, we investigated whether 

Negr1 may activate FGFR2 dependent intracellular pathway. 

To this  aim,  wild-type  and siFGFR2 infected  neurons were treated  with rNegr1 (40 ng/ml,  10 

minutes)  and  processed  for  western  blotting  to  assess  the  activation  of  ERK1/2  pathway. 

Interestingly, we noticed that acute Negr1 treatment induced ERK1/2 phosphorylation in wild-type 

neurons but not in siFGFR2 cells (Fig. 18 E-F). 

All together these findings suggest that soluble Negr1 influences neuron morphology in a FGFR2 

dependent manner.
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Fig. 18. Negr1 modulates neuron morphology via FGFR2. Cortical neurons were infected at DIV4
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with virus expressing siControl or siRNA against FGFR2 (siFGR2) and treated at DIV10 with recombinant  

Negr1 (40 ng/ml, rNegr1). Neurons were processed for immunofluorescence at DIV18 and infected GFP 

positive neurons imaged via confocal microscopy.  Panels show camera lucida tracing (A). Graphs show 

neurite total length and number (B). Data are reported as mean   ± SEM; * p<0.001 vs not treated, same 

infection, # p<0.01 vs siControl, same treatment. Scale bar= 50 um. Dendritic spines were recognized as  

mushroom like protrusions decorating the neurites (C). Spine density was calculated as protrusion number 

along 10 mm of neuritic length. Data are reported as mean  ± SEM; * p<0.001 vs not treated, same infection, 

#  p<0.01  vs  siControl,  same  treatment.  Scale  bar=  10  (D).  Cortical  neurons  were  infected  with  virus 

expressing siControl or siRNA against FGFR2 (siFGR2) and treated with recombinant Negr1 (40 ng/ml,  

rNegr1 30 minutes). Neurons were processed for western-blotting to investigate ERK1/2 phosphorylation  

(E). The graph reports p-ERK1/2 level normalized versus total ERK1/2 amount (F). Data are expressed as  

mean  ± SEM n=5. ** p<0.01 vs not treated, same infection; # p<0.05 vs siControl, same treatment.

3.2.2 Negr1 forms hetero complex with FGFR2

The functional interaction between soluble Negr1 and FGFR2 suggested the existence of Negr1-

FGFR2 heterocomplex. 

Since  that  is  known  from literature  that  IgLON  family  protein  are  able  to  form homo-hetero 

complex (O D Gil et al. 1998; Orlando D Gil et al. 2002; Schäfer et al. 2005) first we assessed the 

capability of Negr1 to form homo-dimers. Thus we assayed wild-type and FLAG-Negr1 stable cells 

N2A for their propensity to aggregate in vitro, being cellular cluster formation a read-out of protein 

interaction.  Cells  were  dissociated  and  collected  in  a  buffer  not  permissive  for  cell-to-cell 

aggregation and then  incubated in adhesion permissive condition.

We noticed that Negr1 expressing cells formed multi-cellular aggregates when compared with wild-

type counterpart (Fig 19A), suggesting that Negr1 forms homo-dimer in trans.

Negr1 belongs to the group of cell adhesion molecules, which are localized to the membrane raft 

via glycosylphosphatidylinositol (GPI) anchor and lack transmembrane and intracellular domains. 
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Thus, Negr1 possibly requires interactions with other receptors to exert  its biological  functions. 

Other  IgLON family  members  interact  physically  and functionally with receptors  associated  to 

tyrosine kinase activity (McKie et al. 2012).

Thus, we screened Negr1 and control cell via FLAG immuno-precipitation upon chemical cross-

linking by western-blotting. We found that Negr1 binds FGFR2, but not with FGFR1 (Fig. 19B). 

These results were supported by immunoprecipitation of endogenous Negr1 protein carried on adult 

brain lysate (Fig. 19C). To further verify Negr1 and FGFR2 interaction we took advantage of the 

overlay assay, that investigates the interaction of protein left in native condition.

Thus we incubated living wild-type and FGFR2 over-expressing cells with purified recombinant 

FLAG-Negr1 protein.  After incubation,  we processed the cells  for imaging purposes with anti-

FLAG  antibody.  We  detected  FLAG signal  only  in  FGFR2-overexpressing  culture  (Fig.  19D, 

panels I-III vs panels IV-VI).

FGFb induces FGFRs internalization (Francavilla et al. 2009). 

Interestingly,  upon FGFb treatment,  we identified  FLAG-positive  aggregates  in  the  perinuclear 

region (Fig.  19D, panels VII-IX).  This  evidence  indicates  that  Negr1 internalizes  together  with 

FGFR2. All together these data suggest that Negr1 interacts with FGFR2 (Fig. 19).
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Fig 19. Negr1 interacts with FGFR2.  (A) Negr1 expression induces the formation of multi-cellular 

aggregates. Wild-type or Negr expressing N2A were assayed for cluster formation.  (B) Negr1 interacts with 

FGFR2.  N2A wild-type  or  expressing  FLAG-Negr1  were  chemically  cross-linked,  solubilized  and then 

processed for FLAG-immunoprecipitation. Upon western-blotting, samples were decorated with indicated 

antibodies. (C) Purified FLAG-Negr1 interacts with FGFR2. Wild-type or myc-FGFR2 expressing cells were 

exposed to purified soluble  FLAG-Negr1 (40 ng/ml,  1h 4°C).   Cell  were  fixed either directly after  the 

incubation with Negr1 or upon FGFb stimulation (20 ng/ml, 1h, 37°C).
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3.2.3 Negr1 modulates FGFR2 signalling acting both in cis and in trans

Next, we investigated whether physical interaction of Negr1 with FGFR2 receptor may modulate 

FGFR2  signalling.  Since  FGFR2  stimulation  activates  different  pathways  that  all  impinge  on 

ERK1/2  phosphorylation  (Maness  e  Schachner  2007),  we investigated  the  impact  of  Negr1  on 

FGFR2 induced ERK1/2 phosphorylation. To this aim, we investigated by biochemistry neuronal 

culture  infected  at  DIV4  with  viruses  expressing  scramble  siRNA  (siCTRL),  Negr1  siRNA 

(siNEGR1) or  FGFR2 siRNA (siFGFR2).  Cultures  were treated  or  not  with FGFb (pan FGFR 

agonist) 20 ng/ml, FGF7 (specific for FGFR2) 20 ng/ml and EGF 10 ng/ml ( EGFR agonist) for 10 

minutes at 37°C. 

By judging P-ERK fold over basal condition,  we noticed that Negr1 silencing impaired culture 

answer  to  FGF7,  while  FGFb  and  EGF  stimulation  resulted  not  affected.  Similarly,  FGFR2 

silencing reduced cellular response to FGF7 only (Fig. 20 A-B).

Interestingly, upon Negr1 silencing we observed a robust and significant reduction also in FGFR2 

expression.  This  suggest  that  Negr1  could  be  important  also  for  FGFR2  stabilization  in  the 

membrane. To understand more in detail the mechanism underlying FGFR2 down regulation we 

analyzed FGFR2 sub-cellular localization. To this aim, we processed by membrane fractionation 

assays silenced and control neurons treated or not with FGFb. We observed a significant FGFR2 

downregulation  in  total  lisate  obtained  from  silenced  neurons  in  comparison  with  controls. 

Furthermore, FGFb was able to induce FGFR2 downregulation in control neurons but did not affect 

receptor levels in silenced neurons. Interestingly, we noticed  that the amount of FGFR2 protein 

present in the membrane fraction remain unaffected upon FGF stimulation or Negr1 silencing (Fig. 

21  A-B).  These  results  suggest  that  Negr1  may  be  implicated  in  the  regulation  of  FGFR2 

trafficking.
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Fig 20. Negr1 influences FGFR2 signalling in cis.  (A) Cortical neurons were infected at DIV4 with 

control siRNA (siCTRL) , Negr2 siRNA (siNEGR1) or FGFR2 siRNA (siFGFR2) and treated at DIV16 with 

FGFb (20 ng/ml), FGF7 ( 20 ng/ml) or EGF (5 ng/ml) for 1h at 37°C then processed for western-blotting .  

(B) The graph reports pERK1/2/total ERK1/2 fold over untreated condition. Data are expressed as mean  

±S.E; n=6, ** p<0.01 ANOVA. 
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Fig.  21.  Negr1 silencing modulates  FGFR2 expression. Membrane  fractionation  of  siCTRL and 

siNEGR1 infected neurons (A). We observed a robust and significant reduction of FGFR2 level in silenced  

culture in comparison with control neurons. Otherwise, FGFR2 levels in membrane remained similar (B). 

Data are expressed as mean ±S.E; n=3, # p<0.01 ANOVA.
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Our data suggest that Negr1 modulates FGFR2 activity; however, given that Negr1 is expressed as 

membrane bound protein, two scenarios are possible: Negr1 binds FGFR2 expressed on the same 

cell  as membrane bound protein (in cis);  Negr1 binds FGFR2 expressed on juxtaposed cell  (in  

trans). Thus, we decided to dissect the potential effect on ERK phosphorylation due to  in trans 

Negr1-FGFR2 interaction. To this aim, we seeded at DIV16 wild-type or FLAG-Negr1 expressing 

HEK293 cells on cortical neuronal cultures. Cultures were processed for western-blotting at DIV18. 

We found a robust increase in pERK1/2 level when neurons where co-cultured with FLAG-Negr1 

cells. Strikingly, increase in ERK phosphorylation was lost once we seeded FLAG-Negr1 cells on 

neurons infected at  DIV4 with siNEGR1 or siFGFR2, i.e.  lacking Negr1 or FGFR2 expression 

(Fig. 22A-B). Altogether, these data suggest that Negr1 positively triggers ERK pathway acting in  

trans on Negr1-FGFRF2 heterodimer.

Furthermore, IgLON molecules have been recently shown to increase FGFR2 stability (McKie et al. 

2012).  Interestingly,  when  Negr1-HEK293  cells  are  co-cultured  together  with  primary  cortical 

neurons we observed not only an increase in pERK levels but also a robust upregulation of FGFR2 

in neurons in comparison with neurons cultured alone (Fig 23). This suggest that Negr1 is important 

to control FGFR2 signaling and trafficking also in trans.
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Fig 22. Negr1 influences FGFR2 signalling in trans.  (A) DIV4 cortical cultures were infected with 

control siRNA (siCTRL) , Negr2 siRNA (siNEGR1) or FGFR2 siRNA (siFGFR2), co-cultured at DIV16 

with wild-type or FLAG-Negr1 expressing cells and processed at DIV18 for western blotting. (B) The graph 

reports pERK1/2 to total ERK1/2 ratio. Data are expressed as mean ± S.E; n=6, ** p<0.01 ANOVA.
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Fig 23. Negr1 stabilizes FGFR2 in trans. Western blot analysis of FGFR2 levels in co-culture assay. 

FGFR2 expression increases co-cultivating neurons with HEK-Negr1 in comparision with HEK wt. Data are 

expressed as mean ± S.E; n=3, ** p<0.01 ANOVA.
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3.2 Negr1 in migration

3.2.1 Negr1 expression is temporally and spatially regulated in vivo 

To start  the investigation  on the  role of Negr1 in  in  vivo  development,  we first  performed  in  situ  

hybridization in the mouse brain with specific probes for Negr1 mRNA expression (Fig. 24). 

In the embryonic brain (E18), we found that Negr1 mRNA expression was high in the ventricular zone 

(SVZ), and at the border between the intermediate zone (IZ) and cortical plate (E18; Fig. 24). At later  

stages,  P7,  adult),  Negr1  mRNA  expression  appeared  progressively  more  confined  to  layer  IV. 

Interestingly, Negr1 expression was also spatially regulated as its mRNA was detectable at higher levels  

in some brain areas (e.g., somatosensory and visual cortices, hippocampus), than in others (e.g., motor  

and prefrontal cortices, Fig. 24). 

Fig. 24. Negr1 expression is temporally and spatially regulated in vivo. In situ hybridization 

showing expression of Negr1 at the indicated ages. White arrows point to strong expression of Negr1 in VZ 

(E18) and in layer IV (P7, adult). 
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3.2.4 Manipulation of Negr1 expression affects late-born neuron migration in vivo.

Given the expression of Negr1 mRNA in the somatosensory cortex in new-born neurons committed 

to layer II/III, we wondered whether Negr1 may have a role in the development of these neurons. 

To this aim, we used RNA interference against Negr1 (Negr1 siRNA) and cDNA encoding for WT 

Negr1 (Negr1 cDNA;(Pischedda et al. 2014); APPENDIX I) to manipulate the expression levels of 

Negr1 in the developing somatosensory cortex, where its expression is the strongest.

We  took  advantage  of  standard  in  utero  electroporation  and  we  introduced  scrambled  siRNA 

(control),  Negr1 siRNA or  Negr1 cDNA into the lateral  ventricle  of E15.5 mice  in  utero,  and 

transfected these constructs into a subpopulation of neural precursors and their progeny of newborn 

neurons committed to migrate to the layer II/III of the somatosensory cortex (Fig.25A;  (Saito e 

Nakatsuji 2001)). 

All constructs were co-electroporated with EGFP for visualization of transfected cells (Bony et al. 

2013; Cancedda et al. 2007). After allowing for in vivo development, we analyzed the migration in 

coronal brain slices obtained from mouse embryos at pups at P7 (Fig 25) and adult mice at P35 

(Fig. 26). By P7, control and cDNA-transfected cells reached cortical layer II/III, whereas a large 

number of Negr1 siRNA-expressing cells were arrested in layer V and appeared not able to cross 

the border between layer IV and layer V (Figure 25B). We defined these cells as “ectopic” neurons, 

as they stopped in an ectopic layer. We quantified the number of these ectopic neurons at P7, and 

normalized them to the total number of transfected cells (Figure 25C).

We found that in animals transfected with Negr1 siRNA 16.49 ± 1.96 % of migrating cells were 

arrested in layer V, with an ~30 folds increase compared to controls (Fig. 25C, Control 0.51 ± 0.17 

%, Negr1 cDNA 1.27 ± 0.31 %; one way ANOVA Dunn’s post-hoc: ***p < 0.001). 

The effect  of  Negr1 downregulation  on ectopic cells  arrested in layer  V persisted also at  P35, 

indicating a long-lasting effect  (Fig.  26; Control 0.20 ± 0.20 %; Negr1 siRNA 5.63 ± 0.62 %; 

Student’s t-test: *** p < 0.001). 
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Fig. 25. Negr1 downregulation, but not overexpression, causes accumulation of ectopic cells in 

layer V at P7 in vivo. (A) Schematic cartoon of the experimental protocol with processing at P7. (B) 

Confocal images of GFP fluorescence in coronal sections of somatosensory cortices at P7 after in utero 

transfection (at E15.5) with control siRNA (black), functional Negr1 siRNA (red) or Negr1 cDNA (green). 

Slices were counterstained with DAPI (left). Scale bar, 100μm. WM = white matter. (C) Quantification of 

the number of control, Negr1 siRNA- and Negr1 cDNA-expressing neurons that did not complete their 

migration. Data are expressed as average percentage (± SEM) of the total number of fluorescent cells in the 

section. Asterisks: statistically significant difference (One-way ANOVA; Dunn’s post-hoc: ***p < 0.001). 

Numbers in parenthesis: total number of animal processed (1 slice/animal). 
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Fig 26. The effect of Negr1 downregulation on neuronal migration is long-lasting. (A) Schematic 

cartoon of the experimental protocol with processing in adulthood. (B) Confocal images of GFP fluorescence 

in coronal sections of somatosensory cortices at P35 after  in utero  transfection (at E15.5) with scrambled 

siRNA (Control,  black)  or  Negr1 siRNA (red).  Slices  were counterstained with DAPI  (left).  Scale  bar, 

100μm.  (C)  Quantification  of  the  number  of  control  or  Negr1  siRNA-expressing  neurons  that  did  not  

complete  their  migration.  Data  are  expressed  as  average  percentage  (±  SEM)  of  the  total  number  of 

fluorescent cells in the section. Asterisks: statistically significant difference (Student’s t-test: *** p < 0.001). 

Numbers in parenthesis: total number of animal processed (1 slice/animal).
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5.DISCUSSION

In this  study we have shown that  Negr1 plays  a  key role  in controlling neurite  outgrowth and 

neuronal migration.  Our main hypothesis  is that Negr1 contributes  to the proper formation and 

stabilization of neuronal network. Furthermore, we brought evidences that Negr1 regulates neuronal 

morphology and migration during development of the central nervous system.

Interestingly, Sanz et al demonstrated recently that IgLON family protein are actively released in 

neuronal media and their shedding is important for a proper neuronal maturation (Sanz, Ferraro, e 

Fournier 2015). 

Our data suggest  that Negr1 acts as a soluble factor, binds FGFR2 expressed in membrane and 

triggers  MAPK  signaling  pathway.  Several  experimental  findings  connect  ADAM10  mediated 

shedding and FGFR2 to the regulation of neuronal functional and morphological maturation.

ADAM10 modulates axonal growth via the cleavage of different membrane proteins including L1-

NCAM, N-cadherin and NCAM  (Hinkle et  al.  2006; Mechtersheimer et  al.  2001; Paudel  et  al. 

2013).  NCAM  ectodomain  in  particular  can  stimulate  neurite  outgrowth  triggering  ERK1/2 

signalling via binding with B1 integrin (Diestel et al. 2005).  Finally, it has been demonstrated that 

NCAM binds and activates FGFR1 and 2 (Francavilla et al. 2009; Francavilla et al. 2007; Kiselyov 

et al. 2005). 

Our data suggest that ADAM10 shedding releases Negr1 in the extracellular media.

In their work, Sanz and colleagues did not notice any difference in term of Negr1 release upon 

ADAM10 acute  silencing  (Sanz,  Ferraro,  e  Fournier  2015).  Instead  in  our  study we abolished 

ADAM10 activity via ADAM10 specific inhibitor. In fact, upon chronic treatment we observed a 

robust  reduction  in  Negr1  release.  Our  different  experimental  approach  may  account  for  the 

opposite outcome we reported here.

Thus  our  data  suggest  a  mechanism implying  that  soluble  Negr1  influences  positively  neuron 
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maturation  stimulating  via  FGFR2 ERK1/2  intracellular  signalling  cascade,  i.e  acting  in  trans. 

Nevertheless,  a  role  for  Negr1  in  cis has  to  be  taken  in  account.  In  our  previous  publication 

(Pischedda et  al.  2014),  we showed that  acute  Negr1 down-regulation  impairs  severely neurite 

outgrowth. In this study, we analyzed more in detail the impact of acute negr1 down-regulation. 

In particular, we noticed a clear morphological defect also upon infection with low titer of Negr1 

siRNA viruses. In such condition, scarce and isolated Negr1 silenced neurons were surrounded by 

cells expressing and therefore releasing Negr1. Interestingly, also in this experimental setting we 

observed a clear impairment of neuritic tree complexity upon Negr1 silencing. 

However the magnitude of the effect was lower than the one reported upon high viral titer infection, 

i.e upon massive and general down regulation of Negr1 protein level in the culture.

These results may suggest that Negr1 influences neuronal development acting both  in cis and  in  

trans and that the two mechanisms contribute to determine neurite outgrowth.

It  has been demonstrated that IgLON proteins are able not only to bind RTKs but and also to 

modulate their activity (McKie et al. 2012).

Here, taking advantage of immunoprecipitation and in cell overlay assay we found that Negr1 binds 

FGFR2.  While  our  data  suggest  that  Negr1  acts  in  trans via  FGFR2,  we  cannot  exclude  the 

existence of Negr1 and FGFR2 complex  in cis. In fact, we can speculate that membrane bound 

Negr1 may form a heterocomplex with FGFR2. As reported for NCAM, Negr1  in cis interaction 

can influence FGFR2s downstream signalling upon agonist binding (including potentially soluble 

Negr1 itself as well as FGFs)  (Francavilla et al. 2007; Francavilla et al. 2009).

In the attempt to analyze the cis effect of Negr1-FGFR2 co-expression, we treated neurons with 

different growth factor such as EGF, FGFb and FGF7. 

The biochemical analysis of pERK levels showed that Negr1 silencing impaired cellular answer to 

FGF7 (a  specific  agonist  of  FGFR2),  while  FGFb and  EGF stimulation  resulted  not  affected.  

Similarly, FGFR2 silencing reduced cellular response to FGF7 only. 
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This suggest that  the  potential heterocomplex formed by Negr1 and FGFR2 expressed on the same 

cell  does  not  induce  ERK1/2  phosphorylation  by itself,  but  it  is  instead  important  for  FGFR2 

response to its specific agonist. 

Thus we conclude that  Negr1 has a regulatory role for FGFR2 in cis.

Finally, given that  Negr1 is  expressed as membrane bound protein,  two scenarios are possible: 

Negr1 binds FGFR2 expressed on the same cell as membrane bound protein (in cis); Negr1 binds 

FGFR2 expressed on juxtaposed cell (in trans).

Thus, we decided to dissect the potential effect on ERK phosphorylation due to  in trans Negr1-

FGFR2  interaction  taking  advantage  of  the  co-culture  assay.  We  found  a  robust  increase  in 

pERK1/2 level when neurons where co-cultured with Negr1 positive cells. Strikingly, increase in 

ERK phosphorylation was lost once we seeded Negr1 cells on neurons lacking Negr1 or FGFR2 

expression. Altogether, these data suggest that Negr1 positively triggers ERK pathway acting  in  

trans on Negr1-FGFRF2 heterodimer present on the justaxposed neuronal membrane. 

In conclusion, our data show that Negr1 activates in trans  and as soluble factor FGFR2 while it 

modulates FGFR2 in cis.

Furthermore, we demonstrated that Negr1 might influence FGFR2 protein level. 

In particular, we deem that Negr1 may influence the amount of FGFR2 within the recycling pool 

and/or discriminate between recyling and lysosomial degradation. Our working hypothesis is that 

Negr1 co-expression may be important to support ERK activation regulating both FGFR2 signaling 

and trafficking inside the cell.

Given the pivotal role played by FGFR2 during CNS development, it is tempting to speculate that 

Negr1 might be involved in the formation of neuronal network.

Neuron migration requires several mechanisms, such as the recognition of the proper path and the 

ability to move long distances. Many external factors might negatively influences a proper neural 

migration and result in a misplacement of cells.
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Examples of such external influences are alcohol, cocaine or radiation, which may lead to numerous

mental disorders. Furthermore, mutations in genes that regulate this migration have recently been 

shown to cause some rare genetic forms of mental retardation, schizophrenia and epilepsy.

FGFRs have been largely studied as  key regulators  of  neuronal  migration  via  ERK1/2  kinases 

(Cavallaro e Dejana 2011; Francavilla et al. 2009). Importantly, conditional knock out of ERK1/2 

leads to perturbation in cortical lamination with decreased number of pyramidal neurons in layer 

II/III and increased number of neurons in layer V (Pucilowska et al. 2012).

ERK pathway and NCAM activation of FGFR1 have been extensively linked to the modulation of 

neuronal proliferation and migration during embryonic brain development (Francavilla et al. 2007).

Fibroblast growth factors play multiple roles in the central nervous system (CNS) and control the 

size  of  the  cerebral  cortex  (Shin  et  al.  2004;  Vaccarino  et  al.  2009) as  well  as  its  patterning 

(Fukuchi-Shimogori  e  Grove 2001;  O’Leary  e  Nakagawa 2002;  Garel,  Huffman,  e  Rubenstein 

2003; Hébert e Fishell 2008).

Several  FGF ligands,  including FGF2, 3,  7,  8,  10,  15,  17,  and 18, are  expressed in the rostral 

telencephalic  midline  and  early  cortical  primordium  (Fukuchi-Shimogori  e  Grove  2001;  Garel, 

Huffman, e Rubenstein 2003; Cholfin e Rubenstein 2007), and have been demonstrated to regulate 

neurogenesis (Raballo et al. 2000; Borello et al. 2008). Amongst the four FGFR, only FGFR1-3 are 

expressed in the developing CNS (Ford-Perriss, Abud, e Murphy 2001).

Recent studies have demonstrated that FGFRs regulate CNS growth, including the hippocampus 

(Ohkubo et al. 2004) and the cerebral cortex (Kang et al. 2009). Once neural progenitors have been 

generated in the developing brain and spinal cord, FGFs play important roles in their survival and 

expansion (Vaccarino et al. 2009; Diez del Corral et al. 2003; Inglis-Broadgate et al. 2005).

Furthermore FGF signalling has a prominent role in the migration of neurons. 

FGFs secreted by neurons of the cerebral cortex signal back to cortical progenitors, as shown by the 

FGF18-dependent  expression of  the Ets  transcription  factors  Pea3,  Erm,  and Er81 by VZ cells 
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(Hasegawa et al. 2004).

Blocking  FGF signalling  leads  to  neuronal  migration  defects,  suggesting  that  FGF mediates  a 

feedback loop through which neurons that have reached their final position control the migratory

behaviour and laminar position of the next wave of neurons (Hasegawa et al. 2004).

Migration of young post-mitotic neurons from the ventricular zone to the cortical plate where they 

differentiate is a key event in cortical development. Neuronal migration disorders lead neurons to 

move and differentiate  in an abnormal position  (Rakic 1988).  Ectopic positioning and impaired 

differentiation  of  cortical  grey  matter  cause  pathologies  called  Neuronal  Migration  Disorders 

(NMD) (Copp e Harding 1999). 

In fact, periventricular and subcortical neuronal displacement have been described in the brain of 

patients suffering from epilepsy (Barkovich e Kjos 1992; Flint e Kriegstein 1997).

Moreover, discrete intracortical disorganization also have been described in the brains of patients 

affected by dyslexia schizophrenia  and autism (Jones 1995).

Autism  refers  to  an  etiologically  and  clinically  heterogeneous  group  of  neurodevelopmental 

disorders and is included in Neuronal Migration Disorders.

Both Negr1 and FGFR2 are implicated in Autism Spectrum Disorders (ASD)  (Kaminsky et  al. 

2011; Marshall et al. 2008; Michaelson et al. 2012; Pinto et al. 2010; Wentz et al. 2014).  

However,  ASD  is  a  highly  heterogeneous  disorder  with  thousands  of  genes  and  molecular 

mechanisms involved in its etiology. For this reason a very large effort has been recently put on 

research  focusing  on  finding  convergent  pathways  affected  by  ASD  genes  during  human 

development  (Li e Reiser 2011; Parikshak et al. 2013; Pinto et al. 2014). In this context is very 

interesting that many of ASD genes are enriched in cortical pyramidal neurons of superficial layers 

(Parikshak  et  al.  2013) and  patches  of  abnormal  laminar  cytoarchitecture  have  been  found  in 

patients suffering from ASD (Stoner et al. 2014). 

Taking advantage of standard in utero electroporation Laura Cancedda's group in Genova silenced 
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Negr1 into a subpopulation of neural precursors and their progeny of newborn neurons committed 

to migrate to the layer II/III of the somatosensory cortex. By P7, large number of Negr1 silenced 

cells were arrested in layer V and appeared not able to cross the border between layer IV and layer  

V. We defined these cells as “ectopic” neurons, as they stopped in an ectopic layer and this effect is  

long lasting until P35.

Furthermore, we found that acute down regulation of FGFR2 results in strikingly similar migration 

defect with neurons arrested in layer V, as seen upon Negr1 knockdown. 

Finally, clear signaling cross talk between Negr1 and FGFR2 is strengthen by the fact that Negr1 

downregulation and FGFR2 overexpression in the same cell can completely rescue the migration 

defect, proving for the first time an  in vivo  involvement of both molecules in the same signaling 

pathway (Laura Cancedda, IIT Genova. Data not shown).

Because we found that: Negr1 miRNA is present in high levels in layer IV of the somatosensory 

cortex, is able to modulate FGFR2 signaling both in cis  and in trans and furthermore MAPK are 

fundamental for neuronal migration, we hypothesized that Negr1 expressed by layer IV neurons 

could interact in trans with FGFR2-Negr1 complex located on neurons committed to layer II/III and 

it could regulate their migration to the superficial layers of the cortex via pERK modulation. 

ASD  is  characterized  by  complex  behavioral  defects,  including  emotional  and  motivation 

impairments.  USVs are  socially-relevant  communication  sounds emitted  by pups as  a  result  of 

separation  from  the  mother  and  are  widely  used  as  an  easy  method  to  measure  social  and 

communications  behaviors  in  various  models  of  neurodevelopmental  disorders  (Fischer  e 

Hammerschmidt 2011; Ju et al. 2014; Lai et al. 2014; Scattoni, Ricceri, e Crawley 2011).

In particular, USVs provide sensitive insight into the early emotional development of the pup (Gulia 

et al. 2014; Wöhr e Schwarting 2008) and, reduced number of USV calls with unusual patterns have 

been reported in several  mice models  of ASD  (Fujita et  al.  2008;  Scattoni,  Ricceri,  e  Crawley 

2011). 
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Thus,  we  investigated  ultrasonic  vocalizations  (USV)  in  mice  soon after  birth  to  test  possible 

defects in communication skills. We found that pups after Negr1 or FGFR2 downregulation in the 

somatosensory cortex, a region believed to be analogous to the language area in the human cortex 

(Sia, Clem, e Huganir 2013), display reduction in the number of ultrasonic vocalization calls with 

lower probability  of  emitting  complex  calls.  Interestingly,  ERK kinases  activation  restored  this 

aberrant behavior (Laura Cancedda, IIT Genova. Data not shown).

These data suggest that Negr1 is important not only for neuronal maturation, but also for neuronal 

migration during the formation of cortical layers.

But how Negr1 could regulate via FGFR2 cortical cyto-architecture and neuronal maturation during 

development?  We propose four models to explain the complex interconnession between Negr1-

FGFR2 and MAPK signaling.

We can distinguish two main mechanisms underlying Negr1 effect on FGFR2 activity: in cis and in  

trans. In control neurons, which express both Negr1 and FGFR2 in cis, Negr1 binds and stabilizes 

FGFR2 on the  membrane,  thus  allowing agonist  binding and subsequent  activation  of  ERK1/2 

signaling. Upon agonist binding, Negr1- FGFR2 heterocomplex is internalized and recycles on the 

membrane, ready for a new cycle of activation (Fig. 27).
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 Fig 27. Negr1 action in cis. Negr1 binds FGFR2 regulating its response to FGF7.

When Negr1 is missing, FGFR2 is still exposed in membrane but answers less to FGF7 stimulation. 

Furthermore, our biochemical evidence suggests that Negr1 could impact on FGFR2 recycling.

It is known from the literature that growth factor receptors, more in the specific RTKs, activates 

alternative pathways upon internalization (Sorkin e von Zastrow 2009). Furthermore, recycling is a 
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fundamental  process  that  disassembles  FGF7-FGFR2  complex  and  allows  the  translocation  of 

receptors' subunit back to the membrane. Given such crucial role of the recycling, any alteration of 

proper receptor trafficking may alter receptor activity. Finally, Negr1 may discriminate beetween 

the  two  fates  that  intra-cellular  pool  of  FGFR2  might  encounter:  recycling  or  lysosomial 

degradation.  In  presence  of  Negr1,  FGFR2  pool  might  be  driven  towards  recycling,  while  in 

absence it is degraded. 

Fig. 28. Negr1 action in cis. If Negr1 is missing FGFR2 is still exposed in membrane but answers less to 

FGF7 stimulation.
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Furthermore, we know from our biochemical data that Negr1 is important also in trans. 

In fact, our coculture assay suggest that Negr1-HEK overexpressing cells are able to trigger MAPK 

signalling cascade in neurons. Interestingly we observed that at the same time Negr1 induces the 

stabilization of FGFR2 in neuronal cultures after 3 days in vitro. 

All together these data suggest that Negr1 in trans activates ERK pathway maybe recruiting Negr1-

FGFR2 heterodimer on the justaxposed membrane (Fig. 29).

Fig. 29. Negr1 action in trans. Negr1 trans activates MAPK signaling in neurons.
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In  absence  of  Negr1,  we  did  not  observe  an  increase  of  ERK1/2  phosphorylation  in  silenced 

neurons co-cultivated together with Negr1-HEK cells. This outcome might arise from the absence 

of proper Negr1-FGFR2 heterocomplex on neuronal membrane: in such condition, Negr1 exposed 

from HEK cells cannot trigger any signalling pathways.

Fig 30. Negr1 action in trans. In absence of proper Negr1-FGFR2 heterocomplex on neuronal membrane 

Negr1 exposed on HEK cells is unable to trigger ERK1/2 signaling.
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To support our hypotesis, in a recent paper (Song et al. 2015) Song and colleagues discovered a role 

for Slitrk -a transmembrane protein- in regulating TrkB-BDNF trafficking and signaling. 

Slitrk  isotypes  are  highly  expressed  in  the  CNS,  where  they  mediate  neurite  outgrowth, 

synaptogenesis, and neuronal survival exactly like IgLON family proteins. 

They report that Slitrk5 through direct interaction with TrkB receptors is able to modulate brain-

derived neurotrophic factor (BDNF)-dependent biological responses.

Under basal conditions, Slitrk5 interacts primarily with a trans-synaptic binding partner; however, 

upon BDNF stimulation, Slitrk5 shifts to cis-interactions with TrkB. In the absence of Slitrk5, TrkB 

has a reduced rate of ligand-dependent recycling and altered responsiveness to BDNF treatment. 

Furthermore, they discovered that Slitrk5 mediates optimal targeting of TrkB receptors to Rab11-

positive recycling endosomes through recruitment of a Rab11 effector protein, Rab11-FIP3 (Fig 

31).

Fig 31.  Slitrk5 regulates TrkB-BDNF trafficking and signaling via supporting RAB11 

recycling at early endosomes (adapted from (Song et al. 2015)).
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Negr1 may execute its function following a mechanism similar to the one proposed for Slitrk5. 

In fact, we hypothesize a double action for Negr1:  in cis, it interacts directly with the receptor, 

mediates its biological response to agonist and influences receptor trafficking. In trans it interacts 

with  Negr1-FGFR2  heterocomplex  formed  on  the  justaxposed  membrane  triggering  FGFR2 

signaling and  supporting synaptic stabilization.

All these mechanisms may be called in action during neuronal migration.

Our main hypothesis is that neurons migrating from the ventricular zone (VZ) reach layer IV where 

Negr1 is highly expressed. If the migrating neurons express both Negr1-FGFR2, the heterocomplex 

is assembled and  the receptor is functionally exposed in membrane and triggers ERK intracellular 

cascade. The recycling is functional so the signalling is long-lasting and the neuron can go further 

reaching layer  II-III  of  the cortex.  If  migrating  neuron lacks  Negr1 or FGFR2 expression it  is 

blocked to layer IV - we called these neurons "ectopic neurons"- causing maldevelopment of the 

cortex (Fig. 32)
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Fig. 32. Model for migration.  Negr1-FGFR2 is important  for the proper migration of neurons from 

ventricular zone to cortical layer II-III.
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6.CONCLUSION

ASD affects  0.9% of  children,  and  it  is  recognized  as  the  most  genetic  of  all  developmental 

neuropsychiatric syndromes (82-92% accordance in monozygotic twins, 90% familiar component). 

Interestingly, many genes associated with ASD are fundamental in establishing neuronal networks, 

and connectivity dysfunctions are causative alterations in ASD. 

Cell adhesion molecules (CAM) and FGFR members drive neuronal wiring during development 

and thus not surprisingly mutations in CAM and FGFR proteins have been widely identified as 

ASD risk factors. In detail, mutations in NEGR1 and FGFR2 genes have been recently indicated as 

relevant ASD candidates. Therefore, given the functional, physical and genetic correlation among 

Negr1 and FGFR2, the study of Negr1 may disclose a pathway where different risk factors for 

autism converge and therefore result in a powerful tool to disclose the pathogenesis of ASD.

Early  educational  intervention  is  the  cornerstone  for  ASD  management,  indicating  an  early 

temporal window during development for successful therapy. On the other hand, huge effort has 

been spent to delineate a pharmacological treatment for ASD. 

Yet,  only  antipsychotics  Risperidone  and  Aripiprazole  are  currently  accepted  as  treatments. 

Moreover, these drugs only address comorbid clinical symptoms, rather than the underlying ASD 

pathology. Large evidence points to defects in the development of neuronal networks as underlying 

causes  of  ASD. Thus,  understanding the  molecular  mechanisms  underlying  Negr1 signaling  in 

physiological and pathological brain will possibly pave the way to clarifying the developmental 

aspect at the basis of ASD. Finally, our study will directly tackle whether somatosensory deficits  

contribute to social impairment in ASD, addressing a big issue in the field. Our project will open 

new fields of research for the design of alternative pharmacological treatments.
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7. EXPERIMENTAL PROCEDURES

Constructs  generation  for  Lentivirus  production  and  in  utero electroporation.  Negr1  and 

FGFR2 target sequences were identified, synthesized and cloned into GFP-expressing pLVTH, as 

previously  described  (Bauer  et  al.,  2009;  Pischedda  et  al.,  2013;  Zhou  et  al.,  2006).   All 

recombinant lentiviruses were produced by transient transfection of HEK293T cells according to 

standard protocols  (Wiznerowicz  and Trono,  2003).  Primary  neuronal  cultures  were  transduced 

with  viruses  at  multiplicity  of  infection  (MOI)  3  if  not  otherwise  specified.  mNegr1  cDNA 

(Addgene  clone  C3342IRCKp5014P057-rzpdm13-21)  was  cloned  into  strep-FLAG pcDNA3.1 

vector  (Gloeckner  et  al.,  2009).  FGFR2  cDNA  has  been  purchased  from GeneCopoeia  [ORF 

expression clone for FGFR2 (NM_010207.2)]. 

Negr1 purification and deglycosylation. For protein purification, HEK293 cells transfected with 

strep-FLAG Negr1 were lysed in RIPA buffer (150mM NaCl, 50mM HEPES, 0,5% NP40, 1% 

Sodium-deoxycholate)  for  one  hour  at  4°C  and  then  processed  for  streptavidin 

immunoprecipitation.  Protein  were  eluted  from  STREP  resin  in  elution  buffer  (2.5  mM 

Desthiobiotin, 100 mM Tris-HCL, 150mM NaCl, 1mM EDTA) in mild agitation for one hour at 

4°C. The protein concentration was measured via standard Bradford assay (Bio-Rad) and protein 

purity was assessed by SDS-PAGE followed by silver staining. Where indictaed, after purification 

strep-FLAG  Negr1  was  treated  with  PNGase  F  (5  units,  20  minutes,  37°C)  (Sigma-Aldrich, 

Germany) and then analyzed by western blotting.

Neuronal cultures and drugs. The cortical neuron cultures were prepared from embryonic day 16 

(E16) wild type CD1 mouse cortex (Harlan, Udine, Italy). E0 was considered the day at which the  

copulation  plug  was  observed  in  the  mother.  One  day  before  the  dissection  day  (D-day),  the 
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coverslips were placed in 24-well plates (First multiwell plate, Euroclone), coated and incubated for 

no more than 16 hours with 250  μl/coverslip of poly-L-lysine (Sigma Aldrich) 50µg/ml in PBS 

buffer pH 7.4. On D-day the polylysine solution was removed and the coverlips were rinsed three 

times with sterile water, 10 minutes for each wash. After the last wash, the water was removed. The 

pregnant dam was killed using approved methods of euthanasia and the fetuses were removed from 

the uterus. The dissected brains were placed in a sterile 50 ml falcon containing ice cold HBSS 1X 

(HBSS 10X (Invitrogen) + HEPES 10mM pH 7.3 + 1%Pen/Strep) and kept in ice.

Using  a  dissecting  microscope,  the  two  hemispheres  were  separated,  meninges  and  striatum 

removed, and the cortex dissected out. The cortexes were placed in a 15-ml conical centrifuge tube 

containing ice cold HBSS 1X. Working under a laminar flow hood, the cortexes were rinsed with 5 

ml 37°C sterile HBSS 1X medium for three times. After the last wash, the medium was removed 

and the dissociating solution was added (9 ml 37°C HBSS 1X + 1 ml trypsin 10X).

After 15 minutes of incubation in a water bath at 37oC the trypsine solution was gently removed

leaving the cortexes at the bottom of the tube. The cortexes dissociation was made in 5 ml final 

volume of HBSS 1X by repeatedly pipetting them up and down in a Pasteur pipette.

Once the cortical neurons were separated, the cell density was calculated. An appropriate neuron 

complete  medium  (Neurobasal  (Invitrogen)  +  1%  L-Glutamine  +  1%  Pen/Strep  +  B27  50X 

(Invitrogen))  volume  containing  100.000  cells  was  added  to  each  well  containing  the  treated 

coverslip.  The neurons in 24-well  plates were used for IHC. For the biochemistry experiments, 

300.000 cells were added in 1ml of medium and plated in 12-well plates ( Euroclone). The neurons 

were maintained at 37°C and 5% CO2  and the medium was changed once, three days after the 

dissection. In these cultures glial growth is reduced to less than 0.5% of the nearly pure neuronal 

population (Brewer et al., 1993). Neurons were treated daily with FGFb 20 ng/ml, FGF7/KGF 20 

ng/ml, IGF 5 ng/ml (all from Peprotech, NJ USA) or every second day with GI 254023X 20mM 

(TOCRIS Bioscience,  UK) or MEK inhibitor  U0126 100nM (Sigma-Aldrich,  Germany).  Strep-
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FLAG-Negr1  treatment,  40ng/ml,  was  performed  at  DIV10.  All  procedures  involving  animals 

complied with ARRIVE guidelines and were performed according to the National and Istitutional 

Animal regulation (IACUC 625).

HEK cells and cortical neurons co-culture.  At DIV14 on cortical neurons culture HEK293T cells 

were  seeded  in  ratio  300.000  neurons/100.000  HEK293  cells  (3:1).  For  ERK  kinases 

phosphorylation  experiments  cells  were  transfected  with  control  vector  or  with  Negr1  cDNA. 

Mixed cultures were cultured until DIV16 and then lysed and processed for western-blotting. 

Membrane fractionation.  Primary neuronal cultures were plated in 12 well plates (Euroclone) at 

the density of 600.000 cells per  well and then transduced with siCTRL and siNEGR1 viruses at 

MOI 3 on DIV 1. Neurons on DIV 16 were then resuspended in 600 ul of isosmotic buffer (4mM 

HEPES, 32mM SUCROSE in PBS 1X) and spottered 10 times with glass potter. Then lysate was 

centrifuged for 10 minutes at 600g to separate nuclei (pellet). The supernatant was then centrifuged 

at 100.000g for 1 hour to separate citosol (supernatant) from membrane (pellet). The pellet was then 

lysed in RIPA buffer (150mM NaCl, 50mM HEPES, 0,5% NP40, 1% Sodium-deoxycholate) and 

processed for biochemical analysis.

Biochemistry and antibody.  Neurons were washed in PBS and lysed in RIPA buffer (150mM 

NaCl,  50mM HEPES, 0,5% NP40,  1% Sodium-deoxycholate).  After  1  h  under  mild  agitation, 

lysate was clarified by centrifugation for 20 min at 16,000g. All procedures were performed at 4 °C. 

Protein  sample  were  measured  via  standard  Bradford  assay  (Bio-Rad.  USA).  For  protein 

identification  and  relative  quantification  via  Western  blotting,  a  proper  volume  of  sample 

containing an equal amount of proteins was diluted with 0.25% 5X Laemmli buffer and loaded onto 

10% SDS-PAGE gels; the proteins were transferred onto nitrocellulose membrane (Sigma-Aldrich) 
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at 80 V for 120 min at 4 °C. The primary antibodies were applied overnight in a blocking buffer (20 

mM Tris, pH 7.4, 150 mM NaCl, 0.1% Tween 20, and 5% nonfat dry milk); primary antibodies 

(source in parentheses) included rabbit anti- FGFR2 1:200 (Santa Cruz Biotechnology, USA), goat 

anti-Negr1 1:1000 (R&D, USA), mouse anti-NCAM 1:1000 (BD Biosciences, USA), rabbit anti-

GFP 1:5000 (Life Technology, USA), mouse anti-Actin 1:2000 (Sigma-Aldrich), rabbit anti RpS6 

1:2000, rabbit antip42/44(pERK) and rabbit anti-42/44 (ERK) (Cell Signaling, USA). 

The  secondary  antibodies  (HRP-conjugated  anti-mouse,  anti-rabbit,  or  anti-rat)  (Jackson 

ImmunoResearch,  UK) were used in a  ratio  of 1:8000. The signal  was detected  using an ECL 

detection  system  (GE  Healthcare).  Films  were  acquired  on  a  GS-800  densitometer  (BioRad) 

calibrated  following the  manufacturers’  instructions,  and protein abundance was estimated  as a 

function of the optical  density of a specific  band quantified by ImageJ software (NIH). Unless 

otherwise stated, all the other chemicals were purchased from Applichem, Germany.

Cross-link assay. The N2A cells were cultured in monolayer in IWAKI plates (10 cm diameter) in 

10 ml of culture medium DMEM (Dulbecco's Minimum Essential Medium) containing glutamine 

(2 mM), antibiotic (1% Penicillin/Streptomycin), and enriched with decomplemented fetal bovine 

serum (FBS) at 10%. Formaldehyde to a final concentration of 0.8% was added directly in the 

culture  medium  and  the  10  ml  dishes  were  put  under  mild  agitation  for  10  minutes  at  room 

temperature. Then glycine was added to a final concentration of 125 mM to neutralize the effect of 

formaldehyde. The plates were again put under mild agitation at room temperature for 10 minutes. 

Finally the cells were lysed in a lysis buffer containing 150 mM NaCl, 50 mM Hepes and 0.2% 

Triton X-100 and placed in agitation for 1 hour at 4°C. Finally the lysate was spin at 16.000g 10 

minutes at 4°C.

Strep-IP. Streptactin Superflow beads (IBA) (50% in ethanol) were diluted 1:1 with wash buffer 
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containing NaCl 150 mM and Hepes 50 mM and centrifuged for 2 minutes at 2000g to purify the 

resine from ethanol. For a 10 ml dish we used 40 μl of purified beads. The lysate was added to the 

beads and put under mild agitation for 1 hour at 4°C . After the incubation the resine was washed 

twice with a wash buffer containing NaCl 150 mM, Hepes 50 mM, 0,1% Triton X-100. A brief 

centrifugation at 2000g followed each wash. Finally the resine was resuspended in 60 μl of SB2X.

Overlay  assay. Living  wild-type  and  FGFR2 over-expressing  HEK cells  were  incubated  with 

1ug/ml of purified recombinant FLAG-Negr1 protein at 4°C for 1hour to increase the binding and at 

the same time reduce FGFR2 internalization. After 4°C incubation, cells were then treated with 20 

ng/ml FGFb (peprotec) and put at 37°C for two hours to stimulate receptor internalization. Then 

cells  were  fixed  in  4%   paraformaldehyde-sucrose  in  PBS1X  and  incubated  with  anti-FLAG 

antibody. The fluorescence images were acquired using a LSM Zeiss 510 confocal microscope with 

Zeiss 20X objective (Karl Zeiss, Jena, Germany).

Co-clustering assay. Strep-FLAG-Negr1 and  wt cells were dissociated in a solution not permissive 

for cell-to-cell aggregation (2 mM EDTA in PBS) and collected in eppendorf tubes. Then cells were 

counted and re-suspended in cell to cell adhesion permissive medium ( HBSS 1X, MgCl 2 mM, 

CaCl 2 mM) at a concentration of 4 x106 cells/ml. Then 50.000 cells were seeded and incubated for 

30 minutes at 37°C in a 24-well plate with coverslips. After the incubation, cells were fixed with a 

solution of paraformaldehyde (4%), sucrose (4%) and phosphate buffer (240 mM) for 10 minutes at 

room temperature.

Immunofluorescence and quantification. Neuronal cultures were infected with viruses at days in 

vitro (DIV) 1-2 or transfected at DIV4 with Lipofectamine 2000 following manifacture's protocol 

(Life  Technology).  For the immunostaining  experiments,  neurons were fixed at  DIV 18 in 4% 

paraformaldehyde  and  4% sucrose  at  room temperature.  GFP positive  neurons  were  randomly 
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chosen for quantification. The fluorescence images were acquired using a LSM Zeiss 510 confocal 

microscope  with  Zeiss  63X  objective  (Karl  Zeiss,  Jena,  Germany)  at  a  resolution  of 

2,048x2,048pixels,  pixel  size=0.098  mm.   All  the  measurements  were  performed  using 

NeuronStudio (available at http://research.mssm.edu/cnic/tools.html).  Neurites were automatically 

traced and quantified by the software in terms of length, number and morphology (Rodriguez et al., 

2008; Wearne et al., 2005). Data were then logged and analysed in Microsoft Excel.

In  Utero  Electroporation.  All  experimental  procedures  and  animal  care  were  conducted  in 

accordance with the IIT licensing and the Italian Ministry of Health.  In utero electroporation was 

performed  accordingly  to  our  recent  protocol  (Szczurkowska  et  al.,  under  revision  in  Nature 

Protocols, APPENDIX 6). Briefly, E13.5 and E15.5 timed-pregnant CD1 mice (Charles River SRL, 

Italy)  were anesthetized with isoflurane (induction,  4.0%; surgery,  2.5%), and the uterine horns 

were exposed by laparotomy. The DNA (1.0 μg/μl in water) together with the dye Fast Green (0.3 

mg/ml; Sigma, St. Louis, MO) was injected (3-4 μl) into right lateral ventricle of each embryos by 

glass micropipette at E13.5 (World Precision Instruments, USA) or a 30G needle at E15.5 (Pic 

indolor,  Grandate,  Italy).  The embryo’s  head was  carefully  held  between tweezer-type  circular 

electrodes (3 mm diameter; Nepa Gene, Chiba, Japan) and 6 electric pulses were delivered with 

square-wave electroporation generator (CUY21EDIT; Nepa Gene) accordingly to electroporation 

protocol (amplitude, 25 and 30 V for E13.5 and E15.5, respectively; duration, 50 ms; intervals, 1s) 

After electroporation, embryos were handed back into the dam’s abdominal cavity which allowed 

their further development. 

Slice Histology and Immunostaining. E18 brains were dissected and fixed at least 24 hrs in 4 % 

PFA in PBS. P7 brains were fixed by transcardial perfusion of 4% PFA in PBS and cryopreserved  

in  30  %  sucrose.  Coronal  sections  80  μm  thick  were  obtained  with  a  microtome-refrigerator 
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(Microm  HM  450  Sliding  Microtome  equipped  with  Freezing  Unit  Microm  KS34,  Thermo 

Scientific).  Free-floating sections first underwent antigen retrival in 10mM citric acid (pH6) for 

10min at 95°C. Subsequently slices were permeabilized and blocked with PBS containing 0.3% 

Triton X-100 and 10% NGS. Primary antibodies were incubated in PBS containing 0.3% Triton X-

100 and 5% NGS [rat anti-CTIP2, 1:100 (Abcam), rabbit anti-Cux1, 1:100 (Santa Cruz), rabbit anti-

cFos, 1:1000 (Abcam)]. Immunostaining was detected using Alexa 543 or Alexa 647 fluorescent 

secondary antibody (Invitrogen), 1:600, incubated in PBS containing 0.3% Triton X-100 and 5 % 

NGS. Subsequently, cell-permeant nuclear counterstain was performed with Hoechst (2,5 μg/μL; 

Sigma).  Finally,  samples were mounted in Vectashield Mounting Medium (Vector Laboratories, 

Burlingame, CA) and acquired with confocal microscopy. 

Statistical analysis

All data are expressed as mean ± SEM. Data were analyzed with an unpaired Student’s t test (two 

classes) or ANOVA followed by Tuckey’s post hoc test (more than two classes). The indication of 

the  level  of  significance  (p)  are  indicated  throughout  the  text.  For  the  analysis  of  neurons 

morphology in the different experimental condition we considered at least 12 cells randomly chosen 

in at least 4 experiments.
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9.FIGURE INDEX

Fig. 1. Neurite outhgrowth modulatory signals. 

Fig. 2. Molecular structure and classification of IgLON family members.

Fig. 3. Analysis of Negr1 Expression.

Fig. 4. ADAM domains and ectodomain shedding. 

Fig. 5. FGFR2 signaling cascades.

Fig. 6. FGFR signaling can be mediated by NCAM and N-cadherin.

Fig. 7. Nucleokinesis of the migrating neuron. 

Fig. 8. Radial migration of pyramidal neurons. 

Fig. 9. ASD 

Fig 10. Negr1 influences neuritic tree. 

Fig. 11. ADAM10 activity modulates neuritic tree.

Fig. 12. MEK inhibition abolishes morphological effect of Negr1. 

Fig. 13. rNegr1  localization.

Fig. 14. Negr1 controls neurite guidance via MAPK.

Fig. 15. Negr1 is sufficient to instruct the formation of intercellular channels.

Fig. 16. Homodimerization is not essential to execute rNegr1 morphological effect. 

Fig. 17. FGFR2 activation ameliorates morphological effect due to Negr1 down- regulation.

Fig. 18. Negr1 modulates neuron morphology via FGFR2. 

Fig. 19. Negr1 interacts with FGFR2.

Fig. 20. Negr1 influences FGFR2 signalling in cis.

Fig. 21. Negr1 silencing modulates FGFR2 expression.

Fig. 22. Negr1 influences FGFR2 signalling in trans.

Fig. 23. Negr1 stabilizes FGFR2 in trans.

Fig. 24. Negr1 expression is temporally and spatially regulated in vivo.
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Fig. 25.  Negr1 downregulation,  but not overexpression, causes accumulation of ectopic cells  in 

layer V at P7 in vivo.

Fig. 26. The effect of Negr1 downregulation on neuronal migration is long-lasting. 

Fig. 27. Negr1 action in cis.

Fig. 28.  Negr1 action in cis.

Fig. 29.  Negr1 action in trans.

Fig. 30.  Negr1 action in trans.

Fig. 31.  Slitrk5 regulates TrkB-BDNF trafficking and signaling via supporting RAB11 recycling at 

early endosomes.

Fig. 32. Model for migration.
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10.ABBREVIATION INDEX

ADAM- disintegrin and metalloprotease domain

APP - Amyloid Precursor Protein

ASD - Autism Spectrum Disorders 

CAM - Cell Adhesion Molecule 

CaMKIIα - Calmodulin-Dependent Protein Kinase IIα 

cAMP - Cyclic AMP 

CDK5 - Cyclin-Dependent Kinase 5 

cDNA – Complementary DNA 

CNV - Copy Number Variation 

CP - Cortical Plate 

DISC1 - Disrupted in Schizophrenia 1 

DNA –Deoxyribonucleic Acid 

DRG- Dorsal Root Ganglion 

DSM-IV - Diagnostic and Statistical Manual-Fourth Edition 

E18 – Embryonic Day 18 

ECM - Extracellular Matrix 

EGF - Epidermal Growth Factor 

EGFP – Enhanced Green Fluorescent Protein 

ERK - Extracellular Regulated Kinases 

FAK - Focal Adhesion Kinase 

FGFb – basic Fibroblast Growth Factor 

FGF7-  Fibroblast Growth Factor 7

FGFR – Fibroblast Growth Factor Receptor 

FNIII - Fibronectin-type III 
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GABA - γ-aminobutyric Acid 

GFP- Green Fluorescent Protein 

GM - Gray Matter 

GPI - Glycophosphatidyl Inositol Anchor 

GWAS - Genome-Wide Association Studies 

HPSGs - Heparan Sulphate Proteoglycans

IgCAM - Immunoglobulin-like Cell Adhesion Molecule 

IgSF - Immunoglobulin Superfamily 

IUE – In Utero Electroporation 

IZ – Intermediate Zone 

Kilon - Kindred of IgLON 

KO – Knock Out

LAMP - Limbic Dystem-Associated Membrane Protein 

MAPK - mitogen-activated protein kinase 

MBP - Myelin Basic Protein

MMP9 - Matrix Metalloprotease 9 

mRNA – Messenger RNA 

MZ - Marginal Zone 

NCAM - Neuronal Cell Adhesion Molecule 

NE - Neuroepithelial Cell 

Negr1- Neuronal Growth Regulator 1 Protein 

Nlgn – Neuroligin 

NMD - Neuronal Migration Disorders 

Nrxn – Neurexin 

Ntm – Neurotrimin 
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OBCAM – Opioid Binding Cell Adhesion Molecule 

P7 – Postnatal Day 7 

PDD-NOS - Pervasive Developmental Disorder Not Otherwise Specified 

PKCβII - protein kinase CβII 

PLCγ - Phospholipase Cγ 

PSA - Polysialic Acid 

RGC - Radial Glial Cell 

RNA – Ribonucleic Acid 

rNegr1 – recombinant Negr1

RTK - Receptors Associated to Tyrosine Kinase 

Sema3A - Semaphorin 3A 

siRNA – Small Interfering RNA 

SNV - Single Nucleotide Variation 

SP – Subplate 

SVZ - Subventricular Zone 

TACE - Tumor Necrosis Factor-α-Converting Enzyme 

TNF - Tumor Necrosis Factor 

TUBA1A - Alpha 1 Tubulin 

USV -  ultrasonic vocalization

VZ - Ventricular Zone 

WM - White Matter 

WT – Wild Type 
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