## UNIVERSITÀ DEGLI STUDI DI MILANO



# SCUOLA DI DOTTORATO IN SCIENZE E TECNOLOGIE CHIMICHE DIPARTIMENTO DI SCIENZE FARMACEUTICHE CORSO DI DOTTORATO IN CHIMICA DEL FARMACO CICLO XXVIII 

# OPTIMIZATION AND APPLICATION OF COMPUTATIONAL METHODS FOR THE DESIGN OF PROTEIN-PROTEIN INTERACTIONS MODULATORS 

## SETTORE CHIM/06 CHIMICA ORGANICA

## CONTENTS

1 INTRODUCTION ..... 4
1.1 Protein-protein interactions: role and properties ..... 4
1.2 Druggability of PPIs ..... 7
1.3 Role of water in PPIs ..... 8
1.4 Modulation of PPIs ..... 10
1.5 Computational approaches in PPIs modulation ..... 13
2 PROJECT OVERVIEW ..... 16
3 METHODS ..... 19
3.1 Molecular Dynamics (MD) ..... 19
3.2 Replica Exchange Molecular Dynamics (REMD) ..... 21
3.3 Potential of mean force (PMF) ..... 22
3.4 Quantum theory of atom in molecules (QTAIM) ..... 23
3.5 Partial Nudged Elastic Band (PNEB) ..... 25
3.6 Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area (MMPB/GBSA) ..... 26
Part 1: Designing well-structured helical peptides containing chiral $\mathrm{C} \alpha-$ tetrasubstituted amino acids ..... 29
4 Protocol optimization for peptide folding prediction ..... 30
4.1 Introduction ..... 30
4.2 Results and discussion ..... 32
4.3 Materials and Methods ..... 52
5 Mechanism of helix secondary structure stabilization by cCTAAs ..... 53
5.1 Introduction ..... 53
5.2 Results and Discussion ..... 54
5.3 Materials and Methods ..... 73
6 Origin of helix screw sense selectivity by cCTAAs in Aib-based peptides ..... 75
6.1 Introduction ..... 75
6.2 Results and Discussion ..... 76
6.3 Material and Methods ..... 93
7 Mechanisms of helical screw sense inversion ..... 95
7.1 Introduction ..... 95
7.2 Results and Discussion ..... 96
7.3 Materials and Methods ..... 113
Part 2: Development and optimization of a MMGBSA protocol for the prediction of the activities of PPIs modulators ..... 117
8 Nwat-MMGBSA: a MMGBSA-based approach to improve the correlation between predicted binding energies and experimental activities. ..... 118
9 Application of Nwat-MMGBSA to classical receptor-ligand complexes .. ..... 121
9.1 Introduction ..... 121
9.2 Results and Discussion ..... 124
9.3 Materials and Methods ..... 144
10 Test and Optimization of Nwat-MMPB/GBSA Method on PPIs ..... 151
10.1 Introduction ..... 151
10.2 Results and Discussion ..... 153
10.3 Materials and Methods ..... 172
11 Application of the Nwat-MMGBSA protocol to PPI-inhibitor complexes ..... 187
11.1 Introduction ..... 187
11.2 Results and Discussion ..... 188
11.3 Materials and Methods ..... 208
12 Conclusions ..... 212
13 Bibliography ..... 214

## ABBREVIATIONS

Protein-protein interaction, PPI
Amino acid, AA
Binding free energy, $\Delta G_{b i n d}$
Solvent accessible surface area, SASA
Non natural amino acid, nnAA
C $\alpha$-tretrasubstituted amino acid, CTAA
Chiral CTAA, cCTAA
Molecular dynamics, MD
Born-Oppenheimer, BO
Molecular mechanics-Generalized Born surface area, MM-GBSA
Molecular mechanics-Poisson Boltzmann surface area, MM-PBSA
Thermodynamic integration, TI
Free energy perturbation, FEP
Linear interaction energy, LIE
Replica exchange molecular dynamics, REMD
Intrinsically disordered peptides, IDPs
Potential of mean force, PMF
Quantum theory of atom in molecules, QTAIM
Critical point, CP
Bond critical point, BCP
Right handed, $P$
Left handed, $M$
Helical excess, h.e.
Partial nudged elastic band, PNEB
Radius of gyration, RoG
Circular dichroism, DC
Quantitative structure-property relationship, QSPR
Root mean square displacement, RMSD
Difference in accessible solvent areas, dASA
Atomic unities, au.

## 1 INTRODUCTION

### 1.1 PROTEIN-PROTEIN INTERACTIONS: ROLE AND PROPERTIES

Protein-protein interactions (PPIs) are central to the tuning and regulation of the most important biological processes, ${ }^{1,2}$ because they play a key role in cell proliferation, growth, differentiation, signal transduction and apoptosis. ${ }^{3-6}$ Thus, it is not surprising that PPIs are also involved in many disease states, such as cancer, neurodegeneration, and viral and bacterial infections. ${ }^{7-9}$ Therefore, the modulation of PPIs has a great therapeutic potential and, in the last decades, much effort has been paid to the design and development of molecules targeting PPIs known to be involved in pathologic states. ${ }^{1,3,7,10-14}$

However, interfering with PPIs represents a challenging task, because of the poor experience gained so far in this field and the intrinsic complexity of the target. This requires innovation of the methodological approaches used for "classical" targets, such as enzymes or receptors. ${ }^{2}$

Indeed, the structural properties of PPIs differ from those of protein-ligand binding, and this represents the biggest problem when trying to modulate PPIs. First of all, the protein-protein interfaces are usually much larger than the binding sites of classical targets. While the ligand-receptor contact areas are usually of about $300-1000 \AA^{2},{ }^{15}$ protein-protein interfaces are usually of 1500-3000 $\AA^{2}$ in size, or even larger, as in the case of those G-proteins and components of the signal transduction pathway. ${ }^{16-19}$ Furthermore, the interfaces involved in PPIs are usually flat and lacking of the grooves, pockets or indentations found at the binding site of classical targets, ${ }^{2,7,20}$ and the interactions between two proteins generally involve not contiguous amino acids (AAs).

Nevertheless, since a huge amount of PPIs occurs in cells, structural and composition differences of the regions involved in the interaction are necessary to have the specificity needed for the formation of the right complex in the crowded cellular environment. ${ }^{11,21,22}$ This observation, together with promising
results, ${ }^{2,7,8,11,14,23-27}$ gives hope for finding molecules able to target protein-protein interfaces and, thus, modulate PPIs. ${ }^{7}$

Indeed, although protein-protein interfaces are large, they are not energetically homogeneous, ${ }^{28}$ and generally specific interface portions, called hot regions, mainly contribute to PPIs. ${ }^{22,29}$ According to the O-ring theory, ${ }^{30}$ in these regions it is possible to identify a core and a rim, where this latter contains more accessible residues sheltering the core AAs from solvent molecules (Figure 1.1). The core residues, known as hot spots, are those accounting for most of the binding energy and, if replaced by an alanine, they lead to a change in the binding free energy $\left(\Delta G_{\text {bind }}\right) \geq 2 \mathrm{kcal} / \mathrm{mol} .{ }^{31}$ Hot spots located in the same hot region cooperate in stabilizing the complex, ${ }^{22,32}$ while the energetic contributions of two or more regions are additive, suggesting the independency of hot regions. ${ }^{33}$


Figure 1.1. Hot spots and O-rings at the protein-protein interface. a) Orthogonal views of the human growth hormone binding protein (GHBP)-growth hormone (GH) complex (PDB ID: $3 H H R$ ), with the proteins depicted as atom spheres coloured either purple (GH) or grey (GHBP) except for the hot spot (red) and rim (yellow) residues. b) The complex is shown opening to expose the interacting surface. ${ }^{34}$

Moreover, within hot regions and, most of all, hot spots, there is a strong geometric and energetic complementarity between the proteins involved in the PPI. This complementarity can be enhanced by water mediated interactions, ${ }^{35,36}$ where structural water molecules are involved in bridging H -bonds between the two proteins and/or create interfacial dry cores, thus maximizing the interactions between hot spots protected by the rim AAs and water. ${ }^{37}$

Systematic analysis of known hot spots revealed that their composition is not random ${ }^{38}$ and that tryptophan, tyrosine, arginine and, at minor extent, isoleucine are the most frequently occurring and the most conserved AAs. ${ }^{28}$ Conversely, leucine, serine, threonine and valine are rarely identified as hot spots. ${ }^{30,39}$

Indeed, both tryptophan and tyrosine have a bulky aromatic side chain, which can take part in $\pi$ interactions and protect fragile H-bonds from water, ${ }^{40}$ and they are also able to take part in H-bonds. Moreover, the substitution of tryptophan with an alanine creates a large cavity, causing a destabilization of the PPI, while tyrosine, because of its ability of being involved in H -bonds, has a three times higher probability of being a hot spot than phenylalanine. ${ }^{30}$ On the other side, arginine can be responsible of the formation of both salt bridges and H -bonds.

Therefore, although protein-protein interfaces show a high amount of hydrophobic residues, the hydrophobic effect cannot be the only driving force in protein-protein association and the importance of electrostatic interactions is not negligible. ${ }^{41,42}$ Indeed, the hydrophobicity degree of protein-protein interfaces is in between the one observed for a protein core and the one of a solvent exposed protein surface, and the composition of hot spots reflects this situation. ${ }^{38}$

The presence of hot spots, where the binding energy is focused, makes the identification of compounds with a relatively low molecular weight more feasible than it would be if the binding energy was equally distributed over the interface. However, this process can be influenced by the druggability of the PPIs.

### 1.2 DRUGGABILITY OF PPIS

Druggability is defined as the likelihood of identifying a selective, low molecular weight compound with high affinity to the target. ${ }^{43}$ It is not an absolute property of the target and, in addition, there is not yet a unified way to determine the druggability of PPIs. However, Chène proposed a useful decision tree to establish if a certain PPI can be considered druggable or not. ${ }^{11}$

First of all, the difficulty in targeting a PPI is related to its half-life: permanent complexes, whose subunits remain associated, or obligate complexes, whose monomers do not exist in the non-associated form in the cellular environment, have a more difficult modulation than transient and non-obligate complexes. Furthermore, an a priori knowledge about the presence of cavities, the interfacial hydrophobicity degree, the size and complementarity of the interface helps in targeting PPIs.

The shape of the interface is another factor to take in account, since the less flat the protein interface, the more stable the complex, because one of the partner is more buried. Therefore, transient and hetero-complexes, which are the most attractive for drug discovery, have more planar interfaces. ${ }^{18}$ However, the presence of some cavities at the interface is desirable, because they can accommodate molecules and allow specific targeting. Moreover, the hydrophobicity at the interface should be intermediate, allowing the development of molecules with an acceptable trade-off between optimal binding and good pharmacokinetic properties.

Furthermore, it is important to consider the conformational changes eventually occurring upon binding, since when this phenomenon is observed is more difficult to modulate PPIs.

Another important aspect that affects the druggability of a PPI is the presence of helical motifs at the interface. Indeed, because of their frequent occurrence in both protein core and exposed regions, superficial helices are often
responsible of molecular recognition, and the $62 \%$ of PPIs reported in databases have helical interfaces. ${ }^{44,45}$


Figure 1.2. X-ray structure of MDM2 (magenta) in complex with the transactivation domain of p53 (turquoise) (PDB ID: 1YCR). ${ }^{46}$

Helical interfaces can be divided into three main categories, which are differently druggable. In detail, to the first class belong proteins whose interface consists in a cleft where a helix can bind and a minimum of two close AAs strongly contribute to the interaction, as happens for the complex between MDM2 and p53 (Figure 1.2). ${ }^{7,11,46}$ This situation offers better chances for the design of small molecule able to modulate these PPIs. To the second category belong extended interfaces where the interaction is due to multiple strong contacts between two to five turn helices and a high number of residues. The third category is made of proteins showing both of the described features and quite weak interactions.

All these aspects have to be taken in account when assessing the druggability of a PPI and designing its potential modulators.

### 1.3 Role of water in PPIs

The importance of water in PPIs has been often underestimated, since the mainstream idea was that protein adhesion was the main actor, while water represented only a spectator in the protein aggregation phenomena. However, as
mentioned before, protein-protein interfaces are enriched in polar and charged residues, ${ }^{41}$ and water molecules are often trapped at the interface and are able to satisfy the H -bond network by bridging polar protein-protein interactions which are either too distant of energetically unfavored (Figure 1.3). ${ }^{47}$ Therefore, water molecules affect the structure, stability, dynamics and function of biomolecules.


Figure 1.3. Cytochrome C-Cytochrome C peroxidase complex (PDB ID: 2PCC). ${ }^{48}$ Protein-protein interface is highlighted and colored depending on lipophilicity (magenta: hydrophilic, green: lipophilic). Interfacial water molecules are depicted as CPK.

Moreover, it has been demonstrated that long-range water-mediated forces, quantified by the hydration free energy, are fundamental for the aggregation of proteins which are approaching each other from a large distance to within a contact distance, as happens in the cellular environment. ${ }^{49}$ Nonetheless, water interacting with rim residues allows the formation of dry nuclei at the interface, which enhance the interactions between hot spots, ${ }^{37}$ thanks to the hydrophobic effect induced by water.

In a study conducted on 179 high-resolution ( $<2.30 \AA$ ) X-ray structures of protein-protein complexes ${ }^{50}$ it has been showed that of the 4741 interfacial water molecules, $21 \%$ were bridging interactions between both proteins and $53 \%$ were involved in favorable interactions with only one protein, while the remaining $26 \%$
of water molecules were not interacting with either protein. However, about the half of them showed a solvent accessible surface area (SASA) $\leq 10 \AA^{2}$, suggesting that they are buried within the protein-protein interface, often creating hydrophobic bubbles. This kind of water molecules seems fundamental for the mediation and/or lubrication of PPIs, ${ }^{18}$ and cannot be neglected when simulating PPIs.

Therefore, as water has been exploited as a component for the design of modulators of classical targets, it can be useful also in the case of PPIs.

### 1.4 Modulation of PPIS

The modulation of PPIs can be achieved by either stabilization or inhibition of the interaction (Figure 1.4), with the latter being the most explored approach. ${ }^{7,10,51}$


Figure 1.4. Regulatory control mechanisms for the association state of interacting proteins. Adapted from Thiel et al. ${ }^{52}$

Furthermore, for both the approaches the modulation can be obtained by either a direct or an allosteric mode of action. When aiming at PPI inhibition by following the former mode, the modulator should directly bind at the interfacial surface of one of the proteins involved in the PPI, preventing the binding of the interaction partner, as observed in the case of the complex Rac1-Tiam1, whose formation is inhibited by the binding of an inhibitor, such as NSC23766, to Rac1. ${ }^{53}$

Conversely, when the stabilization of the PPI has to be obtained, the modulator binds at the interfacial surface making contacts with both partners and
increasing the mutual binding affinity. In this case, the stabilizing molecule can bind first to one of the interacting proteins, making the interaction surface more adapt to the other protein, as in the case of FKBP binding molecules FK506 and rapamycin..$^{52}$ Conversely, the stabilizing molecule can bind to the rim of an already formed protein-protein interface and increase the binding affinity of the two protein partners, as in the case of forskolin binding the $\mathrm{C}_{1 \mathrm{a}}$ and $\mathrm{C}_{2 \mathrm{a}}$ subdomains of adenylyl cyclase, resulting in an increase of the cAMP levels in many tissues. ${ }^{54}$

On the contrary, the allosteric modulation is achieved for both inhibition and stabilization of PPIs by binding to a region of one protein partner not directly involved in the PPI, as in the case of paclitaxel, which, binding to a hydrophobic pocket of polymerized tubulin located only on the $\beta$ subunit, stabilizes the microtubule structures. ${ }^{55}$

Simultaneously, the modulation of PPIs can be achieved through classical small molecules, which, not necessarily mimicking the secondary structure at the interface, bind to the protein receptor acting as simple functional mimetics. ${ }^{56,57}$ These compounds are not versatile, because they are designed for the modulation of a specific target and they can be unlikely exploited for other PPIs.

Conversely, it is possible to obtain the modulation through molecules able to mimic the surface by non-sequential hot spot residues. ${ }^{58}$ In this case, it is possible to develop non-peptide scaffolds, known as proteomimetics, witch match the topography of the original secondary structure, usually a helix, ${ }^{44,45}$ by spatially orienting their substituents in a way that allows the interaction with the hot spots. For example, the aryl core of $3,2^{\prime}, 2^{\prime \prime}$-terphenyl derivatives (Figure 1.5c) are able to assume a staggered conformation which projects the ortho substituents to mimic the positions of the $i, i+4$ and $i+7$ residues of a helix (Figure 1.5a,b). Some of these derivatives proved to inhibit the calmodulin/phosphodiesterase, the $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}} / \mathrm{Bak}$ and gp41 PPIs with nanomolar $\mathrm{IC}_{50}{ }^{59-61}$


Figure 1.5. a) Representation of an $\alpha$-helix whose $i, i+4$ and $i+7$ residues are highlighted on a single face. b) X-ray structure of a terphenyl derivative. c) 3,2',2"-terphenyl - the first $\alpha$-helix mimetic. Adapted from Azzarito. ${ }^{58}$

The last and more interesting approach to modulate PPIs is the use of peptidebased molecules. This is particularly useful when targeting helical interfaces, which are the most frequently occurring and structurally stable. ${ }^{45}$ Peptides provide a high degree of selectivity and specificity toward the target and a low toxicity. ${ }^{62-}$ ${ }^{64}$ However, synthetic peptides are considered therapeutically undesirable because of their poor bioavailability and their sensitivity to proteolytic degradation. ${ }^{65}$ Furthermore, synthetic peptides in solution often adopt random conformations, far from those observed in their parent proteins, which have to be maintained to assure the correct interaction with the target protein interface. ${ }^{58}$ Therefore, many approaches aimed to solve one or both these problems have been developed. Among these, the most exploited ones consist in the nucleation of the helix formation and/or in the stabilization of the helical conformation (Figure 1.6).

$\alpha$-helix


Cys-Cys disulfide bridge $\alpha$-helix


Glu-Lys lactam
bridge $\alpha$-helix


Hydrocarbon-stapled $\alpha$-helix


HBS $\alpha$-helix


CTAA-containing $\alpha$-helix

Figure 1.6. Scheme illustrating different approaches for helix stabilization.
In this framework, frequently applied methods are the covalent cyclization, i.e. disulfide or lactam bridges, ${ }^{66,67}$ the H -bond surrogate (HBS) method, ${ }^{68}$ the
hydrocarbon stapling ${ }^{69,70}$ or the use of non natural AAs (nnAAs), such as $\beta$-AAs ${ }^{71}$ or C $\alpha$-tetrasubstituted AAs (CTAAs). ${ }^{72,73}$

### 1.5 COMPUTATIONAL APPROACHES IN PPIS MODULATION

The exploitation of computational methods has revealed to be extremely helpful for the design of PPIs modulators. ${ }^{74}$ Different methods can be applied to each step, from the analysis of the protein-protein interface to the modulators optimization and the estimation of the binding affinity.

For example, although crystallographic structures provide important information about the protein-protein interfaces, different computational methods can be used for the identification of possible binding pockets present at the interface. Some of these methods rely on geometry- or energy-based algorithms, ${ }^{75}$ while other techniques are based on structure and sequence comparison ${ }^{76,77}$ or on the analysis of the dynamics of proteins through extensive molecular dynamics (MD) simulations. ${ }^{78,79}$

Furthermore, a fundamental step when designing any kind of PPIs modulators is the detection of hot spots. Obviously, this can be done through experimental methods, which, however, are laborious and expensive. Therefore, there is a high demand of computational approaches aimed to this. Among the available methods, the most straightforward is the in silico alanine scanning, where selected AAs are mutated to alanine and the effect of the mutation in terms of relative binding free energy are evaluated. Then, a relative binding (free) energy is computed for the wild-type complex and for the complexes carrying the mutations to alanine, often using simple physical models or empirical scoring functions. ${ }^{80}$ The computational alanine scanning can be performed on a single complex structure or on an ensemble of conformations obtained from MD simulations, with this approach performing better than the former because the single structure may be not representative if the proteins are flexible.

Another widely used method to establish the contribution of single AAs to the $\Delta G_{\text {bind }}$ is the Molecular Mechanics Generalized Born/Poisson Boltzmann Surface

Area (MMGB/PBSA), which allow a per-residue decomposition of the $\Delta G_{\text {bind }}{ }^{81}$ In both methods endpoint free energy calculations are performed to predict the total $\Delta G_{\text {bind }}$ on an ensemble of states extracted from MD simulations. They also allow the decomposition of the $\Delta G_{\text {bind }}$ into pairwise contributions, which are useful to detect important interactions between pairs of AAs.

Because of the already mentioned differences between PPIs and classical targets, different approaches for the rational design of molecules targeting PPIs have to be developed. ${ }^{82}$ The modulation via small molecules is quite difficult, although some successful results have been obtained. Indeed, an extensively developed database of starting structure is still needed and the current chemical libraries lack of a sufficient diversity to reflect PPI drugs. Furthermore, the protein interface might be too flat and without relevant crevices where a small molecule can bind.

Nevertheless, in the case of the design of small molecules, the fragment based ligand design can be applicable, since it allows the introduction of a high degree of chemical diversity and because only the interaction with the hot spots is required. ${ }^{7}$

Conversely, when designing a peptide or peptidomimetic PPI modulator, the hot spot identification is likely to evidence the required peptide function that the modulator needs. However, as previously underscored, in order to obtain a correct spatial orientation of the substituents, it is fundamental to assess the conformation that the modulator will assume in the biological environment. This can be achieved through computational methods such as long classical MD or enhanced sampling MD, which allow the exploration of the whole conformational space and, possibly, the identification of the most energetically stable conformation of the molecule under study.

Furthermore, computational studies using different and complementary approaches can help in the generalization of either the structural features required by small molecules ${ }^{77}$ or the secondary structure stabilizing conditions needed by peptides/peptidomimetic ligands. ${ }^{58,72}$

The estimation of some kind of parameter as a measure of the ligand binding affinity is a fundamental step in drug discovery and the application of computational methods at different degree of accuracy and speed can represent a useful tool for this process. These methods can involve the use of scoring function and, therefore, limit the estimation to a single conformation state, or they can be based on the analysis of MD simulations, which provide a statistically meaningful ensemble of conformations for thermodynamic calculations at an acceptable computational cost. Among these latter methods, the most popular are the previously mentioned MMPB/GBSA, the linear interaction energy (LIE), ${ }^{83}$ the thermodynamic integration (TI), ${ }^{84}$ and the free energy perturbation (FEP). ${ }^{85}$ However, because of their good balance between efficiency and accuracy, MMPB/GBSA methods are getting used more and more for the computation of binding energies.

As just evidenced in this section, computational methods can be usefully exploited to target PPIs, although they have to be adapted to those used for classical targets, because of the structural complexity of PPIs.

## 2 PROJECT OVERVIEW

Among all the research topics concerning the modulation of PPIs, my PhD project has been focused on the optimization of computational methods and protocols for the design of modulators of PPIs, with a particular interest on peptide modulators.

It has to be underlined that my work has been mainly methodological and it aimed to provide basic knowledge and computational tools for the design of wellstructured peptides ${ }^{72,86-88}$ and for the prediction of binding energies with a good correlation with experimental data. ${ }^{89,90}$

Therefore, I initially evaluated the ability of some of the modern force fields coupled to different implicit solvent models of reproducing and, thus, predicting the main peptide secondary structure motifs, such as helices, $\beta$-sheets and random coils. ${ }^{88}$ Indeed, as previously underscored, the a priori knowledge of which conformation a peptide designed as PPI modulator will more likely assume in the biological environment is fundamental to verify the correct spatial orientation of the side chains for the interaction with the protein target and to assure the interaction with the target protein interface. ${ }^{58}$ Therefore, I selected and submitted to Replica Exchange Molecular Dynamics (REMD) simulations eight peptides: two helical, three $\beta$-hairpins and three intrinsically disordered peptides (IDPs). ${ }^{88}$

As evidenced in the previous chapter, helical protein-protein interfaces are frequently occurring in nature ${ }^{44,45}$ and different approaches to stabilize the helical secondary structure in synthetic peptides have been developed. ${ }^{58}$ Among these, the insertion of CTAAs in the peptide sequence can lead to peptides inherently stable to proteases and peptidases ${ }^{91}$, and folding into well-ordered helices. ${ }^{58,73,87}$ Furthermore, this approach together with the synthesis of chiral CTAAs (cCTAAs) is of high interest in my research group. ${ }^{73,87,92,93}$ Therefore, taking in account the information gained from the previous study, ${ }^{88}$ I applied theoretical methods to identify some intuitive descriptors that can be applied to predict how a given
cCTAA can affect the peptide folding, as well as to compare different cCTAAs in terms of stabilization efficacy. ${ }^{72}$

Moreover, since the ability of a cCTAA to influence the helical screw sense of a peptide might depend on its $\mathrm{C} \alpha$ stereochemistry, ${ }^{93-96}$ and because in nature the right-handed $(P)$ helix is found more frequently than the left-handed $(M)$ helix, ${ }^{97,98}$ I extended the previous study by investigating the cCTAAs features which are most responsible of the helical screw sense selectivity. ${ }^{86}$

In this context, by collaborating with Prof. Jonathan Clayden at the University of Manchester, I also studied the mechanisms involved in the helical screw sense inversion, whose knowledge can be exploited either for signal transmission in the cellular environment, as aimed by Prof. Clayden's group, ${ }^{99}$ or for a conformationcontrolled modulation of PPIs. ${ }^{100}$

Successively, because many efficient and reliable computational approaches for determining the protein-protein interface and identifying hot spots were already available, ${ }^{28,101}$ I preferred to focus on the development and optimization of a MMGBSA based protocol for the estimation of relative binding energies of PPIs involving complexes providing a good correlation with experimental data. This approach, named Nwat-MMGBSA consists in considering the effect of water on the binding affinity by including a selected number of water molecules (Nwat) which are the closest to the ligand or to selected residues frame by frame during the MD simulation time, as part of the receptor in the MMGBSA analysis. Therefore, I initially applied this approach to the simplest situation, represented by classical protein-ligand systems with known experimental activities. ${ }^{89}$

Once assessed the reliability and validity of the Nwat-MM-GBSA method, I applied it to PPI systems. In detail, I initially performed a methodological investigation on a dataset of hetero-dimeric PPIs with known experimental $\Delta G_{\text {bind }}$. Aiming to identify the most critical variables affecting the correlation of predicted and experimental energies, I tested two different recent AMBER force fields (e.g. ff99SBildn and ff14SB), two implicit solvent models (e.g. GB-OBC(II) and GB-

Neck2) and two explicit solvent models (e.g. TIP3P and TIP4PEW) on 12 ns simulations, which were analyzed through Nwat-MMGBSA at the fourth and at the last ns with different ways to select the protein-protein interface. Consequently, I applied the best protocol to five PPI systems consisting in one of the two interacting proteins inhibited by small molecules or peptidomimetics with known activities.

After a brief chapter summarizing the bases of the computational methods applied throughout the project, each part will be discussed in a dedicated chapter, which will be organized as follows: a) an introduction to the study, aimed to contextualize it within the project and to summarize it; b) a results and discussion session; and c) protocols details.

## 3 METHODS

### 3.1 Molecular Dynamics (MD)

Molecular Dynamics (MD) is a computational method used to study the time dependent behavior of proteins and other macromolecules, providing atomistic information on the fluctuations and conformational changes of biosystems. This method is extensively applied for the investigation of structure, dynamics and thermodynamics of biological molecules and their complexes.

MD method is based on the Newton's second law, also known as equation of motion, expressed as $F_{i}=m_{i} a_{i}$, where $F_{i}$ is the force, usually depending on the temperature, exerted on a particle $i$ having mass $m$ and acceleration $a$, which can also be expressed as $\frac{d^{2} r_{i}}{d t^{2}}$, with $r_{i}$ being the vector of the Cartesian atomic coordinates.

Therefore, from the knowledge of the force acting on each atom it is possible to determine the acceleration of each atom of the simulated system. The integration of the equation of motion on small time intervals through different algorithms yields a trajectory describing how atomic positions, velocities and accelerations vary with time.

The force acting on a particle, $F_{i}$, can also be expressed as the gradient of the potential energy of the system $(V): F_{i}=-\nabla_{i} V$, which, combined with the previous equation, gives $-\frac{d V}{d r_{i}}=m_{i} \frac{d^{2} r_{i}}{d t^{2}}$.

Thus, starting from known initial coordinates, usually derived from experiments such as NMR or X-ray analyses, initial distribution of velocities and forces applied on the system, it is possible to generate the trajectory of the system as a function of the simulation time. Moreover, it allows to relate the derivative of the potential energy to the changes in position as a function of time.

At the light of this, the potential energy function is fundamental for performing MD simulations and, being a function of the atomic positions $r$, takes in account for both the interactions between bonded atoms and those between
atoms which are not directly bound. Commonly, the potential energy function is represented in its basic form as the following Hamiltonian:

$$
\begin{gathered}
V(\vec{R})=\sum_{\text {bonds }} k_{d}\left(d-d_{0}\right)^{2}+\sum_{\text {angle }} k_{\theta}\left(\theta-\theta_{0}\right)^{2}+\sum_{\text {dihedrals }} k_{\varphi}(1+ \\
\cos (n \varphi-\delta))+\sum_{\text {non-bond }}\left\{\epsilon_{i j}\left[\left(\frac{R_{i j}^{m i n}}{R_{i j}}\right)^{12}-\left(\frac{R_{i j}^{m i n}}{R_{i j}}\right)^{6}\right]+\frac{q_{i} q_{j}}{\epsilon_{l} r_{i j}}\right\}
\end{gathered}
$$

which collects the "bonded" energy terms, such as the stretching energy associated to the bond length, the bending energy associated to the angles variations, the torsion energy which derives from the torsion of dihedral angles, and the "nonbonded" energy terms comprising van der Waals and electrostatic forces. ${ }^{102}$

Being a Molecular Mechanics (MM) method, MD relies on the BornOppenheimer (BO) approximation, which allows to consider the potential energy as a function of the nuclear coordinates only. The BO approximation is based on the assumption that, since the nuclei are much heavier than electrons, the atoms can be described as spheres with a certain radius, mass and a point charge, which simulates the effect of merging electrons and nuclei, located in the center of the sphere.

The Hamiltonian and the related parameters, comprising atomic radii and point charges, are contained in a force field. Several force fields are available, differing in parameterization methods and/or in the form of the energy functions. Moreover, within a force field family (i.e. the Amber force field), few differences can also be observed, usually related to torsion angle parameters.

Since MD simulations aim to reproduce what happens in the biological environment, the solvent, usually water, has to be considered during the simulation. This can be done by using either implicit or explicit solvent models. In the former, the solvent is considered as a continuous medium with a certain dielectric constant. In explicit models water molecules are included during the simulation, making the simulation more realistic, although increasing the computational time.

In addition, for the reproduction of the experimental conditions, it is possible to use different thermodynamic ensembles, where the total number of particles ( N ) is kept constant together with a) volume (V) and total energy (E), known as microcanonical ensemble (NVE), b) volume and temperature (T), known as canonical ensemble (NVT) or c) pressure (P) and temperature, known as isothermal-isobaric ensemble (NPT).

However, when dealing with MD simulations, it is important to bear in mind that many approximations are introduced during the calculations, mainly related to the use of the force field and to the solvent model used. Furthermore, the feasible simulation time is only up to nano- or, maximum, microseconds, therefore the simulation of, for example, conformational changes occurring in a millisecond scale still represents a challenge.

### 3.2 Replica Exchange Molecular Dynamics (REMD)

Peptide folding simulations through classical all atoms MD need an extremely long computational time to converge, because simulated peptides tend to get trapped in local energy minima, from which it is hard to escape at the simulation temperature (usually 300 K ).

Therefore, Sugita and Okamoto developed the REMD method, which belongs to the class of enhanced sampling MD. ${ }^{103}$ REMD performs simulations based on essentially known non-Boltzmann probability weight factors, realizing a random walk in the temperature space. This random walk induces a random walk in the energy space, which allows the simulation to escape from local minima energy states.

Concretely, many MD simulations of a system, named replica, are performed at different temperatures starting from the same system coordinates. During the REMD simulation the temperatures are exchanged between the replica (Figure 3.1).


Figure 3.1. REMD simulation method scheme.
The number of replicas and the temperature interval (usually between 200 and 700 K ) are chosen depending on the size of the system. At low temperatures the sampled conformations are stable but unlikely escaping from the local energy minima; conversely, at high temperatures it's easier to escape from these minima, but the sampled geometries are not stable, since classical force-fields are not designed to operate at high temperatures. Therefore, moving a geometry obtained at high temperatures to a simulation at low temperature allows to benefit of both simulation conditions.

Successively, the trajectory at the temperature of interest (around 300 K ) is extracted and analyzed, in order to obtain information about the conformational changes of the system under study.

### 3.3 Potential of mean force (PMF)

For investigating some biological events, such as peptide/protein folding or the conformational changes to which a protein undergoes upon its activation or inactivation, it can be helpful to study how the free energy profile changes as a function of one or more inter- or intramolecular coordinate, such as atom distances or torsion angles. The free energy surface along the defined coordinate is known as PMF (Figure 3.2). ${ }^{104}$


Figure 3.2. From the free energy surface to the free energy as a function of a reaction coordinate.
Therefore, the PMF $\omega(\chi)$ along the coordinate $\chi$ is defined from the average distribution function $\langle\rho(\chi)\rangle$ through this relationship:

$$
\omega(\chi)=\omega\left(\chi^{*}\right)-k_{B} T \ln \left[\frac{\langle\rho(\chi)\rangle}{\left\langle\rho\left(\chi^{*}\right)\right\rangle}\right]
$$

Where $\omega\left(\chi^{*}\right)$ and $\left\langle\rho\left(\chi^{*}\right)\right\rangle$ are arbitrary reference values. $\langle\rho(\chi)\rangle$ is obtained from a Boltzmann weighted average. This quantity cannot be obtained by a classical MD simulation, because of the poor sampling of high energy configurations, but it can be computed from REMD simulations.

### 3.4 QUANTUM THEORY OF ATOM IN MOLECULES (QTAIM)

QTAIM method ${ }^{105}$ has been developed by Richard Bader in the early 1960s and represents a model of molecular and condensed matter electronic systems (i.e. crystals) where atoms and bonds are expressions of the electron density distribution function. In particular, the nucleus acts as a point attractor immersed in a cloud of negative charge, the electronic density $\rho\left(r_{c}\right)$, which describes how the electronic charge is distributed throughout the space. The electronic density is a maximum at the position of each nucleus and decays quickly away from these position (Figure 3.3).


Figure 3.3. The electron density in the plane containing the two carbon and four hydrogen nuclei of the ethene molecule.

However, to extrapolate information about the electronic density it is fundamental to consider the field obtained by following the trajectories traced out by the gradient vectors of the density. The gradient of $\rho\left(r_{c}\right)$ is a vector pointing toward the maximum increase in the density, thus, since the density has a maximum at the position of each nucleus, the traced trajectories terminate at each nucleus. These trajectories allows the definition of the atomic basins, which are the space regions traversed by trajectories and terminating at a given nucleus, as showed in Figure 3.4.

Nuclei correspond to a kind of critical points (CP), where a CP is a point in the space where the first derivative of the density $\left(\nabla \rho\left(r_{c}\right)\right.$ is null. To CPs is associated a set of trajectories starting at infinity and terminating at CP (Figure 3.4), which define an interatomic surface separating the basins of two neighboring atoms. A unique pair of trajectories originates at each CP and terminates, one each, at the neighboring nucleus. This pair defines a line through the space along which the $\rho\left(r_{c}\right)$ is a maximum. This line, called bond path, indicates that an interaction between the two atoms occur. Therefore, the related CP , which is the point with the lowest electronic density along the bond path, is called bond critical point.


Figure 3.4. Trajectories that terminate at the nuclei ( N ), including the bond path and the bond critical point (CP). Each trajectory is arbitrarily terminated at the surface of a small circle centered on the nucleus.

CPs are classified by two values: their rank and their signature. The former is the number of non-zero curvatures of the electron density at the CP , which are
always 3 if the system is at an equilibrium charge distribution state. The latter is the algebraic sum of the signs of the curvatures and it is equal to -3 if the CP is a local maximum (i.e. the nucleus), -1 if it is a bond critical point, because it is a minimum on the plane perpendicular to the bond path and a maximum along it.

The $\rho\left(r_{c}\right)$ at the bond CP defines the strength of the chemical bond, while the sum of the three curvatures of the density at the $\mathrm{CP}\left(\nabla^{2} \rho\left(r_{c}\right)\right)$ is $<0$ if the interaction between the two atoms is covalent, $>0$ if it's electrostatic. A third parameter, called ellipticity $(\varepsilon)$, measures the stability of the interaction, because it indicates the extent to which density is preferentially accumulated in a given plane containing the bond path. If $\varepsilon=0$, the bond is cylindrically symmetrical and stable.

Therefore, QTAIM can be exploited for the characterization of covalent and noncovalent interactions within a molecules in terms of strength $\left(\rho\left(r_{c}\right)\right)$, nature $\left(\nabla^{2} \rho\left(r_{c}\right)\right)$ and stability $(\varepsilon) .{ }^{106}$

### 3.5 Partial Nudged Elastic Band (PNEB)

Many MD based approach for the study of conformational changes occurring along a defined path have been developed, however most of them are computationally expensive and require a prior definition of a reaction coordinate along which biasing the simulation. This represents a limit for systems involving many degrees of freedom.

A possible alternative is to use chain-of-states methods, where two images are used as initial and final seeds, and additional images are generated between them and optimized.

Among these methods, the nudged elastic band (NEB) ${ }^{107,108}$ allows the definition of a minimum energy path of a conformational transition given only initial and the final structures and uses multiple simulations of the system, called images, to map the conformational change. Indeed, these images are pulled into an interpolating path between the two endpoint conformations, then the initial path is optimized, by, for example, simulation annealing, to minimize the energy pathway and the minimum potential energy path is obtained. The images are connected to
their neighbor images by virtual springs, which are needed to force the images to stay at an average separation between their partner images along the path.

In the plain elastic band method spring forces could interfere with the energy of each image, because too rigid spring constants cause an image overestimation of the energy in the saddle points, determining corner cutting and unresolved saddle point structures. Conversely, for weak spring constants, the forces acting on the images are too prominent, thus the images slide down the path back to the minima.

NEB solves this problem by using a tangent vector to the path for decoupling the force to a perpendicular component, described by the force field, and a parallel component, described by the springs, which are only needed to keep the images evenly spaced along the path. Therefore, the force described by the force field is only applied perpendicular to the path tangent and, thus, it is projected out from each image and not along the path between images.

Beyond the endpoint structures, which are not submitted to NEB, additional images can be chosen as seeds for the initial path, but they are not exempt from NEB force calculation.

Recently, a partial nudged elastic band (PNEB) ${ }^{109}$ implementation has been introduced, allowing the NEB method to be applied to a desired subset of the system, whereas the non-NEB part acts as a standard MD simulation. With this implementation NEB can be used in large systems where a local transition is desired, or in explicitly solvated systems.

### 3.6 Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area (MMPB/GBSA)

The drug design process often benefits of computational methods for the prediction of binding energies. ${ }^{110,111}$ Many of these methods are MD-based, because MD provides statistically meaningful conformational ensembles for thermodynamic calculations in an acceptable computational time. Among the MDbased methods, Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area (MMPB/GBSA) ${ }^{112,113}$ is one of the most popular for drug
design/discovery purposes, because of its balance between reliability and computational cost. ${ }^{14}$

MMPBSA and MMGBSA methods combine molecular mechanics (MM) energies, polar and nonpolar solvation contributes, and an entropy term to approximate the binding free energy of a ligand to a receptor. More in detail, with these methods the binding free energy is calculated as reported in eq. 1:

$$
\begin{equation*}
\Delta G_{\text {bind,solv }}^{0}=\Delta G_{\text {bind,vacuum }}^{0}+\Delta G_{\text {solv,complex }}^{0}-\left(\Delta G_{\text {solv,ligand }}^{0}+\Delta G_{\text {solv,receptor }}^{0}\right) \tag{1}
\end{equation*}
$$

Where $\Delta G_{\text {bind,vacuum }}^{0}$ results from the calculation of the average energy of interaction between receptor and ligand and by evaluating the entropic contribute, usually with normal-mode analysis. Conversely, the solvated free energies of complex, receptor and ligand are calculated through the linearized PoissonBoltzmann (PB) equation ${ }^{115}$ or the Generalized Born ( GB$)^{116,117}$ model, as showed by eq. 2. PB or GB equations solutions provide the electrostatic contribute $\left(\Delta G_{e l}\right)$ to the solvation free energy, which is calculated as the sum of $\Delta G_{e l}$ and a nonelectrostatic contribute ( $\Delta G_{\text {nonel }}$ ) considered proportional to the solvent accessible surface area (SA). ${ }^{112}$

In both the approaches, the solvent is treated implicitly and considered as a continuous medium with a certain dielectric constant $\epsilon_{\text {solv }}$, which is 80 for water, and a low dielectric constant $\epsilon_{\text {in }}$ is assigned to the solute (usually $\epsilon_{i n}=1$ for proteins).

$$
\begin{equation*}
G_{\text {solv }, P B(G B)}(X)=\frac{1}{2} \sum_{i, j \in X} q_{i} q_{j} g_{i j}^{P B(G B)} \tag{2}
\end{equation*}
$$

Where X is the complex, the receptor or the ligand, $q_{i}$ and $q_{j}$ are the atomic charges and $g_{i j}^{P B(G B)}$ is the solution of PB (eq. 3) or GB equations (eq. 4).
$\vec{\nabla}[\varepsilon(\vec{r}) \vec{\nabla} \psi(\vec{r})]=-4 \pi \rho(\vec{r})-4 \pi \sum_{i} c_{i}^{\infty} q_{i}^{i o n} \lambda(\vec{r}) \cdot e^{\frac{-i_{i}^{i o n} \psi(\vec{r})}{k_{B} T}}, \varepsilon=80$ and 1

| Variable | Definition |
| :---: | :--- |
| $(\vec{r})$ | Position dependence |
| $\vec{\nabla} \psi$ | Gradient of the electorstatic potential |
| $\rho$ | Solute charge distribution |
| $c_{i}^{\infty}$ | Bulk charge density of ion $q_{i}^{\text {ion }}$ |
| $\lambda$ | Accessibility of position $(\vec{r})$ to the ions in solution |
| $k_{B}$ | Boltzmann constant |
| T | Absolute temperature |

$$
\begin{equation*}
g_{i j}^{G B}=\left(\frac{1}{\varepsilon_{s o l v}}-\frac{1}{\varepsilon_{i n}}\right)\left[r_{i j}^{n}+\alpha_{i} \alpha_{j} \exp \left(-\frac{r_{i j}^{n}}{A \alpha_{i} \alpha_{j}}\right)\right]^{-1 / n} \tag{4}
\end{equation*}
$$

where $A$ and $n$ are constants and $r_{i j}^{n}$ is the distance between atoms $i$ and $j$.
When performing MMPB/GBSA calculations, a fixed number of frames of the explicit solvent MD trajectory of the complex is analyzed in order to obtain the average of the interaction energies between receptor and ligand, taking each free energy component of eq. 1 from the single MD trajectory of the complex.

However, because of the use of an implicit solvent model, the standard MMPB/GBSA approach does not consider the effect on the binding free energy of water molecules present at the binding site or at the protein-protein interface, which can mediate H -bonds between the receptor and the ligand or between the two protein partners, or stabilize the complex. ${ }^{118,119}$

A way to overcome this limit is represented by the application of the NwatMMPB/GBSA approach, described in Chapter 8. ${ }^{89,90,120}$

## Part 1:

## Designing well-structured helical peptides containing chiral $\mathbf{C} \alpha$-tetrasubstituted amino acids

## 4 PROTOCOL OPTIMIZATION FOR PEPTIDE FOLDING PREDICTION

### 4.1 Introduction

As previously evidenced, PPIs occur through the interaction of protein domains with a well-defined secondary structure. Therefore, when designing peptide modulators of PPIs it is important to verify if they fold in the correct conformation. Several efforts has been thus devoted to the design of peptidomimetics ${ }^{121}$ or peptide drugs, ${ }^{122}$ as well as to the development of computational methods for the prediction of the secondary structure of peptides ${ }^{73,93,123-125}$ or mini-proteins. ${ }^{126-129}$ Indeed, we lately assisted to an improvement in computer hardwares ${ }^{130-132}$ and to the development of enhanced sampling methods, ${ }^{103,133,134}$ aiming to overcome the limit represented by the long and CPU intensive simulations needed to extensively sample the conformational space of peptides. Among the enhanced sampling techniques, REMD has been successfully applied for the prediction of folding behavior of many peptides. 73,87,93,103

However, a limit to the accuracy of REMD simulations in predicting peptide secondary structures might be represented by the choice of the molecular mechanics force field. The existing force fields have been mostly derived from quantum mechanics calculations or from experiments and, recently, new force fields were obtained through refinement of old ones in order to improve their accuracy. ${ }^{135,136}$ Therefore, a plethora of force fields differing only in a few parameters associated to specific torsion angles is currently available.

Nevertheless, except for some studies, ${ }^{137-141}$ the comparison of force fields accuracy in predicting peptide folding behavior has been focused on a limited number of test systems. ${ }^{142-152}$ Furthermore, with some exceptions, ${ }^{137,153,154}$ current force fields have been validated by focusing on $\alpha$-helix and $\beta$-hairpin secondary structures, with less attention being paid to intrinsically disordered peptides (IDPs), ${ }^{137,138,148,149,155}$ and principally performing the simulations in explicit solvent. ${ }^{140,142-144,146-149,153,156-158}$ Concerning this latter aspect, REMD simulation
time dramatically increases in explicit solvent conditions, thus a large CPU power is needed when simulating long peptides or a large number of systems. Therefore, in drug discovery the use of an implicit solvent model may be advantageous, as long as the secondary structure prediction accuracy is maintained. ${ }^{159-162}$

Moreover, although challenging, the accurate modelling of disordered states of proteins and peptides is fundamental, since IDPs are involved in important biological processes, such as signaling and regulation, ${ }^{163,164}$ and their conformational flexibility can be crucial in mediating PPIs. ${ }^{165,166}$

At the light of these considerations, we used REMD simulations to test the ability of some AMBER force fields, namely ff96, ${ }^{167}$ ff99SB, ${ }^{141}$ ff99SBildn, ${ }^{136}$ ff99SBildn- $\varphi$, ${ }^{168}$ ff12SB ${ }^{169}$ and ff14SB ${ }^{170}$, and implicit solvation models, namely GB-HCT, ${ }^{171}$ GB-OBC(II) ${ }^{172}$ and GB-Neck2, ${ }^{173}$ to reproduce the folding behavior of 8 peptides. Among these, the QK VEGF modulator $(\mathbf{H} 1)^{174}$ and the Ac-Ala-Aib-Ala-Aib-Ala-NHMe peptide (H2) ${ }^{175}$ are known to be helical; the C-terminus of protein G (B1, PDB code 2GB1), ${ }^{176}$ the trpzip2 trypthophan zipper (B2, PDB code 1LE1) ${ }^{177}$ and the N -terminus of ubiquitin (B3, PDB code 1UBQ) ${ }^{178}$ fold into $\beta$-hairpins, while Polybia-MPII (ID1), ${ }^{179}$ the TRTK-12 CapZ peptide (ID2) ${ }^{180}$ and the C-terminus of p53 (ID3) ${ }^{181,182}$ are IDPs (Table 4.1).

Table 4.1. Peptides considered for the protocol optimization.

| Peptide | Sequence | Secondary <br> Structure | Experimental Data |
| :--- | :--- | :--- | :--- |
| H1 | Ac-KLTWQELYQLKYKGI-NH 2 | Helix | CD (water, 20 $\left.{ }^{\circ} \mathrm{C}, \mathrm{pH} 7.1\right)$ |
| H2 | Ac-Ala-Aib-Ala-Aib-Ala-NHMe | $3_{10}$-Helix | X-ray |
| B1 | GEWTYDDATKTFTVTE | $\beta$-hairpin | NMR $\left(\mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 6.3\right)$ |
| B2 | SWTWENGKWTWK | $\beta$-hairpin | NMR $\left(\mathrm{H}_{2} \mathrm{O} / 8 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 5.5\right)$ |
| B3 | QIFVKTLTGKTITLE | $\beta$-hairpin | X-ray |
| ID1 | INWLKLGKMVIDAL-NH ${ }_{2}$ | IDP | $\mathrm{CD}\left(\right.$ water, $25^{\circ}{ }^{\circ} \mathrm{C}$ |
| ID2 | TRTKIDWNKILS | IDP | NMR $\left(\mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 7.2\right)$ |
| ID3 | Ac-STSRHKKLMTKTE | IDP | NMR $\left(\mathrm{D}_{2} \mathrm{O}, 37^{\circ} \mathrm{C}\right)$ |

In particular, the two latter peptides adopt an $\alpha$-helical secondary structure when bound to S100B protein, while they are IDP in the unbound state, ${ }^{180,181,183}$ thus representing an interesting test for the considered force fields and implicit solvent models. We decided to study only two helical peptides, because modern force fields generally overpopulate the $\alpha$-region, ${ }^{140}$ thus we chose to stress more on $\beta$-hairpin and IDP predictions.

This study was aimed to identify which is the most reliable combination of force field and implicit solvent model for the reproduction of a certain secondary structure and to evaluate if a protocol for the prediction of an unknown secondary structure can be defined.

### 4.2 RESULTS AND DISCUSSION



H2


B1


B2


B3

Figure 4.1. Native structures of peptides H2, B1-B3.
Helical Peptides. As previously underscored, although the latest force fields were specifically developed to provide a better balance between the helical and the other conformations by adding specific torsional parameters, ${ }^{136,141,167,169}$ it has been reported that most modern force fields are still biased toward the helical structure. ${ }^{140}$ Therefore, this observation together with the strong helicity of peptide H1 explain why all the combinations used for the simulations on peptide $\mathbf{H 1}$ led to a helical conformation. Indeed, the principal cluster obtained from the analysis of the REMD simulations had in all cases a helical representative structure and a population (pop\%) higher than 50\% (Figure 4.2). The only exceptions were represented by the combination ff99SBildn- $\varphi /$ GB-HCT, which gave a helical
population of $46.4 \%$ and ff99SBildn- $\varphi /$ GB-Neck2, whose corresponding representative structure is only partially folded into a helix. The best results, in terms of both helicity of the representative structure of the most populated cluster and its pop\%, were obtained for the simulations performed using the combinations ff96/GB-OBC(II), ff99SB/GB-HCT, ff12SB/GB-Neck2 and ff14SB/GB-OBC(II) (Figure 4.2).

These observations were confirmed by the total DSSP average helical content ( $\mathrm{h}_{\text {tot }} \%$, Table 4.2), which were all above $60 \%$, except for the analysis of the ff99SB/GB-HCT trajectory. In this case, the low $\mathrm{h}_{\text {tot }} \%$ (39.9\%) was compensated by the presence of a significant amount of turn-like structures (26.1\%) which are however clustered with helical geometries, thus explaining the high pop\% obtained for the principal cluster. This suggests that the $\mathbf{H 1}$ helix is predicted as less stable by this combination. Indeed, helical H -bonds occupancies are lower than those observed for the other well-performing combinations (Annex 4.A). Moreover, DSSP analysis for ff12SB/GB-OBC(II) also provided a $\mathrm{h}_{\text {tot }} \%$ (67.9\%) as high as that obtained for the ff12SB/GB-Neck2 combination, although the population of the principal cluster was lower. However, the representative structure of the second cluster (Figure 4.3) is still helical at the N -terminus, thus explaining the relatively high $\mathrm{h}_{\text {tot }} \%$ obtained by DSSP.


Figure 4.2. Representative structure and populated of the most population cluster from the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{H 1}$.


Figure 4.3. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{H 1}$.

Furthermore, both cluster and DSSP analyses showed that the REMD simulations with ff96/GBHCT and ff96/GB-Neck2 predicted a significant amount of $\beta$-hairpin (Figure 4.3 and Table 4.2), which is not consistent with experimental findings. ${ }^{174}$

Table 4.2. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide H1. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | 3-10 | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 1.37 | 5.78 | 0.17 | 34.79 | 2.01 | 11.08 | 11.22 | 33.56 |
| ff96/GB-OBC(II) | 0.01 | 0.34 | 0.08 | 63.03 | 0.37 | 6.16 | 2.59 | 27.41 |
| ff96/GB-Neck2 | 0.04 | 8.26 | 0.05 | 40.65 | 0.04 | 6.73 | 4.82 | 39.42 |
| ff99SB/GB-HCT | 0.30 | 0.16 | 7.38 | 32.56 | 0.49 | 26.06 | 6.84 | 26.21 |
| ff99SB/GB-OBC(II) | 0.01 | 0.07 | 6.17 | 38.50 | 0.28 | 20.30 | 6.39 | 28.28 |
| ff99SB/GB-Neck2 | 0.00 | 0.03 | 5.26 | 39.82 | 0.22 | 18.46 | 5.77 | 30.44 |
| ff99SBildn/GB-HCT | 0.03 | 0.13 | 9.89 | 26.55 | 0.33 | 29.76 | 7.34 | 25.97 |
| ff99SBildn/GB-OBC(II) | 0.02 | 0.34 | 9.39 | 26.63 | 0.21 | 26.58 | 7.32 | 29.51 |
| ff99SBildn/GB-Neck2 | 0.01 | 0.09 | 8.46 | 33.84 | 0.20 | 19.64 | 6.74 | 31.00 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.01 | 0.01 | 8.25 | 34.39 | 0.29 | 27.57 | 5.30 | 24.18 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.01 | 0.02 | 7.01 | 40.96 | 0.06 | 21.59 | 5.17 | 25.17 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 1.36 | 0.04 | 7.51 | 33.97 | 0.18 | 22.55 | 5.88 | 28.51 |
| ff12SB/GB-HCT | 0.01 | 0.00 | 4.68 | 52.18 | 0.14 | 17.74 | 2.52 | 22.73 |
| ff12SB/GB-OBC(II) | 0.01 | 0.00 | 1.52 | 66.39 | 0.00 | 12.33 | 1.14 | 18.61 |
| ff12SB/GB-Neck2 | 0.00 | 0.00 | 2.43 | 63.82 | 0.03 | 11.84 | 1.29 | 20.59 |
| ff42SB/GB-HCT | 0.03 | 0.00 | 6.85 | 49.10 | 0.05 | 21.66 | 2.99 | 19.33 |
| ff42SB/GB-OBC(II) | 0.00 | 0.01 | 5.34 | 56.32 | 0.03 | 17.51 | 2.78 | 18.02 |
| ff42SB/GB-Neck2 | 0.00 | 0.02 | 6.08 | 53.42 | 0.03 | 16.87 | 2.50 | 21.08 |

When considering peptide $\mathbf{H 2}$, which is shorter and contains the helix stabilizer $\alpha$-aminoisobutyric acid (Aib), ${ }^{184-186}$ ff96 fails in predicting the helical secondary structure, independently from the implicit solvent model. Indeed, in all cases the representative structures of the two most populated clusters showed a RMSD from the native-like structure (Figure 4.1) of $2.9 \AA$ or more (Figures 4.4 and 4.5). These results were confirmed by both the DSSP and H-bond analyses: the former gave $\mathrm{h}_{\text {tot }} \%<$ $10 \%$ (Table 4.3) and the latter could not detect H-bonds with ff96/GB-Neck2, and only a weakly occupied Aib6 $\rightarrow$ Ala2 H-bond with GB-HCT or GB-OBC(II) (Annex 4.B).

On the other hand, most of the other representative structures of the principal cluster well reproduced the crystallographic structure, although with relatively low pop\% (about 40-50\%; Figure 4.4), except for those resulting from the analysis of ff12SB/GB-OBC(II) and ff14SB/GB-HCT simulations. However, both DSSP and H-bonds analyses showed that ff12SB and ff14SB with any implicit solvent model overestimate the $\alpha$-helical content at the expense of the $3_{10}$-helix, while this happened at lower extent with the ff99SB series combined to GB-HCT and GB-Neck2 (Table 4.3 and Annex 4.B).


Figure 4.4. Representative structure and population of the most populated cluster from the 308.5 K trajectory extracted from REMD simulations of peptide $\mathbf{H 2}$.


Figure 4.5. Representative structure and population of the second cluster from the 308.5 K trajectory extracted from REMD simulations of peptide $\mathbf{H} \mathbf{2}$.

Table 4.3. DSSP analysis of 308 K trajectory extracted from REMD simulations of peptide $\mathbf{H 2}$. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 0.01 | 0.22 | 2.60 | 3.86 | 0.00 | 20.86 | 6.55 | 65.89 |
| ff96/GB-OBC(II) | 0.01 | 0.12 | 2.16 | 6.88 | 0.00 | 18.48 | 6.23 | 66.13 |
| ff96/GB-Neck2 | 0.00 | 0.06 | 0.80 | 0.56 | 0.00 | 11.20 | 7.63 | 79.75 |
| ff99SB/GB-HCT | 0.00 | 0.00 | 32.42 | 6.11 | 0.00 | 38.11 | 2.14 | 21.21 |
| ff99SB/GB-OBC(II) | 0.00 | 0.00 | 33.91 | 5.53 | 0.00 | 37.57 | 2.23 | 20.75 |
| ff99SB/GB-Neck2 | 0.00 | 0.00 | 35.97 | 3.39 | 0.00 | 34.15 | 2.78 | 23.71 |
| ff99SBildn/GB-HCT | 0.00 | 0.00 | 34.20 | 5.27 | 0.00 | 39.10 | 1.86 | 19.57 |
| ff99SBildn/GB-OBC(II) | 0.00 | 0.00 | 36.25 | 6.69 | 0.00 | 34.66 | 2.08 | 20.32 |
| ff99SBildn/GB-Neck2 | 0.00 | 0.01 | 36.88 | 2.28 | 0.00 | 36.31 | 2.47 | 22.06 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.00 | 0.00 | 34.86 | 5.96 | 0.00 | 38.68 | 1.66 | 18.84 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.00 | 0.00 | 36.00 | 6.79 | 0.00 | 38.15 | 1.49 | 17.57 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.00 | 0.00 | 37.25 | 3.34 | 0.00 | 35.04 | 2.11 | 22.27 |
| ff12SB/GB-HCT | 0.00 | 0.00 | 22.87 | 20.85 | 0.00 | 31.52 | 1.08 | 23.68 |
| ff12SB/GB-OBC(II) | 0.00 | 0.00 | 23.63 | 17.68 | 0.00 | 32.79 | 1.26 | 24.64 |
| ff12SB/GB-Neck2 | 0.00 | 0.00 | 27.70 | 8.57 | 0.00 | 32.35 | 1.79 | 29.59 |
| ff42SB/GB-HCT | 0.00 | 0.00 | 21.66 | 18.20 | 0.00 | 33.28 | 1.27 | 25.58 |
| ff42SB/GB-OBC(II) | 0.00 | 0.00 | 24.07 | 20.35 | 0.00 | 31.41 | 1.05 | 23.12 |
| ff42SB/GB-Neck2 | 0.00 | 0.00 | 25.71 | 8.69 | 0.00 | 33.96 | 1.97 | 29.67 |

Therefore, the structure of medium-to-long natural peptides having a native helical geometry is well reproduced by all force field/GB model combinations used. Conversely, short helical peptides containing non natural amino acids are well simulated by using any of the ff99SB/ildn/ildn- $\varphi$ force fields coupled with GB-OBC(II) or GB-Neck2 models, since the above combinations provide a significant amount of native-like conformations and, at the same time, discriminate well between $\alpha$ and $3_{10}$-helix, in line with previously reported results. ${ }^{73,93,187}$
$\boldsymbol{\beta}$-Hairpins Peptides. Because of the helical propensities of modern force fields ${ }^{140,141,188,189}$ and problems in correctly estimating salt bridges given by the implicit solvent models, ${ }^{137,150,151,190,191}$ the prediction of $\beta$-hairpins can be more challenging than that of helices. Therefore, it is not surprising that most of the REMD simulations performed on peptide $\mathbf{B 1}$ failed in predicting the native-like $\beta$-hairpin conformation, ${ }^{176}$ as observed from cluster (Figure 4.6), DSSP (Table 4.4) and H-bond (Annex 4.C) analyses.

In detail, DSSP analysis showed that the best, although far from the ideal, results were obtained with the ff96/GB-Neck2 simulation, with an anti-parallel $\beta$-sheet content of $12.8 \%$ and an irrelevant $\mathrm{h}_{\text {tot }} \%$ (< $1 \%$; Table 4.4). Moreover, none of the H -bonds present in the native-like structure were detected by the H-bond analysis, while those actually found where characterized by low occupancies (Annex 4.C). An RMSD of $3.6 \AA$ from the native conformation was found for the representative structure of the most populated cluster, which is the lowest found among all the simulations of this peptide (Figure 4.6) and lower than that reported in the literature for similar studies. ${ }^{137}$

Acceptable results were obtained for ff96/GB-HCT combination, where the second most populated cluster had a relevant pop\% (39.5\%) and a representative structure with a RMSD from the native-like peptide of $2.7 \AA$ (Figure 4.7). However, DSSP analysis gave an average anti-parallel $\beta$ sheet content of only $9.7 \%$ and a high $\alpha$-helical content (Table 4.4), which is consistent with results from H-bond analysis (Annex 4.C).

All the other force field/GB model combinations led to worse results, favoring the $\alpha / 3_{10}$-helix or disordered conformations. The bias toward the helix conformation was particularly strong for the simulation with ff14SB coupled to any of the GB models (Table 4.4), suggesting that the use of this force field with implicit solvation should be avoided when simulating the folding of $\beta$-hairpin peptides.

Table 4.4. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide B1. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 0.59 | 9.68 | 0.15 | 23.19 | 0.52 | 8.78 | 13.43 | 43.66 |
| ff96/GB-OBC(II) | 0.55 | 0.75 | 0.13 | 25.58 | 0.05 | 7.70 | 7.99 | 57.25 |
| ff96/GB-Neck2 | 0.01 | 12.75 | 0.08 | 0.33 | 0.00 | 10.78 | 10.77 | 65.28 |
| ff99SB/GB-HCT | 0.00 | 0.37 | 12.90 | 15.44 | 0.07 | 25.38 | 13.60 | 32.24 |
| ff99SB/GB-OBC(II) | 0.14 | 4.01 | 11.27 | 12.77 | 0.02 | 19.68 | 12.12 | 40.00 |
| ff99SB/GB-Neck2 | 0.02 | 0.01 | 12.38 | 20.34 | 0.04 | 21.46 | 8.50 | 37.27 |
| ff99SBildn/GB-HCT | 0.02 | 2.31 | 10.57 | 8.43 | 0.05 | 23.67 | 17.00 | 37.95 |
| ff99SBildn/GB-OBC(II) | 0.05 | 0.06 | 8.53 | 10.97 | 0.02 | 21.73 | 12.40 | 46.24 |
| ff99SBildn/GB-Neck2 | 0.06 | 0.18 | 12.48 | 11.08 | 0.02 | 22.64 | 9.73 | 43.82 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.00 | 0.05 | 13.96 | 12.68 | 0.03 | 25.26 | 14.95 | 33.08 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.01 | 0.00 | 13.00 | 13.61 | 0.02 | 20.58 | 11.94 | 40.84 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.00 | 0.13 | 14.16 | 16.07 | 0.03 | 22.04 | 8.75 | 38.83 |
| ff12SB/GB-HCT | 0.02 | 0.23 | 14.34 | 14.00 | 0.08 | 28.84 | 9.33 | 33.15 |
| ff12SB/GB-OBC(II) | 0.00 | 0.04 | 15.33 | 13.67 | 0.09 | 24.09 | 7.98 | 38.80 |
| ff12SB/GB-Neck2 | 0.01 | 0.01 | 17.38 | 15.22 | 0.07 | 22.13 | 8.07 | 37.11 |
| Ff14SB/GB-HCT | 0.00 | 0.01 | 5.13 | 52.67 | 0.01 | 10.97 | 5.28 | 25.92 |
| Ff14SB/GB-OBC(II) | 0.01 | 0.00 | 4.89 | 45.76 | 0.00 | 8.00 | 4.60 | 36.75 |
| Ff14SB/GB-Neck2 | 0.00 | 0.00 | 1.42 | 60.80 | 0.00 | 5.67 | 2.43 | 29.68 |

ff99SBildn

Figure 4.6. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{B 1}$.


Figure 4.7. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide B1

Our results apparently disagree with those obtained by Shell and coworkers, ${ }^{137}$ who found that the ff96/GB-OBC(II) combination was able to reproduce the native structure of B1. However, their REMD simulations were run by using the native structure as the starting conformation and a 10 ns length for each replica, with analyses performed on the last ns. Furthermore, NMR studies in water showed that the hairpin population of B1 was about $40 \%{ }^{176}$ Moreover, it has been reported that continuum solvent models favors non-native B1 structures, since they push the charged side chains to form salt bridges, instead of being fully solvated, thus overwhelming the hydrophobic interactions needed to form the $\beta$-hairpin. ${ }^{137,151}$ In detail, the salt bridge between Lys10 and Asp6 brings the latter residue, which is near to the $\beta$-hairpin turn, in close contact to Lys10, causing the expulsion of Tyr5 and Phe 12 side chains from the hydrophobic core. ${ }^{151}$ An H-bond between Asp6 and Lys10 with a significant occupancy was found in all the simulations except those with GB-Neck2 (Annex 4.C), suggesting that this model allows a better description of ion pairing. However, a force field-dependent effect altering the salt-bridge populations, as already hypothesized, ${ }^{143}$ or introducing a conformational bias toward helices cannot be excluded. Indeed, ff14SB/GB-Neck2 model gave no salt bridges, but still predicted a helical conformation (Table 4.4 and Annex 4.C). We also studied the folding behavior of peptide $\mathbf{B 2}$, which has been proved to be a stable monomeric $\beta$-hairpin by NMR experiments in water ${ }^{177}$. In this case also, most of the force field/GB model combinations failed in predicting the native structure. Indeed, except for ff96 coupled to GB-HCT or GB-OBC(II), the representative structures of the principal cluster (pop\% > 50\%) showed a RMSD from the native structure of about 5 $\AA$ or more (Figure 4.8). These results were confirmed by DSSP and H-bond analyses (Table 4.5 and Annex 4.D), which evidenced the presence of a reasonable amount of average anti-parallel $\beta$-sheet content and a negligible helical content for ff96/GB-HCT or GB-OBC(II), while with GB-Neck2 only disordered conformations were found. For all the other simulations, it can still be noticed a bias toward the helical conformation ( $\mathrm{h}_{\mathrm{tot}} \%>20 \%$ ), with a maximum observed for ff14SB with any GB model (Table 4.5). However, H-bond analysis evidenced $i+3 \rightarrow i$ or $i+4 \rightarrow i \mathrm{H}$-bonds with occupancies $<30 \%$, showing that the preference for the helical secondary structure, although present (Annex 4.D), is less marked for this system compared to $\mathbf{B 1}$, and probably limited to a force field effect. Indeed, no persistent ionic interactions were observed in B2 simulations except those with ff12SB, ff14SB coupled to any GB model and, to a minor extent, the one with ff96/GB-HCT (Annex 4.D), where a salt bridge between Lys8 and Glu5 was sampled. However, while the two former methods predicted a high helical content, the latter ended in an acceptable native-like $\beta$-hairpin conformation.


Figure 4.8. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{B 2}$.


Figure 4.9. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide B2

Table 4.5. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide B2. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 1.96 | 14.08 | 0.12 | 4.00 | 0.22 | 14.42 | 17.44 | 47.76 |
| ff96/GB-OBC(II) | 1.83 | 10.35 | 0.11 | 1.49 | 0.04 | 7.40 | 15.67 | 63.13 |
| ff96/GB-Neck2 | 0.53 | 3.54 | 0.06 | 0.47 | 0.00 | 3.21 | 12.26 | 79.93 |
| ff99SB/GB-HCT | 0.22 | 0.36 | 7.66 | 13.18 | 0.14 | 25.39 | 13.98 | 39.08 |
| ff99SB/GB-OBC(II) | 0.18 | 0.65 | 9.64 | 4.26 | 0.01 | 19.80 | 15.90 | 49.56 |
| ff99SB/GB-Neck2 | 0.44 | 0.40 | 9.80 | 8.13 | 0.01 | 18.52 | 13.60 | 49.11 |
| ff99SBildn/GB-HCT | 0.05 | 0.41 | 8.37 | 15.39 | 0.16 | 25.49 | 12.04 | 38.09 |
| ff99SBildn/GB-OBC(II) | 0.07 | 1.19 | 9.65 | 7.43 | 0.05 | 18.17 | 17.57 | 45.87 |
| ff99SBildn/GB-Neck2 | 0.24 | 1.43 | 10.03 | 6.97 | 0.02 | 19.94 | 12.28 | 49.08 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.06 | 0.43 | 10.95 | 13.90 | 0.13 | 26.89 | 10.97 | 36.68 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.00 | 0.15 | 14.46 | 7.21 | 0.03 | 20.17 | 11.70 | 46.28 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.11 | 0.29 | 13.83 | 9.32 | 0.02 | 20.21 | 11.15 | 45.06 |
| ff12SB/GB-HCT | 0.03 | 0.03 | 0.32 | 13.24 | 15.79 | 0.02 | 24.12 | 46.43 |
| ff12SB/GB-OBC(II) | 0.02 | 0.04 | 14.72 | 7.68 | 0.01 | 20.68 | 8.16 | 48.69 |
| ff12SB/GB-Neck2 | 0.12 | 0.60 | 16.34 | 6.61 | 0.02 | 18.76 | 8.99 | 48.57 |
| ff42SB/GB-HCT | 0.02 | 0.80 | 14.90 | 20.48 | 0.04 | 20.87 | 5.62 | 37.28 |
| ff42SB/GB-OBC(II) | 0.04 | 0.06 | 18.07 | 11.15 | 0.01 | 16.43 | 7.43 | 46.82 |
| ff42SB/GB-Neck2 | 0.01 | 0.03 | 17.01 | 16.87 | 0.01 | 13.03 | 6.30 | 46.75 |

As an additional example of a $\beta$-hairpin, we performed REMD simulations on peptide $\mathbf{B 3}$, which is the N-terminal sequence of ubiquitin. ${ }^{178}$ Consistently with what observed for $\mathbf{B} 2$ and, to a minor extent, B1, the best results were obtained with ff96 force field coupled with GB-HCT, although the other GB models also gave acceptable performances. In detail, cluster analysis performed on the ff96/GB-HCT simulation resulted in a principal cluster with an excellent pop\% (92.7\%) and a representative structure which deviates from the native structure of only 0.95 Á (Figure 4.10). Similar, although slightly worse, results were obtained with ff96 and either GB-OBC(II) or GB-Neck2. Coherently, DSSP analysis showed that the simulations performed with ff96 had an antiparallel $\beta$-sheet content of about $20-30 \%$, with the highest and lowest percentages obtained for GB-HCT and GBOBC(II), respectively, and an irrelevant $\mathrm{h}_{\text {tot }} \%(<2 \%)$ (Table 4.6). H-bond analysis of ff96/GB-HCT and GB-OBC(II) trajectories evidenced the presence of 5 out of the 6 native H -bonds involving the peptide backbone, although with poor occupancies, while none of the native H -bonds was found with GB-Neck2 (Annex 4.E). However, it has to be underscored that helical H-bonds were poorly sampled as well, while some H-bonds, principally involving Leu14 and Phe3 or Lys5 and Ile12, were identified, particularly by using ff96/GB-Neck2 (Annex 4.E). This is indicative of the presence of $\beta$ -hairpin-like conformations with the turn between the two $\beta$-strands being shifted toward the N terminus compared to the native structure (Figure 4.12).


Figure 4.10. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{B 3}$.


Figure 4.11. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide B3.

Contrary to what observed for peptides B1 and B2, ff99SBildn/GB-Neck2 and ff99SB/GB-Neck2 were also able to reasonably predict a native-like conformation for peptide B3. Indeed, the principal cluster ( $\mathrm{pop} \%=38.4 \%$ ) obtained by the former method and the second cluster (pop\% $=42.2 \%$ ) obtained by the latter had a representative structure with rather low RMSDs from the native structure (1.01 and $2.45 \AA \AA$, respectively; Figures 4.10 and 4.11 ). Furthermore, these force field/GB model combinations gave an average antiparallel $\beta$-sheet content of about $20 \%$, although a certain amount of helix was at the same time found ( $\mathrm{h}_{\text {tot }} \%>10 \%$; Table S13), coherently with results from H-bond analysis (Annex 4.E).


Figure 4.12. Representative structure of the top cluster of the 300.37 K ff96/GB-Neck2 trajectory of peptide $\mathbf{B 3}$ (magenta) and native structure of peptide B3 (green).

Table 4.6. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide B3. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 1.01 | 36.86 | 0.04 | 1.98 | 0.30 | 7.59 | 16.73 | 35.49 |
| ff96/GB-OBC(II) | 0.18 | 20.64 | 0.03 | 0.85 | 0.04 | 6.95 | 19.12 | 52.18 |
| ff96/GB-Neck2 | 0.17 | 31.43 | 0.02 | 0.01 | 0.00 | 2.74 | 15.96 | 49.68 |
| ff99SB/GB-HCT | 0.01 | 4.91 | 6.19 | 16.71 | 0.07 | 26.31 | 9.19 | 36.61 |
| ff99SB/GB-OBC(II) | 0.25 | 11.54 | 3.38 | 8.06 | 0.04 | 21.15 | 12.11 | 43.46 |
| ff99SB/GB-Neck2 | 0.04 | 24.79 | 5.76 | 8.41 | 0.07 | 17.34 | 6.49 | 37.09 |
| ff99SBildn/GB-HCT | 0.06 | 0.49 | 8.84 | 15.43 | 0.05 | 27.35 | 9.20 | 38.58 |
| ff99SBildn/GB-OBC(II) | 0.04 | 2.85 | 4.71 | 12.12 | 0.16 | 21.25 | 10.75 | 48.11 |
| ff99SBildn/GB-Neck2 | 0.11 | 20.55 | 6.21 | 6.38 | 0.04 | 16.59 | 8.70 | 41.42 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.01 | 1.71 | 9.79 | 17.70 | 0.01 | 24.64 | 7.65 | 38.49 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.38 | 1.88 | 5.40 | 11.55 | 0.09 | 22.12 | 10.25 | 48.33 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.38 | 9.26 | 10.68 | 12.89 | 0.04 | 17.13 | 8.14 | 41.48 |
| ff12SB/GB-HCT | 0.01 | 0.10 | 11.12 | 19.09 | 0.08 | 20.51 | 9.23 | 39.86 |
| ff12SB/GB-OBC(II) | 0.71 | 1.00 | 11.44 | 13.33 | 0.05 | 21.45 | 9.36 | 42.67 |
| ff12SB/GB-Neck2 | 1.37 | 0.09 | 16.62 | 12.16 | 0.08 | 20.28 | 9.45 | 39.96 |
| ff42SB/GB-HCT | 0.00 | 0.12 | 8.21 | 30.67 | 0.00 | 19.71 | 4.72 | 36.57 |
| ff42SB/GB-OBC(II) | 0.02 | 0.18 | 6.73 | 33.89 | 0.02 | 14.02 | 5.27 | 39.86 |
| ff42SB/GB-Neck2 | 0.04 | 0.01 | 5.23 | 53.78 | 0.00 | 9.64 | 2.56 | 28.73 |

Except for ff99SB/GB-OBC(II), which also behaved fairly, the other combinations showed a preference for the helical conformation, as evidenced by cluster, DSSP and H-bond analyses. This
might be due to the combined effect of the force field biases and salt bridges overestimation by the implicit solvent model, with ff14SB being the most helical and GB-HCT the most salt bridge stabilizer. Indeed, salt bridges between Lys5 or Lys10 and Glu15 were sampled in all simulations performed with GB-HCT, except those based on the ff96 force field (Annex 4.E), thus leading to misfolded conformations (Figure 4.13).


Figure 4.13. Misfolded conformation of peptide B3 extracted from the 300.37 K trajectory performed with ff 14 SB and GB-HCT. The salt bridge is highlighted with the red arrow.

At the light of this, we can conclude that the choice of a proper combination of force field and solvent model for the prediction of $\beta$-hairpins is not trivial and strictly dependent on the system to be simulated. Indeed, ff96 force field always gave the best results, but with different GB models (GBNeck2, GB-HCT or -OBC(II) and GB-HCT for B1, B2 and B3, respectively). Moreover, while ff12SB and ff14SB are clearly not suited for the simulation of $\beta$-hairpin peptides in implicit solvent, ff99SB or ff99SBildn might represent an alternative to ff96, especially if combined with GB-Neck2.

Intrinsically Disordered Peptides. As previously underscored, the discrimination of disordered from well-structured peptide states is of fundamental interest, because of the role of IDPs in biological events. ${ }^{153,154,163-166}$ Moreover, testing the force field/GB model combinations on IDPs allows a better evaluation of their eventual biases toward a particular secondary structure.

Indeed, when considering ID1, ff96/GB-HCT, GB-OBC(II) and, to minor extent, GB-Neck2 combinations favored a $\beta$-hairpin secondary structure. Cluster analysis performed on the corresponding 300.37 K trajectories gave a highly populated top cluster whose representative structure is a $\beta$-hairpinlike geometry (Figure 4.14). Moreover, DSSP analysis showed a high amount of $\beta$-sheet content, only marginally compensated by other secondary structures (Table 4.7) and the radius of gyration profiles showed peaks suggesting the presence of compact structures (Figure 4.16).

Although less intense, the same peaks were observed for ff12SB and ff14SB, which showed a helical bias in this case also. Indeed, the representative structure of the most populated cluster (pop\% > $70 \%$ ) obtained from the analysis of the related trajectories (Figure 4.14) was helical. DSSP analysis also gave levels of helical propensity significantly higher than the average percentages of other structures ( $\mathrm{h}_{\mathrm{tot}} \%>40 \%$; Table 4.7).

Similar observations can be done for ff99SB and ff99SBildn- $\varphi$ coupled with GB-HCT or GBOBC(II), and for ff99SBildn coupled with GB-OBC(II), although $\mathrm{h}_{\text {tot }} \%$ was lower than that observed for ff12SB and ff14SB force fields (Table 4.7) and the representative structure of the main clusters were not perfectly helical (Figure 4.14). Conversely, ff99SB/GB-Neck2 and ff99SBildn/GB-HCT or GB-Neck2 gave a representative structure of the most populated cluster which was helical only at the C-terminus, while a $\beta$-hairpin was obtained as the representative conformation of the second cluster (Figure 4.15), in agreement with the average secondary structure amount obtained by DSSP analysis (Table 4.7). The ff99SBildn- $\varphi / \mathrm{GB}-\mathrm{Neck} 2$ simulation gave similar results, although a geometry with a high helical content was obtained as the representative structure of the principal cluster (Figure 4.14). Moreover, H -bond analysis found H -bonds corresponding to both turn- and $\beta$-sheet-like conformations with moderately low occupancies (Annex 4.F), thus explaining the broader distribution of the radius of gyrations profiles (Figure 4.16).

Therefore, although a trajectory without a detectable amount of defined secondary structures was never obtained for ID1, the ff99SB series of force fields provided an acceptable description of a disordered conformation. In particular, when using the GB-Neck2 model, the trajectory analyses showed a similar amount of helical and $\beta$-hairpin content, which can be interpreted as a warning of structural instability and a suggestion that the system under study is an IDP. Conversely, ff96, ff12SB and ff14SB combined to any GB model not seem to be suited to simulate unstructured peptides.

The analyses performed on ID2 and ID3 trajectories gave similar results, although some differences need to be underlined. First of all, the ff96/GB-OBC(II) combination unexpectedly turned out to have a helical preference, very evident for ID2 (Figures 4.17 and 4.18, Table 4.8) and weak for ID3 (Figures 4.19 and 4.10, Table 4.9).

On the contrary, ff96/GB-Neck2 was the best combination in predicting the disordered conformation of both ID2 and ID3, as showed by DSSP analysis, where no preferential secondary structure was found, by the radius of gyration profile, which had a rather broad distribution (Figure 4.16), and by the absence of persistent H-bonds (Annexes 4.G and 4.H). The ff99SB, ff99SBildn and ff99SBildn- $\varphi$ force fields coupled with GB-Neck2 also represent an acceptable choice when simulating IDPs, although a small bias toward the helical structure was observed.


Figure 4.14. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID1.
ff99SBildn

Figure 4.15. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID1


Figure 4.16. Frequency of radii if gyrations for the 300.37 K trajectories extracted from the REMD simulations of A) ID1, B) ID2, and C) ID3.

Table 4.7. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide ID1. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 0.42 | 43.05 | 0.05 | 1.11 | 0.03 | 11.24 | 13.61 | 30.49 |
| ff96/GB-OBC(II) | 0.67 | 35.28 | 0.06 | 2.46 | 0.30 | 7.65 | 13.76 | 39.82 |
| ff96/GB-Neck2 | 0.73 | 26.89 | 0.10 | 1.45 | 0.01 | 8.42 | 12.12 | 50.28 |
| ff99SB/GB-HCT | 1.18 | 0.63 | 6.34 | 17.99 | 0.20 | 30.36 | 10.25 | 33.04 |
| ff99SB/GB-OBC(II) | 0.12 | 0.17 | 9.77 | 24.33 | 0.07 | 22.87 | 7.63 | 35.04 |
| ff99SB/GB-Neck2 | 0.11 | 10.78 | 8.36 | 16.91 | 0.07 | 20.14 | 7.68 | 35.95 |
| ff99SBildn/GB-HCT | 0.42 | 11.59 | 5.85 | 9.42 | 0.07 | 27.39 | 10.44 | 34.82 |
| ff99SBildn/GB-OBC(II) | 0.68 | 1.93 | 10.04 | 12.02 | 0.09 | 23.67 | 11.10 | 40.46 |
| ff99SBildn/GB-Neck2 | 1.60 | 5.62 | 9.76 | 9.84 | 0.08 | 23.48 | 9.04 | 40.57 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.72 | 1.02 | 9.55 | 13.15 | 0.14 | 30.67 | 10.73 | 34.03 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.52 | 2.27 | 11.39 | 17.04 | 0.03 | 24.15 | 7.99 | 36.61 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.07 | 11.39 | 8.37 | 8.60 | 0.03 | 19.83 | 10.23 | 41.48 |
| ff12SB/GB-HCT | 0.05 | 1.68 | 6.26 | 37.97 | 0.16 | 23.04 | 4.34 | 26.50 |
| ff12SB/GB-OBC(II) | 0.01 | 0.01 | 7.10 | 46.67 | 0.04 | 16.32 | 3.20 | 26.63 |
| ff12SB/GB-Neck2 | 0.01 | 0.09 | 9.65 | 35.31 | 0.05 | 18.42 | 4.99 | 31.47 |
| ff42SB/GB-HCT | 0.05 | 0.37 | 6.97 | 30.77 | 0.20 | 22.70 | 7.09 | 31.86 |
| ff42SB/GB-OBC(II) | 0.00 | 0.01 | 7.33 | 43.28 | 0.06 | 16.63 | 3.96 | 28.72 |
| ff42SB/GB-Neck2 | 0.03 | 0.03 | 10.28 | 37.10 | 0.08 | 16.96 | 4.58 | 30.94 |

Table 4.8. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide ID2. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | 3-10 | Alpha | Pi | Turn | Bend | other |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ff96/GB-HCT | 0.05 | 18.77 | 0.42 | 6.40 | 0.03 | 9.03 | 23.63 | 41.67 |
| ff96/GB-OBC(II) | 0.00 | 0.28 | 0.13 | 43.13 | 0.00 | 2.28 | 4.43 | 49.75 |
| ff96/GB-Neck2 | 0.00 | 1.13 | 0.21 | 0.59 | 0.00 | 1.34 | 11.18 | 85.56 |
| ff99SB/GB-HCT | 0.42 | 1.64 | 8.35 | 7.98 | 0.00 | 23.49 | 17.50 | 40.62 |
| ff99SB/GB-OBC(II) | 0.00 | 0.13 | 4.36 | 25.73 | 0.02 | 19.78 | 8.47 | 41.51 |
| ff99SB/GB-Neck2 | 0.00 | 0.21 | 9.02 | 10.72 | 0.01 | 15.69 | 8.64 | 55.71 |
| ff99SBildn/GB-HCT | 0.03 | 8.29 | 3.77 | 8.42 | 0.02 | 21.19 | 18.27 | 40.02 |
| ff99SBildn/GB-OBC(II) | 0.00 | 0.33 | 5.72 | 5.87 | 0.01 | 12.21 | 20.30 | 55.56 |
| ff99SBildn/GB-Neck2 | 0.53 | 1.47 | 7.07 | 9.99 | 0.04 | 13.51 | 9.14 | 58.26 |
| ff99SBildn- $\varphi /$ GB-HCT | 0.09 | 7.36 | 7.82 | 10.56 | 0.01 | 20.96 | 15.27 | 37.93 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.00 | 0.13 | 7.05 | 14.39 | 0.04 | 14.75 | 15.03 | 48.62 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.15 | 0.12 | 7.13 | 8.49 | 0.04 | 13.05 | 10.92 | 60.11 |
| ff12SB/GB-HCT | 0.00 | 0.89 | 6.02 | 19.99 | 0.01 | 18.04 | 13.08 | 41.97 |
| ff12SB/GB-OBC(II) | 0.04 | 0.02 | 5.66 | 31.32 | 0.01 | 10.20 | 6.70 | 46.04 |
| ff12SB/GB-Neck2 | 0.12 | 0.53 | 9.35 | 23.53 | 0.04 | 14.57 | 5.67 | 46.20 |
| ff42SB/GB-HCT | 0.03 | 0.03 | 7.05 | 22.56 | 0.04 | 24.33 | 9.24 | 36.72 |
| ff42SB/GB-OBC(II) | 0.00 | 0.74 | 4.83 | 28.89 | 0.01 | 15.63 | 5.48 | 44.42 |
| ff42SB/GB-Neck2 | 0.02 | 0.04 | 6.16 | 41.49 | 0.04 | 9.97 | 2.49 | 39.79 |

Table 4.9. DSSP analysis of 300.37 K trajectory extracted from REMD simulations of peptide ID3. Data are reported as averaged percentages.

| Force field/implicit solvent model | Para | Anti | $\mathbf{3 - 1 0}$ | Alpha | Pi | Turn | Bend | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ff96/GB-HCT | 0.36 | 9.18 | 0.23 | 14.26 | 0.58 | 8.58 | 28.11 | 38.72 |
| ff96/GB-OBC(II) | 0.17 | 2.37 | 0.10 | 5.66 | 0.06 | 10.17 | 21.76 | 59.71 |
| ff96/GB-Neck2 | 0.08 | 3.21 | 0.19 | 4.46 | 0.01 | 2.51 | 10.70 | 78.84 |
| ff99SB/GB-HCT | 0.89 | 0.59 | 9.34 | 16.06 | 0.20 | 26.08 | 14.10 | 32.73 |
| ff99SB/GB-OBC(II) | 0.04 | 0.04 | 9.83 | 11.08 | 0.10 | 21.26 | 18.04 | 39.60 |
| ff99SB/GB-Neck2 | 0.16 | 4.17 | 8.70 | 8.06 | 0.07 | 18.74 | 12.26 | 47.84 |
| ff99SBildn/GB-HCT | 1.79 | 0.63 | 7.94 | 19.66 | 0.29 | 26.03 | 12.86 | 30.80 |
| ff99SBildn/GB-OBC(II) | 0.00 | 0.97 | 8.04 | 9.20 | 0.18 | 20.08 | 19.81 | 41.72 |
| ff99SBildn/GB-Neck2 | 0.74 | 1.00 | 10.34 | 4.90 | 0.02 | 19.52 | 14.11 | 49.37 |
| ff99SBildn- $\varphi /$ GB-HCT | 1.74 | 0.36 | 6.69 | 16.67 | 0.17 | 26.01 | 13.26 | 35.08 |
| ff99SBildn- $\varphi /$ GB-OBC(II) | 0.03 | 0.45 | 7.52 | 13.60 | 0.13 | 24.55 | 14.94 | 38.77 |
| ff99SBildn- $\varphi /$ GB-Neck2 | 0.21 | 1.65 | 8.62 | 5.97 | 0.05 | 17.92 | 15.08 | 50.52 |
| ff12SB/GB-HCT | 0.13 | 0.11 | 5.65 | 46.71 | 0.01 | 15.39 | 5.21 | 26.78 |
| ff12SB/GB-OBC(II) | 0.06 | 1.49 | 6.99 | 20.77 | 0.00 | 26.65 | 9.94 | 34.09 |
| ff12SB/GB-Neck2 | 0.30 | 0.05 | 10.21 | 34.93 | 0.01 | 16.73 | 8.95 | 28.82 |
| ff42SB/GB-HCT | 0.06 | 0.81 | 10.36 | 28.24 | 0.02 | 21.32 | 9.65 | 29.54 |
| ff42SB/GB-OBC(II) | 0.00 | 0.04 | 8.30 | 19.53 | 0.09 | 21.02 | 15.05 | 35.98 |
| ff42SB/GB-Neck2 | 0.08 | 0.12 | 12.86 | 29.25 | 0.00 | 17.33 | 8.99 | 31.38 |



Figure 4.17. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID2.


Figure 4.18. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID2.


Figure 4.19. Representative structure and populated of the most populated cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID3.


Figure 4.20. Representative structure and populated of the second cluster from the 300.37 K trajectory extracted from REMD simulations of peptide ID3

### 4.3 Materials and METHODS

REMD simulations. REMD simulations were performed on the selected peptides built with the $t L E a P$ module of AMBER $14^{192}$ starting from both an extended conformation ( $\varphi=\psi=\omega=180^{\circ}$ ) and a misfolded conformation (i.e. $\beta$-hairpin for $\mathbf{H 1}$ and $\mathbf{H 2}$, $\alpha$-helix for $\mathbf{B 1}$-B3 and ID1-ID3), for convergence test. The parameters of Aib were obtained from the RED database. For simulations with GB-HCT, GB-OBC(II) and GB-Neck2 (igb $=1,5$ and 8, respectively) the bondi, mbondi2 and mbondi3 sets of radii were used, respectively. The number of replicas, which were 12 for peptide $\mathbf{H 2}$, 20 for the others, and the temperature ranges were selected through the T-REMD server. Each simulation was run with steps of 50 ns until convergence considering all the mentioned combinations of force field and solvent model. The trajectories at 308.5 K of the REMD simulations on peptide $\mathbf{H} 2$ and at 300.37 K of all the other simulations were extracted and the analysis were performed on 25 ns time intervals to check the convergence. The convergence was checked in terms of frequency of RMSD, DSSP analysis, H-bonds occupancies and conformation of the representative structures of the two most populated clusters.

Cluster analyses were conducted with cpptraj sampling one every two frames using the averagelinkage algorithm and the pairwise mass-weighted Root Mean Square Displacement (RMSD) on backbone heavy atoms as a metric and requesting five clusters.

Secondary structure analyses were performed on the basis of DSSP with cpptraj. H-bonds were computed with VMD 1.9.1 by setting a donor-acceptor distance threshold of $4.0 \AA\{$ and an angle cutoff of $30^{\circ}$ and considering only H -bonds with an occupancy $\geq 5 \%$. Radii of gyration (RoG) of ID1-ID3 were computed on backbone heavy atoms with cpptraj.

## 5 Mechanism of helix secondary structure stabilization by cctans

### 5.1 INTRODUCTION

As previously underlined, the high occurrence of helical motifs at protein-protein interfaces ${ }^{44,45}$ leads to the necessity of stabilizing a defined secondary structure, in this case the helix, when designing peptide-based PPIs modulators. ${ }^{58}$ Indeed, it is fundamental to guarantee the correct orientation of peptide side chains to allow the interaction with the target protein, resulting in high selectivity and specificity. ${ }^{62-64}$ As already mentioned, a way to stabilize the helix peptide conformation is represented by the insertion of CTAAs in the sequence, which can also increase the resistance to proteases and peptidases. ${ }^{91}$ Among the CTAAs, the achiral $\alpha$-aminoisobutyric acid (Aib) together with one of its higher homologues $\mathrm{C} \alpha, \alpha$-diethylglycine and cyclic derivatives (i.e. 1-aminocyclopropane-1carboxylic acid and 1-aminocyclopentane-1-carboxylic acid) are the most studied ${ }^{184-186,193-197}$ and their helical propensity has been attributed to a limitation of the peptide backbone conformational freedom. ${ }^{64,193,198,199}$ However, chiral CTAAs (cCTAAs) have also been synthetized and exploited, ${ }^{93,200-}$ ${ }^{204}$ and configuration at $\mathrm{C} \alpha$ has been observed to affect both the helical stabilization and the screw sense preference. ${ }^{93,205-211}$

Therefore, the choice of a given cCTAA has to be made depending on both the desired features of the cCTAA side chain (i.e. hydrophobicity, acidity, H-bond capability and so on), and the folding preference of the cCTAA. At the light of this, it would be important to have intuitive descriptors that can be used to predict how a cCTAA can drive the peptide folding or for the comparison of different cCTAAs in terms of stabilization efficacy.

With this aim, using REMD simulations and QTAIM analyses, we investigated the conformational behaviour of selected cCTAAs (Figure 5.1) when inserted in the Ac-L-Ala-cCTAA-L-Ala-Aib-L-Ala-NHMe sequence, a model peptide which have been already used in similar studies. ${ }^{92,126}$


Figure 5.1. Selection of cCTAAs used for this study.
We found that the inclusion of cCTAAs in the chosen peptide model limits the backbone freedom thanks to at least two complementary mechanisms: 1) steric hindrance mainly located in the ( $+\mathrm{x},+\mathrm{y},-\mathrm{z}$ ) sector of the right-handed 3D Cartesian space (Figure 5.2), where the $+\mathrm{z} \rightarrow-\mathrm{z}$ axis coincides with the $\mathrm{N} \rightarrow \mathrm{C}$ helical axis and the cCTAA $\mathrm{C} \alpha$ lies on the +y axis, and 2) the presence of additional intramolecular C-H...O=C interactions. ${ }^{72}$


Figure 5.2. 3D Cartesian space used for the representation of helical peptides containing cCTAAs. The ideal right-handed helix of Ac-L-Ala- $(1 R, 2 R, 4 R)$-V-L-Ala-Aib-L-Ala-NHMe is shown.

### 5.2 RESULTS AND DISCUSSION

Cluster, DSSP and H-bond analysis (Tables 5.1 and 5.2 ) performed on the 300 K REMD trajectories of peptides $\mathbf{1 - 1 5}$ show that all the peptides, except $\mathbf{8}$ and $\mathbf{1 2}$, mainly fold into a $P$-helix, as indicated by the average population of helical geometries (poph\%) obtained from the cluster analysis, the DSSP helical content ( $\mathrm{h} \%$ ) and the occupancies of $i+3 \rightarrow i \mathrm{H}$-bonds.

Concerning peptide 8, containing ( $S$ )-I, circular dichroism (DC) in MeOH and NMR experiments in $\mathrm{CD}_{3} \mathrm{CN}$ solution already showed that this peptide do not fold into an ordered secondary structure. ${ }^{93}$ Conversely, peptide 12, containing $(1 R, 2 S, 4 S)$-IV, is the only one having a $M$-helix as the most populated cluster, although a minor amount of $M$-helix is observable also for peptides $\mathbf{1 5}, \mathbf{1}$ and $\mathbf{5}$ $($ cCTAA $=\operatorname{Aib},(R)-\mathbf{I}$ and $(1 S, 2 R, 4 R)-\mathbf{I V}$, respectively).
Table 5.1. Average Helical Population from Cluster Analysis (pop ${ }_{\mathrm{h}} \%$ ) and Average DSSP Helical Content ( $\mathrm{h}_{\%}$ ) Obtained from the REMD Trajectories of Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe Peptides 1-15. ${ }^{\text {a }}$ Differences Between Peptides Containing CTAAs of Opposite Stereochemistry ( $\Delta \mathrm{pop}_{\mathrm{h}} \%$ and $\Delta \mathrm{h} \psi_{\%}$ ) are also reported.

| \# | (R)-c CTAAs $^{\text {b }}$ | $\mathrm{pop}_{\mathrm{h} \%}$ | $\mathrm{h}_{\%}$ | \# | (S) $-c \mathrm{CTAA}^{\text {b }}$ | $\mathrm{pop}_{\mathrm{h} \%}$ | $\mathrm{h}_{\%}$ | $\Delta \mathrm{pop}_{\mathrm{h} \%}$ | $\Delta \mathrm{h}_{\%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (R)-I | $43.2 \pm 3.3$ | $46.7 \pm 1.0$ | 8 | (S)-I | n.a. ${ }^{\text {c }}$ | $23.1 \pm 1.2$ | 0.5 | 23.5 |
| 2 | (R)-II | $85.1 \pm 0.9$ | $85.8 \pm 0.6$ | 9 | (S)-II | $76.6 \pm 3.1$ | $68.1 \pm 1.7$ | 8.5 | 17.7 |
| 3 | $(1 R, 2 R, 4 R)-$ IIIa $^{\text {d }}$ | $73.3 \pm 2.0$ | $80.0 \pm 0.2$ | 10 | $(1 S, 2 S, 4 S)-\mathbf{I I I a}{ }^{\text {d }}$ | $72.2 \pm 1.7$ | $73.6 \pm 1.8$ | 1.1 | 6.4 |
| 4 | $(1 S, 2 R, 4 S)-\mathbf{I I I I b}{ }^{\text {d }}$ | $79.7 \pm 1.5$ | $82.0 \pm 0.7$ | 11 | $(1 R, 2 S, 4 R)-\mathbf{I I I I}{ }^{\text {d }}$ | $90.4 \pm 1.8$ | $90.5 \pm 0.4$ | -20.3 | -8.5 |
| 5 | $(1 S, 2 R, 4 R)$-IV | $61.9 \pm 2.6$ | $56.5 \pm 1.4$ | 12 | (1R,2S,4S)-IV | $30.6 \pm 2.7^{\text {e }}$ | $35.8 \pm 1.1$ | 31.3 | 20.7 |
| 6 | $(1 R, 2 R, 4 R)-\mathbf{V}$ | $82.5 \pm 1.6$ | $82.9 \pm 0.5$ | 13 | $(1 S, 2 S, 4 S)-\mathbf{V}$ | $84.8 \pm 2.1$ | $69.0 \pm 0.8$ | -2.3 | +13.9 |
| 7 | (R)-VI | $83.1 \pm 2.4$ | $84.1 \pm 1.3$ | 14 | (S)-VI | $81.6 \pm 1.8$ | $73.5 \pm 1.1$ | 1.5 | 10.6 |

${ }^{\text {a }}$ The $\operatorname{pop}_{\mathrm{h}} \%$ and $\mathrm{h} \%$ values obtained from the REMD trajectory of the reference Ac-Ala-Aib-Ala-Aib-AlaNHMe achiral peptide 15 are $51.3 \pm 4.9$ and $51.8 \pm 1.2$, respectively. ${ }^{\text {b }}$ The stereochemical descriptor refers to the $\mathrm{C} \alpha$ configuration. ${ }^{\mathrm{c}}$ The
representative geometry of the most populated cluster does not correspond to a helix. ${ }^{\text {d}}$ Experimental IIIa:IIIb ratio $=$ $7: 1 .{ }^{198,201}$ e The representative geometry of the most populated cluster corresponds to a $M$-helix.

Table 5.2. H-bond Analysis of REMD Trajectories of Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe peptides 1-15 (donor: NH ; acceptor: $\mathrm{C}=\mathrm{O}$ ). ${ }^{\mathrm{a}}$

| \# | CTAA | donor | acceptor | occ\% | \# | CTAA | donor | acceptor | occ\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (R)-I | Aib4 | Ala 1 | 39.00 | 8 | (S)-I | Aib4 | Ala | Aib4 |
|  |  | Ala5 | I | 12.94 |  |  | Ala5 | I | Ala5 |
|  |  | Ala5 | Ala1 | 7.11 |  |  |  |  |  |
| 2 | (R)-II | Aib4 | Ala1 | 69.72 | 9 | (S)-II | Aib4 | Ala1 | 62.91 |
|  |  | Ala5 | II | 57.57 |  |  | Ala5 | II | 52.06 |
| 3 | ( $1 R, 2 R, 4 R$ )-IIIa | Aib4 | Ala 1 | 64.15 | 10 | ( $1 S, 2 S, 4 S$ )-IIIa | Aib4 | Ala1 | 60.07 |
|  |  | Ala5 | IIIa | 47.11 |  |  | Ala5 | IIIa | 51.79 |
| 4 | ( $1 S, 2 R, 4 S$-IIIIb | Aib4 | Ala1 | 63.84 | 11 | ( $1 R, 2 S, 4 R$ )-IIIIb | Aib4 | Ala1 | 72.81 |
|  |  | Ala5 | IIIb | 58.91 |  |  | Ala5 | IIIb | 65.69 |
| 5 | ( $1 S, 2 R, 4 R$ )-IV | Aib4 | Ala1 | 41.55 | 12 | (1R,2S,4S)-IV | Aib4 | Ala1 | 31.89 |
|  |  | Ala5 | IV | 25.30 |  |  | Ala5 | IV | 38.40 |
|  |  | Ala5 | Ala 1 | 11.20 |  |  |  |  |  |
| 6 | $(1 R, 2 R, 4 R)-\mathbf{V}$ | Aib4 | Ala 1 | 65.78 | 13 | $(1 S, 2 S, 4 S)-\mathbf{V}$ | Aib4 | Ala1 | 62.08 |
|  |  | Ala5 | V | 55.69 |  |  | Ala5 | V | 60.69 |
| 7 | (R)-VI | Aib4 | Ala1 | 70.17 | 14 | (S)-VI | Aib4 | Ala1 | 72.60 |
|  |  | Ala5 | VI | 60.13 |  |  | Ala5 | VI | 54.16 |

${ }^{\text {a }}$ The reference H-bonds occ\% obtained from the REMD trajectory of the Ac-Ala-Aib-Ala-Aib-AlaNHMe achiral peptide 15 are $4 \rightarrow 145.01 \%, 5 \rightarrow 226.55 \%$ and $5 \rightarrow 16.82 \%$.

Furthermore, from the analyses performed on the 300 K REMD trajectories it can be observed that the cCTAAs with the highest ability of helix stabilization are $(1 R, 2 S, 4 R)$-IIIb, $(R)$-II, $(R)$-VI and $(1 R, 2 R, 4 R)-\mathbf{V}$ which, once included in the peptide model, give pop $\mathrm{h} \%$ and $\mathrm{h} \%$ above $80 \%$.

It has to be underlined that the stereochemistry at $\mathrm{C} \alpha$, or better the spatial orientation of the substituents at $\mathrm{C} \alpha$, influences at different extents the ability of each cCTAA to stabilize the helical conformation and, therefore, in all the examples a "eutomer", i.e. the enantiomer having the highest stabilization effect, and a "distomer", i.e. the enantiomer having the poorest stabilization effect, can be found. Obviously, the behavior as eutomer or distomer depends on the stereochemistry of the other residues in the peptide chain, because L-Ala can affect the peptide conformation. These differences are highlighted by the $\Delta \mathrm{pop} \%$ and $\Delta \mathrm{h} \%$ reported in table 4.1 and are particularly relevant for IV.

At the light of this, the following discussion is focused on the peptides containing the "eutomers" cCTAAs $(R)$-I, $(R)$-II, $(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 R, 4 R)-\mathbf{I V},(1 R, 2 R, 4 R)-\mathbf{V},(R)-\mathbf{V I},(1 R, 2 S, 4 R)-\mathbf{I I I b}$.

Furthermore, simulations of peptide $\mathbf{1 , 5}$ and $\mathbf{1 5}$ (cCTAA $=(R)$-I, $(1 S, 2 R, 4 R)$-IV and Aib, respectively) also sampled $\alpha$-helices, although poorly, as showed by low occupancy $i+4 \rightarrow i \mathrm{H}$-bonds (Table 5.2).

These results were confirmed by 2D-PMF as a function of $\varphi_{1}-\psi_{2}$ and $\varphi_{2}-\psi_{3}$ dihedral pairs (Figures 5.3 and 5.4), directly involving the cCTAA and the cCTAA +1 residues, which show the statistical accessibility of these dihedrals pairs in the REMD trajectory.

In these profiles it can be generally observed the presence of a global minimum corresponding to the $P$-helix, which has wider wells for $2 \mathrm{D}-\operatorname{PMF}\left(\varphi_{2}, \psi_{3}\right)$, and a local one corresponding to the $M$-helix, with $(1 R, 2 R, 4 R)$-V and $(1 R, 2 S, 4 R)$-IIIb being the most selective toward the $P$-helix. Indeed, 2D-PMF profiles of peptides $\mathbf{1}, \mathbf{3}, 5$ and $\mathbf{1 5}$ (cCTAA $=(R)$-I, $(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 R, 4 R)$-IV and Aib, respectively) showed an additional minima corresponding to $\beta$-strands or polyproline helices (Figures 5.3 and 5.4), while peptide $2(\mathrm{cCTAA}=(R)-\mathbf{I I})$ had an additional minimum in $2 \mathrm{D}-\mathrm{PMF}\left(\varphi_{1}, \psi_{2}\right)$ in a region which is not corresponding to any well-defined secondary structure $\left(-130^{\circ} \leq \varphi_{1} \leq-180^{\circ} ;-60^{\circ} \leq\right.$ $\left.\psi_{2} \leq+30^{\circ}\right)$. The $2 \mathrm{D}-\mathrm{PMF}\left(\varphi_{1}, \psi_{2}\right)$ of peptide $7(\mathrm{cCTAA}=(R)-\mathrm{VI})$, on the other hand, only showed the minima corresponding to the $P$ - and $M$-helices, but with an apparently lower $\Delta E$ if compared to peptide 6 and 11 (Figure 5.3).


Figure 5.3. 2D-PMF profiles ( $\mathrm{kcal} / \mathrm{mol}$ ) as a function of $\varphi_{1}-\psi_{2}$ dihedral pair obtained from REMD simulations of peptides 1-3, 5-7, 11 and 15 containing ( $R$ )-I, ( $R$ )-II, $(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 R, 4 R)-\mathbf{I V},(1 R, 2 R, 4 R)-\mathbf{V},(R)-\mathbf{V I},(1 R, 2 S, 4 R)-\mathbf{I I I b}$ and Aib, respectively.


Figure 5.4. 2D-PMF profiles ( $\mathrm{kcal} / \mathrm{mol}$ ) as a function of $\varphi_{2}-\psi_{3}$ dihedral pair obtained from REMD simulations of peptides 1-3, 5-7, 11 and 15 containing ( $R$ )-I, ( $R$ )-II, $(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 R, 4 R)-\mathbf{I V},(1 R, 2 R, 4 R)-\mathbf{V},(R)-\mathbf{V I},(1 R, 2 S, 4 R)$-IIIb and Aib, respectively.


Figure 5.5. PMF profiles ( $\mathrm{kcal} / \mathrm{mol}$ ) obtained from REMD simulations of peptides 1-3, 5-7, 11 and 15 containing ( $R$ )-I, $(R)$-II, $(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 R, 4 R)$-IV, $(1 R, 2 R, 4 R)$-V, $(R)-\mathbf{V I},(1 R, 2 S, 4 R)$-IIIb and Aib, respectively. Dihedrals associated with PMF higher than $6 \mathrm{kcal} / \mathrm{mol}$ were not sampled at the 260-335 K range temperature.


Figure 5.6. PMF profiles descriptors.
A more detailed description of the $\Delta E$ associated to the rotation of single dihedrals (e.g. $\varphi_{1}, \psi_{2}, \varphi_{2}$, $\psi_{3}$ ) is obtained from monodimensional PMF (Figure 5.5). Concerning $\operatorname{PMF}\left(\varphi_{1}\right)$ and $\operatorname{PMF}\left(\varphi_{2}\right)$ profiles, it can be observed that the energy difference between the two helical minima (Figure $5.6, \Delta E_{\mathrm{M}}$ ) is somehow correlated with the $\mathrm{h} \%$ and the pop $\mathrm{p}_{\mathrm{h}}$ (Table 5.1), which are here used as a measure of the helix stabilization ability of the cCTAAs. However, the energy barrier between the minima (Figure $5.6, \Delta E_{\mathrm{M}}{ }^{\ddagger}$ ) is quite high, suggesting that the interconversion from $P$ - to $M$-helix and vice versa is unlikely to occur at the simulation time and temperature. This high $\Delta E_{\mathrm{M}}{ }^{\star}$ is not observed for the $\operatorname{PMF}\left(\psi_{2}\right)$ and $\operatorname{PMF}\left(\psi_{3}\right)$, where both $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ seem to reflect the $\mathrm{h} \%$ and the poph$\%$. Moreover, for peptides containing Aib, $(R)$-I and $(1 S, 2 R, 4 R)$-IV the barrier for the conversion between helix and $\beta$ -
strand can be overcome, suggesting a lower ability in stabilizing the helix secondary structure if compared to other cCTAAs here studied.

In addition, to investigate if the relative helical tendency of cCTAAs is influenced by the presence of Aib in the peptide chain, we also simulated the behavior of Ac-L-Ala2-cCTAA-L-Ala $2-N H M e$ peptide models, where cCTAA $=(R)-\mathbf{I}$ or $(1 R, 2 R, 4 R)-\mathbf{V}$, which are the worst and the best performing cCTAAs, respectively. Table 5.3 shows that both cCTAAs maintain their helical stabilizing ability and, most of all, their hierarchy in terms of helical propensity.

Table 5.3. DSSP Helix Content $\left(\mathrm{h}_{\%}\right)^{\mathrm{a}}$ and H -bond analyses of 100 ns REMD Trajectories of Ac-L-Ala ${ }_{2}$-cCTAA-L-Ala ${ }_{2}$ NHMe Pentapeptides 16-17.

|  |  |  | H-Bond |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\#$ | cCTAA |  |  |  |  |
| $\mathbf{1 6}$ | $(R)$-I | $42.9 \pm 1.4$ | Ala4 | Ala1 | 32.04 |
|  |  |  | Ala5 | Ala2 | 35.85 |
|  |  |  | Ala5 | Ala1 | 7.09 |
| $\mathbf{1 7}$ | $(1 R, 2 R, 4 R)-\mathbf{V}$ | $81.9 \pm 0.4$ | Ala4 | Ala1 | 38.81 |
|  |  |  | Ala5 | Ala2 | 60.32 |
|  |  |  | Ala5 | Ala1 | 5.61 |

[^0]Although these results give valuable insights about the folding preferences of peptides containing cCTAAs, they could not provide an explanation of the mechanisms behind the helix stabilization. It is known that cCTAAs' additional alkyl group at $\mathrm{C} \alpha$ limits the $\varphi_{1}$ conformational freedom, although this cannot explain the differences in the helix stabilizing ability among sterically similar cCTAAs, such as IV and $\mathbf{V}$. The helical conformational preferences of some natural AAs have been suggested to depend on side chain entropic and steric factors, ${ }^{212,213}$ together with the ability to strengthen the helical H -bond network. ${ }^{214-218}$ Consistently, cCTAAs might affect the helical conformation stability by similar mechanisms.

Therefore, for a preliminary investigation of the structure-"activity" relationships of the considered cCTAAs, where the "activity" corresponds to the ability in helical conformation stabilization/induction, we evaluated the role played by steric hindrance through a 3D quantitative structure-property relationship (QSPR) analysis using the PHASE software. ${ }^{219}$ This is a frequently applied medicinal chemistry tool for the derivation of predictive 3D-pharmacophore models, starting from a set of compounds with known activity data. ${ }^{220}$

We preliminary discarded from this analysis peptides 8 and 12, because a $P$-helix conformation was not found by cluster analysis; then the ideal models of $P$-helix conformations of peptides 1-7, 911, and 13-15 have been aligned and submitted to a QSPR analysis using the $\mathrm{h} \%$ values obtained from

DSSP as the "activity" field. The obtained results were visualized with a 3D plot, where blue and red cubes represent the regions where hydrophobic substituents positively or negatively affect the helical content, respectively (Figure 5.7).


Figure 5.7. 3D QSPR plot obtained from PHASE analysis of ideal $P$-helices of peptides 1-7, 9-11, and 13-15. Blue and red cubes correspond to regions where hydrophobic substituents positively and negatively affect the helix content, respectively. Peptides $\mathbf{1}$ (purple), $\mathbf{6}$ (green) and $\mathbf{1 1}$ (orange) are showed as reference.

It can be observed that a positive effect on the helix stabilization is exerted by the presence of hydrophobic substituents in the $(+x,+y, \pm z)$ sectors of the Cartesian space, although this is more evident for the $(+x,+y,-z)$ sector, probably because the considered peptide models have the cCTAA in position 2, thus closer to the N -terminus. Indeed, steric hindrance in this latter sector limits the rotational freedom of $\psi_{2}$, as showed by PMF (Figure 5.5). For example, the best performing cCTAA is $(1 R, 2 S, 4 R)$-IIIb, which has its aryl group in this sector, while its enantiomer has a lower helix stabilizing ability, since its aryl group is located in the $(-\mathrm{x},+\mathrm{y},-\mathrm{z})$ sector.

Furthermore, $(1 R, 2 R, 4 R)$-IIIa, whose side chain points toward the $(-\mathrm{x},+\mathrm{y},+\mathrm{z})$ sector, has both $\mathrm{h} \%$ and pop ${ }_{\mathrm{h}}^{\mathrm{h}}$ lower than those of $(1 R, 2 S, 4 R)$-IIIb, together with reduced $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ in the PMF profiles (Figure 5.5), although its performance is still good. Since the QSPR plot (Figure 5.7) shows that steric hindrance in the $(-x,+y,+z)$ sector has limited effects on the helical stability, the lower helix stabilizing ability of $(1 R, 2 R, 4 R)$-IIIa could be attributed to its reduced steric hindrance in the $(+\mathrm{x},+\mathrm{y}$, $-z)$ sector.

(1R,2S,4R)-Vb

(1R,2S,4R)-HILbwr

(1R,2R,4R)-H1Hawr

(1R,2R,4R)-Vdm

(1R,2S,4R)-IIbmb

(1R,2R,4R)-HIamb


Figure 5.8. Modified cCTAAs.

In order to prove the validity of the results obtained by the preliminary QSPR analysis, we investigated the folding behavior of hypothetical (thus never synthesized) cCTAAs (Figure 5.8), structurally related to the actual cCTAAs studied here (Figure 5.1).

First of all, we evaluated how pop ${ }_{h} \%$ and $\mathrm{h} \%$ were affected by the inclusion in the peptide model of a modified cCTAA, called $(1 R, 2 R, 4 R)$-IIIawr (Figure 5.8), where the aromatic ring of the benzoxanorbornene group of $(1 R, 2 R, 4 R)$-IIIa was deleted. As expected, the poph\% and $\mathrm{h} \%$ for this peptide were equivalent to those of peptide 3 (Tables 5.1 and 5.4). Furthermore, PMF profiles as a function of the considered single dihedrals are comparable, except for a slight difference ( $0.5 \mathrm{kcal} / \mathrm{mol}$ ) in $\Delta E_{\mathrm{M}}$ in $\operatorname{PMF}\left(\varphi_{1}\right)$ and $\operatorname{PMF}\left(\psi_{2}\right)$ (Figure 5.9).

Table 5.4. Average helical population ( pop $_{\mathrm{h} \%}$ ) from cluster analysis, average DSSP helical content ( $\mathrm{h}_{\%}$ ) and H-bonds occupancies ( $\mathrm{occ}_{\%}$ ) obtained from the analysis of the REMD trajectories ( 308 K ) of the Ac-L-Ala-cCTAA-L- Ala-Aib-L-Ala-NHMe peptides containing modified CTAAs.

| cCTAA | poph\% | h\% | H-Bond |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | donor | acceptor | occ\% |
| $(1 R, 2 S, 4 R)-\mathbf{V b}$ | $84.1 \pm 1.7$ | $83.6 \pm 0.2$ | Aib4 | Ala1 | 66.12 |
|  |  |  | Ala5 |  | 58.1 |
| ( $1 R, 2 S, 4 R$ )-IIIbwr | $84.0 \pm 2.4$ | $86.2 \pm 0.6$ | Aib4 | Ala1 | 69.5 |
|  |  |  | Ala5 | cCTAA | 57.3 |
| ( $1 R, 2 R, 4 R$-IIIawr | $71.6 \pm 1.8$ | $79.1 \pm 0.3$ | Aib4 | Ala1 | 63.0 |
|  |  |  | Ala5 | cCTAA | 44.2 |
| ( $1 R, 2 S, 4 R$ )-IIIIbmb | $90.6 \pm 1.5$ | $88.8 \pm 0.4$ | Aib4 | Ala1 | 71.1 |
|  |  |  | Ala5 | cCTAA | 66.0 |
| ( $1 R, 2 R, 4 R$ )-IIIamb | $84.2 \pm 1.3$ | $83.8 \pm 0.3$ | Aib4 | Ala1 | 67.4 |
|  |  |  |  |  | 57.8 |
| (1R,2S,4R)-Vbdm | $91.4 \pm 1.3$ | $90.2 \pm 0.4$ | Aib4 | Ala1 | 71.4 |
|  |  |  | Ala5 | cCTAA | 66.2 |
| $(1 R, 2 R, 4 R)-\mathbf{V d m}$ | $84.5 \pm 2.1$ | $83.5 \pm 0.9$ | Aib4 | Ala1 | 65.9 |
|  |  |  | Ala5 | cCTAA | 58.0 |



Figure 5.9. Comparison of PMF profiles, as a function of $\varphi_{1}, \psi_{2}, \varphi_{2}$ and $\psi_{3}$ dihedrals, of peptides containing $(1 R, 2 R, 4 R)$ IIIa (black) and ( $1 R, 2 R, 4 R$ )-IIIawr (red).


Figure 5.10. Comparison of PMF profiles, as a function of $\varphi_{1}, \psi_{2}, \varphi_{2}$ and $\psi_{3}$ dihedrals, of peptides containing $(1 R, 2 S, 4 R)-$ IIIb (black) and ( $1 R, 2 S, 4 R$ )-IIIbwr (red).

The cCTAA $(1 R, 2 S, 4 R)$-IIIb was similarly modified, obtaining ( $1 R, 2 S, 4 R$ )-IIIbwr (Figure 5.8). This latter residue, once inserted in the peptide model, gave poph\% and $h \%$ only 6 and $4 \%$ lower, respectively, than those obtained for peptide $\mathbf{1 1}$ (Table 5.4). Moreover, their $\operatorname{PMF}\left(\varphi_{1}\right), \operatorname{PMF}\left(\psi_{2}\right)$ and $\operatorname{PMF}\left(\psi_{3}\right)$ only slightly differ in terms of both $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ (Figure 5.10). The differences in helical stabilization ability of these two cCTAAs resulted lower than expected, considering their large
difference in size, but it can be observed that the $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H}$ bridge of $(1 R, 2 S, 4 R)$-IIIbwr is still located in the $(+x,+y,-z)$ sector and the oxo-bridge points toward the $(+x,+y,+z)$ area (Figure $5.11 A$ ).


Figure 5.11. A) Superimposed right-handed $3_{10}$-helices of peptides $\mathbf{3}((1 R, 2 R, 4 R$, )-IIIa; pink) and Ala-( $1 R, 2 S, 4 R)$-IIIbwr-Ala-Aib-Ala (ochre). B) Superimposed right-handed $3_{10}$-helices of peptides $\mathbf{1 1}((1 R, 2 S, 4 R)$-IIIb; orange) and Ala( $1 R, 2 S, 4 R$ )-Vbdm-Ala-Aib-Ala (purple).

Successively, we evaluated the role of the oxo or methylene bridge through the comparison of the folding behaviors of model peptides containing $(1 R, 2 S, 4 R)-\mathbf{V b}$ (Figure 5.8), which is the non-isolated regioisomer of $(1 R, 2 R, 4 R)$-V,${ }^{221}$ and $(1 R, 2 S, 4 R)$-IIIbwr. Only minor differences can be observed in cluster and DSSP analyses ( $\Delta$ pop $_{\mathrm{h}} \%=1.4$ and $\Delta \mathrm{h} \%=2.6$ in favor of $(1 R, 2 S, 4 R)$-IIIbwr) (Table 4.4). Consistently, monodimensional PMF profiles were similar, except for an increased $\Delta E_{\mathrm{M}^{\ddagger}}$ in $\operatorname{PMF}\left(\varphi_{1}\right)$ for $(1 R, 2 S, 4 R)-\mathbf{V b}$ (Figure 5.12), indicating that a $P \rightarrow M$ helix conversion is disfavored.

As a further proof, we replaced the oxygen of the oxo-bridge in $(1 R, 2 S, 4 R)$-IIIb with a methylene group, obtaining ( $1 R, 2 S, 4 R$ )-IIIbmb (Figure 5.8). As expected, we could not observe any significant difference in the cluster, DSSP and PMF analyses (Tables 5.1, 5.4 and Figure 5.13), driving to the conclusion that the oxo-bridge in the III does not play an important role in the helix stabilization.


Figure 5.12. Comparison of PMF profiles, as a function of $\varphi_{1}, \psi_{2}, \varphi_{2}$ and $\psi_{3}$ dihedrals, of peptides containing $(1 R, 2 S, 4 R)-$ IIIbwr (black) and ( $1 R, 2 S, 4 R$ )-Vb (red).


Figure 5.13. Comparison of PMF profiles, as a function of $\varphi_{1}, \psi_{2}, \varphi_{2}$ and $\psi_{3}$ dihedrals, of peptides containing $(1 R, 2 S, 4 R)-$ IIIb (black) and ( $1 R, 2 S, 4 R$ )-IIIbmb (red).

Subsequently, we evaluated if the positive effect on the helix stabilization of the aryl group of the IIIb can be attributed to an electronic effect, due its aromatic nature, or to a simple steric effect. Therefore, we compared the folding behavior of peptide $\mathbf{1 1}$ (cCTAA $=(1 R, 2 S, 4 R)$-IIIb) with that of a model peptide containing the hypothetical cCTAA $(1 R, 2 S, 4 R)$-Vbdm, bearing a methyl group at C5 and C6 (Figure 5.8). Cluster and DSSP analyses showed an improvement of about $7 \%$ in both pop ${ }_{\mathrm{h}} \%$ and $\mathrm{h} \%$ of $(1 R, 2 S, 4 R)$ - Vbdm compared to $(1 R, 2 S, 4 R)-\mathbf{V b}$, with the former having a behavior equivalent to that of $(1 R, 2 S, 4 R)$-IIIb. Furthermore, the PMF profiles of $(1 R, 2 S, 4 R)$-Vbdm and $(1 R, 2 S, 4 R)$-IIIb are closely related, although those of $(1 R, 2 S, 4 R)$-Vbdm show a more limited conformational freedom (Figure 5.14), which can be attributed to the higher steric hindrance parallel to the z axis (Figure 5.11B).

A rather high helical amount, with pop $\mathrm{h}_{\mathrm{h}}$ and $\mathrm{h} \%$ only $5 \%$ lower than those of peptide $\mathbf{1 1}$ (cCTTA $=(1 R, 2 S, 4 R)$-IIIb $)$, was observed for peptide 7, containing $(R)$-VI. From Figure 5.15 A and C it can be noticed that only the saturated ring of the tetrahydrocarbazole moiety of $(R)-\mathbf{V I}$ is located in the $(+\mathrm{x}$, $+y,-z)$ sector, with the remaining part of its side chain lying in the $(-x,+y,-z)$ area. In addition, PMF profiles of peptide 7 reproduce those of peptide 11, although lower $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}} \ddagger$ together with an increased population in the $\beta$-strand region can be observed (Figure 5.14). Consistently, the folding behavior of peptide 4, whose pop $\mathrm{h} \%$ and $\mathrm{h} \%$ are about $10 \%$ lower than those of peptide 11, can be ascribed to the positioning of its benzoxanorbornene core in the $(-x,+y,-z)$ area (Figure 5.15).


Figure 5.14. Comparison of PMF profiles, as a function of $\varphi_{1}, \psi_{2}, \varphi_{2}$ and $\psi_{3}$ dihedrals, of peptides containing $(1 R, 2 S, 4 R)$ IIIb (black), $(1 R, 2 S, 4 R)$ - Vb (red) and ( $1 R, 2 S, 4 R$ )-Vbdm (green).


Figure 5.15. Front (A, B) and top (C, D) views of superimposed right-handed $3_{10}$-helices of peptides $7((R)$-VI; green), 11 $((1 R, 2 S, 4 R)-$, IIIIb; orange $)$ and $4((1 S, 2 R, 4 S)$-IIIb;magenta).

Steric hindrance by itself, however, is not enough to explain why structurally unrelated cCTAAs, such as $(R)$-VI, $(R)-\mathbf{I I}$ and $(1 R, 2 R, 4 R)-\mathbf{V}\left(\mathrm{h}_{\%}=84.1,85.8\right.$, and 82.9 , respectively $)$ behave similarly, and why related cCTAAs, such as $(1 S, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)-\mathbf{V}$ have significantly different stabilizing effects $\left(h_{\%}=56.5\right.$ and 82.9 , respectively $)$.


Figure 5.15. Superimposed right-handed $3_{10}$-helices of peptides $2((R)-\mathbf{I I}$; cyan), $\mathbf{6}((1 R, 2 R, 4 R)$-V; blue) and $7((R)$-VI; green) in the Cartesian space.

Indeed, $(R)$-VI, $(R)$-II and $(1 R, 2 R, 4 R)-\mathbf{V}$ have their bulky groups lying in different regions of the Cartesian space (Figure 5.16), with only ( $R$ )-VI side chain being partially located in the ( $+\mathrm{x},+\mathrm{y},-\mathrm{z}$ ) sector. Conversely, the side chain of $(1 R, 2 R, 4 R)-\mathbf{V}$ is lying in the $(-\mathrm{x},+\mathrm{y},+\mathrm{z})$ sector, which should not affect the helix stabilization, whereas the indane moiety of $(R)$-II is located on the +y axis.

Therefore, other mechanism might be affecting the helix stabilization. Since differences in the H bond networks were found to affect helix stability in natural peptides, ${ }^{214,222}$ we employed QTAIM calculations to evidence and evaluate the differences in H-bonding, considering both classical and weak H-bonds, in the peptides studied here.

For all the peptides, focusing on the $P$-helix conformation, the BCP network comprises the helical $i+3 \rightarrow i \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCPs with $\rho\left(r_{c}\right)$ in the range of classical H -bonds $(0.002-0.022 \mathrm{au}),{ }^{223,224} \mathrm{a}$ positive Laplacian, indicating an electrostatic interaction, and a low $\varepsilon$, proving the stability of H -bonds. Furthermore, $\mathrm{C} \beta-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} i+3 \rightarrow i \mathrm{BCPs}$, observed also in natural peptides, ${ }^{214,222}$ with $\rho\left(r_{c}\right)$ of 0.003 - 0.009 au were detected. In addition, in both helical and extended conformations (Table 5.11), it can be observed the presence of an additional Aib4 $\rightarrow$ Ala3 $\mathrm{C} \beta-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \mathrm{BCP}$ (Figure 4.16) with a $\rho\left(r_{c}\right)=$ $0.011-0.012 \mathrm{au}$, a quite high value for a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction involving a hydrogen bound to a sp ${ }^{3}$ carbon.

Some of the considered peptides, in the $P$-helical conformation, have peculiar BCP networks which can explain well the particular behaviors of $(R)$-II, $(1 R, 2 R, 4 R)$ - $\mathbf{V}$ and $(R)$-VI (Tables $5.5,5.6$ and 5.10). For example, peptide $7(\mathrm{cCTAA}=(R)-\mathrm{VI})$ has only the BCP network typical of helical secondary structures (Table 5.5), with a $\sum \rho\left(r_{c}\right)=0.1002$ au. Conversely, peptide 6 (cCTAA $=$ $(1 R, 2 R, 4 R)-\mathrm{V})$ has an additional intra-residue $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \mathrm{BCP}$ involving the methylene $\mathrm{C} 7-\mathrm{H}$ and the backbone carbonyl group of the cCTAA with a $\rho\left(r_{c}\right)=0.0135 \mathrm{au}$, corresponding to a strong H -bond (Figure 5.17 and Table 5.6).


Figure 5.17. (A) Ball and stick representation and (B) QTAIM molecular graph of the optimized right-handed $3_{10}$-helical conformation of Ac-Ala- $(1 R, 2 R, 4 R)-\mathrm{V}$-Ala-Aib-Ala-NHMe. The red arrow indicates the intra-residue $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$.

This H -bond constrains the $\psi_{2}$ dihedral to a value corresponding to a $P$-helix, thus providing an additional stabilization to the helical secondary structure of peptide 6. This particular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \quad \mathrm{H}-$ bond can also be observed in the X-ray structure of an Ala-Aib pentapeptide containing at position 2 a $\beta$-benzylsulfanylnorbornene cCTAA. ${ }^{87,225}$

In addition, a $\Delta \sum \rho\left(r_{c}\right)=0.0153$ au, which can be compared to the electronic density of a single H-bond, can be observed between peptide $\mathbf{6}$ and $\mathbf{7}$ indicating that the strong helical stabilizing ability of $(1 R, 2 R, 4 R)-\mathbf{V}$ is due to a strengthening of the H -bond network. Indeed, it has been showed that $\Delta \sum \rho\left(r_{c}\right)$ of about 0.0020 au is enough to explain differences in the helical stabilization exerted by natural AAs. ${ }^{226}$

Table 5.5. Types and properties of BCPs for the Ala-( $R$ )-VI-Ala-Aib-Ala peptide 7 in the $P-3_{10}$-helical conformation. All parameters are reported in a.u.

| $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} \text { BCP }$ | $\rho\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\nabla^{2} \rho\left(\mathbf{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { Ala3 } \cdots \mathrm{ACE}$ | $0.0187$ | $-0.0217$ | $-0.0205$ | $0.1000$ | $0.0578$ | $0.0585$ |
| Aib4 $\cdots$ Alal | $0.0198$ | $-0.0233$ | $-0.0219$ | $0.1076$ | $0.0624$ | $0.0639$ |
| $\text { Ala5 } \cdots \text { VI }$ | $0.0196$ | $-0.0229$ | $-0.0217$ | $0.1062$ | $0.0616$ | $0.0553$ |
| $\text { NME } \cdots \mathrm{Ala} 3$ | $0.0217$ | $-0.0264$ | $-0.0248$ | $0.1193$ | $0.0681$ | $0.0645$ |
| $\Sigma \rho\left(r_{c}\right) \text { at } \mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{O}$ | $0.0798$ |  |  |  | $0.2499$ |  |
| $\text { С } \beta-\mathrm{H}^{\cdots} \mathrm{O} \text { ВСР }$ |  |  |  |  |  |  |
| $\text { Ala3 } \cdots \mathrm{ACE}$ | $0.0048$ | $-0.0030$ | $-0.0022$ | $0.0242$ | $0.0190$ | $0.3636$ |
| Aib4 $\cdots$ Ala3 | $0.0113$ | $-0.0097$ | $-0.0058$ | $0.0562$ | $0.0407$ | $0.6724$ |
| $\text { Ala } 5 \cdots \mathrm{VI}$ | $0.0043$ | $-0.0032$ | $-0.0022$ | $0.0227$ | $0.0173$ | $0.4545$ |
| $\Sigma \rho\left(r_{c}\right) \text { at } \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | $0.0204$ |  |  |  | $0.0770$ |  |
| $\Sigma \rho\left(\mathbf{r}_{\mathrm{c}}\right) \text { tot }$ | $0.1002$ |  |  |  | 0.3269 |  |

Table 5.6. Types and properties of BCPs for peptides 5 and $\mathbf{6}$ in the $P-3_{10}$-helical conformation. All the parameters are reported in a.u.

| peptide 5; <br> $(1 S, 2 R, 4 R)-\mathbf{I V}$ |  |  | peptide 6; <br> $(1 R, 2 R, 4 R)-\mathbf{V}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} \mathrm{BCP}$ | $\rho\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\nabla^{2} \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} \mathrm{BCP}$ | $\rho\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\nabla^{2} \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |


| Ala3 $\cdots$ Ac | 0.0176 | 0.0542 | 0.0579 | Ala3 $\cdots \mathrm{Ac}$ | 0.0174 | 0.0536 | 0.0535 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aib4 $\cdots$ Ala 1 | 0.0181 | 0.0562 | 0.0619 | Aib4 $\cdots$ Ala 1 | 0.0191 | 0.0598 | 0.0622 |
| Ala5 $\cdots$ IV | 0.0190 | 0.0593 | 0.0580 | Ala5 $\cdots \mathrm{V}$ | 0.0193 | 0.0602 | 0.0566 |
| NHMe $\cdots$ Ala3 | 0.0191 | 0.0594 | 0.0616 | NHMe $\cdots$ Ala 3 | 0.0195 | 0.0606 | 0.0599 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0738 |  |  |  | 0.0753 |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| Ala3 $\cdots$ Ac | 0.0045 | 0.0178 | 0.3684 | Ala3 $\cdots$ Ac | 0.0045 | 0.0179 | 0.3684 |
| Aib4 $\cdots$ Ala 1 | 0.0055 | 0.0218 | 0.7647 | Aib4 $\cdots$ Ala 1 | 0.0056 | 0.0223 | 0.7222 |
| Aib4 $\cdots$ Ala 3 | 0.0117 | 0.0419 | 0.5373 | Aib4 $\cdots$ Ala3 | 0.0119 | 0.0425 | 0.5000 |
| IV…IV* | 0.0126 | 0.0449 | 0.4868 | $\mathrm{V} \cdots \mathrm{V}^{*}$ | 0.0135 | 0.0476 | 0.3298 |
| Ala5 $\cdots$ IV | 0.0046 | 0.0181 | 0.3600 | Ala5 $\cdots \mathrm{V}$ | 0.0047 | 0.0184 | 0.3077 |
| $\Sigma \rho\left(r_{c}\right)$ at C-H $\cdots$ | 0.0389 |  |  |  | 0.0402 |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ tot | 0.1127 |  |  |  | 0.1155 |  |  |

*The donor group is C5-H.

Differences in the strength of the BCP networks can also explain why $(1 R, 2 R, 4 R)$-IIIa has a worse performance than $(1 R, 2 R, 4 R)-\mathbf{V}$ (Table 5.1), although their side chains occupy the same area of the Cartesian space. Indeed, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCP found in peptide 6 cannot be observed in peptide $\mathbf{3}$ and its $\sum \rho\left(r_{c}\right)$ is 0.0131 au less than that of peptide 6 (Table 5.7). Analogous considerations are valid for the comparison of the behaviors of peptide 6 and that containing the hypotetical cCTAA $(1 R, 2 R, 4 R)$-IIIawr (Tables 5.6 and 5.8).

Table 5.7. Types and properties of BCPs for the Ala- $(1 R, 2 R, 4 R)$-IIIa-Ala-Aib-Ala peptide $\mathbf{3}$ in the $P$ - $3_{10}$-helical conformation. All parameters are reported in a.u.

| N-H..O BCPs | $\rho\left(\mathbf{r a}_{\mathbf{c}}\right)$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ala3 $\cdots$ ACE | 0.0213 | -0.0257 | -0.0242 | 0.1160 | 0.0661 | 0.0620 |
| Aib4 $\cdots$ Ala 1 | 0.0179 | -0.0204 | -0.0192 | 0.0951 | 0.0555 | 0.0625 |
| Ala5 $\cdots$ IIIa | 0.0212 | -0.0254 | -0.0239 | 0.1167 | 0.0674 | 0.0628 |
| NME $\cdots$ Ala3 | 0.0212 | -0.0255 | -0.0240 | 0.1160 | 0.0665 | 0.0625 |
| $\Sigma \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0816 |  |  |  |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ ВСР |  |  |  |  |  |  |
| Ala3 $\cdots$ ACE | 0.0051 | -0.0026 | -0.0017 | 0.0245 | 0.0202 | 0.5294 |
| Aib4 $\cdots$ Ala 3 | 0.0111 | -0.0094 | -0.0056 | 0.0549 | 0.0399 | 0.6786 |
| Ala5 $\cdots$ IIIa | 0.0046 | -0.0034 | -0.0023 | 0.0238 | 0.0181 | 0.4783 |
| $\Sigma \rho\left(r_{c}\right)$ at C-H..O | 0.0208 |  |  |  |  |  |
| $\Sigma \rho\left(r_{c}\right)$ tot | 0.1024 |  |  |  |  |  |

Table 5.8. Types and properties of BCPs for the Ala- $(1 R, 2 R, 4 R)$-IIIawr-Ala-Aib-Ala peptide in the $P-3_{10}$-helical conformation. All parameters are reported in a.u.

| $\mathbf{N}-\mathbf{H} \cdots \mathbf{O B C P s}$ | $\boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\lambda}_{\mathbf{1}}$ | $\boldsymbol{\lambda}_{\mathbf{2}}$ | $\boldsymbol{\lambda}_{\mathbf{3}}$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ala3$\cdots$ ACE | 0.0147 | -0.0147 | -0.0133 | 0.0775 | 0.0495 | 0.1053 |
| Ala5 $\cdots$ Ala1 | 0.0122 | -0.0127 | -0.0119 | 0.0686 | 0.0440 | 0.0672 |
| Ala5 $\cdots$ IIIawr | 0.0030 | -0.0014 | -0.0011 | 0.0152 | 0.0127 | 0.2727 |
| NME $\cdots$ Ala3 | 0.0208 | -0.0250 | -0.0234 | 0.1131 | 0.0647 | 0.0684 |


| Aib4 $\cdots$ ACE | 0.0181 | -0.0205 | -0.0197 | 0.0999 | 0.0597 | 0.0406 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Sigma \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0688 |  |  |  |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathbf{H} \cdots \mathrm{O}$ BCP |  |  |  |  |  |  |
| Ala3 $\cdots$ ACE | 0.0059 | -0.0048 | -0.0040 | 0.0301 | 0.0213 | 0.2000 |
| Aib4 $\cdots$ Ala 1 | 0.0086 | -0.0076 | -0.0072 | 0.0433 | 0.0285 | 0.0556 |
| Aib4 $\cdots$ Ala 3 | 0.0110 | -0.0091 | -0.0051 | 0.0541 | 0.0399 | 0.7843 |
| Ala5 $\cdots$ IIIawr | 0.0025 | -0.0016 | -0.0012 | 0.0119 | 0.0091 | 0.3333 |
| $\Sigma \rho\left(r_{c}\right)$ at C-H..0 | 0.0280 |  |  |  |  |  |
| backbone N $\cdots$ O BCPs |  |  |  |  |  |  |
| Aib4 $\cdots$ Ala 1 | 0.0076 | -0.0047 | -0.0029 | 0.0318 | 0.0242 | 0.6207 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ tot | $\mathbf{0 . 1 0 4 4}$ |  |  |  |  |  |

In addition, the substitution of the oxygen at position 7 of the $(1 R, 2 R, 4 R)$-IIIa benzoxanorbornene core by a methylene group (Figure 5.8) seems not to affect helix stability. Indeed, QTAIM analysis of the $P$-helix conformation of the peptide containing $(1 R, 2 R, 4 R)$-IIIamb, gave a $\sum \rho\left(r_{c}\right)$ equivalent to that of peptide 6 (Tables 5.6 and 5.9) and an intra-residue $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{CBCP}$, involving the cCTAA, with a $\rho\left(r_{c}\right)=0.0137 \mathrm{au}$. Therefore, this cCTAA resulted to be as strong as $(1 R, 2 R, 4 R)-\mathbf{V}$ in stabilizing the helical secondary structure (Tables 5.1 and 5.4).

Table 5.9. Types and properties of BCPs for the Ala- $(1 R, 2 R, 4 R)$-IIIamb-Ala-Aib-Ala peptide in the $P$ - $3_{10}$-helical conformation. All parameters are reported in au.

| N-H..O BCPs | $\rho\left(\mathbf{r c}_{\mathbf{c}}\right)$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ala3 $\cdots$ ACE | 0.0198 | -0.0233 | -0.0220 | 0.1065 | 0.0612 | 0.0591 |
| Aib4 $\cdots$ Ala 1 | 0.0191 | -0.0221 | -0.0208 | 0.1023 | 0.0594 | 0.0625 |
| Ala5 $\cdots$ IIIIamb | 0.0174 | -0.0197 | -0.0186 | 0.0927 | 0.0544 | 0.0591 |
| NME $\cdots$ Ala3 | 0.0200 | -0.0237 | -0.0224 | 0.1084 | 0.0623 | 0.0580 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0763 |  |  |  |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathbf{H} \cdots \mathrm{O}$ BCP |  |  |  |  |  |  |
| Ala3 $\cdots$ ACE | 0.0048 | -0.0028 | -0.0020 | 0.0241 | 0.0193 | 0.4000 |
| Aib4 $\cdots$ Ala 1 | 0.0057 | -0.0033 | -0.0018 | 0.0281 | 0.0230 | 0.8333 |
| Aib4 $\cdots$ Ala 3 | 0.0116 | -0.0101 | -0.0064 | 0.0580 | 0.0415 | 0.5781 |
| IIIamb $\cdots$ IIIamb* | 0.0137 | -0.0128 | -0.0093 | 0.0708 | 0.0487 | 0.3763 |
| Ala5 $\cdots$ ONBmb2 | 0.0045 | -0.0033 | -0.0024 | 0.0234 | 0.0177 | 0.3750 |
| $\Sigma \rho\left(r_{c}\right)$ at C-H..0 | 0.0403 |  |  |  |  |  |
| $\Sigma \rho\left(r_{c}\right)$ tot | 0.1166 |  |  |  |  |  |

*The donor group is $\mathrm{C} 5-\mathrm{H}$.
QTAIM analysis performed on peptide $2(\mathrm{cCTAA}=(R)-\mathbf{I I})$ resulted in a $\sum \rho\left(r_{c}\right)=0.1150$ au and showed a peculiar and strong $\left(\rho\left(r_{c}\right)=0.0110 \mathrm{au}\right) i+1 \rightarrow i \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCP between $\mathrm{C} 7-\mathrm{H}$ of the cCTAA aromatic ring and the carbonyl group of Ala1 (Table 5.10). Therefore, ( $R$ )-II exerts its helical stabilizing effect through the combination of its steric hindrance and this additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \quad \mathrm{H}-$ bond, although neither of the two features are fully satisfied. Indeed, the steric hindrance of this cCTAA is mainly located in the $(+\mathrm{x},+\mathrm{y}, 0)$ sector while the $\rho\left(r_{c}\right)$ of the just described BCP is slightly
lower than that observed for $(1 R, 2 R, 4 R)-\mathbf{V}$. In addition, the $\operatorname{PMF}\left(\varphi_{1}\right)$ and $\operatorname{PMF}\left(\psi_{2}\right)$ profiles of peptides 6 and 7 (cCTAAs $=(1 R, 2 R, 4 R)-\mathbf{V}$ and $(R)-\mathbf{I I}$, respectively) are different, probably because of the ability of $(1 R, 2 R, 4 R)-\mathbf{V}$ to form an intra-cCTAA interaction, while $(R)-\mathrm{II}$ is involved in a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction with Ala1, resulting in a wider conformational freedom of the cCTAA backbone.

Table 5.10. Types and properties of BCPs for the Ala- $(R)$-II-Ala-Aib-Ala peptide 2 in the $P$ - $3_{10}$-helical conformation. All parameters are reported in au.

| N-H..O BCP | $\rho\left(r_{c}\right)$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\nabla^{2} \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ala3 $\cdots$ ACE | 0.0197 | -0.0233 | -0.0219 | 0.1062 | 0.0610 | 0.0639 |
| Aib4 $\cdots$ Ala 1 | 0.0207 | -0.0246 | -0.0232 | 0.1142 | 0.0664 | 0.0603 |
| Ala $5 \cdots$ II | 0.0210 | -0.0251 | -0.0237 | 0.1153 | 0.0665 | 0.0591 |
| NME $\cdots$ Ala3 | 0.0210 | -0.0253 | -0.0239 | 0.1152 | 0.0660 | 0.0586 |
| $\Sigma \rho(\mathrm{rc})$ at $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{O}$ | 0.0824 |  |  |  |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |  |  |  |
| Aib4 $\cdots$ Ala 1 | 0.0052 | -0.0022 | -0.0012 | 0.0245 | 0.0211 | 0.8333 |
| Aib4 $\cdots$ Ala 3 | 0.0114 | -0.0099 | -0.0062 | 0.0569 | 0.0408 | 0.5968 |
| Ala5 $\cdots$ II | 0.0049 | -0.0036 | -0.0027 | 0.0258 | 0.0195 | 0.3333 |
| ( $\mathrm{Cr}_{\text {ring }}-\mathrm{H}$ )II $\cdots$ Ala1 | 0.0111 | -0.0103 | -0.0093 | 0.0588 | 0.0392 | 0.1075 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at C-H$\cdots \mathrm{O}$ | 0.0326 |  |  |  |  |  |
| $\Sigma \rho\left(r_{c}\right)$ tot | 0.1150 |  |  |  |  |  |

The explanation of the differences in the helix stabilizing ability between the structurally related $(1 S, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)-\mathbf{V}$ required the analysis of additional conformations. Indeed, peptide 5 $(\mathrm{cCTAA}=(1 S, 2 R, 4 R)-\mathbf{I V})$ has a pop $\mathrm{h}_{\mathrm{h}}$ and $\mathrm{h}_{\%}$ about $20 \%$ lower than peptide $\mathbf{6}(\mathrm{cCTAA}=(1 R, 2 R, 4 R)$ $\mathbf{V}$ ) and peptide 12, containing the ( $1 R, 2 S, 4 S$ )-IV enantiomer, folds into a $M$-helix, while peptide 13, containing ( $1 S, 2 S, 4 S$ )-V, folds into a $P$-helix (Table 5.1).
$\operatorname{PMF}\left(\varphi_{1}\right)$ and $\operatorname{PMF}\left(\psi_{2}\right)$ profiles of peptide 5 have $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}^{\ddagger}$ (Figure 5.6) of about 1 and 1.5 $\mathrm{kcal} / \mathrm{mol}$ lower than those of peptide $\mathbf{6}$, while $\operatorname{PMF}\left(\varphi_{2}\right)$ and $\operatorname{PMF}\left(\psi_{3}\right)$ profiles of peptide $\mathbf{5}$ show a reduction in both $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ between the minima corresponding to helical conformations and in the $\Delta E^{\ddagger}$ between the helical and the extended conformations (Figure 5.5) and the $\psi_{3}$ is accessible for the whole $\pm 180^{\circ}$ interval.

At the light of this, the lower helix stabilization ability of $(1 S, 2 R, 4 R)$-IV can be ascribed to a reduced stabilization of the $P$-helix and/or to an increased stabilization of the extended conformation, compared to the related $(1 R, 2 R, 4 R)-\mathbf{V}$.

Table 5.11. Types and properties (a.u.) of BCPs for peptides $\mathbf{5}$ and $\mathbf{6}$ in the extended conformation.

| peptide 5; <br> $(1 S, 2 R, 4 R)-\mathrm{IV}$ |  |  | peptide 6; <br> $(1 R, 2 R, 4 R)-\mathrm{V}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCPs | $\boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ | $\mathbf{N}-\mathbf{H} \cdots \mathbf{O} \mathbf{B C P s}$ | $\boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| Ala1 $\cdots$ Ala1 | 0.0215 | 0.0914 | 0.9231 | Ala1 $\cdots$ Ala1 | 0.0215 | 0.0912 | 0.8992 |
| Ala3 $\cdots$ Ala3 | 0.0226 | 0.0928 | 0.7113 | Ala3 $\cdots$ Ala3 | 0.0221 | 0.0918 | 0.7879 |
| Aib4 $\cdots$ Aib4 | 0.0273 | 0.1047 | 0.3115 | Aib4 $\cdots$ Aib4 | 0.0276 | 0.0788 | 0.3012 |
| Ala5 $\cdots$ Ala5 | 0.0225 | 0.0921 | 0.6993 | Ala5 $\cdots$ Ala5 | 0.0223 | 0.0919 | 0.7299 |


| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0939 |  |  | 0.0935 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C-H..O BCPs |  |  |  | C-H..O BCPs |  |  |  |
| IV ( $\mathrm{C}_{\alpha}$ ) $\cdots$ Ala1 | 0.0173 | 0.0588 | 0.1548 | V ( $\mathrm{C}_{\alpha}$ ) $\cdots$ Ala1 | 0.0198 | 0.0655 | 0.0950 |
| IV (C5) $\cdots$ Ala | 0.0092 | 0.0331 | 0.1905 |  |  |  |  |
| Aib4( $\mathrm{C}_{\boldsymbol{\beta}}$ ) $\cdots$ Ala3 | 0.0119 | 0.0421 | 0.3210 | Aib4 $\left(\mathrm{C}_{\beta}\right) \cdots \mathrm{Ala3}$ | 0.0122 | 0.0430 | 0.2727 |
| Aib4( $\mathrm{C}_{\boldsymbol{\beta}}$ ) $\cdots$ Ala4 | 0.0121 | 0.0426 | 0.3059 | Aib4 $\left(\mathrm{C}_{\beta}\right) \cdots \mathrm{Ala4}$ | 0.0116 | 0.0411 | 0.3377 |
| $\boldsymbol{\Sigma} \boldsymbol{\rho}\left(\mathbf{r}_{\mathrm{c}}\right)$ at C-H $\cdots \mathrm{O}$ | 0.0505 |  |  |  | 0.0436 |  |  |
| $\Sigma \rho\left(r_{c}\right)$ tot | 0.1444 |  |  |  | 0.1371 |  |  |

QTAIM analyses on the $P$-helix of peptides 5 and 6 resulted in qualitatively similar BCPs (Table 5.6), however the BCP network of the latter peptide turned out to be of about 0.0030 au stronger than that of peptide 5 , which has been already considered significant to explain the different helix stabilization propensities of natural AAs). ${ }^{214}$ On the other hand, QTAIM analyses performed on the extended conformations of the same peptides (Table 5.11) showed a $\Delta \sum \rho\left(r_{c}\right)=0.0073$ au in favor of peptide 5 , because its BCP network is characterized by the presence of an additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction between $\mathrm{C} 5-\mathrm{H}$ and Ala1, which is lacking in the extended conformation of peptide 6 (Figure 5.18). Consequently, the extended conformation of peptide 5 is relatively more stable than that of peptide 6 .


Figure 5.18. QTAIM molecular graph of the optimized extended conformation of Ac-Ala- $(1 S, 2 R, 4 R)$-IV-Ala-Aib-AlaNHMe (A) and Ac-Ala-( $1 R, 2 R, 4 R$ )-V-Ala-Aib-Ala-NHMe (B). The red arrow indicates the additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ observed for the norbornane CTAA $-(1 S, 2 R, 4 R)-\mathbf{I V}$.

It has to be underlined that, although the $\sum \rho\left(r_{c}\right)$ are higher for the extended conformations than for the $P$-helices, the BCPs of the extended structures have also higher $\varepsilon$, indicating a lower stability of
these interactions if compared to those of the helical conformations and a preference for the helix in both cases.

QTAIM analysis can also explain why $(1 R, 2 S, 4 S)$-IV stabilizes the $M$-helix, while $(1 S, 2 S, 4 S)$-V, like its enantiomer, stabilizes the $P$-helix. ${ }^{123}$ Indeed, peptide 12 (cCTAA $=(1 R, 2 S, 4 S)$-IV) has a $\Delta \sum \rho\left(r_{c}\right)$ between $M$ - and $P$-helix of 0.0035 au in favor of the $M$-helix (Table 4.12). Moreover, the $M$ helix conformation has a strong BCP network, although the number of BCP is lower than that of the $P$ helix. On the contrary, peptide $\mathbf{1 3}$ (cCTAA $=(1 S, 2 S, 4 S)-\mathbf{V}) \mathrm{BCP}$ network indicates that the $P$-helix is favored of 0.0059 au compared to the $M$-helix (Table 5.13).

Table 5.12. Types and properties of BCPs for the Ala-(1R,2S,4S)-IV-Ala-Aib-Ala peptide $\mathbf{1 2}$ in the $P$ - and $M$ - $3_{10}$-helical conformation. All parameters are reported in au.

| peptide 12, $P$-helix |  |  |  | peptide 12, M-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H...O BCP | $\rho\left(\mathrm{r}_{\mathrm{c}}\right.$ ) | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\boldsymbol{\varepsilon}$ | N-H...O BCP | $\rho\left(\mathbf{r c}_{\text {c }}\right.$ | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |
| Ala3 $\cdots$ ACE | 0.0200 | 0.0621 | 0.0580 | Ala3 $\cdots$ ACE | 0.0231 | 0.0736 | 0.0672 |
| Aib4 $\cdots$ Ala 1 | 0.0179 | 0.0551 | 0.0628 | Aib4 $\cdots$ Alal | 0.0179 | 0.0558 | 0.0567 |
| Ala $5 \cdots$ IV | 0.0191 | 0.0598 | 0.0622 | Ala $5 \cdots$ IV | 0.0223 | 0.0715 | 0.0664 |
| NME $\cdots$ Ala3 | 0.0207 | 0.0647 | 0.0601 | NME $\cdots$ Ala3 | 0.0227 | 0.0726 | 0.0646 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0777 |  |  | $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0860 |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathrm{C}_{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| Ala3 $\cdots$ ACE | 0.0050 | 0.0197 | 0.3636 | Aib4 $\cdots$ Ala3 | 0.0109 | 0.0395 | 0.9362 |
| Aib4 $\cdots$ Ala 1 | 0.0054 | 0.0213 | 0.8125 | IV…IV* | 0.0128 | 0.0453 | 0.4557 |
| Aib4 $\cdots$ Ala3 | 0.0120 | 0.0428 | 0.4930 | Ala5 $\cdots$ Aib4 | 0.0107 | 0.0389 | 0.8958 |
| IV $\cdots$ IV* | 0.0123 | 0.0435 | 0.1875 |  |  |  |  |
| Ala5 $\cdots$ IV | 0.0045 | 0.0177 | 0.3750 |  |  |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at C-H..0 | 0.0392 |  |  | $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at C-H..0 | 0.0344 |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ tot | 0.1169 |  |  | $\Sigma \rho\left(r_{c}\right)$ tot | 0.1204 |  |  |

*The donor group is $\mathrm{C} 5-\mathrm{H}$, the acceptor is $\mathrm{C}=\mathrm{O}$
Table 5.13. Types and properties of BCPs for the Ala-( $1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S})-\mathrm{V}$-Ala-Aib-Ala peptide $\mathbf{1 3}$ in the $P$ - and $M-3_{10}$-helical conformation. All parameters are reported in au.

| Peptide 13, $P$-helix |  |  |  | Peptide 13, $M$-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H..OO BCP | $\rho\left(\mathrm{r}_{\mathrm{c}}\right.$ ) | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ | N-H...O BCP | $\rho\left(\mathrm{r}_{\mathrm{c}}\right.$ ) | $\nabla^{2} \boldsymbol{\rho}\left(\mathrm{r}_{\mathrm{c}}\right)$ | $\varepsilon$ |
| Ala3 $\cdots$ ACE | 0.0197 | 0.0610 | 0.0594 | Ala3 $\cdots$ ACE | 0.0225 | 0.0715 | 0.0615 |
| Aib4 $\cdots$ Ala 1 | 0.0189 | 0.0587 | 0.0580 | Aib4 $\cdots$ Ala | 0.0193 | 0.0603 | 0.0610 |
| Ala5 $\cdots$ V | 0.0181 | 0.0562 | 0.0564 | Ala5 $\cdots$ V | 0.0220 | 0.0702 | 0.0677 |
| NME $\cdots$ Ala3 | 0.0207 | 0.0646 | 0.0598 | NME $\cdots$ Ala3 | 0.0229 | 0.0735 | 0.0639 |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0774 |  |  | $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0867 |  |  |
| $\mathrm{C}_{\boldsymbol{\beta}}-\mathbf{H} \cdots \mathrm{O}$ ВСР |  |  |  | $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| Ala3 $\cdots$ ACE | 0.0050 | 0.0196 | 0.3478 | $\mathrm{V} \cdots \mathrm{V}^{*}$ | 0.0140 | 0.0489 | 0.3069 |
| Aib4 $\cdots$ Ala 1 | 0.0054 | 0.0217 | 0.8125 | Ala5 $\cdots$ Aib4 | 0.0107 | 0.0388 | 0.8958 |
| Aib4 $\cdots$ Ala 3 | 0.0121 | 0.0432 | 0.5000 |  |  |  |  |
| $\mathrm{V} \cdots{ }^{\text {V }}$ | 0.0129 | 0.0436 | 0.1818 |  |  |  |  |
| Ala5 $\cdots$ V | 0.0045 | 0.0178 | 0.3200 |  |  |  |  |


| $\Sigma \rho\left(r_{c}\right)$ at C-H $\cdots$ | 0.0399 | $\Sigma \rho\left(r_{c}\right)$ at C-H $\cdots$ | 0.0247 |
| :---: | :---: | :---: | :---: |
| $\Sigma \rho\left(r_{c}\right)$ tot | 0.1173 | $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ tot | 0.1114 |

*The donor group is $\mathrm{C} 5-\mathrm{H}$.

Summarizing, two complementary mechanisms can contribute to the helix stabilization by reducing the backbone conformational freedom: the first depends on the steric hindrance exerted by the cCTAA in an area parallel to the peptide helix axis and downstream of the cCTAA itself, whereas the second consists in the strengthening of the helical H -bond network thanks to peculiar $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions. Therefore, this knowledge can be exploited to design peptides folding into stable helices, although the choice has to be accompanied by the knowledge of the structural requirements for the cCTAA side chain.

### 5.3 Materials and Methods

REMD simulations. CTAAs were designed using MOE, ${ }^{227}$ capped respectively with an acetyl (Ac) and a NHMe group at the N- and C-termini and submitted to a "Low Mode" conformational search (MMFF94x force field, Born solvation, iteration limit $=40000$, MM iteration limit $=2500$, rejection limit $=500$ ). The two lowest energy conformations having $\varphi$ and $\psi$ dihedrals matching a right- or a left-handed helix $\left(\varphi= \pm 60^{\circ}, \psi= \pm 45^{\circ}\right)$ were selected to derive partial charges with the R.E.D.IV software. ${ }^{228}$ Each geometry was optimized at the HF/6-31G(d) level and two different spatial orientations were used to derive orientation- and conformation-independent RESP-A1 charges. Charge restraints of $-0.4157,0.2719,0.5973$ and -0.5679 were imposed to the backbone nitrogen, hydrogen, carbonyl carbon and oxygen, respectively, as observed for standard AAs in the AMBER ff99SB force field. ${ }^{141}$

REMD simulations were carried out on each Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe peptide by starting from an extended conformation ( $\psi=\varphi=\omega=180^{\circ}$ ). 12 replicas were run at temperatures from 260.00 to 658.94 K , using the ff99SB/GB-OBC(II) ${ }^{172}$ force field and solvent model combination with a simulation time of 250 ns per replica, for a total of $3 \mu \mathrm{~s}$ of simulation for each peptide. REMD simulations were conducted with the pmemd module of the Amber12 suite. The trajectories were extracted at 308.53 K , unless stated otherwise. The simulation convergence was assessed on the basis of cluster analyses performed at $50-100,100-150,150-200$ and $200-250 \mathrm{~ns}$ time intervals. We considered a simulation converged when the standard deviation of the main cluster population $\left(\sigma_{\mathrm{pop} \%}\right)$, averaged with respect to the different intervals, was below $5 \%$. Cluster analyses were performed with ptraj by using the average-linkage algorithm and by sampling one every four frames. ${ }^{192}$ The pairwise mass-weighted root mean squared displacement (RMSD) on C $\alpha$ was used as a metric and a total of five clusters were requested on the basis of pseudo-F statistics and SSR/SST ratio. ${ }^{229}$ Secondary structure analyses were performed by $\operatorname{DSSP}^{230}$ on the $50-250 \mathrm{~ns}$ trajectories every $\Delta \mathrm{t}=50 \mathrm{~ns}$, coherently with cluster analyses, using the ptraj "secstruct" command. H-bonds were analyzed with

VMD 1.9.1 $1^{231}$ over the whole 250 ns trajectory, with a donor-acceptor distance threshold of $4.0 \AA$ and an angle cutoff of $30^{\circ}$. Only H-bonds with an occupancy ( $\mathrm{occ} \%$ ) greater than $5 \%$ were considered.

Mono and bidimensional (2D) Potentials of Mean Force (PMF) were obtained with Amber software coupled with the Weighted Histogram Analysis Method (WHAM) and WHAM-2d, ${ }^{232}$ respectively. PMF were calculated over the 250 ns trajectory by setting a histogram limit of $\pm 180^{\circ}, 100$ bins and a tolerance of 0.01 . Selected dihedrals $(\varphi 1, \varphi 2, \psi 2$ and $\psi 3$, accordingly to Figure 4.2) were obtained from the REMD trajectories at 260, 283, 308 and 335 K .

QTAIM calculations. Selected geometries were fully optimized with Gaussian $09^{233}$ at the MPWB95/6-31+G(d,p) level, ${ }^{234}$ a method that had proved reliable in previous studies from our group, ${ }^{235}$ with the CPCM solvation model for water. ${ }^{236}$ Vibrational analyses were performed at the same level to confirm optimized geometries as a minimum (no imaginary frequencies observed) (Annex 5.A). QTAIM calculations were performed with AIM2000 on the obtained wave functions. ${ }^{237}$ The maximum number of Newton iterations and the step-size were set to 400 and 0.5 , respectively, while other parameters were left as default. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and backbone $\mathrm{N} \cdots \mathrm{O}$ BCPs were analyzed and $\rho\left(r_{c}\right)$, the sign of the Laplacian, and ellipticity $(\varepsilon)$ were used to characterize the BCP network in terms of strength, type and stability of each BCP. BCPs with $\varepsilon>1$ were considered as unstable and consequently discarded.

## 6 Origin of Helix screw sense selectivity by cCTAAS in Aib-BaSEd PEPTIDES

### 6.1 INTRODUCTION

It has just been underlined that enantiomers of cCTAAs can differently affect the stabilization of the helical secondary structure. These differences can be poor, as in the case of $(1 R, 2 R, 4 R)$-IIIa and its enantiomer ( $1 S, 2 S, 4 S$ )-IIIa (Table 5.1), or dramatic, as observed for the ( $1 S, 2 R, 4 R$ )-IV and $(1 R, 2 S, 4 S)$-IV enantiomers, where the former stabilizes the $P$-helix and the latter the $M$-helix in the (L)-Ala-Aib pentapeptide model.

The knowledge of the mentioned different behaviors can be exploited for the design of peptides with a desired handedness. Indeed, in some cases it has been observed that the inclusion of even one chiral $\alpha$-AA can be sufficient to favor one screw sense in an otherwise achiral peptide. ${ }^{94,207,209,210,238}$

In literature several examples are reported where helices containing cCTAAs with a $R$ configuration at $\mathrm{C} \alpha$ have a $P$-conformation, whereas cCTAAs with $S$ configuration at $\mathrm{C} \alpha$ stabilize $M$ helices, ${ }^{93,175,211,239,240}$ although some exceptions have been found. ${ }^{241-244}$

Therefore, it is important to clarify the rationale behind the screw sense selectivity, defined as the capability to preferentially stabilize a $P$ - or a $M$-helix in a peptide. Thus, the same methods used for the investigation on helix stabilization (e.g. REMD simulations, PMF and QTAIM analysis) have been applied to study the helical screw sense selectivity following the inclusion of selected cCTAAs (Figure 6.1 ) in Ac-Aib $2_{2}$-cCTAA-Aib ${ }_{2}$-NHMe peptide models. This dataset does not include $\mathbf{I}$, because it turned out to be a poor helical stabilizer, while other cCTAAs with a norbornane core substituted at C 3 (e.g. VII and VIII) have been considered, because of the peculiarities observed for IV and $\mathbf{V}$ in the previous study. ${ }^{72}$


II


IIIa


IIIb


IV

v

vI


VIla


VIIb


VIIIa


VIIIb

Figure 6.1. Selected cCTAAs used for the investigation of helical screw sense selectivity.
Our investigation was focused on the enantiomers found to be selective for the $P$-helix, because this screw sense is the most frequently observed in nature. ${ }^{97,98}$

We found that the helical screw sense selectivity toward the $P$-helix is enhanced by cCTAA steric hindrance in the $(+x,+y,-z)$ and $(-x,+y,+z)$ sectors of a right-handed 3D-Cartesian space (Figure 6.2), where the $P$-helix has the same position as in the previous study: the $+\mathrm{z} \rightarrow-\mathrm{z}$ axis correspond to the N $\rightarrow \mathrm{C}$ helical axis and the $\mathrm{C} \alpha$ of the cCTAA lies on the +y axis $(0,+y, 0)$. Analogous considerations are valid for the $M$-helical screw sense selectivity, with the cCTAA $C \alpha$ lying on the $(0,-y, 0)$ semiaxis.


Figure 6.2. Representative geometry of the most populated cluster obtained from the analysis of the 308 K REMD trajectory of Ac-Aib $2-(1 R, 2 R, 4 R)-$ IIIa-Aib $_{2}-$ NHMe included in the 3D-Cartesian space used for the description.

Moreover, additional intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and backbone $\mathrm{N} \cdots \mathrm{O}$ interactions, ${ }^{72,214,222}$ together with an overall stabilization or destabilization of noncovalent interactions within a defined conformer, can affect the helical screw sense selectivity exerted by cCTAAs. Taking the cue from the helical excess (h.e.) evaluated from NMR studies in fast and slow exchange régimes, ${ }^{245}$ the percentage h.e. was here evaluated as the ratio ( $\mathrm{P} \%-\mathrm{M} \%) /(\mathrm{P} \%+\mathrm{M} \%)$, where $\mathrm{P} \%$ and $\mathrm{M} \%$ are the $P$ - and the $M$ helical populations from cluster analysis of REMD simulations. In this way, a quantitative comparison of the screw sense preferences of the selected peptides was provided. ${ }^{86}$

In the following discussion, all the considered peptides are identified by an Arabic number preceded by $R$ or $S$ according to the C $\alpha$ cCTAA stereochemistry. All the cCTAAs are indicated with their full stereochemical notation followed by the cCTAA name as showed in Figure 6.1.

### 6.2 ReSULTS AND DISCUSSION

Table 6.1. Average $P$-helical ( $\mathrm{P} \%$ ) and $M$-helical (M\%) populations ${ }^{\text {a }}$, average global helical content ( $\mathrm{H} \%$ ) and helical excess (h.e., \%) obtained from cluster analyses of the 308 K REMD trajectories of Ac-Aib ${ }_{2}$-cCTAA-Aib ${ }_{2}$-NHMe peptides with a preference for the $P$-helix $(R-1, R-2, S-3, R-4, R-5, S-6, R-7, R-8, S-9, S-10)$ and $11^{\text {b }}$.

| \# | cCTAA $^{\text {c }}$ | $\mathbf{P \%} \pm \mathbf{S D}$ | $\mathbf{M \%} \pm \mathbf{S D}$ | $\mathbf{H \%} \pm \mathbf{S D}$ | h.e. $\pm$ SD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R-1 | (R)-II | $59.3 \pm 1.3$ | $27.5 \pm 0.8$ | $86.8 \pm 1.5$ | $36.6 \pm 1.9$ |
| R-2 | $(1 R, 2 R, 4 R)-$ IIIa $^{\text {d }}$ | $88.7 \pm 1.2$ | $1.2 \pm 0.4$ | $89.9 \pm 1.3$ | $97.3 \pm 2.0$ |
| S-3 | $(1 R, 2 S, 4 R)-\mathbf{I I I b}^{\text {d }}$ | $81.0 \pm 2.1$ | $13.7 \pm 2.9$ | $94.7 \pm 3.6$ | $71.1 \pm 3.8$ |
| R-4 | ( $1 S, 2 R, 4 R$ )-IV | $83.2 \pm 0.9$ | $4.7 \pm 0.3$ | $87.9 \pm 0.9$ | $89.3 \pm 1.4$ |
| R-5 | (1R,2R,4R)-V | $76.6 \pm 3.0$ | $12.8 \pm 2.4$ | $89.4 \pm 3.8$ | $71.4 \pm 5.3$ |
| S-6 | (S)-VI | $76.7 \pm 3.1$ | $15.2 \pm 3.3$ | $91.9 \pm 4.5$ | $66.9 \pm 4.9$ |
| R-7 | ( $1 S, 2 R, 3 S, 4 R)$-VIIa | $60.1 \pm 2.6$ | n.a | $60.1 \pm 2.6$ | $100.0 \pm 6.1$ |


| $\boldsymbol{R} \mathbf{- 8}$ | $(1 S, 2 R, 3 R, 4 R)$-VIIb | $78.4 \pm 2.0$ | $9.9 \pm 1.4$ | $83.3 \pm 2.4$ | $77.6 \pm 3.5$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{S - 9}$ | $(1 S, 2 S, 3 S, 4 R)$-VIIIa | $45.8 \pm 3.1$ | $0.4 \pm 0.2$ | $46.2 \pm 3.1$ | $98.3 \pm 6.7$ |
| $\boldsymbol{S - 1 0}$ | $(1 S, 2 S, 3 R, 4 R)$-VIIIb | $85.2 \pm 0.9$ | $3.7 \pm 0.7$ | $88.9 \pm 1.1$ | $91.7 \pm 1.3$ |

[^1]Table 6.2. Average $P$-helical ( $\mathrm{P} \%$ ) and $M$-helical ( $\mathrm{M} \%$ ) populations ${ }^{\text {a }}$, average global helical content ( $\mathrm{H} \%$ ) and helical excess (h.e., \%) obtained from cluster analyses of the 308 K REMD trajectories of Ac-Aib ${ }_{2}$-cCTAA-Aib ${ }_{2}$-NHMe peptides with a preference for the $M$-helix ( $S$-1, $S$-2, $R-\mathbf{3}, S-4, S-5, R-6, S-7, S-8, R-9, R-10)$.

| \# | CTAAs ${ }^{\text {b }}$ | $\mathbf{P \%} \pm \mathbf{S D}$ | M\% $\pm$ SD | H\% $\pm$ SD | h.e. \% $\pm$ SD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S-1 | (S)-II | $27.0 \pm 1.6$ | $60.2 \pm 2.1$ | $87.2 \pm 2.6$ | $-38.1 \pm 3.0$ |
| $S-2$ | $(1 S, 2 S, 4 S)-\mathbf{I I I T}{ }^{\text {d }}$ | $1.2 \pm 0.2$ | $87.0 \pm 2.0$ | $88.2 \pm 2.0$ | $-97.3 \pm 2.3$ |
| R-3 | $(1 S, 2 R, 4 S)-\mathbf{I I I I}{ }^{\text {d }}$ | $13.5 \pm 1.1$ | $81.7 \pm 1.9$ | $95.2 \pm 2.2$ | $-71.6 \pm 2.8$ |
| S-4 | ( $1 R, 2 S, 4 S$ )-IV | $5.3 \pm 0.7$ | $80.7 \pm 1.1$ | $86.0 \pm 1.3$ | $-87.7 \pm 1.5$ |
| $S-5$ | $(1 S, 2 S, 4 S)-\mathbf{V}$ | $12.1 \pm 1.6$ | $76.5 \pm 1.7$ | $88.6 \pm 2.3$ | $-72.7 \pm 2.6$ |
| R-6 | (R)-VI | $15.9 \pm 3.4$ | $75.8 \pm 3.6$ | $91.7 \pm 5.0$ | $-65.3 \pm 6.4$ |
| S-7 | ( $1 R, 2 S, 3 R, 4 S$ )-VIIa | n.a | $59.3 \pm 1.2$ | $59.3 \pm 1.2$ | $-100.0 \pm 2.0$ |
| S-8 | ( $1 R, 2 S, 3 S, 4 S$-VIIb | $12.8 \pm 2.3$ | $75.9 \pm 1.5$ | $88.7 \pm 2.7$ | $-71.1 \pm 3.1$ |
| R-9 | ( $1 R, 2 R, 3 R, 4 S$ )-VIIIa | $0.2 \pm 0.06$ | $41.4 \pm 2.0$ | $41.6 \pm 2.0$ | $-99.0 \pm 6.8$ |
| R-10 | ( $1 R, 2 R, 3 S, 4 S$ )-VIIIb | $3.2 \pm 0.6$ | $86.0 \pm 1.6$ | $89.2 \pm 1.7$ | $-92.8 \pm 2.6$ |

${ }^{\mathrm{a}}$ Averaged with respect to the $50-100,100-150.150-200,200-250 \mathrm{~ns}$ time intervals. ${ }^{\mathrm{b}}$ The stereochemical descriptors


Cluster analysis of the 308 K REMD trajectories showed in all cases the presence of both $P$ - and $M-3_{10}$-helices (Tables 6.1 and 6.2), except for peptides $\boldsymbol{R} \mathbf{- 7}$ and $\boldsymbol{S} \mathbf{- 7}$ (cCTAA $=(1 S, 2 R, 3 S, 4 R)$-VIIa and ( $1 R, 2 S, 3 R, 4 S$ )-VIIa, respectively), and $\boldsymbol{R} \mathbf{- 9}$ and $\boldsymbol{S} \mathbf{- 9}$ (cCTAA $=(1 R, 2 R, 3 R, 4 S)$-VIIIa and ( $1 S, 2 S, 3 S, 4 R$ )-VIIIa, respectively). Only the $P$-conformation was significantly sampled for $\boldsymbol{R}$ - $\mathbf{7}$ and $\boldsymbol{S}$ 9 and only the $M$-helix was observed for $\boldsymbol{S} \mathbf{- 7}$ and $\boldsymbol{R}-\mathbf{9}$. This uncommon behavior resulted in a complete selectivity for one of the two helical screw senses (h.e. ~ 100\%), but P\% of peptides $\boldsymbol{R} \mathbf{- 7}$ and $\boldsymbol{S}$-9 and M\% of peptides $\boldsymbol{S}-\mathbf{7}$ and $\boldsymbol{R}-\mathbf{9}$ were quite low if compared to those observed for the other peptides, a poor total helical amount ( $\mathrm{H} \%$ ) was obtained (Tables 6.1 and 6.2 ). For the other peptides, $\mathrm{H} \%$ was greater than $80 \%$, confirming the good-to-excellent helical stabilizing properties of cCTAAs. ${ }^{72}$

For peptides reported in Table 6.1 (e.g. $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}, \boldsymbol{S} \mathbf{- 3}, \boldsymbol{R} \mathbf{- 4}, \boldsymbol{R} \mathbf{- 5}, \boldsymbol{S}-\mathbf{6}, \boldsymbol{R} \mathbf{- 7}, \boldsymbol{R} \mathbf{- 8}, \boldsymbol{S} \mathbf{- 9}, \boldsymbol{S} \mathbf{- 1 0}$ ) the representative structure of the most populated cluster was a $P$-helix, whereas, as expected, their stereoisomers (e.g. $\boldsymbol{S - 1 , S - 2 , R - 3 , S - 4 , S - 5 , R - 6 , S - 7 , S - 8 , R - 9 , R - 1 0}$; Table 6.2) had the opposite behavior. It is obvious that screw sense preference and $\mathrm{C} \alpha$ stereochemistry are somehow related, however the obtained data do not indicate any correlation between the absolute configuration of $\mathrm{C} \alpha$ and screw sense preference. Although, it has to be noted that opposite configurations, attributed on the
basis of a variation in formal Cahn - Ingold - Prelog priorities, do not always reflect a change in the spatial orientation of the physicochemical properties of $\mathrm{C} \alpha$ substituents. Thus, for example, peptides $\boldsymbol{R}$-7 and $\boldsymbol{S}$-9 have similar screw sense preferences but opposite $\mathrm{C} \alpha$ configurations. However, it can be observed that the norbornane cores of the two cCTAAs are perfectly superimposable, and the same is valid for $\boldsymbol{R - 8}$ and $\boldsymbol{S - 1 0}$.

Therefore, focusing on $P$-helix inducers, except for peptides $\boldsymbol{R} \mathbf{- 7}$ and $S-9$, whose particular behavior has already been introduced, cluster analyses indicate that peptides $\boldsymbol{R} \mathbf{- 2}, S \mathbf{- 1 0}$, and $\boldsymbol{R} \mathbf{- 4}$ $($ cCTAAs $=(1 R, 2 R, 4 R)$-IIIa, $(1 S, 2 S, 3 R, 4 R)-\mathbf{V I I I b}$, and $(1 S, 2 R, 4 R)$-IV, respectively) are the most selective toward the $P$-helix (h.e. $=97.3 \pm 2.0,91.7 \pm 1.3$, and $89.3 \pm 1.4 \%$, respectively). Conversely, the lowest selectivity was observed for peptide $\boldsymbol{R} \mathbf{- 1}$ (h.e. $=36.6 \pm 1.9 \%$ ), containing $(R)$-II, which, however, was a good helix stabilizer (Table 5.1), ${ }^{72}$ suggesting that screw sense selectivity and helix stabilization exerted by cCTAAs might follow different mechanisms. As happened in the previous study, the structurally related cCTAAs $(1 S, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)$-V showed highly different helical screw sense preferences, whose causes will be clarified in the following discussion.

2D-PMF as a function of $\varphi_{2}-\psi_{3}$ and $\varphi_{3}-\psi_{4}$ dihedrals pairs (Figures 6.3 and 6.4), which involve the cCTAA and cCTAA +1 residues, confirmed the results of cluster analysis and show the effect of the presence of the cCTAA on both the upstream and downstream dihedrals. In these profiles, it can be always observed the presence of a global and a local minimum. In most of the cases, the former corresponds to the $P$-helix, while the latter corresponds to the $M$-helix. As expected, the 2D-PMF profiles of the Aib pentamer (peptide 11) presented 2 isoenergetic minima, whereas a low $\Delta E_{\mathrm{M}}$ (the energy difference between the minima, Figure 5.6) was observed for peptide $\boldsymbol{R} \mathbf{- 1}$ in both the profiles, and only in $\operatorname{PMF}\left(\varphi_{3}-\psi_{4}\right)$ profiles for peptides $\boldsymbol{R} \mathbf{- 7}$ and $\boldsymbol{S}$-9. On the other side, $\operatorname{PMF}\left(\varphi_{3}-\psi_{4}\right)$ profiles of these two peptides have the highest energy $M$-helix minimum with the narrowest well among those analyzed, and an additional minimum corresponding to a $\gamma$-turn $\left(\varphi=+75^{\circ}, \psi=-64^{\circ}\right)^{247}$ is observable. These results are consistent with the absence, for peptides $\boldsymbol{R} \mathbf{- 7}$ and $\boldsymbol{S} \mathbf{- 9}$, of a significant $M$-helix population which is replaced by a well populated cluster ( $39.6 \pm 2.6 \%$ and $53.5 \pm 3.2 \%$, respectively) whose representative structure has a $P$ screw sense upstream and a $M$ screw sense downstream of the cCTAA (Figure 6.5). Therefore, it seems that both $(1 S, 2 R, 3 S, 4 R)$-VIIa and ( $1 S, 2 S, 3 S, 4 R$ )-VIIIa are able to stabilize the $P$-helix toward the N -terminus, but they do not seem to induce any screw sense preference toward the C -terminus.


Figure 6.3. PMF profiles ( $\mathrm{kcal} / \mathrm{mol}$ ) as a function of $\varphi_{2}-\psi_{3}$ dihedral pairs obtained from REMD simulations of peptides $\boldsymbol{R}$ -
 $(1 R, 2 R, 4 R)-\mathbf{V}$, $(S)$-VI, $(1 S, 2 R, 3 S, 4 R)$-VIIa, $(1 S, 2 R, 3 R, 4 R)$-VIIb, $(1 S, 2 S, 3 S, 4 R)-V I I I a,(1 S, 2 S, 3 R, 4 R)$-VIIIb and Aib, respectively.


Figure 6.4. PMF profiles ( $\mathrm{kcal} / \mathrm{mol}$ ) as a function of $\varphi_{3}-\psi_{4}$ dihedral pairs obtained from REMD simulations of peptides $\boldsymbol{R}$ $\mathbf{1 , R} \mathbf{R} \mathbf{2}, \boldsymbol{S}-\mathbf{3}, \boldsymbol{R}-\mathbf{4}, \boldsymbol{R}-\mathbf{5}, \boldsymbol{S}-\mathbf{6}, \boldsymbol{R}-\mathbf{7}, \boldsymbol{R}-\mathbf{8}, \boldsymbol{S}-\mathbf{9}, \boldsymbol{S} \mathbf{- 1 0}$ and $\mathbf{1 1}$ containing $(R)$-II, $(1 R, 2 R, 4 R)$-IIIa, $(1 R, 2 S, 4 R)$-IIIb, $(1 S, 2 R, 4 R)$-IV, $(1 R, 2 R, 4 R)-\mathbf{V}$, $(S)$-VI, $(1 S, 2 R, 3 S, 4 R)$-VIIa, $(1 S, 2 R, 3 R, 4 R)$-VIIb, $(1 S, 2 S, 3 S, 4 R)-\mathbf{V I I I a},(1 S, 2 S, 3 R, 4 R)$-VIIIb and Aib, respectively.




Figure 6.5. Front (A and B) and top (C and D) views of representative structures of the second most populated cluster of peptides $\boldsymbol{R}-7$ (A and C) and $\boldsymbol{S - 9}$ (B and D), containing ( $1 S, 2 R, 3 S, 4 R$ )-VIIa and ( $1 S, 2 S, 3 S, 4 R$ )-VIIIa highlighted in green.

This is confirmed by cluster analyses performed on REMD trajectories of Ac-cCTAAs-Aib ${ }_{5}$ NHMe peptides (Table 6.3). Indeed, when cCTAA $=(1 S, 2 R, 3 S, 4 R)$-VIIa and ( $1 S, 2 S, 3 S, 4 R$ )-VIIIa (peptides $\boldsymbol{R}-\mathbf{2 5}$ and $\boldsymbol{S}-\mathbf{2 7}$ ), h.e. ( $6.5 \pm 4.8$ and $-7.7 \pm 2.4 \%$, respectively) were only marginally different from those obtained for the achiral peptide $\mathbf{1 1}$ (Table 6.1), proving that these cCTAAs lose their screw sense selectivity if moved from the third position to the N -terminus of the peptide chain.
Table 6.3. Average $P$-helical ( $\mathrm{P} \%$ ) and $M$-helical (M\%) populations, average global helical content ( $\mathrm{H} \%$ ) and helical excess (h.e., \%) obtained from cluster analyses of the 308 K REMD trajectories of Ac-cCTAA-Aib ${ }_{5}$-NHMe Peptides.

| \# | cCTAA | $\boldsymbol{P \%} \pm$ SD | $M \% \pm$ SD | $\mathbf{H \%} \pm \mathbf{S D}$ | h.e. $\pm$ SD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R-19 | (R)-II | $61.1 \pm 3.8$ | $30.0 \pm 4.1$ | $91.1 \pm 5.6$ | $34.1 \pm 6.5$ |
| R-20 | $(1 R, 2 R, 4 R)$-IIIa | $62.2 \pm 5.8$ | $28.9 \pm 5.6$ | $91.1 \pm 8.1$ | $36.6 \pm 9.4$ |
| S-21 | ( $1 R, 2 S, 4 R$ )-IIII | $70.8 \pm 3.5$ | $18.3 \pm 3.2$ | $89.1 \pm 4.7$ | $58.9 \pm 6.2$ |
| R-22 | ( $1 S, 2 R, 4 R$ )-IV | $67.6 \pm 5.7$ | $25.7 \pm 2.3$ | $93.3 \pm 6.1$ | $44.9 \pm 7.2$ |
| R-23 | $(1 R, 2 R, 4 R)-\mathbf{V}$ | $57.9 \pm 1.7$ | $32.7 \pm 1.8$ | $90.7 \pm 2.5$ | $27.8 \pm 2.8$ |
| $S$-24 | (S)-VI | $56.3 \pm 3.6$ | $34.9 \pm 3.6$ | $91.2 \pm 5.1$ | $23.5 \pm 5.7$ |
| R-25 | ( $1 S, 2 R, 3 S, 4 R)$-VIIa | $48.6 \pm 3.4$ | $42.7 \pm 2.7$ | $91.3 \pm 4.3$ | $6.5 \pm 4.8$ |
| R-26 | ( $1 S, 2 R, 3 R, 4 R$ )-VIIIb | $76.0 \pm 5.7$ | $18.4 \pm 2.2$ | $94.4 \pm 6.1$ | $61.0 \pm 7.6$ |
| S-27 | ( $1 S, 2 S, 3 S, 4 R)$-VIIIa | $42.4 \pm 1.5$ | $49.5 \pm 1.6$ | $91.9 \pm 2.2$ | $-7.7 \pm 2.4$ |
| S-28 | ( $1 S, 2 S, 3 R, 4 R$ )-VIIIb | $80.6 \pm 2.5$ | $17.4 \pm 2.3$ | $98.0 \pm 3.4$ | $64.5 \pm 4.1$ |

It should also be noticed that the other cCTAAs still maintain a certain ability of inducing the $P$ helix, however the h.e. of all the Ac-cCTAA-Aibs-NHMe models are reduced. This decrease can be attributed to both the loss of the upstream stabilization effect and to a reduced "spatial memory" of the cCTAA after 3-5 Aib residues along the peptide chain.

As noticed in the previous work, $\operatorname{PMF}\left(\varphi_{2}-\psi_{3}\right)$ and $\operatorname{PMF}\left(\varphi_{3}-\psi_{4}\right)$ profiles of peptide $\mathbf{1 1}$ showed local minima corresponding to $\beta$-strands or polyproline-like conformations, whereas for peptides $\boldsymbol{R}$ - $\mathbf{4}$ $(\mathrm{cCTAA}=(1 S, 2 R, 4 R)-\mathbf{I V}), \boldsymbol{R} \mathbf{- 7}(\mathrm{cCTAA}=(1 S, 2 R, 3 S, 4 R)-\mathbf{V I I a}), \boldsymbol{R} \mathbf{- 8}(\mathrm{cCTAA}=(1 S, 2 R, 3 R, 4 R)-$ VIIb), $\boldsymbol{S}$-9 (cCTAA $=(1 S, 2 S, 3 S, 4 R)$-VIIIa), and $\boldsymbol{S}$-10 (cCTAA $=(1 S, 2 S, 3 R, 4 R)$-VIIIb) those conformations were only observed in $\operatorname{PMF}\left(\varphi_{3}-\psi_{4}\right)$. Moreover, as observed while studying the helix stabilization mechanism, the $\operatorname{PMF}\left(\varphi_{2}-\psi_{3}\right)$ profile of peptide $\boldsymbol{R} \mathbf{- 1}(\mathrm{cCTAA}=(R)$-II) has an additional minimum at $\left(-130^{\circ} \leq \varphi_{2} \leq-180^{\circ} ;-60^{\circ} \leq \psi_{3} \leq+30^{\circ}\right)$.

Additional information concerning the rotational energy profile of the single considered dihedrals can be obtained by monodimensional PMF (Figure 6.6).


Figure 6.6. PMF profiles from the analyses of trajectories at 260 , 283, 308 and 335 K of peptides containing Aib and the cCTAAs selective towards the $P$-helix. Dihedrals associated with PMF higher than $8 \mathrm{kcal} / \mathrm{mol}$ were not sampled at the selected temperatures

In details, $\operatorname{PMF}\left(\varphi_{2}\right)$ and $\operatorname{PMF}\left(\psi_{3}\right)$ have a $\Delta E_{\mathrm{M}}$ which correlates to h.e., suggesting that $\varphi_{2}$ and $\psi_{3}$ coordinates are relevant in the $P \rightarrow M$ interconversion. Moreover, the achiral peptide $\mathbf{1 1}$ has a $\Delta E_{\mathrm{M}}=0$ $\mathrm{kcal} / \mathrm{mol}$, while peptides $\boldsymbol{R} \mathbf{- 7}$ and $\boldsymbol{S - 9}$ (h.e. $\sim 100 \%$ ) have the highest $\Delta E_{\mathrm{M}}$ observed for both $\operatorname{PMF}\left(\varphi_{2}\right)$ (about 3.5 and $3.0 \mathrm{kcal} / \mathrm{mol}$ for R-7 and S-9, respectively), and $\operatorname{PMF}\left(\psi_{3}\right)$ (abut 4.0 and $3.5 \mathrm{kcal} / \mathrm{mol}$ for R-7 and S-9, respectively). As observed in the previous study, the interconversion barrier $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ in $\operatorname{PMF}\left(\varphi_{2}\right)$ profiles is relatively difficult to overcome at the considered temperatures in all cases, except for $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 3}$ and 11. This suggests that the cCTAAs included in these latter peptides, namely $(R)$-II, $(1 R, 2 S, 4 R)$-IIIb and Aib, respectively, have a lower ability in stabilizing the $P$-helix upstream of the
cCTAA itself. Conversely, $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ in $\operatorname{PMF}\left(\psi_{3}\right)$ profiles are low enough to allow the interconversion between $P$ - and $M$-helices for all the considered peptides, although a peculiar trend cannot be clearly identified.

The $\Delta E_{\mathrm{M}}$ of $\operatorname{PMF}\left(\varphi_{3}\right)$ and $\operatorname{PMF}\left(\psi_{4}\right)$ profiles are lower than those observed for $\operatorname{PMF}\left(\varphi_{2}\right)$ and $\operatorname{PMF}\left(\psi_{3}\right)$, although the correlation with h.e. is maintained. $\boldsymbol{R}-7$ and $\boldsymbol{S}-9$ are an exception, since their cCTAAs lose their $P$-screw sense selectivity on the downstream dihedrals, as also showed by 2D-PMF (Figure 6.4) and REMD simulations performed on Ac-cCTAA-Aib 5 -NHMe peptide models (Table 6.3). In addition, peptides $\mathbf{1 1}, \boldsymbol{R} \mathbf{- 4}, \boldsymbol{S} \mathbf{- 6}, \boldsymbol{R}-\mathbf{7}, \boldsymbol{R} \mathbf{- 8}$, and $\boldsymbol{S} \mathbf{- 1 0}$ (cCTAAs $=\mathrm{Aib},(1 S, 2 R, 4 R)-\mathbf{I V},(S)$-VI, $(1 S, 2 R, 3 S, 4 R)$-VIIa, $(1 S, 2 R, 3 R, 4 R)$-VIIb, and ( $1 S, 2 S, 3 R, 4 R)$-VIIIb, respectively) have $\operatorname{PMF}\left(\varphi_{3}\right)$ profiles with easily surmountable $\Delta E_{\mathrm{M}}{ }^{\ddagger}$, indicating that their cCTAAs exert their $P$-screw sense selectivity mainly upstream of the cCTAA itself (Figure 6.6).

As previously stated in Chapter 5, PMF analysis provided highlighting information on the helical screw sense preferences of the selected cCTAAs, in particular those related to the cCTAAs effects on the upstream and downstream dihedrals. However, they do not provide a clear explanation of the mechanisms involved in the helical screw sense selectivity.

Recently, no better specified steric hindrance and geometrical factors have been invoked as a possible explanation of screw sense selectivity exerted by cCTAAs, ${ }^{248}$ however further investigations in this directions are required. Therefore, consistent with what done for the study of the helix secondary structure stabilization, the effect of steric factors has been preliminarily evaluated through a 3D QSPR analysis with PHASE, ${ }^{219}$ by superposing the ideal $P$ - $3_{10}$-helices of peptides $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}, \boldsymbol{S} \mathbf{- 3}$, $\boldsymbol{R}-4, \boldsymbol{R}-\mathbf{5}, \boldsymbol{S}-\mathbf{6}, \boldsymbol{R}-7, \boldsymbol{R}-\mathbf{8}, \boldsymbol{S}-9, \boldsymbol{S}-10$ and 11 and setting the h.e. as the "activity". A 3D plot where blue and red cubes indicate areas where steric hindrance has a positive and negative effect on the h.e., respectively, was obtained (Figure 6.7).


Figure 6.7. Front and top view of 3D plot of QSPR areas obtained through PHASE analysis of peptides $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}, \boldsymbol{S} \mathbf{- 3}, \boldsymbol{R} \mathbf{- 4}$, $\boldsymbol{R - 5}, \boldsymbol{S - 6}, R-7, R-8, S-9, S-10$ and 11. Blue and red cubes represent areas where a steric hindrance has a positive or negative effect on the h.e., respectively. Peptides $\boldsymbol{R} \mathbf{- 1}$ (orange), $\boldsymbol{R} \mathbf{- 2}$ (green) and $\boldsymbol{S} \mathbf{- 3}$ (magenta) are shown as a reference.

From Figure 6.7 it can be observed that hydrophobic substituents in the $(-x,+y,+z),(+x,+y,-z)$ and, to minor extent, $(+\mathrm{x},+\mathrm{y},+\mathrm{z})$ sectors of the Cartesian space positively contribute to the $P$-screw
sense selectivity exerted by the cCTAA. Conversely, steric hindrance in the ( $-\mathrm{x},+\mathrm{y},-\mathrm{z}$ ) sector reduces the h.e. Indeed, the side chains of the highly performing cCTAAs (h.e. > 60\%) are located in the (-x, $+\mathrm{y},+\mathrm{z})$ or $(+\mathrm{x},+\mathrm{y},-\mathrm{z})$ sectors, whereas for the least selective cCTAA, namely $(R)-\mathbf{I I}$, is predominantly located in the $(-x,+y,-z)$ area.

Following the same procedure previously described (see Chapter 5), hypothetical cCTAAs with ad-hoc structural modifications were investigated to confirm or rebut 3D QSPR suggestions (Figure 6.8).


Figure 6.8. Structurally modified cCTAAs used for the study of mechanisms of helical screw sense preferences.

Therefore, to verify the importance of steric hindrance in the $(-x,+y,+z)$ sector, the excellent performing ( $1 R, 2 R, 4 R$ )-IIIa, whose side chain lies on that sector, was modified by deleting its aromatic ring, thus obtaining ( $1 R, 2 R, 4 R$ )-IIIawr (Figure 6.8). When included in the Ac-Aib 2 -cCTAAAib $_{2}$-NHMe peptide model (peptide $\boldsymbol{R}$-12), this cCTAA gave a reduction of about $17 \%$ in the h.e. compared to its parental cCTAA (Table 6.4). PMF profiles as a function of $\varphi_{2}, \psi_{3}, \varphi_{3}$ and $\psi_{4}$ dihedrals became comparable to those of peptide $\boldsymbol{R}-\mathbf{5}$, whose cCTAA $((1 R, 2 R, 4 R)-\mathbf{V})$ is structurally related to $(1 R, 2 R, 4 R)$-IIIawr, except for the methylene bridge instead of the oxo-bridge (Figure 6.9).

As a counterproof, $(1 R, 2 R, 4 R)-\mathbf{V}$ was modified by adding an aromatic ring, $1 R, 2 R, 4 R)$-Var (Figure 6.8), thus increasing its steric hindrance in the $(-x,+y,+z)$ sector. As expected, h.e. increased of about $15 \%$, compared to peptide $\boldsymbol{R} \mathbf{- 5}$, reaching a h.e. ( $96.0 \pm 3.2 \%$ ) which is equivalent to that of peptide $\boldsymbol{R} \mathbf{- 2}$ (cCTAA $=(1 R, 2 R, 4 R)$-IIIa). The respective PMF also overlapped (Figure 6.9).

Table 6.4. Average $P$-helix ( $P \%$ ) and $M$-helix ( $M \%$ ) populations, average global helical content (H\%) and helical excess (h.e.) obtained from cluster analyses performed on the 308 K REMD trajectories of Ac-Aib2-cCTAA-Aib2-NHMe peptides 12-18.

| $\#$ | modified CTAA | $\mathbf{P} \% \pm \mathbf{S D}$ | $\mathbf{M} \% \pm \mathbf{S D}$ | $\mathbf{H} \% \pm$ SD | h.e. $\pm$ SD |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{R}-\mathbf{1 2}$ | $(1 R, 2 R, 4 R)$-IIIawr | $77.7 \pm 3.2$ | $8.7 \pm 2.1$ | $86.4 \pm 3.8$ | $79.9 \pm 5.7$ |
| $\boldsymbol{R} \mathbf{- 1 3}$ | $(1 R, 2 R, 4 R)-$ Var | $88.7 \pm 2.0$ | $1.8 \pm 0.5$ | $90.5 \pm 2.1$ | $96.0 \pm 3.2$ |
| $\boldsymbol{R} \mathbf{- 1 4}$ | $(1 R, 2 R, 4 R)$-Vdm | $87.6 \pm 1.3$ | $1.0 \pm 0.4$ | $88.6 \pm 1.4$ | $97.7 \pm 2.1$ |
| $\boldsymbol{S} \mathbf{- 1 5}$ | $(1 R, 2 S, 4 R)-\mathbf{V}$ | $87.3 \pm 2.1$ | $7.0 \pm 1.2$ | $94.3 \pm 2.4$ | $85.2 \pm 3.4$ |
| $\boldsymbol{S} \mathbf{- 1 6}$ | $(1 R, 2 S, 4 R)-\mathbf{V d m}$ | $97.0 \pm 0.5$ | $2.0 \pm 0.3$ | $99.0 \pm 0.6$ | $96.0 \pm 0.8$ |
| $\boldsymbol{S} \mathbf{- 1 7}$ | $(1 R, 2 S, 4 R)-$ IIIbwr | $73.6 \pm 2.9$ | $20.0 \pm 1.9$ | $93.6 \pm 3.5$ | $57.3 \pm 4.3$ |
| $\boldsymbol{S} \mathbf{- 1 8}$ | $(1 R, 2 S, 4 R)-$ IIIbmb | $95.3 \pm 0.5$ | $3.0 \pm 0.4$ | $98.3 \pm 0.6$ | $93.9 \pm 0.9$ |



Figure 6.9. Comparison of PMF profiles, as a function of $\varphi_{2}, \psi_{3}, \varphi_{3}$ and $\psi_{4}$ dihedrals, of peptides containing $(1 R, 2 R, 4 R)-$ IIIa, $(1 R, 2 R, 4 R)$-V, $(1 R, 2 R, 4 R)$-IIIawr, $(1 R, 2 R, 4 R)$-Var and $(1 R, 2 R, 4 R)$-Vdm cCTAAs.

In order to understand if the positive effect on the helical screw sense selectivity of $(1 R, 2 R, 4 R)$ IIIa and $(1 R, 2 R, 4 R)$-Var is ascribable to an electronic effect of the aromatic ring or to its steric hindrance, a derivative of $(1 R, 2 R, 4 R)$ - $\mathbf{V}$, with two methyl groups at $\mathbf{C} 5$ and C 6 , named $(1 R, 2 R, 4 R)$ Vdm (Figure 6.8), was designed. Both the h.e. (Table 6.4) and PMF profiles (Figure 6.9) of the corresponding peptide $\boldsymbol{R} \mathbf{- 1 4}$ were comparable to those of peptides $\boldsymbol{R} \mathbf{- 2}$ and $\boldsymbol{R} \mathbf{- 1 3}$ (cCTAAs $=$ $(1 R, 2 R, 4 R)$-IIIa and $(1 R, 2 R, 4 R)$-Var, respectively), proving that the contribution to the helical screw sense selectivity is principally given by steric hindrance in the $(-x,+y,+z)$ sector.

An analogous approach was followed to evaluate the role of steric hindrance in the ( $+\mathrm{x},+\mathrm{y},-\mathrm{z}$ ) sector. Therefore, the aromatic ring of $(1 R, 2 S, 4 R)$-IIIb was deleted, obtaining $(1 R, 2 S, 4 R)$-IIIbwr (Figure 6.8), which, once included in the peptide model $\boldsymbol{S} \mathbf{- 1 7}$, reduced the h.e. of about $14 \%$ compared to $\boldsymbol{S} \mathbf{- 3}$, which contains the parental cCTAA (Tables 5.2 and 5.4). Conversely, the PMF profiles showed only slight differences (Figure 6.9), although a decrease in both $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}} \ddagger$ was observable in all the considered PMF profiles for peptide $S \mathbf{- 1 7}$, suggesting that the deletion of the aromatic ring equally affects the upstream and downstream dihedrals.

The stereoisomer ( $1 R, 2 S, 4 R$ )- $\mathbf{V}$ (never isolated experimentally) was also studied. Its model peptide $\boldsymbol{S} \mathbf{- 1 5}$ unexpectedly gave a h.e. about $\mathbf{1 4 \%}$ and $\mathbf{3 0 \%}$ higher than that of peptides $\boldsymbol{S} \mathbf{- 3}$ (cCTAAs = $(1 R, 2 S, 4 R)$-IIIIb) and $\boldsymbol{S} \mathbf{- 1 7}$ (cCTAAs $=(1 R, 2 S, 4 R)$-IIIbwr), respectively (Tables 5.1 and 5.4$)$. $\operatorname{PMF}\left(\psi_{3}\right)$ and $\operatorname{PMF}\left(\varphi_{3}\right)$ confirmed these results, because $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}^{\ddagger}$ computed for $\boldsymbol{S} \mathbf{- 1 5}$ were 0.5$1.0 \mathrm{kcal} / \mathrm{mol}$ higher than those of peptides $\boldsymbol{S} \mathbf{- 3}$ and $\boldsymbol{S} \mathbf{- 1 7}$, whereas $\operatorname{PMF}\left(\psi_{4}\right)$ and $\operatorname{PMF}\left(\varphi_{2}\right)$ profiles were
equivalent to those of peptide $\boldsymbol{S - 3}$ (cCTAA $=(1 R, 2 S, 4 R)-\mathbf{I I I I})$ (Figure 6.10). This indicates that the methylene bridge of the norbornene core might play some role in favoring the $P$-helix.


Figure 6.10. Comparison of PMF profiles, as a function of $\varphi_{2}, \psi_{3}, \varphi_{3}$ and $\psi_{4}$ dihedrals, of peptides containing ( $1 R, 2 S, 4 R$ )IIIb, $(1 R, 2 S, 4 R)$-IIIbwr, $(1 R, 2 S, 4 R)$-V, $(1 R, 2 S, 4 R)$-IIIbmb and $(1 R, 2 S, 4 R)$-Vdm cCTAAs.

Therefore, we analyzed the screw sense preferences of peptide $\boldsymbol{S} \mathbf{- 1 8}$, containing $(1 R, 2 S, 4 R)$ IIIbmb which is derived from $(1 R, 2 S, 4 R)$-IIIb by substituted the oxo-bridge with a methylene bridge (Figure 6.7). As previously observed, analysis of $\boldsymbol{S} \mathbf{- 1 8}$ gave an increased h.e. ( $93.9 \pm 0.9 \%$ ) (Tables 5.1 and 5.4) and PMF profiles showing $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ higher than those obtained for peptide $\boldsymbol{S}$ - $\mathbf{3}$ containing the parent cCTAA (Figure 6.10).

In this case also, we evaluated if the positive effect on h.e. was due to a steric hindrance or to electronic properties of the aromatic ring. Therefore, we studied the behavior of peptide $\boldsymbol{S} \mathbf{- 1 6}$, containing $(1 R, 2 S, 4 R)-\mathbf{V d m}$ which is derived from $(1 R, 2 S, 4 R)$-V (Figure 6.7) by addition of two methyl groups at C5 and C6. Peptides $\boldsymbol{S} \mathbf{- 1 6}$ and $\boldsymbol{S} \mathbf{- 1 8}$ gave comparable results in terms of h.e. (Table 6.4) and PMF profiles (Figure 6.10), confirming the positive effect on h.e. is simply due to steric hindrance in the $(+x,+y,-z)$ sector.

The relative importance of steric hindrance in $(-x,+y,+z)$ or $(+x,+y,-z)$ sectors have been investigated as well. $(1 R, 2 R, 4 R)$-IIIa, whose side chain is located in the $(-\mathrm{x},+\mathrm{y},+\mathrm{z})$ sector, has a h.e. $25 \%$ higher than that of $(1 R, 2 S, 4 R)$-IIIb, which, instead, mainly lies in the $(+\mathrm{x},+\mathrm{y},-\mathrm{z})$ sector. However, the deletion of the aromatic ring in both cCTAAs led to an equal reduction of the h.e. obtained for the corresponding $\boldsymbol{R} \mathbf{- 1 2}$ and $\boldsymbol{S} \mathbf{- 1 7}$ peptides (Table 6.4).

However, steric hindrance by itself cannot explain the different levels of $P$-screw sense selectivity obtained for structurally related cCTAAs, such as $(1 R, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)-\mathbf{V}$ or $(1 R, 2 R, 4 R)-\mathbf{V}$ and (1R,2R,4R)-IIIawr pairs (Tables 5.1 and 5.4).

Since the role of classical and weak H-bonds has been proved as relevant for the stabilization of peptide secondary structures, ${ }^{72,214,222}$ QTAIM analyses were performed in this case also to investigate whether differences in H -bond networks of both $P$ - and $M$-helices could explain the unexpected differences in h.e. (Table 6.5).

Table 6.5. Useful Quantities Derived from QTAIM Calculations

| Symbol | Expression | Description |
| :---: | :---: | :---: |
| $\rho_{P}$ | $\sum \rho\left(r_{c}\right)_{P}$ | BCP total density for a given peptide in P <br> conformation |
| $\rho_{M}$ | $\sum \rho\left(r_{c}\right)_{M}$ | BCP total density for a given peptide in M <br> conformation |
| $\Delta \rho_{P-M}$ | $\sum \rho\left(r_{C}\right)_{P}-\sum \rho\left(r_{c}\right)_{M}$ | difference between $\rho_{P}$ and $\rho_{M}$ for a given peptide |
| $\Delta_{A-B} \rho_{P}$ | $\left(\sum \rho\left(r_{C}\right)_{P}\right)_{A}-\left(\sum \rho\left(r_{C}\right)_{P}\right)_{B}$ | Difference of BCP total densities between <br> peptides "A" and "B" in P conformation |
| $\Delta_{A-B} \rho_{M}$ | $\left(\sum \rho\left(r_{c}\right)_{M}\right)_{A}-\left(\sum \rho\left(r_{C}\right)_{M}\right)_{B}$ | Difference of BCP total densities between <br> peptides "A" and "B" in M conformation |
| $\Delta \rho_{A-B}$ | $\Delta_{A-B} \rho_{P}-\Delta_{A-B} \rho_{M}$ | Difference between two above differences |

In this case also, the BCP network consisted of $i+3 \rightarrow i \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCPs with $\rho\left(r_{c}\right)$ values typical for classical H-bonds (0.002-0.022 au) ${ }^{223,224}$ or slightly higher, a positive Laplacian, indicating that the nature of the interaction is electrostatic, and a low $\varepsilon$, which indicates stable BCPs. In addition, $i+3 \rightarrow i \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCPs with $\rho\left(r_{c}\right)$ higher than those observed in natural peptides ${ }^{214,222}$ were found. Moreover, consistent to what reported for some natural peptides, ${ }^{214} \mathrm{~N} \cdots$ O BCP involving the backbone of cCTAA and $\operatorname{Aib}\left(\rho\left(r_{c}\right) \approx 0.0120 \mathrm{au}\right)$ was detected within the $P$-helix of peptides $\boldsymbol{R}$-2, $\boldsymbol{R}-\mathbf{4}, \boldsymbol{R}-\mathbf{5}, \boldsymbol{R}-\mathbf{7}, \boldsymbol{R}-\mathbf{8}$, and $\boldsymbol{S - 1 0}$ and within the $M$-helix of peptide $\boldsymbol{R} \mathbf{- 1}$. An analogous interaction, but involving Aib4 and Aib2, was found for peptides $\boldsymbol{R}-7$ and $S$ - 9 in the $M$ and $P$ conformations, respectively. Additional $i+1 \rightarrow i$ (with $i \neq \mathrm{cCTAA}$ ) $\mathrm{C} \beta-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCPs $\left(\rho\left(r_{c}\right)=\right.$ from 0.0102 to 0.0126 au ) were present between Aib5 and Aib4 in all peptides, and between Aib2 and Aib1 only in the $P$-helix of peptides $\boldsymbol{R} \mathbf{- 2}, \boldsymbol{R} \mathbf{- 4}, \boldsymbol{R} \mathbf{- 5}, \boldsymbol{R}-\mathbf{7}, \boldsymbol{R} \mathbf{- 8}$, and $\boldsymbol{S} \mathbf{- 1 0}$ and in the $M$-helix of peptide $\boldsymbol{R} \mathbf{- 1}$ (Figure 6.11). Furthermore, peculiar BCPs involving the cCTAAs were detected in all cases and will be helpful in the following discussion.


Figure 6.11. (A and C) Ball-and-stick representation and (B and D) QTAIM molecular graph of the optimized $P$ - (top) and $M$ - (bottom) $3_{10}$-helix of $\mathrm{Ac}-\mathrm{Aib}_{2}-(1 S, 2 R, 4 R)$-IV-Aib ${ }_{2}$-NHMe peptide

As previously observed, $\boldsymbol{R} \mathbf{- 4}$ and $\boldsymbol{R} \mathbf{- 5}$ peptides (cCTAAs $=(1 S, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)-\mathbf{V}$, respectively) had significantly different h.e., although their cCTAAs are structurally similar. QTAIM analyses performed on their $P$-helices (Tables 5.6 and 5.7) gave similar BCP total densities ( $\Delta_{4-5} \rho_{P}=$ 0.0004 au ), although peptide $\boldsymbol{R}-4$ had an additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ BCP between the C 5 of $(1 S, 2 R, 4 R)$ IV and the carbonyl oxygen of the acetyl cap $\left(\rho\left(r_{c}\right)=0.0037 \mathrm{au}\right)$. Conversely, the same analysis performed on the $M$-helices provided qualitatively equivalent BCP networks, but a higher difference in BCP total density for peptide $\boldsymbol{R}-5\left(\Delta_{4-5} \rho_{M}=-0.0027 \mathrm{au}\right)$. In addition, the differences in electronic densities between $P$ - and $M$-helices $\Delta \rho_{P-M}$ of peptides $\boldsymbol{R} \mathbf{- 4}$ and $\boldsymbol{R} \mathbf{- 5}$ were of 0.0182 and 0.0151 au , respectively, with a $\Delta \Delta \rho$ of 0.0031 au . At the light of this, it can be concluded that the $P$-screw sense selectivity exerted by $(1 S, 2 R, 4 R)$-IV and $(1 R, 2 R, 4 R)-\mathbf{V}$ is increased by rather strong $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions involving the cCTAA, and the higher h.e. showed by peptide $\boldsymbol{R} \mathbf{- 4}$ is ascribable to a lower stabilization of noncovalent interactions in the $M$-helix compared to peptide $\boldsymbol{R}$-5. Indeed, a $\Delta \rho_{M}$ of about 0.0030 au was considered sufficient to explain differences in helical stability observed in natural peptides. ${ }^{214,222}$

Table 6.6. Types and properties of BCPs of the $\mathrm{Ac}^{-} \mathrm{Aib}_{2}-(1 S, 2 R, 4 R)$-IV-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{R}$ - $\mathbf{4}$ in the $P$ - and $M$-helix conformation. All parameters are reported in au.

| Peptide $\boldsymbol{R}-\mathbf{4}$, <br> $\boldsymbol{P}$-helix |  |  | Peptide $\boldsymbol{R}-\mathbf{4}$, <br> $\boldsymbol{M}$-helix |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\varepsilon}$ | $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| IV $\cdots$ Ac | 0.0203 | 0.0636 | 0.0580 | IV $\cdots$ ACE | 0.0170 | 0.0531 | 0.0795 |
| Aib4 $\cdots$ Aib1 | 0.0197 | 0.0620 | 0.0502 | Aib4 $\cdots$ Aib1 | 0.0213 | 0.0676 | 0.0583 |
| Aib5 $\cdots$ Aib2 | 0.0185 | 0.0580 | 0.0603 | Aib5 $\cdots$ Aib2 | 0.0161 | 0.0502 | 0.0473 |
| NMe $\cdots$ IV | 0.0215 | 0.0687 | 0.0612 | NMe $\cdots$ IV | 0.0220 | 0.0704 | 0.0677 |
| $\boldsymbol{\Sigma} \boldsymbol{\rho}\left(\mathbf{r}_{\mathbf{c}}\right)$ at $\mathbf{N H} \cdots \mathbf{O}$ | 0.0800 |  |  | $\boldsymbol{\Sigma} \boldsymbol{\rho}\left(\mathbf{r c}_{\mathbf{c}}\right)$ at $\mathbf{N H} \cdots \mathbf{O}$ | 0.0764 |  |  |


| C $\beta$-H $\cdots$ O BCP |  |  |  | C $\beta$ - $\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV(C3-H) $\cdots$ Ac | 0.0101 | 0.0370 | 0.0833 | IV(C6-H) $\cdots$ Ac | 0.0080 | 0.0281 | 0.1034 |
| IV(C5-H) $\cdots$ Ac | 0.0037 | 0.0135 | 0.6250 | Aib5 $\cdots$ Aib2 | 0.0055 | 0.0217 | 0.5714 |
| Aib2 $\cdots$ Aib1 | 0.0104 | 0.0379 | 0.8085 | IV(C7-H $\cdots$ IV | 0.0136 | 0.0461 | 0.1574 |
| Aib5 $\cdots$ Aib2 | 0.0055 | 0.0220 | 0.5238 | Aib4 $\cdots$ IV | 0.0118 | 0.0427 | 0.8704 |
| IV(C7-H) $\cdots$ IV | 0.0114 | 0.0412 | 0.8269 | Aib5 $\cdots$ Aib4 | 0.0123 | 0.0436 | 0.4474 |
| Aib5*Aib4 | 0.0126 | 0.0445 | 0.4304 |  |  |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at C-H..0 | 0.0537 |  |  | $\Sigma \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0512 |  |  |
| $\mathrm{N} \cdots \mathrm{O}$ CPs |  |  |  |  |  |  |  |
| IV‥Aib1 | 0.0121 | 0.0385 | 0.9394 |  |  |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ at $\mathrm{N} \cdots \mathrm{O}$ | 0.0121 |  |  |  |  |  |  |
| $\Sigma \rho\left(\mathrm{r}_{\mathrm{c}}\right)$ tot | 0.1458 |  |  | $\Sigma \rho\left(r_{c}\right)$ tot | 0.1276 |  |  |

 conformation. All parameters are reported in au.

| peptide $\boldsymbol{R}-\mathbf{5}$, <br> $P$-helix |  |  |  | peptide $\boldsymbol{R}-\mathbf{5}$, <br> M-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H..O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ | $\varepsilon$ | N-H..O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\varepsilon$ |
| V‥ACE | 0.0199 | 0.0620 | 0.0548 | V $\cdots$ ACE | 0.0176 | 0.0551 | 0.0707 |
| Aib4 $\cdots$ Aib1 | 0.0197 | -0.0343 | 0.0455 | Aib4 $\cdots$ Aib1 | 0.0216 | 0.0688 | 0.0571 |
| Aib5 $\cdots$ Aib2 | 0.0195 | 0.0612 | 0.0660 | Aib5 $\cdots$ Aib2 | 0.0168 | 0.0521 | 0.0565 |
| NMe $\cdots$ V | 0.0217 | 0.0697 | 0.0605 | NMe $\cdots$ V | 0.0219 | 0.0699 | 0.0640 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0808 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0779 |  |  |
| $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| V(C3-H) $\cdots$ Ac | 0.0100 | 0.0369 | 0.0941 | V(C6-H) $\cdots$ Ac | 0.0091 | 0.0324 | 0.1370 |
| Aib2 $\cdots$ Aib1 | 0.0102 | 0.0374 | 0.9070 | Aib5 $\cdots$ Aib2 | 0.0055 | 0.0218 | 0.5238 |
| Aib5 $\cdots$ Aib2 | 0.0055 | 0.0220 | 0.5238 | $\mathrm{V}(\mathrm{C} 7-\mathrm{H}) \cdots \mathrm{V}$ | 0.0138 | 0.0462 | 0.1441 |
| V(C7-H) $\cdots$ V | 0.0139 | 0.0488 | 0.3333 | Aib4 $\cdots$ V | 0.0116 | 0.0422 | 0.9038 |
| Aib5 $\cdot$ Aib4 | 0.0126 | 0.0448 | 0.4250 | Aib5 $\cdots$ Aib4 | 0.0124 | 0.0439 | 0.4231 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0522 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0524 |  |  |
| N $\cdots$ O CPs |  |  |  |  |  |  |  |
| V…Aib1 | 0.0124 | 0.0394 | 0.8611 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N} \cdots \mathrm{O}$ | 0.0124 |  |  |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1454 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1303 |  |  |

Similarly to what observed for peptide $\boldsymbol{R} \mathbf{- 4}$, peptide $\boldsymbol{R}$-2 in the $P$ conformation showed a very strong noncovalent interactions network (Table 6.8), although not directly involving ( $1 R, 2 R, 4 R$ )-IIIa. At the same time, the steric hindrance of this cCTAA in the $(-x,+y,+z)$ sector is larger than that of $(1 S, 2 R, 4 R)-\mathbf{I V}$; therefore, the complete fulfilment of steric requirements together with the strengthening of noncovalent interactions selectively in the $P$-helical conformation made ( $1 R, 2 R, 4 R$ )IIIa one of the best performing cCTAAs in terms of screw sense selectivity.

Indeed, $(1 R, 2 R, 4 R)$-IIIa also exerted a screw sense selectivity higher than that of its $\mathrm{C} \alpha$ epimer $(1 R, 2 S, 4 R)$-IIIIb (Table 6.1, $\Delta$ h.e. $\sim 26 \%)$, although steric hindrance in $(-\mathrm{x},+\mathrm{y},+\mathrm{z})$ or in $(+\mathrm{x},+\mathrm{y},-\mathrm{z})$ was found to equally affect the h.e. Conversely, QTAIM analysis performed on both $\boldsymbol{R} \mathbf{- 2}$ and $\boldsymbol{S} \mathbf{- 3}$ peptides $(\mathrm{cCTAAs}=(1 R, 2 R, 4 R)$-IIIa and $(1 R, 2 S, 4 R)$-IIIb, respectively) showed that this latter peptide had a significantly lower $\rho_{P}\left(\Delta_{2-3} \rho_{P}=0.0165 \mathrm{au}\right)$ and a higher $\rho_{M}\left(\Delta_{2-3} \rho_{M}=-0.0121 \mathrm{au}\right)$ than
peptide $\boldsymbol{R} \mathbf{- 2}$, although they have qualitatively similar BCP networks (Tables 5.8 and 5.9). In other words, the decrease in h.e. of peptide $\mathbf{S - 3}$ is explained by observing that this peptide in the $P$ conformation has a less stable noncovalent interaction network than peptide $\boldsymbol{R} \mathbf{- 2}$, whereas the stability of its interactions is higher in the $M$-conformation.

It is important to underline that, although peptide $\boldsymbol{S} \mathbf{- 3}$ showed a $\rho_{M}$ higher than $\rho_{P}$, DFT calculations performed at the CPCM-mPW1B95/6-31+G(d,p) level gave a $\Delta E_{P-M}=-2.8 \mathrm{kcal} / \mathrm{mol}$. This result suggests that the $P$-conformation of peptide $S \mathbf{- 3}$ is anyway more stable than its $M$ conformation, probably because of the cCTAA side chain steric hindrance correctly located in the $(+x$, $+y,-z)$ sector (Annex 6.A).

Table 6.8. Types and properties of BCPs of the $\mathrm{Ac}_{\mathrm{B}} \mathrm{Aib}_{2}-(1 R, 2 R, 4 R)$-IIa-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{R}$ - $\mathbf{2}$ in the $P$ - and $M$-helix conformation. All parameters are reported in au.

| peptide R-2, <br> $P$-helix |  |  |  | peptide $\boldsymbol{R}$-2, $M$-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H...O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ | $\varepsilon$ | N-H...O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ | $\varepsilon$ |
| III $\cdots$ Ac | 0.0223 | 0.0703 | 0.0630 | III $\cdots$ Ac | 0.0138 | 0.0445 | 0.0815 |
| Aib4 $\cdots$ Aibl | 0.0216 | 0.0679 | 0.0484 | Aib4 $\cdots$ Aib1 | 0.0202 | 0.0642 | 0.0580 |
| Aib5 $\cdots$ Aib2 | 0.0159 | 0.0495 | 0.0545 | Aib5 $\cdots$ Aib2 | 0.0163 | 0.0508 | 0.0526 |
| NMe $\cdots$ III | 0.0234 | 0.0754 | 0.0623 | NMe $\cdots$ III | 0.0205 | 0.0650 | 0.0652 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0832 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{O}$ | 0.0708 |  |  |
| $\mathbf{C} \beta-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| III(C3-H) $\cdots$ Ac | 0.0104 | 0.0370 | 0.1111 | $\mathrm{III}\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right) \cdots \mathrm{Ac}$ | 0.0113 | 0.0376 | 0.1515 |
| Aib2 $\cdots$ Aib1 | 0.0112 | 0.0401 | 0.5410 | Aib4 $\cdots$ Aib1 | 0.0067 | 0.0267 | 0.6667 |
| Aib4 $\cdots$ Aib1 | 0.0056 | 0.0226 | 1.0000 | Aib5 $\cdots$ Aib2 | 0.0055 | 0.0218 | 0.6842 |
| Aib5 $\cdots$ Aib2 | 0.0051 | 0.0204 | 0.7059 | Aib4 $\cdots$ III | 0.0126 | 0.0453 | 0.6471 |
| Aib5 $\cdot$ Aib4 | 0.0119 | 0.0423 | 0.4789 | Aib5 $\cdots$ Aib4 | 0.0122 | 0.0434 | 0.4533 |
| $\sum \rho\left(r_{c}\right)$ at C-H..O | 0.0442 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0483 |  |  |
| N $\cdots \mathrm{O}$ BCP |  |  |  |  |  |  |  |
| III $\cdots$ Aib1 | 0.0113 | 0.0351 | 0.2564 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N} \cdots \mathrm{O}$ | 0.0113 |  |  |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1387 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1191 |  |  |

Table 6.9. Types and properties of BCPs of the $\mathrm{Ac}^{2}-\mathrm{Aib}_{2}-(1 R, 2 S, 4 R)$-IIIb-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{S}$ 3 in the $P$ - and $M$-helix conformation. All parameters are reported in au.

| peptide $\boldsymbol{S}$-3, $P$-helix |  |  |  | peptide $\boldsymbol{S} \mathbf{- 3}$, $M$-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H...O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\boldsymbol{\varepsilon}$ | N-H...O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\varepsilon$ |
| III $\cdots$ Ac | 0.0213 | 0.0673 | 0.0583 | III $\cdots$ Ac | 0.0212 | 0.0666 | 0.0546 |
| Aib4 $\cdots$ Aib1 | 0.0187 | 0.0594 | 0.0588 | Aib4 $\cdots$ Aib1 | 0.0193 | 0.0608 | 0.0519 |
| Aib5 $\cdots$ Aib2 | 0.0178 | 0.0555 | 0.0582 | Aib5 $\cdots$ Aib2 | 0.0178 | 0.0558 | 0.0635 |
| NMe $\cdots$ III | 0.0214 | 0.0680 | 0.0617 | NMe $\cdots$ III | 0.0212 | 0.0672 | 0.0625 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0792 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0795 |  |  |
| $\mathbf{C} \beta-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathbf{C} \beta-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| C1H(III) $\cdots$ Ac | 0.0087 | 0.0335 | 0.0857 | C3H(III) $\cdots$ Ac | 0.0103 | 0.0376 | 0.1011 |
| Aib4 $\cdots$ Aib1 | 0.0051 | 0.0204 | 0.7692 | Aib5 $\cdots$ Aib2 | 0.0052 | 0.0206 | 0.5882 |
| Aib5 $\cdots$ Aib2 | 0.0057 | 0.0228 | 0.5909 | C6(III) $\cdots$ III | 0.0134 | 0.0448 | 0.5156 |
| Aib4 $\cdots$ III | 0.0109 | 0.0396 | 0.9348 | Aib4 $\cdots$ III | 0.0108 | 0.0392 | 0.8936 |


| Aib5 $\cdots$ Aib4 | 0.0126 | 0.0445 | 0.4304 | Aib5 $\cdots$ Aib4 | 0.0120 | 0.0424 | 0.4722 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ at $\mathbf{C - H} \cdots \mathbf{O}$ | 0.0430 |  |  | $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ at $\mathbf{C - H} \cdots \mathbf{O}$ | 0.0517 |  |  |
| $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ tot | $\mathbf{0 . 1 2 2 2}$ |  |  | $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ tot | $\mathbf{0 . 1 3 1 2}$ |  |  |

Analogous considerations can be made when comparing peptide $\boldsymbol{S} \mathbf{- 1 5}$ (cCTAA $=(1 R, 2 S, 4 R)-\mathbf{V})$ and $\boldsymbol{S - 3}$, whose $\Delta$ h.e. $\sim 14 \%$ (Table 6.1 and 5.4) is justified by a $\Delta_{15-3} \rho_{P}=0.0052$ au and $\Delta_{15-3} \rho_{M}=-$ 0.0034 au (Tables 5.9 and 5.10).
 conformation. All parameters are reported in au.

| peptide $S$-15, <br> $P$-helix |  |  |  | peptide $S$-15, M-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H $\cdots$ O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\varepsilon$ | N-H..OO BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ | $\varepsilon$ |
| V $\cdots$ ACE | 0.0213 | 0.0672 | 0.0625 | V $\cdots$ ACE | 0.0201 | 0.0628 | 0.0588 |
| Aib4 $\cdots$ Aibl | 0.0185 | 0.0577 | 0.0448 | Aib4 $\cdots$ Aib1 | 0.0197 | 0.0620 | 0.0502 |
| Aib5 $\cdots$ Aib2 | 0.0195 | 0.0608 | 0.0613 | Aib5 $\cdots$ Aib2 | 0.0200 | 0.0631 | 0.0636 |
| NMe $\cdots$ V | 0.0216 | 0.0688 | 0.0610 | NMe $\cdots$ V | 0.0227 | 0.0735 | 0.0568 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0809 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0825 |  |  |
| $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| C1H(V) $\cdots$ Ac | 0.0068 | 0.0270 | 0.1628 | C3H(V) $\cdots$ Ac | 0.0104 | 0.0381 | 0.0909 |
| Aib2 $\cdots$ Aib1 | 0.0104 | 0.0378 | 0.7872 | Aib5 $\cdots$ Aib2 | 0.0057 | 0.0230 | 0.4783 |
| Aib5 $\cdots$ Aib2 | 0.0058 | 0.0234 | 0.5909 | Aib5 $\cdots$ Aib4 | 0.0127 | 0.0449 | 0.4198 |
| Aib4 $\cdots$ V | 0.0109 | 0.0395 | 0.9565 | $\mathrm{C} 6 \mathrm{H}(\mathrm{V}) \cdots \mathrm{Nme}$ | 0.0010 | 0.0036 | 0.7500 |
| Aib5 $\cdot$ Aib4 | 0.0126 | 0.0445 | 0.4304 | C6(V) $\cdots \mathrm{V}$ | 0.0155 | 0.0537 | 0.3012 |
| $\sum \rho\left(r_{c}\right)$ at C-H. O | 0.0465 |  |  | $\sum \rho\left(r_{c}\right)$ at C-H. O | 0.0453 |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1274 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1278 |  |  |

Conversely, the difference of about $22 \%$ in helical screw sense selectivity observed between peptides $\boldsymbol{S} \mathbf{- 1 8}($ cCTAA $=(1 R, 2 S, 4 R)$-IIIbmb) and $\boldsymbol{S} \mathbf{- 3}$ is difficult to explain. Indeed, the higher h.e. of peptide $\boldsymbol{S - 1 8}$ is only supported by a slight increase in cCTAA steric hindrance in the $(+x,+y,+z)$ in the $P$-conformation and by a limited weakening of the covalent interactions in the $M$-helix ( $\Delta_{3-18} \rho_{M}=$ 0.0020 au ; Tables 5.9 and 5.11). However, in this case also, DFT calculations supported the results of REMD simulations, since for both peptides $\boldsymbol{S} \mathbf{- 1 8}$ and $\boldsymbol{S} \mathbf{- 3}$ the obtained $\Delta E_{P-M}$ were of $-3.6 \mathrm{kcal} / \mathrm{mol}$ and $-2.8 \mathrm{kcal} / \mathrm{mol}$, respectively (Annex 6.A). Therefore, it seems that some other factors, not detected by QTAIM analysis, might play a role in this particular example.

Table 6.11. Types and properties of BCPs of the $\mathrm{Ac}^{-} \mathrm{Aib}_{2}-(1 R, 2 S, 4 R)$-IIIbmb-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{S} \mathbf{- 1 8}$ in the $P$ - and $M$ helix conformation. All parameters are reported in au.

| peptide $\boldsymbol{S}$-18, $P$-helix |  |  |  | peptide $\boldsymbol{S}$-18, $M$-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ CPs | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\varepsilon$ | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ CPs | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\nabla^{2} \boldsymbol{\rho}\left(r_{c}\right)$ | $\varepsilon$ |
| IIIbmb $\cdots$ Ac | 0.0214 | 0.0674 | 0.0622 | IIIbmb $\cdots$ ACE | 0.0206 | 0.0644 | 0.0570 |
| Aib4 $\cdots$ Aib1 | 0.0194 | 0.0614 | 0.0514 | Aib4 $\cdots$ Aib1 | 0.0198 | 0.0622 | 0.0502 |
| Aib5 $\cdots$ Aib2 | 0.0178 | 0.0555 | 0.0579 | Aib5 $\cdots$ Aib2 | 0.0183 | 0.0576 | 0.0558 |
| NMe $\cdots$ IIIbmb | 0.0225 | 0.0725 | 0.0615 | NMe $\cdots$ IIIbmb | 0.0220 | 0.0705 | 0.0635 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0811 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0807 |  |  |
| $\mathrm{C} \beta-\mathrm{H} \cdots \mathrm{O}$ CP |  |  |  | $\mathrm{C} \beta-\mathrm{H} \cdots \mathrm{O}$ CP |  |  |  |


| C1H(IIIbmb) $\cdots$ Ac | 0.0069 | 0.0274 | 0.1304 | C3H(IIIbmb) $\cdots$ Ac | 0.0104 | 0.0377 | 0.0899 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aib2 $\cdots$ Aib1 | 0.0103 | 0.0376 | 0.9762 | Aib2 $\cdots$ Aib1 | 0.0104 | 0.0378 | 0.9302 |
| Aib4 $\cdots$ Aib1 | 0.0053 | 0.0211 | 1.0000 | Aib5 $\cdots$ Aib2 | 0.0053 | 0.0210 | 0.5556 |
| Aib5 $\cdots$ Aib2 | 0.0057 | 0.0225 | 0.5217 | C6(IIIbmb) $\cdots$ IIIbmb | 0.0104 | 0.0474 | 0.5303 |
| Aib5 $\cdots$ Aib4 | 0.0126 | 0.0445 | 0.4125 | Aib5 $\cdots$ Aib4 | 0.0120 | 0.0426 | 0.4722 |
| $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ at C-H $\cdots \mathbf{O}$ | 0.0408 |  |  | $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ at $\mathbf{C - H} \cdots \mathbf{O}$ | 0.0485 |  |  |
| $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ tot | $\mathbf{0 . 1 2 1 9}$ |  |  | $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ tot | $\mathbf{0 . 1 2 9 2}$ |  |  |

On the contrary, QTAIM analysis well explained why peptide $\boldsymbol{R} \mathbf{- 1 2}$ (cCTAA $=(1 R, 2 R, 4 R)$ IIIawr) had a h.e. of about $8 \%$ higher than that of peptide $\boldsymbol{R} \mathbf{- 5}$ (cCTAA $=(1 R, 2 R, 4 R)$-V). Indeed, although these cCTAAs has structurally similar side chains, similarly located in the Cartesian space, the $\Delta \rho_{P-M}$ of peptide $\boldsymbol{R} \mathbf{- 1 2}$ is 0.0082 au higher than that of peptide $\boldsymbol{R} \mathbf{- 5}$ (Tables 5.7 and 5.12).
Table 6.12. Types and properties of BCPs of the $\mathrm{Ac}_{\mathrm{c}}-\mathrm{Aib}_{2}-(1 R, 2 R, 4 R)$-IIIawr- $\mathrm{Aib}_{2}$-NHMe peptide $\boldsymbol{R}$ - $\mathbf{1 2}$ in the $P$ - and $M$ helix conformation. All parameters are reported in au.


Peptide $\boldsymbol{S} \mathbf{- 6}($ cCTAA $=(S)-V I)$ had an h.e. comparable to that of $\boldsymbol{S} \mathbf{- 3}$ and $\boldsymbol{R}-\mathbf{5}$, although its side chain is not well located in either $(-x,+y,+z)$ or $(+x,+y,-z)$. However, the good h.e. can be attributed to the strong noncovalent interaction network, involving the cCTAA, of peptide $S$-6 in the $P$ conformation, together with a poor interaction network observed in the $M$-conformation, where the cCTAA is only marginally involved (Table 6.13).
Table 6.13. Types and properties of BCPs of the $\mathrm{Ac}_{\mathrm{C}}-\mathrm{Aib}_{2}-(S)$-VI-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{S}$-6 in the $P$ - and $M$-helix conformation. All parameters are reported in au.

| peptide $\boldsymbol{S}-\mathbf{6}$, <br> $\boldsymbol{P}$-helix |  |  | peptide $\boldsymbol{S}-\mathbf{6}$, <br> $\boldsymbol{M}$-helix |  |  |  |  |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :--- |
| N-H $\cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ | $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\nabla}^{\boldsymbol{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| $\mathrm{VI} \cdots$ ACE | 0.0190 | 0.0601 | 0.0637 | VI $\cdots$ ACE | 0.0172 | 0.0539 | 0.0734 |
| Aib4 $\cdots$ Aib1 | 0.0196 | 0.0616 | 0.0553 | Aib4 $\cdots$ Aib1 | 0.0205 | 0.0649 | 0.0614 |
| Aib5 $\cdots$ Aib2 | 0.0172 | 0.0536 | 0.0492 | Aib5 $\cdots$ Aib2 | 0.0178 | 0.0554 | 0.0415 |


| NMe $\cdots$ VI | 0.0216 | 0.0684 | 0.0650 | NMe $\cdots$ VI | 0.0201 | 0.0629 | 0.0628 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0774 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0756 |  |  |
| $\mathbf{C \beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | C $\beta$-H $\cdots$ O BCP |  |  |  |
| VI(C-H) $\cdots$ Ac | 0.0075 | 0.0296 | 0.0926 | $\mathrm{VI}(\mathrm{C}-\mathrm{H}) \cdots \mathrm{Ac}$ | 0.0107 | 0.0350 | 0.0521 |
| $\mathrm{VI}\left(\mathrm{CH}_{2}\right) \cdot \mathrm{Aibl}\left(\mathrm{CH}_{3}\right)$ | 0.0037 | 0.0129 | 0.3125 | Aib5 $\cdots$ Aib2 | 0.0050 | 0.0200 | 0.6000 |
| Aib5 $\cdots$ Aib2 | 0.0051 | 0.0203 | 0.5882 | VI $\cdots$ Aib2 | 0.0142 | 0.0493 | 0.2718 |
| VI $\cdots$ Aib2 | 0.0127 | 0.0452 | 0.5417 | Aib4 $\cdots$ VI | 0.0120 | 0.0431 | 0.6308 |
| Aib4 $\cdots$ VI | 0.0111 | 0.0402 | 0.8600 |  |  |  |  |
| Aib5 $\cdot$ Aib4 | 0.0123 | 0.0436 | 0.4286 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0524 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0544 |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1298 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1300 |  |  |

When comparing peptides $\boldsymbol{R} \mathbf{- 8}(\mathrm{cCTAA}=(1 S, 2 R, 3 R, 4 R)$-VIIb) and $\boldsymbol{S} \mathbf{- 1 0}(\mathrm{cCTAA}=$ $(1 S, 2 S, 3 R, 4 R)$-VIIIb), it can be noticed that the former peptide has a h.e. of about $13 \%$ lower than that of $\boldsymbol{S - 1 0}$. This difference cannot be ascribed to differences in steric hindrance between the two cCTAAs, which is equivalent; however, QTAIM calculations gave a $\Delta \rho_{P-M}$ of 0.0032 and 0.0127 au for peptides $\boldsymbol{R} \mathbf{- 8}$ and $\boldsymbol{S} \mathbf{- 1 0}$, respectively (Tables 5.14 and 5.15), indicating that the difference in helical screw sense selectivity of these cCTAAs is only depending on their electronic properties.

Table 6.14. Types and properties of BCPs of the $\mathrm{Ac}^{-} \mathrm{Aib}_{2}-(1 S, 2 R, 3 R, 4 R)$ - VIIb- $\mathrm{Aib}_{2}$-NHMe peptide $\boldsymbol{R}$ - $\mathbf{8}$ in the $P$ - and $M$ helix conformation. All parameters are reported in au.

| peptide $\boldsymbol{R}$-8, $\boldsymbol{P}$-helix |  |  |  | peptide $\boldsymbol{R}$-8, $M$-helix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-H.*X BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\varepsilon$ | N-H.․ O BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\varepsilon$ |
| VIIb ${ }^{\text {a }}$ ACE | 0.0126 | 0.0399 | 0.0424 | VIIb ${ }^{\text {a }}$ ACE | 0.0133 | 0.0426 | 0.0952 |
| Aib4**Aib1 | 0.0152 | 0.0477 | 0.0318 | Aib4**Aib1 | 0.0209 | 0.0670 | 0.0596 |
| Aib5...Aib2 | 0.0190 | 0.0594 | 0.0637 | Aib5 ...Aib2 | 0.0195 | 0.0626 | 0.0607 |
| NMe. ${ }^{\text {VVIIb }}$ | 0.0214 | 0.0680 | 0.0571 | NMe ${ }^{\text {- VIIIb }}$ | 0.0219 | 0.0706 | 0.0595 |
| $\mathrm{VIIb}(\mathrm{SH}) \cdots \mathrm{Ac}$ | 0.0201 | 0.0657 | 0.0931 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0883 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0756 |  |  |
| $\mathbf{C \beta}-\mathrm{H} \cdots \mathrm{X} \mathrm{BCP}$ |  |  |  | C $\beta$-H‥0 BCP |  |  |  |
| Aibl $\cdot \mathrm{VIIb}(\mathrm{SH})$ | 0.0047 | 0.0162 | 0.3174 | VIIb (C6-H) $\cdots$ Ac | 0.0087 | 0.0309 | 0.1094 |
| Aib2 $\cdot$ Aibl | 0.0108 | 0.0385 | 0.5893 | $\mathrm{VIIb}(\mathrm{C} 3-\mathrm{H}) \cdot \mathrm{VIIb}$ | 0.0200 | 0.0791 | 0.7838 |
| Aib5 $\cdots$ Aib2 | 0.0057 | 0.0227 | 0.5217 | VIIb(C7-H) $\cdots$ VIIb | 0.0138 | 0.0484 | 0.2979 |
| Aib5*Aib4 | 0.0126 | 0.0447 | 0.4375 | Aib5 $\cdots$ Aib4 | 0.0124 | 0.0439 | 0.4359 |
| $\sum \rho\left(r_{c}\right)$ at C-H $\cdots \mathrm{O}$ | 0.0338 |  |  | $\sum \boldsymbol{\rho}\left(r_{c}\right)$ at $\mathbf{C}-\mathrm{H} \cdots \mathrm{O}$ | 0.0549 |  |  |
| $\mathrm{N} \cdots \mathrm{OCPs}$ |  |  |  |  |  |  |  |
| VIIb ${ }^{\text {a }}$ Aib1 | 0.0116 | 0.0363 | 0.3191 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N} \cdots \mathrm{O}$ | 0.0116 |  |  |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1337 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1305 |  |  |

Table 6.15. Types and properties of BCPs of the $\mathrm{Ac}^{2}-\mathrm{Aib}_{2}-(1 S, 2 S, 3 R, 4 R)$-VIIIb-Aib ${ }_{2}$-NHMe peptide $\boldsymbol{S}$ - $\mathbf{1 0}$ in the $P$ - and $M$ helix conformation. All parameters are reported in au.

| peptide $\boldsymbol{S}-10$, <br> $\boldsymbol{P}$-helix |  |  | peptide $\boldsymbol{S}-10$, <br> $\boldsymbol{M}$-helix |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ | $\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ BCP | $\boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}\left(\boldsymbol{r}_{\boldsymbol{c}}\right)$ | $\boldsymbol{\varepsilon}$ |
| VIIIb $\cdots$ ACE | 0.0157 | 0.0476 | 0.0385 | VIIIb $\cdots$ ACE | 0.0174 | 0.0546 | 0.0773 |
| Aib4 $\cdots$ Aib1 | 0.0164 | 0.0512 | 0.0345 | Aib4 $\cdots$ Aib1 | 0.0214 | 0.0682 | 0.0576 |
| Aib5 $\cdots$ Aib2 | 0.0194 | 0.0608 | 0.0664 | Aib5 $\cdots$ Aib2 | 0.0144 | 0.0455 | 0.0548 |


| NMe $\cdots$ VIIIb | 0.0213 | 0.0676 | 0.0576 | NMe $\cdots$ VIIIb | 0.0218 | 0.0694 | 0.0688 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{VIIIb}(\mathrm{OH}) \cdot \cdot \mathrm{Ac}$ | 0.0252 | 0.0930 | 0.0811 | $\operatorname{VIIIb}(\mathrm{OH}) \cdots \mathrm{Aib} 2$ | 0.0222 | 0.0743 | 0.0513 |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0980 |  |  | $\sum \rho\left(r_{c}\right)$ at $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ | 0.0972 |  |  |
| $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  | $\mathbf{C} \boldsymbol{\beta}-\mathrm{H} \cdots \mathrm{O}$ BCP |  |  |  |
| Aib1 $\cdots$ Ac | 0.0105 | 0.0382 | 0.7826 | VIIIb(C6-H) $\cdots$ Ac | 0.0081 | 0.0286 | 0.1034 |
| VIIIb(C4-H) $\cdots$ Ac | 0.0081 | 0.0278 | 0.2241 | VIIIb(C7-H) $\cdots$ VIb | 0.0147 | 0.0498 | 0.1405 |
| Aib2 $\cdots$ Aib1 | 0.0110 | 0.0392 | 0.5000 | Aib4 $\cdots$ VIIIb | 0.0122 | 0.0439 | 0.6984 |
| Aib5 $\cdots$ Aib2 | 0.0053 | 0.0213 | 0.5882 | Aib5 $\cdots$ Aib4 | 0.0121 | 0.0428 | 0.4459 |
| Aib5 - Aib4 | 0.0124 | 0.0440 | 0.4605 |  |  |  |  |
| $\sum \boldsymbol{\rho}\left(\boldsymbol{r}_{c}\right)$ at C-H $\cdots \mathrm{O}$ | 0.0473 |  |  | $\sum \rho\left(r_{c}\right)$ at C-H..0 | 0.0471 |  |  |
| N $\cdots$ O BCP |  |  |  |  |  |  |  |
| VIIIb $\cdots$ Aib1 | 0.0118 | 0.0371 | 0.3043 |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ at $\mathrm{N} \cdots \mathrm{O}$ | 0.0118 |  |  |  |  |  |  |
| $\sum \rho\left(r_{c}\right)$ tot | 0.1571 |  |  | $\sum \rho\left(r_{c}\right)$ tot | 0.1443 |  |  |

Summarizing, REMD simulations together with QTAIM calculations on Ac-Aib $2_{2}$-cCTAA-Aib $2_{2}$ NHMe model peptides showed that the $P$-helical screw sense selectivity is due to steric hindrance exerted by the the cCTAA parallel to the peptide helix axis, without particular preferences for the region downstream and upstream of the cCTAA itself. However, when the side chain is located in the upstream semiaxis, it also has to point toward the opposite direction of the helical screw sense (i.e. the $(-x,+y,+z)$ sector of the Cartesian space indicated in Figure 6.2). On the contrary, if the side chain is located in the downstream semiaxis, its encumbrance needs to follow the helical screw sense direction (i.e. the $(+\mathrm{x},+\mathrm{y},-\mathrm{z})$ sector). In addition, quite strong noncovalent interactions consisting of classical N - $\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \mathrm{H}$-bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions can improve the helical screw sense selectivity exerted by cCTAAs.

At the light of this, $(1 S, 2 R, 4 R)$-IV turned out to be a modest helical stabilizer, ${ }^{72}$ but an excellent $P$-helix inducer. Indeed, this CTAA develops its steric hindrance in the upstream direction and is able to strengthen the peptide noncovalent interaction network only in the $P$-helix configuration. Conversely, $(1 R, 2 R, 4 R)-\mathbf{V}$ resulted an excellent helical stabilizer, but a relatively poor $P$-helix inducer.

Therefore, the design of a peptide including one or more cCTAAs and with well-defined helical secondary structure requires to seek a reasonable compromise between structural features of the cCTAA, needed to allow the binding efficiently to the protein target, and those required to obtain a stable helix and with a defined screw sense.

### 6.3 Material and Methods

REMD Simulations. Force-field parameters for Aib, II, IIIa, IIIb, IV, V and VI were taken from previous work (Annex 5.B), ${ }^{72}$ while VIIa, VIIb, VIIIa and VIIIb cCTAAs were parameterized by following the same protocol adopted before. ${ }^{72}$

The pmemd module of the Amber14 suite ${ }^{192}$ was used to perform REMD simulations of Ac-Aib ${ }_{2}-$ cCTAA-Aib 2 -NHMe peptides, starting from extended conformations ( $\varphi=\psi=\omega=180^{\circ}$ ) and applying the protocol previously described. ${ }^{72}$ Briefly, the combination of AMBER ff99SB force field ${ }^{141}$ and
$\mathrm{OBC}(\mathrm{II})(\mathrm{igb}=5)$ solvent model ${ }^{172}$ was chosen, and 12 replicas of 250 ns each were run spanning a temperature range from 260.00 to 658.94 K , for a total of $3 \mu \mathrm{~s}$ simulation for each peptide.

The trajectories extracted at 308.53 K were submitted to cluster analyses with cpptraj ${ }^{192}$ at $50-$ $100,100-150,150-200,200-250 \mathrm{~ns}$ time intervals using the previously reported protocol. ${ }^{72}$ Here, the simulation was considered converged when the standard deviations of the cluster populations corresponding to $P$ - and $M$-helices ( $\sigma_{\mathrm{P} \%}$ and $\sigma_{\mathrm{M} \%}$, respectively) were less than $5 \%$ among all intervals. We also verified that simulations conducted on peptides containing enantiomeric CTAAs gave equal and opposite h.e., within the threshold of $5 \%$. As expected, peptide 11 which contains only Aib, also gave h.e. below 5\%.

Mono and bidimensional potentials of mean force (PMF) were computed using the weighted histogram analysis method (WHAM and WHAM-2d) ${ }^{232}$ on the $\varphi_{2}, \psi_{3}, \varphi_{3}$ and $\psi_{4}$ dihedrals obtained from the whole 250 ns trajectories at 260, 283, 308 and 335 K extracted from the REMD simulations. The histogram limit was set to $\pm 180^{\circ}$ over 100 bins with a tolerance of 0.01 .

QTAIM Calculations. Gaussian $09^{233}$ was used to optimize the $P$ - and $M$-helices of selected peptides using the mPW1B95/6-31+G(d,p) level of theory ${ }^{234}$ and the CPCM solvent model for water, ${ }^{236}$ a combination successfully used by our group in similar instances. ${ }^{72,249}$ The same level of theory was used to confirm, by vibrational analyses, that the optimized geometries were true minima. The obtained wave functions were submitted to QTAIM calculations with the AIM2000 software ${ }^{250}$ by setting the same parameters used previously. ${ }^{72}$ In this case also, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and backbone $\mathrm{N} \cdots \mathrm{O}$ bond critical points (BCPs) were evaluated in terms of strength, type and stability by calculating their electronic density $\rho\left(r_{c}\right)$, the sign of the Laplacian $\nabla^{2}\left(r_{c}\right)$ and their ellipticity $\varepsilon$; BCPs with $\varepsilon>1$ were considered unstable and discarded.

## 7 MECHANISMS OF HELICAL SCREW SENSE INVERSION

### 7.1 INTRODUCTION

Beyond the knowledge of the mechanisms involved in the helix secondary structure stabilization ${ }^{72}$ and in the helical screw sense selectivity ${ }^{86}$ exerted by cCTAAs, understanding how the interconversion between $P$ - and $M$-helices occurs represents an important, although challenging, goal.

Indeed, many events in biological systems involve the coupling of selective molecular recognition to a conformational response, ${ }^{100,251}$ leading to modulation of function in peptides, proteins or nucleic acids. ${ }^{99}$

In PPIs modulation, the switch from an inactive to an active conformation of a peptide modulator can represent an advantage if it allows a control of its kinetics and site of action. ${ }^{252}$ For example, the possibility of regulating PPI inhibitors activity with light was investigated by introducing photosensitive cross-linkers in the peptide chain. ${ }^{253-255}$

Since the secondary structure motif is fundamental in protein-protein recognition, one of the two helical screw senses can represent the inactive conformation (or a prodrug, in the case of switchable peptides), because the AAs side chains are differently oriented in space. Therefore, a detailed knowledge on how the helical screw sense inversion occurs can be helpful for the design of screw sense switchable PPI modulator.

At the light of this, in collaboration with Professor Jonathan Clayden's group at the University of Manchester, the mechanisms involved in this process have been studied.

Clayden's group synthesized Cbz-( $S$ )- $\alpha \mathrm{MeVal}_{2}-\mathrm{Aib}_{5}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}$ (peptide 1) and Cbz-$(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{Aib}_{5}-(R)-\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}(2)$ peptides. As expected, the former peptide, containing only $(S)-\alpha \mathrm{MeVal}$, had a X-ray structure corresponding to a $P-3_{10}$-helix conformation (Figure 7.1 A ), since it has been proved that $(S)-\alpha \mathrm{MeVal}$ induces a $P$ conformation once inserted in an otherwise achiral helical peptide. ${ }^{96}$ Conversely, peptide 2, bearing $(S)-\alpha \mathrm{MeVal}$ at the N -termini and $(R)-\alpha \mathrm{MeVal}$ at the C-termini, gave a X -ray structure corresponding to a $P-3_{10}$-helix from the N -terminus to Aib5 and to a $M$-helix from Aib5 to the C-terminus (Figure 7.1B). However, these peptides and their relative crystallographic structures could not provide satisfactory information about either the mechanism involved in the helical screw sense inversion or the energy barriers associated to the migration of the screw sense inversione along the peptide chain.

Therefore, REMD simulations were performed to obtain statistically relevant conformations of the two peptides. PMF analysis was then applied to evaluate the energy barriers associated to the migration of the reverse along the peptide chain. Furthermore, PNEB simulations were carried out on achiral Aib-containing peptides with the aim of describing qualitatively the mechanism behind the helical screw sense inversion.


Figure 7.1. X-ray structures of $\mathrm{Cbz}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{Aib}_{5}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}$ peptide 1 (A) and $\mathrm{Cbz}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{Aib}_{5}-(R)$ $\alpha \mathrm{MeVal}_{2}$-NHMe peptide 2 (B).

### 7.2 Results and Discussion

The results of cluster analyses performed on the 297.31 K implicit solvent trajectories of peptides 1 and 2, reported in Tables 6.1, showed that in both cases the REMD simulations were able to reproduce the crystallographic data (Figure 7.2). Indeed, the most populated clusters of peptides $\mathbf{1}$ and 2 ( $90.1 \%$ and $69.3 \%$, respectively) have a RMSD from the backbone of the correspondent X-ray structures of $1.4 \AA$ and $1.0 \AA$, respectively, and the structures are superimposable to the crystallographic ones (Figure 7.2). As expected, peptide 1 is a complete right-handed $3_{10}$-helix, whereas peptide 2 corresponds to a right-handed $3_{10}$-helix from the N -terminus to Aib5 and to a lefthanded $3_{10}$-helix from Aib5 to the C-terminus.

A


Figure 7.2. A) Superposition of X-ray structure (green) and representative structure of the most populated cluster (magenta) of peptide $\mathbf{1}$ from the analysis of the 297.31 K REMD trajectory. B) Superposition of X-ray structure (green) and representative structure of the most populated cluster (magenta) of peptide 2 from the analysis of the 297.31 K REMD trajectory.

Moreover, the most stable H-bonds (occupancies > 50\%), which are those identifiable in the Xray structures also (Figure 7.1 and Table 7.3), involve $i+3$ and $i$ residues, indicating the presence of a $3_{10}$-helix or a $\beta$-turn. It has to be noted that the occupancies of the H -bonds between $(R)-\alpha \mathrm{MeVal} 8$ and Aib5 and between ( $R$ )- $\alpha \mathrm{MeVal} 9$ and Aib6 of peptide 2 are about $20 \%$ lower than those between $(S)$ $\alpha \mathrm{MeVal} 8$ and Aib5 and between $(S)-\alpha \mathrm{MeVal} 9$ and Aib6 of peptide 1. This can be explained by the reduced stability of the screw sense preference of peptide 2, due to the competition between the $(S)$ and $(R)-\alpha \mathrm{MeVal}$ residues located at the N - and C-terminus, respectively. This is also demonstrated by considering the difference between the two percentages of the most populated clusters: while REMD simulation of peptide 1 mostly resulted in a unique preferential conformation, corresponding to the right-handed $3_{10}$-helix, REMD performed on peptide 2 gave additional minor clusters with helical screw sense inversion occurring at different points along the chain (Table 7.1).

Table 7.1. Cluster analyses of the final 50 ns of the 297.31 K REMD trajectories of peptide $\mathbf{1}$ and $\mathbf{2}$.

| 1 | pop\% | $\varphi_{0}$ | $\psi 1$ | $\varphi_{1}$ | $\psi 2$ | $\varphi_{2}$ | $\psi 3$ | $\varphi 3$ | $\psi 4$ | $\varphi 4$ | $\psi 5$ | $\varphi 5$ | \%6 | $\varphi 6$ | \%7 | $\varphi_{7}$ | $\psi 8$ | $\varphi 8$ | $\psi 9$ | RMSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X-ray |  | -55.0 | -37.5 | -52.1 | -34.2 | -49.8 | -39.5 | -53.0 | -40.6 | -57.2 | -40.0 | -57.6 | -32.8 | -60.2 | -20.9 | -44.0 | -49.9 | -58.3 | -38.5 |  |
| c0 | 90.1 | -62.9 | -13.7 | -61.5 | -23.3 | -34.8 | -32.0 | -46.3 | -31.0 | -48.3 | -24.8 | -50.8 | -15.4 | -52.3 | -35.7 | -42.5 | -24.9 | -61.7 | -17.3 | 1.4 Å |
| c1 | 8.6 | -64.4 | -0.9 | -64.1 | -8.4 | 45.9 | 24.3 | 49.7 | 27.8 | 53.7 | 18.8 | 46.9 | 34.1 | 56.0 | 26.3 | -68.5 | -3.8 | -57.9 | -30.4 | 2.3 Å |
| c2 | 1.2 | -53.8 | -33.1 | -65.8 | -14.0 | 51.7 | 38.1 | 53.0 | 26.8 | 47.1 | 29.3 | 44.9 | 38.1 | 43.6 | 23.0 | 48.2 | 17.5 | -50.7 | -30.1 | 2.3 A |
| c3 | 0.1 | -50.2 | -29.2 | -44.1 | -39.8 | -51.6 | -25.2 | -45.2 | -37.5 | -51.3 | -33.8 | -39.6 | -36.5 | -48.7 | -26.6 | 60.5 | 20.4 | 51.4 | 11.2 | 2.1 A |
| c4 | 0.0 | -54.6 | -24.0 | -56.3 | -21.7 | -47.0 | -35.2 | -52.9 | -8.8 | 37.3 | 44.1 | 62.5 | 25.4 | -46.4 | 157.4 | -52.6 | -19.6 | -59.2 | -1.8 | 3.3 A |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X-ray |  | -55.3 | -37.7 | -46.5 | -33.6 | -55.2 | -27.4 | -51.0 | -27.6 | -61.6 | -19.4 | -48.4 | -39.9 | 49.5 | 42.8 | 51.6 | 34.2 | 56.5 | 36.6 |  |
| c0 | 69.3 | -41.2 | -25.1 | -52.6 | -35.4 | -51.7 | -25.4 | -54.1 | -17.1 | -52.4 | -39.0 | -40.2 | -19.9 | 56.0 | 11.3 | 65.3 | 9.6 | 50.4 | 28.9 | 1.0 A |
| c1 | 26.7 | -49.7 | -21.7 | -51.1 | -34.7 | -39.5 | -29.8 | -51.6 | -11.8 | -56.4 | -33.0 | -37.6 | -33.2 | -54.7 | -19.0 | 49.4 | 26.2 | 55.7 | 11.2 | 2.0 A |
| c2 | 3.7 | -54.5 | -30.0 | -67.1 | -19.0 | -47.7 | -45.4 | -62.8 | -7.5 | -53.1 | -16.4 | -47.2 | -33.9 | -56.5 | -19.3 | -41.1 | -39.3 | 58.0 | 23.5 | 1.9 A |
| c3 | 0.3 | -39.3 | -24.4 | -50.9 | -7.3 | -51.9 | -4.9 | 47.1 | 26.0 | 56.2 | 28.7 | 43.4 | 47.3 | 49.7 | 26.7 | -68.9 | -42.2 | -59.7 | -13.2 | 2.6 A |
| c4 | 0.0 | -74.8 | 3.5 | -57.9 | -18.7 | -40.5 | -35.7 | -46.9 | -23.7 | -60.6 | -15.6 | -46.0 | -10.3 | 51.1 | -153.9 | 39.5 | 27.5 | 50.5 | 10.5 | 2.6 A |

Table 7.2. Cluster analysis of the final 60 ns of the 303.60 K REMD trajectory of peptide $\mathbf{2}$ in explicit methanol.

|  | pop\% | $\varphi_{0}$ | $\psi_{1}$ | $\varphi_{1}$ | $\psi_{2}$ | $\varphi_{2}$ | $\psi_{3}$ | $\varphi 3$ | $\psi^{4}$ | $\varphi 4$ | $\psi 5$ | $\varphi 5$ | $\psi 6$ | $\varphi 6$ | $\psi_{7}$ | $\varphi_{7}$ | $\psi 8$ | $\varphi 8$ | $\psi 9$ | RMSD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X-ray |  | -55.3 | -37.7 | -46.5 | -33.6 | -55.2 | -27.4 | -51.0 | -27.6 | -61.6 | -19.4 | -48.4 | -39.9 | 49.5 | 42.8 | 51.6 | 34.2 | 56.5 | 36.6 |  |
| c0 | 53.5 | -71.1 | -18.3 | -45.6 | -13.0 | -52.9 | -13.3 | -53.9 | -21.5 | -50.5 | -31.2 | 50.6 | 18.6 | 48.4 | 31.8 | 51.8 | 7.2 | 53.2 | 16.7 | 2.1 Å |
| c1 | 12.7 | 62.9 | 23.6 | 39.3 | 21.5 | 54.6 | 35.5 | 44.8 | 29.0 | 42.1 | 40.1 | 55.5 | 13.5 | 56.3 | 0.9 | 60.8 | 13.8 | 48.1 | 6.1 | 2.1 Å |
| c2 | 10.0 | -44.6 | -31.8 | -52.3 | -19.4 | -45.5 | -18.5 | -44.6 | -26.3 | -47.7 | -19.4 | -56.6 | -16.2 | 47.7 | 27.3 | 48.7 | 35.7 | 59.8 | 12.7 | 0.9 Å |
| c3 | 8.9 | -51.2 | -18.7 | -52.5 | -24.2 | -30.7 | -55.5 | -37.9 | -32.1 | -50.6 | -31.7 | -43.1 | -18.7 | -47.4 | -8.1 | 52.4 | 17.2 | 58.3 | 26.3 | 2.0 Å |
| c4 | 7.9 | -68.9 | 9.4 | -55.8 | -18.6 | -51.2 | -33.4 | 62.1 | 9.2 | 37.1 | 29.4 | 48.5 | 19.9 | 49.8 | 7.7 | 36.9 | 20.2 | 71.9 | 18.2 | 2.0 Å |
| c5 | 3.1 | -49.8 | -22.4 | -60.0 | -20.7 | -55.0 | -28.6 | -56.0 | -26.4 | -56.6 | -19.5 | -47.5 | -43.1 | -48.7 | -19.8 | 53.1 | 17.8 | 75.3 | 8.9 | 2.2 A |
| c6 | 1.8 | -63.9 | -17.9 | -57.2 | -8.7 | -52.7 | -15.4 | -44.8 | -29.1 | -53.1 | -23.3 | -35.6 | -30.8 | -65.2 | -16.3 | -44.8 | 0.5 | 48.3 | 25.5 | 2.1 A |
| c7 | 1.4 | -53.6 | -20.0 | -56.2 | -40.0 | -44.8 | -22.5 | -64.2 | -24.2 | -46.2 | -10.9 | -62.6 | -19.3 | -51.8 | -22.3 | -50.6 | -14.7 | 72.8 | 9.7 | 1.9 Å |
| c8 | 0.4 | -47.8 | -32.8 | -71.1 | 1.6 | -21.2 | -49.3 | -44.5 | -26.7 | -46.4 | -17.9 | -51.2 | -18.7 | -61.7 | -4.2 | -56.5 | 11.0 | 52.0 | 8.7 | 2.3 Å |
| c9 | 0.2 | -51.8 | -14.8 | -58.0 | -10.8 | -47.2 | -14.3 | -47.1 | -27.6 | -46.6 | -28.9 | -43.6 | -29.2 | -40.7 | -36.9 | -49.6 | -28.1 | -40.4 | -40.3 | 1.7 A |
| c10 | 0.1 | -56.0 | -16.3 | -44.3 | -22.7 | -62.0 | -31.2 | -31.5 | -30.2 | -42.9 | -30.4 | -71.2 | 11.3 | -42.1 | -47.9 | 53.4 | -4.0 | 129.3 | -3.1 | 2.0 A |
| c11 | 0.0 | 40.3 | 39.2 | 50.9 | 25.8 | 52.1 | 29.4 | 40.0 | 30.7 | 55.3 | 18.2 | 46.3 | 25.5 | 40.2 | 41.9 | 65.1 | 14.0 | 110.1 | 10.7 | 2.0 A |


| c12 | 0.0 | -33.9 | -40.3 | -42.7 | -29.9 | -60.0 | -23.7 | -55.1 | 8.8 | -51.4 | -31.8 | 46.6 | 26.0 | 48.3 | 27.1 | 24.9 | 35.2 | 71.4 | 19.8 | $2.5 \AA$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| c13 | 0.0 | -53.5 | -20.2 | -61.4 | -27.9 | -46.0 | -14.1 | -49.9 | -27.6 | -56.3 | -21.5 | -70.3 | -5.2 | -42.4 | -25.0 | 59.4 | -8.0 | 71.3 | 12.0 | $1.9 \AA$ |
| c14 | 0.0 | -43.6 | -22.3 | -59.4 | -13.3 | -37.5 | -49.3 | -49.2 | -30.0 | -71.5 | -18.6 | -64.0 | -10.7 | -50.4 | -34.0 | -61.4 | 13.0 | 56.4 | 9.1 | $1.9 \AA$ |

Table 7.3. H-bond analyses of 297.31 K implicit solvent REMD trajectories of peptides $\mathbf{1}$ and $\mathbf{2}$ (Donor, $\mathrm{N}-\mathrm{H}$; Acceptor, $\mathrm{C}=\mathrm{O}$ ).

| peptide 1 |  |  | peptide 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occupancy | donor | acceptor | occupancy |
| Aib4 | (S)- $\alpha$ MeVal1 | 90.24\% | Aib4 | (S)- $\alpha \mathrm{MeVal1}$ | 88.43\% |
| Aib5 | (S)- $\alpha \mathrm{MeVal} 2$ | 93.05\% | Aib5 | (S)- $\alpha \mathrm{MeVal} 2$ | 86.74\% |
| Aib6 | Aib3 | 92.92\% | Aib6 | Aib3 | 86.11\% |
| Aib7 | Aib4 | 92.74\% | Aib7 | Aib4 | 86.95\% |
| Aib7 | Aib5 | 6.52\% | Aib7 | Aib5 | 8.42\% |
| (S)- $\alpha \mathrm{MeVal} 8$ | Aib5 | 73.44\% | (R)- $\alpha \mathrm{MeVal} 8$ | Aib5 | 56.07\% |
| (S)- $\alpha \mathrm{MeVal8}$ | Aib6 | 7.46\% | (R)- $\alpha \mathrm{MeVal8}$ | Aib6 | 10.50\% |
| (S)- $\alpha \mathrm{MeVal} 9$ | Aib6 | 77.69\% | (R)- $\alpha \mathrm{MeVa} 19$ | Aib6 | 59.00\% |
| (S)- $\alpha \mathrm{MeVal} 9$ | Aib7 | 6.91\% | (R)- $\alpha \mathrm{MeVal} 9$ | Aib7 | 8.40\% |

Furthermore, in the representative structure of the most populated cluster of peptide 2 , the carbonyl group of Aib5 and the amino group of $(R)-\alpha \mathrm{MeVal8}$ are not involved in any H-bond, as also observed in the X-ray structure. However, from Hbond analysis we noticed the presence of both $i+3 \rightarrow i$ and $i+2 \rightarrow i \mathrm{H}$-bonds involving Aib5 and ( $R$ )- $\alpha \mathrm{MeVal} 8$, underscoring the presence of $\beta$ - and $\gamma$-turns, respectively. Moreover, even if the H -bonds corresponding to $\gamma$-turns are also present in the simulation performed on peptide $\mathbf{1}$, their occupancies are higher for peptide $\mathbf{2}$ (Table 7.3). The low occupancy (around $10 \%$ ) of these H -bonds means that $\gamma$-turns are only transient and the differences showed analyzing the REMD trajectories of the two peptides suggest that $\gamma$-turns occur more frequently where the competition between the two helical screw senses is more pronounced. Thus, we can hypothesize that $\gamma-$ turns can play an active role in the inversion of the helical screw sense. The presence of $\gamma$-turns with poor occupancies in the trajectory of peptide 1 can be attributed to the mild effect of the achiral residues, which, in principle, can equally assume both the $P$ and the $M$-conformations. Indeed, for peptide 1 , the $i+2 \rightarrow i \mathrm{H}$-bond with the highest occupancy is the one involving $(S)-\alpha \mathrm{MeVal8}$ and Aib6, which is the Aib residue less effected by the presence of the $(S)-\alpha \mathrm{MeV}$ al at the N -terminus.

The different behavior of the two peptides is confirmed by monodimensional PMF profiles as a function of $\varphi$ and $\psi$ dihedrals (Figure 7.3). Indeed, for both peptides we only observed the presence of two minima corresponding to the $P$ - and $M$-helical conformations. However, only the PMF profiles as a function of $\varphi_{1}, \varphi_{2}, \psi_{2}$ and $\psi_{3}$ dihedrals, which are those where the $\mathrm{C} \alpha S$ enantiomer is involved, are identical in the two peptides, showing a global and a local minimum corresponding to the $P$-helix and $M$-helix, repsectively. PMF profiles of peptide 1 always resulted in a preference for the right-handed helical conformation; conversely, for peptide 2 the PMF as a function of $\varphi_{3-5}$ and $\psi_{4-6}$ showed a progressive reduction in the energy difference between the two minima (Figure $5.6, \Delta E_{\mathrm{M}}$ ), which culminated in an inversion of the screw sense preference in $\operatorname{PMF}\left(\varphi_{6-8}\right)$ and $\operatorname{PMF}\left(\psi_{5-9}\right)$, where the global minimum corresponded to the $M$-helix.


Figure 7.3. PMF as a function of $\varphi$ (A) and $\psi(\mathrm{B})$ dihedrals for peptide $\mathbf{1}$ and PMF as a function of $\varphi$ (C) and $\psi$ (D) dihedrals for peptide 2.

In details, concerning peptide $1, \Delta E_{\mathrm{M}}$ for $\operatorname{PMF}\left(\varphi_{0}\right)$ is of about $2.5 \mathrm{kcal} / \mathrm{mol}$ in favor of the $P$-helix at the considered temperatures; then, it drops of about $1 \mathrm{kcal} / \mathrm{mol}$ from $\operatorname{PMF}\left(\varphi_{1}\right)$ to $\operatorname{PMF}\left(\varphi_{2}\right)$, together with a further decrease of less than $0.5 \mathrm{kcal} / \mathrm{mol}$ from $\operatorname{PMF}\left(\varphi_{2}\right)$ to $\operatorname{PMF}\left(\varphi_{3}\right)$. The $\Delta E_{M}$ value for $\operatorname{PMF}\left(\varphi_{4-5}\right)$ remained constant, while $\Delta E_{\mathrm{M}}$ for $\operatorname{PMF}\left(\varphi_{7-8}\right)$ increased again up to $2.5 \mathrm{kcal} / \mathrm{mol}$, always favoring the $P$-helix.

The same behavior is observable for PMF on $\psi$ dihedrals, although in this case the energy barrier between the two minima $\left(\Delta E_{\mathrm{M}}{ }^{\dagger}\right)$ can be overcome at the analyzed temperatures, as previously observed. ${ }^{72,86}$ In this case, $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ decreased progressively from a maximum of $3 \mathrm{kcal} / \mathrm{mol}$ reached for $\operatorname{PMF}\left(\psi_{2}\right)$ to $1.5 \mathrm{kcal} / \mathrm{mol}$ showed by $\operatorname{PMF}\left(\psi_{6}\right)$ and then increased again to $2.5 \mathrm{kcal} / \mathrm{mol}$ for $\operatorname{PMF}\left(\psi_{8}\right)$. It should be noticed that $\operatorname{PMF}\left(\psi_{9}\right)$ showed a unique minimum corresponding to the $P$-helix, suggesting that the effect of $(S)-\alpha \mathrm{MeVal}$ is particularly strong on this dihedral.

On the contrary, PMF profiles for peptide 2 as a function of $\varphi$ dihedrals showed a progressive $\Delta E_{\mathrm{M}}$ decrease from a maximum of $2.5 \mathrm{kcal} / \mathrm{mol}$ in favor of the $P$-helical
conformation, observed for $\operatorname{PMF}\left(\varphi_{1}\right)$, to a minimum of less of $0.5 \mathrm{kcal} / \mathrm{mol}$ for $\operatorname{PMF}\left(\varphi_{5}\right)$. Successively, $\operatorname{PMF}$ as a function of $\varphi_{6-8}$, showed again an increase of $\Delta E_{\mathrm{M}}$ up to $2.5 \mathrm{kcal} / \mathrm{mol}$, but favoring the $M$-helix. PMF profiles as a function of $\psi$ dihedrals gave the same trend, although, in this case also, the $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ resulted surmountable. Moreover, as happened for peptide 1, PMF ( $\psi 9$ ) showed only one minimum, which however corresponded to the $M$-helical conformation.

In order to verify if the solvent can significantly affect the results of the simulation, ${ }^{256,257}$ we performed a REMD simulation of peptide $\mathbf{2}$ in explicit methanol. The choice of carrying out the simulation just on this peptide was due to the fact that the screw sense inversion occurs only in peptide 2, which is the one having enantiomers cCTAAs at the N - and C-termini. Moreover, REMD simulations in explicit solvent resulted extremely time consuming on the available hardware.

The simulation carried out in explicit MeOH led to slightly different results. Indeed, in the representative structure of the most populated cluster (53.5\%) the helical screw sense inversion from $P$ - to $M$-helix is observed at Aib4, and the RMSD from the crystallographic structure is of $2.06 \AA$ (Figure 7.4A and Table 7.2). Nonetheless, the representative structure of cluster c2 (10.0\%) had a conformation which is superimposable to the X-ray structure and with a RMSD of $0.90 \AA$ (Figure 7.4B and Table 7.2), and, considering the representative structures of the other minor clusters, the inversion of the helical screw sense can involve any peptide residue. Moreover, in some minor clusters (e.g. c6, c8, c12-14, see Table 7.2 and Figure 7.5) the presence of $\gamma$-turns at different points along the chain is clearly observable. It can also be noticed that $\gamma$-turns are located where the helical switch takes place, giving a further proof to the hypothesis that $i+2 \rightarrow i \mathrm{H}$-bonds are involved in the helical screw sense inversion mechanism.

This can also be confirmed by the H -bond analysis of the intramolecular interactions (Table 7.4). Indeed, in the simulation of peptide $\mathbf{2}$ conducted in implicit solvent $i+2 \rightarrow i$ H-bonds were only observed between Aib7 and Aib5, $\alpha \mathrm{MeVal8}$ and Aib6 and between $\alpha \mathrm{MeVal9}$ and Aib7 (Table 7.3), i.e. where the helical screw sense inversion can occur, as showed by cluster analysis and PMF (Table 7.1 and Figure 7.3,
respectively). Conversely, in the case of the explicit MeOH simulation, $\gamma$-turns can involve any peptide residue and, as expected, the reverse can occur at different points all along peptide 2, as showed in Figure 7.5. However, it should be underscored that also in explicit solvent the $i+2 \rightarrow i \mathrm{H}$-bonds having the highest occupancies are those between Aib 7 and $\mathrm{Aib5},(R)-\alpha \mathrm{MeVal} 8$ and $\mathrm{Aib6}$ and $(R)-\alpha \mathrm{MeVal9}$ and Aib7, proving the consistency between the two simulations and confirming that the inversion of the helical screw sense preferentially takes place at this point of the peptide chain. Although, it is clear that methanol some way affects the process, by stabilizing the $\gamma$ turns and allowing the reverse from right- to left-handed helix and vice versa to occur anywhere along the peptide chain.



Figure 7.4. A) Representative structure of the most populated cluster of REMD trajectory in explicit solvent at 303.60 K. B) Superposition of crystallographic structure of peptide 2 (green) and the representative structure of cluster c2 (magenta)of REMD trajectory in explicit solvent at 303.60 K .


Figure 7.5. Representative structures of clusters C6 (top) and C12 (bottom) of REMD trajectory in explicit methanol at 303.60 K . The $\gamma$-turn is highlighted in green.

Indeed, it's not surprising that (S)- $\alpha \mathrm{MeVal1},(S)-\alpha \mathrm{MeVal} 2,(R)-\alpha \mathrm{MeVal} 8$ and $(R)-\alpha \mathrm{MeVal} 9$ are the residues most frequently involved in H -bonds with solvent molecules, since their backbone -NH and $-\mathrm{C}=\mathrm{O}$ groups can't be involved in intrapeptide H-bonds. However, also the backbone atoms of the central residues are also able to interact with the solvent (Table 7.4). Thus, methanol seems to contribute to the stabilization of the chain reversal by establishing H -bonds with the residues involved in the helical screw sense inversion, whose amine and carbonyl groups would otherwise be free as observed for the simulation in implicit solvent.

The stabilizing effect of methanol can also be verified by observing the PMF as a function of $\varphi$ and $\psi$ dihedrals (Figure 7.6). Indeed, if compared to those obtained in implicit solvent (Figure 7.3), the $\operatorname{PMF}(\varphi)$ profiles show a global reduction of both $\Delta E_{\mathrm{M}}$ and $\Delta E_{\mathrm{M}}{ }^{\ddagger}$, except for $\operatorname{PMF}\left(\varphi_{8}\right)$ profile, whose $\Delta \mathrm{E}_{\mathrm{M}}$ is slightly higher in explicit solvent than in the implicit solvent simulation. In addition, $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ from $\operatorname{PMF}\left(\varphi_{2-5}\right)$ can be overcome at the analyzed temperatures, $\Delta E_{\mathrm{M}}$ from $\operatorname{PMF}\left(\varphi_{4}\right)$ is zeroed while from $\operatorname{PMF}\left(\varphi_{5}\right)$ the $M$ - helix results slightly favored. The same trend can be observed for PMF as a function of $\psi$ dihedrals: $\Delta E_{\mathrm{M}}$ are reduced of about $0.5-1.0 \mathrm{kcal} / \mathrm{mol}$, all the $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ are lower than $2.0 \mathrm{kcal} / \mathrm{mol}$ compared to those obtained from implicit solvent

REMD, and the inversion of the screw sense preference occurs at $\psi_{5}$, although for this dihedral the $\Delta E_{\mathrm{M}}$ is close to zero.

Table 7.4. H-bond analysis of explicit solvent REMD trajectory of peptide 2.

| donor | acceptor | occ\% | donor | acceptor | frac\% ${ }^{\text {8 }}$ | donor | acceptor | frac \% ${ }^{\text {8 }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aib4 | $\alpha \mathrm{MeVal1}$ | 82.8 | $\alpha \mathrm{MeVal1}$ | MeOH | 70.4 | MeOH | $\alpha \mathrm{MeVal} 9$ | 71.5 |
| Aib3 | $\alpha \mathrm{MeVal1}$ | 7.4 | $\alpha \mathrm{MeVal2}$ | MeOH | 41.5 | MeOH | $\alpha \mathrm{MeVal8}$ | 61.0 |
| Aib5 | $\alpha \mathrm{MeVal2}$ | 81.4 | Aib6 | MeOH | 11.9 | MeOH | Aib7 | 41.7 |
| Aib4 | $\alpha \mathrm{MeVal2}$ | 5.9 | Aib5 | MeOH | 11.4 | MeOH | Aib3 | 34.5 |
| Aib6 | Aib3 | 79.5 | Aib7 | MeOH | 9.85 | MeOH | Aib4 | 31.5 |
| Aib5 | Aib3 | 6.1 | Aib4 | MeOH | 7.09 | MeOH | Aib5 | 29.8 |
| Aib7 | Aib4 | 81.8 | $\alpha \mathrm{MeVal8}$ | MeOH | 3.79 | MeOH | $\alpha \mathrm{MeVal} 2$ | 26.7 |
| Aib6 | Aib4 | 5.5 | Aib3 | MeOH | 3.6 | MeOH | $\alpha \mathrm{MeVall}$ | 24.7 |
| $\alpha_{\text {MeVal8 }}$ | Aib5 | 73.43 | ${ }_{\text {aMeVal9 }}$ | MeOH | 0.83 | MeOH | Aib6 | 22.45 |
| Aib7 | Aib5 | 8.93 |  |  |  |  |  |  |
| aMeVal9 | Aib6 | 75.51 |  |  |  |  |  |  |
| aMeVal8 | Aib6 | 14.83 |  |  |  |  |  |  |
| aMeVal9 | Aib7 | 11.41 |  |  |  |  |  |  |

§ The frac\% doesn't represent a real occupancy, since for any given frame more than one solvent molecule can bind to the same place.


Figure 7.6. PMF as a function of $\varphi$ (left) and $\psi$ (right) dihedrals for peptide 2.
To further verify the involvement of $\gamma$-turns in the screw sense inversion mechanism, we qualitatively studied the process leading from a $P$ - to a $M$-helix by PNEB simulations on $\mathrm{Ac}-\mathrm{Aib}_{\mathrm{n}}-\mathrm{NH}_{2}$ peptides, with $\mathrm{n}=4,6,8$ and 20. Different peptide lengths were used to assess the independency of the simulations from the number of amino acid residues considered. Moreover, these peptides were chosen because they equally exist in both the right- and the left-handed conformations, which can be therefore selected as initial and final images for the simulations (Figure 7.7A and 7.7 H , respectively).

The following discussion is mainly focused on the PNEB simulations performed on the hexapeptide, although it is valid for all the peptide considered here. Indeed, the Ac-Aib $6-\mathrm{NH}_{2}$ is sufficiently long to be taken as a model for the whole process, but at the same time is easier to handle than its higher homologues due to its lower number of degrees of freedom. The octa- and eicosapeptide have been taken in account to extend the obtained results to longer peptides, while the tetrapeptide has been useful to gain the details of the switch from $\beta$ - to $\beta$ '-turn, which represents one of the main steps in the helical inversion.

First of all, a defined propagation direction of the helical inversion is not detectable: the process always starts with the break of one or two internal H-bonds. Apparently, this starting point could seem unrealistic, since the internal H -bonds are stronger than the terminal ones. However, with PNEB simulations the minimum energy pathway from a state to another one is found; ${ }^{258}$ thus, although the break of terminal H -bonds is more likely occurring, their re-forming is equally probable without any significant conformational change. Conversely, the break of an internal H -bond can be the initial seed for the inversion, because the system evolution toward the other conformation is less hampered once this high energy H -bond is broken.

After this initial step, in all cases we observe a relaxation of the peptide structure, which assumes a sigmoidal shape stabilized by $\beta$-turns (Figure 7.7B-D). Independently from the type of $\beta$-turn formed, this seems to be fundamental for the helical inversion, since it creates local C -shaped conformations favoring the subsequent dihedral switch.



E


F


H


Figure 7.7. Conformations extracted from the PNEB simulation of the $\mathrm{Ac}-\mathrm{Aib}_{6}-\mathrm{NH}_{2}$ peptide (run 5) representing the main steps in the helical screw sense inversion.

Indeed, the inversion of the screw sense takes place individually in each fragment identified by a $\beta$-turn and it involves the creation of $\gamma$-turns (Figure 7.7B, 6.7C and 6.7 F ), which can be detected by the H -bond analysis performed on the trajectories extracted from the PNEB simulations (Table 7.5). From a visual inspection and from the measurement of the dihedrals (Figure 7.7C and 6.7F), the observed $\gamma$-turns represent the obligated intermediate step in between the switch from $\beta$ to $\beta$ ' type I turns, which, if repeatedly present in the peptide, lead to a right- and left-handed $3_{10^{-}}$ helix, respectively.

Table 7.5. H-bond analyses on PNEB simulations of $\mathrm{Ac}-\mathrm{Aib}_{\mathrm{n}}-\mathrm{NH}_{2}(\mathrm{n}=4,6,8$ and 20). Donor (D) and acceptor (A) are NH and $\mathrm{C}=\mathrm{O}$ groups, respectively.

| $\mathrm{n}=4$ |  | run1 | run2 | run3 | run4 | run5 | run6 | run7 | run8 | run9 | run10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | A | occ\% |
| $\mathrm{NH}_{2}$ | Aib2 | 20.8 | 8.3 | 8.3 | 25.0 | 8.3 | 25.0 | 12.5 | 8.3 | 29.2 | 12.5 |
| Aib4 | Aib1 | 100.0 | 100.0 | 100.0 | 100.0 | 95.8 | 95.8 | 95.8 | 95.8 | 100.0 | 95.8 |
| Aib3 | Ac | 29.2 | 37.5 | 37.5 | 12.5 | 37.5 | 33.3 | 25.0 | 33.3 | 29.2 | 25.0 |
| Aib4 | Aib2 | 4.2 | 4.2 | 4.2 | n.a | 4.2 | 4.2 | 8.3 | 8.3 | n.a | 4.2 |
| $\mathrm{NH}_{2}$ | Aib3 | 4.2 | 8.3 | 8.3 | 4.2 | 8.3 | 4.2 | 4.2 | 8.3 | 4.2 | 8.3 |
| Aib2 | Ac | 29.2 | 25.0 | 25.0 | 20.8 | 29.2 | 16.7 | 29.2 | 16.7 | 20.8 | 33.3 |
| Aib3 | Aib1 | 8.3 | 33.3 | 33.3 | 4.2 | 4.2 | 4.2 | 8.3 | 8.3 | 20.8 | 8.3 |
| $\mathrm{n}=6$ |  | run1 | run2 | run3 | run4 | run5 | run6 | run7 | run8 | run9 | run10 |
| D | A | occ\% | осc\% | occ\% | осс\% | occ\% | occ\% | осc\% | occ\% | осc\% | осс\% |
| Aib6 | Aib3 | 30.56 | 30.56 | 36.11 | 38.89 | 11.11 | 16.67 | 8.33 | 16.67 | 8.33 | 13.89 |
| $\mathrm{NH}_{2}$ | Aib4 | 100.00 | 100.00 | 97.22 | 13.89 | 100.00 | 75.00 | 100.00 | 100.00 | 83.33 | 100.00 |
| Aib4 | Aib1 | 52.78 | 88.89 | 100.00 | 75.00 | 97.22 | 91.67 | 88.89 | 44.44 | 41.67 | 80.56 |
| Aib5 | Aib2 | 44.44 | 33.33 | 25.00 | 19.44 | 22.22 | 13.89 | 36.11 | 30.56 | 13.89 | 33.33 |
| Aib3 | Ac | 25.00 | 13.89 | 44.44 | 50.00 | 44.44 | 44.44 | 63.89 | 66.67 | 44.44 | 52.78 |
| Aib2 | Ac | 16.67 | 11.11 | 8.33 | 19.44 | 25.00 | 8.33 | 8.33 | 16.67 | 44.44 | 30.56 |
| Aib3 | Aib1 | 38.89 | n.a | 5.56 | 8.33 | 5.56 | 2.78 | 5.56 | 13.89 | 5.56 | 11.11 |
| Aib6 | Aib4 | 5.56 | 2.78 | 5.56 | 11.11 | 2.78 | 5.56 | 8.33 | 5.56 | n.a | 2.78 |
| Aib4 | Aib2 | 5.56 | 36.11 | n.a | 2.78 | n.a | 13.89 | 8.33 | n.a | n.a | n.a |
| Aib5 | Aib3 | 27.78 | 44.44 | 22.22 | 11.11 | 19.44 | 25.00 | 16.67 | 19.44 | 19.44 | 30.56 |
| Aib4 | Ac | 11.11 | n.a | n.a | n.a | n.a | n.a | 11.11 | 30.56 | 5.56 | n.a |
| $\mathrm{NH}_{2}$ | Aib5 | n.a | 8.33 | n.a |
| $\mathrm{n}=8$ |  | run1 | run2 | run3 | run4 | run5 | run6 | run7 | run8 | run9 | run10 |
| D | A | осc\% | occ\% | осc\% | осc\% | occ\% | осc\% | осc\% | осc\% | occ\% | occ\% |
| $\mathrm{NH}_{2}$ | Aib6 | 50.0 | 77.1 | 8.3 | 54.2 | 12.5 | 43.8 | 50.0 | 77.1 | 45.8 | 83.3 |
| Aib7 | Aib4 | 97.9 | 22.9 | 100.0 | 95.8 | 100.0 | 83.3 | 58.3 | 50.0 | 75.0 | 52.1 |


| Aib5 | Aib2 | 58.3 | 81.3 | 70.8 | 66.7 | 68.8 | 81.3 | 77.1 | 41.7 | 31.3 | 79.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aib6 | Aib3 | 20.8 | 54.2 | 31.3 | 16.7 | 27.1 | 14.6 | 27.1 | 54.2 | 20.8 | 16.7 |
| Aib4 | Aib1 | 10.4 | 31.3 | 20.8 | 8.3 | 20.8 | 10.4 | 20.8 | 37.5 | 10.4 | 8.3 |
| Aib3 | Ac | 66.7 | 37.5 | 45.8 | 37.5 | 89.6 | 54.2 | 52.1 | 45.8 | 45.8 | 58.3 |
| Aib8 | Aib5 | 50.0 | 33.3 | 14.6 | 8.3 | 22.9 | 8.3 | 22.9 | 68.8 | 8.3 | 14.6 |
| Aib5 | Aib3 | 16.7 | 33.3 | 25.4 | 62.5 | 56.3 | 66.7 | 37.5 | 20.8 | 43.8 | 33.3 |
| Aib8 | Aib6 | 4.2 | 4.2 | 45.8 | 8.3 | 10.4 | 14.6 | 4.2 | 16.7 | 6.3 | 8.3 |
| Aib7 | Aib5 | 4.2 | 22.9 | n.a | n.a | 4.2 | 37.5 | 4.2 | n.a | 2.1 | n.a |
| Aib2 | Ac | 20.8 | 25.0 | 4.2 | 18.8 | 4.2 | 14.6 | 16.7 | 10.4 | 10.4 | 18.8 |
| Aib3 | Aib1 | 25.0 | 8.3 | 31.3 | 33.3 | 6.3 | 20.8 | 20.8 | 10.4 | 14.6 | n.a |
| NH2 | Aib7 | 4.2 | 4.2 | 4.2 | 2.1 | 2.1 | 2.1 | 6.3 | 4.2 | 2.1 | 2.1 |
| Aib6 | Aib4 | n.a | 10.4 | 6.3 | 4.2 | 31.3 | 25.0 | 6.3 | 8.3 | 29.2 | 18.8 |
| Aib6 | Aib2 | n.a | 4.2 | n.a |
| NH2 | Aib5 | n.a | 16.7 | n.a | 6.3 |
| Aib4 | Aib2 | n.a | 6.3 | n.a | n.a |
| n =20 |  | run1 | run2 | run3 | run4 | run5 | run6 | run7 | run8 | run9 | run 10 |
| D | A | occ\% |
| Aib13 | Aib10 | 99.0 | 100.0 | 63.5 | 53.1 | 85.4 | 81.3 | 95.8 | 96.9 | 55.2 | 100.0 |
| Aib15 | Aib12 | 69.8 | 53.1 | 53.1 | 55.2 | 89.6 | 58.3 | 45.8 | 57.3 | 58.3 | 67.7 |
| Aib12 | Aib9 | 71.9 | 25.0 | 64.6 | 35.4 | 37.5 | 52.1 | 69.8 | 42.7 | 67.7 | 69.8 |
| Aib10 | Aib7 | 66.7 | 13.5 | 61.5 | 53.1 | 36.5 | 61.5 | 52.1 | 16.7 | 95.8 | 52.1 |
| Aib9 | Aib6 | 20.8 | 7.3 | 49.0 | 35.4 | 64.6 | 57.3 | 44.8 | 13.5 | 80.2 | 0.1 |
| Aib7 | Aib4 | 53.1 | 19.8 | 55.2 | 33.3 | 37.5 | 53.1 | 52.1 | 61.5 | 55.2 | 60.4 |
| Aib6 | Aib3 | 17.7 | 16.7 | 33.3 | 33.3 | 51.0 | 63.5 | 15.6 | 35.4 | 67.7 | 27.1 |
| Aib5 | Aib2 | 58.3 | 56.3 | 79.2 | 81.3 | 43.8 | 72.9 | 38.5 | 86.5 | 88.5 | 84.4 |
| Aib4 | Aib1 | 17.7 | 11.5 | 24.0 | 10.4 | 94.8 | 57.3 | 19.8 | 29.2 | 40.6 | 26.0 |
| Aib3 | Ac | 64.6 | 26.0 | 55.2 | 62.5 | 46.9 | 63.5 | 76.0 | 65.6 | 84.4 | 67.7 |
| NH2 | Aib18 | 89.6 | 60.4 | 57.3 | 18.8 | 60.4 | 79.2 | 72.9 | 83.3 | 88.5 | 43.8 |
| Aib20 | Aib17 | 66.7 | 38.5 | 67.7 | 84.4 | 58.3 | 46.9 | 41.7 | 80.2 | 79.2 | 40.6 |


| Aib19 | Aib16 | 92.7 | 92.7 | 100.0 | 93.8 | 46.9 | 100.0 | 95.8 | 90.6 | 93.8 | 100.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aib18 | Aib15 | 77.1 | 54.2 | 56.3 | 45.8 | 59.4 | 54.2 | 64.6 | 40.6 | 40.6 | 64.6 |
| Aib17 | Aib14 | 100.0 | 88.5 | 83.3 | 70.8 | 67.7 | 93.8 | 79.2 | 97.9 | 51.0 | 95.8 |
| Aib16 | Aib13 | 67.7 | 49.0 | 28.1 | 62.5 | 57.3 | 57.3 | 47.9 | 17.7 | 55.2 | 52.1 |
| Aib14 | Aib11 | 72.9 | 22.9 | 75.0 | 64.6 | 34.4 | 51.0 | 32.3 | 21.9 | 72.9 | 69.8 |
| Aib11 | Aib8 | 99.0 | 100.0 | 63.5 | 53.1 | 85.4 | 81.3 | 95.8 | 96.9 | 55.2 | 100.0 |
| Aib8 | Aib5 | 69.8 | 53.1 | 53.1 | 55.2 | 89.6 | 58.3 | 45.8 | 57.3 | 58.3 | 67.7 |
| Aib5 | Aib3 | 71.9 | 25.0 | 64.6 | 35.4 | 37.5 | 52.1 | 69.8 | 42.7 | 67.7 | 69.8 |
| Aib9 | Aib7 | 66.7 | 13.5 | 61.5 | 53.1 | 36.5 | 61.5 | 52.1 | 16.7 | 95.8 | 52.1 |
| Aib8 | Aib6 | 20.8 | 7.3 | 49.0 | 35.4 | 64.6 | 57.3 | 44.8 | 13.5 | 80.2 | 0.1 |
| Aib11 | Aib9 | 53.1 | 19.8 | 55.2 | 33.3 | 37.5 | 53.1 | 52.1 | 61.5 | 55.2 | 60.4 |
| Aib14 | Aib12 | 17.7 | 16.7 | 33.3 | 33.3 | 51.0 | 63.5 | 15.6 | 35.4 | 67.7 | 27.1 |
| Aib20 | Aib18 | 58.3 | 56.3 | 79.2 | 81.3 | 43.8 | 72.9 | 38.5 | 86.5 | 88.5 | 84.4 |
| Aib15 | Aib13 | 17.7 | 11.5 | 24.0 | 10.4 | 94.8 | 57.3 | 19.8 | 29.2 | 40.6 | 26.0 |
| Aib13 | Aib11 | 64.6 | 26.0 | 55.2 | 62.5 | 46.9 | 63.5 | 76.0 | 65.6 | 84.4 | 67.7 |
| Aib12 | Aib10 | 89.6 | 60.4 | 57.3 | 18.8 | 60.4 | 79.2 | 72.9 | 83.3 | 88.5 | 43.8 |
| NH2 | Aib19 | 66.7 | 38.5 | 67.7 | 84.4 | 58.3 | 46.9 | 41.7 | 80.2 | 79.2 | 40.6 |
| Aib18 | Aib16 | 92.7 | 92.7 | 100.0 | 93.8 | 46.9 | 100.0 | 95.8 | 90.6 | 93.8 | 100.0 |
| Aib17 | Aib15 | 77.1 | 54.2 | 56.3 | 45.8 | 59.4 | 54.2 | 64.6 | 40.6 | 40.6 | 64.6 |
| Aib6 | Aib4 | 100.0 | 88.5 | 83.3 | 70.8 | 67.7 | 93.8 | 79.2 | 97.9 | 51.0 | 95.8 |
| Aib2 | Ac | 67.7 | 49.0 | 28.1 | 62.5 | 57.3 | 57.3 | 47.9 | 17.7 | 55.2 | 52.1 |
| Aib16 | Aib14 | 72.9 | 22.9 | 75.0 | 64.6 | 34.4 | 51.0 | 32.3 | 21.9 | 72.9 | 69.8 |
| Aib3 | Aib1 | 99.0 | 100.0 | 63.5 | 53.1 | 85.4 | 81.3 | 95.8 | 96.9 | 55.2 | 100.0 |
| Aib7 | Aib5 | 69.8 | 53.1 | 53.1 | 55.2 | 89.6 | 58.3 | 45.8 | 57.3 | 58.3 | 67.7 |
| Aib10 | Aib8 | 71.9 | 25.0 | 64.6 | 35.4 | 37.5 | 52.1 | 69.8 | 42.7 | 67.7 | 69.8 |
| Aib19 | Aib17 | 66.7 | 13.5 | 61.5 | 53.1 | 36.5 | 61.5 | 52.1 | 16.7 | 95.8 | 52.1 |
| Aib4 | Aib2 | 20.8 | 7.3 | 49.0 | 35.4 | 64.6 | 57.3 | 44.8 | 13.5 | 80.2 | 0.1 |

As can be noticed from most of the trajectories extracted from the PNEB simulations, the $i+2 \rightarrow i \mathrm{H}$-bonds are frequently found in peptide $\mathbf{2}$ with $\beta$-turns (Figure 7.7 C and 6.7 F ), but are transient since their presence increases the conformational energy, as showed by the relative energy plot associated to the helical inversion of the Ac-Aib4- $\mathrm{NH}_{2}$ peptide (Figure 7.8). In the simulations of the tetrapeptide the global maximum corresponds to a conformation where the carbonyl group of Aib1 is involved in H -bonds with the NH of both Aib3 and Aib4, while the local maxima or other high energetic conformations show the presence of $\gamma$-turns at either the N - or the C-terminus. For longer peptides these observations are less significant, because the energies extrapolated from the PNEB simulations are associated to the whole conformation of each image and the effect of $\gamma$-turns can be reduced by the presence of other stabilizing interactions or enhanced if there are other steric clashes.


Figure 7.8. Total energies in $\mathrm{kcal} / \mathrm{mol}$ extracted from the PNEB simulation (run 2) of $\mathrm{Ac}-\mathrm{Aib}_{4}-\mathrm{NH}_{2}$ peptide with relevant conformations.

Summarizing, the application of computational techniques gave further insights for the study of both the conformational equilibria and the energetics in peptides containing chiral amino acids at the N - and C-termini. In particular, REMD simulations showed that, while peptide $\mathbf{1}$ is unequivocally a stable $P-3_{10}$-helix, in peptide 2 the presence of enantiomeric $\alpha \mathrm{MeVal}$ at the two termini produces a competition for the global helical screw sense: the $\mathrm{C} \alpha S$-enantiomer imposes the $P$ helix, while the $C \alpha R$-enantiomer induces the $M$ conformation. From the PMF profiles as a function of $\varphi$ and $\psi$ dihedrals, obtained from the REMD simulations of peptide $\mathbf{2}$, we can see that the switch from one screw sense to the other is more probable when the $\Delta E_{\mathrm{M}}{ }^{\ddagger}$ and $\Delta E_{\mathrm{M}}$ are lower than $1 \mathrm{kcal} / \mathrm{mol}$, both in implicit and explicit solvent. In principle, the helical inversion can occur at any point along the peptide chain, however it is more frequently observed at Aib6 or Aib7, the residues just above the two chiral ones. Moreover, it is clear that methanol reduces the energetic barrier between the $P$ - and the $M$-helix, since it might stabilize high energy conformations by creating H -bonds with the backbone atoms.

Furthermore, PNEB simulations allowed to clarify how the inversion from one helical screw sense to the other takes place and, thus, to qualitatively prove the hypothesis that $\gamma$-turns are intermediates in the screw sense inversion. Indeed, we found that this process does not show any recurring propagation direction, but, on the contrary, it implies the break of internal H -bonds, leading to a sigmoidal conformation characterized by the presence of multiple $\beta$-turns of any type. These turns create local conformations where the switch from $\beta$ - to $\beta$ '-turn independently occurs. An obligated step at this point is the formation of transient $\gamma$-turns, which are required in order to switch from negative to positive dihedral values and vice versa.

In conclusion, in this part of the project we developed some basic knowledge that might be useful for the design of well-structured helical peptide, containing cCTAAs as helical stabilizers, and with a defined helical screw sense. At the same time, we investigated the mechanisms behind the helical screw sense inversion, which might be exploited to design switchable helical peptide that can be activated to PPI modulators by inducing a conformational change.

### 7.3 Materials and Methods

REMD Simulations. Aib, $(R)$ - and $(S)-\alpha \mathrm{MeVal}$ amino acids and the Cbz protecting group were designed using MOE. ${ }^{227}$. The formers were capped with an acetyl (Ac) and a NHMe group at the N - and C-termini, respectively, while the latter was only capped by NHMe at the C-termini. They were then submitted to a "Low Mode" conformational search by setting MMFF94x as force field, Born solvation model, iteration limit $=40000, \mathrm{MM}$ iteration limit $=2500$, and rejection limit $=500$. For each molecule, the two conformations showing the lowest energy and, in the case of the three amino acids, with the $\varphi$ and $\psi$ dihedrals corresponding to the right- and left-handed helical ones ( $\varphi= \pm 60^{\circ}$ and $\psi= \pm 45^{\circ}$ ) were chosen for partial charges derivation performed by the R.E.D.IV software ${ }^{228}$. For this step, the selected geometries were optimized at the $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ level of theory and the RESP-A1 charges were derived using two different spatial orientations, in order to have an orientation- and conformation-independent charges. Moreover, the charges ofbackbone nitrogen, hydrogen, carbonyl carbon and oxygen were fixed at the same values reported in the AMBER ff99SBildn- $\varphi$ force field ${ }^{168}$ for standard amino acids (e.g. $-0.4157,0.2719,0.5973$ and -0.5679 , respectively).
$\mathrm{Cbz}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{Aib}_{5}-(S)-\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}\left(\right.$ peptide 1) and $\mathrm{Cbz}-(S)-\alpha \mathrm{MeVal}_{2}-$ Aibs $_{5}(R)-\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}$ (peptide 2) peptides were built by imposing an extended conformation $\left(\varphi=\psi=\omega=180^{\circ}\right)$. REMD simulations in implicit solvent of the two peptides were performed using the AMBER $f f 99 S B$ ildn- $\varphi$ force field coupled with the implicit solvent model GB-Neck2 (igb $=8$ ), ${ }^{173}$ combination that proved to give the best results in predicting peptides secondary structures. ${ }^{88} 16$ replica, spanning temperatures between 260.00 K and 690.08 K with a 0.5 probability exchange, were run for 100 ns each, for a total of $1.6 \mu \mathrm{~s}$ of simulation for each peptide, using the pmemd module of the Amber14 package. ${ }^{259}$ Unless stated otherwise, the trajectories at 297.31 K were extracted and analyzed on the $50-100 \mathrm{~ns}$ time interval.

For the REMD simulations in explicit methanol, the $\mathrm{Cbz}-(S)-\alpha \mathrm{alVal}_{2}-\mathrm{Aib}_{5}-(R)-$ $\alpha \mathrm{MeVal}_{2}-\mathrm{NHMe}$ peptide in the extended conformation was solvated with an octahedral box of 1290 MeOH molecules (closeness $=8.0 \AA$ ) and preliminarily
submitted to minimization and equilibrations cycles. Initially 5000 cycles of hydrogens minimization ( 1000 cycles of steepest descent and 4000 cycles of conjugated gradient), followed by 5000 cycles of solvent minimization ( 2000 cycles of steepest descent and 3000 cycles of conjugated gradient) were carried out. Then, the solvent box was equilibrated at 300 K by 1 ns of NVT equilibration and 1 ns of NPT equilibration using the Langevin thermostat with a frequency collision of 2.0. This step was followed by 5000 cycles ( 2500 of steepest descent and 2500 of conjugated gradient) of solvent and sidechains minimization and by 5000 cycles ( 2500 of steepest descent and 2500 of conjugated gradient) of total minimization. The last step consisted in 100 ps of NVT and 100 ps of NPT equilibration of the whole system. The REMD simulation of the equilibrated system was carried out with the AMBER ff99SBildn- $\varphi$ force field and by performing 40 replica of 120 ns each ( $4.8 \mu \mathrm{~s}$ totally) between 290.00 K and 511.61 with an exchange probability of 0.20 . The trajectory at 303.60 K was extracted, the solvent was stripped out and the simulation convergence was checked every 10 ns by assuring that the conformations obtained during the 10 ns time intervals were similar on the base of the Root Mean Square Deviation (RMSD) (Annex 7.A).

Cluster analyses were performed with cpptraj (Amber14) ${ }^{259}$ using the averagelinkage algorithm and the pairwise mass-weighted RMSD on the $\mathrm{C} \alpha$ of residues 7-11, in order to identify where the screw sense inversion occurs. For the simulations conducted in implicit solvent the 50-100 ns time interval was analyzed by sampling one every four frames and by requesting 5 clusters on the basis of pseudo-F statistics and SSR/SST ratio. ${ }^{260}$ As regards the REMD in explicit solvent, since convergence was reached after 50 ns , the last 60 ns were submitted to cluster analysis, sampling one every four frames and requesting 15 clusters.

H-bonds occupancies during the simulations were computed with VMD 1.9.1 ${ }^{231}$ over the whole trajectories for the simulations in implicit solvent and on the last 60 ns for that in explicit methanol, with a donor-acceptor distance limit of $4.0 \AA$ and an angle cutoff of $60^{\circ}$. This very low angle acceptance threshold was chosen in order to be able to identify the presence of $\gamma$-turns, since it has been showed that the hydrogen
bond in $\gamma$-turns is highly bent ${ }^{261}$ and the N-H-O angle can reach values of $110-130^{\circ}$. Only H-bonds with an occupancy greater than $5 \%$ were considered. The H-bond analysis between peptide 2 and methanol molecules was performed with Amber14 cpptraj, using successively the backbone carbonyl oxygen atoms as acceptor atoms and setting methanol molecules as solvent donor, then the methanol residues were considered as solvent acceptor and the backbone amidic hydrogens were considered as donor atoms. In this case the distance cutoff was set to $4.0 \AA$ and the minimum angle accepted was fixed at $150^{\circ}$, as for standard H-bonds.

Potential of Mean Force (PMF) as a function of $\varphi$ and $\psi$ dihedrals were computed with Amber software coupled with the Weighted Histogram Analysis Method (WHAM) ${ }^{262}$ over the whole implicit solvent trajectories and over the last 60 ns for the explicit methanol simulation by setting a histogram limit of $\pm 180^{\circ}, 100$ bins and a tolerance of 0.01 . Temperatures between 260.00 K and 317.73 K were considered. A threshold of $6 \mathrm{kcal} / \mathrm{mol}$ has been fixed for the non-accessible conformations.

NEB simulations. Minimized structures of ideal $M$ - and $M$ - $3_{10}$-helices of AcAib $_{n}-\mathrm{NH}_{2}$ peptides ( $\mathrm{n}=4,6,8$ and 20) were used as initial and final conformations, respectively, for the Partial Nudged Elastic Band (PNEB) simulation of the transition pathway between right- and left-handed helices. The AMBER ff99SBildn- $\varphi$ force field coupled with the GB-Neck2 solvent model was used. For $n=4,6,8$ and 20, 24, 36, 48 and 96 images, respectively, where chosen and the simulations were repeated 10 times for each peptide to test the reproducibility of the minimum energy pathway. The NEB forces were applied only to the backbone nitrogen, $\mathrm{C} \alpha$ and carbonyl carbon atoms, while the RMS fitted the system on all the atoms. The system was initially heated from 0 K to 300 K in 20 ps , using a spring constant of $10 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-2}$ and the Langevin thermostat with a collision rate of $1000 \mathrm{ps}^{-1}$. In the next 100 ps the system was submitted to a MD at 300 K with a spring constant of $50 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-2}$. Successively, the system was heated from 300 K to 700 K and subsequently cooled back to 300 K over 750 ps . The cooling to 0 K to remove kinetic energy was performed in 120 ps and quenched MD was run over 200 ps . The final pathway was
extracted and analyzed. The reproducibility of the simulations was checked by comparing the behavior of $\varphi$ and $\psi$ dihedrals. ${ }^{109,263,264}$

H-bond analyses were conducted on the extracted trajectory with VMD 1.9.1 with the same parameters used for the analysis of the REMD simulations.

## Part 2:

Development and optimization of a MMGBSA protocol for the prediction of the activities of PPIs modulators

## 8 Nwat-MMGBSA: A MMGBSA-BASED APPROACH TO IMPROVE THE CORRELATION BETWEEN PREDICTED BINDING ENERGIES AND EXPERIMENTAL ACTIVITIES

As previously underlined, the prediction of the activity of a designed molecule toward a defined target represents a fundamental, although challenging, goal of the drug discovery process. The combination of MD simulations and MMPB/GBSA calculations has been frequently used to compute binding free energies in classical protein-ligand, ${ }^{27}$ DNA-ligand, ${ }^{265}$ or PPIs. ${ }^{266}$ However, the correlation between MMPB/GBSA predicted binding energies and biological activity was often protocoldependent. Indeed, in literature extensive studies on the sensitivity of MMPB/GBSA results to protocol changes can be found. ${ }^{14,267,268}$

In this context, much attention has been paid to tune the solvation term in its electrostatic component, with a particular interest on the parameters common to both PB and GB equations (eq. 3 and 4). ${ }^{90}$ In this framework, studies on the effects of a variation if the internal dielectric constant $\epsilon_{i n}$ on the correlation between experiments and predicted binding energies showed that this parameter highly affects the calculation. Moreover, an universal value for this constant, i.e. suitable for all the protein systems, cannot be found and this choice necessarily depends on an analysis of the properties of the binding pocket. ${ }^{267-270}$ Therefore, if a good dataset of known ligands with known activity data is not available, the variation of $\epsilon_{\text {in }}$ should seldom be done.

Another approach to increase the correlation between experimental activities and MMPB/GBSA predicted binding energies consists in the inclusion of selected explicit water molecules in the calculation. This approached stemmed from the previously underlined observation that water can play a relevant role in both receptor-ligand and protein-protein interactions, because it can takes part in water-mediated H -bonds or it can stabilize the complex through transient H -bonds. ${ }^{90,120,271}$

The selection of the water molecules to be included in the calculation can be done in different ways. The most intuitive consists in including the solvent molecules that
are known to mediate receptor-ligand binding or PPI from crystallographic data. ${ }^{272,273}$ However, this approach can lead to detrimental results, ${ }^{274}$ because, during the MD simulation water molecules can rapidly exchange their positions. Therefore, although a water mediated H -bond can be detected during the whole simulation time, the water residue involved in it can be not always the same.

To overcome this issue, a possible approach, that proved to increase the correlation between experimental and predicted data, is represented by the inclusion of water molecules identified from MD trajectory analysis through H-bond analysis, ${ }^{275}$ B-factor analysis ${ }^{119}$ or water density/occupancy analysis, ${ }^{276}$ or by selecting those water residues which are, frame by frame, the closest to the ligand or to the residues involved in the PPI. ${ }^{89}$

Although all these approaches have the advantage of their generalizability and reproducibility, because the selected water residues are those which pass a defined numerical threshold, the last one is the easiest to automatize, thanks to the cpptraj "closest" command ${ }^{192}$ (Figure 8.1). This command allows the user to process the explicit solvent MD trajectory to save a new trajectory, containing only a fixed number of the closest water molecules (Nwat) to a residue or atom mask during the whole simulation time, which can be directly used for the MMPB/GBSA calculation (see Annex 10.A and 11.F).


Complex
(X-ray, docking..)


Solvated complex


Selected frames for MMPB/GBSA

Figure 8.1. Nwat-MMPB/GBSA approach scheme.
Therefore, we decided to initially test this approach on classical receptor-ligand complexes, for which experimental activities were available, in order to verify its reliability and its benefit compared to the standard MMPB/GBSA method (Chapter 9).

Then, we optimized the protocol for the binding affinity prediction in PPIs (Chapter 10), because these systems, as observed in Chapter 1, are structurally different from classical receptor-ligand systems.

Finally, at the light of the good obtained results, we automatized the process by writing a script that performs the setup, calculations and analysis and evaluated the optimized protocol for the prediction of activities of a set of small molecules or peptide-like ligands targeting PPIs and having known activity data (Chapter 11).

## 9 Application of Nwat-MMGBSA to Classical RECEPTORLIGAND COMPLEXES

### 9.1 Introduction

Bearing in mind that water can contribute to the binding free energy of receptorligand complexes and that it is often found at protein binding sites, ${ }^{119,271,275,277}$ we initially applied the Nwat-MMPB/GBSA approach to four different protein systems, namely topoisomerase I-DNA, $\alpha$-thrombin, penicillopepsin and avidin complexes, to evaluate both the reliability and robustness of the protocol.

In particular, the topoisomerase I-DNA system was selected because it is known that water plays an important role in mediating H -bond interactions between the topoisomerase I and camptothecin (CPT)-like inhibitors, ${ }^{278} \alpha$-thrombin and penicillopepsin complexes were chosen because previously reported MMPB/GBSA results were poorly correlated with experiments, when using the default $\epsilon_{i n}{ }^{267}$ Conversely, the avidin system was considered because of the high correlation coefficient obtained with the standard dielectric constant, in order to observe if the Nwat-MMPB/GBSA protocol was detrimental for systems where water does not seem to play a role in the receptor ligand interaction. ${ }^{267,268,279}$

Therefore, we considered the complexes of topoisomerase I - DNA and 9 CPT derivatives with known $\mathrm{IC}_{50}$ (Figure 9.1), $7 \alpha$-thrombin-ligand and 7 penicillopepsinigand and 7 avidin-ligand complexes with known $\Delta G_{\text {bind }}$ (Figure 9.2, 9.3, and 9.4, respectively).

Each system will be discussed independently, in order to provide a clear explanation about the reproducibility, reliability and robustness of the NwatMMGBSA approach, evaluated in terms of squared Pearson's correlation coefficient $\left(r^{2}\right)$ between computed binding energies and available experimental data. Although, additional investigations have been performed on the topoisomerase I - DNA system, because of the known importance of water in the interaction between topoisomerase and CPT derivatives (Figure 9.5). ${ }^{278}$


CPT
$\mathrm{IC}_{50}=0.33 \mu \mathrm{M}$


7
$\mathrm{IC}_{50}-5.9 \mu \mathrm{M}$

$12 \beta$
$\mathrm{IC}_{50}=56 \mu \mathrm{M}$


TTC
$\mathrm{IC}_{50}=0.61 \mu \mathrm{M}$


8
$C_{50}=16 \mu \mathrm{M}$


20
$\mathrm{IC}_{50}=46.8 \mu \mathrm{M}$

$\mathrm{IC}_{50}=0.13 \mu \mathrm{M}$

$12 \alpha$ $\mathrm{IC}_{50}=56 \mu \mathrm{M}$


22
$\mathrm{IC}_{50}=30 \mu \mathrm{M}$

Figure 9.1. Considered topoisomerase I ligands at the protonation state used for the analyses; experimental $\mathrm{IC}_{50} \mathrm{~S}$ are also reported. ${ }^{280}$


Exp. $\Delta \mathrm{G}_{\text {bind }}=-12.39 \mathrm{kcal} / \mathrm{mol}$


BT1
Exp. $\Delta \mathrm{G}_{\text {bind }}=-7.68 \mathrm{kcal} / \mathrm{mol}$


BEN
Exp. $\Delta \mathrm{G}_{\text {bind }}=-3.98 \mathrm{kcal} / \mathrm{mol}$

Figure 9.2. Considered $\alpha$-thrombin ligands; experimental free energies of binding ( $\Delta G_{\text {bind }}$ ) are also reported. ${ }^{267}$


Figure 9.3. Considered penicillopepsin ligands; experimental free energies of binding ( $\Delta G_{\text {bind }}$ ) are also reported. ${ }^{267}$



BTN2


BTN3


BTN4

Exp. $\Delta \mathrm{G}_{\text {bind }}=-20.40 \mathrm{kcal} / \mathrm{mol} \quad$ Exp. $\Delta \mathrm{G}_{\text {bind }}=-14.30 \mathrm{kcal} / \mathrm{mol} \quad$ Exp. $\Delta \mathrm{G}_{\text {bind }}=-14.00 \mathrm{kcal} / \mathrm{mol} \quad$ Exp. $\Delta \mathrm{G}_{\text {bind }}=-8.80$


BTN5
Exp. $\Delta \mathrm{G}_{\text {bind }}=-8.20 \mathrm{kcal} / \mathrm{mol}$


BTN6
Exp. $\Delta \mathrm{G}_{\text {bind }}=-5.00 \mathrm{kcal} / \mathrm{mol}$


BTN7

Exp. $\Delta \mathrm{G}_{\text {bind }}=-4.50 \mathrm{kcal} / \mathrm{mol}$
Figure 9.4. Considered avidin ligands; experimental free energies of binding ( $\Delta G_{\text {bind }}$ ) are also reported. ${ }^{267}$


Figure 9.5. Crystallographic structure of the topoisomerase I - DNA - topotecan (TTC) complex (PDB code: 1 K 4 T ). Crystallographic waters interacting with both the protein and the ligand are highlighted.

### 9.2 Results and Discussion

Topoisomerase I - DNA. H-bond analyses performed on TTC and SN38 complexes confirmed the previously underlined observation that even hydrogenbound waters can rearrange, and a specific residue is replace by a neighboring one. Indeed, for example, the C3=O of TTC takes part in a H-bond with water for the $73 \%$ of the simulation time, although 5 different water residues determine this occupancy, namely WAT1638 (37.4\%), WAT20971 (25.6\%), WAT28324 (4.3\%), WAT22562 ( $3.2 \%$ ), and WAT20947 ( $2.5 \%$ ). Analogous considerations can be done for all the TTC atoms able to take part in H-bonds, namely, C14=O, N6, O2, and C9 - OH (Table 9.1). This latter interacts with 10 different water residues for about the $20 \%$ of the simulation time. The simulation of the SN38 complex led to consistent results, although in this case SN38 interacted with about 20 water molecules during the simulation time (Table 9.2).

Table 9.1. H-bonds between TTC and water during the last ns of MD simulation. D, A and Occ are the donor atom, the acceptor atom and the occupancy, respectively.

| D | A | Occ | D | A | Occ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| WAT20971-O | TTC-O=C3 | $25.6 \%$ | TTC-OH(C9) | WAT3805-O | $2.0 \%$ |
| WAT16448-O | TTC-OH(C9) | $1.4 \%$ | TTC-OH(C4) | WAT30530-O | $0.1 \%$ |
| WAT25062-O | TTC-O=C14 | $2.0 \%$ | TTC-OH(C9) | WAT10204-O | $1.3 \%$ |
| WAT22562-O | TTC-O=C3 | $3.2 \%$ | WAT25062-O | TTC-OH(C9) | $4.7 \%$ |
| WAT25062-O | TTC-N13 | $0.4 \%$ | WAT20998-O | TTC-O=C14 | $0.1 \%$ |
| WAT28324-O | TTC-O=C3 | $4.3 \%$ | WAT12379-O | TTC-OH(C9) | $1.0 \%$ |
| WAT20971-O | TTC-O2 | $3.6 \%$ | TTC-OH(C9) | WAT18473-O | $0.4 \%$ |
| WAT28324-O | TTC-O2 | $0.2 \%$ | WAT3805-O | TTC-OH(C9) | $0.1 \%$ |
| WAT20947-O | TTC-O=C3 | $2.5 \%$ | WAT24732-O | TTC-OH(C9) | $0.6 \%$ |
| WAT16384-O | TTC-O=C3 | $37.4 \%$ | WAT10910-O | TTC-O=C14 | $2.0 \%$ |
| WAT3278-O | TTC-OH(C9) | $0.2 \%$ | WAT10910-O | TTC-N13 | $0.4 \%$ |
| TTC-OH(C9) | WAT16448-O | $0.2 \%$ | WAT24111-O | TTC-N6 | $0.3 \%$ |
| WAT20947-O | TTC-O2 | $0.1 \%$ | TTC-OH(C9) | WAT8209-O | $7.3 \%$ |
| TTC-OH(C9) | WAT12379-O | $0.6 \%$ | WAT24111-O | TTC-OH(C9) | $2.0 \%$ |
| WAT10204-O | TTC-OH(C9) | $7.8 \%$ | WAT10910-O | TTC-N6 | $0.5 \%$ |
| WAT16384-O | TTC-O2 | $3.9 \%$ | WAT10910-O | TTC-OH(C9) | $0.2 \%$ |
| WAT16025-O | TTC-OH(C9) | $2.2 \%$ |  |  |  |

Table 9.2. H-bonds between SN38 and water during the last ns of MD simulation. D, A and Occ are the donor atom, the acceptor atom and the occupancy, respectively.

| D | A | Occ | D | A | Occ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| SN38-OH(C9) | WAT9324-O | $35.7 \%$ | WAT10865-O | SN38-OH(C9) | $1.0 \%$ |
| WAT14674-O | SN38-O=C3 | $66.8 \%$ | WAT9324-O | SN38-OH(C9) | $1.4 \%$ |
| WAT9756-O | SN38-O=C14 | $18.4 \%$ | SN38-OH(C9) | WAT20864-O | $0.2 \%$ |
| WAT16826-O | SN38-OH(C9) | $0.5 \%$ | WAT14633-O | SN38-O=C3 | $0.1 \%$ |
| WAT14674-O | SN38-O2 | $4.1 \%$ | WAT14422-O | SN38-O=C3 | $0.2 \%$ |
| WAT21099-O | SN38-OH(C9) | $1.4 \%$ | WAT10627-O | SN38-OH(C9) | $14.7 \%$ |
| WAT9756-O | SN38-N13 | $0.3 \%$ | SN38-OH(C4) | WAT14422-O | $0.1 \%$ |
| WAT19706-O | SN38-O=C3 | $0.3 \%$ | WAT21173-O | SN38-O=C14 | $8.0 \%$ |
| SN38-OH(C9) | WAT17717-O | $2.9 \%$ | SN38-OH(C9) | WAT5781-O | $4.3 \%$ |
| WAT11350-O | SN38-OH(C9) | $0.6 \%$ | SN38-OH(C9) | WAT10627-O | $2.2 \%$ |
| WAT20864-O | SN38-OH(C9) | $1.3 \%$ | WAT6006-O | SN38-OH(C9) | $0.4 \%$ |
| WAT28324-O | SN38-O=C14 | $0.2 \%$ | SN38-OH(C9) | WAT16853-O | $5.6 \%$ |
| WAT5781-O | SN38-OH(C9) | $3.8 \%$ | SN38-OH(C9) | WAT9756-O | $1.1 \%$ |
| WAT22614-O | SN38-O=C14 | $38.3 \%$ | WAT26026-O | SN38-OH(C9) | $0.1 \%$ |
| WAT22614-O | SN38-N13 | $0.4 \%$ | WAT14422-O | SN38-OH(C4) | $0.1 \%$ |
| WAT16853-O | SN38-OH(C9) | $4.4 \%$ | WAT6651-O | SN38-OH(C9) | $0.2 \%$ |

These results are not in conflict with the X-ray data, because crystallographic residues are identified as a mean electron density, which can be determined by different water molecules which concur to occupy the same position. ${ }^{281}$ Indeed, the grid analysis performed for water oxygen atoms showed that the high-water-density regions match with crystallographic water molecules of the X-ray structure (Figures 9.5 and 9.6).

Therefore, standard MMPBSA and MMGBSA (Nwat $=0$ ) calculations and Nwat-MMPBSA and MMGBSA analyses with Nwat $=10,20,30,40$, and 50 were performed and the results were correlated to $-\log _{10}\left(I C_{50}\right)$ (Figures 9.8 and 9.9).


Figure 9.6. Water density plots obtained by grid analysis (ptraj; grid box $=50 \times 50 \times 50 \AA$, mesh $=0.5 \AA$; visualization with VMD specifying an isovalue $=45$ ) of topoisomerase-DNA-TTC complex.


Figure 9.7. Trend of $r^{2}$ as a function of Nwat for topoisomerase - DNA complexes.

$\mathrm{N}_{\text {wat }}=\mathbf{2 0}$


$$
\mathbf{N}_{\text {wat }}=\mathbf{4 0}
$$


$\mathrm{N}_{\text {wat }}=10$

$\mathrm{N}_{\text {wat }}=\mathbf{3 0}$

$\mathrm{N}_{\text {wat }}=\mathbf{5 0}$


Figure 9.8. Correlations between MMGBSA predicted binding energies and experimental $-\log _{10}\left(I_{50}\right)$ for topoisomerase - DNA complexes.


Figure 9.9. Correlations between MMPBSA predicted binding energies and experimental $-\log _{10}\left(I C_{50}\right)$ for topoisomerase - DNA complexes.

Figures 9.7, 9.8 and 9.9 show that the Nwat-MMPBSA and Nwat-MMGBSA protocols gave for any Nwat better correlations with experiments than the standard MMPBSA and MMGBSA, being the best results those obtained with Nwat $=20$ for both PB and GB ( $r^{2}=0.51$ and 0.87 , respectively). In detail, the correlation sharply increases with Nwat switching from 10 to 20, while it slowly decreases with 30 or more water molecules, although maintaining an acceptable correlation.

Therefore, it seems that the inclusion of only 10 water molecules around the ligand is not sufficient to take in account all the explicit interactions between the solute and the solvent. Conversely, in this case the use of Nwat $>20$ turned out to be slightly detrimental, probably because of the background noises due to the inclusion of a number of solvent molecules larger than needed.

From Figures 9.8 and 9.9 , it can be noticed that the improvement in the $r^{2}$ is mainly due to a better description of a single ligand, TTC. An explanation of this is given by the comparison of the H -bond analyses performed on the Nwat $=10$ and 20 trajectories for TTC and SN38, with this latter weakly affecting the $r^{2}$ (Tables 9.3, 9.4, 9.5). The H-bonds with an occupancy greater than $5 \%$ detected for the SN38 trajectories remained constant at the increase of Nwat, whereas for TTC an increase of H-bonds were observed when shifting from Nwat $=10$ to Nwat $=20$. These results provide an explanation to the fact the best $r^{2}$ was obtained with Nwat $=20$, and suggest that a better correlation can be obtained by considering not only those few water molecules making stable water-mediated H -bonds between the ligand and the receptor, but also those waters involved in transient interactions, but that still contribute to the determination of a water buffer between the ligand and the binding site residues.

Table 9.3. H-bonds between TTC and water of the Nwat= 10 trajectory (occupancy $\geq 5 \%$ ).

| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| TTC-N28 | WAT611-O | $11.8 \%$ | WAT616-O | TTC-O18 | $9.3 \%$ |
| WAT616-O | TTC-N10 | $8.3 \%$ | WAT620-O | TTC-N10 | $5.5 \%$ |
| WAT618-O | TTC-O23 | $8.8 \%$ | WAT615-O | TTC-O18 | $6.9 \%$ |
| WAT613-O | TTC-O26 | $12.9 \%$ | WAT617-O | TTC-O26 | $7.4 \%$ |
| TTC-O26 | WAT611-O | $60.2 \%$ | WAT619-O | TTC-O26 | $7.2 \%$ |
| WAT618-O | TTC-O18 | $12.2 \%$ | TTC-N28 | WAT612-O | $10.4 \%$ |
| WAT614-O | TTC-O26 | $10.2 \%$ | WAT619-O | TTC-O18 | $12.1 \%$ |
| WAT616-O | TTC-O26 | $7.9 \%$ | TTC-O26 | WAT612-O | $10.3 \%$ |
| WAT613-O | TTC-N10 | $5.4 \%$ | WAT618-O | TTC-N10 | $8.1 \%$ |
| WAT619-O | TTC-O23 | $7.4 \%$ | WAT620-O | TTC-O23 | $6.3 \%$ |
| WAT620-O | TTC-O26 | $9.0 \%$ | WAT615-O | TTC-N10 | $6.5 \%$ |
| WAT619-O | TTC-N10 | $6.8 \%$ | WAT614-O | TTC-N10 | $7.5 \%$ |
| WAT620-O | TTC-O18 | $11.5 \%$ | WAT612-O | TTC-O26 | $7.5 \%$ |
| WAT617-O | TTC-O18 | $10.5 \%$ | WAT617-O | TTC-N10 | $9.1 \%$ |
| WAT615-O | TTC-O26 | $9.6 \%$ | WAT618-O | TTC-O26 | $6.5 \%$ |

Table 9.4. H -bonds between TTC and water of the Nwat $=20$ trajectory (occupancy $\geq 5 \%$ ).

| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| :--- | :--- | :---: | :--- | :--- | ---: |
| TTC-N28 | WAT611-O | $11.8 \%$ | WAT620-O | TTC-N10 | $5.5 \%$ |
| WAT616-O | TTC-N10 | $8.3 \%$ | WAT624-O | TTC-O23 | $6.0 \%$ |
| WAT618-O | TTC-O23 | $8.8 \%$ | WAT623-O | TTC-O23 | $8.3 \%$ |
| WAT613-O | TTC-O26 | $12.9 \%$ | WAT624-O | TTC-O18 | $6.5 \%$ |
| TTC-O26 | WAT611-O | $60.2 \%$ | WAT624-O | TTC-O26 | $6.9 \%$ |
| WAT618-O | TTC-O18 | $12.2 \%$ | WAT621-O | TTC-O18 | $9.8 \%$ |
| WAT614-O | TTC-O26 | $10.2 \%$ | WAT622-O | TTC-O26 | $9.2 \%$ |
| WAT616-O | TTC-O26 | $7.9 \%$ | WAT615-O | TTC-O18 | $6.9 \%$ |
| WAT613-O | TTC-N10 | $5.4 \%$ | WAT617-O | TTC-O26 | $7.4 \%$ |
| WAT619-O | TTC-O23 | $7.4 \%$ | WAT619-O | TTC-O26 | $7.2 \%$ |
| WAT620-O | TTC-O26 | $9.0 \%$ | TTC-N28 | WAT612-O | $10.4 \%$ |
| WAT623-O | TTC-O26 | $6.4 \%$ | WAT619-O | TTC-O18 | $12.1 \%$ |
| WAT626-O | TTC-O26 | $5.9 \%$ | TTC-O26 | WAT612-O | $10.3 \%$ |
| WAT619-O | TTC-N10 | $6.8 \%$ | WAT618-O | TTC-N10 | $8.1 \%$ |
| WAT617-O | TTC-O18 | $10.5 \%$ | WAT620-O | TTC-O23 | $6.3 \%$ |
| WAT620-O | TTC-O18 | $11.5 \%$ | WAT615-O | TTC-N10 | $6.5 \%$ |
| WAT615-O | TTC-O26 | $9.6 \%$ | WAT614-O | TTC-N10 | $7.5 \%$ |
| WAT616-O | TTC-O18 | $9.3 \%$ | WAT622-O | TTC-O18 | $7.8 \%$ |
| WAT621-O | TTC-O23 | $9.6 \%$ | WAT612-O | TTC-O26 | $7.5 \%$ |
| WAT627-O | TTC-O26 | $5.7 \%$ | WAT625-O | TTC-O26 | $5.1 \%$ |
| WAT621-O | TTC-O26 | $8.3 \%$ | WAT617-O | TTC-N10 | $9.1 \%$ |
| WAT622-O | TTC-O23 | $6.4 \%$ | WAT618-O | TTC-O26 | $6.5 \%$ |
| WAT623-O | TTC-O18 | $7.9 \%$ |  |  |  |

Table 9.5. H-bonds between SN38 and water of the Nwat $=10$ (left) and 20 (right) trajectories (occupancy $\geq 5 \%$ ).

| Nwat = 10 |  |  | Nwat = 20 |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| SN38-OH(C9) | WAT611-O | $82.4 \%$ | SN38-OH(C9) | WAT611-O | $82.4 \%$ |
| WAT617-O | SN38-O=C3 | $7.0 \%$ | WAT617-O | SN38-O=C3 | $7.0 \%$ |
| WAT612-O | SN38-O=C14 | $8.0 \%$ | WAT612-O | SN38-O=C14 | $8.0 \%$ |
| WAT615-O | SN38-O=C3 | $12.0 \%$ | WAT615-O | SN38-O=C3 | $12.0 \%$ |
| WAT613-O | SN38-O=C3 | $8.3 \%$ | WAT613-O | SN38-O=C3 | $8.3 \%$ |
| WAT619-O | SN38-OH(C9) | $7.3 \%$ | WAT619-O | SN38-OH(C9) | $7.3 \%$ |
| WAT616-O | SN38-OH(C9) | $7.6 \%$ | WAT616-O | SN38-OH(C9) | $7.6 \%$ |
| WAT612-O | SN38-O=C3 | $6.0 \%$ | WAT612-O | SN38-O=C3 | $6.0 \%$ |
| WAT613-O | SN38-OH(C9) | $7.2 \%$ | WAT613-O | SN38-OH(C9) | $7.2 \%$ |
| WAT615-O | SN38-OH(C9) | $8.4 \%$ | WAT615-O | SN38-OH(C9) | $8.4 \%$ |
| WAT618-O | SN38-O=C14 | $6.3 \%$ | WAT618-O | SN38-O=C14 | $6.3 \%$ |
| WAT616-O | SN38-O=C3 | $7.6 \%$ | WAT616-O | SN38-O=C3 | $7.6 \%$ |
| WAT613-O | SN38-O=C14 | $10.5 \%$ | WAT613-O | SN38-O=C14 | $10.5 \%$ |


| WAT615-O | SN38-O=C14 | $9.2 \%$ | WAT615-O | SN38-O=C14 | $9.2 \%$ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| WAT614-O | SN38-O=C3 | $10.5 \%$ | WAT614-O | SN38-O=C3 | $10.5 \%$ |
| WAT618-O | SN38-O=C3 | $5.1 \%$ | WAT618-O | SN38-O=C3 | $5.1 \%$ |
| WAT614-O | SN38-OH(C9) | $6.9 \%$ | WAT614-O | SN38-OH(C9) | $6.9 \%$ |
| WAT618-O | SN38-OH(C9) | $8.4 \%$ | WAT618-O | SN38-OH(C9) | $8.4 \%$ |
| WAT614-O | SN38-O=C14 | $10.5 \%$ | WAT614-O | SN38-O=C14 | $10.5 \%$ |
| WAT617-O | SN38-OH(C9) | $8.1 \%$ | WAT617-O | SN38-OH(C9) | $8.1 \%$ |
| WAT616-O | SN38-O=C14 | $8.6 \%$ | WAT616-O | SN38-O=C14 | $8.6 \%$ |
| WAT617-O | SN38-O=C14 | $6.8 \%$ | WAT617-O | SN38-O=C14 | $6.8 \%$ |

The Nwat-MMPB/GBSA approach also allows a better estimation of the activity of the fluorinated derivative 12. The analysis of $\mathrm{IC}_{50}$ suggests that substitutions at the C 12 of the C-ring decreases the activity of CPT derivatives (compounds $\mathbf{7 , 8} \mathbf{8}, \mathbf{1 2}, 20$ and 22), with a more pronounced detrimental effect observed when the C12 substituent is an H-bond acceptor. In addition, although the $\mathbf{1 2 \alpha}$ and $\mathbf{1 2} \boldsymbol{\beta}$ epimers had the same $\mathrm{IC}_{50},{ }^{280}$ the standard MMPB/GBSA calculation (Nwat $=0$ ) overestimated the activity of $\mathbf{1 2 \alpha}$, while the application of the Nwat-MMPB/GBSA approach gave converged binding energies, thanks to a better estimation of $\mathbf{1 2 \alpha}$. This is explained by observing that, during the MD simulation, $\mathbf{1 2 \alpha} \mathrm{F}$ atom is more exposed to the solvent than the F atom of $\mathbf{1 2 \beta}$, as showed by the water density plots obtained from grid analysis on the trajectories (Figure 9.10).


Figure 9.10. Water density plots obtained by grid analysis (ptraj; grid box $=50 \times 50 \times 50 \AA$, mesh $=0.5$ $\AA$; visualization with VMD, isovalue $=45$ ) of topoisomerase-DNA-12 $\alpha(A)$ and $\mathbf{1 2 \beta}(B)$ complexes.

It has to be underlined that the GB method gave better results than PB , in agreement with that observed by other authors. ${ }^{267,279,282}$ Therefore, GB seems to be
better suited for drug design/discovery purposes, especially considering its significantly lower computational cost compared to PB (in the present study, GB required $1 / 6$ of the computational time needed by PB ).

At the light of this, although both MMPBSA and MMGBSA analyses were performed (see Annex 9.A for MMPBSA results), the discussion of the remaining systems will be focused on the latter method.
$\boldsymbol{\alpha}$-Thrombin. Standard MMGBSA calculations (Nwat $=0$ ) on this system already gave acceptable correlation between computed binding energies and experimental binding free energies $\left(r^{2}=0.67, r_{\mathrm{s}}=0.82\right)$. The application of the NwatMMGBSA approach (Nwat $=10,20,30,40,50,60$ and 70) gave different results from those observed for the topoisomerase - DNA systems. Indeed, the inclusion of only 10 water molecules caused the decrease of the $r^{2}$ (Figures 9.10 and 9.12), suggesting that a small hydration shell around the ligand introduces noise and it does not improve the treatment of solute-solvent interactions. However, with higher Nwat the $r^{2}$ increases, up to 0.78 (Nwat $=50$ ). To check the calculation convergence, the analyses with Nwat $=60$ and 70 were also performed, showing a negligible increase in the correlation $\left(r^{2}=0.83\right)$.

Therefore, for the $\alpha$-thrombin system the improvement in the correlation between computed and experimental $\Delta G_{\text {bind }}$ was less significant than that observed in the previous example, and it could only be noticed with the inclusion of a rather large hydration shell (Nwat $=50-70)$. At the light of this, it can be hypothesized that in this case water plays a less relevant role in mediating receptor-ligand binding. Indeed, H-bond analyses performed on the MID and BT2 trajectories showed the presence of H-bond with negligible occupancies (between 0.10 and $3.70 \%$, Table 9.6) and the water density around the ligand showed by grid analysis (Figure 9.11) was poor compared to that observed for topoisomerase (Figure 9.10).

Therefore, in this case, the mild $r^{2}$ improvement given by the application of the Nwat-MMGBSA approach is probably ascribable to a contribution given to the receptor-ligand interaction by transient H -bonds involving water molecules.


Figure 9.10. Trend of $r^{2}$ as a function of Nwat for $\alpha$-thrombin system.


Figure 9.11. Water density plots obtained by grid analysis (ptraj; grid box $=50 \times 50 \times 50 \AA$, mesh $=0.5$ $\AA$; visualization with VMD, isovalue $=45$ ) of BT2- $\alpha$-thrombin complex.


Figure 9.12. Correlations between MMGBSA predicted binding energies and experimental $\Delta G_{b i n d}$ for $\alpha$-thrombin complexes.

Table 9.6. H-bonds between MID/BT2 and water during the last ns of MD simulation.

| MID |  |  | BT2 |  |  |
| :--- | :--- | ---: | :--- | :--- | ---: |
| Donor Atom | Acceptor Atom | Occupancy | Donor Atom | Acceptor Atom | Occupancy |
| WAT5573-O | MID-O=S11 | $2.2 \%$ | WAT863-O | BT2-O1 | $0.4 \%$ |
| WAT5573-O | MID-S11 | $0.2 \%$ | BT2-N34 | WAT1148-O | $0.2 \%$ |
| WAT8805-O | MID-N26 | $0.2 \%$ | WAT1148-O | BT2-O3 | $0.1 \%$ |
| WAT9812-O | MID-N12 | $0.9 \%$ | BT2-N10 | WAT863-O | $0.5 \%$ |
| WAT9812-O | MID-O=S11 | $2.6 \%$ | WAT8353-O | BT2-S16 | $0.2 \%$ |
| WAT9812-O | MID-S11 | $1.5 \%$ | BT2-N34 | WAT8533-O | $0.9 \%$ |
| WAT924-O | MID-O=S11 | $3.7 \%$ | WAT4716-O | BT2-O1 | $0.2 \%$ |
| WAT924-O | MID-S11 | $0.5 \%$ | BT2-N10 | WAT4716-O | $0.2 \%$ |
| MID-N15 | WAT9812-O | $0.2 \%$ | WAT3398-O | BT2-O1 | $0.2 \%$ |
| WAT3348-O | MID-O=S11 | $0.3 \%$ | BT2-N10 | WAT4423-O | $0.3 \%$ |
| WAT3348-O | MID-S11 | $0.1 \%$ | WAT2725-O | BT2-O1 | $0.1 \%$ |
| WAT8182-O | MID-O=S11 | $1.2 \%$ | WAT4687-O | BT2-S16 | $0.5 \%$ |
| WAT8182-O | MID-S11 | $0.7 \%$ | BT2-N34 | WAT7785-O | $0.6 \%$ |
| WAT8182-O | MID-N12 | $0.1 \%$ | WAT7785-O | BT2-N34 | $0.1 \%$ |
| WAT10308-O | MID-O=S11 | $1.1 \%$ |  |  |  |
| WAT10308-O | MID-S11 | $0.3 \%$ |  |  |  |
| WAT11327-O | MID-O=S11 | $0.2 \%$ |  |  |  |

Penicillopepsin. For penicillopepsin, the standard MMGBSA calculations (Nwat $=0)$ gave a modest correlation between predicted and experimental $\Delta G_{\text {bind }}\left(r^{2}=0.46\right.$, $r_{\mathrm{s}}=0.68$ ). Conversely, the Nwat-MMGBSA approach, with Nwat $=$ from 10 to 70 , gave a significant improvement of $r^{2}$ value (Figures 9.13 and 9.15).

For this system, the $r^{2}$ constantly improved with increasing Nwat, although a sharp hike was observed for Nwat $=20-30\left(r^{2}=0.70\right)$, followed by the convergence to a plateau value of $0.79(N w a t=70)$. The positive effect on correlation between predicted and experimental $\Delta G_{\text {bind }}$ can be explained by observing the presence of quite wide areas of high water density around the ligand highlighted by the grid analysis (Figure 9.14).


Figure 9.13. Trend of $r^{2}$ as a function of Nwat for penicillopepsin system.
The estimation of the binding affinity of the APU ligand was the most affected by the application of the Nwat-MMGBSA approach (Figure 9.15), because its binding energy was highly underestimated by the standard protocol. Therefore, H-bond analyses were performed on the Nwat $=10$ and 20 trajectories of APU and APT (Tables 9.7, 9.8 and 9.9), with this latter being a complex not affected by the explicit inclusion of water molecules in MMGBSA calculations.

As previously observed for TTC (Tables 9.3 and 9.4), the number of H -bonds between APU and water molecules increased from 41 to 70 when passing from Nwat $=10$ to Nwat $=20$ (Tables 9.7 and 9.8), while the APT complex simulation had only 6 H-bonds between APT and water with Nwat $=20$, compared to Nwat $=10$ (Table 9.9).


Figure 9.14. Water density plots obtained by grid analysis (ptraj; grid box $=50 \times 50 \times 50 \AA$, mesh $=0.5$ $\AA$; visualization with VMD, isovalue $=45$ ) of APT-penicillopepsin complex.

It has to be noted that in this case MMPBSA gave better $r^{2}$ than MMGBSA (Annex 9.A), however positive $\Delta G_{\text {bind }}$ have been obtained with the former method.

Table 9.7. H-bonds between APU and water of the Nwat $=10$ trajectory (occupancy $\geq 5 \%$ ).

| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| WAT334-O | IVA-O=C5 | $8.8 \%$ | WAT333-O | STA-O29 | $11.3 \%$ |
| WAT335-O | VAL326-O=C16 | $7.3 \%$ | WAT333-O | IVA-O=C5 | $6.8 \%$ |
| WAT330-O | STA-O29 | $9.5 \%$ | WAT337-O | VAL326-O=C16 | $8.0 \%$ |
| WAT329-O | STA-O29 | $5.6 \%$ | WAT329-O | STA-O=C28 | $5.3 \%$ |
| WAT332-O | STA-O29 | $12.0 \%$ | WAT330-O | IVA-O=C5 | $5.6 \%$ |
| VAL325-N6 | WAT328-O | $35.7 \%$ | VAL325-N613 | WAT329-O | $17.4 \%$ |
| WAT333-O | VAL326-O=C16 | $8.1 \%$ | WAT335-O | IVA-O=C5 | $7.1 \%$ |
| WAT331-O | STA-O29 | $11.0 \%$ | WAT329-O | VAL326-O=C16 | $5.6 \%$ |
| WAT337-O | STA-O29 | $12.4 \%$ | WAT336-O | STA-O=C28 | $17.0 \%$ |
| WAT336-O | STA-O29 | $13.5 \%$ | WAT334-O | STA-O=C28 | $15.5 \%$ |
| WAT337-O | STA-O=C28 | $14.0 \%$ | WAT337-O | IVA-O=C5 | $6.6 \%$ |
| WAT331-O | STA-O=C28 | $13.6 \%$ | WAT331-O | IVA-O=C5 | $5.9 \%$ |
| WAT336-O | IVA-O=C5 | $6.9 \%$ | WAT332-O | VAL326-O=C16 | $7.1 \%$ |
| WAT334-O | VAL326-O=C16 | $5.7 \%$ | WAT336-O | VAL326-O=C16 | $6.5 \%$ |
| WAT335-O | STA-O=C28 | $16.7 \%$ | VAL325-N66 | WAT329-O | $11.3 \%$ |
| WAT330-O | STA-O=C28 | $8.2 \%$ | STA-OH-C23 | WAT328-O | $34.0 \%$ |
| WAT332-O | STA-O =C28 | $16.7 \%$ | STA-OH-C23 | WAT329-O | $6.7 \%$ |
| WAT335-O | STA-O29 | $12.8 \%$ | VAL325-N66 | WAT330-O | $7.0 \%$ |
| WAT334-O | STA-O29 | $13.3 \%$ | STA-N21 | WAT328-O | $26.1 \%$ |
| WAT331-O | VAL326-O=C16 | $6.9 \%$ | STA-N21 | WAT329-O | $5.9 \%$ |
| WAT333-O | STA-O=C28 | $18.7 \%$ |  |  |  |

Table 9.8. H-bonds between APU and water of the Nwat $=20$ trajectory (occupancy $\geq 5 \%$ ).

| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| WAT342-O | IVA-O=C5 | $7.4 \%$ | WAT340-O | STA-O=C28 | $11.1 \%$ |
| WAT334-O | IVA-O=C5 | $8.8 \%$ | WAT344-O | IVA-O=C5 | $5.0 \%$ |
| WAT335-O | VAL326-O=C16 | $7.3 \%$ | WAT337-O | VAL326-O=C16 | $8.0 \%$ |
| WAT330-O | STA-O29 | $9.5 \%$ | WAT329-O | STA-O=C28 | $5.3 \%$ |
| WAT343-O | STA-O=C28 | $8.8 \%$ | WAT330-O | IVA-O=C5 | $5.6 \%$ |
| WAT329-O | STA-O29 | $5.6 \%$ | WAT338-O | STA-O29 | $10.7 \%$ |
| WAT338-O | STA-O=C28 | $13.0 \%$ | VAL326-N13 | WAT329-O | $17.4 \%$ |
| WAT332-O | STA-O29 | $12.0 \%$ | WAT335-O | IVA-O=C5 | $7.1 \%$ |
| VAL326-N13 | WAT328-O | $35.7 \%$ | WAT329-O | VAL326-O=C16 | $5.6 \%$ |
| WAT333-O | VAL326-O=C16 | $8.1 \%$ | WAT336-O | STA-O=C28 | $17.0 \%$ |
| WAT341-O | STA-O=C28 | $10.6 \%$ | WAT341-O | VAL326-O=C16 | $5.0 \%$ |
| WAT331-O | STA-O29 | $11.0 \%$ | WAT342-O | STA-O29 | $6.5 \%$ |
| WAT344-O | STA-O29 | $6.4 \%$ | WAT345-O | STA-O29 | $5.0 \%$ |


| WAT337-O | STA-O29 | $12.4 \%$ | WAT334-O | STA-O=C28 | $15.5 \%$ |
| :--- | :--- | ---: | :--- | :--- | ---: |
| WAT336-O | STA-O29 | $13.5 \%$ | WAT337-O | IVA-O=C5 | $6.6 \%$ |
| WAT337-O | STA-O=C28 | $14.0 \%$ | WAT342-O | STA-O=C28 | $9.1 \%$ |
| WAT341-O | STA-O29 | $8.7 \%$ | WAT339-O | STA-O29 | $9.9 \%$ |
| WAT331-O | STA-O=C28 | $13.6 \%$ | WAT341-O | IVA-O=C5 | $5.2 \%$ |
| WAT336-O | IVA-O=C5 | $6.9 \%$ | WAT331-O | IVA-O=C5 | $5.9 \%$ |
| WAT334-O | VAL326-O=C16 | $5.7 \%$ | WAT332-O | VAL326-O=C16 | $7.1 \%$ |
| WAT343-O | STA-O29 | $6.0 \%$ | WAT345-O | STA-O=C28 | $6.1 \%$ |
| WAT335-O | STA-O=C28 | $16.7 \%$ | WAT339-O | STA-O=C28 | $11.4 \%$ |
| WAT339-O | IVA-O=C5 | $6.8 \%$ | WAT343-O | IVA-O=C5 | $5.6 \%$ |
| WAT338-O | VAL326-O=C16 | $6.4 \%$ | WAT336-O | VAL326-O=C16 | $6.5 \%$ |
| WAT335-O | STA-O29 | $12.8 \%$ | WAT340-O | STA-O29 | $7.5 \%$ |
| WAT330-O | STA-O=C28 | $8.2 \%$ | WAT346-O | STA-O=C28 | $5.5 \%$ |
| WAT332-O | STA-O=C28 | $16.7 \%$ | WAT340-O | VAL326-O=C16 | $5.7 \%$ |
| WAT334-O | STA-O29 | $13.3 \%$ | WAT344-O | STA-O=C28 | $7.1 \%$ |
| WAT338-O | IVA-O=C5 | $5.8 \%$ | WAT347-O | STA-O=C28 | $6.0 \%$ |
| WAT331-O | VAL326-O=C16 | $6.9 \%$ | VAL325-N6 | WAT329-O | $11.3 \%$ |
| WAT333-O | STA-O=C28 | $18.7 \%$ | STA-OH-C23 | WAT328-O | $34.0 \%$ |
| WAT340-O | IVA-O=C5 | $5.6 \%$ | STA-OH-C23 | WAT329-O | $6.7 \%$ |
| WAT339-O | VAL326-O=C16 | $6.4 \%$ | VAL325-N6 | WAT330-O | $7.0 \%$ |
| WAT333-O | STA-O29 | $11.3 \%$ | STA-N21 | WAT328-O | $26.1 \%$ |
| WAT333-O | IVA-O=C5 | $6.8 \%$ | STA-N21 | WAT329-O | $5.9 \%$ |

Table 9.9. H-bonds between APT and water of the Nwat $=10$ (left) and 20 (right) trajectories (occupancy $\geq 5 \%$ ).

| Nwat = 10 |  |  | Nwat = 20 |  |  |
| :--- | :--- | :---: | :--- | :--- | ---: |
| Donor Atom | Acceptor Atom | Occ | Donor Atom | Acceptor Atom | Occ |
| LTA-N28 | WAT328-O | $59.2 \%$ | LTA-N28 | WAT328-O | $58.4 \%$ |
| WAT336-O | IVA-O=C5 | $10.3 \%$ | WAT336-O | IVA-O=C5 | $11.7 \%$ |
| LTA-N28 | WAT329-O | $49.3 \%$ | LTA-N28 | WAT329-O | $48.1 \%$ |
| WAT332-O | IVA-O=C5 | $5.1 \%$ | WAT332-O | IVA-O=C5 | $6.0 \%$ |
| WAT333-O | IVA-O=C5 | $6.3 \%$ | WAT340-O | IVA-O=C5 | $8.7 \%$ |
| WAT337-O | IVA-O=C5 | $12.0 \%$ | WAT339-O | IVA-O=C5 | $10.8 \%$ |
| WAT335-O | IVA-O=C5 | $8.8 \%$ | WAT333-O | IVA-O=C5 | $6.8 \%$ |
| LTA-N28 | WAT331-O | $7.9 \%$ | WAT337-O | IVA-O=C5 | $11.0 \%$ |
| LTA-N28 | WAT330-O | $30.7 \%$ | WAT335-O | IVA-O=C5 | $10.6 \%$ |
| LTA-OH-C23 | WAT328-O | $14.3 \%$ | WAT343-O | IVA-O=C5 | $5.4 \%$ |
| WAT334-O | IVA-O=C5 | $6.2 \%$ | WAT341-O | IVA-O=C5 | $6.9 \%$ |
| WAT330-O | VAL326-O=C16 | $10.9 \%$ | LTA-N28 | WAT331-O | $7.3 \%$ |
| VAL326-N13 | WAT330-O | $6.0 \%$ | WAT334-O | IVA-O=C5 | $7.8 \%$ |
| WAT329-O | VAL326-O=C16 | $14.4 \%$ | WAT342-O | IVA-O=C5 | $6.6 \%$ |
| WAT328-O | VAL326-O=C16 | $17.3 \%$ | LTA-N28 | WAT330-O | $25.8 \%$ |
|  |  |  | LTA-OH-C23 | WAT328-O | $14.3 \%$ |


| WAT338-O | IVA-O=C5 | $10.0 \%$ |
| :--- | :--- | ---: |
| WAT330-O | VAL326-O=C16 | $9.5 \%$ |
| VAL326-N13 | WAT330-O | $6.1 \%$ |
| WAT329-O | VAL326-O=C16 | $14.8 \%$ |
| WAT328-O | VAL326-O=C16 | $18.4 \%$ |



Figure 9.15. Correlations between MMGBSA predicted binding energies and experimental $\Delta G_{\text {bind }}$ for penicillopepsin complexes.

Avidin. This system was selected because it already gave good correlation with the standard MMGBSA approach. ${ }^{267,283}$ Thus, it was not surprising that the good $r^{2}$ value of 0.72 was obtained with Nwat $=0$ and only minor improvements were given by using Nwat $=10-70$ (Figures 9.16 and 9.17) .

The small increase in $r^{2}$ obtained with the application of the Nwat-MMGBSA method may be attributed to transient interactions between the solute and the solvent. Moreover, the poor relevance of water in this system is also highlighted by the grid analysis of the complex between avidin and BTN2, which showed the absence of high water density around the ligand (Figure 9.18). In addition, no H-bonds with occupancies $>5 \%$ were found between water residues and the ligand for BTN1 and BTN2 trajectories (Table 9.10).

Avidin


Figure 9.16. Trend of $r^{2}$ as a function of Nwat for avidin system.


Figure 9.17. Correlations between MMGBSA predicted binding energies and experimental $\Delta G_{b i n d}$ for avidin complexes.


Figure 9.18. Water density plots obtained by grid analysis (ptraj; grid box $=50 \times 50 \times 50 \AA$, mesh $=0.5$ $\AA$; visualization with VMD, isovalue $=25$ ) of avidin-BTN2 complex.

Table 9.10. H-bonds between BTN1 (left) or BTN2 (right) and water during the last ns of MD simulation.

| BTN1 |  |  | BTN2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Donor Atom | Acceptor Atom | Occ |  | Donor Atom | Acceptor Atom | Occ |
| WAT6517-O | BTN1-O=C12 | $2.7 \%$ | WAT523-O | BTN2-O-(C12) | $0.5 \%$ |  |
| WAT6517-O | BTN1-O-(C12) | $0.2 \%$ | WAT12292-O | BTN2-N4 | $0.1 \%$ |  |
| WAT6498-O | BTN1-O=C12 | $4.1 \%$ | WAT12292-O | BTN2-N1 | $0.1 \%$ |  |
| WAT6498-O | BTN1-O-(C12) | $0.4 \%$ |  |  |  |  |
| WAT13708-O | BTN1-O=C12 | $0.1 \%$ |  |  |  |  |
| WAT2867-O | BTN1-O-(C12) | $3.7 \%$ |  |  |  |  |
| WAT2867-O | BTN1-O=C12 | $0.1 \%$ |  |  |  |  |

At the light of the results of this study, it appears that the Nwat-MMGBSA approach represents a useful way to improve the correlation between MMPBG/GBSA predicted binding energies and experimental activities of the ligands, without significantly affecting the required computational time.

Although the optimal Nwat was system-dependent, a Nwat $=30$ could be considered as a default value in MMPB/GBSA calculations for classical receptor-ligand complexes. Indeed, also in those cases where water has not a significant role in protein-ligand interaction, the inclusion of a hydration shell made of 30 water molecules was not detrimental.

It has also to be underlined that only the correlation between predicted binding energies and biological activities increases, while the estimation of absolute binding
free energy (which also imply the estimation of binding entropies) might be worsened by the presence of water. However, being relative binding energies the most relevant quantity in drug design/discovery, and being calculation time a particularly valuable resource, this approach might be particularly suited for medicinal chemistry applications.

### 9.3 Materials and Methods

## Preparation of Complexes.

Topoisomerase. All models were derived from the 1K4T crystal structure. ${ }^{278}$ The considered system is made of human topoisomerase I B, 22 pairs of bases of double helix DNA and Topotecan (TTC) as the ligand (Figure 9.19A). The DNA filament composed by nucleotides $1-22$ is cleaved between thymine 10 and guanidine 11 , this latter replaced by its 5 '-thio derivative (TGP) due to technical reasons related to X-ray resolution. Accordingly to the topoisomerase I cleaving mechanism, ${ }^{284}$ the dangling 3 , phosphate group of thymine 10 is covalently bound to the Tyr 723 residue.

For those reasons, to prepare a suitable system for MD simulations, the TGP residue was replaced by guanosine monophosphate. A special attention has been given to the covalently bounded thymidine-phosphotyrosine system, for which the definition and charge parameterization of two non-standard residues (DTP and TYP for thymidine and phosphotyrosine, respectively) was mandatory. Conformation and orientation independent partial charges for non-standard residues were derived with the R.E.D. IV software, ${ }^{228}$ accordingly to the $f f 99 S B$ force field (RESP-A1 charge model), ${ }^{141}$ using two conformations and four orientations for each structure. It's necessary to underline that in the Amber $f f 99 S B$ force field a total charge of -1.0 , -0.3079 and -0.6921 is attributed to internal bases, $5^{\prime}$ bases , and 3 ' bases, respectively. ${ }^{141}$ Moreover, when considering the binary complex between DNA and topoisomerase, there is an intact DNA strand, with an integer total charge of -21.0 , and two cleaved strands: one is free and has an integer charge of -11.0 , the other one has a free $5^{\prime}$ end, while the $3^{\prime}$ end is covalently bound to TYP 723. Since an integer
charge is requested for the protein-DNA system, the charge of the TYP residue has been restrained to -0.6921 while DTP has been treated as an internal base.

For DTP, an -OMe group has been used to cap the 5 ' phosphate and the parameterization has been carried by restraining to -1.0 the final total charge of the uncapped DTP. Conversely, to parameterize the TYP residue three caps were added (Figure 9.20) and charge restraints were imposed as follow: a NH-methyl cap on Cterminus with charge of 0.0 , an acetyl cap on N -terminus with charge of 0.0 and, on the phosphate group, a methoxyl cap with a charge of -0.3079 , as this cap simulates the covalently bounded DNA strand. The backbone N and C atoms were restrained to the same charge value as reported in the force field for the standard tyrosine. ${ }^{141}$ Finally, bending parameters for angles involving CA-OS-P and C-OS-P atom types have been calculated from the QM optimized structure using the parmchk tool of the Amber 11 suite. ${ }^{285}$ Finally, the covalent bond between the phosphotyrosine and the thymidine residues has been created using the LEaP bond command (Figure 9.19B).


Figure 9.19. A) complex between topoisomerase, DNA and topotecan (carbons colored in green); evidence on TYP and DTP residues (carbons colored in cyan). B) covalent bond between DTP and TYP.


Figure 9.20. TYP residue; the caps (red) have been applied for the charge parameterization step.

The complex between DNA and topoisomerase has been finally processed by H++ server ${ }^{286}$ by choosing default settings, in order to establish the correct protonation state for each residue under physiological conditions. The resulting total charge of the DNA-topoisomerase complex was - 12, HIS 22, 146, 167, 311, 376 and 342 were protonated on the $\mathrm{N}^{\varepsilon}$, while HIS 66, 199, 206 and 315 were protonated on both $\mathrm{N}^{\varepsilon}$ and $\mathrm{N}^{\delta}$.

The ligand test set was made of camptothecin (CPT), topotecan (TTC) and other seven derivatives, for which an experimental $I C_{50}$ value was available in the literature. ${ }^{280}$ For ligands characterized by an additional stereocenter at position 5, experimentally evaluated as racemates, ${ }^{29}$ both the $\alpha$ and $\beta$ epimers were considered in MM-PB/GBSA calculation only for compound 12, as previously reported docking calculations evidenced a significant difference among predicted binding energies for this compound, while only the $\beta$ epimer was considered for compounds $\mathbf{7 , 8} \mathbf{8} 20$ and 22. Regarding this latter derivative, a keto-enol tautomerism might be possible through an intramolecular H-transfer between the C-5 ammonium and the amidic carbonyl (T1 and T2, Figure 9.20). Both tautomers were evaluated, but only the T2 tautomer, which is stabilized by resonance, provided significant correlation with experiments and was thus considered in the following discussion.


Figure 9.20. Tautomerism for derivative 22.
Each derivative has then been docked with $\operatorname{MOE}^{227}$ (placement $=$ Alpha Triangle, 800000 minimum iterations and 5000000 maximum iterations; scoring $=$ Affinity dG; the top 30 structures were subjected to force field refinement up to a gradient $=0.01$ and rescored with Affinity dG). A simple pharmacophore (Figure 9.21) consisting of
an H -bond acceptor feature centered on the lactone moiety (F1, radius of $2.8 \AA$ ) and an aromatic feature centered on the quinolone moiety ( F 2 , radius of $2.5 \AA$ ) based on the crystal structure of topotecan was designed and used as a pharmacophore restraint in all dockings.


Figure 9.21. Pharmacophore created from bounded TTC and used as a pharmacophore restraint while docking topoisomerase I ligands. $\mathrm{F} 1=\mathrm{H}$-bond acceptor; $\mathrm{F} 2=$ Aromatic.

The top-ranked conformations were then used to build the complexes. Partial charges were then calculated by following the RESP-A1 model with R.E.D.IV, using two conformations and four orientations.
$\alpha$-thrombin and penicillopepsin. Since the crystallographic structures of the $\alpha$ thrombin and penicillopepsin complexes with all the considered ligands were available (PDB codes for $\alpha$-thrombin: 1D3D, 1D3P, 1D3Q, 1D3T, 1DWB, 1DWC, 1DWD; PDB codes for penicillopepsin: 1APU, 1APT, 1APV, 1APW, 2WEA, 2WEB, 2WEC), no further action, save the protonation of the two proteins with the $\mathrm{H}++$ server, was necessary to build starting geometries for MD simulations. A total charge of -2 was obtained for $\alpha$-thrombin. HIS 72, 95, 116, 145 and 271 of 1DWB, 1DWC and 1DWD structures and HIS 71, 94 115, 144 and 263 of 1D3D, 1D3P, 1D3Q and 1D3T were protonated at $\mathrm{N}^{\varepsilon}$. A total charge of -22 was obtained for penicillopepsin, where HIS 54, 98 and 159 were protonated at $\mathrm{N}^{\varepsilon}$. Partial charges for the $\alpha$-thrombin ligands were derived as previously described for camptothecin derivatives. ${ }^{89}$

Penicillopepsin ligands APT, APU, APV and APW were considered as nonnatural tetrapeptides containing a divaline group substituted with isovaleric acid (IVA) at the N -terminus and with one of the non-standard residues LTA, STA, DFI or DFO at the C-terminus. Partial charges were thus derived for IVA (capped with a NHmethyl group), and LTA, STA, DFI and DFO (all capped with acetyl groups) and corresponding force field libraries were generated. Conformations were generated through the low-mode molecular dynamics conformational search implemented in MOE by using default parameters and charges computed with R.E.D.IV as explained above. Conversely, charge parameterization for PP4, PP5 and PP6 ligands was done on the complete structures by restraining the atoms corresponding to the central valine residue to the same charge value as reported in the $f f 99 S B$ force field for valine. ${ }^{287}$
1.3 Avidin. Since the crystallographic structure of avidin-biotin (BTN1) was the only one available (1AVD), ${ }^{288}$ the starting geometries of the six biotin analogues (BTN2-BTN7) were manually generated on the basis of the avidin-biotin complex using MOE software. It has been shown that the neutral form of the guanidinium group in BTN2 and BTN5 is dominant when it is bound to the protein, ${ }^{289}$ therefore, the neutral form of the guanidinium group for these ligands was used in our simulations. Partial charges for the biotin analogues were derived as previously described for camptothecin derivatives.

The protein structure was protonated through the $\mathrm{H}++$ server, obtaining a total charge of +9 with HIS 48 and 172 being protonated at $\mathrm{N}^{\varepsilon}$.

In all cases, QM geometry optimization and electrostatic potential calculation were performed at the HF/6-31G* level, accordingly to the ff99SB force field, by using the Gaussian09 software package. ${ }^{233}$

## Molecular dynamics

MD simulations were carried out with the pmemd module of the Amber 11 package ${ }^{285}$ using the $f f 99 S B^{141}$ and gaff force fields. In each case, the system total charge was neutralized by adding the proper number of $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$ions and solvent, a cubic box of TIP3P water, has been added up to a distance of $10 \AA$ from the solute. The systems were then relaxed by minimizing hydrogens, ions and waters (1000
cycles of steepest descent and 5000 cycles of conjugated gradient). The solvent box was then equilibrated at 300 K by 45 ps of NVT and 45 ps of NPT simulation. This step was followed by a minimization involving side chains, water and ions and by a total minimization ( 2500 cycles of steepest descent and 5000 cycles of conjugated gradient) with restraints applied on backbone atoms ( $10.0 \mathrm{kcal} / \mathrm{mol}$ ) and on ligands $(5.0 \mathrm{kcal} / \mathrm{mol})$. The systems were then heated up to 300 K in 6 steps of 20 ps each ( $\Delta \mathrm{T}$ 50 K ), where backbone and ligand restraints were reduced from 10.0 to 5.0 and from 5.0 to $0.5 \mathrm{kcal} / \mathrm{mol}$, respectively. Full equilibration was then performed in NVT ensemble ( 100 ps , with a restraint of 10.0 and $5.0 \mathrm{kcal} / \mathrm{mol}$ on the backbone and ligands, respectively) and in the NPT ensemble (4 steps of 100 ps each, reducing backbone and ligand restraints from 5.0 to 2.0 and from 0.5 to $0.2 \mathrm{kcal} / \mathrm{mol}$, respectively, followed by a 1 ns NPT equilibration with backbone and ligand restraints of 1.0 and $0.1 \mathrm{kcal} / \mathrm{mol}$, respectively). Finally, unrestrained production runs were performed at 300 K for 4 ns , a length considered adequate for similar calculations. ${ }^{267}$ A cut-off for electrostatic of $8.0 \AA$, a time step of 0.002 ps and the SHAKE algorithm, constraining bonds involving hydrogens, were applied to all calculations. Root-meansquare deviation (RMSD) analyses of receptor backbone and ligand atoms were made to assess the system stability. As regards avidin complexes, the analyses has been conducted on each of the two monomers, because the avidin sites are independent of each other. ${ }^{290}$

In some cases (CPT, $7,12 \beta, \mathrm{BEN}, \mathrm{MIT}, \mathrm{PP} 4$ and PP6), poor RMSD convergence was observed, so the NPT equilibration step was then extended to 2 ns .

Both MM-PBSA and MM-GBSA analyses were performed by using the MMPBSA.py python script implemented in the Amber 11 package. Analyses were conducted on the $4^{\text {th }} \mathrm{ns}$ of production run trajectory by selecting 100 evenly spaced out snapshots. The atomic radii developed by Onufriev and coworkers (igb=5) ${ }^{172}$ was chosen for all GB calculation, and a salt molar concentration in solution was at 0.15 M in both GB and PB calculations (saltcon and istrng parameters, respectively). The default PB solver implemented in the sander module was used for PB calculation and, unless differently specified, default parameters were adopted.

The entropy term in the herein reported binding energy calculations was neglected, considering that the benefits of including this term are controversial ${ }^{119,267,269,283}$ and entropy estimations by normal mode analysis are rather consuming in terms of CPU time.

When a ligand hydration shell had to be considered in MM-PB/GBSA analyses, corresponding trajectories were obtained using the ptraj keyword "closest", which allows to retain only the requested number of those water molecules that, in each frame of the solvated MD trajectory, are the closest to the atoms specified in the mask (the ligand atoms, in our case). For performance reason, it has been found convenient to sample the requested snapshots with the ptraj "offset" keyword, and successively perform the "closest" analysis on the reduced trajectory. MM-PB/GBSA were then run by setting "strip_mdcrd=0" (avoid the stripping of water molecules) and "interval $=l$ " (consider all frames in the MD trajectory) in the input file. The water molecules ( $10,20,30,40,50,60$ or 70 , depending from the chosen $\mathrm{N}_{\text {wat }}$ ) defining the ligand hydration shell were then included in both the complex and receptor files and considered as part of the receptor atoms. Indeed, we noticed that considering water molecules as part of the ligand atoms provided worse correlation and higher standard deviations to the computed $\Delta G_{\text {bind }}$.

Unless differently specified, the square of Pearson's correlation coefficient ( $r^{2}$ ) between computed binding energies and available experimental values such as the $\log _{10}\left(I C_{50}\right)$ (for topoisomerase) and $\Delta G_{\text {bind }}$ (for $\alpha$-thrombin, penicillopepsin and avidin) was used as an evaluation metric.

As regards avidin complexes, MM-PB/GBSA analyses were performed on separate monomers and the results averaged.

All H-bond analyses of ligand-water interactions were performed on the $4^{\text {th }} \mathrm{ns}$ of production run with $\mathrm{VMD},{ }^{231}$ requesting a donor-acceptor distance of $4.0 \AA$, an angle cutoff of $30^{\circ}$. The same software has been used to visualize grid density maps, generated with a ptraj analysis of the whole production run by setting a cubic box ( $50 \times 50 \times 50 \AA$, mesh $0.5 \AA$ ) centered on the ligand center of mass.

## 10 Test and Optimization of Nwat-MMPB/GBSA Method on PPIS

### 10.1 Introduction

As previously observed, water molecules are often found at protein-protein interfaces, and solvent can play a role in PPIs by bridging interactions between the protein partners o by stabilizing their interaction. ${ }^{47,50}$ Therefore, the NwatMMPB/GBSA approach could improve the correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies also for PPI systems.

However, the Nwat-MMPB/GBSA protocol previously applied to classical receptor-ligand complexes might not be suitable for protein-protein complexes, because of their different structural properties, which have been highlighted in Chapter 1. Indeed, the large interaction surface ${ }^{15}$ might need the inclusion in the hydration shell of more than $30-50$ water molecules, or the big PPI complexes might necessitate more than 4 ns of production run to achieve the best results in terms of $r^{2}$. In addition, more recent force fields, or explicit and implicit solvation models might affect the prediction of the binding energies. Moreover, the selection of the proteinprotein interfacial residues, to which the hydration shell has to be centered, is nontrivial.

At the light of this, 20 heterodimeric PPI complexes without ions and missing residues at the interface and with known experimental $\Delta G_{\text {bind }}$ (Table 10.1) ${ }^{291}$ have been selected and submitted to explicit solvent MD and to the Nwat-MMPB/GBSA approach by using different simulation conditions, with the aim of both optimizing the Nwat-MMPB/GBSA method for PPIs and assessing the robustness of the method. In particular, for the MD simulations, we tested two different AMBER force fields, namely the ff14SB ${ }^{135}$ and the ff99SBildn ${ }^{136}$, two different explicit solvent models, namely TIP3P ${ }^{292}$ and TIP4P-Ew ${ }^{293}$, and 4 ns and 12 ns MD simulation lengths. Concerning the Nwat-MMPB/GBSA protocol, we tested both the PB and GB methods, two implicit solvent models, namely GB-OBC(II) ${ }^{172}$ and GB-Neck2 ${ }^{173}$, and

Nwat $=0-50$. The effects of these parameters have been evaluated in terms of correlation between experimental $\Delta G_{\text {bind }}$ and computed binding energies.

In addition, the interface residues have been selected through an automatic python script (Annex 10.A), which selects as interfacial residues those whose difference in SASA (dASA) from the complex to a single chain is greater than a given cutoff, whose effect on the $r^{2}$ has also been tested by setting it to 0.50 and 0.75 .

Furthermore, we verified the effect of including all the interfacial residues or only the polar ones as the residues mask used for the selection of Nwat water molecules.

All the considered variables are summarized in Table 10.2.
Moreover, the whole process has been automatized through a tcsh script reported in Annex 10.A.

Table 10.1. PDB ID and experimental $\Delta G_{\text {bind }}$ of the selected PPI complexes.

| PDB ID | Exp. $\Delta G_{\text {bind }}(\mathrm{kcal} / \mathrm{mol})$ | PDB ID | Exp. $\Delta G_{\text {bind }}(\mathrm{kcal} / \mathrm{mol})$ |
| :--- | :--- | :--- | :--- |
| $1 \mathrm{ACB}^{294}$ | -13.05 | $1 \mathrm{ZHI}^{295}$ | -9.08 |
| $1 \mathrm{AVX}^{296}$ | -12.50 | $2 \mathrm{HLE}^{297}$ | -10.09 |
| $1 \mathrm{AY}^{298}$ | -13.23 | $2 \mathrm{HRK}^{299}$ | -10.98 |
| $1 \mathrm{BVN}^{300}$ | -15.06 | $2 \mathrm{OOB}^{301}$ | -5.66 |
| $1 \mathrm{EMV}^{302}$ | -18.58 | $2 \mathrm{OUL}^{303}$ | -11.96 |
| $1 \mathrm{FLE}^{304}$ | -12.28 | $2 \mathrm{SIC}^{305}$ | -13.84 |
| $1 \mathrm{GLA}^{306}$ | -6.76 | $2 \mathrm{SNI}^{307}$ | -15.96 |
| $1 \mathrm{KAC}^{308}$ | -10.68 | $2 \mathrm{UUY}^{309}$ | -11.26 |
| 1 ROR $^{310}$ | -14.17 | $3 \mathrm{BZD}^{311}$ | -9.57 |
| $1 \mathrm{YVB}^{312}$ | -11.17 | $3 \mathrm{SGB}^{313}$ | -14.51 |

Table 10.2. Protocol variables considered in the present study.

| MD |  | Nwat-MMPB/GBSA |  |
| :--- | :--- | :--- | :--- |
| Force field | ff14SB, ff99SBildn | Method | GB, PB |
| Explicit solvent model | TIP3P, TIP4P-Ew | Nwat | $0-50$ |
| Simulation length | $4 \mathrm{~ns}, 12 \mathrm{~ns}$ | Implicit solvent model | GB-OBC(II), GB-Neck2 |
|  |  | dASA cutoff | $0.50,0.75$ |
|  |  | Interfacial residues mask | All, polar |

### 10.2 RESULTS AND DISCUSSION

The setup of an appropriate and automatic way to select the interfacial residues has been nontrivial, therefore this aspect will be explained as first. Indeed, the selection of interfacial residues is necessary to define the Nwat water molecules ( 0 50) to be considered during the Nwat-MMPB/GBSA calculations.

A straight approach to identify the interfacial residues consists in the selection of those residues whose dASA from the PPI complex to the single protein chain is greater than a cutoff, which, however, has to be determined. In addition, the relevance of selecting all interfacial residues or only the polar one, which most likely will be those majorly solvated, needed to be evaluated.

In detail, the optimization of the protocol for the interfacial residues selection included the comparison of MMGBSA analysis of:

- $4^{\text {th }} \mathrm{ns}$ of ff 99 SBildn ${ }^{136} /$ TIP3P ${ }^{292}$ explicit solvent model MD simulations
- $4^{\text {th }} \mathrm{ns}$ of ff $14 \mathrm{SB}^{135} /$ TIP3P ${ }^{292}$ explicit solvent model MD simulations by setting for MMGBSA calculations
- GB-OBC(II) $)^{172}$ or GB-Neck $2^{173}$ as implicit solvent model
- $\mathrm{Nwat}=0-50(\Delta \mathrm{Nwat}=10)$
- $\mathrm{dASA}=0.50$ or 0.75
- the selection of all or only the polar interfacial residues.

The predicted binding energies have been then correlated to the experimental $\Delta G_{\text {bind }}$ (Figures 10.12-10.37)

Surprisingly, independently from the simulation and analysis conditions, the correlation between experimental and predicted binding energies in terms of $r^{2}$ was not significantly affected by the selection method for the interfacial residues (Figure 10.1).


Figure 10.1. Variation of $r^{2}$ in dependency of Nwat for Nwat-MMGBSA analysis performed on the $4^{\text {th }}$ ns of the MD simulations. The MD simulation and Nwat-MMGBSA conditions are reported on the top of each plot. See figure 10.12-10.37 for details.

This result is explained by observing that the water molecules included during the Nwat-MMGBSA analysis are the same (red oxygen water molecules in Figure 10.2), except for few residues (blue/yellow oxygen water molecules in Figure 10.2), with a cutoff of either 0.50 or 0.75 and with the selection of either all or only polar interfacial residues. This is probably due to the fact that water molecules are anyway mainly located in proximity of polar residues, thus the different parameters acting on the interfacial residues identification do not strongly affect the water molecule selection. Therefore the small and not statistically significant differences in the $r^{2}$ that are observed by acting only on the interface selection are due to these nonmatching residues.


Figure 10.2. Frame of the 2OUL complex MD simulation (ff14SB, TIP3P) submitted to NwatMMGBSA (Nwat $=20$; GB-Neck2) after selecting a) all the residues with a dASA cutoff of 0.75 b) only polar residues with a dASA cutoff of 0.50 as residues to which the 20 water molecules are close during the simulation time. Water molecules with a red oxygen are those residues which have been selected with both the approaches; water molecules with yellow oxygen are those selected only by a); water molecules with blue oxygen are those selected only by b).

It has to be underscored that cutoff values of $0.25,0.10$ and 0.05 have also been tested, but they led to the same selection obtained with a cutoff of 0.50 . Analogously, a cutoff value of 1.0 or 0.75 provided the same selection.

At the light of this, only the results obtained using a cutoff of 0.50 and selecting only polar residues will be discussed, whereas those obtained with a cutoff of 0.75 and selecting all the residues whose dASA satisfied this threshold were taken in account as countercheck.

Successively, the performances of both PB and GB were tested despite the poor performances previously observed for PB methods. ${ }^{89}$

As expected, at all the considered conditions, MMPBSA gave worse correlation between experimental and predicted binding energies than MMGBSA (Figures 10.1 and 10.3). The best $r^{2}$ values $(\sim 0.20)$ were obtained with Nwat $=0$, although positive binding energies were predicted, making the results unreliable (Figure 10.3). The inclusion of water molecules during the MMPBSA analysis partially solved this problem, but high standard deviations (> 20\%) (Figures 10.18, 10.19, 10.20 and 10.21) were observed together with poor or completely absent correlation between experimental and predicted data $\left(0.26<r^{2}<0.0\right)$.

In addition, one or few complexes, which, if discarded, significantly improved the correlation index, could not be found, although it can be observed that for some of them, such as 1 YVB and 2SIC, the predicted binding energy is only slightly affected by the inclusion of explicit solvent molecules. The binding energy of other complexes, such as 1EMV, is highly overestimated when applying the Nwat-MMPBSA protocol. This opposite behavior showed by some complexes is the main responsible of the $r^{2}$ decrease given by MMPBSA calculations.


Figure 10.3. Variation of $r^{2}$ in dependency of Nwat for Nwat-MMPBSA analysis performed on the $4^{\text {th }}$ and $12^{\text {th }} \mathrm{ns}$ of the MD simulations. The MD simulation and Nwat-MMPBSA conditions are reported on the top of the plot. See Figures 10.18 - 10.21 for details.

Although it has been reported that the MMPBSA method gives better correlation with experiments when performed on longer simulations because of its high dependency from the analyzed conformations, ${ }^{268,314}$ a dependency of $r^{2}$ from the simulation length could not be observed.

Furthermore, analogously to what stated for classical receptor-ligand complexes, ${ }^{89}$ the use of the PB method, beyond being detrimental, is also extremely time consuming, compared to the well performing GB method. Therefore, MMGBSA can represent a good choice for the correlation between experimental activities and predicted binding energies for PPIs.

Focusing on MMGBSA results, it can be noticed that, a positive effect on the $r^{2}$ values is obtained at any simulation condition when increasing the Nwat from 0 to 20 - 30, except for the analyses performed on the simulations where the TIP4P-Ew explicit solvent model was used (Figures 10.22 and 10.23). Indeed, in this case the correlation between experimental and predicted binding energies obtained with Nwat $=0\left(r^{2}=0.31\right.$, Figures 10.22 and 10.23) was equivalent to that obtained from MD simulations with TIP3P solvent model $\left(0.30<r^{2}<0.45\right.$, Figure 10.1, and Figures 10.13 - 10.14). Conversely, when Nwat $\neq 0$, the MMGBSA results coming from the analysis of the TIP4P-Ew MD simulations did not correlate with experimental $\Delta G_{\text {bind }}$ and positive binding energies were predicted (Figures 10.22 and 10.23). This is necessarily due to the presence of an additional pseudoatom in the water molecules of the TIP4P-Ew model, namely EPW, which has only a point charge, but not a radius. ${ }^{293}$ This atom has been introduced to mimic the free electron pair of the water molecule, but, clearly, it is also responsible of the failure of the MMGBSA calculations when water is explicitly included during the analysis.

As previously observed for MMPBSA calculations, the correlations coefficient $r^{2}$ is not improved by longer MD simulations. Indeed, in the case of the MD simulations with ff14SB as force field, the MMGBSA analyses performed on the $4^{\text {th }}$ ns gave $r^{2}$ values of about $20 \%$ higher than those obtained by analyzing the $12^{\text {th }} \mathrm{ns}$ (Figure 10.4 and Figure 10.5). This difference can be mainly attributed to complexes 1 AVX and 2HLE, whose binding energy are overestimated when the $12^{\text {th }} \mathrm{ns}$ of the MD simulation is analyzed (Figure 10.5). The 2HLE misbehavior is due to the fact that during the $12^{\text {th }} \mathrm{ns}$ conformations with higher RMSD from the crystallographic structure are sampled, compared to those sampled during the $4^{\text {th }}$ ns (Figure 10.6 A ), indeed it is an outlier with both Nwat $=0$ and Nwat $=30$. This is still true, but less
evident for 1AVX complex, whose predicted binding energy has, however, one of the highest standard deviations (> 10\%) observed, suggesting that the conformations sampled for the MMGBSA calculation are significantly different. Nevertheless, although for this force field short simulations lead to good results in terms of $r^{2}$, it has to be underlined that the trend of the $r^{2}$ as a function of Nwat is equivalent, showing an increase of about $20-25 \%$ when passing from Nwat $=0$ to Nwat $=20-30$ followed by a slight decrease with higher Nwat.

Conversely, the MMGBSA analyses performed on the ff99SBildn simulations did showed differences in $r^{2}$ related to the analyzed time interval of about $10 \%$ and, therefore, statistically nonsignificant. Indeed, although 1AVX became an outlier on the analysis performed on the $12^{\text {th }} \mathrm{ns}$ (Figure 10.7) with this force field also, this is not due to difference in the RMSD from the crystallographic structure (Figure 10.8) as previously observed (Figure 10.6B), indeed, the $r^{2}$ obtained with Nwat $=0$ are equivalent, although poor. However, in this case, the misbehavior of 1 AVX is compensated by a better correlation of all the other complexes, for which longer simulations are, therefore, useful.
ff14SB, TIP3P; GB-Neck2

ff99SBildn, TIP3P; GB-Neck2


Figure 10.4. Variation of $r^{2}$ in dependency of Nwat for Nwat-MMGBSA analysis performed on the $4^{\text {th }}$ ns and $12^{\text {th }} \mathrm{ns}$ of the MD simulations. The MD simulation and Nwat-MMGBSA conditions are reported on the top of each plot. (See Figures 10.12-10.37 for details)


Figure 10.5. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=0.50$, polar interfacial residues, GB-Neck2) of the $4^{\text {th }}(\mathrm{A}, \mathrm{C})$ and $12^{\text {th }}(\mathrm{B}, \mathrm{D}) \mathrm{ns}$ of MD simulations (ff14SB, TIP3P).


Figure 10.6. RMSD from the crystallographic structure of A) 2HLE, B) 1AVX and C) 2OOB complexes computed on the $4^{\text {th }}$ ns (black) and at the $12^{\text {th }} \mathrm{ns}$ (red) of the MD simulation (ff14SB, TIP3P).


Figure 10.7. Correlation between experimental $\Delta G_{b i n d}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=0.50$, polar interfacial residues, GB-Neck2) of the $4^{\text {th }}(\mathrm{A}, \mathrm{C})$ and $12^{\text {th }}$ (B, D) ns of MD simulations (ff99SBildn, TIP3P).

The overestimation of the binding energy of 1AVX can be explained by comparing the occupancies of stable (occupancy > 20\%) water-bridged H-bonds during the $4^{\text {th }}$ and $12^{\text {th }} \mathrm{ns}$ of the simulations of 1 AVX and 2 SNI , chosen as a reference as its behavior is equivalent during both the time intervals (Tables 8.13 and 8.14). Indeed, for the former complex 6 additional water-mediated H -bonds are detected with a longer simulation, and the H-bond involving Ile30 and Asn31 is about 20\% more stable (Table 10.3). Conversely, for 2SNI only 3 additional water-mediated interactions are detected by analyzing the $12^{\text {th }} \mathrm{ns}$, and the occupancy are not significantly different (Table 10.4).

Probably, for the correct treatment of the solute-solvent interactions in the 1AVX complex the consideration of other water-bridged H -bonds is needed. Indeed, the analysis of the 1AVX water-mediated interactions on the $4^{\text {th }} \mathrm{ns}$ of the ff14SB simulation showed a high number of these interactions with an occupancy of about 20

- 60\%). However, compared to the ff99SBildn MD, in this simulation additional water-mediated interactions, such as the one between HIS40 and HIS294 (Figure 10.9), are found.


Figure 10.8. RMSD from the crystallographic structure of 1 AVX complex computed on the $4^{\text {th }} \mathrm{ns}$ (black) and at the $12^{\text {th }} \mathrm{ns}$ (red) of the MD simulation (ff99SBildn, TIP3P).

Table 10.3. Water-mediated H-bonds with occupancy $>20 \%$ detected from the analysis of the $4^{\text {th }}$ and $12^{\text {th }} \mathrm{ns}$ of the simulation of 1 AVX (ff99SBildn, TIP3P).

| $\mathbf{4}^{\text {th }} \mathbf{n s}$ |  | $\mathbf{1 2}^{\text {th }}$ ns |  |
| :--- | :---: | :--- | :---: |
| Residues involved | $\mathbf{O c c} \%$ | Residues involved | Occ\% |
| 30:ILE 31:ASN | 64.0 | 30:ILE 31:ASN | 83.0 |
| 68:ALA 69:LYS | 62.0 | 24:PHE 25:CYX | 61.0 |
| 364:GLU 365:ASP | 61.0 | 68:ALA 69:LYS | 57.0 |
| 24:PHE 25:CYX | 60.0 | 364:GLU 365:ASP | 52.0 |
| 44:SER 224:ASP | 55.0 | 235:GLU 288:ARG | 46.0 |
| 16:VAL 28:SER | 36.0 | 16:VAL 28:SER | 44.0 |
| 175:GLY 177:SER | 35.0 | 195:TYR 202:LYS 286:ARG | 35.0 |
| 235:GLU 288:ARG | 30.0 | 231:GLY 352:ASN | 34.0 |
| 20:SER 47:GLN | 29.0 | 80:THR 364:GLU | 31.0 |
| 224:ASP 292:GLU | 26.0 | 342:ARG 364:GLU | 30.0 |
| 364:GLU 365:ASP 366:ASP | 24.0 | 78:GLY 364:GLU | 30.0 |
| 195:TYR 202:LYS 286:ARG | 22.0 | 222:ALA 223:ASN | 27.0 |
| 398:LYS 400:ASP | 22.0 | 129:SER 131:TYR 236:ASN | 27.0 |
| 342:ARG 364:GLU | 22.0 | 125:LYS 174:GLN | 27.0 |
| 231:GLY 352:ASN | 21.0 | 364:GLU 365:ASP 366:ASP | 26.0 |
|  |  | 365:ASP 366:ASP | 26.0 |
|  |  | 346:VAL 347:SER | 25.0 |
|  |  | 20:SER 47:GLN | 24.0 |
|  |  | 347:SER 351:PHE | 23.0 |

Table 10.4. Water-mediated H-bonds with occupancy $>20 \%$ detected from the analysis of the $4^{\text {th }}$ and $12^{\text {th }} \mathrm{ns}$ of the simulation of 2 SNI (ff99SBildn, TIP3P).

| $\mathbf{4}^{\text {th }} \mathbf{n s}$ |  | 12 $^{\text {th }}$ ns |  |
| :--- | :---: | :--- | :--- |
| Residues involved | Occ $\%$ | Residues involved | Occ\% |
| 155:ASN 221:SER | 68.0 | 39:HIE 209:LEU | 73.0 |
| 39:HIE 209:LEU | 67.0 | 155:ASN 221:SER | 69.0 |
| 318:ARG 321:ARG | 64.0 | 323:ARG 337:ARG | 68.0 |
| 323:ARG 337:ARG | 61.0 | 218:ASN 316:GLU 317:TYR | 58.0 |
| 99:ASP 101:SER | 56.0 | 99:ASP 101:SER | 55.0 |
| 316:GLU 321:ARG | 53.0 | 71:THR 207:SER | 55.0 |
| 95:VAL 96:LEU | 50.0 | 298:ASP 299:LYS | 44.0 |
| 325:PHE 334:GLU | 49.0 | 197:ASP 198:VAL | 42.0 |
| 62:ASN 314:THR | 47.0 | 325:PHE 334:GLU | 41.0 |
| 218:ASN 316:GLU 317:TYR | 45.0 | 62:ASN 314:THR | 38.0 |
| 197:ASP 198:VAL | 43.0 | 316:GLU 339:GLY | 35.0 |
| 71:THR 207:SER | 39.0 | 334:GLU 337:ARG | 35.0 |
| 334:GLU 337:ARG | 36.0 | 60:ASP 63:SER | 33.0 |
| 16:LEU 17:HIE | 35.0 | 95:VAL 96:LEU | 32.0 |
| 120:ASP 121:VAL | 33.0 | 323:ARG 337:ARG 339:GLY | 32.0 |
| 323:ARG 337:ARG 339:GLY | 31.0 | 323:ARG 339:GLY | 32.0 |
| 323:ARG 339:GLY | 31.0 | 156:GLU 159:SER | 29.0 |
| 99:ASP 323:ARG | 29.0 | 317:TYR 338:VAL | 27.0 |
| 333:ALA 334:GLU | 25.0 | 156:GLU 164:THR | 27.0 |
| 60:ASP 63:SER | 22.0 | 104:TYR 311:THR | 26.0 |
| 67:HIE 68:VAL | 21.0 | 16:LEU 17:HIE | 26.0 |
| 10:GLN 184:ASN | 21.0 | 333:ALA 334:GLU | 25.0 |
|  |  | 120:ASP 121:VAL | 21.0 |
|  |  | 218:ASN 317:TYR | 21.0 |

Table 10.5. Water-mediated H -bonds with occupancy $>20 \%$ detected from the analysis of the $4^{\text {th }} \mathrm{ns}$ of the simulation of 1AVX (ff14SB, TIP3P).

| Residues involved | Occ\% |
| :--- | :--- |
| 365:ASP 366:ASP | 63.0 |
| 24:PHE 25:CYX | 56.0 |
| 342:ARG 343:LEU | 53.0 |
| 342:ARG 365:ASP | 48.0 |
| 30:ILE 31:ASN | 43.0 |

235:GLU 288:ARG ..... 40.0
63:GLN 97:ASN ..... 39.0
40:HID 294:HIE ..... 38.0
244:SER 249:PHE ..... 37.0
364:GLU 367:LYS ..... 35.0
68:ALA 69:LYS ..... 35.0
222:ALA 223:ASN ..... 31.0
364:GLU 366:ASP ..... 29.0
155:GLN 156:ILE ..... 26.0
131:TYR 235:GLU 236:ASN ..... 26.0
80:THR 155:GLN ..... 26.0
79:ASN 365:ASP ..... 25.0
398:LYS 400:ASP ..... 25.0
171:ASP 199:GLN 202:LYS ..... 22.0
175:GLY 177:SER ..... 22.0
28:SER 29:LEU ..... 22.0
80:THR 82:ASP ..... 22.0
131:TYR 236:ASN ..... 21.0


Figure 10.9. 1AVX complex. HIS40 and HIS294 are highlighted in green.
The worse correlation of the 1 AVX binding energy when analyzing the $12^{\text {th }} \mathrm{MD}$ ns was compensated by a better evaluation of all the other complexes in the case of the ff99SBildn simulations, because in this case the inclusion of 30 water molecules during the MMGBSA analysis worsened the problem showed by 1AVX. However, it
has to be underlined that the correlation between experimental and predicted binding energies improves of about $25 \%$ when increasing the Nwat value from 0 to 30 , suggesting the overall robustness of the Nwat-MMGBSA approach. In addition, the use of short MD simulations is an advantage when this method is applied for drug design/discovery purposes.

Concerning the effect of the force field for the MD simulations on the NwatMMGBSA protocol, it can be observed that the best correlations between experimental and predicted binding energies are obtained with the ff14SB (Figure 10.1), with or without explicit solvent molecules during the MMGBSA calculation. Indeed, the $r^{2}$ obtained from the analysis of the simulations with this force field were higher than those obtained with the ff99SBildn force field, under equivalent analysis conditions. In detail, this difference is only marginal when Nwat $=0$, while it becomes significant $\left(\Delta r^{2}=0.20-0.26\right)$ when considering Nwat $\neq 0$ (Table 10.6).

Table 10.6. Values of $r^{2}$ obtained from the Nwat-MMGBSA analysis (GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the MD simulations performed with either ff14SB or ff99SBildn.

| Nwat | $\boldsymbol{r}^{\mathbf{2}}$ (ff14SB; <br> cutoff $=\mathbf{0 . 5 0}$, polar $)$ | $\boldsymbol{r}^{\mathbf{2}}$ (ff14SB; <br> cutoff $=\mathbf{0 . 7 5 , ~ a l l ) ~}$ | $\boldsymbol{r}^{\mathbf{2}}$ (ff99SBildn; <br> cutoff $=\mathbf{0 . 5 0 , ~} \mathbf{p o l a r})$ | $\boldsymbol{r}^{\mathbf{2}}$ (ff99SBildn; <br> cutoff $=\mathbf{0 . 7 5 , ~ a l l ) ~}$ |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 0.45 | 0.45 | 0.32 | 0.32 |
| 10 | 0.64 | 0.59 | 0.44 | 0.40 |
| 20 | 0.77 | 0.71 | 0.55 | 0.48 |
| 30 | 0.77 | 0.73 | 0.54 | 0.46 |
| 40 | 0.68 | 0.68 | 0.47 | 0.42 |
| 50 | 0.57 | 0.50 | 0.37 | 0.36 |

However, it has to be noticed that with either ff14SB or ff99SBildn force fields the same trend in the correlation index can be observed, because under both conditions the $r^{2}$ value improved of about $20 \%$ when increasing Nwat from 0 to 20-30, and, then, it slightly decreased with Nwat $=40-50$, indicating that the consideration of $20-30$ water molecules at the protein-protein interface has a positive effect when correlating MMGBSA binding energies with experiments (Figure 10.1).

The slight difference observed in the correlation index when Nwat $=0$ can be completely ascribed to the differences in the two considered force fields, which are
mainly related to parameters associated to side chains and backbone torsional angles and which make ff14SB the force field of election when simulating proteins and peptides in explicit solvent. ${ }^{135}$ Conversely, the differences observed with Nwat $=30$, i.e. when the maximum $r^{2}$ is reached, are only partially attributable to the force fields. Indeed, if the common outlier 1AVX is discarded, the analyses performed on the ff99SBildn simulations give predicted binding energies equivalent to those obtained from the ff14SB simulations. Moreover, the same correlation with experiments is obtained if the simulation time is prolonged to 12 ns (Figure 10.10), whereas MMGBSA analyses with Nwat $=0$ are not significantly affected by this complex. This suggests that, as previously hypothesized, the ff99SBildn simulations require longer simulations to allow a correct positioning of water molecules around interacting sidechains, and consequently a proper evaluation of solute-solvent interactions during the MMGBSA analysis.

However, contrarily to what observed for ff99SBildn simulations, the MMGBSA analyses performed on the ff14SB simulations are not affected by either the simulation length or the consideration of particular complexes, such as 1AVX. In addition, at any simulation and analysis condition, this force field provided predicted energies well-toexcellently correlating with experimental data, with the best being those obtained by including 20-30 water molecules during the MMGBSA calculations.

Furthermore, Nwat-MMGBSA analysis were also conducted on 4ns ff14SB trajectory using the GB-OBC(II) solvent model, instead of the well performing GBNeck2, in order to check if the choice of implicit solvent model is critical in the adopted conditions.

The use of this implicit solvent model turned out to have a positive effect when Nwat $=0$, while it was detrimental when Nwat $\neq 0$ (Table 10.7). Although, the best results are those obtained by setting Nwat $=10$, and the inclusion of 20 water molecules provided equivalent results to those obtained with Nwat $=0$. In addition, the excellent $r^{2}$ value of 0.77 obtained by including $20-30$ water molecules in the MMGBSA analysis with GB-Neck2 as implicit solvent model and performed on the
$4^{\text {th }} \mathrm{ns}$ of the ff14SB simulations could not be reached when the GB-OBC(II) implicit solvent model was used.


Figure 10.10. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=0.50$, polar interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB (A, B) and ff99SBildn (C, D) MD simulations with Nwat $=0(\mathrm{~A}, \mathrm{C})$ and Nwat $=30(\mathrm{~B}, \mathrm{D})$ and of the $12^{\text {th }} \mathrm{ns}$ ff99SBildn simulations $(\mathrm{E}, \mathrm{F})$ with Nwat $=0(\mathrm{E})$ and Nwat $=30(\mathrm{~F})$. Complex 1 AVX was discarded.

Table 10.7. Values of $r^{2}$ obtained from the Nwat-MMGBSA analysis (GB-OBC(II)) of the $4^{\text {th }} \mathrm{ns}$ of the MD simulations performed with ff14SB.

| Nwat | $\boldsymbol{r}^{\mathbf{2}}$ |  |
| :--- | :---: | :---: |
| (cutoff $=\mathbf{0 . 5 0 ,}$, polar) | $\boldsymbol{r}^{\mathbf{2}}$ <br> (cutoff $=\mathbf{0 . 7 5}$, all) |  |
| 0 | 0.60 | 0.60 |
| 10 | 0.64 | 0.65 |
| 20 | 0.54 | 0.60 |
| 30 | 0.43 | 0.50 |
| 40 | 0.32 | 0.42 |
| 50 | 0.24 | 0.34 |

Therefore, referring to the overall best conditions (e.g. 4ns, ff14SB, TIP3P MD simulations, dASA cutoff $=0.50$, polar residues, GB-Neck2), the inclusion of $20-30$ water molecules during the MMGBSA calculations positively affected the correlation between experimental and predicted binding energies, because water-mediated interactions within one of the two interacting proteins or between the protein partners are taken in account during the analysis (Table 10.5 , Figure 10.2 as an example). Although all the complexes benefit of this protocol (Figure 10.5), the inclusion of 20 30 water molecules is particularly advantageous for some of them, such as 1 YVB , 2OUL, and 3BZD, while it weakly affected the calculations performed on other complexes, such as 1 ZHI . In particular, the binding energy of 3BZD was underestimated, suggesting that water plays an important role in mediating H -bond between the two protein partners involved in the PPI. Indeed, water-mediated H-bond analysis (Table 10.8) together with the water density plot obtained from grid analysis (Figure 10.11) of the 4 ns ff14SB MD simulation of 3BZD showed that many high water density areas are found at the protein-protein interface, compared to those observed for 1 ZHI . Moreover, stable (occupancy > 20\%) water-mediated H-bonds between the two protein partners are found (Table 10.8) when analyzing the MD simulation of 3BZD, while for 1ZHI, which is only slightly affected by the inclusion of explicit water, only few water-mediated interactions are found, and with lower occupancies than those observed for 3BZD (Table 10.8).


Figure 10.11. Water density plots obtained by grid analysis of the 3BZD (left) and 1ZHI (right) complexes.

Table 10.8. Water-mediated H-bonds with occupancy $>20 \%$ detected from the analysis of the $4^{\text {th }} \mathrm{ns}$ of the simulation of 3 BZD and 1 ZHI (ff14SB, TIP3P). The water-mediated H-bonds between the two protein partners are reported in bold.

| 3BZD |  | 1ZHI |  |
| :---: | :---: | :---: | :---: |
| Residues involved | Occ\% | Residues involved | Occ\% |
| 53:SER 55:GLU | 75.0 | 233:THR 234:LEU | 69.0 |
| 70:GLN 71:GLU 169:ASN | 67.0 | 56:GLN 57:GLU | 65.0 |
| 55:GLU 56:LYS 129:THR | 65.0 | 153:ARG 154:ASP | 64.0 |
| 55:GLU 313:ASP | 61.0 | 131:ILE 132:ARG | 45.0 |
| 289:GLU 290:THR | 59.0 | 201:GLU 202:GLU | 42.0 |
| 55:GLU 315:PHE | 59.0 | 110:THR 111:ALA | 36.0 |
| 45:ILE 46:HID | 58.0 | 221:GLU 273:LYS | 31.0 |
| 334:SER 335:VAL | 53.0 | 48:GLY 217:ASP | 29.0 |
| 137:TYR 138:ASP | 45.0 | 221:GLU 271:PHE | 27.0 |
| 70:GLN 211:TRP | 44.0 | 101:ASN 104:ASN | 26.0 |
| 24:GLN 67:ARG | 41.0 | 56:GLN 189:GLN | 26.0 |
| 55:GLU 129:THR | 40.0 | 202:GLU 203:TYR | 25.0 |
| 71:GLU 169:ASN | 38.0 | 76:ARG 219:ALA 220:GLU | 23.0 |
| 51:ALA 199:TYR 200:VAL 317:GLN | 38.0 | 45:GLU 230:ARG | 22.0 |
| 282:GLU 283:PHE | 37.0 | 76:ARG 220:GLU | 21.0 |
| 71:GLU 168:LYS 169:ASN | 34.0 | 108:SER 109:GLU | 21.0 |
| 216:THR 217:CYX | 34.0 | 220:GLU 222:LYS | 21.0 |
| 133:MET 134:LYS | 32.0 | 150:ASP 152:GLU | 21.0 |
| 71:GLU 168:LYS | 31.0 |  |  |
| 59:ILE 61:ASP | 31.0 |  |  |
| 249:THR 250:ILE | 30.0 |  |  |
| 68:PRO 135:TYR | 29.0 |  |  |
| 5:GLN 104:THR | 27.0 |  |  |
| 150:VAL 151:ASP | 26.0 |  |  |


| 63:TYR 284:ASN | $\mathbf{2 6 . 0}$ |
| :--- | :--- |
| 281:TYR 282:GLU | 26.0 |
| 311:PRO 314:LYS | 24.0 |
| 25:THR 26:ASN | 24.0 |
| 69:SER 72:GLN | 23.0 |
| 310:ALA 314:LYS | 22.0 |

Conversely, 1 YVB and 2OUL binding energies were overestimated with Nwat = 0 , while with Nwat $=20-30$ their predicted values well correlated with experimental $\Delta G_{b i n d}$.

Contrarily to what observed for the complex where $\Delta G_{b i n d}$ was underestimated, the overestimation is not explained by the lacking of consideration of water-mediated interactions between the two protein partners. Conversely, according to equation 1 , it can be hypothesized that the contribute associated to one of the proteins in the complex is underestimated, possibly because the monomer is stabilized by H -bonds with the solvent. Indeed, water-mediated H-bond analysis performed on the 1 YVB simulation showed that most of the water-mediated interactions only involve the falcipain 2 (chain A, residues 1-241), stabilizing it, whereas only few waters mediate the interactions between falcipain 2 and cystatin or intramolecular interactions only involving cystatin (chain B, residues 242-352) (Table 10.9). Analogous observations can be done for 20 OL , for which the water mediated interactions mainly involve falcipain 2 (chain A, residues 1-241), while few interactions are found within chagasin (chain B, residues 242-348) or between the two proteins (Table 10.10).

Therefore, for overestimated complexes, the Nwat-MMGBSA approach with Nwat $=20-30$ allows a better evaluation of the contribute associated to only one of the two protein partners, leading to a global improvement in the correlation with experimental $\Delta G_{\text {bind }}$.
Table 10.9. Water-mediated H -bonds with occupancy $>20 \%$ detected from the analysis of the $4^{\text {th }} \mathrm{ns}$ of the simulation of 1YVB (ff14SB, TIP3P).

| Residues involved | Occ\% | Chains involved |
| :--- | :---: | :---: |
| 46:SER 148:ILE | 87.0 | A |
| 159:TYR 217:ASN | 73.0 | A |
| 281:VAL 282:ARG | 65.0 | B |


| 149:SER 234:ASP | 59.0 | A |
| :--- | :---: | :---: |
| 126:LYS 127:ASN | 59.0 | A |
| 305:THR 306:THR | 54.0 | B |
| 284:ILE 285:SER | 52.0 | B |
| 153:SER 167:GLU | 42.0 | A |
| 179:VAL 180:GLY | 36.0 | A |
| 38:ASN 109:ASP | 36.0 | A |
| 159:TYR 210:TRP | 36.0 | A |
| 325:MET 326:ALA | 35.0 | B |
| 347:LEU 348:GLU | 35.0 | B |
| 39:CYX 106:TYR | 34.0 | A |
| 154:ASP 155:ASP | 31.0 | A |
| 43:TRP 82:GLY | 31.0 | A |
| 233:THR 234:ASP | 28.0 | A |
| 152:VAL 171:GLN | 28.0 | A |
| 35:ASP 206:TRP | 27.0 | A |
| 50:SER 147:SER | 27.0 | A |
| 154:ASP 296:TYR | 26.0 | AB |
| 44:ALA 45:PHE | 26.0 | A |
| 154:ASP 255:GLU | 23.0 | AB |
| 81:ASN 289:GLN | 23.0 | AB |
| 159:TYR 211:GLY | 22.0 | A |
| 170:ASP 171:GLN | 22.0 | A |
| 85:ILE 234:ASP | 21.0 | A |
| 160:LYS 161:GLU | 20.0 | A |
| 242:ARG 243:LEU | 20.0 | B |
| 341:LEU 343:GLN | 20.0 | B |

Table 10.10. Water-mediated H-bonds with occupancy > $20 \%$ detected from the analysis of the $4^{\text {th }} \mathrm{ns}$ of the simulation of 2OUL (ff14SB, TIP3P).

| Residues involved | Occ\% | Chains involved |
| :--- | :---: | :---: |
| 46:SER 148:ILE | 86.0 | A |
| 159:TYR 217:ASN | 75.0 | A |
| 339:GLU 340:ARG | 57.0 | B |
| 149:SER 234:ASP | 52.0 | A |
| 154:ASP 275:TYR | 46.0 | AB |
| 179:VAL 180:GLY | 42.0 | A |
| 154:ASP 309:GLU | 41.0 | AB |
| 288:MET 289:PHE | 36.0 | B |
| 154:ASP 272:PHE | 34.0 | AB |
| 126:LYS 127:ASN | 33.0 | A |
| 327:TYR 339:GLU | 29.0 | B |


| 43:TRP 82:GLY | 29.0 | A |
| :--- | :---: | :---: |
| 50:SER 147:SER | 27.0 | A |
| 6:GLU 7:VAL | 26.0 | A |
| 329:ARG 332:THR | 26.0 | B |
| 281:LYS 282:GLU | 25.0 | B |
| 173:ASN 174:HIP | 25.0 | A |
| 157:ALA 159:TYR | 25.0 | A |
| 233:THR 234:ASP | 23.0 | A |
| 300:SER 302:LEU | 22.0 | B |
| 209:GLN 332:THR | 21.0 | AB |
| 159:TYR 211:GLY | 21.0 | A |
| 44:ALA 45:PHE | 20.0 | A |

The inclusion of a number of water molecules greater than 30 caused a decrease in the $r^{2}$ values, probably because a large number of water molecules at the proteinprotein interfaces generates background noises counteracting the benefits of the explicit consideration of solute - solvent interactions, as previously observed for classical receptor - ligand complexes.

Moreover, although protein-protein interfaces are wider than classical binding pockets, the number of explicit water to be included during the MMGBSA analysis to improve the correlation with experiments should not be over 50 . This is probably due to the presence of a high number of hydrophobic residues at the protein-protein interface. Indeed, for all complexes, a maximum of 30 polar residues have been individuated at the interface.

It has to be emphasized that, as observed in Chapter 9, the Nwat-MMGBSA approach improves the correlation between predicted and experimental data improved with the Nwat-MMGBSA approach, but it has not been tested on the prediction of the absolute binding free energies, since the entropic term is neglected. However, this protocol seems to be useful for drug discovery purposes, also because it can be easily automatized (Annex 10.A).

Furthermore, the Nwat-MMGBSA method revealed to be quite robust to changes in the simulation protocol, except for the use of TIP4P-Ew explicit solvent mode. Although the best results have been obtained by analyzing 4 ns MD simulations
performed with the ff14SB force field and the TIP3P explicit solvent model, and with using the GB-Neck2 as implicit solvent model during the MMGBSA calculations.

### 10.3 Materials and Methods

Structure preparation. Initially, crystallographic water molecules were removed from the PDB files of the PPI complexes. Consequently, the structure preparation tool of $\mathrm{MOE}^{227}$ has been used to cap with an acetyl and a methyl-amino group the N and C-termini, respectively, of those protein chains having more than 3 missing residues, and to protonate all the considered complexes, in order to build the starting geometries for the MD simulations.

MD simulations. MD simulations were performed with the pmemd module of Amber 14 package, ${ }^{192}$ using either the ff99SBildn ${ }^{136}$ or the ff 14 SB $^{135}$ force fields. In each complex, the total charge was neutralized by adding an adequate number of $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$ions, and the systems were solvated with an octahedral box of either TIP3P ${ }^{292}$ or TIP4P-Ew ${ }^{293}$ water added up to a distance of $10 \AA$ from the solute. The systems where then relaxed by minimizing hydrogens ( 1000 cycles of steepest descent and 5000 cycles of conjugated gradient), ions and waters ( 2000 cycles of steepest descent and 5000 cycles of conjugated gradient). The solvent box was equilibrated at 300 K by 100 ps of NVT and 100 ps of NPT simulation using a Langevin thermostat with a collision frequency of $2.0 \mathrm{ps}^{-1}$. Successively, a minimization of side chains, water and ions with backbone restraints of $25 \mathrm{kcal} / \mathrm{mol}$ and a total minimization with backbone restraints of $10 \mathrm{kcal} / \mathrm{mol}$ ( 2500 cycles of steepest descent and 5000 cycles of conjugated gradient) were performed. The systems were then heated up to 300 K in 6 steps of 5 ps each $(\Delta \mathrm{T}=50 \mathrm{~K})$, where backbone restraints were reduced from 10.0 $\mathrm{kcal} / \mathrm{mol}$ to $5 \mathrm{kcal} / \mathrm{mol}$. Full equilibration was performed in the NVT ensemble ( 100 ps, backbone restraints $=5.0 \mathrm{kcal} / \mathrm{mol}$ ) and in the NPT ensemble ( 1 step of 200 ps , backbone restraints $=5 \mathrm{kcal} / \mathrm{mol} ; 3$ steps of 100 ps each, reducing the backbone restraints from $5.0 \mathrm{kcal} / \mathrm{mol}$ to $1.0 \mathrm{kcal} / \mathrm{mol}$, and 1 step 1 ns with $1.0 \mathrm{kcal} / \mathrm{mol}$ of backbone restraints). Finally, unrestrained production runs were run at 300 K for 4 to 12 ns. An electrostatic cutoff of $8.0 \AA$, and the SHAKE algorithm were applied to all the calculations.

RMSD analyses of backbone atoms were made to assess the system stability. Hbonds analysis of solute - solvent interaction (donor - acceptor distance $=4.0 \AA$ Á, angle $=150^{\circ}$ ) and grid analyses (cubic box $50 \AA \times 50 \AA \AA \times 50 \AA$, mesh $=0.5 \AA ́$, centered on interfacial residues) were also performed with cpptraj.

Nwat-MMPB/GBSA. Both MMPBSA and MMGBSA analyses were performed with the MMPBSA.py python script implemented in the Amber14 package. The analyses were conducted on either the $4^{\text {th }}$ or the $12^{\text {th }} \mathrm{ns}$ of the production runs by selecting 100 evenly spaced out snapshots. Either the GB-Neck2 or the GB-OBC(II) implicit solvent models were chosen for the GB calculations, and a salt molar concentration in solution was set at 0.15 M . The PB solver implemented in the sander module was applied for PB calculations, using the default parameters. During the analyses the entropic term was neglected.

When explicit water molecules were considered during the MMPB/GBSA calculations the same approach described in Chapter 8.1.3 was followed, although the water molecules were selected among those being closest to the interfacial residues. These residues were automatically selected with a pymol script (Annex 10.A) which, given two protein chains, considers as interfacial residues only those whose dASA from the complex to a single chain is greater than a defined cutoff, which in this study was set to either 0.75 or 0.50 . Water molecules selection was made by either considering all interfacial residues or only the polar ones.

The water molecules ( $10,20,30,40$ or 50 , depending on the chosen Nwat) were considered as part of the protein considered as the receptor, always the first chain of the PDB file.

The square of Pearson's correlation coefficient $\left(r^{2}\right)$ between experimental $\Delta G_{b i n d}$ and computed binding energies was used as an evaluation metric.


Figure 10.12. Correlation between experimental $\Delta G_{b i n d}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , ALL interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.13. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , POLAR interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.14. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , ALL interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.16. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , POLAR interfacial residues, GB-Neck2) of the $12^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.17. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.75 , ALL interfacial residues, GB-Neck2) of the $12^{\text {th }}$ ns of the ff14SB, TIP3P MD simulations.


Figure 10.18. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMPBSA analysis (cutoff = 0.50 , POLAR interfacial residues) of the $4^{\text {th }}$ ns of the ff14SB, TIP3P MD simulations.


Figure 10.19. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMPBSA analysis (cutoff $=$ 0.50 , POLAR interfacial residues) of the $12^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.20. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMPBSA analysis (cutoff = 0.75 , ALL interfacial residues) of the $4^{\text {th }}$ ns of the ff14SB, TIP3P MD simulations.


Figure 10.21. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMPBSA analysis (cutoff = 0.75 , ALL interfacial residues) of the $12^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.22. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , POLAR interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP4P-Ew MD simulations.


Figure 10.23. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , ALL interfacial residues, GB-Neck2) of the $4^{\text {th }}$ ns of the ff14SB, TIP4P-Ew MD simulations.


Figure 10.24. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , POLAR interfacial residues, GB-OBC(II)) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.25. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.50 , ALL interfacial residues, GB-OBC(II)) of the $4^{\text {th }} \mathrm{ns}$ of the ff14SB, TIP3P MD simulations.


Figure 10.26. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , ALL interfacial residues, GB-OBC(II)) of the $4^{\text {th }}$ ns of the ff14SB, TIP3P MD simulations.


Figure 10.27. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , POLAR interfacial residues, GB-OBC(II)) of the $4^{\text {th }}$ ns of the ff14SB, TIP3P MD simulations.


Figure 10.28. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , POLAR interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.29. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , ALL interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.30. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.50 , POLAR interfacial residues, GB-Neck2) of the $12^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.31. Correlation between experimental $\Delta G_{b i n d}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.75, ALL interfacial residues, GB-Neck2) of the $4^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.32. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , POLAR interfacial residues, GB-Neck2) of the $4^{\text {th }}$ ns of the ff99SBildn, TIP3P MD simulations.


Figure 10.33. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , ALL interfacial residues, GB-Neck2) of the $12^{\mathrm{h}} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.34. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.50 , ALL interfacial residues, GB-OBC(II)) of the $4^{\mathrm{th}} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.35. Correlation between experimental $\Delta G_{b i n d}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.50 , POLAR interfacial residues, $\mathrm{GB}-\mathrm{OBC}(\mathrm{II})$ ) of the $4^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.36. Correlation between experimental $\Delta G_{b i n d}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff = 0.75 , ALL interfacial residues, GB-OBC(II)) of the $4^{\text {th }} \mathrm{ns}$ of the ff99SBildn, TIP3P MD simulations.


Figure 10.37. Correlation between experimental $\Delta G_{\text {bind }}$ and predicted binding energies obtained from the analysis MMGBSA analysis (cutoff $=$ 0.75 , POLAR interfacial residues, $\mathrm{GB}-\mathrm{OBC}(\mathrm{II})$ ) of the $4^{\text {th }}$ ns of the ff99SBildn, TIP3P MD simulations.

## 11 Application of the Nwat-MMGBSA PROTOCOL TO PPIINHIBITOR COMPLEXES

### 11.1 Introduction

In Chapter 10 the application of an automated Nwat-MMGBSA approach to the prediction of binding energies in PPI complexes has been described. In particular, the best protocol conditions in terms of correlation between MMGBSA predicted binding energies and experimental data for this particular kind of systems were found. Summarizing, the highest correlation in terms of $r^{2}$ has been obtained by submitting the last of 4 ns of MD simulations, performed by using the ff $14 \mathrm{SB}^{135}$ force field and the TIP3P ${ }^{292}$ explicit solvent model, to Nwat-MMGBSA calculations, where the GBNeck2 ${ }^{173}$ was used as implicit solvent model and $20-30$ water molecules were explicitly included during the analysis.

Therefore, the optimized protocol had to be tested on systems where one of the two PPI protein partners is inhibited by a small molecule or a peptide-like ligand. Indeed, when the other protein partner is replaced by a decidedly smaller molecule, Nwat-MMGBSA results might be significantly affected. Indeed, in classical proteinligand systems the ligand is generally buried in the receptor; in PPI complexes, on the other hand, there is a wide contact surface and waters are generally placed in between. Conversely, in complexes made by a ligand bound to a protein surface, the NwatMMGBSA procedure might lead to the selection of water molecules located on the solvent-exposed side. Since explicit water are considered as part of the receptor, this might be detrimental for the prediction of binding energy.

At the light of this, we initially applied the optimized MD/Nwat-MMGBSA protocol to the previously studied penicillopepsin system (see Chapter 9), which is inhibited by peptide-like molecules with known experimental $\Delta G_{b i n d}$, in order to compare this updated protocol to the initial one. Successively, three additional systems consisting of one protein usually involved in PPIs complexed with inhibitors with known experimental activities have been tested, namely the MDM2 protein, involved in the MDM2-p53 PPI, complexed with 10 inhibitors with known $\mathrm{IC}_{50}$
(Figure 11.15), ${ }^{315}$ the BCL- $\mathrm{X}_{\mathrm{L}}$ inhibited by 7 small molecules with known $\mathrm{IC}_{50}$ (Figure 11.14), ${ }^{316}$ and XIAP-BIR2 in complex with 8 inhibitors with known $\mathrm{IC}_{50}$ (Figure 11.16). ${ }^{317}$ In addition, HIV1-protease and 6 of its mutants complexed with amprenavir ${ }^{318}$ and two HIV1-protease mutants complexed with ritonavir ${ }^{319}$ (Figure 11.17) with known $k_{i}$ were also considered (Table 11.9), in order to verify if the NwatMMGBSA approach can be also applied to predict the activity of a particular ligand on different mutants of the same protein target.

For these systems we verified if the explicit inclusion of water molecules during the MMGBSA analysis positively affected the correlation between predicted binding energy and available experimental activities in terms of $r^{2}$, and we evaluated the optimal number of solvent residues to consider during the calculations.

Furthermore, aiming to make this protocol fast enough to be applied for drug design/discovery purposes, we compared Nwat-MMGBSA calculations made on the first or on the fourth ns of production run. Calculations conducted on a classical HPC infrastructure, using 128 Xeon cores, were also compared with MD simulations run on a single GPU GTX card that, in terms of performance, equalled the 128 cores. To provide statistical significance, 3 independent simulations (using a random seed for the guess of initial forces) were conducted for each system on each hardware.

### 11.2 Results and Discussion

Before discussing the results obtained by the application of the Nwat-MMGBSA protocol to the selected systems, it is important to underline that this study has been particularly challenging, because only few dataset of more than 5 PPIs modulators with known activity data and crystallized in complex with their target are reported in literature. In addition, the choice of the dataset had to be done carefully, selecting complexes covering a wide range of binding energies and, possibly, evaluated within the same set of experiments or at least from very robust and validated experiments. Indeed, bad correlations were often obtained by us, during preliminary evaluations, when selecting complexes reported in different publications and with binding energies determined through different experimental setups. Furthermore, when a dataset of PPI modulators is made of congeneric compounds, but where only one or few
crystallographic structures of the complexes are available, other complexes must be reconstructed by manually modifying the ligand, as done for the MDM2, the BCL- $\mathrm{X}_{\mathrm{L}}$ and the XIAP-BIR2 systems.

Penicillopepsin. The results obtained from the application of the updated NwatMMGBSA protocol on penicillopepsin system globally agreed with those previously discussed (see Chapter 9), and grid analysis showed in this case also the presence of many high water density areas (Figure 11.1B). Indeed, the inclusion of explicit water molecules during the MMGBSA calculations significantly increased the correlation between experimental and predicted binding energies, and the highest $r^{2}$ obtained was of about 0.70 , except for the analysis performed on the $4^{\text {th }}$ of MD simulations run on CPU hardware (Figure 11.1A).


Figure 11.1. A) Trend of $r^{2}$ in dependency of Nwat for penicillopepsin. B) Water density plots obtained by grid analysis of penicillopepsin-APT complex (visualization with Chimera, step $=1$ and level = 15).

However, some differences have to be highlighted and additional observations can be extrapolated from these results. In particular, the average correlations obtained when Nwat $=0$ are lower than that obtained with the previous protocol $\left(r^{2}=0.46\right.$, see Chapter 8.1), thus making the improvement given by the consideration of solutesolvent interactions more significant. This can be due to the different setup used for the MD simulations (ff14SB force field instead of ff99SB, Langevin MD with restraints instead of constraints in equilibration steps, longer equilibration, see Material and Methods) and to the different method used to derive the point charges of penicillopepsin ligands (Figure 9.3), because in this case a fast and less accurate semi-
empirical AM1-BCC method has been used instead of the accurate but time consuming ab initio RESP method.

Although, when Nwat $\neq 0$ the $r^{2}$ values are not statistically different from those previously obtained, with this new protocol a plateau value is immediately reached with Nwat $=10-30$. This might be due to a longer NPT equilibration (see Materials and Methods section) which can lead to a better positioning of water molecules around the ligands, allowing the formation of stable and relevant solute-solvent H bonds also with lower Nwat values. Indeed, in this case the prediction of the binding energy of all the complexes (and not only APU, as showed in Chapter 9) is equally affected by the inclusion of water molecules during the MMGBSA analysis (Figure 11.2),.

Table 11.1. Values of $r^{2}$ as a function of Nwat obtained by the analysis of the first and fourth ns of MD simulations run on both GPU and CPU hardwares. Average values and standard deviations are also reported.

| GPU, 1 ns |  |  |  |  | CPU, 1 ns |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nwat | $\boldsymbol{r}^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} \boldsymbol{r}^{2} \pm \mathbf{S D}$ | $\boldsymbol{r}^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.38 | 0.22 | 0.10 | $0.23 \pm 0.14$ | 0.18 | 0.13 | 0.20 | $0.17 \pm 0.04$ |
| 10 | 0.80 | 0.73 | 0.73 | $0.75 \pm 0.04$ | 0.57 | 0.86 | 0.81 | $0.75 \pm 0.16$ |
| 20 | 0.80 | 0.71 | 0.73 | $0.75 \pm 0.05$ | 0.61 | 0.86 | 0.82 | $0.76 \pm 0.13$ |
| 30 | 0.79 | 0.69 | 0.73 | $0.74 \pm 0.05$ | 0.69 | 0.85 | 0.82 | $0.79 \pm 0.09$ |
| 40 | 0.78 | 0.65 | 0.70 | $0.71 \pm 0.07$ | 0.76 | 0.81 | 0.76 | $0.78 \pm 0.03$ |
| 50 | 0.76 | 0.63 | 0.65 | $0.68 \pm 0.07$ | 0.82 | 0.74 | 0.70 | $0.75 \pm 0.06$ |
| GPU, 4 ns |  |  |  |  | CPU, 4 ns |  |  |  |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\operatorname{Avg} r^{2} \pm$ SD |
| 0 | 0.13 | 0.05 | 0.01 | $0.06 \pm 0.06$ | 0.23 | -0.09 | 0.16 | $0.10 \pm 0.17$ |
| 10 | 0.83 | 0.70 | 0.59 | $0.71 \pm 0.12$ | 0.59 | 0.48 | 0.45 | $0.51 \pm 0.07$ |
| 20 | 0.73 | 0.68 | 0.69 | $0.70 \pm 0.03$ | 0.59 | 0.48 | 0.54 | $0.54 \pm 0.06$ |
| 30 | 0.68 | 0.61 | 0.60 | $0.63 \pm 0.04$ | 0.61 | 0.41 | 0.53 | $0.52 \pm 0.10$ |
| 40 | 0.70 | 0.53 | 0.52 | $0.58 \pm 0.10$ | 0.64 | 0.36 | 0.46 | $0.49 \pm 0.14$ |
| 50 | 0.73 | 0.44 | 0.42 | $0.53 \pm 0.17$ | 0.68 | 0.35 | 0.40 | $0.48 \pm 0.18$ |



Figure 11.2. Correlation between experimental free energy of binding and predicted binding energies obtained for penicillopepsin by analyzing the first ns of one of the three MD simulations run on a GPU hardware.

Moreover, the performances of GPU and CPU hardware are generally statistically equivalent, and the same is true for the analyses performed on either the first or the $4^{\text {th }}$ ns of MD. The only exception is represented by the MMGBSA results obtained from the analysis of the $4^{\text {th }} \mathrm{ns}$ of the MD simulations run on a CPU hardware, which are worse in terms of $r^{2}$ than the others at any Nwat (Figures 11.1 and 11.4). However, the analyses carried out on the $4^{\text {th }} \mathrm{ns}$ of GPU MD simulations also gave worse results than
those performed on the first ns of the MD simulations. This is mainly ascribable to the WEC complex, (Figure 11.4) whose binding energy is decidedly overestimated and has a high standard deviation (> $10 \%$ ), not observed in the analysis on the first ns of GPU MD runs. The incorrect prediction of the binding energy of WEC when performing the MMGBSA calculation on the $4^{\text {th }} \mathrm{ns}$ of the CPU MD simulations can probably be attributed to problems in the MD simulations on this complex, which can be noticed, although at minor extent, also from Figure 11.2, where the correlations between experimental free energy of binding and predicted binding energies obtained for penicillopepsin by analyzing the first ns of one of the three MD simulations run on a GPU hardware are showed. The instability of the WEC complex is also proved by the RMSD of the backbone atoms from the crystallographic structure computed on the $4^{\text {th }} \mathrm{ns}$ of a CPU MD simulation. Indeed, this RMSD is higher than that computed on the first ns of the same simulation, whereas the RMSD computed on a CPU simulation of APU, whose predicted binding energy well correlated with experiments, are superimposable (Figure 11.3). In addition, it should be noted that the WEC RMSD are more fluctuating, explaining the high standard deviations of the predicted binding energy for this complex.


Figure 11.3. RMSD from the crystallographic structure of A) WEC and B) APU complexes computed on the $1^{\text {st }} \mathrm{ns}$ (black) and at the $4^{\text {th }} \mathrm{ns}$ (red) of one of the MD simulations run on CPUs.


Figure 11.4. Correlation between experimental free energy of binding and predicted binding energies obtained for penicillopepsin by analyzing the $4^{\text {th }} \mathrm{ns}$ of one of the three MD simulations run on a CPU hardware.

Therefore, as observed in Chapter 10, multiple simulation runs, although shorter are recommended over a single and long simulation. Conversely, the nature of the hardware does not seem to significantly affect the results.

MDM2. For the MDM2 system an acceptable correlation between predicted binding energies and $-\log _{10}\left(I C_{50}\right)$ could not be obtained by MMGBSA analyses with Nwat $=0$, and the inclusion of up to 70 water molecules around the ligands
during the MMGBSA calculations slightly improved the $r^{2}$ value, which reached ~ 0.50 with Nwat $=70$ (Figure 11.5A and Table 11.2). This increment in correlation of about 20 \% can be explained by observing the water density plots obtained by grid analysis: for this system few and small areas of relevant water density are present around the inhibitors (Figure 11.5B), suggesting that the explicit consideration of solute-solvent interactions is advantageous, but not fundamental for the MDM2 system. Therefore, as observed for other systems (see Chapter 9) the small, but statistically significant, increase in $r^{2}$ might be due to the explicit inclusion of a few water molecules that, although not firmly bridging the ligand-receptor interactions, contribute in defining a water buffer between the ligands and the MDM2. This hypothesis explain why up to 70 water molecules are needed to have a significant increase of the correlation index.


Figure 11.5. A) Trend of $r^{2}$ in dependency of Nwat for MDM2. B) Water density plots obtained by grid analysis of MDM2-4JVE complex (visualization with Chimera, step = 1 and level = 15).

Table 11.2. Values of $r^{2}$ as a function of Nwat obtained by the analysis of the first and fourth ns of MD simulations run on both GPU and CPU hardwares for MDM2 system. Average values and standard deviations are also reported.

| GPU, 1 ns |  |  |  |  | CPU, 1 ns |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.10 | 0.16 | 0.16 | $0.14 \pm 0.03$ | 0.16 | 0.2 | 0.31 | $0.22 \pm 0.08$ |
| 10 | 0.33 | 0.40 | 0.32 | $0.35 \pm 0.04$ | 0.41 | 0.42 | 0.38 | $0.40 \pm 0.02$ |
| 20 | 0.33 | 0.35 | 0.25 | $0.31 \pm 0.05$ | 0.4 | 0.37 | 0.35 | $0.37 \pm 0.03$ |
| 30 | 0.38 | 0.39 | 0.29 | $0.35 \pm 0.06$ | 0.44 | 0.42 | 0.37 | $0.41 \pm 0.04$ |
| 40 | 0.43 | 0.44 | 0.34 | $0.40 \pm 0.06$ | 0.48 | 0.44 | 0.39 | $0.44 \pm 0.05$ |
| 50 | 0.46 | 0.47 | 0.38 | $0.44 \pm 0.05$ | 0.51 | 0.46 | 0.41 | $0.46 \pm 0.05$ |
| 60 | 0.47 | 0.49 | 0.41 | $0.46 \pm 0.04$ | 0.52 | 0.47 | 0.43 | $0.47 \pm 0.05$ |
| 70 | 0.47 | 0.50 | 0.43 | $0.47 \pm 0.04$ | 0.53 | 0.48 | 0.44 | $0.48 \pm 0.05$ |
| GPU, |  |  |  |  | $\text { CPU, } 4 \mathrm{~ns}$ |  |  |  |


| Nwat | $\boldsymbol{r}^{\mathbf{2}}$ run1 | $\boldsymbol{r}^{\mathbf{2}}$ run2 | $\boldsymbol{r}^{\mathbf{2}} \mathbf{r u n 3}$ | $\mathbf{A v g} \boldsymbol{r}^{\mathbf{2}} \pm \mathbf{S D}$ | $\boldsymbol{r}^{\mathbf{2}}$ run1 | $\boldsymbol{r}^{\mathbf{2}} \mathbf{r u n 2}$ | $\boldsymbol{r}^{\mathbf{2}}$ run3 | Avg $\boldsymbol{r}^{\mathbf{2}} \pm \mathbf{S D}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0.16 | 0.61 | 0.34 | $0.37 \pm 0.23$ | 0.18 | 0.22 | 0.44 | $0.28 \pm 0.14$ |
| 10 | 0.32 | 0.41 | 0.36 | $0.36 \pm 0.05$ | 0.44 | 0.37 | 0.36 | $0.39 \pm 0.04$ |
| 20 | 0.29 | 0.38 | 0.26 | $0.31 \pm 0.06$ | 0.48 | 0.33 | 0.35 | $0.39 \pm 0.08$ |
| 30 | 0.37 | 0.39 | 0.26 | $0.34 \pm 0.07$ | 0.53 | 0.38 | 0.4 | $0.44 \pm 0.08$ |
| 40 | 0.45 | 0.42 | 0.30 | $0.39 \pm 0.08$ | 0.53 | 0.45 | 0.43 | $0.47 \pm 0.05$ |
| 50 | 0.49 | 0.44 | 0.32 | $0.42 \pm 0.09$ | 0.53 | 0.48 | 0.46 | $0.49 \pm 0.04$ |
| 60 | 0.52 | 0.46 | 0.34 | $0.44 \pm 0.09$ | 0.53 | 0.50 | 0.47 | $0.50 \pm 0.03$ |
| 70 | 0.53 | 0.47 | 0.36 | $0.45 \pm 0.09$ | 0.54 | 0.51 | 0.47 | $0.51 \pm 0.04$ |

The difficulty in having a correlation between predicted binding energies and experimental activities above $50 \%$ might also be attributed to the fact that some of the considered MDM2 inhibitors (Figure 11.6 and 8.48 ) were tested as racemates but only the complex of a single enantiomer was available, and thus considered.

Therefore, the poor correlation reached might also be due to the inhibitors data set, but, anyway, it is significantly improved when solute - solvent interactions are taken in account, although the role of water in mediating protein-ligand interactions is poor (Figure 11.5B). Moreover, it should be underlined that when Nwat $\neq 0$ the standard deviation of $r^{2}$ decreases, suggesting that the Nwat-MMGBSA approach improve the reproducibility of the results, the contribute of the MDM2 protein to the binding energy is better estimated in the presence of explicit water.

Also in this case, simulations run on GPUs gave equivalent results to those run on CPUs, most of all when Nwat $\neq 0$, making the GPU-based hardware a fast, cheap and reliable choice for MD simulations.


Figure 11.6. Correlation between experimental free energy of binding and predicted binding energies obtained for MDM2 with Nwat $=0-70$ by analyzing the first ns of a MD simulation run on a GPU hardware.
$\mathbf{B C L}_{\mathbf{L}}$. For the BCL-X $\mathrm{X}_{\mathrm{L}}$ system a high correlation index $\left(r^{2} \approx 0.70\right)$ was obtained even with Nwat $=0$, suggesting that water does not play a relevant role in mediating protein-ligand interactions or in stabilizing the complex. Indeed, including a hydration shell of 10 to 50 water molecules around the ligands when computing the binding energies did not minimally affect the correlation with $-\log _{10}\left(I C_{50}\right)$ (Figure 11.7A and Table 11.3). As a further proof, grid analyses performed on the MD simulations showed the presence of decidedly small high water density areas, mainly located around protein loops and not at the protein -ligand boundary (Figure 11.7B).

It is important to emphasize that, although water has not a particular importance in this system, the inclusion of explicit hydration shells is neither detrimental nor time consuming. This aspect is fundamental, because it allows to automatically and safely apply the Nwat-MMGBSA approach in drug design/discovery protocols.

In addition, as previously observed for the other systems, it could not be found any significant difference between the MMGBSA results obtained from the analyses of the MD simulations performed on either GPUs or CPUs, indicating that the highly performing and innovative GPUs can be reliably used for MD simulations.


B


Figure 11.7. A) Trend of $r^{2}$ in dependency of Nwat for BCL- $\mathrm{X}_{\mathrm{L}}$. B) Water density plots obtained by grid analysis of BCL- $\mathrm{X}_{\mathrm{L}}-3 Z \mathrm{C} 4$ (visualization with Chimera, step $=1$ and level $=15$ ).

Table 11.3. Values of $r^{2}$ as a function of Nwat obtained by the analysis of the first and fourth ns of BCL- $\mathrm{X}_{\mathrm{L}}$ MD simulations run on both GPU and CPU hardwares. Average values and standard deviations are also reported.

| GPU, 1 ns |  |  |  |  | CPU, 1 ns |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.75 | 0.73 | 0.79 | $0.76 \pm 0.03$ | 0.70 | 0.75 | 0.74 | $0.73 \pm 0.03$ |
| 10 | 0.71 | 0.69 | 0.72 | $0.71 \pm 0.02$ | 0.75 | 0.72 | 0.65 | $0.71 \pm 0.05$ |
| 20 | 0.67 | 0.68 | 0.69 | $0.68 \pm 0.01$ | 0.74 | 0.69 | 0.62 | $0.68 \pm 0.06$ |


| 30 | 0.67 | 0.71 | 0.69 | $0.69 \pm 0.02$ | 0.73 | 0.71 | 0.62 | $0.69 \pm 0.06$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 0.68 | 0.71 | 0.69 | $0.69 \pm 0.02$ | 0.69 | 0.70 | 0.61 | $0.67 \pm 0.05$ |
| 50 | 0.69 | 0.69 | 0.69 | $0.69 \pm 0.00$ | 0.65 | 0.68 | 0.58 | $0.64 \pm 0.05$ |
| GPU, 4 ns |  |  |  |  | CPU, 4 ns |  |  |  |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | Avg $r^{2} \pm$ SD |
| 0 | 0.63 | 0.76 | 0.75 | $0.71 \pm 0.07$ | 0.62 | 0.7 | 0.76 | $0.66 \pm 0.06$ |
| 10 | 0.65 | 0.75 | 0.74 | $0.71 \pm 0.06$ | 0.73 | 0.7 | 0.65 | $0.72 \pm 0.02$ |
| 20 | 0.65 | 0.74 | 0.72 | $0.70 \pm 0.05$ | 0.71 | 0.66 | 0.64 | $0.69 \pm 0.04$ |
| 30 | 0.65 | 0.73 | 0.71 | $0.70 \pm 0.04$ | 0.72 | 0.66 | 0.65 | $0.69 \pm 0.04$ |
| 40 | 0.66 | 0.71 | 0.71 | $0.69 \pm 0.03$ | 0.71 | 0.66 | 0.66 | $0.69 \pm 0.04$ |
| 50 | 0.65 | 0.68 | 0.71 | $0.68 \pm 0.03$ | 0.69 | 0.63 | 0.66 | $0.66 \pm 0.04$ |



Figure 11.8. Correlation between experimental free energy of binding and predicted binding energies obtained for BCL- $\mathrm{X}_{\mathrm{L}}$ with Nwat $=0-50$ by analyzing the first ns of a MD simulation run on a HPC hardware.

XIAP-BIR2. The study of XIAP-BIR2 system required the extension of the hydration shell around the ligand up to Nwat $=90$, in order to verify the convergence in terms of $r^{2}$. Indeed, this system behaved in a completely different way compared to the previously considered complexes. In detail, the correlation between predicted binding energies and $-\log _{10}\left(I C_{50}\right)$ was already high ( $0.64<r^{2}<0.72$ ) without considering any explicit solvent model during the MMGBSA calculations $($ Nwat $=0)$.

Then, with Nwat $=10-30$ a drastic decrease in the $r^{2}$ values was observed $\left(0.01<r^{2}\right.$ $<0.13$ ), followed by an improvement in correlation up to values $10 \%$ higher than those obtained with Nwat $=0\left(0.74<r^{2}<0.84\right)$ with Nwat $=80-90$ (Figures 8.42A and 8.43 , and Table 11.4).



Figure 11.9. A) Trend of $r^{2}$ in dependency of Nwat for XIAP-BIR2. B) Water density plots obtained by grid analysis of XIAP-BIR2-21J (visualization with Chimera, step $=1$ and level $=15$ ).

Table 11.4. Values of $r^{2}$ as a function of Nwat obtained by the analysis of the first and fourth ns of MD simulations run on both GPU and CPU hardwares for MDM2 system. Average values and standard deviations are also reported.

| GPU, 1 ns |  |  |  |  | CPU, 1 ns |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.83 | 0.74 | 0.60 | $0.72 \pm 0.12$ | 0.60 | 0.81 | 0.61 | $0.67 \pm 0.12$ |
| 10 | 0.18 | 0.03 | 0.09 | $0.10 \pm 0.08$ | 0.07 | 0.31 | 0.00 | $0.13 \pm 0.16$ |
| 20 | 0.03 | 0.01 | 0.02 | $0.02 \pm 0.01$ | 0.01 | 0.20 | 0.01 | $0.07 \pm 0.11$ |
| 30 | 0.09 | 0.07 | 0.03 | $0.06 \pm 0.03$ | 0.03 | 0.24 | 0.00 | $0.09 \pm 0.13$ |
| 40 | 0.23 | 0.46 | 0.22 | $0.30 \pm 0.14$ | 0.18 | 0.44 | 0.01 | $0.21 \pm 0.22$ |
| 50 | 0.59 | 0.83 | 0.59 | $0.67 \pm 0.14$ | 0.50 | 0.71 | 0.16 | $0.46 \pm 0.28$ |
| 60 | 0.75 | 0.84 | 0.73 | $0.77 \pm 0.06$ | 0.73 | 0.81 | 0.49 | $0.68 \pm 0.17$ |
| 70 | 0.81 | 0.83 | 0.76 | $0.80 \pm 0.04$ | 0.81 | 0.84 | 0.62 | $0.76 \pm 0.12$ |
| 80 | 0.83 | 0.83 | 0.77 | $0.81 \pm 0.03$ | 0.83 | 0.86 | 0.72 | $0.80 \pm 0.07$ |
| 90 | 0.83 | 0.82 | 0.81 | $0.82 \pm 0.01$ | 0.87 | 0.85 | 0.77 | $0.83 \pm 0.05$ |

GPU, 4 ns
CPU, 4 ns

| Nwat | $\boldsymbol{r}^{\mathbf{2}}$ run1 | $\boldsymbol{r}^{\mathbf{2}}$ run2 | $\boldsymbol{r}^{2} \mathbf{r u n 3}$ | $\mathbf{A v g} \boldsymbol{r}^{\mathbf{2}} \pm \mathbf{S D}$ | $\boldsymbol{r}^{2}$ run1 | $\boldsymbol{r}^{2}$ run2 | $\boldsymbol{r}^{2}$ run3 | Avg $\boldsymbol{r}^{2} \pm \mathbf{S D}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0.68 | 0.67 | 0.58 | $0.64 \pm 0.06$ | 0.61 | 0.75 | 0.57 | $0.64 \pm 0.09$ |
| 10 | 0.01 | 0.09 | 0.04 | $0.05 \pm 0.04$ | 0.00 | 0.03 | 0.01 | $0.01 \pm 0.02$ |
| 20 | 0.00 | 0.02 | 0.01 | $0.01 \pm 0.01$ | 0.01 | 0.02 | 0.00 | $0.01 \pm 0.01$ |
| 30 | 0.07 | 0.02 | 0.03 | $0.04 \pm 0.03$ | 0.00 | 0.07 | 0.00 | $0.02 \pm 0.04$ |
| 40 | 0.36 | 0.09 | 0.31 | $0.25 \pm 0.14$ | 0.01 | 0.23 | 0.01 | $0.08 \pm 0.13$ |
| 50 | 0.81 | 0.29 | 0.89 | $0.66 \pm 0.33$ | 0.16 | 0.51 | 0.19 | $0.29 \pm 0.19$ |
| 60 | 0.90 | 0.49 | 0.96 | $0.78 \pm 0.26$ | 0.49 | 0.68 | 0.50 | $0.56 \pm 0.11$ |
| 70 | 0.85 | 0.57 | 0.88 | $0.77 \pm 0.17$ | 0.62 | 0.69 | 0.69 | $0.67 \pm 0.04$ |


| 80 | 0.81 | 0.63 | 0.80 | $0.75 \pm 0.10$ | 0.72 | 0.73 | 0.77 | $0.74 \pm 0.03$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 90 | 0.76 | 0.66 | 0.76 | $0.73 \pm 0.06$ | 0.77 | 0.76 | 0.83 | $0.79 \pm 0.04$ |

The decrease in $r^{2}$ values when Nwat $=10-30$ can be mainly attribute to the C09 complex. Indeed, for this complex the inclusion of small hydration shells around the ligands is detrimental, while it does not have any effect on the other complexes. This is probably due to the fact that, among the considered ligands, C 09 is the only one with a secondary amine on the benzodiazepine ring (Figure 11.16), which can interact with water molecules (Figure 11.10). This additional interaction leads to an overestimation of the binding energy of the related complex when Nwat $=10-30$ is used, while with larger hydration shell it is not observed because additional watermediated H -bonds within the protein reduce the impact of the complex contribute in the binding energy computation (Table 11.5).


Figure 11.10. XIAP-BI2-C09 complex with Nwat $=20$. C09 is represented in green, while the water molecule involved in the interaction with C 09 (N7) is represented in ball and stick and circled in red.

Therefore, if C09 was omitted from the dataset, results are similar to those obtained for the BCL- $\mathrm{X}_{\mathrm{L}}$ system. It should also be considered that the overestimation of the binding energy in the C 09 complex was reduced when considering larger hydration shells, and that the use of the Nwat-MMGBSA approach with Nwat $\neq 0$.

Table 11.5. Water-mediated H-bonds with occupancy > $20 \%$ detected from the analysis of a CPU MD simulation of the C 09 complex.

| Nwat $=\mathbf{2 0}$ |  | Nwat $=$ 70 |  |
| :--- | :--- | :--- | :--- |
| Residues involved | Occ\% | Residues involved | Occ\% |
| 65:ASP 70:GLU | 39.0 | 65:ASP 70:GLU | 68.0 |
| 93:ARG 115:GLY | 34.0 | 63:PRO 65:ASP | 54.0 |
| 17:ARG 39:GLY | 33.0 | 60:ASN 62:GLU | 35.0 |
| 62:GLU 65:ASP | 28.0 | 93:ARG 115:GLY | 34.0 |
| 60:ASN 62:GLU | 27.0 | 17:ARG 39:GLY | 33.0 |
|  |  | 62:GLU 65:ASP | 33.0 |
|  |  | 69:SER 70:GLU | 20.0 |



Figure 11.11. Correlation between experimental free energy of binding and predicted binding energies obtained for XIAP-BIR2 with Nwat $=0-90$ by analyzing the first ns of a MD simulation run on a GPU hardware.

HIV1-protease. It is known that water is fundamental for the catalytic activity of this aspartic protease, where a water molecule, located between two aspartate residues, is activated through an acid-base mechanism and attacks the amidic carbonyl of the cleavage site. ${ }^{320}$ Thus, it is not surprising that for this system many and relatively wide areas of high water density between the protein and the ligand have been detected by grid analysis (Figure 11.12B).


Figure 11.12. A) Trend of $r^{2}$ in dependency of Nwat for HIV1-protease. B) Water density plots obtained by grid analysis of HIV1-protease-3NUO (visualization with Chimera, step $=1$ and level $=$ 15).

In addition, among the considered systems, the HIV1-protease is the most affected by solute-solvent interactions. Indeed, the inclusion of a hydration shell of 30 - 70 molecules increased the correlation between predicted binding energies and $k_{i}$ of about $50-60 \%$ compared to the $r^{2}$ obtained with Nwat $=0$ (Figure 11.11A and Table 11.5). In all the performed runs, the inclusion of $10-20$ water molecules during the MMGBSA analysis did not significantly affect the $r^{2}$ (Table 11.6). This suggests that small hydration shells around the ligand are not enough to correctly treat the solute solvent interactions, which, in this case, may differently involve the HIV1-protease mutants. Indeed, water-mediated H-bond analyses showed that only one or two stable (occupancy >20\%) water-mediated interactions involved the ligand, while in most of the cases water is needed to bridge interactions within the HIV1-protease. In addition, the water-mediated interactions between HIV1-protease and the ligand have the same occupancies with both Nwat $=10$ and Nwat $=70$, although the correlation with experiments is greater with Nwat $=70$ than with Nwat $=10$. This is showed in Tables 8.26 and 8.27 , where 3 NUO , which is highly affected by the inclusion of solvent
molecules during the MMGBSA analysis, and 3NDW, which well correlated with experiments also with Nwat $=0$, are taken as example. It can be observed that the number of water-mediated H -bonds within the protein decidedly increases when passing from Nwat $=10$ to Nwat $=70$ for 3NUO, evidencing the importance of water in this system. Conversely, with Nwat $=10$ and Nwat $=70$ the water-mediated interactions detected in 3NDW are equivalent and significantly lower than those obtained by analysing the 3 NUO trajectory.

Table 11.6. Values of $r^{2}$ as a function of Nwat obtained by the analysis of the first and fourth ns of MD simulations run on both GPU and CPU hardwares for HIV1-protease system. Average values and standard deviations are also reported.

| GPU, 1 ns |  |  |  |  | CPU, 1 ns |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.22 | 0.06 | 0.03 | $0.10 \pm 0.10$ | 0.48 | 0.36 | 0.01 | $0.28 \pm 0.24$ |
| 10 | 0.08 | 0.03 | 0.12 | $0.08 \pm 0.05$ | 0.34 | 0.66 | 0.12 | $0.37 \pm 0.27$ |
| 20 | 0.13 | 0.09 | 0.12 | $0.11 \pm 0.02$ | 0.39 | 0.70 | 0.23 | $0.44 \pm 0.24$ |
| 30 | 0.52 | 0.60 | 0.68 | $0.60 \pm 0.08$ | 0.72 | 0.76 | 0.6 | $0.69 \pm 0.08$ |
| 40 | 0.60 | 0.77 | 0.74 | $0.70 \pm 0.09$ | 0.73 | 0.75 | 0.69 | $0.72 \pm 0.03$ |
| 50 | 0.62 | 0.80 | 0.74 | $0.72 \pm 0.09$ | 0.72 | 0.74 | 0.70 | $0.72 \pm 0.02$ |
| 60 | 0.63 | 0.80 | 0.74 | $0.72 \pm 0.09$ | 0.71 | 0.73 | 0.71 | $0.72 \pm 0.01$ |
| 70 | 0.63 | 0.80 | 0.74 | $0.72 \pm 0.09$ | 0.71 | 0.73 | 0.71 | $0.72 \pm 0.01$ |
| GPU, $\mathbf{4} \mathbf{n s}$ |  |  |  |  | $\text { CPU, } 4 \mathrm{~ns}$ |  |  |  |
| Nwat | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} \boldsymbol{r}^{2} \pm \mathbf{S D}$ | $r^{2}$ run1 | $r^{2}$ run2 | $r^{2}$ run3 | $\mathbf{A v g} r^{2} \pm \mathbf{S D}$ |
| 0 | 0.12 | -0.02 | 0.00 | $0.03 \pm 0.08$ | 0.08 | 0.00 | 0.01 | $0.04 \pm 0.06$ |
| 10 | 0.13 | 0.00 | 0.03 | $0.05 \pm 0.07$ | 0.52 | 0.39 | 0.10 | $0.46 \pm 0.09$ |
| 20 | 0.19 | 0.01 | 0.02 | $0.07 \pm 0.10$ | 0.32 | 0.65 | 0.00 | $0.49 \pm 0.23$ |
| 30 | 0.53 | 0.24 | 0.23 | $0.33 \pm 0.17$ | 0.62 | 0.90 | 0.52 | $0.76 \pm 0.20$ |
| 40 | 0.65 | 0.50 | 0.40 | $0.52 \pm 0.13$ | 0.67 | 0.89 | 0.70 | $0.78 \pm 0.16$ |
| 50 | 0.67 | 0.58 | 0.45 | $0.57 \pm 0.11$ | 0.66 | 0.87 | 0.72 | $0.77 \pm 0.15$ |
| 60 | 0.66 | 0.60 | 0.47 | $0.58 \pm 0.10$ | 0.67 | 0.85 | 0.72 | $0.76 \pm 0.13$ |
| 70 | 0.64 | 0.62 | 0.48 | $0.58 \pm 0.09$ | 0.67 | 0.84 | 0.71 | $0.76 \pm 0.12$ |



Figure 11.13. Correlation between experimental free energy of binding and predicted binding energies obtained for HIV1-protease with Nwat $=0-70$ by analyzing the first ns of a MD simulation run on a GPU hardware.

Table 11.7. Water-mediated H-bonds with occupancy > $20 \%$ detected from the analysis of a CPU MD simulation of 3 NUO . The water-mediated H -bonds involving amprenavir are reported in bold.

| Nwat = 10 |  | Nwat = 70 |  |
| :--- | :--- | :--- | :--- |
| Residues involved | occ\% | Residues involved | occ\% |
| 31:ASP 203:AMP | $\mathbf{5 8 . 0}$ | 31:ASP 203:AMP | $\mathbf{5 8 . 0}$ |
| 90:LEU 91:MET | 54.0 | 129:GLY 131:ASP | 56.0 |
| 129:GLY 131:ASP | 51.0 | 90:LEU 91:MET | 54.0 |
| 132:ASP 203:AMP | $\mathbf{4 7 . 0}$ | 80:PRO 152:ILE | 54.0 |
| 191:LEU 192:MET | 41.0 | 132:ASP 203:AMP | $\mathbf{4 7 . 0}$ |
|  |  | 191:LEU 192:MET | 41.0 |
|  |  | 27:THR 28:GLY | 34.0 |
|  |  | 52:GLY 181:PRO | 30.0 |
|  |  | 30:ASP 31:ASP | 28.0 |
|  |  | 31:ASP 46:LYS | 21.0 |
|  |  | 128:THR 129:GLY | 20.0 |

Table 11.8. Water-mediated H-bonds with occupancy > $20 \%$ detected from the analysis of a CPU MD simulation of 3NDW. The water-mediated H -bonds involving ritonavir are reported in bold.

| Nwat = 10 |  | Nwat = 70 |  |
| :--- | :--- | :--- | :--- |
| Residues involved | $\mathbf{o c c} \%$ | Residues involved | $\mathbf{o c c} \%$ |
| 191:LEU 192:LEU | 73.0 | 26:ASP 127:ASP | 86.0 |
| 26:ASP 127:ASP | 70.0 | 191:LEU 192:LEU | 73.0 |
| 132:ASP 203:RIT | $\mathbf{5 4 . 0}$ | 132:ASP 203:RIT | $\mathbf{5 4 . 0}$ |
| 90:LEU 91:LEU | 53.0 | 90:LEU 91:LEU | 53.0 |
| 176:THR 177:VAL | 36.0 | 28:GLY 30:ASP | 38.0 |
|  |  | 176:THR 177:VAL | 36.0 |

Moreover, when Nwat $>30$ the standard deviations of $r^{2}$ generally decreased, and this is particularly evident for the MMGBSA analyses performed on the $1^{\text {st }} \mathrm{ns}$ of CPU MD simulations. This observation is consistent with what previously noticed for the MDM2 and the XIAP-BIR2 systems.

Therefore, this study confirmed the reliability and robustness of the NwatMMGBSA approach, which gave reproducible results within different independent MD simulations and independently from the hardware on which the simulations run. Indeed, the standard deviation of the correlation index within 3 independent MD simulations was generally lower when the optimal Nwat was considered than when Nwat $=0$. Furthermore, the inclusion of variably wide hydration shells around the
ligands improved or, at least, did not worsened the correlation between predicted binding energies and experimental activities, such as $\Delta G_{b i n d}, k_{i}$ and $I C_{50}$.

Although, the definition of an optimal Nwat valid for all sytems is still an issue, generally Nwat $=50-60$ gave good results, not significantly different from the best obtainable for each system. Therefore, in PPI systems larger hydration shells have to be considered during the MMGBSA calculations, compared to what observed for classical receptor-ligand or protein-protein complexes. Indeed, considering that explicit waters are considered as a part of the receptor, the selection of a limited number of water molecules around the ligand might lead to an overestimation of the binding energy when solvent-exposed hydrophilic groups are present on the ligand.

These observations indicate that the Nwat-MMGBSA approach represents a promising protocol for drug design/discovery studies, also because short MD simulations (even 1 ns ) and fast and cheap GPU cards can be safely used at this scope. Furthermore, the whole protocol, including ligands parametrization, MD simulations, MMGBSA calculations and additional trajectory analysis, has been automatized (Annex 11.F) and a "single-click" is necessary to go from PDB complexes to MMGBSA results.

### 11.3 Materials and Methods

Preparation of complexes. For $\mathrm{BCL}^{-\mathrm{X}_{\mathrm{L}}}$ (Figure 11.14), MDM2 (Figure 11.15) and XIAP-BIR2 (Figure 11.16) ligands not all the crystallographic structures of the complexes were available. In detail a X-ray structure was available for BCL-X ${ }_{\mathrm{L}}$ 3ZK6, 3ZLN, 3ZLO and 3ZLR complexes, ${ }^{316}$ for the MDM2 4JV7, 4JV9, 4JVE, 4JVR and 4JWR, ${ }^{315}$ whereas for the XIAP-BIR2 system only the crystallographic structure of 21J was available. ${ }^{317}$ Therefore, the starting geometries of the ligands without an Xray structures were manually generated with MOE software ${ }^{227}$ starting from those available.


Figure 11.14. BCL- $\mathrm{X}_{\mathrm{L}}$ ligands with $I C_{50}$ values.




4JV9
$1.8000 \mu \mathrm{M}$



4JVE
$0.0860 \mu \mathrm{M}$



CM08
CM08
$30.0000 \mu \mathrm{M}$


CM34


4JWR
$0.6100 \mu \mathrm{M}$


Figure 11.15. MDM2 ligands with $I C_{50}$ values.

21 J
0.0060


15D


12B
$2.6200 \mu \mathrm{M}$


15B
$6.7500 \mu \mathrm{M}$


C09
$4.3900 \mu \mathrm{M}$



Figure 11.16. XIAP-BIR2 ligands with $I C_{50}$ values.


Amprenavir


Ritonavir

Figure 11.17. HIV1-protease ligands.
Table 11.9. HIV1-protease complexes with related mutations and $k_{i}$ values ( $\mathrm{APV}=$ amprenavir, $\mathrm{RTV}=$ ritonavir).

| Complex | Mutation | Ligand | $\boldsymbol{k}_{\boldsymbol{i}}(\mathbf{n M})$ |
| :---: | :---: | :---: | :---: |
| 3NU3 | Wild type | APV | 0.150 |
| 3NU4 | V32I | APV | 1.500 |
| 3NU5 | I50V | APV | 4.500 |
| 3NU6 | I54M | APV | 0.500 |
| 3NUJ | I54V | APV | 0.410 |
| 3NU9 | I84V | APV | 0.900 |
| 3NUO | L90M | APV | 0.160 |
| 3NDW | Q7K | RTV | 0.055 |
| 3NDX | Q7K | RTV | 0.055 |

Ligand partial charges were derived with the AM1-BCC method by the antechamber ${ }^{321}$ software of AMBER14 package.

From the available crystallographic structures, crystallographic water molecules or crystal stabilizers have been manually removed, and the protonation states of the proteins were determined by MOE software through the Protonate $3 D$ tool.

MD simulations. MD simulations were performed with the pmemd module of Amber 14 package, ${ }^{192}$ using the ff14SB ${ }^{135}$ and gaff ${ }^{322}$ force fields. In each complex, the total charge was neutralized by adding an adequate number of $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$ions, and the systems were solvated with an octahedral box of TIP3P ${ }^{292}$ water added up to a distance of $10 \AA$ from the solute. The systems where then relaxed by minimizing hydrogens ( 1000 cycles of steepest descent and 5000 cycles of conjugated gradient), ions and waters ( 2000 cycles of steepest descent and 5000 cycles of conjugated gradient). The solvent box was equilibrated at 300 K by 100 ps of NVT and 100 ps of NPT simulation using a Langevin thermostat with a collision frequency of $2.0 \mathrm{ps}^{-1}$. Successively, a minimization of side chains, water and ions with restraints on
backbone and ligand of $25 \mathrm{kcal} / \mathrm{mol}$ and a total minimization ( 2500 cycles of steepest descent and 5000 cycles of conjugated gradient) were performed. The systems were then heated up to 300 K in 6 steps of 5 ps each $(\Delta \mathrm{T}=50 \mathrm{~K})$, where backbone and ligand restraints were reduced from $10.0 \mathrm{kcal} / \mathrm{mol}$ to $5 \mathrm{kcal} / \mathrm{mol}$. Full equilibration was performed in the NVT ensemble ( 100 ps , ligand and backbone restraints $=5.0$ $\mathrm{kcal} / \mathrm{mol})$ and in the NPT ensemble ( 1 step of 200 ps , ligand and backbone restraints $=$ $5 \mathrm{kcal} / \mathrm{mol} ; 3$ steps of 100 ps each, reducing the ligand and backbone restraints from $5.0 \mathrm{kcal} / \mathrm{mol}$ to $1.0 \mathrm{kcal} / \mathrm{mol}$, and 1 step 1 ns with $1.0 \mathrm{kcal} / \mathrm{mol}$ of ligand and backbone restraints). Finally, unrestrained production runs were run at 300 K for 4 ns . An electrostatic cutoff of $8.0 \AA$, and the SHAKE algorithm were applied to all the calculations. Six independent simulations for each complex were run on GPU and on CPUs.

When needed, RMSD analyses of backbone atoms were made to assess the system stability, and solute - solvent H -bonds (donor - acceptor distance $=4.0 \AA$, angle $=150^{\circ}$ ) and grid (cubic box $50 \AA \times 50 \AA \times 50 \AA$, mesh $=0.5 \AA$, centered on interfacial residues) analyses were performed with cpptraj.

Nwat-MMPB/GBSA. MMGBSA analyses were performed with the MMPBSA.py python script implemented in the Amber 14 package. The analyses were conducted on either the $1^{\text {st }}$ or the $4^{\text {th }} \mathrm{ns}$ of the production runs by selecting 100 evenly spaced out snapshots. The GB-Neck2 implicit solvent model was chosen for the GB calculations, and a salt molar concentration in solution was set at 0.15 M . During the analyses the entropic term was neglected.

When explicit water molecules were considered during the MMPB/GBSA calculations the same approach described in Chapter 8.1.3 was followed.

The water molecules (depending on the chosen Nwat) were considered as part of the protein considered as the receptor.

The square of Pearson's correlation coefficient $\left(r^{2}\right)$ between experimental $\Delta G_{b i n d}$ and computed binding energies was used as an evaluation metric.

The whole process (from ligand parametrization to MMGBSA) has been automatized with a tcsh script reported as Annex 11.F.

## 12 Conclusions

In the wide field of PPIs, this PhD project has been focused on the optimization and application of computational methods for the design of PPIs modulators, with a particular interest toward peptide modulators targeting PPIs involving helical motifs.

In this contest, the first part of the project has been aimed to define the rationales behind the helical secondary structure stabilization and the helical screw sense selectivity exerted by chiral $\mathrm{C} \alpha$-tetrasubstituted amino acids (cCTAAs) through REMD simulations and QTAIM analyses, and the mechanisms responsible of the helical screw sense inversion through PNEB simulations.

In detail, it has been found that the helical motif is stabilized by two complementary mechanisms: the first depends on the steric hindrance exerted by the cCTAA in an area parallel to the peptide helix axis and downstream of the cCTAA itself, whereas the second consists in the strengthening of the helical H -bond network thanks to peculiar $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions. Analogously, $P$-helical screw sense selectivity is ascribable to the cCTAA steric hindrance parallel to the peptide helix axis, without particular preferences for the region downstream and upstream of the cCTAA, together with quite strong noncovalent interactions, consisting of classical N - $\mathrm{H} \cdots \mathrm{O}=\mathrm{C} \mathrm{H}$-bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions. Furthermore, PNEB simulations performed on achiral peptides of different lengths suggest that the helical screw sense inversion requires the formation of $\gamma$-turns, although a preferential screw sense inversion direction was not found.

Therefore, the knowledge gained from these studies could be helpful in designing stable helical peptides, having a preferential screw sense and that can be in principle activated in situ by inducing a conformational switch from $P$ to $M$ helix or vice versa.

Conversely, the second part of the project has been focused on the optimization of an MMGBSA based method, called Nwat-MMGBSA, aimed to improve the correlation between predicted binding energies of PPI complexes and experimental data. This approach, consisting in the inclusion, as part of the receptor, of hydration shells around the ligand during the MMGBSA calculations, was initially tested on
classical receptor-ligand complexes and, then, automatized, optimized and tested on PPI complexes.

This approach turned out to be good for the evaluation of PPI modulators activities, from different points of view. First of all, when water played a significant role in mediating protein-ligand interactions, the application of Nwat-MMGBSA improved the correlation between predicted and experimental data. On the other hand, if the solvent does not explicitly participate to the interaction, it did not give detrimental results compared to those obtained with the standard approach. In addition, the protocol proved to be robust and reproducible, giving equivalent results by using different setups. Furthermore, although an optimal number of water molecules to include in the hydration shell could not be found, in the case of PPI interactions inhibited by small molecules the inclusion of $50-60$ water molecules appears to be a good choice. A non-negligible advantage of this approach is represented by the possibility to automatize it, making it applicable for drug design/discovery purposes.

Therefore, although further evaluations are needed, most of all on larger datasets, the knowledge coming from the combination of both parts of the project can be exploited for the design of stable non-natural peptides targeting PPIs.

## 13 BIBLIOGRAPHY

(1) Fischer, P. M. Drug Des. Rev. - Online 2005, 2, 179.
(2) Metz, A.; Ciglia, E.; Gohlke, H. Curr. Pharm. Des. 2012, 18, 4630.
(3) Zinzalla, G.; Thurston, D. E. Future Med. Chem. 2009, 1, 65.
(4) Cory, S.; Adams, J. M. Nat. Rev. Cancer 2002, 2, 647.
(5) Villunger, A.; Scott, C.; Bouillet, P.; Strasser, A. Blood 2003, 101, 2393.
(6) Xenarios, I.; Eisenberg, D. Curr. Opin. Biotechnol. 2001, 12, 334.
(7) Wells, J. a; McClendon, C. L. Nature 2007, 450, 1001.
(8) Blazer, L. L.; Neubig, R. R. Neuropsychopharmacology 2009, 34, 126.
(9) Ryan, D. P.; Matthews, J. M. Curr. Opin. Struct. Biol. 2005, 15, 441.
(10) Arkin, M. R.; Whitty, A. Curr. Opin. Chem. Biol. 2009, 13, 284.
(11) Chène, P. ChemMedChem 2006, 1, 400.
(12) Gerrard, J. A.; Hutton, C. A.; Perugini, M. A. Mini-Reviews Med. Chem. 2007, 7, 151 .
(13) Mullard, A. Nat. Rev. Drug Discov. 2012, 11, 173.
(14) Fry, D. C. Biopolymers 2006, 84, 535.
(15) Cheng, A. C.; Coleman, R. G.; Smyth, K. T.; Cao, Q.; Soulard, P.; Caffrey, D. R.; Salzberg, A. C.; Huang, E. S. Nat. Biotechnol. 2007, 25, 71.
(16) Horton, N.; Lewis, M. Protein Sci. 2008, 1, 169.
(17) Janin, J.; Chothia, C. J. Biol. Chem. 1990, 265, 16027.
(18) Jones, S.; Thornton, J. M. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13.
(19) Lo Conte, L.; Chothia, C.; Janin, J. J. Mol. Biol. 1999, 285, 2177.
(20) Hopkins, A. L.; Groom, C. R. Nat. Rev. Drug Discov. 2002, 1, 727.
(21) Deeds, E. J.; Ashenberg, O.; Gerardin, J.; Shakhnovich, E. I. Proc. Natl. Acad. Sci. 2007, 104, 14952.
(22) Keskin, O.; Ma, B.; Nussinov, R. J. Mol. Biol. 2005, 345, 1281.
(23) Berg, T. Angew. Chemie Int. Ed. 2003, 42, 2462.
(24) Checco, J. W.; Lee, E. F.; Evangelista, M.; Sleebs, N. J.; Rogers, K.; Pettikiriarachchi, A.; Kershaw, N. J.; Eddinger, G. A.; Belair, D. G.; Wilson, J. L.; Eller, C. H.; Raines, R. T.; Murphy, W. L.; Smith, B. J.; Gellman, S. H.; Fairlie, W. D. J. Am. Chem. Soc. 2015, 137, 11365.
(25) Pieraccini, S.; Saladino, G.; Cappelletti, G.; Cartelli, D.; Francescato, P.;

Speranza, G.; Manitto, P.; Sironi, M. Nat. Chem. 2009, 1, 642.
(26) Miller, M. Curr. Protein Pept. Sci. 2009, 10, 244.
(27) Ferri, N.; Corsini, A.; Bottino, P.; Clerici, F.; Contini, A. J. Med. Chem. 2009, 52, 4087.
(28) Moreira, I. S.; Fernandes, P. A.; Ramos, M. J. Proteins 2007, 68, 803.
(29) DeLano, W. L. Curr. Opin. Struct. Biol. 2002, 12, 14.
(30) Bogan, A. A.; Thorn, K. S. J. Mol. Biol. 1998, 280, 1.
(31) Thorn, K. S.; Bogan, A. A. Bioinformatics 2001, 17, 284.
(32) Keskin, O.; Gursoy, A.; Ma, B.; Nussinov, R. Chem. Rev. 2008, 108, 1225.
(33) Reichmann, D.; Rahat, O.; Albeck, S.; Meged, R.; Dym, O.; Schreiber, G. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 57.
(34) Nero, T. L.; Morton, C. J.; Holien, J. K.; Wielens, J.; Parker, M. W. Nat. Rev. Cancer 2014, 14, 248.
(35) Rodier, F.; Bahadur, R. P.; Chakrabarti, P.; Janin, J. Proteins Struct. Funct. Bioinforma. 2005, 60, 36.
(36) Lawrence, M. C.; Colman, P. M. J. Mol. Biol. 1993, 234, 946.
(37) Chakrabarti, P.; Janin, J. Proteins Struct. Funct. Genet. 2002, 47, 334.
(38) Lichtarge, O.; Bourne, H. R.; Cohen, F. E. J. Mol. Biol. 1996, 257, 342.
(39) Ma, B.; Elkayam, T.; Wolfson, H.; Nussinov, R. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 5772.
(40) Fernández, A. FEBS Lett. 2002, 527, 166.
(41) Sheinerman, F. Curr. Opin. Struct. Biol. 2000, 10, 153.
(42) Xu, D.; Lin, S. L.; Nussinov, R. J. Mol. Biol. 1997, 265, 68.
(43) Egner, U.; Hillig, R. C. Expert Opin. Drug Discov. 2008.
(44) Bullock, B. N.; Jochim, A. L.; Arora, P. S. J. Am. Chem. Soc. 2011, 133, 14220.
(45) Jochim, A. L.; Arora, P. S. Mol. Biosyst. 2009, 5, 924.
(46) Kussie, P. H. Science (80-. ). 1996, 274, 948.
(47) Janin, J. Structure 1999, 7, R277.
(48) Pelletier, H.; Kraut, J. Science (80-. ). 1992, 258, 1748.
(49) Chong, S.-H.; Ham, S. Proc. Natl. Acad. Sci. 2012, 109, 7636.
(50) Ahmed, M. H.; Spyrakis, F.; Cozzini, P.; Tripathi, P. K.; Mozzarelli, A.;

Scarsdale, J. N.; Safo, M. A.; Kellogg, G. E. PLoS One 2011, 6, e24712.
(51) Sackett, D. L.; Sept, D. Nat. Chem. 2009, 1, 596.
(52) Thiel, P.; Kaiser, M.; Ottmann, C. Angew. Chemie Int. Ed. 2012, 51, 2012.
(53) Gao, Y.; Dickerson, J. B.; Guo, F.; Zheng, J.; Zheng, Y. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7618.
(54) Zhang, G.; Liu, Y.; Ruoho, A. E.; Hurley, J. H. Nature 1997, 386, 247.
(55) Löwe, J.; Li, H.; Downing, K. H.; Nogales, E. J. Mol. Biol. 2001, 313, 1045.
(56) Vassiliev, V.; National, N. C. I. 2011.
(57) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V; Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. J. Med. Chem. 2005, 48, 909.
(58) Azzarito, V.; Long, K.; Murphy, N. S.; Wilson, A. J. Nat. Chem. 2013, 5, 161.
(59) Orner, B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem. Soc. 2001, 123, 5382.
(60) Ernst, J. T.; Kutzki, O.; Debnath, A. K.; Jiang, S.; Lu, H.; Hamilton, A. D. Angew. Chem. Int. Ed. Engl. 2002, 41, 278.
(61) Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin, H.; Hamilton, A. D. J. Am. Chem. Soc. 2002, 124, 11838.
(62) Ahrens, V. M.; Bellmann-Sickert, K.; Beck-Sickinger, A. G. Future Med. Chem. 2012, 4, 1567.
(63) Rubinstein, M.; Niv, M. Y. Biopolymers 2009, 91, 505.
(64) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001, 101, 3131.
(65) Marshall, S. A.; Lazar, G. A.; Chirino, A. J.; Desjarlais, J. R. Drug Discov. Today 2003, 8, 212.
(66) Andrews, M. J. I.; Tabor, A. B. Tetrahedron 1999, 55, 11711.
(67) Garner, J.; Harding, M. M. Org. Biomol. Chem. 2007, 5, 3577.
(68) Patgiri, A.; Jochim, A. L.; Arora, P. S. Acc. Chem. Res. 2008, 41, 1289.
(69) Blackwell, H. E.; Grubbs, R. H. Angew. Chemie Int. Ed. 1998, 37, 3281.
(70) Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000, 122, 5891.
(71) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219.
(72) Maffucci, I.; Pellegrino, S.; Clayden, J.; Contini, A. J. Phys. Chem. B 2015, 119, 1350.
(73) Pellegrino, S.; Bonetti, A.; Clerici, F.; Contini, A.; Moretto, A.; Soave, R.; Gelmi, M. L. J. Org. Chem. 2015, 80, 5507.
(74) Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Curr. Med. Chem. 2013, 20, 1985.
(75) Pérot, S.; Sperandio, O.; Miteva, M. A.; Camproux, A.-C.; Villoutreix, B. O. Drug Discov. Today 2010, 15, 656.
(76) Brylinski, M.; Skolnick, J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 129.
(77) Najmanovich, R.; Kurbatova, N.; Thornton, J. Bioinformatics 2008, 24, 1105.
(78) Eyrisch, S.; Helms, V. J. Med. Chem. 2007, 50, 3457.
(79) Metz, A.; Pfleger, C.; Kopitz, H.; Pfeiffer-Marek, S.; Baringhaus, K.-H.; Gohlke, H. J. Chem. Inf. Model. 2012, 52, 120.
(80) Moreira, I.; Fernandes, P.; Ramos, M. In Molecular Materials with Specific Interactions - Modeling and Design SE - 6; Sokalski, W. A., Ed.; Challenges and Advances in Computational Chemistry and Physics; Springer Netherlands, 2007; Vol. 4, pp 305-339.
(81) Gohlke, H.; Case, D. A. J. Comput. Chem. 2004, 25, 238.
(82) Bienstock, R. J. Curr. Pharm. Des. 2012, 18, 1240.
(83) Aqvist, J.; Luzhkov, V. B.; Brandsdal, B. O. Acc. Chem. Res. 2002, 35, 358.
(84) Pearlman, D. A.; Charifson, P. S. J. Med. Chem. 2001, 44, 3417.
(85) Price, D. J.; Jorgensen, W. L. J. Comput. Aided. Mol. Des. 15, 681.
(86) Maffucci, I.; Clayden, J.; Contini, A. J. Phys. Chem. B 2015, 119, 14003.
(87) Clerici, F.; Ruffoni, A.; Contini, A.; Soave, R.; Lo Presti, L.; Esposto, I.; Nava, D.; Pellegrino, S.; Gelmi, M. L.; Maffucci, I. RSC Adv. 2015, 32643.
(88) Maffucci, I.; Contini, A. under Revis.
(89) Maffucci, I.; Contini, A. J. Chem. Theory Comput. 2013, 9, 2706.
(90) Maffucci, I.; Contini, A. In Frontiers in Computational Chemistry Volume 1; Bentham Science, 2015; pp 82-120.
(91) Gentilucci, L.; De Marco, R.; Cerisoli, L. Curr. Pharm. Des. 2010, 16, 3185.
(92) Pellegrino, S.; Contini, A.; Gelmi, M. L.; Lo Presti, L.; Soave, R.; Erba, E. J. Org. Chem. 2014, 79, 3094.
(93) Pellegrino, S.; Contini, A.; Clerici, F.; Gori, A.; Nava, D.; Gelmi, M. L. Chem. - A Eur. J. 2012, 18, 8705.
(94) Clayden, J.; Castellanos, A.; Solà, J.; Morris, G. A. Angew. Chemie Int. Ed. 2009, 48, 5962.
(95) Zotti, M. De; Formaggio, F.; Crisma, M.; Peggion, C.; Moretto, A.; Toniolo, C. J. Pept. Sci. 2014, 20, 307.
(96) Byrne, L.; Solà, J.; Boddaert, T.; Marcelli, T.; Adams, R. W.; Morris, G. A.; Clayden, J. Angew. Chemie Int. Ed. 2014, 53, 151.
(97) Chilakamarri, K. B.; Criner, O. H. Adv. Chem. Model. 2011, l, 377.
(98) Novotny, M.; Kleywegt, G. J. J. Mol. Biol. 2005, 347, 231.
(99) Brioche, J.; Pike, S. J.; Tshepelevitsh, S.; Leito, I.; Morris, G. A.; Webb, S. J.; Clayden, J. J. Am. Chem. Soc. 2015, 137, 6680.
(100) Nevola, L.; Giralt, E. Chem. Commun. 2015, 51, 3302.
(101) Rognan, D. Med Chem Commun 2015, 6, 51.
(102) Adcock, S. A.; McCammon, J. A. Chem. Rev. 2006, 106, 1589.
(103) Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141.
(104) Leach, A. R. Molecular Modelling: Principles and applications. Molecular Modelling: Principles and applications, 2001, 26-161.
(105) Bader. Atoms in Molecules: A Quantum Theory; Clarenson: Oxford, U.K., 1990.
(106) Boyd, R. J. An Introduction to the Quantum Theory of Atoms in Molecules; 2007.
(107) Mills, G.; Jónsson, H. Phys. Rev. Lett. 1994, 72, 1124.
(108) Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
(109) Bergonzo, C.; Campbell, A. J.; Walker, R. C.; Simmerling, C. Int. J. Quantum Chem. 2009, 109, 3781.
(110) Pearlman, D. A.; Charifson, P. S. J. Med. Chem. 2001, 44, 3417.
(111) Srivastava, H. K.; Sastry, G. N. J. Chem. Inf. Model. 2012, 52, 3088.
(112) Massova, I.; Kollman, P. A. Perspect. Drug Discov. Des. 18, 113.
(113) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Acc. Chem. Res. 2000, 33, 889.
(114) Xu, L.; Sun, H.; Li, Y.; Wang, J.; Hou, T. J. Phys. Chem. B 2013, 117, 8408.
(115) Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1999.
(116) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc.

1990, 112, 6127.
(117) Constanciel, R.; Contreras, R. Theor. Chim. Acta 1984, 65, 1.
(118) Homeyer, N.; Gohlke, H. Mol. Inform. 2012, 31, 114.
(119) Wallnoefer, H. G.; Liedl, K. R.; Fox, T. J. Comput. Chem. 2011, 32, 1743.
(120) Wong, S.; Amaro, R. E.; McCammon, J. A. J. Chem. Theory Comput. 2009, 5, 422.
(121) Ruffoni, A.; Ferri, N.; Bernini, S. K.; Ricci, C.; Corsini, A.; Maffucci, I.; Clerici, F.; Contini, A. J. Med. Chem. 2014, 57, 2953.
(122) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.
(123) Ruffoni, A.; Contini, A.; Soave, R.; Lo Presti, L.; Esposto, I.; Maffucci, I.; Nava, D.; Pellegrino, S.; Gelmi, M. L.; Clerici, F. RSC Adv. 2015, 32643.
(124) Best, R. B. Curr. Opin. Struct. Biol. 2012, 22, 52.
(125) Nguyen, H.; Maier, J.; Huang, H.; Perrone, V.; Simmerling, C. J. Am. Chem. Soc. 2014, 1.
(126) Chowdhury, S.; Lee, M. C.; Xiong, G.; Duan, Y. J. Mol. Biol. 2003, 327, 711.
(127) Jayachandran, G.; Vishal, V.; Pande, V. S. J. Chem. Phys. 2006, 124.
(128) Pitera, J. W.; Swope, W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7587.
(129) Lei, H.; Wu, C.; Liu, H.; Duan, Y. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 4925.
(130) Shaw, D. E.; Dror, R. O.; Salmon, J. K.; Grossman, J. P.; Mackenzie, K M, et al. In Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09); New York: ACM, 2009.
(131) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Shan, Y.; Wriggers, W. Science (80-. ). 2010, 330, 341.
(132) Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K. J. Mol. Graph. Model. 2010, 29, 116.
(133) Prinz, J. H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.; Schtte, C.; Noé, F. J. Chem. Phys. 2011, 134.
(134) Lei, H.; Duan, Y. Curr. Opin. Struct. Biol. 2007, 187.
(135) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696.
(136) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins Struct. Funct. Bioinforma. 2010, 78, 1950.
(137) Shell, M. S.; Ritterson, R.; Dill, K. A. J. Phys. Chem. B 2008, 112, 6878.
(138) Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M. P.; Dror, R. O.; Shaw, D. E. PLoS One 2012, 7, 1.
(139) Lange, O. F.; Spoel, D. Van Der; Groot, B. L. De. Biophys. J. 2010, 99, 647.
(140) Best, R. B.; Buchete, N.-V.; Hummer, G. Biophys. J. 2008, 95, L07.
(141) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins Struct. Funct. Bioinforma. 2006, 65, 712.
(142) Kührová, P.; De Simone, A.; Otyepka, M.; Best, R. B. Biophys. J. 2012, 102, 1897.
(143) Lwin, T.; Luo, R. Protein Sci. 2006, 15, 2642.
(144) Martín-García, F.; Papaleo, E.; Gomez-Puertas, P.; Boomsma, W.; LindorffLarsen, K. PLoS One 2015, 10, e0121114.
(145) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Biophys. J. 2011, 100, L47.
(146) Raucci, R.; Colonna, G.; Castello, G.; Costantini, S. Int. J. Pept. Res. Ther. 2013, 19, 117.
(147) Todorova, N.; Legge, F. S.; Treutlein, H.; Yarovsky, I. J. Phys. Chem. B 2008, 112, 11137.
(148) Yoda, T.; Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 2004, 386, 460.
(149) Yoda, T.; Sugita, Y.; Okamoto, Y. Chem. Phys. 2004, 307, 269.
(150) Zagrovic, B.; Sorin, E. J.; Pande, V. J. Mol. Biol. 2001, 313, 151.
(151) Zhou, R.; Berne, B. J. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12777.
(152) Ono, S.; Nakajima, N.; Higo, J.; Nakamura, H. J. Comput. Chem. 2000, 21, 748.
(153) Henriques, J.; Cragnell, C.; Skepö, M. J. Chem. Theory Comput. 2015, 150616124431001.
(154) Palazzesi, F.; Prakash, M. K.; Bonomi, M.; Barducci, A. J. Chem. Theory Comput. 2015, 11, 2.
(155) Best, R. B.; Mittal, J. J. Phys. Chem. B 2010, 114, 8790.
(156) Cino, E. a.; Choy, W. Y.; Karttunen, M. J. Chem. Theory Comput. 2012, 8, 2725.
(157) Simmerling, C.; Strockbine, B.; Roitberg, A. E.; Gaines, V. J. Am. Chem. Soc. 2002, 124, 11258.
(158) Yang, C.; Kim, E.; Pak, Y. Bull. Korean Chem. Soc. 2014, 35, 4.
(159) Zhou, R. Proteins Struct. 2003, 161, 148.
(160) Ozkan, S. B.; Wu, G. A.; Chodera, J. D.; Dill, K. a. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 11987.
(161) Jang, S.; Shin, S.; Pak, Y. J. Am. Chem. Soc. 2002, 124, 4976.
(162) Jang, S.; Kim, E.; Pak, Y. Proteins 2006, 62, 663.
(163) Dyson, H. J.; Wright, P. E. Nat. Rev. Mol. Cell Biol. 2005, 6, 197.
(164) Tompa, P. Trends Biochem. Sci. 2012, 37, 509.
(165) De Simone, A.; Kitchen, C.; Kwan, A. H.; Sunde, M.; Dobson, C. M.; Frenkel, D. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 6951.
(166) Barducci, A.; Bonomi, M.; Prakash, M. K.; Parrinello, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E4708.
(167) Kollman, P. A. Acc. Chem. Res. 1996, 29, 461.
(168) Nerenberg, P. S.; Head-gordon, T. J. Chem. Theory Comput. 2011, 7, 1220.
(169) Zgarbová, M.; Otyepka, M.; Šponer, J.; Mládek, A.; Banáš, P.; Cheatham, T. E.; Jurečka, P. J. Chem. Theory Comput. 2011, 7, 2886.
(170) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, ASAP.
(171) Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1995, 246, 122.
(172) Onufriev, A.; Bashford, D.; Case, D. A. Proteins Struct. Funct. Bioinforma. 2004, 55, 383.
(173) Nguyen, H.; Roe, D. R.; Simmerling, C. J. Chem. Theory Comput. 2013, 9, 2020.
(174) D’Andrea, L. D.; Iaccarino, G.; Fattorusso, R.; Sorriento, D.; Carannante, C.; Capasso, D.; Trimarco, B.; Pedone, C. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14215.
(175) Francis, A. K.; Iqbal, M.; Balaram, P.; Vijayan, M. Biopolymers 1983, 22, 1499.
(176) Blanco, F. J.; Rivas, G.; Serrano, L. Nature 1994, 12, 994.
(177) Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4145.
(178) Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 1987, 194, 531.
(179) de Souza, B. M.; Da Silva, A. V. R.; Resende, V. M. F.; Arcuri, H. A.; dos Santos Cabrera, M. P.; Ruggiero Neto, J.; Palma, M. S. Peptides 2009, 30, 1387.
(180) Charpentier, T. H.; Thompson, L. E.; Liriano, M. A.; Varney, K. M.; Wilder, P. T.; Pozharski, E.; Toth, E. A.; Weber, D. J. J. Mol. Biol. 2010, 396, 1227.
(181) Chen, J. J. Am. Chem. Soc. 2009, 131, 2088.
(182) Rustandi, R. R.; Baldisseri, D. M.; Weber, D. J. Nat. Struct. Biol. 2000, 7, 570.
(183) Staneva, I.; Huang, Y.; Liu, Z.; Wallin, S. PLoS Comput. Biol. 2012, 8, 1.
(184) Toniolo, C.; Maria, G.; Vincenzo, B.; Bavoso, A.; Benedetti, E.; Blasio, B. Di; Grimaldi, P.; Lelj, F.; Pavone, V.; Pedoneb, C. Macromolecules 1985, 18, 895.
(185) Longo, E.; Moretto, A.; Formaggio, F.; Toniolo, C. Chirality 2011, 23, 756.
(186) Karle, I. L. Pept. Sci. 2001, 60, 351.
(187) Ruffoni, A.; Contini, A.; Soave, R.; Lo Presti, L.; Esposto, I.; Maffucci, I.; Nava, D.; Pellegrino, S.; Gelmi, M. L.; Clerici, F. RSC Adv. 2015, 5, 32643.
(188) García, A. E.; Sanbonmatsu, K. Y. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2782.
(189) Freddolino, P. L.; Liu, F.; Gruebele, M.; Schulten, K. Biophys. J. 2008, 94, L75.
(190) Pak, Y.; Kim, E.; Jang, S. J. Chem. Phys. 2004, 121, 9184.
(191) Geney, R.; Layten, M.; Gomperts, R.; Hornak, V.; Simmerling, C. J. Chem. Theory Comput. 2006, 2, 115.
(192) Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; T.E. Cheatham, I.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14; University of California, San Francisco, 2014.
(193) Toniolo, C.; Formaggio, F.; Kaptein, B.; Broxterman, Q. B. Synlett 2006, 2006, 1295.
(194) Crisma, M.; Peggion, C.; Moretto, A.; Banerjee, R.; Supakar, S.; Formaggio, F.; Toniolo, C. Pept. Sci. 2014, 102, 145.
(195) Boddaert, T.; Sola, J.; Helliwell, M.; Clayden, J. Chem. Commun. (Camb). 2012, 48, 3397.
(196) Ballano, G.; Zanuy, D.; Jiménez, A. I.; Cativiela, C.; Nussinov, R.; Alemán, C. J. Phys. Chem. B 2008, 112, 13101.
(197) Alemán, C.; Zanuy, D.; Casanovas, J.; Cativiela, C.; Nussinov, R. J. Phys. Chem. B 2006, 110, 21264.
(198) Maity, P.; König, B. Pept. Sci. 2008, 90, 8.
(199) Tanaka, M. Chem. Pharm. Bull. 2007, 55, 349.
(200) Ma, D.; Ding, K.; Tian, H.; Wang, B.; Cheng, D. Tetrahedron: Asymmetry 2002, 13, 961.
(201) Yamazaki, H.; Horikawa, H.; Nishitani, T.; Iwasaki, T.; Nosaka, K.; Tamaki, H. Chem. Pharm. Bull. (Tokyo). 1992, 40, 102.
(202) Cativiela, C.; López, P.; Mayoral, J. Tetrahedron: Asymmetry 1990, 1, 379.
(203) Caputo, F.; Clerici, F.; Gelmi, M. L.; Pellegrino, S.; Pocar, D. Tetrahedron: Asymmetry 2006, 17, 1430.
(204) Maki, Y.; Masugi, T.; Hiramitsu, T.; Ogiso, T. Chem. Pharm. Bull. (Tokyo). 1973, 21, 2460.
(205) Casanovas, J.; Revilla-López, G.; Crisma, M.; Toniolo, C.; Alemán, C. J. Phys. Chem. B 2012, 116, 13297.
(206) De Poli, M.; De Zotti, M.; Raftery, J.; Aguilar, J. A.; Morris, G. A.; Clayden, J. J. Org. Chem. 2013, 78, 2248.
(207) Demizu, Y.; Doi, M.; Kurihara, M.; Maruyama, T.; Suemune, H.; Tanaka, M. Chem. - A Eur. J. 2012, 18, 2430.
(208) Solà, J.; Morris, G. A.; Clayden, J. J. Am. Chem. Soc. 2011, 133, 3712.
(209) Pengo, Barbara Formaggio, Fernando Crisma, M.; Toniolo, C.; Bonora, Gian Maria Broxterman, Quirinus B. Kamphuis, J.; Saviano, M.; Iacovino, R.; Rossi, F.; Benedetti, E. J. Chem. Soc. Perkin Trans. 2 Phys. Org. Chem. 1998, 1651.
(210) Inai, Y.; Kurokawa, Y.; Ida, A.; Hirabayashi, T. Bull. Chem. Soc. Jpn. 1999, 72, 55.
(211) Inai, Y.; Kurokawa, Y.; Kojima, N. J. Chem. Soc. Perkin Trans. 2 2002, 1850.
(212) Avbelj, F.; Moult, J. Biochemistry 1995, 34, 755.
(213) Wang, J.; Purisima, E. O. J. Am. Chem. Soc. 1996, 118, 995.
(214) LaPointe, S. M.; Farrag, S.; Bohórquez, H. J.; Boyd, R. J. J. Phys. Chem. B 2009, 113, 10957.
(215) Shi, Z.; Olson, C. A.; Bell, A. J.; Kallenbach, N. R. Pept. Sci. 2001, 60, 366.
(216) Chang, C.; Bader, R. F. W. J. Phys. Chem. 1992, 96, 1654.
(217) Scheiner, S. J. Phys. Chem. B 2006, 110, 18670.
(218) Scheiner, S.; Kar, T.; Pattanayak, J. J. Am. Chem. Soc. 2002, 124, 13257.
(219) Dixon, S. L.; Smondyrev, A. M.; Knoll, E.; Rao, S. N.; Shaw, D.; Friesner, R. J. Comput. Aided. Mol. Des. 2006, 67, 647.
(220) Leone, S.; Mutti, C.; Kazantsev, A.; Sturlese, M.; Moro, S.; Cattaneo, E.; Rigamonti, D.; Contini, A. Bioorg. Med. Chem. 2008, 16, 5695.
(221) Caputo, F.; Clerici, F.; Gelmi, M. L.; Pellegrino, S.; Pocar, D. Tetrahedron: Asymmetry 2006, 17, 1430.
(222) Vener, M. V; Egorova, A. N.; Fomin, D. P.; Tsirelson, V. G. Chem. Phys. Lett. 2007, 440, 279.
(223) Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747.
(224) Tang, T.-H.; Hu, W.-J.; Yan, D.-Y.; Cui, Y.-P. J. Mol. Struct. THEOCHEM 1990, 207, 319.
(225) Ruffoni, A.; Ferri, N.; Bernini, S. K.; Ricci, C.; Corsini, A.; Maffucci, I.; Clerici, F.; Contini, A. J. Med. Chem. 2014, 57, 2953.
(226) Wang, Z.-X.; Wu, C.; Lei, H.; Duan, Y. J. Chem. Theory Comput. 2007, 3, 1527.
(227) Molecular Operating Environment (MOE), 2013.08 ed.; Chemical Computing Group Inc.: Montreal, 2013.
(228) Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. Phys. Chem. Chem. Phys. 2010, 12, 7821.
(229) Caliński, T.; Harabasz, J. Commun. Stat. 1974, $3,1$.
(230) Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577.
(231) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33.
(232) Grossfield, A. WHAM: the weighted histogram analysis method, 2.0.9 ed.
(233) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian Inc.: Wallingford CT, 2009.
(234) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908.
(235) Contini, A.; Erba, E. RSC Adv. 2012, 2, 10652.
(236) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
(237) Konig, F.B., F. B.; Schonbohm, J., J.; Bayles, D., D. J. Comput. Chem. 2001, 22, 545.
(238) De Poli, M.; De Zotti, M.; Raftery, J.; Aguilar, J. A.; Morris, G. A.; Clayden, J. J. Org. Chem. 2013, 78, 2248.
(239) Andreetto, E.; Peggion, C.; Crisma, M.; Toniolo, C. Biopolymers 2006, 84, 490.
(240) Shepherd, N. E.; Hoang, H. N.; Abbenante, G.; Fairlie, D. P. J. Am. Chem. Soc. 2009, 131, 15877.
(241) Grauer, A. A.; Cabrele, C.; Zabel, M.; König, B. J. Org. Chem. 2009, 74, 3718.
(242) Inai, Y.; Ashitaka, S.; Hirabayashi, T. Polym. J. 1999, 31, 246.
(243) Brown, R. A.; Marcelli, T.; De Poli, M.; Solà, J.; Clayden, J. Angew. Chemie 2012, 51, 1395.
(244) Royo, S.; De Borggraeve, W. M.; Peggion, C.; Formaggio, F.; Crisma, M.; Jiménez, A. I.; Cativiela, C.; Toniolo, C. J. Am. Chem. Soc. 2005, 127, 2036.
(245) De Poli, M.; Byrne, L.; Brown, R. A.; Solà, J.; Castellanos, A.; Boddaert, T.; Wechsel, R.; Beadle, J. D.; Clayden, J. J. Org. Chem. 2014, 79, 4659.
(246) Yamazaki, H.; Horikawa, H.; Nishitani, T.; Iwasaki, T.; Nosaka, K.; Tamaki, H. Chem. Pharm. Bull. 1992, 40, 102.
(247) Némethy, G.; Printz, M. P. Macromolecules 1972, 5, 755.
(248) Crisma, M.; Toniolo, C. Biopolymers 2015, 104, 46.
(249) Contini, A.; Erba, E. RSC Adv. 2012, 2, 10652.
(250) Konig, F. B.; Schonbohm, J., J.; Bayles, D., D. J. Comput. Chem. 2001, 22, 545.
(251) Smith, C. A.; Ban, D.; Pratihar, S.; Giller, K.; Schwiegk, C.; de Groot, B. L.; Becker, S.; Griesinger, C.; Lee, D. Angew. Chem. Int. Ed. Engl. 2015, 54, 207.
(252) Nevola, L.; Giralt, E. Chem. Commun. (Camb). 2015, 51, 3302.
(253) Nevola, L.; Martín-Quirós, A.; Eckelt, K.; Camarero, N.; Tosi, S.; Llobet, A.; Giralt, E.; Gorostiza, P. Angew. Chemie Int. Ed. 2013, 52, 7704.
(254) Kumita, J. R.; Smart, O. S.; Woolley, G. A. Proc. Natl. Acad. Sci. 2000, 97, 3803.
(255) Schierling, B.; Noël, A.-J.; Wende, W.; Hien, L. T.; Volkov, E.; Kubareva, E.; Oretskaya, T.; Kokkinidis, M.; Römpp, A.; Spengler, B.; Pingoud, A. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1361.
(256) Yoshida, K.; Yamaguchi, T.; Okamoto, Y. Chem. Phys. Lett. 2005, 412, 280.
(257) Hwang, S.; Shao, Q.; Williams, H.; Hilty, C.; Gao, Y. Q. J. Phys. Chem. B 2011, 115, 6653.
(258) Bergonzo, C.; Campbell, A. J.; Walker, R. C.; Simmerling, C. Int. J. Quantum Chem. 2009, 109, 3781.
(259) D.A. Case, V. Babin, J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B., X. W. and P. A. K. AMBER 14, 2014.
(260) Calinski, T.; Harabasz, J. Commun. Stat. 1974, 22, 2577.
(261) Crisma, M.; De Zotti, M.; Moretto, A.; Peggion, C.; Drouillat, B.; Wright, K.; Couty, F.; Toniolo, C.; Formaggio, F. New J. Chem. 2015.
(262) Grossfield, A. WHAM: the weighted histogram analysis method.
(263) Bergonzo, C.; Campbell, A. J.; de los Santos, C.; Grollman, A. P.; Simmerling, C. J. Am. Chem. Soc. 2011, 133, 14504.
(264) Van Nostrand, K. P.; Kennedy, S. D.; Turner, D. H.; Mathews, D. H. J. Chem. Theory Comput. 2011, 7, 3779.
(265) Ferri, N.; Radice, T.; Antonino, M.; Beccalli, E. M.; Tinelli, S.; Zunino, F.; Corsini, A.; Pratesi, G.; Ragg, E. M.; Gelmi, M. L.; Contini, A. Bioorg. Med. Chem. 2011, 19, 5291.
(266) Contini, A.; Cappelletti, G.; Cartelli, D.; Fontana, G.; Gelmi, M. L. Mol. Biosyst. 2012, 8, 3254.
(267) Hou, T.; Wang, J.; Li, Y.; Wang, W. J. Chem. Inf. Model. 2011, 51, 69.
(268) Hou, T.; Wang, J.; Li, Y.; Wang, W. J. Comput. Chem. 2011, 32, 866.
(269) Yang, T.; Wu, J. C.; Yan, C.; Wang, Y.; Luo, R.; Gonzales, M. B.; Dalby, K. N.; Ren, P. Proteins 2011, 79, 1940.
(270) Genheden, S.; Ryde, U. Proteins 2012, 80, 1326.
(271) Abel, R.; Salam, N. K.; Shelley, J.; Farid, R.; Friesner, R. A.; Sherman, W. ChemMedChem 2011, 6, 1049.
(272) Greenidge, P. A.; Kramer, C.; Mozziconacci, J.-C.; Wolf, R. M. J. Chem. Inf. Model. 2013, 53, 201.
(273) Checa, A.; Ortiz, A. R.; de Pascual-Teresa, B.; Gago, F. J. Med. Chem. 1997, 40, 4136.
(274) Greenidge, P. A.; Kramer, C.; Mozziconacci, J.-C.; Sherman, W. J. Chem. Inf. Model. 2014, 54, 2697.
(275) Treesuwan, W.; Hannongbua, S. J. Mol. Graph. Model. 2009, 27, 921.
(276) Henchman, R. H.; McCammon, J. A. Protein Sci. 2002, 11, 2080.
(277) Mikulskis, P.; Genheden, S.; Ryde, U. J. Mol. Model. 2014, 20, 2273.
(278) Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B.; Stewart, L. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15387.
(279) Genheden, S.; Ryde, U. J. Comput. Chem. 2010, 31, 837.
(280) Samorì, C.; Guerrini, A.; Varchi, G.; Fontana, G.; Bombardelli, E.; Tinelli, S.; Beretta, G. L.; Basili, S.; Moro, S.; Zunino, F.; Battaglia, A. J. Med. Chem. 2009, 52, 1029.
(281) Schiffer, C.; Hermans, J. Promise of advances in simulation methods for protein crystallography: implicit solvent models, time-averaging refinement, and quantum mechanical modeling. Biochemistry and Molecular Pharmacology Publications and Presentations, 2003, 412-461.
(282) Kongsted, J.; Ryde, U. J. Comput. Aided. Mol. Des. 2009, 23, 63.
(283) Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. J. Med. Chem. 2006, 49, 6596.
(284) Chhatriwala, H.; Jafri, N.; Salgia, R. Cancer Biol. Ther. 2014, 5, 1600.
(285) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668.
(286) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. Nucleic Acids Res. 2012, 40, W537.
(287) C. Cézard, E. Vanquelef, J. Pecher, P. Sonnet, P. Cieplak, E. D.; Dupradeau, F.Y. In 236th ACS National Meeting, Philadelphia, PA, USA, August 17; 2008.
(288) Pugliese, L.; Coda, A.; Malcovati, M.; Bolognesi, M. J. Mol. Biol. 1993, 231, 698.
(289) Green, N. M. Biochem. J. 1966, 101, 774.
(290) Kuhn, B.; Kollman, P. A. J. Med. Chem. 2000, 43, 3786.
(291) Vreven, T.; Hwang, H.; Pierce, B. G.; Weng, Z. Protein Sci. 2012, 21, 396.
(292) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
(293) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
(294) Frigerio, F.; Coda, A.; Pugliese, L.; Lionetti, C.; Menegatti, E.; Amiconi, G.; Schnebli, H. .; Ascenzi, P.; Bolognesi, M. J.Mol.Biol. 1992, 225, 107.
(295) Hou, Z.; Bernstein, D. .; Fox, C. .; Keck, J. L. Proc.Natl.Acad.Sci.Usa 2005, 102, 8489.
(296) Song, H. .; Suh, S. W. J.Mol.Biol. 1998, 275, 347.
(297) Chrencik, J. .; Brooun, A.; Kraus, M. .; Recht, M. .; Kolatkar, A. .; Han, G. .; Seifert, J. .; Widmer, H.; Auer, M.; Kuhn, P. J.Biol.Chem. 2006, 281, 28185.
(298) Sevcik, J.; Urbanikova, L.; Dauter, Z.; Wilson, K. S. Acta Crystallogr.,Sect.D 1998, 54, 954.
(299) Simader, H.; Hothorn, M.; Kohler, C.; Basquin, J.; Simos, G.; Suck, D. Nucleic Acids Res. 2006, 34, 3968.
(300) Wiegand, G.; Epp, O.; Huber, R. J.Mol.Biol. 1995, 247, 99.
(301) Peschard, P.; Kozlov, G.; Lin, T.; Mirza, I. .; Berghuis, A. .; Lipkowitz, S.; Park, M.; Gehring, K. Mol.Cell 2007, 27, 474.
(302) Kuhlmann, U. .; Pommer, A. .; Moore, G. .; James, R.; Kleanthous, C. J.Mol.Biol. 2000, 301, 1163.
(303) Wang, S. .; Pandey, K. .; Scharfstein, J.; Whisstock, J.; Huang, R. .; Jacobelli, J.; Fletterick, R. .; Rosenthal, P. .; Abrahamson, M.; Brinen, L. .; Rossi, A.; Sali, A.; McKerrow, J. H. Structure 2007, 15, 535.
(304) Tsunemi, M.; Matsuura, Y.; Sakakibara, S.; Katsube, Y. Biochemistry 1996, 35, 11570.
(305) Takeuchi, Y.; Satow, Y.; Nakamura, K. .; Mitsui, Y. J.Mol.Biol. 1991, 221, 309.
(306) Hurley, J. .; Faber, H. .; Worthylake, D.; Meadow, N. .; Roseman, S.; Pettigrew, D. .; Remington, S. J. Science (80-. ). 1993, 259, 673.
(307) McPhalen, C. .; James, M. N. Biochemistry 1988, 27, 6582.
(308) Bewley, M. .; Springer, K.; Zhang, Y. .; Freimuth, P.; Flanagan, J. M. Science (80-. ). 1999, 286, 1579.
(309) Paesen, G. .; Siebold, C.; Harlos, K.; Peacey, M. .; Nuttall, P. .; Stuart, D. I. J.Mol.Biol. 2007, 368, 1172.
(310) Horn, J. .; Ramaswamy, S.; Murphy, K. P. J.Mol.Biol. 2003, 331, 497.
(311) Cho, S.; Swaminathan, C. .; Kerzic, M. .; Guan, R.; Yang, J.; Kieke, M. .; Andersen, P. .; Krantz, D. .; Mariuzza, R. .; Eric, S. J. To be Publ.
(312) Wang, S. .; Pandey, K. .; Somoza, J. .; Sijwali, P. .; Kortemme, T.; Brinen, L. .; Fletterick, R. .; Rosenthal, P. .; McKerrow, J. H. Proc.Natl.Acad.Sci.Usa 2006, 103, 11503.
(313) Read, R. .; Fujinaga, M.; Sielecki, A. .; James, M. N. Biochemistry 1983, 22, 4420.
(314) Oehme, D. P.; Brownlee, R. T. C.; Wilson, D. J. D. J. Comput. Chem. 2012, 33, 2566.
(315) De Turiso, F. G. L.; Sun, D.; Rew, Y.; Bartberger, M. D.; Beck, H. P.; Canon, J.; Chen, A.; Chow, D.; Correll, T. L.; Huang, X.; Julian, L. D.; Kayser, F.; Lo, M. C.; Long, A. M.; McMinn, D.; Oliner, J. D.; Osgood, T.; Powers, J. P.; Saiki, A. Y.; Schneider, S.; Shaffer, P.; Xiao, S. H.; Yakowec, P.; Yan, X.; Ye, Q.; Yu, D.; Zhao, X.; Zhou, J.; Medina, J. C.; Olson, S. H. J. Med. Chem. 2013, 56, 4053.
(316) Lessene, G.L., Czabotar, P.E., Sleebs, B.E., Zobel, K., Lowes, K.L., Adams, J.M., Baell, J.B., Colman, P.M., Deshayes, K., Fairbrother, W.J., Flygare, J.A., Gibbons, P., Kersten, W.J.A., Kulasegaram, S., Moss, R.M., Parisot, J.P., Smith, B. J. Nat. Chem. Biol. 2013, 9, 390.
(317) Kester, R. F.; Donnell, A. F.; Lou, Y.; Remiszewski, S. W.; Lombardo, L. J.; Chen, S.; Le, N. T.; Lo, J.; Moliterni, J. a.; Han, X.; Heather Hogg, J.; Liang, W.; Michoud, C.; Rupert, K. C.; Mischke, S.; Le, K.; Weisel, M.; Janson, C. a.; Lukacs, C. M.; Fretland, A. J.; Hong, K.; Polonskaia, A.; Gao, L.; Li, S.; Solis, D. S.; Aguilar, D.; Tardell, C.; Dvorozniak, M.; Tannu, S.; Lee, E. C.; Schutt, A. D.; Goggin, B. J. Med. Chem. 2013, 56, 7788.
(318) Shen, C. H. Febs J. 2010, 277, 3699.
(319) Olajuyigbe, F. M. . D. N. . G. S. Cryst.Growth Des. 2011, 11, 4378.
(320) Brik, A.; Wong, C.-H. Org. Biomol. Chem. 2003, $1,5$.
(321) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25, 247.
(322) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.

## ANNEXES

ANNEX 4.A. Additional information for peptide H1.
H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{H 1}$. Data are related to H -bonds involving the backbone (donor backbone $\mathrm{N}-\mathrm{H}$, acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| GLU7 | LEU3 | 30.68 | TYR13 | TYR9 | 72.91 | LYS12 | LEU8 | 69.15 |
| LYS14 | GLN10 | 35.35 | LYS14 | GLN10 | 62.96 | GLN6 | LYS14 | 8.80 |
| GLN6 | LYS2 | 19.22 | TYR9 | TRP5 | 74.06 | TRP5 | LYS14 | 6.82 |
| GLY15 | GLN10 | 10.03 | LYS12 | LEU8 | 79.69 | ILE16 | LEU3 | 7.87 |
| LEU11 | GLU7 | 35.42 | GLN10 | GLN6 | 81.16 | LEU8 | LYS12 | 7.06 |
| LYS12 | LEU8 | 42.26 | LEU11 | GLU7 | 78.83 | LEU3 | ILE16 | 6.62 |
| GLN10 | GLN6 | 36.85 | GLN6 | LYS2 | 38.66 | LYS14 | GLN10 | 47.49 |
| TYR13 | TYR9 | 40.04 | LEU8 | THR4 | 58.01 | TYR13 | TYR9 | 51.86 |
| LEU8 | THR4 | 30.61 | GLU7 | LEU3 | 46.24 | LEU11 | GLU7 | 61.36 |
| TYR9 | TRP5 | 52.09 | GLY15 | GLN10 | 11.79 | LEU8 | THR4 | 33.15 |
| GLU7 | TYR13 | 5.14 | GLY15 | LEU11 | 17.47 | GLN10 | GLN6 | 37.37 |
| LYS14 | TYR9 | 5.14 | LYS14 | TYR9 | 5.84 | GLY15 | GLN10 | 8.33 |
| GLY15 | LYS2 | 6.16 |  |  |  | TYR9 | TRP5 | 36.06 |
| GLY15 | LEU11 | 11.54 |  |  |  | LEU11 | LEU8 | 5.62 |
| THR4 | LYS12 | 7.10 |  |  |  | LYS14 | GLN6 | 6.38 |
| LYS12 | THR4 | 10.12 |  |  |  | GLY15 | LEU11 | 15.35 |
|  |  |  |  |  |  | GLU7 | LEU3 | 14.22 |
|  |  |  |  |  |  | GLN6 | LYS2 | 14.04 |
|  |  |  |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| GLU7 | LEU3 | 22.98 | LYS12 | TYR9 | 12.36 | LEU11 | GLU7 | 22.56 |
| TRP5 | LYS2 | 16.62 | LYS12 | LEU8 | 26.07 | TYR13 | LEU8 | 6.93 |
| GLY15 | LEU11 | 11.42 | TYR13 | GLN10 | 11.99 | GLN6 | LEU3 | 24.60 |
| TYR13 | GLN10 | 21.61 | GLU7 | LEU3 | 25.44 | LEU8 | THR4 | 34.54 |
| LYS14 | GLN10 | 22.98 | LEU8 | TRP5 | 10.24 | GLU7 | THR4 | 17.66 |
| ILE16 | TYR13 | 8.64 | LEU11 | LEU8 | 11.39 | TYR9 | TRP5 | 41.27 |
| LYS12 | TYR9 | 15.29 | TYR9 | TRP5 | 30.46 | TYR13 | TYR9 | 16.54 |
| TYR13 | TYR9 | 15.47 | GLU7 | THR4 | 12.02 | LYS12 | LEU8 | 26.77 |
| GLN6 | LEU3 | 29.56 | GLN10 | GLU7 | 13.97 | LEU11 | LEU8 | 16.33 |
| TYR9 | GLN6 | 17.45 | LEU8 | THR4 | 26.93 | TYR13 | GLN10 | 12.92 |
| GLN10 | GLN6 | 20.31 | GLN6 | LEU3 | 27.49 | LYS12 | GLN6 | 7.29 |
| LEU11 | GLU7 | 18.10 | LEU11 | GLU7 | 28.66 | LYS14 | GLN10 | 16.24 |
| GLY15 | LYS12 | 5.30 | TYR13 | TYR9 | 22.38 | GLN10 | GLU7 | 17.59 |
| LEU11 | LEU8 | 11.85 | GLN10 | GLN6 | 29.96 | TYR9 | GLN6 | 6.87 |


| TYR9 | TRP5 | 21.34 | ILE16 | TYR13 | 9.36 | ILE16 | TYR13 | 9.78 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GLN6 | LYS2 | 10.67 | GLN6 | LYS2 | 16.80 | GLN10 | GLN6 | 25.78 |
| LEU8 | THR4 | 20.39 | TYR9 | GLN6 | 12.38 | GLU7 | LEU3 | 32.97 |
| GLY15 | GLN10 | 5.97 | LYS14 | LEU11 | 8.62 | GLY15 | LYS12 | 5.23 |
| LEU8 | TRP5 | 13.85 | TRP5 | LYS2 | 13.60 | TRP5 | LYS2 | 13.75 |
| GLU7 | THR4 | 14.49 | LYS12 | GLU7 | 5.30 | LEU8 | TRP5 | 10.41 |
| LYS12 | LEU8 | 16.66 | LYS14 | GLN10 | 19.89 | GLN6 | LYS2 | 17.18 |
| LYS14 | LEU11 | 12.50 | GLY15 | LEU11 | 8.62 | TYR13 | GLU7 | 8.13 |
| GLN10 | GLU7 | 12.60 |  |  |  | LYS12 | GLU7 | 7.02 |
| LEU11 | TRP5 | 5.94 |  |  |  | LYS12 | TYR9 | 7.43 |
| LYS12 | GLU7 | 7.60 |  |  |  | LYS14 | LEU11 | 9.70 |
|  |  |  |  |  |  | GLY15 | LEU11 | 6.47 |
|  |  |  |  |  |  | LEU11 | GLN6 | 8.02 |
|  |  |  |  |  |  | GLY15 | GLN10 | 5.15 |
| ff99SBil | / GB-HC |  | ff99SBi | n/ GB-OB |  | ff99SBi | / GB-Ne |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| TYR9 | TRP5 | 15.27 | LEU11 | LEU8 | 21.48 | GLY15 | LYS12 | 6.99 |
| LEU8 | THR4 | 18.74 | LYS12 | TYR9 | 18.51 | GLU7 | THR4 | 25.32 |
| GLY15 | TYR9 | 5.40 | GLY15 | LEU11 | 8.77 | LEU8 | THR4 | 36.82 |
| LEU11 | GLU7 | 15.66 | LEU8 | THR4 | 21.04 | LYS14 | LEU11 | 8.86 |
| LYS12 | LEU8 | 14.49 | TYR13 | TYR9 | 17.69 | GLN6 | LEU3 | 34.00 |
| LEU11 | LEU8 | 21.86 | LEU8 | TRP5 | 17.71 | TYR9 | TRP5 | 29.49 |
| GLN6 | LEU3 | 37.18 | GLN6 | LEU3 | 30.13 | GLY15 | LEU11 | 5.10 |
| GLU7 | LEU3 | 20.73 | GLU7 | LEU3 | 20.83 | TYR13 | GLN10 | 9.60 |
| TYR13 | TYR9 | 11.62 | LYS12 | LEU8 | 14.66 | GLU7 | LEU3 | 22.24 |
| LYS14 | LEU11 | 17.22 | GLU7 | THR4 | 18.21 | LEU11 | GLU7 | 25.77 |
| GLN10 | GLU7 | 12.51 | LEU11 | GLU7 | 17.49 | GLN10 | GLN6 | 19.86 |
| TYR9 | GLN6 | 19.31 | TYR13 | GLN10 | 9.03 | LYS12 | LEU8 | 23.12 |
| LYS12 | GLU7 | 9.52 | ILE16 | TYR13 | 9.83 | LYS12 | TYR9 | 17.29 |
| GLN10 | GLN6 | 22.86 | TYR9 | GLN6 | 16.20 | LYS14 | GLN10 | 14.52 |
| GLU7 | THR4 | 16.02 | LYS14 | LEU11 | 14.98 | TYR13 | TYR9 | 22.19 |
| LEU8 | TRP5 | 13.02 | GLN10 | GLU7 | 16.43 | LEU11 | LEU8 | 22.94 |
| GLY15 | LYS12 | 12.17 | GLY15 | LYS12 | 6.53 | GLN6 | LYS2 | 9.66 |
| ILE16 | TYR13 | 15.62 | GLN10 | GLN6 | 18.56 | TRP5 | LYS2 | 8.90 |
| TYR13 | GLN10 | 15.41 | TYR9 | TRP5 | 19.09 | LEU8 | TRP5 | 14.54 |
| LYS14 | GLN10 | 14.26 | LYS14 | GLN10 | 12.88 | ILE16 | LEU11 | 6.79 |
| LYS12 | TYR9 | 17.25 | TRP5 | LYS2 | 9.47 | TYR9 | GLN6 | 11.98 |
| TRP5 | LYS2 | 7.18 | GLN6 | LYS2 | 5.93 | GLN10 | GLU7 | 17.57 |
| ILE16 | LEU11 | 9.80 | GLN10 | TRP5 | 8.00 | TYR13 | LEU8 | 9.26 |
|  |  |  |  |  |  | ILE16 | TYR13 | 9.23 |
|  |  |  |  |  |  | LEU11 | GLN6 | 6.52 |
| ff99SBildn- $\varphi$ / GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |


| TYR9 | GLN6 | 12.90 | GLU7 | LEU3 | 24.54 | LEU8 | THR4 | 33.18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEU8 | TRP5 | 13.93 | LEU8 | THR4 | 31.10 | TYR9 | TRP5 | 26.89 |
| GLN6 | LEU3 | 29.06 | TYR9 | TRP5 | 35.99 | LEU11 | GLU7 | 32.41 |
| LEU11 | LEU8 | 14.49 | GLN10 | GLN6 | 32.75 | TYR13 | LEU8 | 24.58 |
| GLN10 | GLN6 | 14.38 | TYR13 | TYR9 | 27.26 | GLN6 | LEU3 | 38.89 |
| GLY15 | LYS12 | 15.25 | LYS12 | LEU8 | 23.34 | LEU8 | TRP5 | 10.79 |
| TYR9 | TRP5 | 25.57 | GLY15 | LEU11 | 7.99 | GLU7 | THR4 | 19.26 |
| GLU7 | LEU3 | 25.20 | ILE16 | LEU11 | 11.05 | GLN10 | GLU7 | 16.05 |
| LEU8 | THR4 | 27.07 | GLN6 | LEU3 | 28.29 | LYS12 | LEU8 | 29.35 |
| TYR13 | GLN10 | 17.11 | GLU7 | THR4 | 17.03 | GLY15 | LYS12 | 7.93 |
| LEU11 | TRP5 | 7.58 | TRP5 | LYS2 | 9.22 | TYR13 | TYR9 | 16.68 |
| GLU7 | THR4 | 17.69 | LEU11 | LEU8 | 18.55 | LEU11 | GLN6 | 5.20 |
| LYS12 | TYR9 | 15.37 | LYS12 | TYR9 | 19.48 | TYR9 | GLN6 | 15.10 |
| LYS14 | GLN10 | 25.95 | TYR13 | GLN10 | 8.91 | LYS14 | LEU11 | 9.28 |
| GLY15 | LEU11 | 11.03 | LEU11 | GLU7 | 25.45 | GLN10 | GLN6 | 23.66 |
| LYS14 | LEU11 | 13.92 | LYS14 | GLN10 | 21.37 | LYS14 | GLN10 | 12.66 |
| TRP5 | LYS2 | 9.74 | GLY15 | LYS12 | 9.98 | GLY15 | TYR9 | 8.20 |
| ILE16 | TYR13 | 7.76 | TYR9 | GLN6 | 11.07 | ILE16 | LEU11 | 5.26 |
| LEU11 | GLU7 | 8.57 | GLN10 | GLU7 | 10.13 | GLU7 | LEU3 | 24.76 |
| GLN10 | GLU7 | 15.17 | TYR13 | LEU8 | 9.75 | LEU11 | LEU8 | 12.56 |
| LYS12 | GLN6 | 9.94 | LEU8 | TRP5 | 13.77 | TYR13 | GLN10 | 7.87 |
| ILE16 | LEU11 | 17.59 | LYS14 | LEU11 | 6.83 | LYS12 | TYR9 | 11.10 |
| GLN6 | LYS2 | 10.04 | GLN6 | LYS2 | 11.70 | ILE16 | TYR13 | 15.13 |
| LEU11 | GLN6 | 8.18 | ILE16 | TYR13 | 13.50 | TRP5 | LYS2 | 9.63 |
| TYR13 | TYR9 | 14.03 |  |  |  | LYS12 | GLU7 | 5.74 |
| LYS12 | LEU8 | 12.77 |  |  |  | GLN6 | LYS2 | 6.76 |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU8 | THR4 | 47.55 | LYS12 | LEU8 | 53.91 | LYS14 | GLN10 | 48.09 |
| LYS12 | TYR9 | 11.65 | TYR13 | TYR9 | 56.36 | GLN6 | LYS2 | 31.64 |
| GLU7 | LEU3 | 38.02 | LEU11 | GLU7 | 52.22 | GLU7 | LEU3 | 40.12 |
| LEU11 | GLU7 | 30.38 | LEU8 | THR4 | 58.82 | TYR13 | TYR9 | 56.90 |
| LYS14 | LEU11 | 17.08 | GLN6 | LYS2 | 37.39 | ILE16 | LEU11 | 16.50 |
| TYR9 | TRP5 | 43.74 | GLU7 | LEU3 | 41.16 | TYR9 | TRP5 | 61.76 |
| GLN10 | GLN6 | 40.38 | GLY15 | LEU11 | 17.33 | GLN10 | GLN6 | 52.59 |
| GLY15 | LEU11 | 12.17 | TYR9 | TRP5 | 67.77 | LEU8 | THR4 | 50.20 |
| LYS12 | LEU8 | 32.97 | GLN10 | GLN6 | 60.84 | GLY15 | LEU11 | 14.93 |
| ILE16 | TYR13 | 14.52 | TRP5 | LYS2 | 8.24 | TRP5 | LYS2 | 12.14 |
| LYS14 | GLN10 | 29.22 | ILE16 | LEU11 | 11.98 | LYS12 | LEU8 | 55.68 |
| ILE16 | LEU11 | 9.62 | GLY15 | LYS12 | 10.33 | LYS14 | LEU11 | 8.79 |
| TYR13 | TYR9 | 34.10 | LYS14 | GLN10 | 49.29 | LEU11 | GLU7 | 49.81 |
| GLN6 | LYS2 | 14.85 | TYR13 | LEU8 | 8.92 | GLN6 | LEU3 | 17.97 |
| GLY15 | LYS12 | 12.96 | LYS12 | TYR9 | 6.92 | GLY15 | GLN10 | 8.00 |


| TYR13 | GLN10 | 13.11 | GLN6 | LEU3 | 10.00 | GLY15 | LYS12 | 11.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GLN6 | LEU3 | 18.23 | ILE16 | TYR13 | 15.19 | GLU7 | THR4 | 12.02 |
| TRP5 | LYS2 | 7.05 | LYS14 | LEU11 | 8.86 | TYR13 | LEU8 | 5.03 |
| LEU8 | TRP5 | 5.96 | GLU7 | THR4 | 7.34 | ILE16 | TYR13 | 6.86 |
| TYR9 | GLN6 | 6.37 | ILE16 | LYS12 | 6.11 |  |  |  |
| GLU7 | THR4 | 11.64 |  |  |  |  |  |  |
| TYR13 | LEU8 | 8.33 |  |  |  |  |  |  |
| LEU11 | LEU8 | 7.89 |  |  |  |  |  |  |
| GLY15 | GLN10 | 5.82 |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| GLU7 | LEU3 | 27.81 | LEU11 | LEU8 | 11.69 | GLY15 | LYS12 | 13.39 |
| LEU8 | TRP5 | 11.14 | GLU7 | LEU3 | 35.54 | LYS14 | GLN10 | 44.36 |
| TYR9 | GLN6 | 13.52 | GLN6 | LYS2 | 27.76 | ILE16 | LEU11 | 24.73 |
| LYS12 | TYR9 | 19.53 | GLN10 | GLN6 | 39.71 | LYS12 | LEU8 | 42.43 |
| GLN6 | LEU3 | 18.33 | GLY15 | LYS12 | 12.20 | LEU11 | GLU7 | 49.22 |
| TRP5 | LYS2 | 13.12 | LEU8 | THR4 | 42.76 | TYR9 | TRP5 | 45.40 |
| LYS14 | LEU11 | 9.83 | LYS12 | LEU8 | 38.19 | LEU8 | THR4 | 45.80 |
| GLY15 | LYS12 | 13.68 | TYR9 | TRP5 | 45.14 | GLU7 | THR4 | 18.44 |
| GLN6 | LYS2 | 16.65 | LEU11 | GLU7 | 34.83 | LEU8 | TRP5 | 6.73 |
| ILE16 | TYR13 | 8.75 | TYR13 | TYR9 | 39.13 | GLN10 | GLN6 | 36.49 |
| GLN10 | GLU7 | 10.37 | TRP5 | LYS2 | 14.21 | GLY15 | LEU11 | 9.70 |
| LEU11 | GLU7 | 16.67 | GLY15 | LEU11 | 12.44 | TYR9 | GLN6 | 8.67 |
| LYS12 | LEU8 | 19.04 | LYS14 | GLN10 | 43.21 | TYR13 | TYR9 | 39.67 |
| GLU7 | THR4 | 13.57 | LEU8 | TRP5 | 9.13 | LYS12 | TYR9 | 10.42 |
| GLN10 | GLN6 | 27.30 | LYS12 | TYR9 | 14.65 | TRP5 | LYS2 | 18.89 |
| TYR9 | TRP5 | 30.88 | GLN10 | GLU7 | 7.14 | TYR13 | GLN10 | 8.52 |
| TYR13 | TYR9 | 20.73 | ILE16 | TYR13 | 15.05 | GLN10 | GLU7 | 10.41 |
| LYS14 | GLN10 | 43.52 | GLN6 | LEU3 | 15.71 | ILE16 | TYR13 | 11.28 |
| ILE16 | LEU11 | 18.87 | ILE16 | LEU11 | 16.27 | TYR13 | LEU8 | 10.18 |
| LEU8 | THR4 | 35.01 | TYR9 | GLN6 | 9.25 | LEU11 | LEU8 | 8.74 |
| GLY15 | LEU11 | 15.57 | LYS14 | LEU11 | 6.04 | GLN6 | LEU3 | 19.60 |
| TYR13 | GLN10 | 18.57 | TYR13 | GLN10 | 9.88 | GLN6 | LYS2 | 19.12 |
| LEU11 | LEU8 | 16.29 | GLU7 | THR4 | 11.12 | GLU7 | LEU3 | 21.69 |

ANNEX 4.B. Additional information for peptide $\mathbf{H 2}$.
H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{H 2}$. Data are related to H -bonds involving the backbone (donor backbone $\mathrm{N}-\mathrm{H}$, acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  |  | ff96/ GB-Neck2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| donor | acceptor | occ\% |  | donor | acceptor | occ $\%$ |  | donor | acceptor |  |
| occ\% |  |  |  |  |  |  |  |  |  |  |
| AIB6 | ALA2 | 8.19 |  | AIB6 | ALA2 | 10.63 |  | $/$ | $/$ |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  |  |  | ff99SB/ GB-Neck2 |  |  |


| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIB6 | ALA2 | 7.76 | AIB5 | ALA2 | 41.21 | AIB5 | ALA2 | 42.53 |
| AIB5 | ALA2 | 42.85 | AIB6 | ALA2 | 6.83 | AIB6 | AIB3 | 26.33 |
| AIB6 | AIB3 | 23.96 | AIB6 | AIB3 | 22.44 |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| AIB5 | ALA2 | 45.61 | AIB6 | AIB3 | 25.32 | AIB6 | AIB3 | 25.43 |
| AIB6 | AIB3 | 23.14 | AIB5 | ALA2 | 41.65 | AIB5 | ALA2 | 45.52 |
| AIB6 | ALA2 | 6.86 | AIB6 | ALA2 | 7.79 |  |  |  |
| ff99SBildn- $\varphi$ / GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi$ / GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| AIB5 | ALA2 | 46.40 | AIB5 | ALA2 | 44.66 | AIB5 | ALA2 | 43.30 |
| AIB6 | AIB3 | 22.33 | AIB6 | AIB3 | 21.97 | AIB6 | AIB3 | 26.37 |
| AIB6 | ALA2 | 7.22 | AIB6 | ALA2 | 8.02 |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| AIB6 | ALA2 | 25.73 | AIB5 | ALA2 | 27.51 | AIB6 | ALA2 | 11.92 |
| AIB5 | ALA2 | 29.29 | AIB6 | ALA2 | 21.62 | AIB5 | ALA2 | 36.17 |
| AIB6 | AIB3 | 12.43 | AIB6 | AIB3 | 11.60 | AIB6 | AIB3 | 15.59 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| AIB6 | AIB3 | 11.80 | AIB6 | AIB3 | 11.67 | AIB5 | ALA2 | 32.69 |
| AIB5 | ALA2 | 26.51 | AIB5 | ALA2 | 28.89 | AIB6 | AIB3 | 13.30 |
| AIB6 | ALA2 | 22.78 | AIB6 | ALA2 | 23.78 | AIB6 | ALA2 | 12.22 |

ANNEX 4.C. Additional information for peptide B1.
H-bonds of the native conformation of B1

| donor | acceptor |
| :--- | :--- |
| GLU2 | THR15 |
| THR15 | GLU2 |
| THR13 | THR4 |
| ASP6 | THR11 |
| THR9 | ASP6 |
| LYS10 | ASP7 |

H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide B 1 . Data are related to H -bonds involving the backbone (donor backbone $\mathrm{N}-\mathrm{H}$, acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT | ff96/ GB-OBC(II) |  |  |  |  | f996/ GB-Neck2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| donor | acceptor | occ $\%$ |  | donor | acceptor | occ\% |  | donor | acceptor | occ\% |
| LYS10 | ASP7 | 12.14 |  | LYS10 | ASP6 | 46.56 |  | THR11 | ASP7 | 36.04 |
| ASP6 | PHE12 | 4.61 |  | ALA8 | THR4 | 27.15 |  | LYS10 | ASP7 | 21.76 |
| VAL14 | LYS10 | 22.17 |  | THR11 | ASP7 | 61.57 |  | THR15 | GLY1 | 5.14 |


| PHE12 | ALA8 | 38.33 | THR9 | TYR5 | 34.81 | TRP3 | THR13 | 6.16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THR13 | THR9 | 23.49 | THR13 | THR9 | 19.41 | TRP3 | VAL14 | 5.06 |
| THR11 | ASP7 | 56.38 | PHE12 | ALA8 | 36.34 | ASP7 | LYS10 | 6.12 |
| THR4 | THR13 | 9.14 | VAL14 | LYS10 | 12.55 | VAL14 | TRP3 | 6.14 |
| ASP6 | THR11 | 5.87 | LYS10 | ASP7 | 7.42 | TYR5 | PHE12 | 6.39 |
| THR13 | THR4 | 7.70 | ASP7 | TRP3 | 5.26 | PHE12 | TYR5 | 6.75 |
| ASP6 | GLU2 | 7.45 |  |  |  |  |  |  |
| LYS10 | ASP6 | 20.13 |  |  |  |  |  |  |
| THR9 | TYR5 | 16.82 |  |  |  |  |  |  |
| THR15 | THR11 | 6.39 |  |  |  |  |  |  |
| ASP7 | TRP3 | 11.04 |  |  |  |  |  |  |
| ALA8 | THR4 | 9.37 |  |  |  |  |  |  |
| THR15 | GLU2 | 5.03 |  |  |  |  |  |  |
| ff99SB/ | B-HCT |  | ff99SB/ | B-OBC(II) |  | ff99SB/ | B-Neck2 |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| THR15 | PHE12 | 17.77 | THR13 | LYS10 | 13.53 | ASP6 | GLU2 | 27.34 |
| VAL14 | THR11 | 18.74 | LYS10 | ASP7 | 25.19 | THR9 | TYR5 | 10.51 |
| VAL14 | LYS10 | 8.46 | ASP7 | TRP3 | 14.60 | ASP7 | TRP3 | 27.42 |
| PHE12 | THR9 | 26.65 | VAL14 | LYS10 | 5.56 | PHE12 | ALA8 | 12.19 |
| THR13 | THR9 | 15.38 | THR9 | ASP6 | 27.50 | ALA8 | THR4 | 13.17 |
| TYR5 | GLU2 | 31.89 | ASP6 | TRP3 | 10.96 | LYS10 | ASP6 | 16.65 |
| THR9 | ASP6 | 16.85 | THR13 | THR9 | 10.06 | THR11 | ASP7 | 10.21 |
| THR4 | GLY1 | 15.42 | TYR5 | GLU2 | 18.93 | THR15 | PHE12 | 12.81 |
| THR13 | LYS10 | 25.41 | ASP7 | THR4 | 12.20 | THR13 | LYS10 | 19.02 |
| THR11 | ALA8 | 19.47 | PHE12 | THR9 | 21.17 | LYS10 | ASP7 | 34.17 |
| LYS10 | ASP7 | 29.18 | THR15 | PHE12 | 10.60 | ALA8 | TRP3 | 10.30 |
| ASP7 | TRP3 | 19.00 | ASP6 | GLU2 | 11.36 | TYR5 | GLU2 | 35.91 |
| ASP6 | TRP3 | 22.90 | VAL14 | THR11 | 11.60 | VAL14 | THR11 | 18.01 |
| GLU16 | THR13 | 5.14 | LYS10 | ASP6 | 21.45 | THR15 | THR11 | 5.62 |
| ASP6 | GLU2 | 15.50 | ALA8 | THR4 | 10.42 | THR11 | ALA8 | 17.65 |
| PHE12 | ALA8 | 8.06 | THR9 | TYR5 | 8.01 | PHE12 | THR9 | 31.54 |
| THR11 | ASP7 | 9.90 | ALA8 | TYR5 | 15.23 | THR9 | ASP6 | 24.00 |
| LYS10 | ASP6 | 11.22 | THR11 | ALA8 | 12.42 | ASP6 | TRP3 | 14.85 |
| ALA8 | TYR5 | 5.42 | PHE12 | ALA8 | 5.91 | ASP7 | THR4 | 6.50 |
| ALA8 | THR4 | 8.74 | ASP6 | THR11 | 5.53 | THR13 | THR9 | 15.09 |
| THR9 | TYR5 | 7.73 | THR13 | THR4 | 7.86 | ALA8 | TYR5 | 8.42 |
|  |  |  | THR4 | THR13 | 5.67 | GLU16 | THR13 | 6.80 |
|  |  |  |  |  |  | VAL14 | LYS10 | 8.71 |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| THR15 | PHE12 | 13.97 | THR9 | ASP6 | 29.14 | LYS10 | ASP7 | 29.50 |
| LYS10 | ASP7 | 31.85 | LYS10 | ASP6 | 29.01 | THR13 | LYS10 | 26.68 |
| THR4 | GLY1 | 5.38 | PHE12 | THR9 | 38.48 | THR9 | ASP6 | 30.76 |


| ASP6 | GLU2 | 17.61 | THR13 | THR9 | 18.59 | LYS10 | ASP6 | 24.88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASP6 | TRP3 | 5.30 | VAL14 | LYS10 | 14.68 | PHE12 | THR9 | 25.27 |
| VAL14 | THR11 | 20.19 | VAL14 | THR11 | 13.12 | VAL14 | LYS10 | 11.14 |
| PHE12 | THR9 | 25.65 | ALA8 | THR4 | 5.76 | THR11 | ALA8 | 12.48 |
| THR13 | LYS10 | 27.93 | THR13 | LYS10 | 19.43 | THR13 | THR9 | 11.18 |
| TYR5 | GLU2 | 24.09 | TYR5 | GLU2 | 8.68 | THR15 | PHE12 | 14.08 |
| THR11 | ASP7 | 6.34 | THR15 | PHE12 | 10.00 | TYR5 | GLU2 | 22.73 |
| VAL14 | LYS10 | 14.21 | LYS10 | ASP7 | 22.73 | ASP6 | GLU2 | 11.12 |
| THR11 | ALA8 | 21.05 | THR11 | ASP7 | 5.57 | ALA8 | THR4 | 8.10 |
| THR9 | ASP6 | 11.71 | THR11 | ALA8 | 12.58 | VAL14 | THR11 | 24.87 |
| PHE12 | TRP3 | 7.06 | ASP7 | THR4 | 5.06 | THR15 | THR11 | 8.92 |
| TYR5 | LYS10 | 8.17 | ALA8 | TYR5 | 5.81 | GLU16 | THR13 | 6.00 |
| ALA8 | TYR5 | 10.55 |  |  |  | PHE12 | ALA8 | 6.38 |
| THR13 | THR9 | 12.68 |  |  |  | THR11 | ASP7 | 9.08 |
| THR15 | THR11 | 5.72 |  |  |  | ALA8 | TYR5 | 8.94 |
| LYS10 | ASP6 | 7.22 |  |  |  | ASP7 | THR4 | 7.00 |
| ff99SBil | $\varphi / \mathrm{GB}$ |  | ff99SB | $\varphi / \mathrm{GB}-$ | (II) | ff99SB | $\mathbf{n - \varphi / G B - N}$ |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ASP6 | GLU2 | 16.77 | ASP6 | TRP3 | 7.94 | THR15 | PHE12 | 18.14 |
| VAL14 | THR11 | 20.58 | TYR5 | GLU2 | 17.10 | VAL14 | THR11 | 19.89 |
| LYS10 | ASP7 | 30.45 | PHE12 | THR9 | 29.89 | LYS10 | ASP6 | 23.60 |
| THR11 | ASP7 | 9.37 | LYS10 | ASP7 | 33.78 | ASP7 | THR4 | 7.72 |
| GLU16 | THR13 | 7.91 | THR9 | ASP6 | 27.27 | THR9 | TYR5 | 7.91 |
| THR13 | LYS10 | 25.90 | ALA8 | TYR5 | 12.91 | GLU16 | THR13 | 10.10 |
| THR9 | ASP6 | 18.28 | THR13 | THR9 | 13.99 | THR9 | ASP6 | 29.09 |
| TYR5 | GLU2 | 34.61 | THR15 | PHE12 | 18.42 | ASP7 | TRP3 | 12.03 |
| ASP6 | TRP3 | 12.89 | THR13 | LYS10 | 20.88 | ASP6 | GLU2 | 14.49 |
| THR15 | PHE12 | 24.69 | THR11 | ASP7 | 8.14 | PHE12 | THR9 | 34.11 |
| THR4 | GLY1 | 16.78 | ASP6 | GLU2 | 7.10 | LYS10 | ASP7 | 31.36 |
| THR11 | ALA8 | 19.71 | LYS10 | ASP6 | 17.28 | THR13 | LYS10 | 21.20 |
| THR15 | THR11 | 6.68 | VAL14 | THR11 | 18.07 | VAL14 | LYS10 | 10.77 |
| PHE12 | ALA8 | 7.05 | ASP7 | TRP3 | 10.31 | TYR5 | GLU2 | 29.14 |
| PHE12 | THR9 | 26.28 | THR11 | ALA8 | 16.79 | THR11 | ALA8 | 17.28 |
| ASP7 | TRP3 | 8.54 | THR9 | TYR5 | 6.87 | THR11 | ASP7 | 9.15 |
| ALA8 | TYR5 | 5.69 | ASP7 | THR4 | 5.79 | ALA8 | TYR5 | 10.07 |
| VAL14 | LYS10 | 9.90 | VAL14 | LYS10 | 9.55 | THR13 | THR9 | 16.22 |
| LYS10 | ASP6 | 11.90 | PHE12 | ALA8 | 6.40 | PHE12 | ALA8 | 10.26 |
| THR13 | THR9 | 16.21 | GLU16 | THR13 | 7.05 | THR15 | THR11 | 6.30 |
| THR9 | TYR5 | 5.18 | ALA8 | THR4 | 9.92 | ASP6 | TRP3 | 9.89 |
|  |  |  |  |  |  | ALA8 | THR4 | 12.05 |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| THR9 | ASP6 | 18.23 | THR11 | ASP7 | 8.46 | ASP7 | THR4 | 17.67 |


| ASP6 | GLU2 | 9.95 | ALA8 | TYR5 | 22.05 | THR11 | ASP7 | 15.60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VAL14 | THR11 | 21.08 | THR9 | ASP6 | 18.60 | TYR5 | GLU2 | 26.64 |
| VAL14 | LYS10 | 5.83 | ASP7 | THR4 | 13.95 | ASP6 | GLU2 | 9.01 |
| PHE12 | ALA8 | 5.51 | TYR5 | GLU2 | 22.81 | PHE12 | ALA8 | 10.55 |
| LYS10 | ASP7 | 19.25 | ASP6 | TRP3 | 7.38 | THR13 | LYS10 | 20.41 |
| THR13 | THR9 | 7.04 | VAL14 | THR9 | 7.35 | ASP6 | TRP3 | 14.58 |
| THR4 | GLY1 | 19.18 | PHE12 | THR9 | 18.87 | LYS10 | ASP6 | 17.01 |
| LYS10 | ASP6 | 24.34 | THR13 | THR9 | 10.50 | THR9 | ASP6 | 21.31 |
| TYR5 | GLU2 | 27.13 | GLU16 | THR13 | 10.88 | GLU16 | THR13 | 14.00 |
| THR13 | LYS10 | 21.79 | THR11 | ALA8 | 14.49 | ALA8 | TYR5 | 27.97 |
| THR11 | ALA8 | 13.67 | VAL14 | THR11 | 20.93 | LYS10 | ASP7 | 31.42 |
| PHE12 | THR9 | 22.95 | THR13 | LYS10 | 22.37 | VAL14 | THR11 | 16.75 |
| THR15 | PHE12 | 19.85 | LYS10 | ASP6 | 12.18 | THR15 | THR11 | 5.46 |
| THR11 | ASP7 | 16.85 | VAL14 | LYS10 | 10.44 | THR11 | ALA8 | 13.96 |
| GLU16 | THR13 | 15.16 | LYS10 | ASP7 | 33.59 | THR15 | PHE12 | 19.75 |
| ALA8 | THR4 | 6.24 | PHE12 | ALA8 | 5.53 | ALA8 | THR4 | 6.94 |
| PHE12 | ASP7 | 6.46 | ASP6 | GLU2 | 8.98 | VAL14 | ALA8 | 6.06 |
| ASP7 | THR4 | 10.3 | ALA8 | THR4 | 5.15 | THR13 | THR9 | 10.38 |
| THR9 | TYR5 | 8.15 | THR9 | TYR5 | 10.62 | VAL14 | LYS10 | 9.63 |
| ALA8 | TYR5 | 9.78 | THR15 | PHE12 | 17.57 | ASP7 | TRP3 | 6.08 |
| ASP6 | TRP3 | 15.06 | THR11 | ASP6 | 9.79 | THR9 | TYR5 | 6.28 |
|  |  |  | THR4 | GLY1 | 5.94 | PHE12 | THR9 | 27.46 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS10 | ASP6 | 61.51 | THR15 | PHE12 | 16.42 | THR11 | ASP7 | 65.05 |
| THR13 | THR9 | 34.97 | GLU16 | THR13 | 6.11 | VAL14 | LYS10 | 49.96 |
| THR15 | THR11 | 17.63 | THR9 | ASP6 | 7.74 | PHE12 | ALA8 | 76.46 |
| GLU16 | PHE12 | 12.14 | LYS10 | ASP6 | 63.91 | ALA8 | THR4 | 48.73 |
| ASP7 | TRP3 | 20.95 | ASP7 | THR4 | 5.95 | ASP6 | TRP3 | 8.74 |
| THR11 | ASP7 | 43.84 | THR11 | ASP7 | 49.06 | THR9 | TYR5 | 60.72 |
| VAL14 | LYS10 | 37.01 | VAL14 | THR11 | 11.63 | TYR5 | GLU2 | 21.19 |
| PHE12 | ALA8 | 59.65 | ALA8 | THR4 | 33.81 | LYS10 | ASP6 | 74.91 |
| ALA8 | THR4 | 22.55 | THR9 | TYR5 | 35.37 | THR15 | THR11 | 25.80 |
| ASP6 | GLU2 | 20.91 | VAL14 | LYS10 | 37.05 | GLU16 | PHE12 | 19.19 |
| THR4 | GLY1 | 21.06 | PHE12 | ALA8 | 56.17 | GLU16 | THR13 | 6.66 |
| ASP6 | TRP3 | 13.90 | THR15 | THR11 | 16.99 | THR13 | THR9 | 36.07 |
| THR9 | TYR5 | 32.95 | THR13 | THR9 | 31.25 | ASP6 | GLU2 | 16.97 |
| TYR5 | GLU2 | 32.18 | TYR5 | GLU2 | 11.73 | ASP7 | TRP3 | 26.72 |
| VAL14 | THR11 | 11.21 | ASP7 | TRP3 | 11.29 | THR15 | PHE12 | 9.40 |
| PHE12 | THR9 | 6.73 | THR4 | GLY1 | 5.62 | ASP7 | THR4 | 5.19 |
| THR15 | PHE12 | 13.51 | ASP6 | GLU2 | 7.23 | VAL14 | THR11 | 6.22 |
| THR13 | LYS10 | 9.30 | THR13 | LYS10 | 10.21 | THR13 | LYS10 | 5.32 |
| THR11 | ALA8 | 6.30 | LYS10 | ASP7 | 7.73 |  |  |  |


| GLU16 | THR13 | 5.46 |  | PHE12 | THR9 | 11.14 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | GLU16 | PHE12 | 7.30 |  |  |  |  |
|  |  |  |  | THR11 | ALA8 | 7.54 |  |  |  |  |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide B1.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS10 | ASP6 | 44.89 | LYS10 | ASP6 | 41.46 | LYS10 | ASP6 | 18.17 |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS10 | ASP6 | 16.08 | LYS10 | ASP6 | 12.67 | LYS10 | ASP7 | 17.90 |
| LYS10 | ASP7 | 15.68 | LYS10 | ASP7 | 22.35 |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| LYS10 | ASP6 | 23.49 | LYS10 | ASP6 | 15.11 | LYS10 | ASP7 | 5.44 |
| LYS10 | ASP7 | 25.70 | LYS10 | ASP7 | 22.02 |  |  |  |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi / \mathbf{G B - O B C}($ II) |  |  | ff99SBildn- $\varphi$ / GB-Neck2 |  |  |
| LYS10 | ASP6 | 15.16 | LYS10 | ASP6 | 8.59 | LYS10 | ASP7 | 14.65 |
| LYS10 | ASP7 | 23.53 | LYS10 | ASP7 | 19.92 |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| LYS10 | ASP7 | 32.04 | LYS10 | ASP7 | 23.40 | LYS10 | ASP7 | 11.83 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| LYS10 | ASP6 | 13.80 | LYS10 | ASP6 | 14.32 | / | / | 1 |
| LYS10 | ASP7 | 37.66 | LYS10 | ASP7 | 18.34 |  |  |  |

ANNEX 4.D. Additional information for peptide $\mathbf{B 2}$.
H-bonds of the native conformation of B2

| donor | acceptor |
| :--- | :--- |
| SER1 | LYS12 |
| THR3 | THR10 |
| THR3 (OH Side chain) | TRP2 |
| LYS12 | SER1 |
| THR10 | THR3 |
| LYS8 | GLU5 |
| GLU5 | LYS8 |

H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide B2. Data are related to H -bonds involving the backbone (donor backbone $\mathrm{N}-\mathrm{H}$, acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT | ff96/ GB-OBC(II) |  |  |  |  | ff96/ GB-Neck2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| donor | acceptor | occ\% |  | donor | acceptor | occ\% |  | donor | acceptor |
| occ\% |  |  |  |  |  |  |  |  |  |
| ASN6 | TRP2 | 18.41 |  | TRP9 | GLU5 | 11.99 |  | TRP11 | TRP4 |
| LYS8 | GLU5 | $\mathbf{5 . 6 0}$ |  | GLY7 | THR3 | 5.00 |  |  |  |


| LYS12 | SER1 | 5.82 | GLY7 | TRP9 | 6.50 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP4 | THR10 | 7.80 | LYS12 | TRP2 | 6.31 |  |  |  |
| GLY7 | THR10 | 6.60 | TRP4 | THR10 | 7.46 |  |  |  |
| LYS12 | TRP2 | 8.92 | THR10 | TRP4 | 5.94 |  |  |  |
| SER1 | LYS12 | 5.96 | ASN6 | LYS8 | 5.24 |  |  |  |
| GLY7 | THR3 | 8.26 |  |  |  |  |  |  |
| TRP4 | GLY7 | 6.90 |  |  |  |  |  |  |
| GLY7 | TRP9 | 8.10 |  |  |  |  |  |  |
| THR10 | GLU5 | 5.61 |  |  |  |  |  |  |
| TRP9 | GLU5 | 15.03 |  |  |  |  |  |  |
| TRP9 | TRP2 | 6.56 |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| TRP4 | SER1 | 17.08 | ASN6 | TRP2 | 5.86 | GLU5 | TRP2 | 28.17 |
| GLU5 | SER1 | 14.51 | LYS12 | TRP9 | 10.81 | ASN6 | THR3 | 20.73 |
| TRP9 | ASN6 | 9.13 | GLY7 | TRP4 | 15.35 | TRP9 | ASN6 | 7.33 |
| TRP11 | LYS8 | 13.73 | TRP11 | LYS8 | 20.85 | THR10 | GLY7 | 19.21 |
| ASN6 | TRP2 | 19.79 | LYS12 | LYS8 | 5.74 | LYS12 | LYS8 | 7.41 |
| GLY7 | TRP2 | 5.84 | TRP9 | ASN6 | 10.66 | TRP11 | GLY7 | 6.89 |
| TRP11 | GLY7 | 9.92 | TRP11 | GLY7 | 6.07 | TRP11 | LYS8 | 15.03 |
| ASN6 | THR3 | 12.81 | GLU5 | TRP2 | 18.32 | LYS12 | TRP9 | 5.66 |
| THR10 | GLY7 | 14.04 | ASN6 | THR3 | 17.11 | LYS8 | GLU5 | 11.34 |
| GLY7 | TRP4 | 11.36 | THR10 | GLY7 | 15.59 | GLY7 | TRP4 | 10.72 |
| GLY7 | THR3 | 6.39 | GLY7 | THR3 | 4.95 | GLY7 | THR3 | 6.23 |
| LYS12 | TRP9 | 17.59 | LYS8 | GLU5 | 16.40 | ASN6 | TRP2 | 14.07 |
| GLU5 | TRP2 | 26.14 |  |  |  | TRP9 | GLU5 | 5.22 |
| LYS8 | GLU5 | 17.28 |  |  |  | TRP4 | SER1 | 7.03 |
|  |  |  |  |  |  | GLU5 | SER1 | 6.33 |
|  |  |  |  |  |  | GLY7 | TRP2 | 6.02 |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ASN6 | TRP2 | 28.15 | TRP9 | LYS12 | 7.98 | ASN6 | THR3 | 25.72 |
| GLU5 | SER1 | 13.99 | TRP9 | ASN6 | 9.11 | GLU5 | TRP2 | 26.50 |
| TRP4 | SER1 | 16.70 | GLU5 | TRP2 | 14.29 | TRP11 | GLY7 | 7.82 |
| THR10 | GLY7 | 13.48 | ASN6 | THR3 | 24.07 | THR10 | GLY7 | 14.07 |
| GLY7 | TRP2 | 9.50 | LYS12 | TRP9 | 16.32 | TRP9 | ASN6 | 8.45 |
| LYS12 | TRP9 | 21.77 | THR10 | GLY7 | 18.13 | LYS12 | TRP9 | 6.85 |
| GLU5 | TRP2 | 26.90 | GLY7 | TRP4 | 19.64 | GLY7 | THR3 | 7.00 |
| TRP11 | LYS8 | 14.67 | TRP11 | GLY7 | 8.89 | LYS8 | GLU5 | 12.81 |
| GLY7 | THR3 | 6.40 | GLY7 | THR3 | 6.06 | GLY7 | TRP4 | 16.42 |
| LYS8 | THR3 | 7.31 | TRP11 | LYS8 | 11.38 | ASN6 | TRP2 | 10.50 |


| GLY7 | TRP4 | 15.15 | GLU5 | SER1 | 5.90 | TRP9 | GLU5 | 7.17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASN6 | THR3 | 15.98 | TRP4 | SER1 | 6.62 | TRP11 | LYS8 | 13.82 |
| LYS8 | GLU5 | 9.10 | LYS8 | GLU5 | 9.91 |  |  |  |
| TRP9 | ASN6 | 11.27 | ASN6 | TRP2 | 7.58 |  |  |  |
| TRP11 | GLY7 | 7.48 |  |  |  |  |  |  |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi$ / GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| GLU5 | TRP2 | 26.25 | GLU5 | TRP2 | 18.05 | THR10 | GLY7 | 20.37 |
| ASN6 | THR3 | 15.85 | ASN6 | TRP2 | 7.52 | ASN6 | TRP2 | 15.79 |
| TRP11 | LYS8 | 25.99 | THR10 | GLY7 | 28.11 | GLU5 | SER1 | 5.68 |
| GLY7 | TRP4 | 17.47 | GLY7 | TRP4 | 24.76 | TRP4 | SER1 | 7.19 |
| ASN6 | TRP2 | 25.47 | TRP11 | GLY7 | 10.26 | GLU5 | TRP2 | 33.06 |
| THR10 | GLY7 | 18.30 | ASN6 | THR3 | 32.01 | TRP11 | LYS8 | 19.92 |
| LYS8 | THR3 | 7.92 | TRP9 | ASN6 | 7.58 | GLY7 | TRP4 | 21.76 |
| TRP9 | ASN6 | 7.07 | LYS8 | GLU5 | 9.99 | ASN6 | THR3 | 26.52 |
| TRP4 | SER1 | 18.04 | TRP11 | LYS8 | 25.03 | TRP11 | GLY7 | 7.09 |
| LYS12 | TRP9 | 23.34 | GLY7 | THR3 | 9.26 | GLY7 | THR3 | 6.88 |
| GLY7 | THR3 | 5.81 | LYS12 | LYS8 | 6.46 | LYS8 | THR3 | 6.45 |
| TRP11 | GLY7 | 5.85 | LYS12 | TRP9 | 12.28 | LYS12 | LYS8 | 6.66 |
| LYS8 | GLU5 | 11.27 |  |  |  | LYS12 | TRP9 | 10.18 |
| GLU5 | SER1 | 15.79 |  |  |  | LYS8 | GLU5 | 8.90 |
|  |  |  |  |  |  | TRP9 | ASN6 | 8.49 |
| ff12SB/ | GB-HCT |  | ff12SB/ | B-OBC(II) |  | ff12SB/ | GB-Neck2 |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| GLY7 | TRP4 | 19.84 | TRP9 | ASN6 | 8.06 | ASN6 | THR3 | 41.12 |
| ASN6 | THR3 | 26.27 | ASN6 | THR3 | 45.80 | GLY7 | THR3 | 7.66 |
| LYS8 | GLU5 | 17.47 | GLY7 | TRP4 | 29.01 | TRP11 | LYS8 | 17.13 |
| GLY7 | THR3 | 14.29 | THR10 | GLY7 | 23.51 | LYS12 | LYS8 | 7.62 |
| TRP9 | ASN6 | 8.50 | LYS8 | GLU5 | 18.12 | THR10 | GLY7 | 21.46 |
| ASN6 | TRP2 | 19.96 | GLY7 | THR3 | 12.49 | LYS12 | TRP9 | 15.79 |
| THR10 | GLY7 | 24.79 | LYS12 | TRP9 | 10.98 | ASN6 | TRP2 | 8.73 |
| TRP11 | LYS8 | 24.73 | LYS8 | TRP4 | 7.16 | GLY7 | TRP4 | 30.96 |
| LYS12 | LYS8 | 9.42 | TRP11 | GLY7 | 5.25 | TRP9 | ASN6 | 9.06 |
| LYS8 | TRP4 | 7.46 | TRP11 | LYS8 | 18.66 | GLU5 | TRP2 | 13.03 |
| LYS12 | TRP9 | 20.12 |  |  |  | LYS8 | GLU5 | 17.37 |
| GLU5 | TRP2 | 11.59 |  |  |  | TRP9 | GLU5 | 6.12 |
| GLU5 | SER1 | 9.47 |  |  |  |  |  |  |
| TRP4 | SER1 | 12.42 |  |  |  |  |  |  |
| TRP11 | GLY7 | 6.24 |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |


| GLY7 | THR3 | 18.97 |  | ASN6 | THR3 | 44.07 |  | THR10 | GLY7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 34.27 |  |  |  |  |  |  |  |  |  |
| LYS8 | GLU5 | $\mathbf{2 1 . 0 5}$ |  | GLY7 | THR3 | 10.66 |  | LYS12 | TRP9 |
| 8.04 |  |  |  |  |  |  |  |  |  |
| TRP11 | LYS8 | 26.53 |  | LYS8 | TRP4 | 10.33 |  | GLY7 | TRP4 |
| 26.08 |  |  |  |  |  |  |  |  |  |
| LYS12 | TRP9 | 19.47 |  | THR10 | GLY7 | 28.70 |  | TRP11 | LYS8 |
| 24.07 |  |  |  |  |  |  |  |  |  |
| ASN6 | TRP2 | 15.48 |  | TRP11 | LYS8 | 26.09 |  | TRP9 | GLU5 |
| 10.02 |  |  |  |  |  |  |  |  |  |
| TRP4 | SER1 | 9.78 |  | TRP11 | GLY7 | 10.19 |  | LYS8 | TRP4 |
| 20.19 |  |  |  |  |  |  |  |  |  |
| TRP9 | ASN6 | 16.81 | GLY7 | TRP4 | 28.61 |  | ASN6 | THR3 | 43.44 |
| LYS8 | TRP4 | 17.76 | LYS12 | TRP9 | 12.95 | LYS8 | GLU5 | $\mathbf{1 5 . 3 4}$ |  |
| LYS12 | LYS8 | 5.66 | TRP9 | ASN6 | 12.60 | TRP9 | ASN6 | 12.10 |  |
| ASN6 | THR3 | 30.68 | LYS8 | GLU5 | $\mathbf{2 4 . 1 0}$ | TRP11 | GLY7 | 16.15 |  |
| THR10 | GLY7 | 30.86 | GLU5 | TRP2 | 5.05 |  | GLY7 | THR3 | 16.12 |
| GLY7 | TRP4 | 18.77 | THR10 | ASN6 | 5.22 | GLU5 | TRP2 | 6.59 |  |
| TRP11 | GLY7 | 14.21 | TRP9 | GLU5 | 5.12 | LYS12 | LYS8 | 7.43 |  |
| GLU5 | TRP2 | 9.64 |  |  |  | THR10 | ASN6 | 6.71 |  |
| GLU5 | SER1 | 6.05 |  |  |  |  |  |  |  |
| THR10 | ASN6 | 6.52 |  |  |  |  |  |  |  |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide $\mathbf{B 2}$.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | GLU5 | 12.12 | / | / | 1 | / | / | / |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| / | / | / | LYS8 | GLU5 | 12.66 | / | / | / |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| / | 1 | 1 | / | / | / | / | / | / |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| 1 | / | / | / | / | 1 | / | / | / |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | GLU5 | 31.15 | LYS8 | GLU5 | 24.56 | / | / | / |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | GLU5 | 43.31 | LYS8 | GLU5 | 34.18 | LYS8 | GLU5 | 18.29 |

ANNEX 4.E. Additional information for peptide B3.
H-bonds of the native conformation of B3

| ILE2 | LEU14 |
| :--- | :--- |
| LEU14 | ILE2 |
| VAL4 | ILE12 |
| ILE12 | VAL4 |
| THR6 | LYS10 |
| GLY9 | THR6 |
| THR8 | THR6 (OH Side chain) |

H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide B3. Data are related to H -bonds involving the backbone (donor backbone $\mathrm{N}-\mathrm{H}$, acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| f996/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS10 | LYS5 | 7.31 | ILE2 | LEU14 | 11.18 | LEU14 | PHE3 | 46.86 |
| THR8 | VAL4 | 6.09 | ILE12 | VAL4 | 14.89 | PHE3 | LEU14 | 29.04 |
| GLY9 | LYS5 | 5.22 | LEU14 | ILE2 | 13.07 | ILE12 | LYS5 | 48.36 |
| LEU14 | ILE2 | 24.05 | VAL4 | ILE12 | 15.35 | LYS5 | ILE12 | 51.80 |
| VAL4 | ILE12 | 26.27 | LEU14 | PHE3 | 9.33 | LEU7 | LYS10 | 21.74 |
| LEU14 | PHE3 | 19.01 | LYS5 | ILE12 | 18.21 | LYS10 | LEU7 | 9.79 |
| LYS5 | ILE12 | 23.20 | ILE12 | LYS5 | 14.44 | LYS10 | THR8 | 5.15 |
| ILE12 | LYS5 | 21.42 | LEU7 | LYS10 | 7.22 |  |  |  |
| LEU7 | LYS10 | 13.83 | ILE12 | PHE3 | 8.31 |  |  |  |
| PHE3 | LEU14 | 7.61 | THR8 | VAL4 | 14.04 |  |  |  |
| ILE2 | LEU14 | 23.81 | GLY9 | VAL4 | 7.02 |  |  |  |
| THR11 | VAL4 | 9.64 | PHE3 | LEU14 | 5.89 |  |  |  |
| ILE12 | VAL4 | 17.96 | ILE12 | THR6 | 8.22 |  |  |  |
| THR6 | GLY9 | 8.94 | THR6 | ILE12 | 9.35 |  |  |  |
| ILE12 | LEU7 | 5.94 | THR6 | LYS10 | 10.50 |  |  |  |
| GLN1 | GLU15 | 5.05 |  |  |  |  |  |  |
| THR11 | LYS5 | 5.41 |  |  |  |  |  |  |
| THR6 | LYS10 | 9.58 |  |  |  |  |  |  |
| LYS5 | THR11 | 6.46 |  |  |  |  |  |  |
| GLU15 | PHE3 | 6.34 |  |  |  |  |  |  |
| ILE12 | PHE3 | 6.44 |  |  |  |  |  |  |
| PHE3 | ILE12 | 5.14 |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS10 | LYS5 | 20.55 | LEU7 | PHE3 | 10.18 | LYS5 | ILE12 | 31.02 |
| THR6 | ILE2 | 12.92 | THR13 | LYS10 | 12.03 | LEU7 | LYS10 | 31.78 |
| LEU14 | THR11 | 24.53 | LEU14 | THR11 | 12.17 | ILE12 | LYS5 | 32.13 |
| LEU7 | PHE3 | 18.89 | THR8 | VAL4 | 19.20 | LYS10 | LEU7 | 32.07 |
| THR13 | LYS10 | 24.85 | ILE12 | GLY9 | 6.66 | LEU14 | THR11 | 16.40 |
| LYS5 | ILE2 | 20.97 | THR8 | LYS5 | 8.10 | THR8 | VAL4 | 18.35 |
| LEU7 | VAL4 | 13.92 | GLY9 | LYS5 | 13.84 | LEU7 | PHE3 | 12.12 |


| THR8 | VAL4 | 28.53 | LYS5 | THR11 | 13.48 | GLY9 | THR6 | 11.07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THR6 | PHE3 | 16.74 | GLU15 | ILE12 | 8.50 | GLY9 | LYS5 | 5.50 |
| GLY9 | THR6 | 21.25 | GLY9 | THR6 | 19.01 | LEU14 | PHE3 | 25.34 |
| LEU14 | LYS10 | 8.83 | LEU14 | LYS10 | 7.53 | PHE3 | LEU14 | 15.81 |
| VAL4 | GLN1 | 7.57 | LEU7 | VAL4 | 17.91 | THR8 | LYS5 | 6.79 |
| THR8 | LYS5 | 11.5 | THR13 | PHE3 | 8.78 | THR6 | PHE3 | 8.60 |
| VAL4 | ILE12 | 7.94 | THR6 | LYS10 | 13.05 | LEU7 | VAL4 | 16.50 |
| LEU14 | ILE2 | 7.18 | ILE12 | VAL4 | 16.57 | ILE12 | GLY9 | 7.78 |
| ILE2 | LEU14 | 6.18 | VAL4 | ILE12 | 15.66 | THR13 | LYS10 | 14.32 |
| LYS5 | LYS10 | 6.05 | THR6 | PHE3 | 7.71 | GLU15 | THR11 | 7.37 |
|  |  |  | ILE2 | LEU14 | 11.56 | LEU14 | LYS10 | 5.57 |
|  |  |  | LEU14 | ILE2 | 12.18 |  |  |  |
| ff99SBil | n/ GB-HC |  | ff99SBi | / GB-OB |  | ff99SBi | / GB-Ne |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU14 | THR11 | 26.22 | THR13 | LYS10 | 9.86 | LYS10 | LEU7 | 17.49 |
| GLY9 | THR6 | 18.85 | LEU14 | LYS10 | 12.18 | LEU7 | LYS10 | 11.50 |
| THR8 | LYS5 | 17.06 | THR6 | PHE3 | 7.73 | ILE12 | LYS5 | 13.05 |
| THR6 | ILE2 | 7.35 | GLY9 | LYS5 | 9.45 | LEU14 | PHE3 | 12.90 |
| THR8 | VAL4 | 25.99 | LEU14 | THR11 | 19.27 | PHE3 | LEU14 | 10.54 |
| LEU7 | VAL4 | 23.45 | THR8 | LYS5 | 7.43 | LYS5 | ILE12 | 13.64 |
| LYS10 | LYS5 | 26.10 | LEU7 | VAL4 | 33.49 | GLY9 | THR6 | 19.54 |
| THR13 | LYS10 | 25.77 | LYS10 | LEU7 | 5.46 | ILE12 | VAL4 | 17.23 |
| LEU14 | LYS10 | 11.42 | LEU7 | PHE3 | 6.75 | VAL4 | ILE12 | 17.22 |
| LYS5 | ILE2 | 23.88 | THR8 | VAL4 | 22.73 | LEU14 | ILE2 | 15.64 |
| THR6 | PHE3 | 27.09 | ILE12 | GLY9 | 19.28 | LEU14 | THR11 | 18.80 |
| LEU7 | PHE3 | 12.68 | THR13 | GLY9 | 14.31 | THR6 | LYS10 | 12.48 |
| ILE2 | GLU15 | 11.06 | GLY9 | THR6 | 15.19 | ILE12 | GLY9 | 9.85 |
|  |  |  | THR6 | LYS10 | 5.34 | THR8 | VAL4 | 11.26 |
|  |  |  |  |  |  | LEU7 | PHE3 | 6.21 |
|  |  |  |  |  |  | THR13 | LYS10 | 10.83 |
|  |  |  |  |  |  | ILE12 | PHE3 | 5.08 |
|  |  |  |  |  |  | LYS5 | LYS10 | 6.99 |
|  |  |  |  |  |  | GLY9 | LYS5 | 7.11 |
|  |  |  |  |  |  | ILE2 | LEU14 | 5.98 |
|  |  |  |  |  |  | THR8 | LYS5 | 8.40 |
|  |  |  |  |  |  | THR6 | PHE3 | 7.72 |
|  |  |  |  |  |  | LEU7 | VAL4 | 18.32 |
|  |  |  |  |  |  | GLU15 | THR11 | 5.53 |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU14 | THR11 | 39.79 | LEU7 | VAL4 | 31.18 | THR8 | VAL4 | 25.18 |
| LYS10 | LYS5 | 20.60 | THR8 | VAL4 | 27.13 | THR6 | PHE3 | 15.09 |
| THR13 | LYS10 | 24.98 | GLY9 | LYS5 | 12.18 | LEU7 | PHE3 | 16.30 |


| ILE2 | GLU15 | 5.01 | THR13 | LYS10 | 8.14 | LEU14 | LYS10 | 7.80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYS5 | ILE2 | 21.57 | LEU14 | LYS10 | 10.12 | LYS5 | ILE2 | 5.67 |
| THR6 | PHE3 | 23.91 | ILE12 | GLY9 | 13.62 | LYS10 | LEU7 | 14.81 |
| THR8 | VAL4 | 26.70 | LEU7 | PHE3 | 7.41 | THR11 | THR8 | 6.11 |
| LEU14 | LYS10 | 9.98 | THR8 | LYS5 | 7.94 | GLY9 | THR6 | 18.20 |
| LEU7 | VAL4 | 17.56 | LEU14 | THR11 | 25.91 | ILE12 | GLY9 | 17.53 |
| LYS5 | LYS10 | 8.82 | LYS10 | LEU7 | 7.63 | THR8 | LYS5 | 13.01 |
| GLY9 | THR6 | 26.21 | ILE12 | PHE3 | 6.02 | GLY9 | LYS5 | 8.52 |
| LEU7 | PHE3 | 20.77 | LYS5 | LYS10 | 9.31 | LEU7 | VAL4 | 24.33 |
| THR6 | ILE2 | 9.94 | THR13 | GLY9 | 6.76 | ILE12 | VAL4 | 5.66 |
| ILE12 | PHE3 | 6.39 | THR6 | PHE3 | 9.97 | LEU14 | THR11 | 20.55 |
| THR8 | LYS5 | 13.09 | GLY9 | THR6 | 12.08 | GLU15 | THR11 | 5.96 |
| VAL4 | GLN1 | 6.54 |  |  |  | THR13 | GLY9 | 6.51 |
|  |  |  |  |  |  | THR13 | LYS10 | 18.88 |
|  |  |  |  |  |  | LYS5 | ILE12 | 6.02 |
|  |  |  |  |  |  | ILE12 | LYS5 | 5.96 |
|  |  |  |  |  |  | LEU7 | LYS10 | 5.27 |
|  |  |  |  |  |  | LYS5 | LYS10 | 4.97 |
|  |  |  |  |  |  | ILE12 | PHE3 | 5.00 |
|  |  |  |  |  |  | LEU14 | ILE2 | 5.20 |
|  |  |  |  |  |  | VAL4 | ILE12 | 6.18 |
| ff12SB/ | B-HCT |  | ff12SB/ | B-OBC(II) |  | ff12SB/ | B-Neck2 |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU7 | PHE3 | 26.81 | LYS5 | ILE2 | 13.74 | LYS10 | LEU7 | 13.81 |
| LEU14 | THR11 | 21.69 | LEU14 | THR11 | 27.00 | LEU7 | VAL4 | 31.45 |
| GLU15 | ILE12 | 8.17 | THR6 | PHE3 | 16.46 | THR6 | PHE3 | 22.24 |
| THR8 | VAL4 | 31.97 | LYS10 | LEU7 | 18.47 | LYS5 | ILE2 | 17.56 |
| LYS10 | LYS5 | 9.26 | LEU7 | VAL4 | 25.32 | THR8 | LYS5 | 15.25 |
| THR6 | ILE2 | 15.01 | LEU14 | GLY9 | 8.81 | LEU7 | PHE3 | 18.86 |
| GLY9 | THR6 | 20.17 | LEU7 | PHE3 | 18.63 | LEU14 | THR11 | 30.89 |
| LYS10 | LEU7 | 11.47 | THR8 | LYS5 | 9.61 | GLU15 | ILE12 | 12.50 |
| VAL4 | GLN1 | 7.25 | ILE12 | GLY9 | 13.90 | GLY9 | VAL4 | 6.50 |
| LYS5 | ILE2 | 34.94 | GLY9 | THR6 | 22.53 | THR8 | VAL4 | 20.09 |
| THR6 | PHE3 | 29.63 | THR6 | LYS10 | 6.24 | ILE12 | GLY9 | 19.11 |
| LEU7 | VAL4 | 19.67 | THR13 | LYS10 | 9.23 | THR13 | LYS10 | 17.72 |
| THR8 | LYS5 | 9.46 | THR8 | VAL4 | 20.64 | GLY9 | THR6 | 13.97 |
| THR11 | LYS5 | 24.54 | GLY9 | LYS5 | 7.72 | GLU15 | THR11 | 7.85 |
| THR13 | LYS10 | 7.06 | THR13 | GLY9 | 10.02 | GLY9 | LYS5 | 9.77 |
| GLN1 | GLU15 | 5.44 | GLU15 | ILE12 | 5.26 | THR11 | THR8 | 5.70 |
|  |  |  |  |  |  | LEU14 | GLY9 | 8.91 |
|  |  |  |  |  |  | THR13 | GLY9 | 9.64 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |


| VAL4 | GLN1 | 6.32 |  | LYS10 | LEU7 | 5.22 |  | GLU15 | ILE12 | 5.81 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| THR8 | VAL4 | 40.00 |  | THR6 | PHE3 | 15.71 | GLU15 | THR11 | 6.10 |  |
| LYS5 | ILE2 | 17.38 |  | LEU7 | VAL4 | 13.64 | LEU14 | THR11 | 14.45 |  |
| LEU7 | PHE3 | 48.50 |  | THR13 | GLY9 | 26.23 | GLY9 | THR6 | $\mathbf{8 . 8 1}$ |  |
| GLY9 | LYS5 | 6.69 |  | GLY9 | LYS5 | 21.21 | THR13 | LYS10 | 19.27 |  |
| LYS10 | LYS5 | 23.79 |  | LYS10 | THR6 | 18.85 | ILE12 | GLY9 | 14.57 |  |
| LEU14 | THR11 | 44.05 |  | ILE12 | THR8 | 12.76 | THR11 | THR8 | 8.29 |  |
| GLY9 | THR6 | $\mathbf{2 3 . 9 9}$ |  | LEU7 | PHE3 | 50.64 | LEU14 | GLY9 | 10.28 |  |
| THR6 | ILE2 | 26.21 |  | LEU14 | THR11 | 29.07 | THR8 | VAL4 | 68.67 |  |
| LYS5 | GLN1 | 11.96 |  | THR8 | LYS5 | 7.86 | LYS5 | GLN1 | 26.58 |  |
| LEU7 | VAL4 | 10.39 |  | THR8 | VAL4 | 44.06 | LEU7 | PHE3 | 76.23 |  |
| THR6 | PHE3 | 17.32 |  | THR11 | LEU7 | 13.13 | THR6 | ILE2 | 28.77 |  |
| THR8 | LYS5 | 9.69 |  | LEU14 | LYS10 | 10.54 | ILE12 | THR8 | 43.28 |  |
| THR13 | LYS10 | 17.37 | THR6 | ILE2 | 6.30 | LEU14 | LYS10 | 13.33 |  |  |
| THR11 | LYS5 | 8.21 |  | GLY9 | THR6 | $\mathbf{1 5 . 3 0}$ | THR11 | LEU7 | 29.01 |  |
| ILE12 | GLY9 | 7.11 | LYS10 | LYS5 | 11.75 | GLY9 | LYS5 | 43.80 |  |  |
|  |  |  | THR13 | LYS10 | 8.09 | THR13 | GLY9 | 18.88 |  |  |
|  |  |  | ILE12 | GLY9 | 13.45 | LYS10 | THR6 | 42.83 |  |  |
|  |  | THR11 | THR8 | 5.18 | GLU15 | GLY9 | 9.39 |  |  |  |
|  |  |  |  | THR6 | PHE3 | 7.62 |  |  |  |  |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide B3.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| / | / | / | LYS5 | GLU15 | 6.74 | / | / | / |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS5 | GLU15 | 25.94 | LYS5 | GLU15 | 7.68 | / | / | 1 |
| LYS10 | GLU15 | 19.52 |  |  |  |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS5 | GLU15 | 33.12 | LYS5 | GLU15 | 6.18 | / | 1 | 1 |
| LYS10 | GLU15 | 15.62 | LYS10 | GLU15 | 9.19 |  |  |  |
| ff99SBildn- $/$ / GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS5 | GLU15 | 26.24 | LYS10 | GLU15 | 8.6 | / | / | 1 |
| LYS10 | GLU15 | 13.89 |  |  |  |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS5 | GLU15 | 36.48 | LYS10 | GLU15 | 12.05 | LYS10 | GLU15 | 5.67 |
| LYS10 | GLU15 | 20.41 |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |


| LYS5 | GLU15 | 36.53 |  | LYS5 | GLU15 | 19.52 |  | $/$ | $/$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LYS10 | GLU15 | 14.21 |  | LYS10 | GLU15 | 14.89 |  |  |  |

ANNEX 4.F. Additional information for peptide ID1.
H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID1. Data are related to H -bonds involving the backbone (donor backbone N H , acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| TRP3 | ILE11 | 8.38 | LEU14 | ASN2 | 6.34 | VAL10 | GLY7 | 8.91 |
| ILE11 | TRP3 | 6.87 | LEU4 | ASP12 | 5.89 | LEU4 | ASP12 | 10.86 |
| LYS5 | MET9 | 23.11 | LEU6 | ASN2 | 5.00 | LEU14 | ASN2 | 11.02 |
| MET9 | LEU6 | 11.22 | ILE11 | LEU4 | 42.74 | ASP12 | LEU4 | 9.78 |
| ILE1 | ALA13 | 23.00 | GLY7 | MET9 | 14.41 | GLY7 | VAL10 | 10.57 |
| LEU6 | MET9 | 37.68 | ALA13 | ASN2 | 29.73 | ILE11 | LEU4 | 20.09 |
| ALA13 | ILE1 | 7.89 | LEU4 | ILE11 | 36.47 | LEU4 | ILE11 | 16.10 |
| ALA13 | ASN2 | 25.59 | LEU6 | MET9 | 29.77 | LEU6 | MET9 | 16.93 |
| ILE11 | LEU4 | 43.83 | MET9 | LEU6 | 9.90 | MET9 | LEU6 | 9.03 |
| ASN2 | ALA13 | 14.20 | GLY7 | VAL10 | 7.48 | ALA13 | ASN2 | 9.66 |
| LEU4 | ILE11 | 31.24 | VAL10 | GLY7 | 3.52 | ASN2 | LEU14 | 6.19 |
| MET9 | LYS5 | 17.87 | ILE11 | LYS5 | 5.73 | MET9 | LYS5 | 6.41 |
| GLY7 | MET9 | 14.90 | ALA13 | TRP3 | 6.77 | LYS5 | ASP12 | 7.42 |
| ASN2 | ILE11 | 15.11 | LYS5 | ILE11 | 7.68 | ASP12 | LYS5 | 6.56 |
| LEU4 | MET9 | 6.63 | ASP12 | LEU4 | 5.34 | LYS5 | MET9 | 5.36 |
| ILE11 | ASN2 | 18.62 |  |  |  |  |  |  |
| LYS8 | LYS5 | 8.83 |  |  |  |  |  |  |
| ASP12 | LEU4 | 8.90 |  |  |  |  |  |  |
| LEU4 | ASP12 | 8.78 |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| MET9 | LEU6 | 7.81 | ALA13 | VAL10 | 17.10 | GLY7 | TRP3 | 14.44 |
| ASP12 | MET9 | 26.69 | LEU14 | VAL10 | 15.93 | VAL10 | LEU6 | 8.06 |
| ALA13 | VAL10 | 14.83 | LYS8 | LYS5 | 7.44 | ILE11 | LYS8 | 23.03 |
| LEU14 | ILE11 | 21.91 | MET9 | LYS5 | 6.37 | ASP12 | LYS8 | 14.79 |
| GLY7 | TRP3 | 16.60 | LEU6 | ASN2 | 27.31 | LEU6 | ASN2 | 18.81 |
| LYS5 | ASN2 | 21.14 | GLY7 | TRP3 | 23.64 | MET9 | LYS5 | 7.08 |
| LYS8 | LYS5 | 20.60 | LEU6 | TRP3 | 14.05 | ALA13 | MET9 | 23.65 |
| LEU6 | ASN2 | 33.35 | ALA13 | MET9 | 25.59 | ASP12 | MET9 | 30.61 |
| ALA13 | MET9 | 20.78 | ASP12 | MET9 | 33.36 | LEU6 | TRP3 | 11.74 |
| LEU14 | VAL10 | 12.02 | GLY7 | LEU4 | 12.47 | MET9 | LEU6 | 18.13 |
| MET9 | LYS5 | 12.86 | LYS5 | ASN2 | 16.18 | LEU14 | MET9 | 7.74 |
| MET9 | LEU4 | 7.45 | MET9 | LEU6 | 13.03 | ILE11 | LEU4 | 14.09 |
| ILE11 | LYS8 | 12.02 | VAL10 | LEU6 | 10.59 | ASN2 | LEU14 | 5.46 |


| LEU6 | TRP3 | 10.56 | LYS8 | TRP3 | 12.97 | LEU14 | ASN2 | 10.76 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GLY7 | LEU4 | 8.66 | ILE11 | LYS8 | 12.72 | LEU4 | ASP12 | 12.83 |
| VAL10 | LYS5 | 10.31 | LEU14 | ILE11 | 21.62 | LEU6 | MET9 | 14.55 |
| ASP12 | LYS8 | 7.26 | VAL10 | GLY7 | 12.02 | ASP12 | LEU4 | 9.79 |
| LYS8 | TRP3 | 8.62 | ILE11 | GLY7 | 9.91 | LYS5 | ASN2 | 17.52 |
|  |  |  | ASP12 | LYS8 | 9.34 | LEU14 | ILE11 | 12.13 |
|  |  |  | LYS8 | LEU4 | 5.70 | LYS8 | LYS5 | 11.61 |
|  |  |  |  |  |  | ALA13 | VAL10 | 16.03 |
|  |  |  |  |  |  | GLY7 | LEU4 | 7.15 |
|  |  |  |  |  |  | LEU14 | VAL10 | 13.88 |
|  |  |  |  |  |  | VAL10 | GLY7 | 8.95 |
|  |  |  |  |  |  | LYS8 | TRP3 | 7.02 |
| ff99SBil | n/ GB-HC |  | ff99SBil | / GB-OBC |  | ff99SBil | / GB-Ne |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ASN2 | VAL10 | 16.95 | MET9 | LYS5 | 5.46 | GLY7 | LEU4 | 14.09 |
| VAL10 | ASN2 | 18.12 | LYS8 | LYS5 | 6.46 | LEU14 | ILE11 | 19.19 |
| LEU14 | ILE11 | 33.51 | GLY7 | TRP3 | 12.57 | ILE11 | GLY7 | 7.06 |
| GLY7 | LEU4 | 20.79 | GLY7 | LEU4 | 15.09 | VAL10 | GLY7 | 11.70 |
| MET9 | LYS5 | 9.19 | LYS5 | ASN2 | 17.94 | ILE11 | LYS8 | 17.24 |
| LEU6 | TRP3 | 11.93 | ALA13 | MET9 | 11.10 | LYS5 | ASN2 | 26.54 |
| LYS8 | LYS5 | 12.31 | LEU14 | ILE11 | 30.30 | LEU6 | TRP3 | 19.91 |
| ASP12 | MET9 | 13.61 | ILE11 | LYS8 | 7.65 | LEU14 | VAL10 | 9.42 |
| LEU6 | ASN2 | 16.02 | ASP12 | MET9 | 13.21 | ALA13 | VAL10 | 13.48 |
| ALA13 | VAL10 | 13.23 | LEU6 | TRP3 | 18.01 | MET9 | LYS5 | 6.22 |
| LYS8 | TRP3 | 10.27 | VAL10 | GLY7 | 9.14 | GLY7 | TRP3 | 14.49 |
| LYS5 | ASN2 | 16.93 | MET9 | LEU6 | 11.42 | LYS8 | TRP3 | 8.95 |
| LEU4 | MET9 | 7.00 | LEU14 | VAL10 | 11.86 | LEU6 | ASN2 | 11.50 |
| ILE11 | ASN2 | 8.03 | ASP12 | LYS8 | 7.62 | ALA13 | MET9 | 9.58 |
| ASN2 | ILE11 | 5.29 | LEU6 | ASN2 | 13.22 | LYS8 | LYS5 | 5.87 |
| MET9 | LEU4 | 5.53 | LYS8 | TRP3 | 10.92 | ASP12 | LYS8 | 10.25 |
| LEU14 | VAL10 | 7.81 | ALA13 | VAL10 | 20.43 | MET9 | LEU6 | 11.90 |
| LEU4 | LYS8 | 13.99 | ILE11 | GLY7 | 7.18 | VAL10 | LEU6 | 8.68 |
| ALA13 | MET9 | 8.82 |  |  |  | ASP12 | MET9 | 11.64 |
| GLY7 | TRP3 | 10.86 |  |  |  | ILE11 | LEU6 | 7.25 |
| LYS8 | LEU4 | 5.63 |  |  |  | ILE11 | LEU4 | 6.37 |
| LYS5 | MET9 | 6.22 |  |  |  | LEU6 | MET9 | 5.90 |
|  |  |  |  |  |  | LEU4 | ILE11 | 5.05 |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ASP12 | MET9 | 14.09 | LEU14 | ILE11 | 36.85 | ALA13 | ASN2 | 5.96 |
| LEU14 | ILE11 | 31.75 | LEU14 | VAL10 | 11.11 | ILE11 | LEU4 | 13.26 |
| GLY7 | TRP3 | 14.65 | LEU6 | TRP3 | 19.43 | LEU6 | MET9 | 11.57 |
| LEU6 | TRP3 | 18.76 | ALA13 | VAL10 | 18.30 | ILE11 | LYS8 | 11.08 |


| LEU6 | ASN2 | 22.26 | LYS5 | ASN2 | 21.35 | ASP12 | LYS8 | 7.01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYS8 | LYS5 | 12.23 | GLY7 | TRP3 | 17.63 | LYS5 | ASN2 | 22.32 |
| MET9 | LYS5 | 9.21 | MET9 | LEU6 | 11.92 | LEU6 | TRP3 | 18.22 |
| LEU14 | VAL10 | 14.08 | VAL10 | LEU6 | 5.76 | ILE11 | GLY7 | 7.07 |
| LYS5 | ASN2 | 22.60 | ILE11 | GLY7 | 10.12 | LEU6 | ASN2 | 10.26 |
| VAL10 | LYS5 | 5.02 | ASP12 | MET9 | 11.94 | GLY7 | LEU4 | 9.54 |
| ALA13 | VAL10 | 21.01 | VAL10 | GLY7 | 13.70 | VAL10 | GLY7 | 13.09 |
| MET9 | LEU6 | 11.52 | LEU6 | ASN2 | 16.47 | LYS8 | LYS5 | 12.27 |
| ALA13 | MET9 | 9.22 | GLY7 | LEU4 | 18.89 | LEU14 | VAL10 | 8.85 |
| GLY7 | LEU4 | 18.20 | LYS8 | TRP3 | 10.10 | LEU14 | ILE11 | 16.32 |
| LYS8 | TRP3 | 12.99 | LYS8 | LEU4 | 5.63 | GLY7 | TRP3 | 15.46 |
| ILE11 | LYS8 | 6.39 | ASP12 | LYS8 | 13.17 | MET9 | LYS5 | 7.44 |
| MET9 | LEU4 | 5.02 | ILE11 | LYS8 | 13.78 | LYS5 | MET9 | 5.26 |
|  |  |  | ALA13 | MET9 | 12.65 | ILE11 | TRP3 | 5.26 |
|  |  |  | MET9 | LYS5 | 6.52 | ALA13 | VAL10 | 12.49 |
|  |  |  | LYS8 | LYS5 | 6.81 | ASP12 | MET9 | 9.17 |
|  |  |  |  |  |  | LEU4 | ILE11 | 11.66 |
|  |  |  |  |  |  | MET9 | LEU6 | 12.95 |
|  |  |  |  |  |  | ALA13 | MET9 | 7.81 |
| ff12SB/ | 3-HCT |  | ff12SB/ | B-OBC(II) |  | ff12SB/ | B-Neck2 |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU6 | ASN2 | 42.56 | LEU14 | ILE11 | 40.72 | LYS5 | ASN2 | 28.08 |
| ALA13 | MET9 | 15.45 | LEU6 | ASN2 | 38.36 | LEU6 | TRP3 | 16.06 |
| VAL10 | LEU6 | 10.54 | MET9 | LYS5 | 21.85 | GLY7 | TRP3 | 36.74 |
| GLY7 | TRP3 | 24.31 | ILE11 | GLY7 | 34.77 | ALA13 | VAL10 | 20.35 |
| LYS8 | LYS5 | 8.88 | ASP12 | LYS8 | 58.20 | ASP12 | LYS8 | 39.36 |
| MET9 | LYS5 | 18.84 | LYS8 | LEU4 | 22.76 | VAL10 | GLY7 | 21.89 |
| ILE11 | LYS8 | 11.97 | GLY7 | TRP3 | 43.00 | ILE11 | GLY7 | 20.39 |
| ASP12 | LYS8 | 44.35 | ALA13 | MET9 | 19.69 | MET9 | LEU6 | 9.31 |
| LEU14 | ILE11 | 41.05 | VAL10 | LEU6 | 19.47 | ILE11 | LYS8 | 17.35 |
| LYS5 | ASN2 | 18.63 | LEU14 | VAL10 | 14.85 | ALA13 | MET9 | 14.87 |
| MET9 | LEU6 | 6.44 | LEU6 | TRP3 | 13.17 | GLY7 | LEU4 | 10.81 |
| LYS8 | LEU4 | 15.99 | ALA13 | VAL10 | 18.93 | LEU6 | ASN2 | 38.55 |
| VAL10 | GLY7 | 17.65 | MET9 | LEU6 | 9.49 | VAL10 | LEU6 | 19.84 |
| LYS8 | TRP3 | 9.39 | LYS8 | LYS5 | 6.57 | LEU14 | ILE11 | 31.01 |
| ILE11 | GLY7 | 16.82 | ILE11 | LYS8 | 9.14 | LYS8 | LYS5 | 9.14 |
| ALA13 | VAL10 | 15.19 | LYS5 | ASN2 | 20.43 | ASP12 | MET9 | 7.38 |
| LEU14 | VAL10 | 11.21 | VAL10 | GLY7 | 20.10 | LEU14 | VAL10 | 13.73 |
| GLY7 | LEU4 | 11.78 | GLY7 | LEU4 | 9.08 | LYS8 | LEU4 | 12.07 |
| LEU6 | TRP3 | 9.16 | LYS8 | TRP3 | 5.38 | MET9 | LYS5 | 20.02 |
| MET9 | TRP3 | 6.33 |  |  |  | LYS8 | TRP3 | 6.65 |
| ASP12 | MET9 | 5.36 |  |  |  | LEU14 | MET9 | 5.26 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |


| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASP12 | LYS8 | 28.86 | ALA13 | MET9 | 21.81 | ILE11 | GLY7 | 23.13 |
| MET9 | TRP3 | 9.95 | LEU14 | ILE11 | 39.69 | LEU14 | ILE11 | 27.04 |
| VAL10 | GLY7 | 10.80 | VAL10 | GLY7 | 19.66 | MET9 | LYS5 | 19.02 |
| LEU6 | TRP3 | 8.40 | ASP12 | LYS8 | 53.28 | ASP12 | LYS8 | 38.54 |
| ASP12 | MET9 | 5.68 | ILE11 | LYS8 | 11.59 | LYS5 | ASN2 | 30.79 |
| GLY7 | LEU4 | 15.00 | LEU6 | ASN2 | 30.65 | VAL10 | LEU6 | 19.13 |
| LEU14 | ILE11 | 35.31 | LYS8 | TRP3 | 7.74 | LEU6 | ASN2 | 35.63 |
| ALA13 | VAL10 | 14.98 | ILE11 | GLY7 | 33.78 | GLY7 | LEU4 | 10.66 |
| LYS8 | LEU4 | 8.77 | GLY7 | TRP3 | 30.73 | VAL10 | GLY7 | 19.71 |
| ILE11 | GLY7 | 12.95 | LYS5 | ASN2 | 18.21 | LEU14 | VAL10 | 20.04 |
| TRP3 | LYS8 | 7.38 | LEU6 | TRP3 | 13.61 | ALA13 | VAL10 | 18.33 |
| LYS8 | LYS5 | 18.22 | GLY7 | LEU4 | 14.26 | LEU6 | TRP3 | 17.07 |
| VAL10 | LEU4 | 5.20 | LEU14 | VAL10 | 17.40 | ILE11 | LYS8 | 15.90 |
| LYS5 | ASN2 | 18.80 | VAL10 | LEU6 | 17.09 | ALA13 | MET9 | 17.56 |
| MET9 | LYS5 | 10.39 | MET9 | LYS5 | 19.58 | LYS8 | LYS5 | 10.72 |
| LEU6 | ASN2 | 37.38 | LYS8 | LEU4 | 19.72 | GLY7 | TRP3 | 33.49 |
| ALA13 | MET9 | 13.13 | ALA13 | VAL10 | 13.12 | ASP12 | MET9 | 11.97 |
| LYS8 | TRP3 | 9.17 | LYS8 | LYS5 | 5.25 | MET9 | LEU6 | 8.59 |
| LEU4 | ILE1 | 5.50 | MET9 | LEU6 | 6.54 | LYS8 | LEU4 | 11.89 |
| LEU14 | VAL10 | 11.26 |  |  |  | LYS8 | TRP3 | 5.73 |
| GLY7 | TRP3 | 21.79 |  |  |  |  |  |  |
| MET9 | LEU6 | 5.61 |  |  |  |  |  |  |
| VAL10 | LEU6 | 6.34 |  |  |  |  |  |  |
| ILE11 | LYS8 | 9.66 |  |  |  |  |  |  |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID1.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| / | / | 1 | / | 1 | / | / | / | / |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS5 | ASP12 | 17.98 | LYS8 | ASP12 | 11.16 | / | / | / |
| LYS8 | ASP12 | 5.18 |  |  |  |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | ASP12 | 11.31 | / | / | / | / | / | / |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | ASP12 | 15.08 | / | / | 1 | / | / | / |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS8 | ASP12 | 36.08 | LYS8 | ASP12 | 41.85 | LYS8 | ASP12 | 21.86 |


| ff14SB/ GB-HCT |  | ff14SB/ GB-OBC(II) |  |  |  | ff14SB/ GB-Neck2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| donor | acceptor | occ\% |  | donor | acceptor | occ\% | donor | acceptor | occ\% |  |
| LYS5 | ASP12 | 14.22 |  | LYS8 | ASP12 | 30.55 | LYS8 | ASP12 | 14.88 |  |
| LYS8 | ASP12 | 31.14 |  |  |  |  |  |  |  |  |

ANNEX 4.G. Additional information for peptide ID2.
H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID2. Data are related to H-bonds involving the backbone (donor backbone NH , acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ILE5 | LYS9 | 10.18 | ASN8 | LYS4 | 69.51 | / | / | / |
| LEU11 | THR3 | 12.92 | LYS9 | ILE5 | 59.21 |  |  |  |
| THR3 | LEU11 | 7.89 | TRP7 | THR3 | 82.16 |  |  |  |
| ASN8 | LYS4 | 10.71 | ILE10 | ASP6 | 70.32 |  |  |  |
| TRP7 | THR3 | 27.19 |  |  |  |  |  |  |
| ILE10 | ASP6 | 10.74 |  |  |  |  |  |  |
| ARG2 | LEU11 | 23.33 |  |  |  |  |  |  |
| ASP6 | LYS9 | 14.45 |  |  |  |  |  |  |
| THR1 | SER12 | 7.53 |  |  |  |  |  |  |
| ARG2 | ILE10 | 25.62 |  |  |  |  |  |  |
| ILE10 | ARG2 | 25.77 |  |  |  |  |  |  |
| LYS4 | ASN8 | 19.50 |  |  |  |  |  |  |
| ILE5 | ASN8 | 13.82 |  |  |  |  |  |  |
| LEU11 | ARG2 | 12.29 |  |  |  |  |  |  |
| LYS9 | ILE5 | 7.30 |  |  |  |  |  |  |
|  | SB/ GB-H |  | f999 | B/ GB-OB |  |  | B/ GB-N |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LEU11 | TRP7 | 17.41 | ILE10 | ASP6 | 16.92 | ASN8 | LYS4 | 23.10 |
| ILE5 | ARG2 | 5.09 | LEU11 | TRP7 | 11.78 | ASP6 | THR3 | 35.17 |
| LEU11 | ASN8 | 27.16 | TRP7 | THR3 | 37.96 | LEU11 | TRP7 | 16.65 |
| ASN8 | ILE5 | 23.81 | ASN8 | LYS4 | 33.70 | ILE10 | TRP7 | 20.97 |
| THR1 | SER12 | 9.92 | LYS9 | ASP6 | 24.93 | ILE5 | ARG2 | 6.53 |
| ILE10 | TRP7 | 25.04 | ASP6 | THR3 | 25.33 | ASN8 | ILE5 | 10.98 |
| TRP7 | LYS4 | 12.99 | LEU11 | ASN8 | 17.42 | TRP7 | THR3 | 14.91 |
| ASN8 | LYS4 | 17.13 | LYS9 | ILE5 | 8.38 | LYS9 | ASP6 | 17.37 |
| LYS9 | ILE5 | 7.97 | TRP7 | LYS4 | 13.99 | TRP7 | LYS4 | 16.74 |
| ASP6 | THR3 | 11.10 | ASN8 | ILE5 | 13.13 | LEU11 | ASN8 | 14.79 |
| LYS9 | ASP6 | 22.11 | ILE10 | TRP7 | 17.38 |  |  |  |
| SER12 | ASN8 | 13.38 | SER12 | TRP7 | 6.60 |  |  |  |
| TRP7 | THR3 | 6.58 |  |  |  |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |


| ARG2 | LEU11 | 17.17 | ASP6 | ILE10 | 10.10 | TRP7 | LYS4 | 7.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEU11 | ARG2 | 16.45 | ILE10 | ASP6 | 18.55 | ASN8 | ILE5 | 16.89 |
| LYS4 | LYS9 | 14.35 | TRP7 | THR3 | 7.29 | ILE10 | ASP6 | 17.00 |
| ASN8 | ILE5 | 10.95 | ASN8 | ILE5 | 19.54 | LEU11 | ASP6 | 9.33 |
| LEU11 | ASN8 | 5.62 | LYS9 | ASP6 | 23.58 | LYS9 | ASP6 | 31.93 |
| TRP7 | LYS4 | 22.77 | ASP6 | THR3 | 6.59 | LYS9 | ILE5 | 6.13 |
| ILE10 | TRP7 | 21.90 | LEU11 | TRP7 | 5.88 | LEU11 | TRP7 | 21.13 |
| LYS9 | ILE5 | 7.10 | ILE10 | TRP7 | 6.78 | LEU11 | ASN8 | 7.70 |
| ASN8 | LYS4 | 16.38 | LYS9 | ILE5 | 6.20 |  |  |  |
| LYS9 | ASP6 | 12.42 | LEU11 | ASN8 | 10.00 |  |  |  |
| ILE10 | ASP6 | 6.19 | SER12 | ASN8 | 5.13 |  |  |  |
| THR3 | LYS9 | 6.58 |  |  |  |  |  |  |
| LEU11 | THR1 | 7.16 |  |  |  |  |  |  |
| ASP6 | THR3 | 6.76 |  |  |  |  |  |  |
| THR1 | SER12 | 9.96 |  |  |  |  |  |  |
| TRP7 | THR3 | 5.30 |  |  |  |  |  |  |
| LEU11 | TRP7 | 21.77 |  |  |  |  |  |  |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi / \mathbf{\text { GB-OBC }}$ (II) |  |  | ff99SBildn- $\varphi$ / GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ILE10 | ARG2 | 6.02 | ASN8 | ILE5 | 30.13 | LEU11 | TRP7 | 21.76 |
| ARG2 | ILE10 | 5.91 | ILE10 | ASP6 | 35.53 | LYS9 | ASP6 | 29.41 |
| LYS4 | ASN8 | 5.22 | LYS9 | ASP6 | 37.01 | ASN8 | ILE5 | 11.87 |
| TRP7 | LYS4 | 28.74 | TRP7 | LYS4 | 13.11 | ILE10 | ASP6 | 11.43 |
| LEU11 | TRP7 | 17.37 | LEU11 | TRP7 | 10.58 | ILE10 | TRP7 | 16.17 |
| ILE10 | ASP6 | 12.43 | LYS9 | ILE5 | 8.26 | ASP6 | ARG2 | 6.54 |
| ASN8 | ILE5 | 24.20 | ILE10 | TRP7 | 9.66 | LEU11 | ASN8 | 9.06 |
| LYS9 | ASP6 | 36.33 | LEU11 | ASN8 | 9.29 | ILE5 | ARG2 | 5.78 |
| THR1 | SER12 | 10.72 | ASN8 | LYS4 | 5.62 | TRP7 | THR3 | 6.08 |
| LEU11 | ASN8 | 16.05 | TRP7 | THR3 | 12.57 |  |  |  |
| SER12 | TRP7 | 6.66 |  |  |  |  |  |  |
| LYS9 | ILE5 | 9.46 |  |  |  |  |  |  |
| ILE10 | TRP7 | 17.76 |  |  |  |  |  |  |
| ASN8 | LYS4 | 8.72 |  |  |  |  |  |  |
| ARG2 | LEU11 | 12.23 |  |  |  |  |  |  |
| LYS4 | LYS9 | 9.94 |  |  |  |  |  |  |
| LEU11 | ARG2 | 10.70 |  |  |  |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ILE10 | ASP6 | 16.96 | TRP7 | THR3 | 36.51 | ILE10 | TRP7 | 23.85 |
| ILE10 | TRP7 | 22.52 | LYS9 | ILE5 | 27.80 | LEU11 | TRP7 | 43.71 |
| THR1 | SER12 | 8.91 | ILE10 | ASP6 | 53.88 | LYS9 | ASP6 | 30.94 |
| LYS9 | ILE5 | 17.93 | LYS9 | ASP6 | 22.29 | ILE10 | ASP6 | 14.09 |
| ASN8 | ILE5 | 17.16 | ASN8 | ILE5 | 19.64 | TRP7 | THR3 | 10.17 |


| LEU11 | ASN8 | 15.46 |  | ASP6 | THR3 | 7.31 |  | SER12 | ASN8 | 10.42 |
| :--- | :--- | ---: | :--- | :--- | :--- | ---: | :--- | :--- | :--- | ---: |
| TRP7 | THR3 | 8.23 |  | TRP7 | LYS4 | 5.66 |  | LYS9 | ILE5 | 14.26 |
| ASN8 | LYS4 | 24.45 |  | ASN8 | LYS4 | 33.84 |  | ASN8 | LYS4 | 21.29 |
| LYS9 | ASP6 | 17.24 |  | LEU11 | ASN8 | 6.74 |  | ASP6 | ARG2 | 5.03 |
| SER12 | LYS9 | 6.38 |  | ILE10 | TRP7 | 6.38 |  | ILE5 | ARG2 | 5.04 |
| TRP7 | LYS4 | 21.22 |  | LEU11 | TRP7 | 11.46 |  | SER12 | LYS9 | 6.53 |
| SER12 | ASN8 | 5.24 |  |  |  |  | ASP6 | THR3 | 11.26 |  |
| LEU11 | TRP7 | 20.83 |  |  |  |  |  | TRP7 | LYS4 | 19.12 |
| ARG2 | SER12 | 6.11 |  |  |  |  | ASN8 | ILE5 | 18.15 |  |
| THR3 | SER12 | 5.86 |  |  |  |  |  | LEU11 | ASN8 | 8.71 |
| LYS4 | THR1 | 6.73 |  |  |  |  |  |  |  |  |
| ASP6 | ARG2 | 5.61 |  |  |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  | ff14SB/ GB-OBC(II) |  | ff14SB/ GB-Neck2 |  |  |  |  |  |  |
| donor | acceptor | occ\% |  | donor | acceptor | occ\% |  | donor | acceptor | occ\% |
| ASN8 | ILE5 | 19.37 |  | TRP7 | THR3 | 38.71 |  | ASP6 | THR3 | 18.59 |
| ILE10 | TRP7 | 21.47 |  | LEU11 | TRP7 | 21.23 |  | ASN8 | LYS4 | 37.92 |
| ASN8 | LYS4 | 24.05 |  | ILE10 | ASP6 | 39.88 |  | LYS9 | ASP6 | 25.27 |
| LEU11 | ASN8 | 11.13 |  | ASN8 | LYS4 | 31.81 | LEU11 | TRP7 | 55.09 |  |
| LYS9 | ILE5 | 8.15 |  | LYS9 | ASP6 | 26.37 |  | ILE10 | ASP6 | 23.25 |
| LEU11 | TRP7 | 31.43 |  | ASN8 | ILE5 | 14.47 | LYS9 | ILE5 | 21.63 |  |
| LYS9 | ASP6 | 29.97 |  | TRP7 | LYS4 | 7.23 |  | TRP7 | THR3 | 38.33 |
| TRP7 | THR3 | 10.38 | LYS9 | ILE5 | 19.41 | ILE10 | TRP7 | 23.41 |  |  |
| ASP6 | THR3 | 7.06 | ASP6 | ARG2 | 6.30 | SER12 | ASN8 | 13.73 |  |  |
| TRP7 | LYS4 | 16.16 |  | ASP6 | THR3 | 7.65 | ASN8 | ILE5 | 13.31 |  |
| SER12 | LYS9 | 7.12 | ILE10 | TRP7 | 12.64 | SER12 | LYS9 | 7.98 |  |  |
| ILE10 | ASP6 | 18.42 | ILE10 | ILE5 | 7.14 | TRP7 | LYS4 | 14.48 |  |  |
| ILE5 | THR3 | 13.93 |  |  |  |  |  |  |  |  |
| ASP6 | ARG2 | 22.09 |  |  |  |  |  |  |  |  |
| SER12 | ASN8 | 7.23 |  |  |  |  |  |  |  |  |
| ILE10 | ILE5 | 8.90 |  |  |  |  |  |  |  |  |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID2.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG2 | ASP6 | 36.67 | ARG2 | ASP6 | 102.37 | / | / | / |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS9 | ASP6 | 26.59 | ARG2 | ASP6 | 87.69 | ARG2 | ASP6 | 22.56 |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| LYS4 | ASP6 | 15.53 | ARG2 | ASP6 | 86.72 | / | 1 | / |
| LYS9 | ASP6 | 17.66 | LYS9 | ASP6 | 5.06 |  |  |  |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |


| donor | acceptor | occ\% |  | donor | acceptor | occ\% |  | donor | acceptor | occ\% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ARG2 | ASP6 | 50.02 |  | ARG2 | ASP6 | 117.45 | $/$ | $/$ | $/$ |  |
| LYS4 | ASP6 | 23.57 |  |  |  |  |  |  |  |  |
| LYS9 | ASP6 | 10.48 |  |  |  |  |  |  |  |  |
| ff12SB/ GB-HCT |  | ff12SB/ GB-OBC(II) |  | ff12SB/ GB-Neck2 |  |  |  |  |  |  |
| donor | acceptor | occ\% |  | donor | acceptor | occ\% |  | donor | acceptor | occ\% |
| ARG2 | ASP6 | 72.46 |  | ARG2 | ASP6 | 100.70 |  | $/$ | $/$ | $/$ |
| LYS4 | ASP6 | 5.39 |  |  |  |  |  |  |  |  |
| LYS9 | ASP6 | 23.02 |  |  |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  | ff14SB/ GB-Neck2 |  |  |  |  |  |
| donor | acceptor | occ\% |  | donor | acceptor | occ\% |  | donor | acceptor | occ\% |
| ARG2 | ASP6 | 89.71 |  | ARG2 | ASP6 | 82.41 |  | $/$ | $/$ | $/$ |
| LYS9 | ASP6 | 20.18 |  |  |  |  |  |  |  |  |

ANNEX 4.H. Additional information for peptide ID2.
H-bond analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID3. Data are related to H-bonds involving the backbone (donor backbone NH , acceptor backbone $\mathrm{C}=\mathrm{O}$ ).

| f996/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | accepto $\mathrm{r}$ | occupanc <br> y | donor | accepto $\mathrm{r}$ | occupanc y | donor | accepto $\mathrm{r}$ | occupanc <br> y |
| $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | HIP6 | 12.20 | HIP6 | GLU14 | 10.56 | LYS7 | THR3 | 7.33 |
| LEU9 | SER2 | 6.62 | PHE11 | LYS7 | 23.58 | HIP6 | SER2 | 7.57 |
| LYS8 | PHE11 | 6.94 | LYS7 | GLU14 | 13.50 |  |  |  |
| GLU14 | HIP6 | 10.50 | GLU14 | HIP6 | 10.39 |  |  |  |
| THR13 | HIP6 | 6.21 | $\begin{aligned} & \hline \text { MET1 } \\ & 0 \end{aligned}$ | HIP6 | 5.10 |  |  |  |
| PHE11 | LYS8 | 5.29 | LYS7 | THR3 | 7.29 |  |  |  |
| HIP6 | GLU14 | 9.45 | LYS8 | SER4 | 7.17 |  |  |  |
| SER4 | LYS7 | 7.72 | LEU9 | ARG5 | 7.46 |  |  |  |
| LYS12 | LYS8 | 13.96 | HIP6 | SER2 | 7.50 |  |  |  |
| LYS7 | GLU14 | 7.44 | ARG5 | ACE1 | 5.12 |  |  |  |
| LYS7 | THR3 | 18.42 | HIP6 | LEU9 | 5.26 |  |  |  |
| LYS8 | SER4 | 16.33 |  |  |  |  |  |  |
| LEU9 | ARG5 | 17.08 |  |  |  |  |  |  |
| HIP6 | SER2 | 18.33 |  |  |  |  |  |  |
| LYS12 | ARG5 | 5.59 |  |  |  |  |  |  |
| PHE11 | LYS7 | 13.75 |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | accepto $\mathrm{r}$ | occupanc <br> y | donor | accepto r | occupanc <br> y | donor | accepto r | occupanc <br> y |
| $\begin{array}{\|l} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | ARG5 | 6.05 | LYS12 | LYS8 | 6.14 | HIP6 | THR3 | 18.85 |
| ARG5 | SER2 | 25.88 | PHE11 | LYS8 | 12.33 | PHE11 | LYS8 | 10.64 |


| LEU9 | ARG5 | 21.22 | ARG5 | SER2 | 20.82 | ARG5 | SER2 | 24.93 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYS8 | SER4 | 16.28 | LYS7 | THR3 | 8.54 | LYS7 | SER4 | 10.03 |
| HIP6 | SER2 | 17.54 | HIP6 | THR3 | 20.41 | LYS7 | THR3 | 8.34 |
| LEU9 | HIP6 | 6.11 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 8.01 | HIP6 | SER2 | 10.25 |
| $\begin{aligned} & \hline \text { MET1 } \\ & 0 \end{aligned}$ | HIP6 | 7.14 | LYS7 | SER4 | 19.67 | LYS8 | ARG5 | 5.74 |
| LYS7 | THR3 | 12.02 | LYS12 | LEU9 | 7.49 | LEU9 | ARG5 | 8.17 |
| LYS12 | LEU9 | 10.85 | LYS8 | ARG5 | 9.95 | LYS12 | LEU9 | 8.21 |
| LYS8 | ARG5 | 15.56 | LYS8 | SER4 | 16.37 | LYS8 | SER4 | 7.38 |
| LYS7 | SER4 | 18.08 | LEU9 | ARG5 | 9.80 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 6.06 |
| HIP6 | THR3 | 21.53 | HIP6 | SER2 | 9.56 |  |  |  |
| $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | LYS7 | 11.10 | $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | HIP6 | 6.06 |  |  |  |
| PHE11 | LYS7 | 6.20 |  |  |  |  |  |  |
| PHE11 | LYS8 | 9.31 |  |  |  |  |  |  |
| LYS12 | LYS8 | 5.57 |  |  |  |  |  |  |
| LEU9 | SER4 | 5.62 |  |  |  |  |  |  |
| THR13 | MET10 | 5.74 |  |  |  |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | accepto $\mathrm{r}$ | occupanc <br> y | donor | accepto $\mathrm{r}$ | occupanc y | donor | accepto $\mathrm{r}$ | occupanc y |
| HIP6 | THR3 | 15.64 | ARG5 | SER2 | 18.48 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \end{array}$ | LYS7 | 6.70 |
| LYS7 | SER4 | 16.65 | PHE11 | ARG5 | 11.41 | ARG5 | SER2 | 27.00 |
| $\begin{aligned} & \text { MET1 } \\ & 0 \end{aligned}$ | LYS7 | 7.11 | HIP6 | SER2 | 5.97 | HIP6 | THR3 | 21.94 |
| ARG5 | SER2 | 24.36 | HIP6 | THR3 | 13.96 | HIP6 | SER2 | 8.50 |
| LEU9 | ARG5 | 32.00 | LYS8 | SER4 | 16.64 | LYS12 | LEU9 | 9.94 |
| LYS8 | ARG5 | 19.69 | LYS7 | SER4 | 11.11 | LYS7 | SER4 | 9.94 |
| LYS12 | LEU9 | 12.16 | LEU9 | SER4 | 8.97 | LYS7 | THR3 | 6.11 |
| HIP6 | SER2 | 18.55 | LYS7 | THR3 | 7.74 | LEU9 | HIP6 | 5.72 |
| LYS8 | SER4 | 21.43 | GLU14 | PHE11 | 8.90 | LYS8 | ARG5 | 6.03 |
| PHE11 | ARG5 | 5.37 | LEU9 | ARG5 | 7.14 | LEU9 | ARG5 | 6.61 |
| LEU9 | HIP6 | 8.36 | LEU9 | HIP6 | 11.34 | PHE11 | LYS8 | 7.35 |
| $\begin{aligned} & \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | HIP6 | 11.63 | $\begin{array}{\|l} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 13.47 |  |  |  |
| $\begin{aligned} & \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | ARG5 | 10.46 | LYS12 | LEU9 | 12.09 |  |  |  |
| LYS7 | THR3 | 11.86 |  |  |  |  |  |  |
| PHE11 | LYS8 | 7.49 |  |  |  |  |  |  |
| LEU9 | SER4 | 6.27 |  |  |  |  |  |  |
| PHE11 | LYS7 | 9.63 |  |  |  |  |  |  |
| LYS12 | LYS8 | 6.92 |  |  |  |  |  |  |
| GLU14 | LYS8 | 5.08 |  |  |  |  |  |  |


| ff99SBildn- $\varphi$ / GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi$ / GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | accepto <br> r | occupanc y | donor | accepto <br> r | occupanc <br> y | donor | accepto $\mathrm{r}$ | occupanc <br> y |
| HIP6 | THR3 | 12.69 | LYS7 | SER4 | 14.81 | HIP6 | THR3 | 21.43 |
| ARG5 | SER2 | 18.39 | LYS8 | ARG5 | 5.39 | LYS12 | LEU9 | 9.42 |
| HIP6 | GLU14 | 5.44 | ARG5 | SER2 | 19.48 | LYS7 | SER4 | 10.38 |
| LYS8 | ARG5 | 13.11 | LYS12 | LEU9 | 17.73 | $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | LYS7 | 5.24 |
| ARG5 | GLU14 | 7.61 | LEU9 | ARG5 | 18.44 | LYS8 | ARG5 | 5.82 |
| LYS12 | LEU9 | 9.30 | THR13 | LEU9 | 9.18 | HIP6 | SER2 | 9.46 |
| LEU9 | ARG5 | 26.65 | LYS8 | SER4 | 18.12 | ARG5 | SER2 | 24.55 |
| LYS7 | SER4 | 21.07 | LYS7 | THR3 | 8.79 | LYS7 | THR3 | 6.90 |
| LYS8 | SER4 | 23.39 | HIP6 | SER2 | 9.22 | LEU9 | HIP6 | 5.04 |
| $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | HIP6 | 13.69 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 13.70 | LYS8 | SER4 | 6.13 |
| PHE11 | LYS8 | 6.01 | HIP6 | THR3 | 15.22 | LEU9 | ARG5 | 5.33 |
| HIP6 | SER2 | 14.28 | PHE11 | LYS8 | 5.62 |  |  |  |
| $\begin{aligned} & \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | LYS7 | 7.13 | LEU9 | SER4 | 5.90 |  |  |  |
| LYS7 | THR3 | 7.22 | LEU9 | HIP6 | 9.70 |  |  |  |
| LEU9 | HIP6 | 10.05 | PHE11 | ARG5 | 5.72 |  |  |  |
| $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | ARG5 | 9.48 | PHE11 | LYS7 | 8.55 |  |  |  |
| PHE11 | ARG5 | 11.58 | LYS7 | GLU14 | 5.83 |  |  |  |
| LYS12 | HIP6 | 9.55 |  |  |  |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | $\begin{array}{\|l} \text { accepto } \\ \mathrm{r} \end{array}$ | occupanc y | donor | $\begin{aligned} & \text { accepto } \\ & \mathrm{r} \\ & \hline \end{aligned}$ | occupanc y | donor | $\begin{array}{\|l} \text { accepto } \\ \text { r } \\ \hline \end{array}$ | occupanc $\mathrm{y}$ |
| LYS8 | SER4 | 38.20 | HIP6 | THR3 | 14.28 | $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | HIP6 | 27.35 |
| $\begin{aligned} & \text { MET1 } \\ & 0 \end{aligned}$ | HIP6 | 40.33 | ARG5 | SER2 | 22.87 | LEU9 | ARG5 | 50.29 |
| GLU14 | LYS8 | 13.53 | PHE11 | LYS8 | 7.44 | LYS8 | SER4 | 38.23 |
| PHE11 | LYS7 | 31.49 | LYS12 | LYS8 | 12.82 | LYS7 | THR3 | 32.22 |
| LYS7 | THR3 | 29.21 | LYS8 | SER4 | 25.78 | HIP6 | SER2 | 30.96 |
| HIP6 | SER2 | 29.39 | LEU9 | ARG5 | 49.56 | ARG5 | SER2 | 29.42 |
| LYS7 | SER4 | 16.40 | LYS7 | SER4 | 9.99 | HIP6 | THR3 | 19.45 |
| LYS12 | LYS8 | 26.66 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | HIP6 | 14.20 | PHE11 | LYS7 | 10.45 |
| $\begin{aligned} & \text { MET1 } \\ & 0 \end{aligned}$ | LYS7 | 5.56 | PHE11 | LYS7 | 11.89 | LEU9 | HIP6 | 7.38 |
| HIP6 | THR3 | 14.26 | LYS7 | THR3 | 17.67 | PHE11 | LYS8 | 7.84 |
| LEU9 | ARG5 | 49.13 | HIP6 | GLU14 | 15.49 | LYS12 | MET10 | 5.83 |
| PHE11 | LYS8 | 12.51 | LYS12 | LEU9 | 31.28 | $\begin{aligned} & \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | LYS7 | 10.40 |
| THR13 | LYS8 | 9.22 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 9.54 | THR13 | MET10 | 14.66 |


| ARG5 | SER2 | 20.53 | HIP6 | SER2 | 10.93 | GLU14 | MET10 | 5.55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYS8 | ARG5 | 8.69 | LYS8 | ARG5 | 14.57 | LYS7 | SER4 | 16.11 |
| LYS12 | LEU9 | 6.05 | SER4 | LEU9 | 7.38 | LYS8 | ARG5 | 7.02 |
|  |  |  |  |  |  | LYS12 | LEU9 | 8.69 |
|  |  |  |  |  |  | LYS12 | LYS8 | 6.43 |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | accepto $\mathrm{r}$ | occupanc <br> y | donor | accepto $\mathrm{r}$ | occupanc <br> y | donor | accepto $\mathrm{r}$ | occupanc y |
| HIP6 | THR3 | 19.44 | LYS8 | SER4 | 37.49 | LYS7 | SER4 | 15.62 |
| LYS7 | SER4 | 17.64 | ARG5 | SER2 | 27.67 | ARG5 | SER2 | 26.13 |
| LYS7 | THR3 | 22.91 | HIP6 | THR3 | 20.23 | HIP6 | SER2 | 21.54 |
| LYS12 | HIP6 | 7.93 | THR13 | MET10 | 11.03 | LYS8 | ARG5 | 10.52 |
| LEU9 | ARG5 | 29.21 | LYS7 | SER4 | 13.52 | LEU9 | HIP6 | 9.86 |
| $\begin{aligned} & \text { MET1 } \\ & 0 \end{aligned}$ | HIP6 | 15.89 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 7.60 | PHE11 | LYS8 | 11.46 |
| LYS8 | SER4 | 29.77 | LYS8 | ARG5 | 5.23 | LYS7 | THR3 | 24.13 |
| LYS12 | LEU9 | 9.82 | LEU9 | ARG5 | 14.12 | THR13 | MET10 | 11.60 |
| THR13 | MET10 | 16.21 | LYS7 | THR3 | 18.48 | HIP6 | THR3 | 24.56 |
| GLU14 | PHE11 | 6.13 | LEU9 | HIP6 | 7.54 | LYS12 | LEU9 | 18.98 |
| ARG5 | SER2 | 25.74 | LYS12 | LEU9 | 14.41 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | LYS7 | 10.58 |
| $\begin{aligned} & \hline \text { MET1 } \\ & 0 \\ & \hline \end{aligned}$ | LYS7 | 12.90 | PHE11 | LYS8 | 6.22 | GLU14 | MET10 | 5.80 |
| PHE11 | LYS7 | 10.62 | HIP6 | SER2 | 9.16 | GLU14 | PHE11 | 5.52 |
| PHE11 | LYS8 | 6.78 | GLU14 | PHE11 | 7.42 | LYS12 | LYS8 | 9.79 |
| LYS8 | ARG5 | 11.38 | $\begin{array}{\|l\|} \hline \text { MET1 } \\ 0 \end{array}$ | ARG5 | 6.22 | THR13 | LEU9 | 7.52 |
| LEU9 | HIP6 | 10.88 | LEU9 | SER4 | 6.50 | LYS8 | SER4 | 28.69 |
| SER4 | MET10 | 5.58 | PHE11 | ARG5 | 12.00 | THR13 | LYS8 | 5.59 |
|  |  |  |  |  |  | $\begin{array}{\|l} \hline \text { MET1 } \\ 0 \\ \hline \end{array}$ | HIP6 | 19.31 |
|  |  |  |  |  |  | LEU9 | ARG5 | 29.52 |
|  |  |  |  |  |  | PHE11 | LYS7 | 22.55 |

Salt bridge analysis of the 300.37 K trajectory extracted from REMD simulations of peptide ID3.

| ff96/ GB-HCT |  |  | ff96/ GB-OBC(II) |  |  | ff96/ GB-Neck2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 65.51 | ARG5 | GLU14 | 35.78 | / | 1 | / |
| HIP6 | GLU14 | 29.43 | HIP6 | GLU14 | 35.93 |  |  |  |
| LYS7 | GLU14 | 15.29 | LYS7 | GLU14 | 6.59 |  |  |  |
| LYS8 | GLU14 | 5.55 |  |  |  |  |  |  |
| LYS12 | GLU14 | 18.81 |  |  |  |  |  |  |
| ff99SB/ GB-HCT |  |  | ff99SB/ GB-OBC(II) |  |  | ff99SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 37.00 | ARG5 | GLU14 | 48.53 | / | 1 | / |


| HIP6 | GLU14 | 8.09 | HIP6 | GLU14 | 6.64 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LYS12 | GLU14 | 21.66 | LYS12 | GLU14 | 11.77 |  |  |  |
| ff99SBildn/ GB-HCT |  |  | ff99SBildn/ GB-OBC(II) |  |  | ff99SBildn/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 42.41 | ARG5 | GLU14 | 60.05 | / | 1 | / |
| HIP6 | GLU14 | 5.33 | HIP6 | GLU14 | 14.59 |  |  |  |
| LYS7 | GLU14 | 5.06 | LYS12 | GLU14 | 5.25 |  |  |  |
| LYS8 | GLU14 | 13.73 |  |  |  |  |  |  |
| LYS12 | GLU14 | 28.53 |  |  |  |  |  |  |
| ff99SBildn- $\varphi /$ GB-HCT |  |  | ff99SBildn- $\varphi /$ GB-OBC(II) |  |  | ff99SBildn- $\varphi /$ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 35.82 | ARG5 | GLU14 | 56.98 | 1 | 1 | / |
| HIP6 | GLU14 | 20.02 | HIP6 | GLU14 | 9.06 |  |  |  |
| LYS12 | GLU14 | 25.21 | LYS12 | GLU14 | 14.71 |  |  |  |
| ff12SB/ GB-HCT |  |  | ff12SB/ GB-OBC(II) |  |  | ff12SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 47.60 | ARG5 | GLU14 | 51.19 | HIP6 | GLU14 | 20.19 |
| HIP6 | GLU14 | 6.02 | LYS12 | GLU14 | 9.82 |  |  |  |
| LYS8 | GLU14 | 27.77 |  |  |  |  |  |  |
| LYS12 | GLU14 | 28.10 |  |  |  |  |  |  |
| ff14SB/ GB-HCT |  |  | ff14SB/ GB-OBC(II) |  |  | ff14SB/ GB-Neck2 |  |  |
| donor | acceptor | occ\% | donor | acceptor | occ\% | donor | acceptor | occ\% |
| ARG5 | GLU14 | 42.49 | ARG5 | GLU14 | 93.63 | 1 | 1 | / |
| HIP6 | GLU14 | 8.69 |  |  |  |  |  |  |
| LYS7 | GLU14 | 5.26 |  |  |  |  |  |  |
| LYS8 | GLU14 | 11.09 |  |  |  |  |  |  |

ANNEX 5.A. Additional information about QM calculations

Cartesian coordinates (pdb format) and energies (a.u.) of all structures optimized at the MPW1B95/6$31+G(d, p)$ level with the CPCM solvent model for water. $310 \mathrm{R}=$ right-handed 310 helix; $310 \mathrm{~L}=$ lefthanded $3_{10}$ helix; ext $=$ extended. Vibrational analysis has been conducted at standard conditions ( $\mathrm{T}=298.15 \mathrm{~K} ; \mathrm{P}=1 \mathrm{~atm}$ )
COMPND Ac-L-Ala-R-I-L-Ala-Aib-L-Ala-NHMe_310R
REMARK Energy(ZPE)=-1735.026859
REMARK \#IF = 0

| ATOM | C P01 | 1 | 5.632 | 63 | -1.911 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 2 H P01 | 1 | 5.339 | -1.678 | -2.841 |
| ATOM | 3 H P01 | 1 | 6.582 | -1.756 | -1.572 |
| TOM | 4 H P01 | 1 | 5.755 | -3.227 | -2.117 |
| TOM | 5 C P01 | 1 | 4.531 | -1.998 | -0.910 |
| ATOM | 6 O P01 | 1 | 3.361 | -2.299 | -1.161 |
| ATOM | 7 N P01 | 1 | 4.865 | -1.488 | 0.295 |
| ATOM | 8 H P01 | 1 | 5.834 | -1.303 | 0.500 |
| ATOM | 9 C P01 | 1 | 3.908 | -1.455 | 1.379 |
| TOM | 10 H P01 | 1 | 3.482 | -2.452 | 1.513 |
| TOM | 11 C P01 | 1 | 4.579 | -1.005 | 2.667 |
| TOM | 12 H P01 | 1 | 5.012 | -0.010 | 2.558 |
| ATOM | 13 H P01 | 1 | 3.848 | -0.980 | 3.473 |
| ATOM | 14 H P01 | 1 | 5.367 | -1.706 | 2.942 |
| ATOM | 15 C P01 | 1 | 2.709 | -0.570 | 1.071 |
| ATOM | 16 O P01 | 1 | 1.625 | -0.784 | 1.612 |
| TOM | $17 \mathrm{~N} \mathrm{P01}$ | 1 | 2.898 | 0.439 | 0.203 |
| OM | 18 H P01 | 1 | 3.81 | 0.547 | -0.205 |
| OM | 19 C P01 | 1 | 1.836 | 1.35 | -0.189 |
| TOM | 20 C P01 | 1 | 1.379 | 2.168 | 1.033 |
| TOM | 21 H P01 | 1 | 2.256 | 2.343 | 1.662 |
| TOM | 22 H P01 | 1 | 0.706 | 1.552 | 1.626 |
| ATOM | 23 C P01 | 1 | 0.685 | 3.486 | 0.745 |
| ATOM | 24 H P01 | 1 | 0.020 | 3.744 | 1.565 |
| ATOM | 25 H P01 | 1 | 0.102 | 3.464 | -0.173 |
| ATOM | 26 N P01 | 1 | 1.657 | 4.622 | 0.640 |
| ATOM | 27 H P01 | 1 | 2.269 | 4.606 | 57 |
| TOM | 28 H P01 | 1 | 1.1 | 5.4 | 0.714 |
| TOM | 29 C P01 | 1 | 2.487 | 4.68 | -0.601 |
| TOM | 30 H P01 | 1 | 1.804 | 4.918 | -1.415 |
| TOM | 31 H P01 | 1 | 3.170 | 5.516 | -0.467 |
| ATOM | 32 C P01 | 1 | 3.244 | 3.400 | -0.893 |
| ATOM | 33 H P01 | 1 | 3.922 | 3.647 | -1.711 |
| TOM | 34 H P01 | 1 | 3.883 | 3.127 | -0.049 |
| TOM | 35 C P01 | 1 | 2.359 | 2.235 | -1.333 |
| TOM | 36 H P01 | 1 | 2.900 | 1.593 | -2.030 |
| ATOM | 37 H P01 | 1 | 1.502 | 2.622 | -1.889 |
| ATOM | 38 C P01 | 1 | 0.633 | 0.580 | -0.748 |
| ATOM | 39 O P01 | 1 | -0.485 | 1.100 | -0.719 |
| ATOM | $40 \mathrm{~N} \mathrm{P01}$ | 1 | 0.853 | -0.617 | -1.302 |
| ATOM | 41 H P01 | 1 | 1.773 | -1.048 | -1.258 |
| ATOM | 42 C P01 | 1 | -0.236 | -1.353 | -1.904 |
| ATOM | 43 H P01 | 1 | -0.726 | -0.712 | -2.640 |
| ATOM | 44 C P01 | 1 | 0.284 | -2.609 | -2.584 |
| ATOM | 45 H P01 | 1 | 0.794 | -3.257 | 1.871 |
| ATOM | 46 H P01 |  | -0.54 |  | -3.028 |


| ATOM | 47 | P01 |  | 0.987 | -2.342 | -3.374 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OM | 48 C | P01 | 1 | -1.34 | -1.70 | 3 |
| ATOM | 49 O | P01 | 1 | -2.473 | -1.95 | -1.342 |
| ATOM | 50 N | P01 | 1 | -1.033 | -1.71 | 0.389 |
| ATOM | 51 H | P01 | 1 | -0.091 | -1.463 | 0.672 |
| ATOM | 52 C | P01 | 1 | -2.004 | -1.99 | 1.439 |
| OM | 53 C | P01 |  | -1.32 | -1.73 | 82 |
| ATOM | 54 H | P01 |  | -0.49 | -2.42 | 2.919 |
| M | 55 H | P01 |  | -0.93 | -0.713 | 5 |
| ATOM | 56 H | P01 | 1 | -2.039 | -1.885 | 3.589 |
| ATOM | 57 C | P01 | 1 | -2.484 | -3.44 | 1.369 |
| ATOM | 58 H | P01 | 1 | -3.196 | -3.63 | 2.169 |
| ATOM | 59 H | P01 | 1 | -2.96 | -3.64 | 0.414 |
| OM | 60 H | P01 | 1 | -1.62 | -4.10 | 1.487 |
| ATOM | 61 C | P01 | 1 | -3.20 | -1.03 | 1.350 |
| OM | 62 O | P01 | 1 | -4.293 | -1.35 | 1.822 |
| TOM | 63 N | P01 | 1 | -2.978 | 0.17 | 0.812 |
| ATOM | 64 H | P01 | 1 | -2.075 | 0.394 | 0.404 |
| ATOM | 65 C | P01 | 1 | -4.016 | 1.179 | 0.765 |
| ATOM | 66 H | P01 | 1 | -4.610 | 1.08 | 1.67 |
| ATOM | 67 C | P01 | 1 | -3.406 | 2.57 | 0.692 |
| M | 68 H | P01 |  | -2.779 | 2.67 | -0.194 |
| M | 69 H | P01 | 1 | -4.19 | 3.3 | 0.649 |
| ATOM | 70 H | P01 |  | -2.795 | 2.757 | 1.575 |
| ATOM | 71 C | P01 |  | -5.010 | 0.98 | -0.380 |
| ATOM | 72 O | P01 | 1 | -6.012 | 1.70 | $-0.444$ |
| ATOM | 73 N | P01 | 1 | -4.733 | 0.03 | -1.279 |
| ATOM | 74 H | P01 | 1 | -3.911 | -0.54 | 57 |
| ATOM | 75 C | P01 | 1 | -5.613 | -0.22 | 92 |
| ATOM | 76 H | P01 |  | -6.595 | -0.552 | 2.049 |
| ATOM | 77 H | P01 | 1 | -5.749 | 0.675 | -2.997 |
| ATOM | 78 H | P01 | 1 | -5.173 | -1.002 | -3.008 |

END

COMPND Ac-L-Ala-R-II-L-Ala-Aib-L-Ala-NHMe_310R
REMARK Energy $($ ZPE $)=-1792.373533$
REMARK \#IF $=0$

| ATOM |  | C | P02 | 1 | 5.965 | -1.967 | -1.698 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 2 | H | P02 | 1 | 5.647 | -1.601 | -2.675 |
| ATOM | 3 | H | P02 | 1 | 6.883 | -1.462 | -1.407 |
| ATOM | 4 | H | P02 | 1 | 6.157 | -3.035 | -1.792 |
| (0M | 5 | C | P02 | 1 | 4.846 | -1.76 | -0.723 |
| ( | 6 | O | P0 | 1 | 3.72 | -2.258 | -0.894 |
| ATOM | 7 | N | P02 | 1 | 5.099 | -0.998 | 0.358 |
| ATOM | 8 | H | P02 | 1 | 6.033 | -0.654 | 0.513 |
| ATOM | 9 | C | P02 | 1 | 4.123 | -0.868 | 1.419 |
| ATOM | 10 | H | P02 | 1 | 3.82 | -1.86 | 1.753 |
| ATOM | 11 | C | P02 | 1 | 4.70 | -0.089 | 2.586 |
| TOM | 12 | H | P02 | 1 | 5.01 | 0.912 | 2.278 |
| TOM | 13 | H | P02 | 1 | 3.966 | 0.001 | 3.377 |
| ATOM | 14 | H | P02 | 1 | 5.575 | -0.612 | 2.989 |
| ATOM | 15 | C | P02 | 1 | 2.830 | -0.223 | 0.940 |
| ATOM | 16 | O | P02 | 1 | 1.768 | -0.466 | 1.514 |
| ATOM | 17 | N | P02 | 1 | 2.922 | 0.611 | -0.106 |
| M | 18 | H | P02 | 1 | 3.838 | 0.767 | -0.500 |
| ATOM | 19 | C | P02 | 1 | 1.793 | 1.276 | -0.723 |
| ATOM | 20 | C | P02 | 1 | 2.218 | 1.905 | -2.072 |
| ATOM | 21 | H | P02 | 1 | 2.216 | 1.182 | -2.888 |
| ATOM | 22 | H | P02 | 1 | 3.237 | 2.281 | -1.954 |
| ATOM | 23 | C | P02 | 1 | 1.266 | 3.083 | -2.277 |
| ATOM | 24 | H | P02 | 1 | 1.707 | 3.8 | -2.884 |



| ATOM | 65 C | P03 |  | 4.023 | -1.881 | 0.335 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 66 H | P03 | 1 | 4.484 | -2.239 | 1.257 |
| ATOM | 67 C | P03 | 1 | 3.253 | -3.016 | -0.323 |
| ATOM | 68 H | P03 | 1 | 2.770 | -2.682 | -1.241 |
| ATOM | 69 H | P03 | 1 | 3.939 | -3.826 | -0.564 |
| ATOM | 70 H | P03 | 1 | 2.487 | -3.393 | 0.355 |
| ATOM | 71 C | P03 | 1 | 5.193 | -1.464 | -0.557 |
| ATOM | 72 O | P03 | 1 | 6.092 | -2.276 | -0.792 |
| ATOM | 73 N | P03 |  | 5.180 | -0.230 | -1.065 |
| ATOM | 74 H | P03 |  | 4.439 | 0.415 | -0.817 |
| ATOM | 75 C | P03 |  | 6.248 | 0.236 | -1.917 |
| ATOM | 76 H | P03 |  | 6.355 | -0.407 | -2.791 |
| ATOM | 77 H | P03 |  | 6.016 | 1.246 | -2.246 |
| ATOM | 78 H | P03 | 1 | 7.201 | 0.247 | -1.384 |
| END |  |  |  |  |  |  |

COMPND Ac-L-Ala-RSR-IIIb-L-Ala-Aib-L-AlaNHMe_310R
REMARK Energy $(Z P E)=-1905.640304$
REMARK \#IF = 0

| ATOM | 1 |  | P04 |  | -5.843 | -1.372 | 2.206 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 2 | H | P04 | 1 | -5.492 | -0.677 | 2.967 |
| TOM | 3 | H | P04 | 1 | -6.755 | -0.986 | 1.756 |
| TOM | 4 | H | P04 | 1 | -6.064 | -2.320 | 2.698 |
| ATOM | 5 | C | P04 | 1 | -4.747 | -1.598 | 1.212 |
| ATOM | 6 | O | P04 | 1 | -3.605 | -1.921 | 1.552 |
| OM | 7 | N | P04 | 1 | -5.049 | -1.422 | -0.092 |
| TOM | 8 | H | P04 | 1 | -6.000 | -1.217 | -0.355 |
| TOM | 9 | C | P04 | 1 | -4.101 | -1.773 | -1.127 |
| TOM | 10 | H | P04 | 1 | -3.775 | -2.805 | -0.980 |
| ATOM | 11 | C | P04 | 1 | -4.733 | -1.624 | -2.501 |
| ATOM | 12 | H | P04 |  | -5.066 | -0.600 | -2.674 |
| ATOM | 13 | H | P04 |  | -4.009 | -1.889 | -3.269 |
| TOM | 14 | H | P04 | 1 | -5.589 | -2.293 | -2 |
| ATOM | 15 | C | P04 | 1 | -2.821 | -0.954 | -1.039 |
| ATOM | 16 | O | P04 | 1 | -1.765 | -1.401 | -1.489 |
| ATOM | 17 | N | P04 |  | -2.906 | 0.257 | -0.468 |
| ATOM | 18 | H | P04 | 1 | -3.815 | 0.592 | -0.184 |
| ATOM | 19 | C | P04 | 1 | -1.764 | 1.138 | -0.349 |
| ATOM | 20 | C | P04 | 1 | -1.329 | 1.708 | -1.720 |
| ATOM | 21 | H | P04 |  | -1.871 | 1.200 | -2. |
| ATOM | 22 | H | P04 |  | -0.260 | 1.606 | -1.885 |
| ATOM | 23 | C | P04 | 1 | -1.773 | 3.181 | -1.596 |
| ATOM | 24 | H | P04 | 1 | -2.030 | 3.678 | -2.526 |
| ATOM | 25 | O | P04 | 1 | -2.930 | 3.066 | -0.746 |
| ATOM | 26 | C | P04 | 1 | -2.269 | 2.445 | 0.354 |
| ATOM | 27 | H | P04 | 1 | -2.951 | 2.268 | 1.183 |
| ATOM | 28 | C | P04 | 1 | -1.112 | 3.374 | 0.590 |
| ATOM | 29 | C | P04 | 1 | -0.802 | 3.868 | -0.675 |
| ATOM | 30 | C | P04 | 1 | -0.393 | 3.744 | 1.708 |
| ATOM | 31 | H | P04 | 1 | -0.629 | 3.354 | 2.691 |
| ATOM | 32 | C | P04 | 1 | 0.250 | 4.743 | -0.862 |
| ATOM | 33 | H | P04 |  | 0.506 | 5.122 | -1.843 |
| ATOM | 34 | C | P04 | 1 | 0.655 | 4.650 | 1.531 |
| ATOM | 35 | H | P04 | 1 | 1.228 | 4.979 | 2.389 |
| ATOM | 36 | C | P04 | 1 | 0.972 | 5.138 | 0.267 |
| ATOM | 37 | H | P04 | 1 | 1.787 | 5.843 | 0.159 |
| ATOM | 38 | C | P04 | 1 | -0.627 | 0.466 | 0.415 |
| ATOM | 39 | O | P04 | 1 | 0.540 | 0.826 | 0.253 |
| ATOM | 40 | N | P04 | 1 | -0.958 | -0.494 | 1.292 |
| ATOM | 41 | H | P04 |  | -1.915 | -0.827 | 1.369 |

$\left.\begin{array}{llllllll}\text { ATOM } & 42 & \text { C } & \text { P04 } & 1 & 0.070 & -1.147 & 2.070 \\ \text { ATOM } & 43 & \text { H } & \text { P04 } & 1 & 0.626 & -0.392 & 2.630 \\ \text { ATOM } & 44 & \text { C } & \text { P04 } & 1 & -0.553 & -2.144 & 3.035 \\ \text { ATOM } & 45 & \text { H } & \text { P04 } & 1 & -1.130 & -2.897 & 2.498 \\ \text { ATOM } & 46 & \text { H } & \text { P04 } & 1 & 0.230 & -2.638 & 3.608 \\ \text { ATOM } & 47 & \text { H } & \text { P04 } & 1 & -1.217 & -1.628 & 3.728 \\ \text { ATOM } & 48 & \text { C } & \text { P04 } & 1 & 1.129 & -1.833 & 1.212 \\ \text { ATOM } & 49 & \text { O } & \text { P04 } & 1 & 2.251 & -2.033 & 1.690 \\ \text { ATOM } & 50 & \text { N } & \text { P04 } & 1 & 0.791 & -2.198 & -0.031 \\ \text { ATOM } & 51 & \text { H } & \text { P04 } & 1 & -0.132 & -1.961 & -0.384 \\ \text { ATOM } & 52 & \text { C } & \text { P04 } & 1 & 1.722 & -2.847 & -0.947 \\ \text { ATOM } & 53 & \text { C } & \text { P04 } & 1 & 1.050 & -2.923 & -2.318 \\ \text { ATOM } & 54 & \text { H } & \text { P04 } & 1 & 0.155 & -3.542 & -2.258 \\ \text { ATOM } & 55 & \text { H } & \text { P04 } & 1 & 0.764 & -1.934 & -2.676 \\ \text { ATOM } & 56 & \text { H } & \text { P04 } & 1 & 1.738 & -3.374 & -3.032 \\ \text { ATOM } & 57 & \text { C } & \text { P04 } & 1 & 2.079 & -4.247 & -0.464 \\ \text { ATOM } & 58 & \text { H } & \text { P04 } & 1 & 2.764 & -4.716 & -1.167 \\ \text { ATOM } & 59 & \text { H } & \text { P04 } & 1 & 2.551 & -4.212 & 0.516 \\ \text { ATOM } & 60 & \text { H } & \text { P04 } & 1 & 1.169 & -4.845 & -0.401 \\ \text { ATOM } & 61 & \text { C } & \text { P04 } & 1 & 2.998 & -2.007 & -1.123 \\ \text { ATOM } & 62 & \text { O } & \text { P04 } & 1 & 4.053 & -2.539 & -1.465 \\ \text { ATOM } & 63 & \text { N } & \text { P04 } & 1 & 2.875 & -0.676 & -0.971 \\ \text { ATOM } & 64 & \text { H } & \text { P04 } & 1 & 2.000 & -0.280 & -0.642 \\ \text { ATOM } & 65 & \text { C } & \text { P04 } & 1 & 3.987 & 0.216 & -1.197 \\ \text { ATOM } & 66 & \text { H } & \text { P04 } & 1 & 4.584 & -0.199 & -2.011 \\ \text { ATOM } & 67 & \text { C } & \text { P04 } & 1 & 3.489 & 1.600 & -1.587 \\ \text { ATOM } & 68 & \text { H } & \text { P04 } & 1 & 2.855 & 2.023 & -0.807 \\ \text { ATOM } & 69 & \text { H } & \text { P04 } & 1 & 4.340 & 2.261 & -1.742 \\ \text { ATOM } & 70 & \text { H } & \text { P04 } & 1 & 2.913 & 1.544 & -2.510 \\ \text { ATOM } & 71 & \text { C } & \text { P04 } & 1 & 4.951 & 0.322 & -0.015 \\ \text { ATOM } & 72 & \text { O } & \text { P04 } & 1 & 5.992 & 0.975 & -0.140 \\ \text { ATOM } & 73 & \text { N } & \text { P04 } & 1 & 4.615 & -0.294 & 1.120 \\ \text { ATOM } & 74 & \text { H } & \text { P04 } & 1 & 3.764 & -0.842 & 1.171 \\ \text { ATOM } & 75 & \text { C } & \text { P04 } & 1 & 5.476 & -0.240 & 2.277 \\ \text { ATOM } & 76 & \text { H } & \text { P04 } & 1 & 6.445 & -0.699 & 2.068 \\ \text { ATOM } & 77 & \text { H } & \text { P04 } & 1 & 5.649 & 0.792 & 2.584 \\ \text { ATOM } & 78 & \text { H } & \text { P04 } & 1 & 4.998 & -0.778 & 3.092 \\ \text { END } & & & & & & & \\ & & & & & & & \end{array}\right]$

COMPND Ac-L-Ala-SRR-IV-L-Ala-Aib-L-AlaNHMe_310R
REMARK Energy $($ ZPE $)=-1717.366164$
REMARK \#IF $=0$

| ATOM | C P05 | 1 | 5.683 | -2.068 | -1.874 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 2 H P05 | 1 | 5.385 | -1.658 | -2.838 |
| ATOM | 3 H P05 | 1 | 6.609 | -1.596 | -1.551 |
| ATOM | 4 H P05 | 1 | 5.856 | -3.136 | -2.007 |
| ATOM | 5 C P05 | 1 | 4.559 | -1.885 | -0.900 |
| ATOM | 6 O P05 | 1 | 3.408 | -2.255 | -1.147 |
| ATOM | 7 N P05 | 1 | 4.853 | -1.279 | 0.271 |
| ATOM | 8 H P05 | 1 | 5.810 | -1.036 | 0.471 |
| ATOM | 9 C P05 | 1 | 3.881 | -1.204 | 1.339 |
| ATOM | 10 H P05 | 1 | 3.466 | -2.200 | 1.514 |
| ATOM | 11 C P05 | 1 | 4.533 | -0.690 | 2.614 |
| ATOM | $12 \mathrm{H} \mathrm{P05}$ | 1 | 4.961 | 0.302 | 2.463 |
| ATOM | 13 H P05 | 1 | 3.791 | -0.632 | 3.407 |
| ATOM | 14 H P05 | 1 | 5.324 | -1.370 | 2.931 |
| ATOM | 15 C P05 | 1 | 2.675 | -0.346 | 0.981 |
| ATOM | 16 O P05 | 1 | 1.608 | -0.506 | 1.576 |
| ATOM | 17 N P05 | 1 | 2.836 | 0.570 | 0.016 |
| ATOM | $18 \mathrm{H} \mathrm{P05}$ | 1 | 3.748 | 0.654 | -0.407 |


| ATOM | 19 C | P05 |  | 1.771 | 1.456 | -0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 20 C | P05 |  | 1.340 | 2.494 | 0.659 |
| ATOM | 21 H | P05 | 1 | 0.610 | 2.092 | 1.359 |
| TOM | 22 C | P05 | 1 | 2.273 | 2.368 | -1.575 |
| ATOM | 23 H | P05 | 1 | 3.272 | 2.077 | -1.909 |
| TOM | 24 H | P05 | 1 | 1.606 | 2.292 | -2.435 |
| TOM | 25 C | P05 | 1 | 3.251 | 3.873 | 0.155 |
| ATOM | 26 H | P05 | 1 | 3.417 | 4.914 | 0.439 |
| ATOM | 27 H | P05 | 1 | 4.217 | 3.462 | -0.146 |
| ATOM | 28 C | P05 | 1 | 2.598 | 3.073 | 1.309 |
| TOM | 29 H | P05 | 1 | 3.256 | 2.315 | 1.732 |
| ATOM | 30 H | P05 | 1 | 2.299 | 3.734 | 2.124 |
| ATOM | 31 C | P05 | 1 | 2.214 | 3.771 | -0.972 |
| ATOM | 32 H | P05 | 1 | 2.286 | 4.559 | -1.721 |
| ATOM | 33 C | P05 | 1 | 0.898 | 3.684 | -0.200 |
| ATOM | 34 H | P05 | 1 | 0.039 | 3.464 | -0.832 |
| ATOM | 35 H | P05 | 1 | 0.693 | 4.569 | 0.406 |
| ATOM | 36 C | P05 | 1 | 0.574 | 0.629 | -0.883 |
| ATOM | 37 O | P05 | 1 | -0.568 | 1.096 | -0.871 |
| ATOM | 38 N | P05 | 1 | 0.817 | -0.605 | -1.353 |
| ATOM | 39 H | P05 | 1 | 1.749 | -1.002 | -1.308 |
| ATOM | 40 C | P05 | 1 | -0.266 | -1.406 | -1.875 |
| ATOM | 41 H | P05 | 1 | -0.779 | -0.840 | -2.656 |
| ATOM | 42 C | P05 | 1 | 0.266 | -2.707 | -2.453 |
| ATOM | 43 H | P05 | 1 | 0.788 | -3.289 | -1.693 |
| ATOM | 44 H | P05 | 1 | -0.560 | -3.298 | -2.845 |
| ATOM | 45 H | P05 | 1 | 0.960 | -2.499 | -3.267 |
| ATOM | 46 C | P05 | 1 | -1.354 | -1.689 | -0.843 |
| ATOM | 47 O | P05 | 1 | -2.493 | -1.967 | -1.231 |
| ATOM | 48 N | P05 | 1 | -1.015 | -1.62 | 0.452 |
| ATOM | 49 H | P05 | 1 | -0.073 | -1.341 | 0.702 |
| ATOM | 50 C | P05 | 1 | -1.962 | -1.863 | 1.534 |
| ATOM | 51 C | P05 | 1 | -1.257 | -1.530 | 2.849 |
| ATOM | 52 H | P05 | 1 | -0.413 | -2.20 | 2.996 |
| ATOM | 53 H | P05 | 1 | -0.886 | -0.505 | 2.851 |
| ATOM | 54 H | P05 | 1 | -1.954 | -1.659 | 3.676 |
| ATOM | 55 C | P05 | 1 | -2.436 | -3.311 | 1.546 |
| ATOM | 56 H | P05 | 1 | -3.135 | -3.464 | 2.365 |
| ATOM | 57 H | P05 | 1 | -2.929 | -3.566 | 0.610 |
| ATOM | 58 H | P05 | 1 | -1.575 | -3.965 | 1.687 |
| ATOM | 59 C | P05 | 1 | -3.167 | -0.913 | 1.427 |
| ATOM | 60 O | P05 | 1 | -4.245 | -1.209 | 1.939 |
| ATOM | 61 N | P05 | 1 | -2.954 | 0.273 | 0.828 |
| ATOM | 62 H | P05 | 1 | -2.063 | 0.467 | 0.381 |
| ATOM | 63 C | P05 | 1 | -3.990 | 1.278 | 0.764 |
| ATOM | 64 H | P05 | 1 | -4.558 | 1.229 | 1.696 |
| ATOM | 65 C | P05 | 1 | -3.379 | 2.662 | 0.610 |
| ATOM | 66 H | P05 | 1 | -2.801 | 2.732 | -0.313 |
| ATOM | 67 H | P05 | 1 | -4.169 | 3.409 | 0.584 |
| ATOM | 68 H | P05 | 1 | -2.718 | 2.876 | 1.449 |
| ATOM | 69 C | P05 | 1 | -5.016 | 1.034 | -0.343 |
| ATOM | 70 O | P05 | 1 | -6.019 | 1.750 | -0.413 |
| ATOM | 71 N | P05 | 1 | -4.760 | 0.051 | -1.208 |
| ATOM | 72 H | P05 | 1 | -3.936 | -0.522 | -1.079 |
| ATOM | 73 C | P05 | 1 | -5.667 | -0.257 | -2.287 |
| ATOM | 74 H | P05 | 1 | -6.637 | -0.580 | -1.906 |
| ATOM | 75 H | P05 | 1 | -5.825 | 0.616 | -2.921 |
| ATOM | 76 H | P05 | 1 | -5.238 | -1.057 | -2.884 |
| END |  |  |  |  |  |  |

COMPND Ac-L-Ala-SRR-IV-L-Ala-Aib-L-Ala-NHMe_ext

REMARK Energy $($ ZPE $)=-1717.338937$
REMARK \#IF = 0

| ATOM | C P05 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TOM | H P05 | 1 | 10.4 | -2 | -0.357 |
| TOM | H P05 |  | 9.707 | -2.802 | -1.827 |
| TOM | H P05 |  | 9.805 | -1.064 | -1.484 |
| OM | C P05 |  | 8.378 | . | 9 |
| TOM | O P05 |  | 8.063 | -3.249 | 5 |
| TOM | N P05 | 1 | 7.585 | -1.108 | -0.255 |
| OM | 8 H P05 | 1 | 7.836 | -0.256 | -0.735 |
| TOM | 9 C P05 | 1 | 6.311 | -1.102 | 0.416 |
| OM | 10 H P05 |  | 5.808 | -2.049 | 0.203 |
| M | 11 C P05 |  | 6.467 | -0.949 | 1.928 |
| OM | $12 \mathrm{H} \mathrm{P05}$ |  | 6.940 | 0.005 | 2.167 |
| TOM | 13 H P05 |  | 5.502 | -0.998 | 2.433 |
| OM | 14 H P05 |  | 7.093 | -1.757 | 2.302 |
| OM | 15 C P05 | 1 | 5.503 | 0.057 | -0.171 |
| OM | 16 O P05 |  | 6.071 | 0.966 | -0.773 |
| OM | 17 N P05 |  | 4.186 | -0.015 | 0.078 |
| OM | $18 \mathrm{H} \mathrm{P05}$ |  | 3.893 | -0.8 | 74 |
| OM | 19 C P05 | 1 | 3.096 | 0.885 | -0.299 |
| OM | 20 C P05 | 1 | 2.806 | 1.984 | 0.746 |
| OM | 21 H P05 |  | 2.349 | 1.606 | 1.662 |
| OM | 22 C P05 | 1 | 3.318 | 1.722 | -1.599 |
| OM | 23 H P 05 |  | 4.302 | 1.55 | -2.025 |
| TOM | $24 \mathrm{H} \mathrm{P05}$ |  | 2.573 | 1.436 | -2.343 |
| OM | 25 C P05 | 1 | 4.289 | 3.604 | -0.274 |
| OM | 26 H P 05 |  | 4.237 | 4.676 | -0.071 |
| OM | 27 H P05 |  | 5.245 | 3.394 | -0.751 |
| OM | 28 C P05 | 1 | 4.085 | 2.784 | 1.021 |
| OM | $29 \mathrm{H} \mathrm{P05}$ |  | 4.934 | 2.147 | 1.265 |
| OM | 30 H P05 |  | 3.916 | 3.435 |  |
| OM | 31 C P05 | 1 | 3.103 | 3.166 | -1.138 |
| OM | 32 H P05 |  | 2.875 | 3.845 | 960 |
| OM | 33 C P05 | 1 | 2.005 | 2.993 | -0.087 |
| OM | 34 H P05 |  | 1.074 | 2.601 | -0.500 |
| TOM | 35 H P05 |  | 1.790 | 3.908 | 0.469 |
| OM | 36 C P05 | 1 | 1.921 | -0.081 | -0.567 |
| OM | 37 O P05 |  | 2.028 | -0.942 | -1.440 |
| OM | 38 N P05 |  | 0.817 | 0.052 | 0.175 |
| OM | $39 \mathrm{H} \mathrm{P05}$ |  | 0.721 | 0.773 | 0.875 |
| OM | 40 C P05 | 1 | -0.357 | -0.760 | -0.033 |
| TOM | 41 H P 05 |  | -0.510 | -0.875 | -1.108 |
| ATOM | 42 C P05 | 1 | -0.211 | -2.140 | 0.604 |
| ATOM | 43 H P 05 |  | -0.087 | -2.05 | 1.684 |
| OM | 44 H P05 |  | -1.085 | -2.758 | 0.401 |
| OM | 45 H P05 |  | 0.667 | -2.632 | 0.187 |
| OM | 46 C P05 | 1 | -1.528 | 0.004 | 0.580 |
| OM | 47 O P05 |  | -1.325 | 0.891 | 1.412 |
| OM | 48 N P05 |  | -2.737 | -0.390 | 0.172 |
| OM | $49 \mathrm{H} \mathrm{P05}$ |  | -2.829 | -1.103 | -0.543 |
| OM | 50 C P05 |  | -4.006 | 0.128 | 0.657 |
| OM | 51 C P05 | 1 | -4.135 | 1.620 | 0.342 |
| OM | 52 H P 05 |  | -3.329 | 2.160 | 0.836 |
| OM | 53 H P05 |  | -4.071 | 1.794 | -0.733 |
| ATOM | 54 H P05 | 1 | -5.085 | 2.014 | 0.702 |
| ATOM | 55 C P05 | 1 | -4.156 | -0.137 | 2.157 |
| ATOM | 56 H P05 |  | -5.103 | 0.254 | 2.529 |
| ATOM | 57 H P05 | 1 | -4.114 | -1.206 | 2.366 |
| ATOM | 58 H P05 | 1 | -3.348 | 0.362 | 2.689 |
| ATOM | 59 C P05 |  | -5.068 | -0.60 | -0 |



| ATOM | 22 C P06 | 1 | 3.162 | $1.670-1.579$ | ATOM | 4 H | P07 | 1 | 7.212 | 0.526 | 1.721 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 23 H P06 | 1 | 4.044 | $1.430-2.160$ | ATOM | 5 C | C 07 | 1 | 5.473 | 0.004 | 0.639 |
| ATOM | 24 H P06 | 1 | 2.278 | $1.454-2.182$ | ATOM | 6 O | P07 | 1 | 4.641 | 0.873 | 0.915 |
| ATOM | 25 C P06 | 1 | 4.371 | $3.380-0.293$ | ATOM | 7 N | N P07 | 1 | 5.397 | -0.678 | -0.524 |
| ATOM | 26 H P06 | 1 | 5.246 | $3.910-0.644$ | ATOM | 8 H | - P07 | 1 | 6.120 | -1.343 | -0.752 |
| ATOM | 27 C P06 | 1 | 4.240 | $2.711 \quad 0.856$ | ATOM | 9 C | C P 07 | 1 | 4.455 | -0.299 | -1.555 |
| ATOM | 28 H P06 | 1 | 4.983 | 2.5751 .630 | ATOM | 10 H | H P07 | 1 | 4.552 | 0.773 | -1.746 |
| ATOM | 29 C P06 | 1 | 3.121 | 3.142-1.101 | ATOM | 11 C | C P07 | 1 | 4.725 | -1.076 | -2.833 |
| ATOM | 30 H P06 | 1 | 2.916 | $3.852-1.899$ | ATOM | 12 H | H P07 | 1 | 4.636 | -2.151 | -2.666 |
| ATOM | 31 C P06 | 1 | 2.081 | 3.0280 .019 | ATOM | 13 H | H P07 | 1 | 4.009 | -0.783 | -3.599 |
| ATOM | 32 H P06 | 1 | 1.116 | $2.661-0.336$ | ATOM | 14 H | H P07 | 1 | 5.728 | -0.859 | -3.199 |
| ATOM | 33 H P06 | 1 | 1.943 | 3.9550 .574 | ATOM | 15 C | C P07 | 1 | 3.006 | -0.475 | -1.120 |
| ATOM | 34 C P06 | 1 | 1.936 | -0.145 -0.369 | ATOM | 16 O | O P07 | 1 | 2.116 | 0.184 | -1.660 |
| ATOM | 35 O P06 | 1 | 2.050 | -1.121-1.108 | ATOM | 17 N | N P07 | 1 | 2.765 | -1.355 | -0.140 |
| ATOM | 36 N P06 | 1 | 0.823 | 0.0970 .333 | ATOM | 18 H | H P07 | 1 | 3.547 | -1.872 | 0.236 |
| ATOM | 37 H P06 | 1 | 0.725 | 0.9010 .936 | ATOM | 19 C | C P07 | 1 | 1.440 | -1.602 | 0.406 |
| ATOM | 38 C P06 | 1 | -0.352 | -0.732 0.216 | ATOM | 20 C | C P07 | 1 | 0.557 | -2.349 | -0.607 |
| ATOM | 39 H P06 | 1 | -0.481 | -0.994 -0.836 | ATOM | 21 H | H P07 | 1 | 0.165 | -1.631 | -1.330 |
| ATOM | 40 C P06 | 1 | -0.230 | -2.014 1.038 | ATOM | 22 H | H P07 | 1 | 1.210 | -3.032 | -1.161 |
| ATOM | 41 H P06 | 1 | -0.124 | -1.780 2.098 | ATOM | 23 C | C P07 | 1 | -0.548 | -3.095 | 0.058 |
| ATOM | 42 H P06 | 1 | -1.107 | -2.646 0.905 | ATOM | 24 C | C P07 | 1 | -0.643 | -3.268 | 1.409 |
| ATOM | 43 H P06 | 1 | 0.649 | -2.566 0.708 | ATOM | 25 C | C P07 | 1 | 0.329 | -2.750 | 2.402 |
| ATOM | 44 C P06 | 1 | -1.533 | 0.1120 .688 | ATOM | 26 H | H P07 | 1 | -0.067 | -1.852 | 2.888 |
| ATOM | 45 O P06 | 1 | -1.347 | 1.1131 .383 | ATOM | 27 H | H P07 | 1 | 0.517 | -3.478 | 3.193 |
| ATOM | 46 N P06 | 1 | -2.733 | $-0.340 \quad 0.314$ | ATOM | 28 C | C P07 | 1 | 1.637 | -2.438 | 1.685 |
| ATOM | 47 H P06 | 1 | -2.808 | -1.161-0.276 | ATOM | 29 H | H P07 | 1 | 2.320 | -1.911 | 2.354 |
| ATOM | 48 C P06 | 1 | -4.014 | 0.2430 .679 | ATOM | 30 H | H P07 | 1 | 2.118 | -3.375 | 1.389 |
| ATOM | 49 C P06 | 1 | -4.125 | 1.6720 .142 | ATOM | 31 N | N P07 | 1 | -1.788 | -3.962 | 1.711 |
| ATOM | 50 H P06 | 1 | -3.323 | 2.2740 .566 | ATOM | 32 H | H P07 | 1 | -2.075 | -4.236 | 2.635 |
| ATOM | 51 H P06 | 1 | -4.042 | $1.684-0.945$ | ATOM | 33 C | C P07 | 1 | -2.453 | -4.259 | 0.549 |
| ATOM | 52 H P06 | 1 | -5.077 | 2.1230 .424 | ATOM | 34 C | C P07 | 1 | -3.646 | -4.947 | 0.342 |
| ATOM | 53 C P06 | 1 | -4.211 | 0.2042 .196 | ATOM | 35 H | H P07 | 1 | -4.213 | -5.352 | 1.171 |
| ATOM | 54 H P06 | 1 | -5.173 | 0.6362 .474 | ATOM | 36 C | C P07 | 1 | -4.083 | -5.092 | -0.965 |
| ATOM | 55 H P06 | 1 | -4.169 | -0.821 2.564 | ATOM | 37 H | H P07 | 1 | -5.008 | -5.621 | -1.159 |
| ATOM | 56 H P06 | 1 | -3.423 | 0.7852 .672 | ATOM | 38 C | C P07 | 1 | -3.350 | -4.565 | -2.041 |
| ATOM | 57 C P06 | 1 | -5.054 | -0.664-0.003 | ATOM | 39 H | H P07 | 1 | -3.723 | -4.696 | -3.050 |
| ATOM | 58 O P06 | 1 | -4.713 | -1.653-0.655 | ATOM | 40 C | C P07 | 1 | -2.163 | -3.884 | -1.831 |
| ATOM | 59 N P06 | 1 | -6.333 | -0.319 0.160 | ATOM | 41 H | H P07 | 1 | -1.605 | -3.482 | -2.668 |
| ATOM | 60 H P06 | 1 | -6.609 | 0.5200 .653 | ATOM | 42 C | C P07 | 1 | -1.696 | -3.722 | -0.521 |
| ATOM | 61 C P06 | 1 | -7.414 | -1.069 -0.433 | ATOM | 43 C | C P07 | 1 | 0.798 | -0.267 | 0.808 |
| ATOM | 62 H P06 | 1 | -7.128 | -1.335 -1.454 | ATOM | 44 O | O P07 | 1 | -0.423 | -0.109 | 0.771 |
| ATOM | 63 C P06 | 1 | -7.713 | -2.346 0.350 | ATOM | 45 N | N P07 | 1 | 1.619 | 0.692 | 1.267 |
| ATOM | 64 H P06 | 1 | -8.034 | -2.106 1.365 | ATOM | 46 H | H P07 | 1 | 2.627 | 0.583 | 1.212 |
| ATOM | 65 H P06 | 1 | -8.496 | -2.928 -0.136 | ATOM | 47 C | C P07 | 1 | 1.078 | 1.930 | 1.780 |
| ATOM | 66 H P06 | 1 | -6.811 | -2.954 0.399 | ATOM | 48 H | H P07 | 1 | 0.362 | 1.700 | 2.572 |
| ATOM | 67 C P06 | 1 | -8.624 | -0.144 -0.466 | ATOM | 49 C | C P07 | 1 | 2.193 | 2.802 | 2.337 |
| ATOM | 68 O P06 | 1 | -8.651 | 0.8920 .200 | ATOM | 50 H | H P07 | 1 | 2.933 | 3.026 | 1.568 |
| ATOM | 69 N P06 | 1 | -9.648 | -0.545-1.224 | ATOM | 51 H | H P07 | 1 | 1.775 | 3.734 | 2.712 |
| ATOM | 70 H P06 | 1 | -9.554 | -1.382-1.774 | ATOM | 52 H | H P07 | 1 | 2.693 | 2.290 | 3.159 |
| ATOM | 71 C P06 | 1 | -10.877 | 0.212-1.305 | ATOM | 53 C | C P07 | 1 | 0.261 | 2.707 | 0.754 |
| ATOM | 72 H P06 | 1 | -10.702 | 1.194-1.745 | ATOM | 54 O | O P07 | 1 | -0.577 | 3.524 | 1.151 |
| ATOM | 73 H P06 | 1 | -11.582 | -0.335-1.925 | ATOM | 55 N | N P07 | 1 | 0.492 | 2.473 | -0.542 |
| ATOM | 74 H P06 | 1 | -11.306 | 0.350-0.312 | ATOM | 56 H | H P07 | 1 | 1.146 | 1.740 | -0.803 |
| END |  |  |  |  | ATOM | 57 C | C P07 | 1 | -0.257 | 3.131 | -1.607 |
|  |  |  |  |  | ATOM | 58 C | C P07 | 1 | 0.110 | 2.450 | -2.925 |
| COMPND Ac-L-Ala-R-VI-L-Ala-Aib-L-Ala-NHMe_310R |  |  |  |  | ATOM | 59 H | H P07 | 1 | 1.173 | 2.588 | -3.130 |
| REMARK Energy(ZPE) $=-1963.151409$ |  |  |  |  | ATOM | 60 H | H P07 | 1 | -0.099 | 1.381 | -2.890 |
| REMARK \#IF $=0$ |  |  |  |  | ATOM | 61 H | H P07 | 1 | -0.461 | 2.899 | -3.737 |
| ATOM | 1 C P07 | 1 | 6.589 | $-0.3561 .572$ | ATOM | 62 C | C P07 | 1 | 0.081 | 4.614 | -1.673 |
| ATOM | 2 H P07 | 1 | 6.165 | -0.628 2.538 | ATOM | 63 H | H P07 | 1 | -0.481 | 5.087 | -2.477 |
| ATOM | 3 H P07 | 1 | 7.207 | -1.172 1.206 | ATOM | 64 H | H P07 | 1 | -0.163 | 5.111 | -0.736 |



| M | 17 N | N P12 | 1 | 2. | 8 | 0.219 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 18 H | H P12 | 1 | 3.742 | 0.607 | -0.227 |
| ATOM | 19 C | C P12 | 1 | 1.790 | 1.459 | -0.107 |
| ATOM | 20 C | C P12 | 1 | 2.278 | 2.521 | -1.133 |
| ATOM | 21 H | H P12 | 1 | 2.304 | 2.142 | -2.155 |
| ATOM | 22 C | C P12 |  | 1.355 | 2.339 | 1.097 |
| ATOM | 23 H | H P12 |  | 1.894 | 2.049 | 9 |
| ATOM | 24 H | H P12 | 1 | 0.287 | 2.216 | 1.272 |
| ATOM | 25 C | C P12 | 1 | 3.196 | 3.942 | 0.594 |
| ATOM | 26 H | H P12 | 1 | 3.673 | 3.569 | 1.502 |
| ATOM | 27 H | H P12 | 1 | 3.466 | 4.994 | 0.490 |
| ATOM | 28 C | C P12 | 1 | 3.603 | 3.137 | -0.662 |
| ATOM | 29 H | H P12 | 1 | 3.968 | 3.796 | -1.451 |
| ATOM | 30 H | H P12 | 1 | 4.403 | 2.422 | -0.469 |
| ATOM | 31 C | C P12 | 1 | 1.674 | 3.764 | 0.638 |
| ATOM | 32 H | H P12 | 1 | 1.153 | 4.529 | 1.214 |
| ATOM | 33 C | C P12 | 1 | 1.319 | 3.680 | -0.848 |
| ATOM | 34 H | H P12 | 1 | 1.589 | 4.575 | -1.412 |
| ATOM | 35 H | H P12 | 1 | 0.273 | 3.435 | -1.026 |
| ATOM | 36 C | C P12 | 1 | 0.595 | 0.710 | -0.710 |
| ATOM | 37 O | O P12 | 1 | -0.541 | 1.189 | -0.677 |
| ATOM | 38 N | N P12 | 1 | 0.831 | -0.469 | -1.310 |
| ATOM | 39 H | H P12 | 1 | 1.754 | -0.894 | -1.297 |
| ATOM | 40 C | C P12 | 1 | -0.256 | -1.188 | -1.934 |
| ATOM | 41 H | H P12 | 1 | -0.746 | -0.532 | -2.657 |
| ATOM | 42 C | C P12 | 1 | 0.263 | -2.430 | -2.6 |
| ATOM | 43 H | H P12 | 1 | 0.768 | -3.095 | -1.940 |
| ATOM | 44 H | H P12 | 1 | -0.568 | -2.962 | -3.100 |
| ATOM | 45 H | H P12 | 1 | 0.970 | -2.148 | -3.421 |
| ATOM | 46 C | C P12 | 1 | -1.363 | -1.561 | -0.954 |
| ATOM | 47 O | O P12 | 1 | -2.498 | -1.790 | -1.38 |
| ATOM | 48 N | N P12 | 1 | -1.048 | -1.633 | 0.346 |
| ATOM | 49 H | H P12 | 1 | -0.110 | -1.378 | 0.640 |
| ATOM | 50 C | C P12 | 1 | -2.023 | -1.961 | 1.380 |
| ATOM | 51 C | C P12 | 1 | -1.349 | -1.769 | 2.738 |
| ATOM | 52 H | H P12 | 1 | -0.520 | -2.470 | 2.843 |
| ATOM | 53 H | H P12 | 1 | -0.960 | -0.756 | 2.848 |
| ATOM | 54 H | H P12 | 1 | -2.070 | -1.963 | 3.531 |
| ATOM | 55 C | C P12 | 1 | -2.508 | -3.398 | 1.235 |
| ATOM | 56 H | H P12 | 1 | -3.225 | -3.627 | 2.022 |
| ATOM | 57 H | H P12 | 1 | -2.984 | -3.551 | 0.269 |
| ATOM | 58 H | H P12 | 1 | -1.655 | -4.072 | 1.325 |
| ATOM | 59 C | C P12 | 1 | -3.219 | -0.996 | 1.337 |
| ATOM | 60 O | O P12 | 1 | -4.309 | -1.332 | 1.795 |
| ATOM | 61 N | N P12 | 1 | -2.992 | 0.241 | 0.855 |
| ATOM | 62 H | H P12 | 1 | -2.092 | 0.476 | 0.447 |
| ATOM | 63 C | C P12 | 1 | -4.033 | 1.242 | 0.851 |
| ATOM | 64 H | H P12 | 1 | -4.617 | 1.120 | 1.765 |
| ATOM | 65 C | C P12 | 1 | -3.428 | 2.637 | 0.813 |
| ATOM | 66 H | H P12 | 1 | -2.813 | 2.771 | -0.077 |
| ATOM | 67 H | H P12 | 1 | -4.224 | 3.379 | 0.802 |
| ATOM | 68 H | H P12 | 1 | -2.806 | 2.800 | 1.693 |
| ATOM | 69 C | C P12 | 1 | -5.039 | 1.077 | -0.288 |
| ATOM | 70 O | O P12 | 1 | -6.052 | 1.783 | -0.311 |
| ATOM | 71 N | N P12 | 1 | -4.759 | 0.176 | -1.231 |
| ATOM | 72 H | H P12 | 1 | -3.931 | -0.402 | -1.142 |
| ATOM | 73 C | C P12 | 1 | -5.652 | -0.048 | -2.342 |
| ATOM | 74 H | H P12 | 1 | -6.623 | -0.411 | -2.001 |
| ATOM | 75 H | H P12 | 1 | -5.811 | 0.874 | -2.902 |
| ATOM | 76 H | H P12 | 1 | -5.208 | -0.791 | -3.000 |
| ND |  |  |  |  |  |  |

COMPND Ac-L-Ala-SSS-V-L-Ala-Aib-L-Ala-NHMe_310L REMARK Energy $($ ZPE $)=-1716.153965$
REMARK \#IF $=0$

| ATOM | 1 | C | P 13 | 1 | 5.718 | -2.002 | 1.912 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 2 | H | P 13 | 1 | 5.399 | -1.556 | 2.853 |
| ATOM | 3 | H | P 13 | 1 | 5.822 | -3.075 | 2.073 |
| ATOM | 4 | H | P 13 | 1 | 6.683 | -1.591 | 1.625 |
| ATOM | 5 | C | P 13 | 1 | 4.649 | -1.777 | 0.886 |
| ATOM | 6 | O | P 13 | 1 | 3.473 | -2.095 | 1.088 |
| ATOM | 7 | N | P 13 | 1 | 5.025 | -1.190 | -0.269 |
| ATOM | 8 | H | P 13 | 1 | 6.003 | -1.002 | -0.417 |
| ATOM | 9 | C | P 13 | 1 | 4.127 | -1.062 | -1.405 |
| ATOM | 10 | H | P 13 | 1 | 4.649 | -0.434 | -2.130 |
| ATOM | 11 | C | P 13 | 1 | 3.802 | -2.399 | -2.049 |
| ATOM | 12 | H | P 13 | 1 | 3.296 | -3.051 | -1.338 |
| ATOM | 13 | H | P 13 | 1 | 3.154 | -2.251 | -2.910 |
| ATOM | 14 | H | P 13 | 1 | 4.724 | -2.876 | -2.378 |
| ATOM | 15 | C | P 13 | 1 | 2.860 | -0.292 | -1.037 |
| ATOM | 16 | O | P 13 | 1 | 1.787 | -0.528 | -1.590 |
| ATOM | 17 | N | P 13 | 1 | 3.000 | 0.673 | -0.113 |
| ATOM | 18 | H | P 13 | 1 | 3.924 | 0.842 | 0.254 |

$\begin{array}{lllllllll}\text { ATOM } & 19 & \text { C } & \text { P13 } & 1 & 1.924 & 1.562 & 0.288\end{array}$
ATOM 20 C P13 $1 \quad 1.464 \quad 2.531 \quad-0.860$
$\begin{array}{llllllll}\text { ATOM } & 21 \mathrm{H} & \text { P13 } & 1 & 0.769 & 2.070 & -1.556\end{array}$
$\begin{array}{lllllllll}\text { ATOM } & 22 & \text { C } & \mathrm{P} 13 & 1 & 2.437 & 2.561 & 1.364\end{array}$
$\begin{array}{llllllll}\text { ATOM } & 23 & \mathrm{H} & \mathrm{P} 13 & 1 & 3.453 & 2.324 & 1.681\end{array}$
$\begin{array}{llllllll}\text { ATOM } & 24 & \mathrm{H} & \mathrm{P} 13 & 1 & 1.801 & 2.536 & 2.250\end{array}$
$\begin{array}{lllllllll}\text { ATOM } & 25 & \mathrm{C} & \mathrm{P} 13 & 1 & 3.263 & 3.914 & -0.518\end{array}$
$\begin{array}{lllllllll}\text { ATOM } & 26 & \text { H P13 } & 1 & 4.225 & 4.409 & -0.551\end{array}$
ATOM 27 C P13 $11 \begin{array}{llllll} & 2.750 & 3.083 & -1.430\end{array}$
ATOM 28 H P13 1
ATOM 29 C $\mathrm{P} 13 \quad 1 \quad 2.319 \begin{array}{llllll} & 3.935 & 0.658\end{array}$
ATOM 30 H P13 1
ATOM 31 C P13 1
$\begin{array}{lllllllll}\text { ATOM } & 32 & \mathrm{H} & \mathrm{P} 13 & 1 & 0.719 & 4.580 & -0.700\end{array}$
ATOM 33 H P13 1
$\begin{array}{lllllllll}\text { ATOM } & 34 & \text { C } & \mathrm{P} 13 & 1 & 0.744 & 0.747 & 0.823\end{array}$
$\begin{array}{llllllll}\text { ATOM } & 35 & \mathrm{O} & \mathrm{P} 13 & 1 & -0.404 & 1.202 & 0.814\end{array}$
$\begin{array}{lllllllll}\text { ATOM } & 36 & \mathrm{~N} & \mathrm{P} 13 & 1 & 1.024 & -0.467 & 1.316 \\ \text { ATOM } & 37 & \mathrm{H} & \mathrm{P} 13 & 1 & & 1.969 & 0.830 & 1.249\end{array}$
$\begin{array}{llllllll}\text { ATOM } & 37 & \text { H P13 } & 1 & 1.969 & -0.830 & 1.249\end{array}$
ATOM 38 C P13 $1 \quad 0.002-1.3351 .862$
$\begin{array}{lllllllll}\text { ATOM } & 39 & \mathrm{H} & \mathrm{P} 13 & 1 & 0.480 & -2.310 & 1.989\end{array}$
ATOM 40 C P13 1
$\begin{array}{llllllll}\text { ATOM } & 41 \mathrm{H} & \mathrm{P} 13 & 1 & -0.978 & 0.117 & 3.123\end{array}$
$\begin{array}{lllllrrr}\text { ATOM } & 42 & \mathrm{H} & \mathrm{P} 13 & 1 & -1.244 & -1.566 & 3.601\end{array}$
$\begin{array}{lllllrrr}\text { ATOM } & 43 & \mathrm{H} & \mathrm{P} 13 & 1 & 0.322 & -0.798 & 3.912 \\ \text { ATOM } & 44 & \text { C } & \mathrm{P} 13 & 1 & -1.144 & -1.570 & 0.877\end{array}$
$\begin{array}{llllllll}\text { ATOM } & 45 & \mathrm{O} & \mathrm{P} 13 & 1 & -2.273 & -1.849 & 1.289\end{array}$
ATOM 46 N P13 1
$\begin{array}{lllllllll}\text { ATOM } & 47 \text { H P13 } & 1 & 0.083 & -1.220 & -0.715\end{array}$
ATOM 48 C P13 1
ATOM 49 C P13 1
ATOM 50 H P13 1
ATOM 51 H P13 1
$\begin{array}{lllllllll}\text { ATOM } & 52 \mathrm{H} & \mathrm{P} 13 & 1 & -3.016 & -3.309 & -2.315\end{array}$
ATOM 53 C P13 1
ATOM 54 H P13 $110-1.961-1.389-3.598$
$\begin{array}{llllllll}\text { ATOM } & 55 & \mathrm{H} & \mathrm{P} 13 & 1 & -0.894 & -0.243 & -2.762\end{array}$
ATOM 56 H P13 1
ATOM 57 C P13 $11-3.080-0.814-1.239$

| ATOM | 58 O P13 | 1 | -4.1 | -1.157-1.638 | ATOM | 40 C | C P13 | 1 | -0.297 | -2.331 | 2.693 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 59 N P13 | 1 | -2.850 | - $0.375-0.655$ | ATOM | 41 H | H P13 | 1 | -0.811 | -3.008 | 2.010 |
| ATOM | $60 \mathrm{H} \mathrm{P13}$ | 1 | -1.928 | 8 0.574-0.280 | ATOM | 42 H | H P13 | 1 | 0.531 | -2.860 | 3.161 |
| ATOM | 61 C P13 | 1 | -3.898 | 1.348-0.426 | ATOM | 43 H | H P13 | 1 | -0.998 | -2.026 | 3.470 |
| ATOM | $62 \mathrm{H} \mathrm{P13}$ | 1 | -3.429 | 2.1510 .149 | ATOM | 44 C | C P13 | 1 | 1.332 | -1.516 | 0.983 |
| ATOM | 63 C P13 | 1 | -4.446 | $1.945-1.713$ | ATOM | 45 O | O P13 | 1 | 2.464 | -1.747 | 1.419 |
| ATOM | 64 H P13 | 1 | -4.898 | - 1.173-2.334 | ATOM | 46 N | N P13 | 1 | 1.014 | -1.611 | -0.315 |
| ATOM | $65 \mathrm{H} \mathrm{P13}$ | 1 | -5.20 | 2.693-1.479 | ATOM | 47 H | H P13 | 1 | 0.076 | -1.353 | -0.612 |
| ATOM | 66 H P13 | 1 | -3.637 | $7-2.419-2.268$ | ATOM | 48 C | C P13 | 1 | 1.983 | -1.979 | -1.341 |
| ATOM | 67 C P13 | 1 | -5.019 | 0.8250 .478 | ATOM | 49 C | C P13 | 1 | 1.311 | -1.817 | -2.704 |
| ATOM | 68 O P13 | 1 | -6.128 | $\begin{array}{llll} & 1.365 & 0.472\end{array}$ | ATOM | 50 H | H P13 | 1 | 0.472 | -2.509 | -2.788 |
| ATOM | 69 N P13 | 1 | -4.707 | -0.167 1.318 | ATOM | 51 H | H P13 | 1 | 0.938 | -0.802 | -2.845 |
| ATOM | $70 \mathrm{H} \mathrm{P13}$ | 1 | -3.813 | -0.639 1.241 | ATOM | 52 H | H P13 | 1 | 2.030 | -2.045 | -3.490 |
| ATOM | 71 C P13 | 1 | -5.686 | -0.698 2.236 | ATOM | 53 C | C P13 | 1 | 2.452 | -3.417 | -1.158 |
| ATOM | 72 H P13 | 1 | -6.522 | -1.157 1.705 | ATOM | 54 H | H P13 | 1 | 3.169 | -3.672 | -1.936 |
| ATOM | 73 H P13 | 1 | -5.207 | -1.450 2.857 | ATOM | 55 H | H P13 | 1 | 2.924 | -3.551 | -0.187 |
| ATOM | 74 H P13 | 1 | -6.082 | 20.0912 .876 | ATOM | 56 H | H P13 | 1 | 1.593 | -4.084 | -1.234 |
| END |  |  |  |  | ATOM | 57 C | C P13 | 1 | 3.189 | -1.026 | -1.323 |
|  |  |  |  |  | ATOM | 58 O | O P13 | 1 | 4.275 | -1.385 | -1.776 |
| COMP | Ac-L-Ala-S |  | L-Al | Aib-L-Ala-NHMe_310R | ATOM | 59 N | N P13 | 1 | 2.975 | 0.223 | -0.871 |
| REMAR | Energy(ZPE |  | 716.16 |  | ATOM | 60 H | H P13 | 1 | 2.078 | 0.474 | -0.469 |
| REMAR | K \#F $=0$ |  |  |  | ATOM | 61 C | C P13 | 1 | 4.024 | 1.215 | -0.889 |
| ATOM | 1 C P13 | 1 | -5.640 | -1.901 1.945 | ATOM | 62 H | H P13 | 1 | 4.601 | 1.074 | -1.806 |
| ATOM | 2 H P13 | 1 | -5.398 | -1.284 2.810 | ATOM | 63 C | C P13 | 1 | 3.430 | 2.615 | -0.868 |
| ATOM | 3 H P13 | 1 | -6.601 | -1.591 1.540 | ATOM | 64 H | H P13 | 1 | 2.822 | 2.767 | 0.025 |
| ATOM | 4 H P13 | 1 | -5.711 | -2.934 2.284 | ATOM | 65 H | H P13 | 1 | 4.231 | 3.351 | -0.875 |
| ATOM | 5 C P13 | 1 | -4.522 | -1.800 0.952 | ATOM | 66 H | H P13 | 1 | 2.803 | 2.770 | -1.746 |
| ATOM | 6 O P13 | 1 | -3.359 | -2.094 1.240 | ATOM | 67 C | C P13 | 1 | 5.037 | 1.060 | 0.244 |
| ATOM | 7 N P13 | 1 | -4.833 | -1.352-0.282 | ATOM | 68 O | O P13 | 1 | 6.060 | 1.751 | 0.243 |
| ATOM | 8 H P13 | 1 | -5.798 | -1.173-0.512 | ATOM | 69 N | N P13 | 1 | 4.753 | 0.184 | 1.210 |
| ATOM | 9 C P13 | 1 | -3.856 | -1.363-1.349 | ATOM | 70 H | H P13 | 1 | 3.917 | -0.386 | 1.142 |
| ATOM | $10 \mathrm{H} \mathrm{P13}$ | 1 | -3.42 | 4-2.364-1.426 | ATOM | 71 C | C P13 | 1 | 5.653 | -0.026 | 2.317 |
| ATOM | 11 C P13 | 1 | -4.509 | -0.983-2.668 | ATOM | 72 H | H P13 | 1 | 6.615 | -0.411 | 1.975 |
| ATOM | $12 \mathrm{H} \mathrm{P13}$ | 1 | -4.949 | - $0.014-2.615$ | ATOM | 73 H | H P13 | 1 | 5.832 | 0.907 | 2.852 |
| ATOM | $13 \mathrm{H} \mathrm{P13}$ | 1 | -3.765 | -0.992-3.462 | ATOM | 74 H | H P13 | 1 | 5.206 | -0.746 | 2.998 |
| ATOM | $14 \mathrm{H} \mathrm{P13}$ | 1 | -5.290 | -1.700-2.921 | END |  |  |  |  |  |  |
| ATOM | 15 C P13 | 1 | -2.668 | -0.455-1.065 |  |  |  |  |  |  |  |
| ATOM | 16 O P13 | 1 | -1.58 | -0.673-1.606 | COMP | Ac-L | c-L-Ala |  | Ala-Ai | b-L-Ala | NHMe_310R |
| ATOM | 17 N P13 | 1 | -2.86 | 1-0.568-0.224 | REMAR | K Ener | ergy(ZP |  | 562.6 | 596 |  |
| ATOM | $18 \mathrm{H} \mathrm{P13}$ | 1 | -3.789 | $\begin{array}{lll}0.721 & 0.142\end{array}$ | REMAR | K \#IF | = 0 |  |  |  |  |
| ATOM | 19 C P13 | 1 | -1.811 | 1.5120 .099 | ATOM |  | C P15 | 1 | -6.045 | -0.765 | 1.967 |
| ATOM | 20 C P13 | 1 | -2.330 | $\begin{array}{lll}2.571 & 1.145\end{array}$ | ATOM | 2 H | H P15 | 1 | -5.728 | -0.195 | 2.840 |
| ATOM | $21 \mathrm{H} \mathrm{P13}$ | 1 | -2.38 | 12.1842 .161 | ATOM | 3 H | H P15 | 1 | -6.951 | -0.325 | 1.558 |
| ATOM | 22 C P13 | 1 | -1.400 | 2.406-1.095 | ATOM | 4 H | H P15 | 1 | -6.259 | -1.782 | 2.295 |
| ATOM | $23 \mathrm{H} \mathrm{P13}$ | 1 | -1.927 | 7 2.109 -2.001 | ATOM | 5 C | C P15 | 1 | -4.915 | -0.810 | 0.983 |
| ATOM | $24 \mathrm{H} \mathrm{P13}$ | 1 | -0.328 | $82.330-1.270$ | ATOM | 6 O | O P15 | 1 | -3.791 | -1.216 | 1.290 |
| ATOM | 25 C P13 | 1 | -3.273 | 3-878-0.488 | ATOM | 7 N | N P15 | 1 | -5.171 | -0.370 | -0.268 |
| ATOM | $26 \mathrm{H} \mathrm{P13}$ | 1 | -3.943 | 3 4.356-1.190 | ATOM | 8 H | H P15 | 1 | -6.110 | -0.096 | -0.511 |
| ATOM | 27 C P13 | 1 | -3.611 | 13.1310 .568 | ATOM | 9 C | C P15 | 1 | -4.197 | -0.522 | -1.326 |
| ATOM | $28 \mathrm{H} \mathrm{P13}$ | 1 | -4.609 | $\begin{array}{lll}2.882 & 0.905\end{array}$ | ATOM | 10 H | H P15 | 1 | -3.876 | -1.566 | -1.369 |
| ATOM | 29 C P13 | 1 | -1.77 | $13.833-0.616$ | ATOM | 11 C | C P15 | 1 | -4.800 | -0.116 | -2.662 |
| ATOM | $30 \mathrm{H} \mathrm{P13}$ | 1 | -1.315 | - $4.627-1.204$ | ATOM | 12 H | H P15 | 1 | -5.127 | 0.92 | -2.646 |
| ATOM | 31 C P13 | 1 | -1.370 | 3.730 0.860 | ATOM | 13 H | H P15 | 1 | -4.059 | -0.23 | -3.450 |
| ATOM | $32 \mathrm{H} \mathrm{P13}$ | 1 | -0.321 | 13.4731 .002 | ATOM | 14 H | H P15 | 1 | -5.65 | -0.75 | -2.897 |
| ATOM | $33 \mathrm{H} \mathrm{P13}$ | 1 | -1.629 | $\begin{array}{lll}4.618 & 1.437\end{array}$ | ATOM | 15 C | C P15 | 1 | -2.918 | 0.260 | -1.062 |
| ATOM | 34 C P13 | 1 | -0.614 | $\begin{array}{lll}4 & 0.771 & 0.701\end{array}$ | ATOM | 16 O | O P15 | 1 | -1.855 | -0.107 | -1.566 |
| ATOM | 35 O P13 | 1 | 0.522 | 1.2490 .660 | ATOM | 17 N | N P15 | 1 | -3.014 | 1.340 | -0.274 |
| ATOM | 36 N P13 | 1 | -0.85 | -0.397-1.321 | ATOM | 18 H | H P15 | 1 | -3.923 | 1.576 | 0.095 |
| ATOM | 37 H P13 | 1 | -1.77 | -0.822 1.306 | ATOM | 19 C | C P15 | 1 | -1.880 | 2.190 | 0.061 |
| ATOM | 38 C P13 | 1 | 0.229 | -1.110 1.956 | ATOM | 20 C | C P15 | 1 | -2.328 | 3.148 | 1.165 |
| ATOM | 39 H P13 | 1 | 0.726 | -0.442 2.663 | ATOM | 21 H | H P15 | 1 | -3.127 | 3.792 | 0.795 |


| ATOM | 22 H | H P15 | 1 | -2.687 | 2.603 | 2.039 | ATOM | 9 | C P16 | 1 | 3.271 | -1.936 | 1.278 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 23 H | H P15 | 1 | -1.493 | 3.779 | 1.465 | ATOM | 10 | H P16 | 1 | 2.694 | -2.779 | 1.665 |
| ATOM | 24 C | C P15 | 1 | -1.397 | 2.968 | -1.156 | ATOM | 11 | C P16 | 1 | 4.120 | -1.342 | 2.391 |
| ATOM |  | H P15 | 1 | -0.555 | 3.60 | -0.881 | ATOM | 12 | H P16 | 1 | 4.710 | -0.500 | 2.027 |
| ATOM | 26 H | H P15 | 1 | -1.082 | 2.29 | -1.948 | ATOM | 13 | H P16 | 1 | 3.477 | -0.990 | 3.195 |
| ATOM | 27 H | H P15 | 1 | -2.209 | 3.59 | -1.522 | ATOM | 14 | H P16 | , | 4.792 | -2.100 | 2.794 |
| ATOM | 28 | C P15 | 1 | -0.738 | 1.339 | 0.633 | ATOM | 15 | C P16 | 1 | 2.217 | -0.936 | 0.819 |
| ATOM | 29 | O P15 | 1 | 0.435 | 1.70 | 0.531 | ATOM | 16 | O P16 | 1 | 1.183 | -0.787 | 1.472 |
| ATOM | 30 N | N P15 | 1 | -1.083 | 0.23 | 1.307 | ATOM | 17 | N P16 | 1 | 2.471 | -0.252 | -0.305 |
| ATOM |  | H P15 | 1 | -2.048 | -0.08 | 1.313 | ATOM | 18 | H P16 | 1 | 3.363 | -0.395 | -0.754 |
| ATOM |  | C P15 | 1 | -0.080 | -0.57 | 1.966 | ATOM | 19 | C P16 | 1 | 1.559 | 0.728 | -0.858 |
| ATOM |  | H P15 | 1 | 0.519 | 0.077 | 2.609 | ATOM | 20 | C P16 | 1 | 2.173 | 1.349 | -2.148 |
| ATOM | 34 C | C P15 | 1 | -0.734 | -1.65 | 2.806 | ATOM | 21 | H P16 | 1 | 3.091 | 0.839 | -2.442 |
| ATOM | 35 H | H P15 | 1 | -1.346 | -2.31 | 2.188 | ATOM | 22 | H P16 | 1 | 1.472 | 1.276 | -2.981 |
| ATOM |  | H P15 | 1 | 0.035 | -2.25 | 3.298 | ATOM | 23 | C P16 | 1 | 2.384 | 2.830 | -1.771 |
| ATOM |  | H P15 | 1 | -1.369 | -1.21 | 3.569 | ATOM | 24 | H P16 | 1 | 2.588 | 3.470 | -2.627 |
| ATOM |  | C P15 | 1 | 0.933 | -1.182 | 1.005 | ATOM | 25 | C P16 | 1 | 1.087 | 3.081 | -0.993 |
| ATOM |  | O P15 | 1 | 2.025 | -1.55 | 1.446 | ATOM | 26 | H P16 | 1 | 0.188 | 2.890 | -1.578 |
| ATOM | 40 N | N P15 | 1 | 0.595 | -1.27 | -0.286 | ATOM | 27 | H P16 | 1 | 1.042 | 4.074 | -0.543 |
| ATOM | 41 H | H P15 | 1 | -0.305 | -0.91 | -0.590 | ATOM | 28 | C P16 | 1 | 1.362 | 1.989 | 0.055 |
| ATOM | 42 C | C P15 | 1 | 1.502 | -1.798 | -1.302 | ATOM | 29 | H P16 | 1 | 0.629 | 1.836 | 0.843 |
| ATOM | 43 C | C P15 | 1 | 0.863 | -1.56 | -2.670 | ATOM | 30 | C P16 | 1 | 2.747 | 2.381 | 0.486 |
| ATOM |  | H P15 | 1 | -0.06 | -2.13 | -2.748 | ATOM | 31 | C P16 | 1 | 3.390 | 2.884 | -0.651 |
| ATOM | 45 H | H P15 | 1 | 0.633 | -0.507 | -2.823 | ATOM | 32 | C P16 | 1 | 4.716 | 3.277 | -0.598 |
| ATOM |  | H P15 | 1 | 1.544 | -1.896 | -3.450 | ATOM | 33 | H P16 | 1 | 5.224 | 3.662 | -1.474 |
| ATOM | 47 C | C P15 | 1 | 1.757 | -3.286 | -1.095 | ATOM | 34 | C P16 | 1 | 5.386 | 3.181 | 0.624 |
| ATOM |  | H P15 | 1 | 2.433 | -3.65 | -1.864 | ATOM | 35 | H P16 | 1 | 6.418 | 3.501 | 0.695 |
| ATOM |  | H P15 | 1 | 2.200 | -3.47 | -0.118 | ATOM | 36 | C P16 | 1 | 4.743 | 2.685 | 1.754 |
| ATOM |  | H P15 | 1 | 0.810 | -3.822 | -1.166 | ATOM | 37 | H P16 | 1 | 5.282 | 2.625 | 2.692 |
| ATOM | 51 | C P15 | 1 | 2.832 | -1.029 | -1.290 | ATOM | 38 | C P16 | 1 | 3.412 | 2.266 | 1.692 |
| ATOM | 52 | O P15 | 1 | 3.862 | -1.55 | -1.711 | ATOM | 39 | H P16 | 1 | 2.916 | 1.869 | 2.570 |
| ATOM |  | N P15 | 1 | 2.790 | 0.25 | -0.884 | ATOM | 40 | C P16 | 1 | 0.206 | 0.078 | -1.154 |
| ATOM |  | H P15 | 1 | 1.929 | 0.640 | -0.509 | ATOM | 41 | O P16 | 1 | -0.824 | 0.754 | -1.203 |
| ATOM |  | C P15 | 1 | 3.965 | 1.092 | -0.916 | ATOM | 42 | N P16 | 1 | 0.183 | -1.245 | -1.377 |
| ATOM |  | H P15 | 1 | 4.530 | 0.84 | -1.816 | ATOM | 43 | H P16 | 1 | 1.023 | -1.809 | -1.287 |
| ATOM | 57 | C P15 | 1 | 3.567 | 2.559 | -0.957 | ATOM | 44 | C P16 | 1 | -1.070 | -1.898 | -1.678 |
| ATOM | 58 H | H P15 | 1 | 2.966 | 2.825 | -0.086 | ATOM | 45 | H P16 | 1 | -1.528 | -1.408 | -2.541 |
| ATOM |  | H P15 | 1 | 4.460 | 3.180 | -0.968 | ATOM | 46 | C P16 | 1 | -0.843 | -3.369 | -1.987 |
| ATOM |  | H P15 | 1 | 2.985 | 2.765 | -1.855 | ATOM | 47 | H P16 | 1 | -0.379 | -3.879 | -1.142 |
| ATOM |  | C P15 | 1 | 4.934 | 0.845 | 0.240 | ATOM | 48 | H P16 | 1 | -1.794 | -3.848 | -2.210 |
| ATOM | 62 | O P15 | 1 | 6.037 | 1.400 | 0.234 | ATOM | 49 | H P16 | 1 | -0.190 | -3.474 | -2.853 |
| ATOM | 63 N | N P15 | 1 | 4.530 | 0.046 | 1.229 | ATOM | 50 | C P16 | 1 | -2.104 | -1.746 | -0.567 |
| ATOM | 64 H | H P15 | 1 | 3.631 | -0.420 | 1.169 | ATOM | 51 | O P16 | 1 | -3.303 | -1.842 | -0.845 |
| ATOM | 65 | C P15 | 1 | 5.386 | -0.242 | 2.354 | ATOM | 52 | N P16 | 1 | -1.656 | -1.529 | 0.677 |
| ATOM |  | H P15 | 1 | 6.280 | -0.78 | 2.042 | ATOM | 53 | H P16 | 1 | -0.658 | -1.407 | 0.831 |
| ATOM | 67 H | H P15 | 1 | 5.703 | 0.680 | 2.843 | ATOM | 54 | C P16 | 1 | -2.541 | -1.383 | 1.828 |
| ATOM |  | H P15 | 1 | 4.834 | -0.850 | 3.066 | ATOM | 55 | C P16 | 1 | -1.686 | -0.977 | 3.029 |
| END |  |  |  |  |  |  | ATOM | 56 | H P16 | 1 | -0.976 | -1.770 | 3.263 |
|  |  |  |  |  |  |  | ATOM | 57 | H P16 | 1 | -1.129 | -0.062 | 2.828 |
| COMPND Ac-L-Ala-RRR-IIIamb-L-Ala-Aib-L-Ala- |  |  |  |  |  |  | ATOM | 58 | H P16 | 1 | -2.330 | -0.820 | 3.893 |
| NHMe_310R |  |  |  |  |  |  | ATOM | 59 | C P16 | 1 | -3.271 | -2.686 | 2.126 |
| REMARK Energy (ZPE) $=-1869.719615$ |  |  |  |  |  |  | ATOM | 60 | H P16 | 1 | -3.918 | -2.557 | 2.992 |
| REMARK \#IF $=0$ |  |  |  |  |  |  | ATOM | 61 | H P16 | 1 | -3.878 | -2.997 | 1.278 |
| ATOM | 1 C | C P16 | 1 | 4.576 | -3.704 | -1.802 | ATOM | 62 | H P16 | 1 | -2.538 | -3.463 | 2.345 |
| ATOM |  | H P16 | 1 | 4.284 | -3.410 | -2.809 | ATOM | 63 | C P16 | 1 | -3.553 | -0.249 | 1.604 |
| ATOM |  | H P16 | 1 | 5.603 | -3.396 | -1.619 | ATOM | 64 | O P16 | 1 | -4.621 | -0.234 | 2.211 |
| ATOM |  | H P16 | 1 | 4.515 | -4.790 | -1.743 | ATOM | 65 | N P16 | 1 | -3.173 | 0.751 | 0.787 |
| ATOM |  | C P16 | 1 | 3.603 | -3.120 | -0.825 | ATOM | 66 | H P16 | 1 | -2.302 | 0.682 | 0.272 |
| ATOM |  | O P16 | 1 | 2.384 | -3.274 | -0.939 | ATOM | 67 | C P16 | 1 | -4.012 | 1.908 | 0.580 |
| ATOM |  | N P16 | 1 | 4.112 | -2.398 | 0.196 | ATOM | 68 | H P16 | 1 | -4.469 | 2.166 | 1.538 |
| ATOM |  | H P16 | 1 | 5.112 | -2.332 | 0.301 | ATOM | 69 | C P16 | 1 | -3.183 | 3.080 | 0.076 |


| ATOM | 70 | H | P16 | 1 | -2.712 | 2.842 | -0.878 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ATOM | 71 | H | P16 | 1 | -3.824 | 3.949 | -0.058 |
| ATOM | 72 | H | P6 | 1 | -2.402 | 3.35 | 0.796 |
| ATOM | 73 | C | P16 | 1 | -5.184 | 1.654 | -0.366 |
| ATOM | 74 | O | P16 | 1 | -6.059 | 2.515 | -0.495 |
| ATOM | 75 | N | P16 | 1 | -5.195 | 0.501 | -1.038 |
| ATOM | 76 | H | P16 | 1 | -4.471 | -0.187 | -0.866 |
| ATOM | 77 | C | P16 | 1 | -6.265 | 0.179 | -1.950 |
| ATOM | 78 | H | P6 | 1 | -7.224 | 0.135 | -1.431 |
| ATOM | 79 | H | P16 | 1 | -6.342 | 0.929 | -2.739 |
| ATOM | 80 | H | P16 | 1 | -6.061 | -0.789 | -2.400 |
| END |  |  |  |  |  |  |  |

COMPND Ac-L-Ala-RRR-IIIawr-L-Ala-Aib-L-Ala-
NHMe_310R
REMARK Energy(ZPE)= -1752.081494
REMARK \#IF = 0

| ATOM |  | C P17 | 1 | 4.129 | -3.551 | -0.805 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM |  | H P17 | 1 | 4.155 | -3.228 | -1.845 |
| A |  | H P17 | 1 | 5.130 | -3.489 | $-0.383$ |
| M |  | H P17 | 1 | 3.79 | -4.58 | -0.788 |
| ATOM |  | C P17 | 1 | 3.128 | -2.721 | -0.00 |
| ATOM |  | O P17 | 1 | 1.956 | -2.613 | -0.445 |
| ATOM |  | P17 | 1 | 3.550 | -2.072 | 1.036 |
| ATOM |  | P17 | 1 | 4.491 | -2.213 | 1.367 |
| ATOM | 9 C | C P17 | 1 | 2.607 | -1.365 | 1.877 |
| TOM | 10 H | H P17 | 1 | 1.806 | -2.048 | 2.165 |
| ATOM |  | C P17 | 1 | 3.299 | -0.827 | 3.119 |
| ATOM |  | H P17 | 1 | 4.098 | -0.132 | 2.857 |
| ATOM |  | H P17 | 1 | 2.578 | -0.305 | 3.745 |
| ATOM |  | H P17 | 1 | 3.722 | -1.648 | 3.697 |
| ATOM |  | C P17 | 1 | 1.911 | -0.240 | 1.125 |
| ATOM |  | O P17 | 1 | 0.756 | 0.082 | 1.397 |
| ATOM | 17 | N P17 | 1 | 2.62 | 0.403 | 0.184 |
| OM | 18 | H P17 | 1 | 3.584 | 0.135 | 26 |
| M | 19 | C P17 | 1 | . 05 | 1.51 | -0.548 |
| OM | 20 | C P17 | 1 | 3.066 | 2.11 | -1.551 |
| ATOM | 21 H | H P17 | 1 | 4.013 | 1.578 | -1.567 |
| ATOM | 22 | H P17 | 1 | 2.661 | 2.127 | -2.562 |
| ATOM | 23 C | C P17 | 1 | 3.187 | 3.562 | -1.012 |
| ATOM | 24 | H P17 | 1 | 3.528 | 4.29 | -1.733 |
| ATOM | 25 | O P17 | 1 | 1.834 | 3.80 | -0.627 |
| ATOM |  | C P17 | 1 | 1.753 | 2.766 | 0.341 |
| ATOM |  | H P17 | 1 | 0.78 | 2.74 | 0.826 |
| M | 28 | C P17 | 1 | 2.992 | 2.9 | 1.171 |
| ATOM | 29 | H P17 | 1 | 3.122 | 2.713 | 2.205 |
| ATOM | 30 | C P17 | 1 | 3.89 | 3.497 | 0.322 |
| ATOM | 31 | H P17 | 1 | 4.933 | 3.719 | 0.492 |
| ATOM | 32 | C P17 | 1 | 0.772 | 1.046 | -1.254 |
| ATOM | 33 | O P17 | 1 | -0.232 | 1.746 | -1.324 |
| ATOM | 34 | N P17 | 1 | 0.850 | -0.16 | -1.838 |
| ATOM | 35 | H P17 | 1 | 1.640 | -0.763 | -1.637 |
| ATOM | 36 | C P17 | 1 | -0.283 | -0.722 | -2.539 |
| ATOM | 37 | H P17 | 1 | -0.738 | 0.070 | -3.134 |
| ATOM | 38 C | C P17 | 1 | 0.163 | -1.869 | -3.434 |
| ATOM | 39 | H P17 | 1 | 0.643 | -2.652 | -2.845 |
| ATOM | 40 | H P17 | 1 | -0.695 | -2.297 | -3.951 |
| ATOM | 41 | H P17 | 1 | 0.870 | -1.506 | -4.179 |
| ATOM | 42 | C P17 | 1 | -1.382 | -1.185 | -1.585 |
| ATOM | 43 | O P17 | 1 | -2.572 | -0.996 | -1.856 |
| ATOM |  |  |  | -0.979 |  |  |


| ATOM |  | H P17 |  | 0.016 | -1.942 | -0.318 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 46 | C P17 | 1 | -1.915 | -2.382 | 0.490 |
| ATOM | 47 | C P17 | 1 | -1.116 | -2.821 | 1.715 |
| ATOM | 48 | H P17 | 1 | -0.396 | -3.591 | 1.432 |
| ATOM | 49 | H P17 | 1 | -0.582 | -1.977 | 2.151 |
| ATOM |  | H P17 | 1 | -1.789 | -3.240 | 2.462 |
| ATOM | 51 | C P17 | 1 | -2.664 | -3.565 | -0.105 |
| ATOM | 52 | H P17 | 1 | -3.359 | -3.971 | 0.627 |
| ATOM | 53 | H P17 | 1 | -3.225 | -3.266 | -0.988 |
| ATOM | 54 | H P17 | 1 | -1.946 | -4.339 | -0.381 |
| ATOM | 55 | C P17 | 1 | -2.905 | -1.30 | 0.954 |
| ATOM | 56 | O P17 | , | -4.06 | -1.57 | 1.243 |
| TOM | 57 | N P17 | 1 | -2.39 | -0.06 | 1.090 |
| ATOM | 58 | H P17 | 1 | -1.41 | 0.08 | 0.901 |
| ATOM | 59 | C P17 | 1 | -3.167 | 1.022 | 1.649 |
| ATOM | 60 | H P17 | 1 | -3.792 | 0.616 | 2.448 |
| ATOM | 61 | C P17 | 1 | -2.238 | 2.085 | 2.213 |
| ATOM | 62 | H P17 | 1 | -1.588 | 2.481 | 1.431 |
| ATOM | 63 | H P17 | 1 | -2.826 | 2.904 | 2.622 |
| ATOM |  | H P17 | 1 | -1.617 | 1.66 | 3.003 |
| ATOM | 65 | C P17 | 1 | -4.147 | 1.65 | 0.665 |
| ATOM | 66 | O P17 | 1 | -4.931 | 2.523 | 1.068 |
| ATOM | 67 | N P17 | 1 | -4.102 | 1.258 | -0.606 |
| ATOM | 68 | H P17 | 1 | -3.479 | 0.506 | -0.877 |
| ATOM | 69 | C P17 | 1 | -5.005 | 1.802 | -1.592 |
| ATOM | 70 | H P17 | 1 | -6.044 | 1.601 | -1.326 |
| ATOM | 71 | H P17 | 1 | -4.879 | 2.882 | -1.678 |
| ATOM | 72 | H P17 | 1 | -4.789 | 1.342 | -2.553 |
|  |  |  |  |  |  |  |

COMPND Ac-L-Ala-RRR-Vdm-L-Ala-Aib-L-AlaNHMe_310R
REMARK Energy(ZPE)= -1794.699892
REMARK \#IF = 0

| ATOM | 1 | C | P18 | 1 | -5.205 | -2.869 | 1.895 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ATOM | 2 | H | P18 | 1 | -5.023 | -2.364 | 2.842 |
| ATOM | 3 | H | P18 | 1 | -6.184 | -2.583 | 1.516 |
| ATOM | 4 | H | P18 | 1 | -5.197 | -3.943 | 2.085 |
| ATOM | 5 | C | P18 | 1 | -4.088 | -2.546 | 0.950 |
| ATOM | 6 | O | P18 | 1 | -2.90 | -2.764 | 1.232 |
| ATOM | 7 | N | P18 | 1 | -4.423 | -1.986 | -0.232 |
| ATOM | 8 | H | P18 | 1 | -5.398 | -1.863 | -0.457 |
| ATOM | 9 | C | P18 | 1 | -3.443 | -1.792 | -1.278 |
| ATOM | 10 | H | P18 | 1 | -2.871 | -2.716 | -1.396 |
| ATOM | 11 | C | P18 | 1 | -4.130 | -1.449 | -2.589 |
| ATOM | 12 | H | P18 | 1 | -4.743 | -0.552 | -2.490 |
| ATOM | 13 | H | P18 | 1 | -3.383 | -1.276 | -3.362 |
| ATOM | 14 | H P18 | 1 | -4.766 | -2.275 | -2.905 |  |
| ATOM | 15 | C | P18 | 1 | -2.385 | -0.752 | -0.925 |
| ATOM | 16 | O | P18 | 1 | -1.311 | -0.743 | -1.531 |
| ATOM | 17 | N | P18 | 1 | -2.667 | 0.106 | 0.062 |
| ATOM | 18 | H | P18 | 1 | -3.583 | 0.060 | 0.480 |
| ATOM | 19 | C | P18 | 1 | -1.713 | 1.072 | 0.578 |
| ATOM | 20 | C | P18 | 1 | -1.415 | 2.258 | -0.401 |
| ATOM | 21 | H | P18 | 1 | -0.684 | 2.003 | -1.167 |
| ATOM | 22 | C | P18 | 1 | -2.327 | 1.814 | 1.801 |
| ATOM | 23 | H | P18 | 1 | -3.300 | 1.401 | 2.077 |
| ATOM | 24 | H | P18 | 1 | -1.678 | 1.730 | 2.674 |
| ATOM | 25 | C | P18 | 1 | -3.369 | 3.333 | 0.152 |
| ATOM | 26 | C | P18 | 1 | -4.748 | 3.873 | 0.275 |
| ATOM | 27 | H | P18 | 1 | -4.734 | 4.926 | 0.569 |

 END

| ATOM | H P19 |  | 6.766 | 1. | 1.724 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 4 H P19 | 1 | 6.051 | 2.341 | 2.714 |
| TOM | 5 C P19 | 1 | 4.730 | 1.618 | 1.231 |
| TOM | 6 O P19 |  | 3.587 | 1.903 | 1.599 |
| ATOM | 7 N P19 |  | 5.014 | 1.47 | -0.081 |
| TOM | 8 H P19 |  | 5.966 | 1.2 | - 1.362 |
| M | 9 C P19 | 1 | 4.048 | 1.8 | -1.098 |
| TOM | 10 H P19 |  | 3.686 | 2.8 | -0.907 |
| TOM | 11 C P19 |  | 4.684 | 1.766 | -2.478 |
| OM | $12 \mathrm{H} \mathrm{P19}$ |  | 5.054 | 0.762 | -2.694 |
| TOM | $13 \mathrm{H} \mathrm{P19}$ |  | 3.948 | 2.035 | -3.233 |
| OM | 14 H P19 |  | 5.514 | 2.469 | -2.542 |
| TOM | 15 C P19 |  | 2.798 | 0.96 | -1.052 |
| OM | 16 O P19 |  | 1.740 | 1.379 | -1.529 |
| TOM | 17 N P19 |  | 2.908 | -0.246 | -0.489 |
| OM | 18 H P19 |  | 3.805 | -0.516 | -0.112 |
| OM | 19 C P19 |  | 1.784 | -1.159 | -0.370 |
| OM | 20 C P19 |  | 1.346 | -1.723 | 48 |
| OM | $21 \mathrm{H} \mathrm{P19}$ |  | 1.904 | -1.219 | -2.537 |
| OM | 22 H P19 |  | 0.282 | -1.575 | 9 |
| OM | 23 C P19 |  | 1.729 | -3.220 | -1.669 |
| OM | 24 H P19 |  | 1.812 | -3.706 | -2.639 |
| OM | 25 C P19 | 1 | 2.999 | -3.147 | -0.809 |
| OM | 26 H P19 |  | 3.796 | -2.559 | -1.268 |
| OM | 27 H P19 |  | 3.385 | -4.127 | -0.525 |
| M | 28 C P19 |  | 2.299 | -2.440 | 0.367 |
| OM | 29 H P19 |  | 2.886 | -2.209 | 1.255 |
| ATOM | 30 C P19 |  | 1.133 | -3.368 | 0.574 |
| OM | 31 C P19 |  | 0.784 | -3.858 | -0.688 |
| OM | 32 C P19 | 1 | 0.432 | -3.739 | 1.706 |
| OM | 33 H P19 |  | 0.700 | -3.356 | 2.684 |
| ATOM | 34 C P19 |  | -0.283 | -4.723 | -0.840 |
| OM | 35 H P19 |  | -0.565 | -5.103 | -1.816 |
| OM | 36 C P19 | 1 | -0.630 | -4.632 | 1.559 |
| OM | 37 H P19 |  | -1.185 | -4.955 | 2.432 |
| OM | 38 C P19 | 1 | -0.985 | -5.115 | 0.303 |
| OM | 39 H P19 |  | -1.811 | -5.809 | 0.212 |
| OM | 40 C P19 |  | 0.636 | -0.489 | 0.386 |
| OM | 41 O P19 |  | -0.532 | -0.839 | 0.208 |
| OM | $42 \mathrm{~N} \mathrm{P19}$ |  | 0.957 | 0.461 | 1.279 |
| OM | $43 \mathrm{H} \mathrm{P19}$ |  | 1.912 | 0.795 | 1.371 |
| ATOM | 44 C P19 | 1 | -0.077 | 1.096 | 2.063 |
| ATOM | 45 H P19 | 1 | -0.640 | 0.327 | 2.597 |
| ATOM | 46 C P19 |  | 0.536 | 2.064 | 3.064 |
| OM | 47 H P19 |  | 1.116 | 2.835 | 2.556 |
| OM | 48 H P19 |  | -0.253 | 2.537 | 3.645 |
| OM | 49 H P19 | 1 | 1.196 | 1.528 | 3.746 |
| OM | 50 C P19 | 1 | -1.127 | 1.808 | 1.217 |
| ATOM | 51 O P19 |  | -2.248 | 2.009 | 1.698 |
| OM | $52 \mathrm{~N} \mathrm{P19}$ |  | -0.788 | 2.192 | -0.020 |
| ATOM | 53 H P19 | 1 | 0.128 | 1.948 | -0.385 |
| OM | 54 C P19 | 1 | -1.723 | 2.855 | -0.922 |
| OM | 55 C P19 | 1 | -1.060 | 2.949 | $-2.296$ |
| ATOM | 56 H P19 |  | -0.163 | 3.567 | -2.233 |
| ATOM | 57 H P19 |  | -0.776 | 1.964 | -2.669 |
| ATOM | 58 H P19 | 1 | -1.751 | 3.411 | -3.000 |
| ATOM | 59 C P19 | 1 | -2.075 | 4.249 | -0.419 |
| ATOM | 60 H P19 | 1 | -2.764 | 4.727 | -1.113 |
| ATOM | 61 H P19 | 1 | -2.541 | 4.203 | 0.562 |
| ATOM | 62 H P19 | 1 | -1.164 | 4.845 | -0.355 |
| ATOM | 63 C P19 | 1 | -3.001 | 2.019 | -1.102 |


| ATOM | 64 | O | P19 | 1 | -4.057 | 2.556 | -1.430 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ATOM | 65 | N | P19 | 1 | -2.878 | 0.685 | -0.970 |
| ATOM | 66 | H | P19 | 1 | -2.002 | 0.282 | -0.652 |
| ATOM | 67 | C | P19 | 1 | -3.992 | -0.203 | -1.204 |
| ATOM | 68 | H | P19 | 1 | -4.590 | 0.223 | -2.013 |
| ATOM | 69 | C | P19 | 1 | -3.495 | -1.582 | -1.611 |
| ATOM | 70 | H | P19 | 1 | -2.863 | -2.014 | -0.835 |
| ATOM | 71 | H | P19 | 1 | -4.345 | -2.241 | -1.776 |
| ATOM | 72 | H | P19 | 1 | -2.916 | -1.515 | -2.532 |
| ATOM | 73 | C | P19 | 1 | -4.952 | -0.322 | -0.021 |
| ATOM | 74 | O | P19 | 1 | -5.996 | -0.970 | -0.153 |
| ATOM | 75 | N | P19 | 1 | -4.611 | 0.276 | 1.121 |
| ATOM | 76 | H | P19 | 1 | -3.759 | 0.823 | 1.176 |
| ATOM | 77 | C | P19 | 1 | -5.467 | 0.208 | 2.281 |
| ATOM | 78 | H | P19 | 1 | -6.433 | 0.677 | 2.086 |
| ATOM | 79 | H | P19 | 1 | -5.646 | -0.829 | 2.570 |
| ATOM | 80 | H | P19 | 1 | -4.982 | 0.727 | 3.103 |

END

| ATOM | 39 | H | P20 | 1 | 0.944 | -2.804 | -2.250 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| ATOM | 40 | H | P20 | 1 | -0.416 | -2.602 | -3.370 |
| ATOM | 41 | H | P20 | 1 | 1.077 | -1.686 | -3.614 |
| ATOM | 42 | C | P20 | 1 | -1.239 | -1.491 | -1.070 |
| ATOM | 43 | O | P20 | 1 | -2.369 | -1.722 | -1.513 |
| ATOM | 44 | N | P20 | 1 | -0.906 | -1.687 | 0.211 |
| ATOM | 45 | H | P20 | 1 | 0.024 | -1.427 | 0.526 |
| ATOM | 46 | C | P20 | 1 | -1.859 | -2.166 | 1.205 |
| ATOM | 47 | C | P20 | 1 | -1.194 | -2.063 | 2.578 |
| ATOM | 48 | H | P20 | 1 | -0.314 | -2.706 | 2.612 |
| ATOM | 49 | H | P20 | 1 | -0.880 | -1.041 | 2.790 |
| ATOM | 50 | H | P20 | 1 | -1.895 | -2.388 | 3.346 |
| ATOM | 51 | C | P20 | 1 | -2.264 | -3.607 | 0.926 |
| ATOM | 52 | H | P20 | 1 | -2.984 | -3.938 | 1.673 |
| ATOM | 53 | H | P20 | 1 | -2.716 | -3.698 | -0.060 |
| ATOM | 54 | H | P20 | 1 | -1.380 | -4.243 | 0.976 |
| ATOM | 55 | C | P20 | 1 | -3.104 | -1.265 | 1.243 |
| ATOM | 56 | O | P20 | 1 | -4.184 | -1.707 | 1.630 |
| ATOM | 57 | N | P20 | 1 | -2.927 | 0.030 | 0.921 |
| ATOM | 58 | H | P20 | 1 | -2.033 | 0.349 | 0.560 |
| ATOM | 59 | C | P20 | 1 | -4.007 | 0.984 | 1.018 |
| ATOM | 60 | H | P20 | 1 | -4.614 | 0.709 | 1.884 |
| ATOM | 61 | C | P20 | 1 | -3.456 | 2.389 | 1.206 |
| ATOM | 62 | H | P20 | 1 | -2.817 | 2.673 | 0.369 |
| ATOM | 63 | H | P20 | 1 | -4.280 | 3.097 | 1.272 |
| ATOM | 64 | H | P20 | 1 | -2.870 | 2.443 | 2.123 |
| ATOM | 65 | C | P20 | 1 | -4.971 | 0.954 | -0.167 |
| ATOM | 66 | O | P20 | 1 | -5.991 | 1.651 | -0.137 |
| ATOM | 67 | N | P20 | 1 | -4.658 | 0.173 | -1.202 |
| ATOM | 68 | H | P20 | 1 | -3.828 | -0.408 | -1.167 |
| ATOM | 69 | C | P20 | 1 | -5.521 | 0.083 | -2.356 |
| ATOM | 70 | H | P20 | 1 | -6.501 | -0.314 | -2.083 |
| ATOM | 71 | H | P20 | 1 | -5.667 | 1.064 | -2.808 |
| ATOM | 72 | H | P20 | 1 | -5.060 | -0.579 | -3.084 |
| END |  |  |  |  |  |  |  |

COMPND Ac-L-Ala-RSR-Vb-L-Ala-Aib-L-Ala-
NHMe_310R
REMARK Energy $($ ZPE $)=-1716.159907$
REMARK \#IF $=0$

| ATOM | 1 | C | P21 | 1 | -5.743 | -1.569 | 2.047 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ATOM | 2 | H | P21 | 1 | -5.459 | -0.940 | 2.891 |
| ATOM | 3 | H | P21 | 1 | -6.684 | -1.214 | 1.633 |
| ATOM | 4 | H | P21 | 1 | -5.878 | -2.583 | 2.421 |
| ATOM | 5 | C | P21 | 1 | -4.624 | -1.575 | 1.051 |
| ATOM | 6 | O | P21 | 1 | -3.473 | -1.896 | 1.358 |
| ATOM | 7 | N | P21 | 1 | -4.919 | -1.195 | -0.210 |
| ATOM | 8 | H | P21 | 1 | -5.877 | -0.991 | -0.451 |
| ATOM | 9 | C | P21 | 1 | -3.951 | -1.326 | -1.278 |
| ATOM | 10 | H | P21 | 1 | -3.553 | -2.343 | -1.275 |
| ATOM | 11 | C | P21 | 1 | -4.603 | -1.034 | -2.621 |
| ATOM | 12 | H | P21 | 1 | -5.013 | -0.024 | -2.646 |
| ATOM | 13 | H | P21 | 1 | -3.865 | -1.131 | -3.415 |
| ATOM | 14 | H | P21 | 1 | -5.407 | -1.746 | -2.810 |
| ATOM | 15 | C | P21 | 1 | -2.730 | -0.437 | -1.081 |
| ATOM | 16 | O | P21 | 1 | -1.663 | -0.725 | -1.628 |
| ATOM | 17 | N | P21 | 1 | -2.879 | 0.647 | -0.309 |
| ATOM | 18 | H | P21 | 1 | -3.783 | 0.814 | 0.107 |
| ATOM | 19 | C | P21 | 1 | -1.790 | 1.567 | -0.024 |
| ATOM | 20 | C | P21 | 1 | -1.355 | 2.375 | -1.273 |
| ATOM | 21 | H | P21 | 1 | -0.284 | 2.292 | -1.443 |



| M | 64 O | P22 |  | 4.180 | -2.144 | -1.489 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATOM | 65 N | P22 |  | 2.925 | -0.345 | -0.951 |
| TOM | 66 H | P22 |  | 2.032 | 0.004 | -0.615 |
| ATOM | 67 C | P22 |  | 4.005 | 0.594 | -1.132 |
| ATOM | 68 H | P22 |  | 4.624 | 0.230 | -1.955 |
| ATOM | 69 C | P22 |  | 3.460 | 1.972 | -1.476 |
| ATOM | 70 H | P22 |  | 2.807 | 2.342 | -0.684 |
| ATOM | 71 H | P22 |  | 4.286 | 2.670 | -1.601 |
| ATOM | 72 H | P22 |  | 2.889 | 1.930 | -2.404 |
| ATOM | 73 C | P22 |  | 4.953 | 0.692 | 0.063 |
| ATOM | 74 O | P22 |  | 5.968 | 1.389 | -0.025 |
| ATOM | 75 N | P22 |  | 4.633 | 0.016 | 1.168 |
| ATOM | 76 H | P22 |  | 3.802 | -0.564 | 1.190 |
| ATOM | 77 C | P22 |  | 5.482 | 0.057 | 2.335 |
| ATOM | 78 H | P22 |  | 6.493 | -0.273 | 2.091 |
| ATOM | 79 H | P22 |  | 5.543 | 1.068 | 2.740 |
| ATOM | 80 H | P22 |  | 5.065 | -0.603 | 3.092 |

ANNEX 6.A. Additional information about QM calculations
Cartesian coordinates (pdb format) and energies (a.u.) of all structures optimized at MPW1B95/6$31+G(d, p)$ level with the CPCM solvent model. P310 $=$ right-handed $3_{10}$-helix; M310 $=$ left-handed $3_{10}$-helix. Vibrational analysis has been conducted at standard conditions ( $\mathrm{T}=298.15 \mathrm{~K}, \mathrm{P}=1 \mathrm{~atm}$ )

COMPND Ac-Aib 2 -(R)-II-Aib ${ }_{2}$-NHMe-P310
REMARK Energy $($ ZPE $)=-1910.167821$
REMARK \#IF = 0
ATOM 1 C P01 16.2027 1.7476-0.1735
ATOM 2 H P01 15.79372 .58830 .3843
ATOM 3 H P01 17.07551 .35730 .3456
ATOM 4 H P01 16.5098 2.1159-1.1529
ATOM 5 C P01 15.1246 0.7239-0.3682
ATOM 6 O P01 $14.00341 .0290-0.7836$
ATOM 7 N P01 1 5.4323-0.5515-0.0529
ATOM 8 H P01 1 6.3789-0.7592 0.2244
ATOM 9 C P01 $14.5592-1.6802$-0.3582
ATOM 10 C P01 1 5.1534-2.9218 0.3069
ATOM 11 H P01 1 6.1315-3.1398-0.1248
ATOM 12 H P01 1 5.2654-2.7827 1.3828
ATOM 13 H P01 $14.5062-3.77980 .1309$
ATOM 14 C P01 1 4.4389-1.8873-1.8620
ATOM 15 H P01 1 3.7867-2.7328-2.0719
ATOM 16 H P01 1 4.0259-1.0019-2.3422
ATOM 17 H P01 1 5.4277-2.0903-2.2734
ATOM 18 C P01 1 3.1703-1.4534 0.2526
ATOM 19 O P01 1 2.1569-1.8923-0.2908
ATOM 20 N P01 1 3.1324-0.8113 1.4309
ATOM 21 H P01 1 $4.0020-0.47981 .8208$
ATOM 22 C P01 $11.9128-0.63152 .2056$
ATOM 23 C P01 12.21950 .34773 .3382
ATOM 24 H P01 1 2.9728-0.0791 4.0024
ATOM 25 H P01 12.58591 .29942 .9511
ATOM 26 H P01 11.31690 .53023 .9196
ATOM 27 C P01 1 1.4251-1.9608 2.7682
ATOM 28 H P01 1 0.5178-1.8102 3.3501
ATOM 29 H P01 1 1.2118-2.6647 1.9654
ATOM 30 H P01 1 2.1983-2.3778 3.4136

ATOM 31 C P01 10.81470 .00341 .3434 ATOM 32 O P01 1-0.3728-0.1977 1.6027 ATOM 33 N P01 11.20490 .82690 .3588 ATOM 34 H P01 12.19390 .90590 .1381 ATOM 35 C P01 $10.2596 \quad 1.5100-0.5036$ ATOM 36 C P01 1 0.9862 2.1042-1.7335 ATOM 37 H P01 11.1432 1.3653-2.5194 ATOM 38 H P01 $11.96512 .4540-1.4016$ ATOM 39 C P01 10.1309 3.2981-2.1587 ATOM 40 H P01 10.7124 4.0661-2.6693 ATOM 41 H P01 1-0.6683 2.9841 -2.8364 ATOM 42 C P01 1-0.3774 2.74610 .0982 ATOM 43 C P01 1-0.8434 2.94331 .3900 ATOM 44 H P01 1-0.7861 2.15072 .1251 ATOM 45 C P01 1-1.3867 4.18151 .7215 ATOM 46 H P01 $1-1.74794 .35752 .7272$ ATOM 47 C P01 1-1.4671 5.1961 0.7706 ATOM 48 H P01 $1-1.8893 \quad 6.15551 .0437$ ATOM 49 C P01 1-0.9983 $4.9910-0.5239$ ATOM 50 H P01 1-1.0514 5.7864-1.2581 ATOM 51 C P01 1-0.4481 3.7597-0.8537 ATOM 52 C P01 1-0.8131 0.5433-1.0370 ATOM 53 O P01 1-1.9459 $0.9482-1.3050$ ATOM 54 N P01 $1-0.4166-0.7142-1.2807$ ATOM 55 H P01 1 0.5120-1.0106-0.9916 ATOM 56 C P01 1-1.2818-1.6967-1.9225 ATOM 57 C P01 1-0.5897-3.0567-1.8381 ATOM 58 H P01 1 0.3512-3.0312-2.3891 ATOM 59 H P01 $1-0.3798-3.3298-0.8034$ ATOM 60 H P01 1-1.2296-3.8184-2.2819 ATOM 61 C P01 1-1.5317-1.3234-3.3783 ATOM 62 H P01 1-2.1766-2.0632-3.8483 ATOM 63 H P01 1-2.0091-0.3474-3.4502 ATOM 64 H P01 1-0.5781-1.2957-3.9062 ATOM 65 C P01 1-2.6213-1.8323-1.1774 ATOM 66 O P01 1-3.6339-2.1877-1.7772 ATOM 67 N P01 1-2.5913-1.6205 0.1508 ATOM 68 H P01 1-1.7433-1.2510 0.5688 ATOM 69 C P01 1-3.7525-1.7940 1.0136 ATOM 70 C P01 1-3.3485-1.3597 2.4228 ATOM 71 H P01 1-2.5298-1.9848 2.7831 ATOM 72 H P01 1-3.0200-0.3202 2.4370 ATOM 73 H P01 1-4.1977-1.4740 3.0952 ATOM 74 C P01 1-4.2082-3.2479 1.0331 ATOM 75 H P01 1-5.0774-3.3527 1.6797 ATOM 76 H P01 1-4.4699-3.5871 0.0329 ATOM 77 H P01 1-3.4001-3.8691 1.4211 ATOM 78 C P01 1-4.9123-0.8775 0.5881 ATOM 79 O P01 1-6.0725-1.1475 0.9090 ATOM 80 N P01 1-4.5870 $0.2551-0.0437$ ATOM 81 H P01 1-3.6374 0.3970-0.3672 ATOM 82 C P01 1-5.6018 1.2026-0.4351 ATOM 83 H P01 1-6.1838 1.52170 .4301 ATOM 84 H P01 1-5.1181 $2.0703-0.8765$ ATOM 85 H P01 1-6.2899 0.7710-1.1653 COMPND Ac-Aib ${ }_{2}$-(R)-II-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1910.169435$ REMARK \#IF $=0$
ATOM 1 C P01 16.1966 0.4517-1.3243
ATOM 2 H P01 $15.85160 .6934-2.3288$
ATOM 3 H P01 16.5790 1.3686-0.8756

ATOM 4 H P01 1 7.0028-0.2763-1.3846 ATOM 5 C P01 1 5.0284-0.0231-0.5128 ATOM 6 O P01 13.9957 0.6420 -0.4067 ATOM 7 N P01 1 5.1485-1.2296 0.0811 ATOM 8 H P01 1 6.0325-1.7093 0.0132 ATOM 9 C P01 1 4.1796-1.7438 1.0437 ATOM 10 C P01 $14.1876-0.91192 .3196$ ATOM 11 H P01 1 5.1750-0.9703 2.7777 ATOM 12 H P01 13.95720 .12962 .1005 ATOM 13 H P01 $13.4463-1.29393 .0188$ ATOM 14 C P01 1 4.5501-3.1951 1.3482 ATOM 15 H P01 1 3.8263-3.6226 2.0405 ATOM 16 H P01 $14.5676-3.80000 .4408$ ATOM 17 H P01 $15.5340-3.23471 .8186$ ATOM 18 C P01 1 $2.7709-1.7497$ 0.4338 ATOM 19 O P01 1 1.7757-1.6152 1.1465 ATOM 20 N P01 12.6974 -1.9689-0.8879 ATOM 21 H P01 13.5652 -2.0601-1.3942 ATOM 22 C P01 1 1.4561-2.1192-1.6328 ATOM 23 C P01 1 0.7502-3.4151-1.2461 ATOM 24 H P01 1 1.4066-4.2556-1.4720 ATOM 25 H P01 1 0.5134-3.4251-0.1830 ATOM 26 H P01 1-0.1726-3.5212-1.8127 ATOM 27 C P01 1 1.8067-2.1290 -3.1201 ATOM 28 H P01 1 0.8957-2.2207-3.7092 ATOM 29 H P01 12.3234 -1.2138-3.4124 ATOM 30 H P01 1 2.4471-2.9839-3.3428 ATOM 31 C P01 1 0.5153-0.9314-1.3974 ATOM 32 O P01 1-0.6938-1.0553-1.6073 ATOM 33 N P01 $11.0480 \quad 0.2342-1.0014$ ATOM 34 H P01 $12.04740 .3162-0.8317$ ATOM 35 C P01 $1 \quad 0.19561 .3847-0.7736$ ATOM 36 C P01 1-0.3527 $2.0108-2.0717$ ATOM 37 H P01 1-1.3128 1.5817 -2.3485 ATOM 38 H P01 $10.36641 .7822-2.8599$ ATOM 39 C P01 1-0.4063 3.5235-1.8325 ATOM 40 H P01 $1-0.1807$ 4.0982-2.7321 ATOM 41 H P01 1-1.3989 3.8256-1.4897 ATOM 42 C P01 10.9478 2.5354-0.1369 ATOM 43 C P01 $1 \quad 1.8101 \quad 2.4886 \quad 0.9488$ ATOM 44 H P01 1 2.06591 .54251 .4131 ATOM 45 C P01 12.35503 .67931 .4163 ATOM 46 H P01 13.04063 .66662 .2543 ATOM 47 C P01 12.02374 .88920 .8092 ATOM 48 H P01 1 2.45775 .80971 .1799 ATOM 49 C P01 11.1404 4.9281-0.2658 ATOM 50 H P01 $10.8825 \quad 5.8740-0.7272$ ATOM 51 C P01 $10.59603 .7401-0.7370$ ATOM 52 C P01 1-0.9462 1.03430 .1938 ATOM 53 O P01 1-2.0093 1.6574 0.1434 ATOM 54 N P01 1-0.6985 0.09291 .1141 ATOM 55 H P01 1 0.1808-0.4183 1.0799 ATOM 56 C P01 1-1.6562-0.2477 2.1594 ATOM 57 C P01 1-1.7923 0.89583 .1567 ATOM 58 H P01 1-0.8234 1.08043 .6215 ATOM 59 H P01 1-2.1287 $1.8041 \quad 2.6591$ ATOM 60 H P01 1-2.5144 0.63333 .9274 ATOM 61 C P01 1-1.1534-1.5070 2.8634 ATOM 62 H P01 1-1.8677-1.8063 3.6293 ATOM 63 H P01 1-1.0262-2.3291 2.1581 ATOM 64 H P01 1-0.1941-1.3079 3.3425

ATOM 65 C P01 1-3.0332-0.5857 1.5609 ATOM 66 O P01 1-4.0559-0.4068 2.2191 ATOM 67 N P01 1-3.0380-1.1488 0.3387 ATOM 68 H P01 1-2.1688-1.1926-0.1838 ATOM 69 C P01 1-4.2557-1.5831-0.3335 ATOM 70 C P01 1-4.9230-2.7264 0.4210 ATOM 71 H P01 1-4.2330-3.5694 0.4739 ATOM 72 H P01 1-5.1925-2.4219 1.4303 ATOM 73 H P01 1-5.8237-3.0368-0.1052 ATOM 74 C P01 1-3.8633-2.0465-1.7367 ATOM 75 H P01 1-4.7554-2.3541-2.2806 ATOM 76 H P01 1-3.3647-1.2493 -2.2890 ATOM 77 H P01 1-3.1836-2.8974-1.6702 ATOM 78 C P01 1-5.2465-0.4200-0.5185 ATOM 79 O P01 1-6.4490-0.6453-0.6785 ATOM 80 N P01 1-4.7298 $0.8099-0.6000$ ATOM 81 H P01 1-3.7541 0.9686-0.3729 ATOM 82 C P01 1-5.5783 1.9541-0.8273 ATOM 83 H P01 1-6.1489 1.8344-1.7488 ATOM 84 H P01 1-6.2858 $2.0951-0.0071$ ATOM 85 H P01 1-4.9538 $2.8400-0.9104$ COMPND Ac-Aib 2 -(1R,2R,4R)-IIIa-Aib ${ }_{2}$-NHMe-P310 REMARK Energy $($ ZPE $)=-2023.432969$ REMARK \#IF $=0$
ATOM 1 C P02 15.9583 0.4259-0.8974 ATOM 2 H P02 15.7072 1.3895-0.4562 ATOM 3 H P02 16.8349 0.0177-0.3991 ATOM 4 H P02 $16.192 \quad 0.5934-1.9488$ ATOM 5 C P02 $14.7599-0.4701-0.8140$ ATOM 6 O P02 1 3.6584-0.1267-1.2548 ATOM 7 N P02 1 4.9303-1.665 -0.2143 ATOM 8 H P02 1 5.8604-1.9257 0.0748 ATOM 9 C P02 1 3.9098-2.7097-0.2146 ATOM 10 C P02 14.3892 -3.827 0.7107 ATOM 11 H P02 1 5.3092-4.2624 0.3175 ATOM 12 H P02 $14.577-3.45541 .7187$ ATOM 13 H P02 1 3.637-4.6129 0.7618 ATOM 14 C P02 1 3.6799-3.242-1.6226 ATOM 15 H P02 1 2.9217-4.0225-1.6093 ATOM 16 H P02 1 3.3483-2.4457-2.2872 ATOM 17 H P02 1 4.6131-3.6599-2.0007 ATOM 18 C P02 1 2.5951-2.1615 0.3602 ATOM 19 O P02 1 1.5083-2.5602-0.0566 ATOM 20 N P02 1 2.7139-1.2805 1.3675 ATOM 21 H P02 1 3.6465-1.0051 1.6369 ATOM 22 C P02 $11.5999-0.735 \quad 2.1316$ ATOM 23 C P02 $12.1765 \quad 0.2863 \quad 3.1102$ ATOM 24 H P02 $12.8423-0.21563 .8140$ ATOM 25 H P02 12.73051 .06772 .5886 ATOM 26 H P02 11.36760 .75083 .6722 ATOM 27 C P02 1 1 $0.8659-1.83442 .8938$ ATOM 28 H P02 1 0.0596-1.3988 3.4801 ATOM 29 H P02 1 0.4446-2.5696 2.2103 ATOM 30 H P02 1 1.5683-2.3299 3.5641 ATOM 31 C P02 10.60390 .00411 .2282 ATOM 32 O P02 $1-0.5401 \quad 0.23311 .6281$ ATOM 33 N P02 11.02680 .41350 .0226 ATOM 34 H P02 $11.97110 .2019-0.2879$ ATOM 35 C P02 $10.12931 .0878-0.8903$ ATOM 36 C P02 $1 \quad 0.8982 \quad 1.5953-2.1363$ ATOM 37 H P02 11.9271 1.2412-2.1552

ATOM 38 H P02 10.39841 .2846 -3.0526 ATOM 39 C P02 10.7628 3.1223-1.9835 ATOM 40 H P02 $1 \quad 0.9051$ 3.6929-2.8965 ATOM 41 O P02 1-0.5915 3.2143-1.5275 ATOM 42 C P02 $1-0.4305 \quad 2.4532-0.334$ ATOM 43 H P02 $1-1.363 \quad 2.3753 \quad 0.2126$ ATOM 44 C P02 10.73183 .15380 .3127 ATOM 45 C P02 $1 \quad 1.5188 \quad 3.5736-0.7598$ ATOM 46 C P02 12.7177 4.2263-0.5515 ATOM 47 H P02 $13.34054 .5486-1.3770$ ATOM 48 C P02 13.09944 .47910 .7690 ATOM 49 H P02 $14.02175 .012 \quad 0.9647$ ATOM 50 C P02 12.30824 .06641 .8371 ATOM 51 H P02 12.62554 .28212 .8499 ATOM 52 C P02 11.11143 .38001 .6197 ATOM 53 H P02 $10.50393 .0412 \quad 2.4508$ ATOM 54 C P02 1-1.0491 0.1897-1.2785 ATOM 55 O P02 1-2.0883 0.6821-1.7236 ATOM 56 N P02 1 -0.9026-1.1292-1.0999 ATOM 57 H P02 $1-0.0285-1.4972-0.7346$ ATOM 58 C P02 1-1.9724-2.0743-1.3956 ATOM 59 C P02 1-1.5747-3.4244-0.7993 ATOM 60 H P02 $1-0.6666-3.7902-1.2795$ ATOM 61 H P02 1-1.3883-3.3411 0.2725 ATOM 62 H P02 1-2.3731-4.1467-0.9649 ATOM 63 C P02 1-2.1889-2.2028-2.8971 ATOM 64 H P02 1-2.9928-2.9088-3.0967 ATOM 65 H P02 1-2.4525-1.2412 -3.3339 ATOM 66 H P02 1-1.2710-2.5667-3.3596 ATOM 67 C P02 1 -3.2823-1.6468-0.709 ATOM 68 O P02 1-4.3686-1.9358-1.2054 ATOM 69 N P02 1-3.1636-1.0279 0.4808 ATOM 70 H P02 1-2.2406-0.7641 0.8076 ATOM 71 C P02 1-4.3061-0.6341 1.2956 ATOM 72 C P02 $1-3.7678 \quad 0.1598 \quad 2.4858$ ATOM 73 H P02 1 -3.1128-0.4717 3.088 ATOM 74 H P02 1 -3.1993 1.02932 .154 ATOM 75 H P02 $1-4.59830 .49243 .1073$ ATOM 76 C P02 1-5.0729-1.8537 1.7919 ATOM 77 H P02 1-5.9237-1.5333 2.3904 ATOM 78 H P02 1 -5.4359-2.4512 0.958 ATOM 79 H P02 1-4.4128-2.4647 2.4088 ATOM 80 C P02 $1-5.2501 \quad 0.30940 .5291$ ATOM 81 O P02 1-6.4336 0.41130 .8621 ATOM 82 N P02 1-4.7031 1.0733-0.4215 ATOM 83 H P02 1-3.7603 $0.8842-0.7437$ ATOM 84 C P02 1-5.5018 $2.0225-1.1578$ ATOM 85 H P02 $1-6.2750$ 1.5233-1.7465 ATOM 86 H P02 $1-5.9920$ 2.7201-0.4782 ATOM 87 H P02 1-4.8519 $2.5789-1.8285$

COMPND Ac-Aib 2 -(1R,2R,4R)-IIIa-Aib ${ }_{2}$-NHMe-M310
REMARK Energy $($ ZPE $)=-2023.430125$
REMARK \#IF $=0$
ATOM 1 C P02 1-5.8049-0.4134-1.0589 ATOM 2 H P02 1-5.8860 0.0053-2.0606 ATOM 3 H P02 1-6.6502-1.0726-0.8723 ATOM 4 H P02 1-5.8430 $0.4126-0.3470$ ATOM 5 C P02 1-4.4792-1.1034-0.9253 ATOM 6 O P02 1-3.4217-0.5729-1.2750 ATOM 7 N P02 1-4.4886-2.3263-0.3565

ATOM 8 H P02 1-5.3754-2.7567-0.1467 ATOM 9 C P02 1-3.2928-3.1552 -0.2741
ATOM 10 C P02 1-2.8508-3.6166-1.6563 ATOM 11 H P02 1-3.6516-4.2022-2.1081 ATOM 12 H P02 1-2.6264-2.7626-2.2933 ATOM 13 H P02 1-1.9592-4.2357-1.5773 ATOM 14 C P02 1-3.6133-4.3567 0.6142 ATOM 15 H P02 1-2.7261-4.9776 0.7304 ATOM 16 H P02 1-3.9533-4.0433 1.6019 ATOM 17 H P02 1-4.3924-4.9619 0.1483 ATOM 18 C P02 1-2.1648-2.3674 0.4027 ATOM 19 O P02 $1-0.9914-2.51540 .0639$ ATOM 20 N P02 1-2.5144-1.5697 1.4253 ATOM 21 H P02 1-3.4911-1.4950 1.6675 ATOM 22 C P02 1-1.5320-0.9343 2.2926 ATOM 23 C P02 1-0.8265-1.9668 3.1603 ATOM 24 H P02 1-1.5644-2.4736 3.7823 ATOM 25 H P02 1 -0.3127-2.7014 2.5422 ATOM 26 H P02 1-0.0942-1.4799 3.8012 ATOM 27 C P02 1 -2.2658 0.08893 .1589 ATOM 28 H P02 $1-1.55450 .61343 .7956$ ATOM 29 H P02 1 -2.7926 0.82112 .5454 ATOM 30 H P02 1-2.9858-0.4205 3.8013 ATOM 31 C P02 1-0.5054-0.1650 1.4519 ATOM 32 O P02 1 O.6742-0.0952 1.7946 ATOM 33 N P02 $1-0.97740 .51610 .3899$ ATOM 34 H P02 1-1.9190 0.33630 .0543 ATOM 35 C P02 $1-0.1197 \quad 1.4341-0.3265$ ATOM 36 C P02 10.42832 .59140 .5481 ATOM 37 H P02 $1 \quad 0.08012 .51721 .5757$ ATOM 38 H P02 11.51502 .59560 .5323 ATOM 39 C P02 1-0.1224 $3.8297-0.1827$ ATOM 40 H P02 $10.44904 .7449-0.0607$ ATOM 41 O P02 1-0.0920 3.3924-1.5520 ATOM 42 C P02 1-0.9314 $2.2579-1.3949$ ATOM 43 H P02 1-1.0948 $1.7494-2.3411$ ATOM 44 C P02 1-2.1327 $2.8651-0.7087$ ATOM 45 C P02 $1-1.60313 .89310 .0704$ ATOM 46 C P02 $1-2.41084 .67530 .8712$ ATOM 47 H P02 1 -2.0029 5.46851 .4856 ATOM 48 C P02 1 -3.7853 4.42520 .8492 ATOM 49 H P02 1-4.4489 5.0371 1.4474 ATOM 50 C P02 $1-4.31553 .4118 \quad 0.0570$ ATOM 51 H P02 1-5.3866 3.25030 .0457 ATOM 52 C P02 1-3.4889 $2.6076-0.7313$ ATOM 53 H P02 1-3.8959 1.8118-1.3393 ATOM 54 C P02 $11.0453 \quad 0.7076-1.0145$ ATOM 55 O P02 $12.0657 \quad 1.3192-1.3384$ ATOM 56 N P02 1 0.9074-0.6065-1.2449 ATOM 57 H P02 1 0.1020-1.1072-0.8826 ATOM 58 C P02 1 1.9739-1.3797-1.8709 ATOM 59 C P02 1 2.1524-0.9802-3.3300 ATOM 60 H P02 1 1.2258-1.1804-3.8689 ATOM 61 H P02 12.3965 0.0766-3.4168 ATOM 62 H P02 $12.9564-1.5633-3.7747$ ATOM 63 C P02 1 1.6114-2.8612-1.7803 ATOM 64 H P02 1 2.4030-3.4518-2.2398 ATOM 65 H P02 1 1.4848-3.1791-0.7458 ATOM 66 H P02 1 0.6801-3.0500 -2.3156 ATOM 67 C P02 1 3.2990-1.2016-1.1087 ATOM 68 O P02 1 4.3729-1.3394-1.6906

ATOM 69 N P02 1 3.2110 -0.9744 0.2160 ATOM 70 H P02 1 2.3005-0.8119 0.6328 ATOM 71 C P02 $14.3774-0.87101 .0835$ ATOM 72 C P02 1 5.1265-2.1957 1.1569 ATOM 73 H P02 $14.4634-2.95851 .5667$ ATOM 74 H P02 1 5.4618-2.5066 0.1695 ATOM 75 H P02 1 5.9937-2.0917 1.8065 ATOM 76 C P02 1 3.8825 -0.4774 2.4755 ATOM 77 H P02 $14.7333-0.37393 .1476$ ATOM 78 H P02 13.33260 .46382 .4474 ATOM 79 H P02 1 3.2201-1.2511 2.8667 ATOM 80 C P02 15.32520 .24960 .6221 ATOM 81 O P02 16.51760 .22720 .9364 ATOM 82 N P02 $14.77251 .2784-0.0297$ ATOM 83 H P02 $13.81861 .2078-0.3631$ ATOM 84 C P02 15.5713 2.4004-0.4588 ATOM 85 H P02 16.2893 2.1110-1.2298 ATOM 86 H P02 14.9118 3.1650-0.8617 ATOM 87 H P02 $1 \quad 6.1262 \quad 2.8161 \quad 0.3821$

COMPND Ac-Aib ${ }_{2}-(1 \mathrm{~S}, 2 \mathrm{R}, 4 \mathrm{R})-\mathrm{IV}-\mathrm{Aib}_{2}$-NHMe-P310 REMARK Energy $($ ZPE $)=-1835.160047$ REMARK \#IF = 0
ATOM 1 C P03 16.17571 .36220 .0064 ATOM 2 H P03 15.83632 .13850 .6905 ATOM 3 H P03 17.02400 .83930 .4430 ATOM 4 H P03 $16.4958 \quad 1.8484-0.9154$ ATOM 5 C P03 $15.02300 .4574-0.3096$ ATOM 6 O P03 13.9356 0.8975-0.6932 ATOM 7 N P03 1 5.2223 -0.8653-0.1371 ATOM 8 H P03 1 6.1447-1.1778 0.1229 ATOM 9 C P03 1 4.2671-1.8803-0.5720 ATOM 10 C P03 1 4.7539-3.2312-0.0491 ATOM 11 H P03 1 5.7163-3.4774-0.5004 ATOM 12 H P03 1 $4.8643-3.22101 .0359$ ATOM 13 H P03 1 4.0430-4.0100-0.3213 ATOM 14 C P03 1 4.1538-1.9046-2.0905 ATOM 15 H P03 1 3.4382-2.6640-2.3994 ATOM 16 H P03 1 3.8216-0.9391-2.4687 ATOM 17 H P03 1 5.1292-2.1409-2.5162 ATOM 18 C P03 12.8892 -1.6148 0.0519 ATOM 19 O P03 1 1.8564-1.9140-0.5461 ATOM 20 N P03 1 2.8906-1.1008 1.2925 ATOM 21 H P03 1 3.7842-0.8767 1.7038 ATOM 22 C P03 1 1.6948-0.8903 2.0976 ATOM 23 C P03 1 $2.1154-0.13323 .3568$ ATOM 24 H P03 $12.8036-0.74373 .9437$ ATOM 25 H P03 12.60500 .81003 .1087 ATOM 26 H P03 $11.2388 \quad 0.07763 .9672$ ATOM 27 C P03 11.0520 -2.2218 2.4708 ATOM 28 H P03 $10.1680-2.04973 .0817$ ATOM 29 H P03 1 0.7600-2.7742 1.5789 ATOM 30 H P03 1 1.7686-2.8151 3.0390 ATOM 31 C P03 1 $0.6729-0.01251 .3621$ ATOM 32 O P03 1-0.5157-0.0446 1.6915 ATOM 33 N P03 11.12250 .80420 .4008 ATOM 34 H P03 12.10330 .78450 .1380 ATOM 35 C P03 $10.2240 \quad 1.6881-0.3210$ ATOM 36 C P03 1-0.3309 2.85760 .5390 ATOM 37 H P03 $1-1.2255 \quad 2.58121 .0924$ ATOM 38 C P03 $1 \quad 1.0090 \quad 2.4383-1.4410$

ATOM 39 H P03 12.0165 2.0385-1.5551 ATOM 40 H P03 $10.4928 \quad 2.3343-2.3975$ ATOM 41 C P03 11.77404 .00190 .3358 ATOM 42 H P03 $12.02535 .0398 \quad 0.5599$ ATOM 43 H P03 12.71113 .44270 .2736 ATOM 44 C P03 10.81003 .41171 .3927 ATOM 45 H P03 $11.2778 \quad 2.66242 .0302$ ATOM 46 H P03 10.41554 .19402 .0438 ATOM 47 C P03 10.9732 3.8902 -0.9718 ATOM 48 H P03 $11.27544 .5975-1.7438$ ATOM 49 C P03 1-0.4729 $3.9864-0.4884$ ATOM 50 H P03 1-1.2021 3.7756-1.2696 ATOM 51 H P03 1-0.7120 $4.9403-0.0126$ ATOM 52 C P03 1-0.9179 $0.8821-0.9434$ ATOM 53 O P03 1-2.0164 1.4033-1.1556 ATOM 54 N P03 1-0.6549-0.3867-1.2933 ATOM 55 H P03 1 0.2455-0.7969-1.0634 ATOM 56 C P03 1-1.6345-1.2265-1.9694 ATOM 57 C P03 1-1.0984-2.6578-1.9735 ATOM 58 H P03 1-0.1668-2.7043-2.5389 ATOM 59 H P03 1-0.9078-3.0100 -0.9590 ATOM 60 H P03 1-1.8242-3.3182-2.4465 ATOM 61 C P03 1-1.8633-0.7462-3.3968 ATOM 62 H P03 1-2.5924-1.3826-3.8943 ATOM 63 H P03 1-2.2309 $0.2785-3.4043$ ATOM 64 H P03 1-0.9199-0.7923-3.9417 ATOM 65 C P03 1-2.9682-1.2534-1.2038 ATOM 66 O P03 1-4.0247-1.4456-1.8029 ATOM 67 N P03 1-2.9000-1.1474 0.1363 ATOM 68 H P03 1-2.0149-0.9043 0.5696 ATOM 69 C P03 1-4.0706-1.2521 0.9977 ATOM 70 C P03 1-3.6204-0.9517 2.4276 ATOM 71 H P03 1-2.8806-1.6874 2.7470 ATOM 72 H P03 1-3.1752 0.04082 .5004 ATOM 73 H P03 1-4.4774-1.0067 3.0977 ATOM 74 C P03 1-4.6760-2.6484 0.9290 ATOM 75 H P03 1-5.5443-2.7083 1.5824 ATOM 76 H P03 1-4.9829-2.8874-0.0871 ATOM 77 H P03 1-3.9325-3.3752 1.2586 ATOM 78 C P03 1-5.1278-0.1931 0.6396 ATOM 79 O P03 1-6.3150-0.3692 0.9249 ATOM 80 N P03 1-4.6770 0.94940 .1117 ATOM 81 H P03 1-3.7161 1.0113-0.2045 ATOM 82 C P03 1-5.5813 $2.0256-0.2116$ ATOM 83 H P03 1-6.1392 2.33830 .6717 ATOM 84 H P03 1-5.0023 $2.8685-0.5805$ ATOM 85 H P03 1-6.2999 1.7269-0.9781

COMPND Ac-Aib ${ }_{2}$-(1S,2R,4R)-IV-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1835.158057$
REMARK \#IF $=0$
ATOM 1 C P03 1-5.9940 1.3721-0.6045 ATOM 2 H P03 1-5.6832 $2.2258-0.0038$ ATOM 3 H P03 1-6.2018 $1.7336-1.6119$ ATOM 4 H P03 1-6.9041 $0.9471-0.1867$ ATOM 5 C P03 1-4.8606 0.3928-0.6750 ATOM 6 O P03 1-3.7227 0.7337-1.0072 ATOM 7 N P03 1-5.1338-0.8854-0.3401 ATOM 8 H P03 1-6.0877-1.1392-0.1357 ATOM 9 C P03 1-4.1704-1.9637-0.5294 ATOM 10 C P03 1-3.9187-2.2209-2.0086

ATOM 11 H P03 1-4.8533-2.5214-2.4824 ATOM 12 H P03 1-3.5410-1.3242-2.4969 ATOM 13 H P03 1-3.1858-3.0164-2.1298 ATOM 14 C P03 1-4.7311-3.2159 0.1439 ATOM 15 H P03 1-4.0187-4.0350 0.0548 ATOM 16 H P03 1-4.9352-3.0434 1.2013 ATOM 17 H P03 1-5.6569-3.5161-0.3493 ATOM 18 C P03 1-2.8532-1.6083 0.1731 ATOM 19 O P03 1-1.7667-1.9326-0.3045 ATOM 20 N P03 1-2.9587-0.9921 1.3614 ATOM 21 H P03 1-3.8816-0.7598 1.6971 ATOM 22 C P03 1-1.8246-0.7578 2.2458 ATOM 23 C P03 1-1.2889-2.0725 2.7976 ATOM 24 H P03 1-2.0806-2.5735 3.3550 ATOM 25 H P03 1-0.9543-2.7222 1.9903 ATOM 26 H P03 1-0.4491-1.8847 3.4635 ATOM 27 C P03 1-2.3054 0.14423 .3820 ATOM 28 H P03 1-1.4771 0.36574 .0536 ATOM 29 H P03 1-2.7055 $1.0832 \quad 2.9971$ ATOM 30 H P03 1-3.0826-0.3645 3.9549 ATOM 31 C P03 1-0.7089-0.0001 1.5128 ATOM 32 O P03 $1 \quad 0.4695-0.15131 .8401$ ATOM 33 N P03 1-1.0839 0.89000 .5801 ATOM 34 H P03 1-2.0408 0.88670 .2429 ATOM 35 C P03 1-0.1166 1.7611-0.0623 ATOM 36 C P03 1-0.8199 2.7694-1.0127 ATOM 37 H P03 1-1.1266 $2.3204-1.9576$ ATOM 38 C P03 10.60762 .71340 .9322 ATOM 39 H P03 $10.2659 \quad 2.53221 .9516$ ATOM 40 H P03 $1 \quad 1.6820 \quad 2.5402 \quad 0.8917$ ATOM 41 C P03 1-1.2188 4.38830 .7461 ATOM 42 H P03 1-1.4674 5.4394 0.5880 ATOM 43 H P03 1-1.4617 4.14471 .7825 ATOM 44 C P03 1-1.9583 3.4804-0.2645 ATOM 45 H P03 1-2.6723 $2.8082 \quad 0.2057$ ATOM 46 H P03 1-2.5203 $4.0736-0.9879$ ATOM 47 C P03 10.25434 .11540 .4292 ATOM 48 H P03 1 0.93764 .88590 .7859 ATOM 49 C P03 10.2126 3.8979-1.0843 ATOM 50 H P03 11.1689 3.5916-1.5035 ATOM 51 H P03 1-0.1713 $4.7611-1.6322$ ATOM 52 C P03 $10.9085 \quad 0.9332-0.8523$ ATOM 53 O P03 $12.0166 \quad 1.3990-1.1382$ ATOM 54 N P03 1 0.5557-0.3050-1.2289 ATOM 55 H P03 1-0.3319-0.6982-0.9316 ATOM 56 C P03 1 1.4633-1.1629-1.9809 ATOM 57 C P03 1 1.6472-0.6477-3.4021 ATOM 58 H P03 1 0.6820-0.6537-3.9093 ATOM 59 H P03 $12.0425 \quad 0.3662-3.3979$ ATOM 60 H P03 1 $2.3375-1.2908-3.9446$ ATOM 61 C P03 1 0.8709-2.5716-2.0073 ATOM 62 H P03 1 1.5446-3.2376-2.5452 ATOM 63 H P03 1 0.7188-2.9560-0.9986 ATOM 64 H P03 1-0.0923-2.5608-2.5184 ATOM 65 C P03 1 $2.8267-1.2703-1.2748$ ATOM 66 O P03 1 3.8503-1.4821-1.9217 ATOM 67 N P03 1 $2.8124-1.20890 .0702$ ATOM 68 H P03 1 1.9490-0.9608 0.5413 ATOM 69 C P03 $14.0023-1.39060 .8913$ ATOM 70 C P03 1 4.5508-2.8054 0.7538 ATOM 71 H P03 1 3.7905-3.5157 1.0808

ATOM 72 H P03 1 4.8175-3.0187-0.2794 ATOM 73 H P03 $15.4355-2.92001 .3772$ ATOM 74 C P03 1 3.6019-1.1271 2.3431 ATOM 75 H P03 1 $4.4754-1.22852 .9858$ ATOM 76 H P03 1 $3.1849-0.12642 .4613$ ATOM 77 H P03 1 $2.8505-1.85242 .6587$ ATOM 78 C P03 $15.0923-0.36130 .5444$ ATOM 79 O P03 $16.2748-0.58970 .8121$ ATOM 80 N P03 14.67940 .80940 .0485 ATOM 81 H P03 $13.7189 \quad 0.9141-0.2584$ ATOM 82 C P03 $15.61891 .8599-0.2586$ ATOM 83 H P03 $1 \quad 6.22332 .10060 .6163$ ATOM 84 H P03 16.2935 1.5716-1.0682 ATOM 85 H P03 15.0652 2.7453-0.5607

COMPND Ac-Aib 2 -(1R,2R,4R)-IV-Aib ${ }_{2}$-NHMe-P310 REMARK Energy $($ ZPE $)=-1833.953184$ REMARK \#IF $=0$
ATOM 1 C P04 16.19121 .39590 .1214 ATOM 2 H P04 15.85282 .11170 .8694 ATOM 3 H P04 17.04940 .84960 .5065 ATOM 4 H P04 16.4947 1.9577-0.7621 ATOM 5 C P04 15.0429 0.5072 -0.2519 ATOM 6 O P04 $13.9609 \quad 0.9659-0.6293$ ATOM 7 N P04 $15.2389-0.8220-0.1353$ ATOM 8 H P04 1 6.1578-1.1470 0.1222 ATOM 9 C P04 1 4.2864-1.8165-0.6200 ATOM 10 C P04 1 4.7679-3.1891-0.1514 ATOM 11 H P04 1 5.7335-3.4174-0.6054 ATOM 12 H P04 14.8698 -3.2257 0.9338 ATOM 13 H P04 1 4.0582-3.9545-0.4621 ATOM 14 C P04 1 4.1845-1.7776 -2.139 ATOM 15 H P04 1 3.4678-2.5203-2.4839 ATOM 16 H P04 1 3.8587-0.7960-2.4793 ATOM 17 H P04 1 5.1620-2.0000 -2.5672 ATOM 18 C P04 $12.9040-1.5770 \quad 0.0042$ ATOM 19 O P04 1 1.8755-1.8465-0.6148 ATOM 20 N P04 1 2.8962-1.1199 1.2671 ATOM 21 H P04 1 3.7868-0.9206 1.6974 ATOM 22 C P04 1 1.6945-0.9462 2.0723 ATOM 23 C P04 1 $2.1027-0.23693 .3627$ ATOM 24 H P04 $12.7930-0.86483 .9285$ ATOM 25 H P04 12.58440 .71953 .1537 ATOM 26 H P04 1 1.2210-0.0586 3.9761 ATOM 27 C P04 $11.0539-2.29362 .3875$ ATOM 28 H P04 1 0.1691-2.1492 3.0041 ATOM 29 H P04 $1 \quad 0.7632-2.80771 .4727$ ATOM 30 H P04 1 1.7710-2.9095 2.9303 ATOM 31 C P04 $1 \quad 0.6756-0.04431 .3637$ ATOM 32 O P04 1-0.5166-0.0967 1.6780 ATOM 33 N P04 11.13360 .81240 .4427 ATOM 34 H P04 $12.11980 .8150 \quad 0.2026$ ATOM 35 C P04 $10.24531 .7236-0.2549$ ATOM 36 C P04 1-0.2807 2.88410 .6579 ATOM 37 H P04 1-1.1156 2.58871 .2870 ATOM 38 C P04 $11.02542 .5040-1.3528$ ATOM 39 H P04 12.0480 2.1423-1.4473 ATOM 40 H P04 10.5362 2.3957-2.3224 ATOM 41 C P04 1 1.6786 $4.0597 \quad 0.4355$ ATOM 42 H P04 12.66934 .47670 .5612 ATOM 43 C P04 1 0.95123 .41431 .3525

ATOM 44 H P04 $1 \quad 1.23053 .1945 \quad 2.3742$ ATOM 45 C P04 10.9340 3.9748-0.8733 ATOM 46 H P04 1 1.2128 $4.6979-1.6373$ ATOM 47 C P04 1-0.5127 $3.9949-0.3741$ ATOM 48 H P04 1-1.2419 3.7265-1.1374 ATOM 49 H P04 1-0.7845 4.93930 .0993 ATOM 50 C P04 1-0.9096 $0.9437-0.8894$ ATOM 51 O P04 1-2.0136 1.4682-1.0578 ATOM 52 N P04 $1-0.6468-0.3080-1.2978$ ATOM 53 H P04 1 0.2576-0.7244-1.0939 ATOM 54 C P04 1-1.6284-1.1202-2.0044 ATOM 55 C P04 1-1.0885-2.5486-2.0746 ATOM 56 H P04 1-0.1577-2.5674-2.6427 ATOM 57 H P04 1-0.8969-2.9475-1.0779 ATOM 58 H P04 1-1.8136-3.1877-2.5771 ATOM 59 C P04 1-1.8632-0.5799-3.4095 ATOM 60 H P04 1-2.5912-1.1979-3.9312 ATOM 61 H P04 1-2.2356 $0.4425-3.3749$ ATOM 62 H P04 $1-0.9214-0.5982-3.9585$ ATOM 63 C P04 1-2.9600-1.1870-1.2378 ATOM 64 O P04 1-4.0156-1.3617-1.8438 ATOM 65 N P04 1-2.8903-1.1360 0.1052 ATOM 66 H P04 1-2.0074-0.8977 0.5460 ATOM 67 C P04 1-4.0596-1.2824 0.9629 ATOM 68 C P04 1-3.6086-1.0436 2.4041 ATOM 69 H P04 1-2.8662-1.7903 2.6900 ATOM 70 H P04 1-3.1665-0.0539 2.5203 ATOM 71 H P04 1-4.4650-1.1311 3.0715 ATOM 72 C P04 1-4.6601-2.6766 0.8346 ATOM 73 H P04 1-5.5293-2.7650 1.4836 ATOM 74 H P04 1-4.9650-2.8746-0.1910 ATOM 75 H P04 1-3.9152-3.4143 1.1353 ATOM 76 C P04 1-5.1224-0.2135 0.6540 ATOM 77 O P04 1-6.3063-0.4045 0.9436 ATOM 78 N P04 1-4.6792 0.94920 .1654 ATOM 79 H P04 1-3.7205 1.0254-0.1545 ATOM 80 C P04 1-5.5868 $2.0365-0.1075$ ATOM 81 H P04 1-6.2932 1.7800-0.9003 ATOM 82 H P04 1-6.1579 2.29280 .7853 ATOM 83 H P04 1-5.0089 2.9033-0.4184 COMPND Ac-Aib 2 -(1R,2R,4R)-IV-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1833.952914$ REMARK \#IF = 0
ATOM 1 C P04 1-6.0125 1.4475-0.4733 ATOM 2 H P04 1-5.7202 2.23740 .2178 ATOM 3 H P04 1-6.1888 1.9067-1.4460 ATOM 4 H P04 1-6.9351 0.9886-0.1246 ATOM 5 C P04 1-4.8788 0.4746-0.6042 ATOM 6 O P04 1-3.7445 $0.8339-0.9306$ ATOM 7 N P04 $1-5.1467-0.8179-0.3258$ ATOM 8 H P04 1-6.0987-1.0812 -0.1251 ATOM 9 C P04 1-4.1871-1.8878-0.5750 ATOM 10 C P04 1-3.9495-2.0711-2.0677 ATOM 11 H P04 $1-4.8922-2.3340-2.5480$ ATOM 12 H P04 1-3.5640-1.1550 -2.5114 ATOM 13 H P04 1-3.2299-2.8696-2.2383 ATOM 14 C P04 1-4.7469-3.1702 0.0396 ATOM 15 H P04 1-4.0382-3.9859-0.0970 ATOM 16 H P04 1-4.9406-3.0503 1.1062 ATOM 17 H P04 1-5.6780-3.4422-0.4601 ATOM 18 C P04 1-2.8629-1.5727 0.1335

ATOM 19 O P04 1-1.7829-1.8896-0.3636 ATOM 20 N P04 1-2.9563-1.0002 1.3446 ATOM 21 H P04 1-3.8755-0.7703 1.6918 ATOM 22 C P04 1-1.8144-0.7958 2.2266 ATOM 23 C P04 1-1.2715-2.1293 2.7240 ATOM 24 H P04 1-2.0563-2.6499 3.2733 ATOM 25 H P04 1-0.9478-2.7498 1.8896 ATOM 26 H P04 1-0.4232-1.9649 3.3853 ATOM 27 C P04 1-2.2852 0.06193 .4003 ATOM 28 H P04 1-1.4502 0.25964 .0708 ATOM 29 H P04 1-2.6909 1.01413 .0557 ATOM 30 H P04 1-3.0555-0.4693 3.9620 ATOM 31 C P04 1-0.7069-0.0113 1.5099 ATOM 32 O P04 1 0.4744-0.1638 1.8289 ATOM 33 N P04 1-1.0888 0.89210 .5949 ATOM 34 H P04 1-2.0575 0.92760 .2940 ATOM 35 C P04 1-0.1303 1.7748-0.0430 ATOM 36 C P04 1-0.8792 $2.7720-1.0036$ ATOM 37 H P04 1-1.2014 $2.3100-1.9355$ ATOM 38 C P04 1 0.56432 .74670 .9474 ATOM 39 H P04 10.24812 .54841 .9700 ATOM 40 H P04 $11.64572 .6359 \quad 0.8856$ ATOM 41 C P04 1-1.3571 4.24340 .6939 ATOM 42 H P04 1-1.8187 4.79631 .5016 ATOM 43 C P04 1-1.9615 3.4208-0.1678 ATOM 44 H P04 1-3.0080 $3.1570-0.2142$ ATOM 45 C P04 10.12634 .14750 .4455 ATOM 46 H P04 10.73504 .96300 .8310 ATOM 47 C P04 $1 \quad 0.1383$ 3.9149-1.0687 ATOM 48 H P04 $1 \quad 1.1128$ 3.6134-1.4496 ATOM 49 H P04 $1-0.24714 .7651-1.6318$ ATOM 50 C P04 $10.90530 .9666-0.8359$ ATOM 51 O P04 $12.0098 \quad 1.4454-1.1147$ ATOM 52 N P04 1 0.5609 -0.2687-1.2283 ATOM 53 H P04 1-0.3284-0.6686-0.9438 ATOM 54 C P04 1 1.4746-1.1142-1.9864 ATOM 55 C P04 1 1.6584-0.5858-3.4028 ATOM 56 H P04 1 0.6936-0.5890-3.9108 ATOM 57 H P04 12.0517 0.4288-3.3897 ATOM 58 H P04 1 $2.3504-1.2227-3.9504$ ATOM 59 C P04 1 0.8880-2.5252-2.0257 ATOM 60 H P04 1 1.5675-3.1858-2.5629 ATOM 61 H P04 1 0.7300-2.9157-1.0201 ATOM 62 H P04 1 -0.0719-2.5145-2.5428 ATOM 63 C P04 1 2.8373-1.2212-1.2792 ATOM 64 O P04 1 3.8627-1.4211-1.9269 ATOM 65 N P04 1 2.8209-1.1726 0.0662 ATOM 66 H P04 $11.9557-0.93240 .5388$ ATOM 67 C P04 1 4.0113-1.3576 0.8859 ATOM 68 C P04 14.5679 -2.7675 0.7317 ATOM 69 H P04 1 3.8118-3.4860 1.0505 ATOM 70 H P04 1 4.8359-2.9674-0.3039 ATOM 71 H P04 $15.4532-2.88401 .3540$ ATOM 72 C P04 1 $3.6093-1.1142$ 2.3408 ATOM 73 H P04 1 4.4837-1.2179 2.9819 ATOM 74 H P04 1 3.1864-0.1176 2.4711 ATOM 75 H P04 $12.8627-1.84802 .6477$ ATOM 76 C P04 $15.0958-0.31820 .5521$ ATOM 77 O P04 $16.2791-0.54230 .8200$ ATOM 78 N P04 14.67710 .85510 .0672 ATOM 79 H P04 $13.71630 .9581-0.2388$

ATOM 80 C P04 15.6111 1.9146-0.2257
ATOM 81 H P04 16.2909 1.6382-1.0350
ATOM 82 H P04 15.0529 2.7992-0.5218
ATOM 83 H P04 $1 \quad 6.2102 \quad 2.1508 \quad 0.6540$
COMPND Ac-Aib 2 -(1S,2R,3S,4R)-VIIa-Aib ${ }_{2}$-NHMe-P310
REMARK Energy (ZPE)= -2233.38737
REMARK \#IF $=0$
ATOM 1 C P05 1-6.0818 $1.2710-0.369$
ATOM 2 H P05 1-5.7213 1.8855-1.1929
ATOM 3 H P05 1-6.9553 0.7087-0.6915
ATOM 4 H P05 1-6.3693 1.9401 0.4422
ATOM 5 C P05 1-4.9608 0.39910 .1097
ATOM 6 O P05 1-3.8604 0.86650 .4196
ATOM 7 N P05 1-5.1991-0.9262 0.1689
ATOM 8 H P05 1-6.1296-1.2526-0.0404
ATOM 9 C P05 1-4.2735-1.8789 0.7758
ATOM 10 C P05 1-4.8000-3.2847 0.4894
ATOM 11 H P05 1-5.7696 -3.422 0.9709
ATOM 12 H P05 1-4.9103-3.4585-0.5818
ATOM 13 H P05 1-4.1124-4.0258 0.8945
ATOM 14 C P05 1-4.1604-1.6458 2.2764
ATOM 15 H P05 1-3.4714-2.3651 2.7146 ATOM 16 H P05 1 $-3.794-0.642 \quad 2.486$ ATOM 17 H P05 $1-5.1432-1.7712 .7314$ ATOM 18 C P05 1-2.889-1.7608 0.1224 ATOM 19 O P05 1-1.8642-1.9694 0.7707 ATOM 20 N P05 1-2.8796-1.4794-1.1914 ATOM 21 H P05 1-3.7696-1.3209-1.6395 ATOM 22 C P05 $1-1.6831-1.432-2.0196$ ATOM 23 C P05 1-2.0991-0.9256-3.4005 ATOM 24 H P05 1-2.7843-1.6375-3.8635 ATOM 25 H P05 1-2.5908 0.0465 -3.337 ATOM 26 H P05 1-1.2199-0.8333-4.0362 ATOM 27 C P05 1-1.0421-2.8107-2.1365 ATOM 28 H P05 1-0.1545-2.7522-2.7634 ATOM 29 H P05 1-0.7547-3.1897-1.1571 ATOM 30 H P05 1-1.7569-3.4976-2.5899 ATOM 31 C P05 1 -0.656-0.4356-1.4655 ATOM 32 O P05 1 0.5302-0.5357-1.7844 ATOM 33 N P05 1-1.0993 $0.5554-0.6763$ ATOM 34 H P05 1-2.0787 $0.5894-0.4058$ ATOM 35 C P05 1-0.1874 1.5637-0.1625 ATOM 36 C P05 10.4556 2.4546-1.2662 ATOM 37 H P05 11.3512 2.0029-1.6848 ATOM 38 C P05 1-1.0098 2.61390 .6748 ATOM 39 H P05 1-2.0562 2.30980 .7142 ATOM 40 S P05 1-0.5863 2.77352 .4397 ATOM 41 H P05 $1 \quad 0.7213 \quad 3.0342 .2886$ ATOM 42 C P05 1-1.5708 3.7199-1.4686 ATOM 43 H P05 1-1.7405 4.6831-1.9515 ATOM 44 H P05 $1-2.547 \quad 3.2515-1.3207$ ATOM 45 C P05 1-0.6125 $2.8286-2.2904$ ATOM 46 H P05 $1-1.1056 \quad 1.9685-2.741$ ATOM 47 H P05 $1-0.1436$ 3.3945-3.0971 ATOM 48 C P05 $1-0.83$ 3.9021-0.1316 ATOM 49 H P05 1-1.1249 4.7885 0.427 ATOM 50 C P05 10.6343 3.7934-0.5455 ATOM 51 H P05 11.32833 .74620 .2929 ATOM 52 H P05 $10.94894 .5853-1.228$ ATOM 53 C P05 10.91940 .89320 .6625 ATOM 54 O P05 $12.0068 \quad 1.4556 \quad 0.8241$

ATOM 55 N P05 1 0.6459-0.3029 1.1936 ATOM 56 H P05 1-0.2568-0.7282 1.0082 ATOM 57 C P05 1 1.5919-1.0139 2.0428 ATOM 58 C P05 1 1.0405-2.4187 2.2838 ATOM 59 H P05 $10.0737-2.35762 .7845$ ATOM 60 H P05 1 0.9079-2.9579 1.345 ATOM 61 H P05 $1 \quad 1.729-2.9761 \quad 2.9175$ ATOM 62 C P05 $11.7808-0.28673 .3677$ ATOM 63 H P05 $12.5122-0.81293 .978$ ATOM 64 H P05 12.12570 .73293 .2014 ATOM 65 H P05 1 0.8271-0.2552 3.895 ATOM 66 C P05 1 $2.9458-1.17981 .3317$ ATOM 67 O P05 1 3.9843-1.2755 1.9824 ATOM 68 N P05 $1 \quad 2.908-1.2938-0.0092$ ATOM 69 H P05 1 $2.0303-1.1265-0.4912$ ATOM 70 C P05 1 4.0933-1.5349-0.8218 ATOM 71 C P05 1 3.6644-1.4822-2.2882 ATOM 72 H P05 12.9352 -2.2684-2.4898 ATOM 73 H P05 1 3.211-0.5212-2.5328 ATOM 74 H P05 1 4.5329-1.6398-2.9264 ATOM 75 C P05 1 4.7046-2.8962-0.5119 ATOM 76 H P05 1 5.5891-3.0488-1.1275 ATOM 77 H P05 1 4.9894-2.9648 0.536 ATOM 78 H P05 $1 \quad 3.975-3.675-0.7365$ ATOM 79 C P05 1 5.144-0.4276-0.6308 ATOM 80 O P05 1 6.3297-0.6408-0.8969 ATOM 81 N P05 14.6947 0.7783-0.2692 ATOM 82 H P05 13.73420 .88940 .0341 ATOM 83 C P05 $15.6004 \quad 1.8899-0.1111$ ATOM 84 H P05 16.1622 2.0618-1.0296 ATOM 85 H P05 15.02222 .78030 .1224 ATOM 86 H P05 16.31571 .71050 .6948

COMPND Ac-Aib ${ }_{2}$-(1S,2R,3S,4R)-VIIa-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-2233.380876$ REMARK \#IF $=0$
ATOM 1 C P05 1-6.0427 1.3168-1.0163 ATOM 2 H P05 1-5.7297 $2.2473-0.5448$
ATOM 3 H P05 1-6.2001 1.5185-2.0762 ATOM 4 H P05 1-6.9810 $0.9853-0.5766$ ATOM 5 C P05 1-4.9395 0.3102-0.8822 ATOM 6 O P05 1-3.7780 0.5656-1.2095 ATOM 7 N P05 1-5.2708-0.8927-0.3682 ATOM 8 H P05 1-6.2411-1.0823-0.1713 ATOM 9 C P05 1-4.3393-2.0149-0.3430 ATOM 10 C P05 1-4.0274-2.5009-1.7517 ATOM 11 H P05 1-4.9511-2.8302-2.2277 ATOM 12 H P05 1-3.5817-1.7038-2.3441 ATOM 13 H P05 1-3.3296-3.3352-1.7131 ATOM 14 C P05 1-4.9730-3.1350 0.4816 ATOM 15 H P05 $1-4.2831-3.97450 .5560$ ATOM 16 H P05 1-5.2220 -2.7977 1.4883 ATOM 17 H P05 1-5.8826-3.4861-0.0085 ATOM 18 C P05 1-3.0454-1.5957 0.3654 ATOM 19 O P05 1-1.9511-2.0288 0.0073 ATOM 20 N P05 1-3.1769-0.7932 1.4333 ATOM 21 H P05 1-4.0997-0.4692 1.6817 ATOM 22 C P05 1-2.0635-0.4781 2.3177 ATOM 23 C P05 1-1.6184-1.7113 3.0921 ATOM 24 H P05 1-2.4530-2.0760 3.6910 ATOM 25 H P05 1-1.2944-2.4985 2.4131

ATOM 26 H P05 1-0.7912-1.4586 3.7525 ATOM 27 C P05 1-2.5274 0.61853 .2760 ATOM 28 H P05 1-1.7095 0.90063 .9376 ATOM 29 H P05 $1-2.8590 \quad 1.50342 .7311$ ATOM 30 H P05 1-3.3509 0.25043 .8902 ATOM 31 C P05 $1-0.88660 .09781 .5174$ ATOM 32 O P05 $10.2724-0.05801 .8979$ ATOM 33 N P05 1-1.1951 0.86550 .4539 ATOM 34 H P05 1-2.1390 0.83860 .0815 ATOM 35 C P05 1-0.1800 1.6241-0.2535 ATOM 36 C P05 1-0.8151 $2.5559-1.3285$ ATOM 37 H P05 1-1.0663 $2.0186-2.2432$ ATOM 38 C P05 10.49112 .67670 .7100 ATOM 39 H P05 1-0.0245 2.60681 .6679 ATOM 40 S P05 12.22812 .47441 .1948 ATOM 41 H P05 12.77382 .85440 .0305 ATOM 42 C P05 1-1.2939 4.33690 .2317 ATOM 43 H P05 1-1.5046 5.3732-0.0372 ATOM 44 H P05 1-1.6061 4.19771 .2687 ATOM 45 C P05 1-1.9859 3.3519-0.7352 ATOM 46 H P05 1-2.7462 $2.7412-0.2545$ ATOM 47 H P05 1-2.4818 $3.8819-1.5501$ ATOM 48 C P05 10.19324 .02480 .0345 ATOM 49 H P05 10.86244 .81630 .3670 ATOM 50 C P05 10.2446 3.6558-1.4469 ATOM 51 H P05 11.21703 .2921 -1.7748 ATOM 52 H P05 1-0.0845 4.4675-2.0984 ATOM 53 C P05 $10.80250 .6916-0.9769$ ATOM 54 O P05 $1 \quad 1.8608 \quad 1.1152-1.4477$ ATOM 55 N P05 1 0.4268-0.5898-1.1233 ATOM 56 H P05 $1-0.4386-0.9152-0.7063$ ATOM 57 C P05 1 1.2518-1.5650-1.8225 ATOM 58 C P05 1 1.3839-1.2251-3.3020 ATOM 59 H P05 1 0.3922-1.2278-3.7558 ATOM 60 H P05 1 1.8383-0.2464-3.4391 ATOM 61 H P05 $12.0015-1.9723-3.7966$ ATOM 62 C P05 1 0.5988-2.9387-1.6681 ATOM 63 H P05 1 1.2221-3.6884-2.1538 ATOM 64 H P05 1 0.4740-3.2045-0.6183 ATOM 65 H P05 1-0.3831-2.9385-2.1416 ATOM 66 C P05 $12.6407-1.6718-1.1744$ ATOM 67 O P05 $13.6017-2.0716-1.8283$ ATOM 68 N P05 $12.7186-1.38960 .1408$ ATOM 69 H P05 1 1.9084-1.0008 0.6121 ATOM 70 C P05 $13.9451-1.55560 .9120$ ATOM 71 C P05 1 4.3772-3.0167 0.9512 ATOM 72 H P05 1 3.5823-3.6099 1.4048 ATOM 73 H P05 $14.5770-3.3931-0.0496$ ATOM 74 H P05 1 5.2792-3.1171 1.5520 ATOM 75 C P05 1 3.6663-1.0626 2.3311 ATOM 76 H P05 $14.5758-1.13412 .9263$ ATOM 77 H P05 1 3.3204-0.0289 2.3237 ATOM 78 H P05 1 $2.8987-1.68542 .7938$ ATOM 79 C P05 1 5.0774-0.6826 0.3432 ATOM 80 O P05 1 6.2583-0.9615 0.5659 ATOM 81 N P05 14.7096 0.4202-0.3152 ATOM 82 H P05 $13.72930 .5702-0.5165$ ATOM 83 C P05 15.6856 1.3349-0.8528 ATOM 84 H P05 16.2632 0.8744-1.6575 ATOM 85 H P05 $15.1690 \quad 2.2068-1.2471$ ATOM 86 H P05 16.3807 1.6543-0.0760

COMPND Ac-Aib ${ }_{2}$-(1S,2R,3R,4R)-VIIb-Aib ${ }_{2}$-NHMe-P310
REMARK Energy $($ ZPE $)=-2233.383227$
REMARK \#IF $=0$
ATOM 1 C P06 1 -6.5936 $0.1771-1.2960$ ATOM 2 H P06 1-6.3441 0.7751-2.1707
ATOM 3 H P06 1-7.1406-0.7106-1.6072
ATOM 4 H P06 1-7.2392 $0.7780-0.6540$
ATOM 5 C P06 $1-5.3316-0.1346-0.5420$
ATOM 6 O P06 $1-4.4817$ 0.7218-0.3107
ATOM 7 N P06 1-5.1755-1.4244-0.1494 ATOM 8 H P06 1-5.9344-2.0607-0.3368 ATOM 9 C P06 1-4.1532-1.8911 0.7830 ATOM 10 C P06 1-4.3144-3.4061 0.9132 ATOM 11 H P06 1-5.2944-3.6390 1.3331 ATOM 12 H P06 1-4.2181-3.8999-0.0548 ATOM 13 H P06 1-3.5525-3.7980 1.5849 ATOM 14 C P06 1-4.3090-1.2242 2.1450 ATOM 15 H P06 1-3.5241-1.5680 2.8163 ATOM 16 H P06 1-4.2434-0.1415 2.0516 ATOM 17 H P06 1-5.2794-1.4917 2.5636 ATOM 18 C P06 1-2.7338-1.6538 0.2442 ATOM 19 O P06 1-1.7671-1.6841 1.0080 ATOM 20 N P06 1-2.6231-1.4805-1.0809 ATOM 21 H P06 1-3.4811-1.4810-1.6099 ATOM 22 C P06 1-1.3798-1.3992-1.8288 ATOM 23 C P06 1-1.7387-1.0863-3.2811 ATOM 24 H P06 1-2.3374-1.8986-3.6959 ATOM 25 H P06 1-2.3039-0.1560 -3.3580 ATOM 26 H P06 $1-0.8282-0.9935-3.8702$ ATOM 27 C P06 1-0.6140-2.7185-1.7474 ATOM 28 H P06 1 0.3039-2.6503-2.3275 ATOM 29 H P06 $1-0.3616-2.9568-0.7148$ ATOM 30 H P06 1-1.2372-3.5152-2.1539 ATOM 31 C P06 1-0.4704-0.2703-1.3366 ATOM 32 O P06 1 0.7120-0.2633-1.6911 ATOM 33 N P06 1-0.9725 $0.6891-0.5453$ ATOM 34 H P06 1-1.9485 0.6772-0.2604 ATOM 35 C P06 1-0.0948 1.7203-0.0297 ATOM 36 C P06 10.2795 2.7928-1.0873 ATOM 37 H P06 11.1419 2.5066-1.6848 ATOM 38 C P06 1-0.7649 2.60001 .0932 ATOM 39 H P06 $1-0.0233 \quad 2.74971 .8783$ ATOM 40 S P06 1-2.2453 1.93581 .8968 ATOM 41 H P06 $1-1.62440 .93762 .5447$ ATOM 42 C P06 1-1.9055 3.7535-0.8195 ATOM 43 H P06 1-2.3099 4.7101-1.1510 ATOM 44 H P06 1-2.7556 $3.1085-0.5790$ ATOM 45 C P06 1-0.9817 3.1209-1.8875 ATOM 46 H P06 1-1.4252 $2.2571-2.3801$ ATOM 47 H P06 $1-0.7268 \quad 3.8460-2.6620$ ATOM 48 C P06 1-0.9732 3.93970 .3896 ATOM 49 H P06 1-1.2669 4.73171 .0767 ATOM 50 C P06 10.4056 4.0739-0.2592 ATOM 51 H P06 11.22374 .05660 .4611 ATOM 52 H P06 10.4961 4.9581-0.8926 ATOM 53 C P06 $11.12631 .0731 \quad 0.6242$ ATOM 54 O P06 12.21831 .64280 .6408 ATOM 55 N P06 1 0.8933 -0.0882 1.2615 ATOM 56 H P06 1-0.0167-0.5287 1.1551 ATOM 57 C P06 $1 \quad 1.8842-0.7657 \quad 2.0877$

ATOM 58 C P06 1 1.3096-2.1296 2.4693 ATOM 59 H P06 1 0.4014-1.9969 3.0588 ATOM 60 H P06 $1 \quad 1.0646-2.71591 .5826$ ATOM 61 H P06 $12.0362-2.67763 .0672$ ATOM 62 C P06 12.18370 .04713 .3413 ATOM 63 H P06 $12.9193-0.47093 .9533$ ATOM 64 H P06 $12.5751 \quad 1.02943 .0824$ ATOM 65 H P06 11.26380 .16913 .9139 ATOM 66 C P06 1 3.1859-1.0295 1.3131 ATOM 67 O P06 $14.2475-1.16141 .9189$ ATOM 68 N P06 1 3.0817-1.1752-0.0201 ATOM 69 H P06 $12.1953-0.9717-0.4704$ ATOM 70 C P06 1 4.2238-1.4757-0.8737 ATOM 71 C P06 1 3.7411-1.4278-2.3234 ATOM 72 H P06 12.9678 -2.1811-2.4818 ATOM 73 H P06 1 3.3246-0.4507-2.5689 ATOM 74 H P06 $14.5754-1.6380-2.9913$ ATOM 75 C P06 14.7941 -2.8541-0.5636 ATOM 76 H P06 1 5.6393-3.0586-1.2181 ATOM 77 H P06 1 5.1272-2.9127 0.4705 ATOM 78 H P06 1 4.0222-3.6053-0.7347 ATOM 79 C P06 1 5.3174-0.4019-0.7376 ATOM 80 O P06 1 6.4907-0.6632-1.0135 ATOM 81 N P06 14.9116 0.8299-0.4117 ATOM 82 H P06 $13.95630 .9817-0.1096$ ATOM 83 C P06 15.8510 1.9201-0.3131 ATOM 84 H P06 16.3968 2.0437-1.2490 ATOM 85 H P06 15.3030 2.8343-0.0996 ATOM 86 H P06 $1 \quad 6.57841 .7492 \quad 0.4835$

COMPND Ac-Aib 2 -(1S,2R,3R,4R)-VIIb-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-2233.382783$
REMARK \#IF $=0$
ATOM 1 C P06 1-6.1867 0.8444-0.4855 ATOM 2 H P06 1-5.9353 1.7218 0.1093 ATOM 3 H P06 1-6.4592 1.1877-1.4835 ATOM 4 H P06 1-7.0402 $0.3389-0.0386$ ATOM 5 C P06 1 -4.9721-0.0288-0.5971 ATOM 6 O P06 1-3.8962 $0.3976-1.0212$ ATOM 7 N P06 1-5.1014-1.3095-0.1886 ATOM 8 H P06 1-6.0117-1.6399 0.0908 ATOM 9 C P06 1-4.0542-2.3018-0.3969 ATOM 10 C P06 1-3.8600-2.5926-1.8788 ATOM 11 H P06 1-4.7881-2.9923 -2.2878 ATOM 12 H P06 1-3.5917-1.6853-2.4173 ATOM 13 H P06 1-3.0665-3.3251-2.0150 ATOM 14 C P06 1-4.4583-3.5728 0.3498 ATOM 15 H P06 1-3.6799-4.3273 0.2447 ATOM 16 H P06 1-4.6162-3.3793 1.4116 ATOM 17 H P06 1-5.3797-3.9736-0.0760 ATOM 18 C P06 1-2.7400-1.8051 0.2189 ATOM 19 O P06 1-1.6532-2.0733-0.2915 ATOM 20 N P06 1-2.8402-1.1334 1.3775 ATOM 21 H P06 1-3.7626-0.9570 1.7467 ATOM 22 C P06 1-1.6897-0.7982 2.2058 ATOM 23 C P06 1-1.0622-2.0527 2.7991 ATOM 24 H P06 1-1.8001-2.5604 3.4203 ATOM 25 H P06 1-0.7314-2.7280 2.0115 ATOM 26 H P06 1-0.2020-1.7872 3.4108 ATOM 27 C P06 1-2.1756 0.13503 .3139

ATOM 28 H P06 1-1.3357 0.43763 .9375 ATOM 29 H P06 1-2.6388 1.03092 .8986 ATOM 30 H P06 1-2.9009-0.3853 3.9417 ATOM 31 C P06 1-0.6426-0.0306 1.3885 ATOM 32 O P06 $10.5564-0.14681 .6312$ ATOM 33 N P06 1-1.1064 0.83020 .4614 ATOM 34 H P06 1-2.0879 0.78670 .2107 ATOM 35 C P06 $1-0.2242 \quad 1.6662-0.3240$ ATOM 36 C P06 1-0.9802 $2.3377-1.5001$ ATOM 37 H P06 $1-1.2410 \quad 1.6264-2.2834$ ATOM 38 C P06 $10.3692 \quad 2.9202 \quad 0.4067$ ATOM 39 H P06 $1 \quad 1.4523 \quad 2.8239 \quad 0.3981$ ATOM 40 S P06 1-0.1623 3.02262 .1489 ATOM 41 H P06 $10.5478 \quad 4.12672 .4221$ ATOM 42 C P06 $1-1.53054 .4040-0.3480$ ATOM 43 H P06 1-1.7819 5.3000-0.9181 ATOM 44 H P06 $1-1.83294 .56770 .6853$ ATOM 45 C P06 1-2.1770 $3.1453-0.9647$ ATOM 46 H P06 $1-2.7880$ 2.5978-0.2493 ATOM 47 H P06 1-2.8337 3.3951-1.7989 ATOM 48 C P06 1-0.0412 $4.1074-0.4859$ ATOM 49 H P06 $10.60614 .9722-0.3414$ ATOM 50 C P06 1-0.0066 $3.4588-1.8719$ ATOM 51 H P06 $1 \quad 0.9792$ 3.1103 -2.1735 ATOM 52 H P06 $1-0.4132$ 4.1130-2.6450 ATOM 53 C P06 $1 \quad 0.9221 \quad 0.8182-0.9166$ ATOM 54 O P06 12.0478 1.2916-1.0919 ATOM 55 N P06 1 0.6100 -0.4251-1.3069 ATOM 56 H P06 $1-0.2892-0.8215-1.0540$ ATOM 57 C P06 1 1.5487-1.2767-2.0277 ATOM 58 C P06 1 1.7775-0.7436-3.4365 ATOM 59 H P06 1 0.8280-0.7378-3.9722 ATOM 60 H P06 12.1769 0.2688-3.4090 ATOM 61 H P06 1 2.4818-1.3818-3.9665 ATOM 62 C P06 1 0.9529-2.6830 -2.0899 ATOM 63 H P06 1 1.6322-3.3403-2.6310 ATOM 64 H P06 1 0.7855-3.0861-1.0912 ATOM 65 H P06 1-0.0029-2.6587-2.6149 ATOM 66 C P06 $12.8907-1.3985-1.2864$ ATOM 67 O P06 1 3.9248-1.6275-1.9112 ATOM 68 N P06 1 2.8491-1.3293 0.0563 ATOM 69 H P06 1 1.9847-1.0493 0.5077 ATOM 70 C P06 1 4.0249-1.5117 0.8978 ATOM 71 C P06 14.5629 -2.9324 0.7846 ATOM 72 H P06 1 3.7939-3.6323 1.1136 ATOM 73 H P06 1 4.8379-3.1614-0.2430 ATOM 74 H P06 1 5.4408-3.0458 1.4179 ATOM 75 C P06 1 3.6060-1.2289 2.3409 ATOM 76 H P06 $14.4664-1.34522 .9987$ ATOM 77 H P06 1 3.2110-0.2182 2.4462 ATOM 78 H P06 $12.8332-1.93512 .6488$ ATOM 79 C P06 1 5.1275-0.4951 0.5529 ATOM 80 O P06 $16.3065-0.73170 .8283$ ATOM 81 N P06 14.72720 .67570 .0468 ATOM 82 H P06 $13.76760 .7869-0.2596$ ATOM 83 C P06 $15.6780 \quad 1.7138-0.2679$ ATOM 84 H P06 16.26351 .97900 .6129 ATOM 85 H P06 $16.3695 \quad 1.3984-1.0525$ ATOM 86 H P06 15.1353 2.5918-0.6091

COMPND Ac-Aib 2 -(1R,2S,4R)-IIIb-Aib ${ }_{2}$-NHMe-P310

REMARK Energy(ZPE) $=\mathbf{- 2 0 2 3 . 4 3 4 9 9 2}$
REMARK \#IF = 0
ATOM 1 C P07 1-6.0390 1.7071-0.4465 ATOM 2 H P07 1-5.6581 $2.1659-1.3576$ ATOM 3 H P07 1-6.9859 1.2144-0.6564 ATOM 4 H P07 1-6.2076 2.50230 .2802 ATOM 5 C P07 1-4.9974 0.77880 .1010 ATOM 6 O P07 1-3.8273 1.1378 0.2653 ATOM 7 N P07 1-5.3900 -0.4770 0.3955 ATOM 8 H P07 1-6.3672-0.7070 0.3035 ATOM 9 C P07 1-4.5385-1.4262 1.1069 ATOM 10 C P07 1-5.2411-2.7833 1.0955 ATOM 11 H P07 1-6.1841-2.7165 1.6404 ATOM 12 H P07 1-5.4447-3.1185 0.0779 ATOM 13 H P07 1-4.6166-3.5264 1.5893 ATOM 14 C P07 1-4.2881-0.9657 2.5366 ATOM 15 H P07 1-3.6429-1.6758 3.0501 ATOM 16 H P07 1-3.8083 0.01172 .5482 ATOM 17 H P07 1-5.2406-0.9042 3.0630 ATOM 18 C P07 1-3.2036-1.5906 0.3677 ATOM 19 O P07 1-2.1564-1.7954 0.9801 ATOM 20 N P07 1-3.2590-1.5609-0.9742 ATOM 21 H P07 1-4.1520-1.3847-1.4095 ATOM 22 C P07 1-2.1119-1.8235-1.8321 ATOM 23 C P07 1-2.5153-1.4755-3.2646 ATOM 24 H P07 1-3.3336-2.1225 -3.5849 ATOM 25 H P07 1-2.8344-0.4355-3.3452 ATOM 26 H P07 1-1.6710-1.6360 -3.9333 ATOM 27 C P07 1-1.6812-3.2820-1.7402 ATOM 28 H P07 1-0.8173-3.4531-2.3796 ATOM 29 H P07 1-1.4152-3.5417-0.7169 ATOM 30 H P07 1-2.5025-3.9183-2.0699 ATOM 31 C P07 1-0.9381-0.9099-1.4611 ATOM 32 O P07 1 0.2216-1.2464-1.7104 ATOM 33 N P07 1-1.2293 $0.2852-0.9288$ ATOM 34 H P07 1-2.1882 $0.5200-0.6865$ ATOM 35 C P07 $1-0.1818$ 1.2465-0.6512 ATOM 36 C P07 $10.42161 .8423-1.9455$ ATOM 37 H P07 $10.01241 .3249-2.8112$ ATOM 38 H P07 $11.50641 .7760-1.9578$ ATOM 39 C P07 1-0.0880 $3.2970-1.8837$ ATOM 40 H P07 1-0.2063 $3.7979-2.8397$ ATOM 41 O P07 1-1.3624 3.1247-1.2402 ATOM 42 C P07 1-0.8703 2.5184-0.0466 ATOM 43 H P07 1-1.6778 2.29850 .6456 ATOM 44 C P07 10.18683 .49770 .3831 ATOM 45 C P07 10.6884 4.0126-0.8101 ATOM 46 C P07 10.69193 .88571 .6075 ATOM 47 H P07 10.31083 .47552 .5349 ATOM 48 C P07 $11.7218 \quad 4.9279-0.8140$ ATOM 49 H P07 12.1269 5.3245-1.7370 ATOM 50 C P07 11.71844 .83271 .6128 ATOM 51 H P07 12.12465 .17642 .5559 ATOM 52 C P07 12.22575 .34310 .4213 ATOM 53 H P07 13.01996 .07870 .4535 ATOM 54 C P07 10.88000 .66450 .2822 ATOM 55 O P07 $12.04231 .0717 \quad 0.2455$ ATOM 56 N P07 1 0.4670-0.2660 1.1552 ATOM 57 H P07 1-0.4839-0.6171 1.0961 ATOM 58 C P07 1 1.3530-0.8539 2.1521 ATOM 59 C P07 1 $0.6119-2.02172 .8020$

ATOM 60 H P07 1-0.2778-1.6560 3.3163 ATOM 61 H P07 1 0.3052-2.7577 2.0586 ATOM 62 H P07 1 1.2614-2.5028 3.5320 ATOM 63 C P07 11.73510 .17733 .2069 ATOM 64 H P07 $12.3688-0.28063 .9638$ ATOM 65 H P07 12.27281 .01122 .7592 ATOM 66 H P07 10.82720 .55143 .6813 ATOM 67 C P07 1 2.6207-1.4332 1.5017 ATOM 68 O P07 1 3.6639-1.5186 2.1463 ATOM 69 N P07 $12.4972-1.9011 \quad 0.2459$ ATOM 70 H P07 1 1.6351-1.7303-0.2612 ATOM 71 C P07 $13.5897-2.5471-0.4712$ ATOM 72 C P07 1 3.1081-2.8276-1.8946 ATOM 73 H P07 1 2.2485-3.4994-1.8701 ATOM 74 H P07 1 2.8124-1.9087-2.4011 ATOM 75 H P07 13.9077 -3.3044-2.4602 ATOM 76 C P07 1 3.9908-3.8531 0.2034 ATOM 77 H P07 1 4.8004-4.3222-0.3525 ATOM 78 H P07 1 4.3201-3.6779 1.2255 ATOM 79 H P07 1 3.1324-4.5259 0.2148 ATOM 80 C P07 1 4.8072-1.6138-0.5940 ATOM 81 O P07 1 5.9352-2.0776-0.7798 ATOM 82 N P07 $14.5608-0.2999-0.5933$ ATOM 83 H P07 $13.6393 \quad 0.0392-0.3431$ ATOM 84 C P07 1 5.6281 $0.6570-0.7546$ ATOM 85 H P07 16.33990 .60490 .0724 ATOM 86 H P07 16.1724 0.4735-1.6814 ATOM 87 H P07 $15.1991 \quad 1.6552-0.7877$

COMPND Ac-Aib ${ }_{2}$-(1R,2S,4R)-IIIb-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-2023.430559$ REMARK \#IF $=0$
ATOM 1 C P07 16.01592 .27800 .0049 ATOM 2 H P07 $15.5705 \quad 2.8781-0.7875$ ATOM 3 H P07 $16.12282 .9151 \quad 0.8828$ ATOM 4 H P07 $17.00031 .9380-0.3096$ ATOM 5 C P07 15.08111 .15620 .3436 ATOM 6 O P07 13.90431 .36270 .6558 ATOM 7 N P07 1 5.5761-0.0956 0.2708 ATOM 8 H P07 $16.5567-0.21010 .0673$ ATOM 9 C P07 1 4.8455-1.2728 0.7309 ATOM 10 C P07 1 4.6639-1.2451 2.2422 ATOM 11 H P07 1 5.6445-1.2267 2.7179 ATOM 12 H P07 1 4.1009-0.3652 2.5487 ATOM 13 H P07 14.1270 -2.1328 2.5707 ATOM 14 C P07 $15.6441-2.50620 .3097$ ATOM 15 H P07 1 5.1142-3.4095 0.6084 ATOM 16 H P07 1 5.7982-2.5310-0.7698 ATOM 17 H P07 1 6.6163-2.5028 0.8051 ATOM 18 C P07 1 3.4772-1.3505 0.0390 ATOM 19 O P07 1 $2.4984-1.82120 .6168$ ATOM 20 N P07 1 3.4340-0.9355-1.2376 ATOM 21 H P07 1 4.2782-0.5569-1.6401 ATOM 22 C P07 1 $2.2560-1.0443-2.0867$ ATOM 23 C P07 1 1.9416-2.5022-2.3994 ATOM 24 H P07 1 2.7852-2.9418-2.9316 ATOM 25 H P07 1 1.7647-3.0644-1.4837 ATOM 26 H P07 1 1.0531-2.5644-3.0246 ATOM 27 C P07 $12.5379-0.2711-3.3747$ ATOM 28 H P07 1 1.6655-0.3117-4.0250 ATOM 29 H P07 $12.7720 \quad 0.7739-3.1670$

ATOM 30 H P07 1 3.3788-0.7250 -3.9014 ATOM 31 C P07 1 1.0423-0.3823-1.4243 ATOM 32 O P07 1-0.1010-0.7275-1.7310 ATOM 33 N P07 $11.27290 .6157-0.5563$ ATOM 34 H P07 $12.22510 .8591-0.2990$ ATOM 35 C P07 10.17221 .36230 .0236 ATOM 36 C P07 10.72332 .46740 .9609 ATOM 37 H P07 11.78402 .31491 .1518 ATOM 38 H P07 $10.1962 \quad 2.50061 .9128$ ATOM 39 C P07 10.47863 .73890 .1161 ATOM 40 H P07 $1 \quad 1.18444 .5481 \quad 0.2772$ ATOM 41 O P07 10.5886 3.2226-1.2178 ATOM 42 C P07 1-0.4537 2.2453-1.1091 ATOM 43 H P07 1-0.5935 1.7105-2.0427 ATOM 44 C P07 1-1.5927 3.0909-0.6081 ATOM 45 C P07 1-0.9883 4.06870 .1777 ATOM 46 C P07 1-2.9586 $3.0756-0.8083$ ATOM 47 H P07 1-3.4335 2.3142-1.4146 ATOM 48 C P07 1-1.7340 5.0389 0.8191 ATOM 49 H P07 1-1.2692 5.7928 1.4427 ATOM 50 C P07 1-3.7168 4.0701-0.1906 ATOM 51 H P07 1-4.7894 4.0952-0.3398 ATOM 52 C P07 1-3.1156 5.0331 0.6166 ATOM 53 H P07 1-3.7276 5.7950 1.0834 ATOM 54 C P07 1-0.7847 0.43300 .7682 ATOM 55 O P07 1-1.9597 0.74820 .9609 ATOM 56 N P07 1-0.2542-0.7051 1.2401 ATOM 57 H P07 1 0.7127-0.9267 1.0240 ATOM 58 C P07 1-1.0099-1.6626 2.0368 ATOM 59 C P07 1-1.3415-1.0855 3.4069 ATOM 60 H P07 $1-0.4126-0.85123 .9276$ ATOM 61 H P07 1-1.9359-0.1787 3.3116 ATOM 62 H P07 1-1.9030-1.8119 3.9909 ATOM 63 C P07 1-0.1510-2.9182 2.1881 ATOM 64 H P07 1-0.6939-3.6616 2.7702 ATOM 65 H P07 1 0.1020 -3.3430 1.2161 ATOM 66 H P07 $1 \quad 0.7762-2.67412 .7078$ ATOM 67 C P07 1-2.3009-2.0918 1.3191 ATOM 68 O P07 1-3.2710-2.4807 1.9661 ATOM 69 N P07 1-2.2716-2.0844-0.0260 ATOM 70 H P07 1-1.4575-1.7042 -0.4969 ATOM 71 C P07 1-3.3906-2.5184-0.8522 ATOM 72 C P07 1-3.6593-4.0081-0.6743 ATOM 73 H P07 1-2.7660-4.5663-0.9572 ATOM 74 H P07 1-3.9108-4.2379 0.3592 ATOM 75 H P07 1-4.4849-4.3144-1.3139 ATOM 76 C P07 1-3.0258-2.2281-2.3080 ATOM 77 H P07 1-3.8584-2.5033 -2.9541 ATOM 78 H P07 1-2.7947-1.1724-2.4542 ATOM 79 H P07 1-2.1523-2.8150 -2.5958 ATOM 80 C P07 1-4.6614-1.7084-0.5432 ATOM 81 O P07 1-5.7755-2.1702-0.8028 ATOM 82 N P07 1-4.4899-0.4660 -0.0805 ATOM 83 H P07 1-3.5671-0.1547 0.1997 ATOM 84 C P07 1-5.6234 0.3774 0.2102 ATOM 85 H P07 1-6.3055-0.1110 0.9087 ATOM 86 H P07 1-5.2649 1.3025 0.6543 ATOM 87 H P07 1-6.1811 0.6132-0.6977

COMPND Ac-Aib $2_{2}-(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{R})-\mathrm{VIIIa}-\mathrm{Aib}_{2}$-NHMe-P310 REMARK Energy $($ ZPE $)=-1910.359438$

REMARK \#IF $=0$
ATOM 1 C P08 15.9944 1.6913-0.2977
ATOM 2 H P08 $15.60942 .4803 \quad 0.3463$
ATOM 3 H P08 16.90771 .28530 .1319 ATOM 4 H P08 16.2258 2.1358-1.2662 ATOM 5 C P08 14.9242 0.6601-0.4921 ATOM 6 O P08 $13.77530 .9676-0.8237$ ATOM 7 N P08 $15.2660-0.6255-0.2717$ ATOM 8 H P08 1 6.2299-0.8357-0.0638 ATOM 9 C P08 $14.3851-1.7455-0.5895$ ATOM 10 C P08 1 5.0252-3.0160-0.0313 ATOM 11 H P08 1 5.9778-3.2007-0.5304 ATOM 12 H P08 1 5.1989-2.9358 1.0424 ATOM 13 H P08 1 4.3743-3.8691-0.2173 ATOM 14 C P08 1 4.1800-1.8657-2.0937 ATOM 15 H P08 1 3.5237-2.7047-2.3159 ATOM 16 H P08 1 3.7325-0.9578-2.4950 ATOM 17 H P08 1 5.1453-2.0326-2.5719 ATOM 18 C P08 1 3.0305-1.5651 0.1100 ATOM 19 O P08 1 1.9924-1.9765-0.4078 ATOM 20 N P08 $13.0592-0.99811 .3268$ ATOM 21 H P08 1 3.9516 -0.6865 1.6795 ATOM 22 C P08 $1 \quad 1.8958-0.8620 \quad 2.1924$ ATOM 23 C P08 $12.3131-0.01133 .3918$ ATOM 24 H P08 $13.0786-0.53473 .9670$ ATOM 25 H P08 12.71060 .95443 .0754 ATOM 26 H P08 11.45420 .15724 .0396 ATOM 27 C P08 1 1.4044-2.2275 2.6593 ATOM 28 H P08 1 0.5435-2.1087 3.3138 ATOM 29 H P08 1 1.1171-2.8472 1.8112 ATOM 30 H P08 $12.2049-2.72343 .2084$ ATOM 31 C P08 1 0.7565-0.1170 1.4811 ATOM 32 O P08 1-0.4085-0.2803 1.8472 ATOM 33 N P08 $11.08910 .7448 \quad 0.5055$ ATOM 34 H P08 12.05540 .80230 .1954 ATOM 35 C P08 10.0909 1.5431-0.1806 ATOM 36 C P08 $1-0.71332 .49730 .7588$ ATOM 37 H P08 1-1.5789 2.01251 .2055 ATOM 38 C P08 $1 \quad 0.8020$ 2.5544-1.1580 ATOM 39 H P08 $1 \quad 1.8720 \quad 2.3522-1.1926$ ATOM 40 O P08 $1 \quad 0.3586 \quad 2.4461-2.4925$ ATOM 41 H P08 1-0.6052 $2.5026-2.5080$ ATOM 42 C P08 $11.17953 .9645 \quad 0.8476$ ATOM 43 H P08 11.25904 .99411 .1970 ATOM 44 H P08 12.19423 .56000 .7992 ATOM 45 C P08 110.25843 .12111 .7587 ATOM 46 H P08 10.79732 .39272 .3617 ATOM 47 H P08 $1-0.30503 .7572 \quad 2.4434$ ATOM 48 C P08 $1 \quad 0.4829$ 3.9030 -0.5225 ATOM 49 H P08 10.7197 4.7323-1.1880 ATOM 50 C P08 1-0.9828 3.7087-0.1404 ATOM 51 H P08 1-1.6408 3.4960-0.9822 ATOM 52 H P08 1-1.3956 4.54730 .4233 ATOM 53 C P08 1-0.8828 $0.6577-0.9582$ ATOM 54 O P08 1-1.9460 1.1363-1.3767 ATOM 55 N P08 1-0.5597-0.6231-1.1516 ATOM 56 H P08 1 0.3320 -0.9756-0.8140 ATOM 57 C P08 1-1.4772-1.5613-1.7873 ATOM 58 C P08 1-0.9234-2.9702-1.5774 ATOM 59 H P08 1 0.0404-3.0696-2.0771 ATOM 60 H P08 1-0.7868-3.1869-0.5170

ATOM 61 H P08 1-1.6128-3.6996 -2.0008 ATOM 62 C P08 1-1.6207-1.2663-3.2739 ATOM 63 H P08 1-2.2999-1.9827-3.7319 ATOM 64 H P08 1-2.0102-0.2626-3.4324 ATOM 65 H P08 1-0.6428-1.3505 -3.7490 ATOM 66 C P08 1-2.8548-1.5103-1.1000 ATOM 67 O P08 1-3.8775-1.7662-1.7311 ATOM 68 N P08 1-2.8565-1.2516 0.2218 ATOM 69 H P08 1-1.9834-1.0133 0.6814 ATOM 70 C P08 1-4.0658-1.2564 1.0346 ATOM 71 C P08 1-3.6758-0.7948 2.4392 ATOM 72 H P08 1-2.9568-1.4917 2.8726 ATOM 73 H P08 1-3.2252 0.19842 .4186 ATOM 74 H P08 1-4.5611-0.7685 3.0732 ATOM 75 C P08 1-4.6796-2.6493 1.1007 ATOM 76 H P08 1-5.5814-2.6250 1.7097 ATOM 77 H P08 1-4.9371-3.0072 0.1057 ATOM 78 H P08 1-3.9619-3.3347 1.5530 ATOM 79 C P08 1-5.1005-0.2454 0.5107 ATOM 80 O P08 1-6.2983-0.3887 0.7681 ATOM 81 N P08 1-4.6272 $0.8291-0.1290$ ATOM 82 H P08 $1-3.6568 \quad 0.8580-0.4200$ ATOM 83 C P08 1-5.5187 1.8567-0.6090 ATOM 84 H P08 1-6.1241 $2.2511 \quad 0.2075$ ATOM 85 H P08 1-4.9254 $2.6637-1.0314$ ATOM 86 H P08 1-6.1941 1.4740-1.3776

COMPND Ac-Aib 2 -(1S,2S,3S,4R)-VIIIa-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1910.350961$ REMARK \#IF $=0$
ATOM 1 C P08 1-5.8824 1.6065-1.0531 ATOM 2 H P08 1-5.5242 $2.5117-0.5651$ ATOM 3 H P08 1-6.0147 1.8301-2.1121 ATOM 4 H P08 1-6.8434 1.3223-0.6297 ATOM 5 C P08 1-4.8390 $0.5378-0.9199$ ATOM 6 O P08 1-3.6573 $0.7381-1.2124$ ATOM 7 N P08 1-5.2479-0.6583-0.4481 ATOM 8 H P08 1-6.2321-0.7985-0.2812 ATOM 9 C P08 1-4.3864-1.8356-0.4353 ATOM 10 C P08 $1-4.0670$-2.2955-1.8511 ATOM 11 H P08 1-4.9944-2.5631-2.3575 ATOM 12 H P08 1-3.5678-1.5048-2.4087 ATOM 13 H P08 1-3.4128-3.1648-1.8214 ATOM 14 C P08 1-5.1108-2.9377 0.3365 ATOM 15 H P08 1-4.4810-3.8245 0.3921 ATOM 16 H P08 1-5.3565-2.6196 1.3502 ATOM 17 H P08 1-6.0322-3.2075-0.1821 ATOM 18 C P08 1-3.0873-1.5196 0.3171 ATOM 19 O P08 1-2.0159-2.0233-0.0184 ATOM 20 N P08 1-3.1969-0.7221 1.3910 ATOM 21 H P08 1-4.1032-0.3372 1.6115 ATOM 22 C P08 1-2.0860-0.4547 2.2936 ATOM 23 C P08 1-1.7124-1.7040 3.0797 ATOM 24 H P08 1-2.5748-2.0296 3.6616 ATOM 25 H P08 1-1.4099-2.5065 2.4086 ATOM 26 H P08 1-0.8883-1.4872 3.7564 ATOM 27 C P08 1-2.5159 0.66653 .2389 ATOM 28 H P08 1 -1.6983 0.91383 .9147 ATOM 29 H P08 1-2.7949 1.56392 .6844 ATOM 30 H P08 1-3.3674 0.34063 .8387 ATOM 31 C P08 1-0.8692 $0.0612 \quad 1.5109$

ATOM 32 O P08 1 0.2736-0.1644 1.9058 ATOM 33 N P08 1-1.1229 0.84990 .4482 ATOM 34 H P08 $1-2.06140 .87870 .0613$ ATOM 35 C P08 1-0.0670 1.5639-0.2476 ATOM 36 C P08 1-0.6429 2.6339-1.2211 ATOM 37 H P08 1-0.9464 $2.2079-2.1773$ ATOM 38 C P08 $1 \quad 0.74362 .4532 \quad 0.7649$ ATOM 39 H P08 10.31722 .31141 .7604 ATOM 40 O P08 $12.1093 \quad 2.0970 \quad 0.7861$ ATOM 41 H P08 $12.5130 \quad 2.5423 \quad 1.5364$ ATOM 42 C P08 1-0.9590 $4.2372 \quad 0.5505$ ATOM 43 H P08 1 -1.1197 5.31180 .4567 ATOM 44 H P08 $1-1.25023 .95051 .5641$ ATOM 45 C P08 1-1.7380 $3.4510-0.5265$ ATOM 46 H P08 1-2.5543 $2.8564-0.1222$ ATOM 47 H P08 $1-2.1765$ 4.1254-1.2643 ATOM 48 C P08 $10.50093 .8746 \quad 0.2552$ ATOM 49 H P08 11.22914 .58270 .6518 ATOM 50 C P08 10.4933 3.6619-1.2565 ATOM 51 H P08 11.4298 3.2580-1.6339 ATOM 52 H P08 10.2148 4.5552-1.8194 ATOM 53 C P08 10.8297 0.6037-1.0467 ATOM 54 O P08 $1 \quad 1.8261 \quad 1.0009-1.6499$ ATOM 55 N P08 1 0.4726-0.6924-1.0683 ATOM 56 H P08 1-0.3747-1.0009-0.6067 ATOM 57 C P08 1 1.3293-1.7018-1.6721 ATOM 58 C P08 1 1.3894-1.5640-3.1876 ATOM 59 H P08 1 $0.3817-1.6663-3.5920$ ATOM 60 H P08 1 1.7945-0.5966-3.4748 ATOM 61 H P08 12.0178 -2.3478-3.6071 ATOM 62 C P08 1 0.7717-3.0761-1.3001 ATOM 63 H P08 1 1.4292-3.8529-1.6890 ATOM 64 H P08 1 0.6909-3.1897-0.2182 ATOM 65 H P08 1-0.2193-3.2054-1.7353 ATOM 66 C P08 1 2.7396-1.6203-1.0631 ATOM 67 O P08 1 3.7281-1.9601-1.7097 ATOM 68 N P08 1 2.8044 -1.2606 0.2339 ATOM 69 H P08 $11.9699-0.90900 .6925$ ATOM 70 C P08 $14.0475-1.28200 .9943$ ATOM 71 C P08 14.5858 -2.7001 1.1298 ATOM 72 H P08 1 3.8531-3.3117 1.6576 ATOM 73 H P08 1 4.7797-3.1373 0.1525 ATOM 74 H P08 1 5.5146-2.6882 1.6974 ATOM 75 C P08 $13.7475-0.70562 .3770$ ATOM 76 H P08 $14.6676-0.63622 .9566$ ATOM 77 H P08 $13.3002 \quad 0.2847 \quad 2.2932$ ATOM 78 H P08 1 3.0531-1.3584 2.9083 ATOM 79 C P08 1 5.1015-0.3738 0.3366 ATOM 80 O P08 1 6.3071-0.6197 0.4333 ATOM 81 N P08 $14.6330 \quad 0.7261-0.2563$ ATOM 82 H P08 13.6325 0.8695-0.3229 ATOM 83 C P08 $15.5178 \quad 1.6918-0.8575$ ATOM 84 H P08 16.2424 2.0622 -0.1306 ATOM 85 H P08 16.0697 1.2580-1.6942 ATOM 86 H P08 14.9252 2.5266-1.2230

COMPND Ac-Aib 2 -(1S,2S,3R,4R)-VIIIb-Aib 2 -NHMe-P310
REMARK Energy $($ ZPE $)=-1910.35777$
REMARK \#IF $=0$
ATOM 1 C P09 16.80660 .57090 .5416
ATOM 2 H P09 16.62001 .41061 .2087

ATOM 3 H P09 1 7.3680-0.1958 1.0721 ATOM 4 H P09 17.4106 0.9345-0.2907 ATOM 5 C P09 15.4948 0.0796-0.0022 ATOM 6 O P09 $14.64860 .8438-0.4583$ ATOM 7 N P09 1 5.2897-1.2600 0.0555 ATOM 8 H P09 1 6.0462-1.8344 0.3921 ATOM 9 C P09 1 4.1844-1.9488-0.6000 ATOM 10 C P09 1 4.3381-3.4407-0.2979 ATOM 11 H P09 1 5.2718-3.8083-0.7265 ATOM 12 H P09 14.3438 -3.6303 0.7767 ATOM 13 H P09 1 3.5142-3.9925-0.7470 ATOM 14 C P09 1 4.1946-1.7177-2.1071 ATOM 15 H P09 1 3.3690-2.2576-2.5667 ATOM 16 H P09 1 4.0966-0.6591-2.3397 ATOM 17 H P09 1 5.1340-2.0890 -2.5174 ATOM 18 C P09 1 $2.8269-1.5335-0.0161$ ATOM 19 O P09 1 1.7923-1.7521-0.6486 ATOM 20 N P09 1 $2.8309-1.00231 .2159$ ATOM 21 H P09 13.7291 -0.8985 1.6636 ATOM 22 C P09 1 1.6454-0.8203 2.0437 ATOM 23 C P09 $12.0773-0.06993 .3036$ ATOM 24 H P09 $12.7835-0.67703 .8725$ ATOM 25 H P09 12.55150 .88073 .0554 ATOM 26 H P09 11.20940 .12273 .9323 ATOM 27 C P09 1 1.0393-2.1710 2.4113 ATOM 28 H P09 1 0.1700-2.0302 3.0499 ATOM 29 H P09 1 0.7331-2.7131 1.5174 ATOM 30 H P09 1 1.7846-2.7596 2.9467 ATOM 31 C P09 $10.5868 \quad 0.04241 .3487$ ATOM 32 O P09 1-0.5944-0.0445 1.6930 ATOM 33 N P09 10.98530 .91510 .4139 ATOM 34 H P09 11.94940 .94490 .1007 ATOM 35 C P09 $1 \quad 0.02251 .7610-0.2588$ ATOM 36 C P09 1-0.5843 2.87430 .6373 ATOM 37 H P09 1-1.4709 2.54341 .1721 ATOM 38 C P09 $1 \quad 0.7407$ 2.5978-1.3772 ATOM 39 H P09 1 0.1389 2.5486 -2.2912 ATOM 40 O P09 12.0152 2.0591-1.6128 ATOM 41 H P09 12.4887 2.6158-2.2371 ATOM 42 C P09 11.47924 .09290 .4832 ATOM 43 H P09 11.71385 .12590 .7415 ATOM 44 H P09 12.42553 .55460 .3976 ATOM 45 C P09 $1 \quad 0.52753 .44521 .5162$ ATOM 46 H P09 $1 \quad 1.01632 .69892 .1407$ ATOM 47 H P09 10.09854 .19782 .1802 ATOM 48 C P09 10.6824 4.0207-0.8262 ATOM 49 H P09 10.9575 4.7684-1.5704 ATOM 50 C P09 1-0.7689 4.0320 -0.3512 ATOM 51 H P09 1-1.4871 3.8218-1.1434 ATOM 52 H P09 1-1.0479 4.95840 .1538 ATOM 53 C P09 1-1.0802 0.9134-0.8992 ATOM 54 O P09 1-2.2039 1.3863-1.0907 ATOM 55 N P09 $1-0.7517-0.3275-1.2844$ ATOM 56 H P09 1 0.1711-0.6953-1.0692 ATOM 57 C P09 1-1.6890-1.2059-1.9718 ATOM 58 C P09 1-1.0694-2.6030-2.0076 ATOM 59 H P09 1-0.1246-2.5752-2.5518 ATOM 60 H P09 1-0.8736-2.9724-1.0003 ATOM 61 H P09 1-1.7459-3.2911-2.5129 ATOM 62 C P09 1-1.9527-0.7098-3.3875 ATOM 63 H P09 1-2.6556-1.3706-3.8908

ATOM 64 H P09 1-2.3686 0.2963-3.3726 ATOM 65 H P09 1-1.0136-0.7001-3.9414 ATOM 66 C P09 1-3.0140-1.3232-1.1990 ATOM 67 O P09 1-4.0636-1.5555-1.7955 ATOM 68 N P09 1-2.9403-1.2445 0.1429 ATOM 69 H P09 1-2.0639-0.9702 0.5746 ATOM 70 C P09 1-4.0955-1.4250 1.0129 ATOM 71 C P09 1-3.6428-1.1387 2.4449 ATOM 72 H P09 1-2.8652-1.8463 2.7368 ATOM 73 H P09 1-3.2437-0.1284 2.5384 ATOM 74 H P09 1-4.4881-1.2515 3.1225 ATOM 75 C P09 $1-4.6356-2.84630 .9173$ ATOM 76 H P09 1-5.4986-2.9571 1.5712 ATOM 77 H P09 1-4.9342-3.0791-0.1026 ATOM 78 H P09 1-3.8591-3.5449 1.2312 ATOM 79 C P09 1-5.2065-0.4097 0.6940 ATOM 80 O P09 1-6.3773-0.6461 1.0029 ATOM 81 N P09 1-4.8224 0.76070 .1746 ATOM 82 H P09 1-3.8725 $0.8764-0.1597$ ATOM 83 C P09 1-5.7843 1.7980-0.1070 ATOM 84 H P09 1-6.3286 2.07440 .7967 ATOM 85 H P09 1-5.2559 $2.6708-0.4821$ ATOM 86 H P09 1-6.5117 1.4753-0.8551

COMPND Ac-Aib ${ }_{2}-(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R})-\mathrm{VIIIIb}-\mathrm{Aib}_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1910.358165$
REMARK \#IF $=0$
ATOM 1 C P09 1-5.9499 1.2567-0.8589
ATOM 2 H P09 1-6.8626 $0.8893-0.3944$
ATOM 3 H P09 1-5.6378 $2.1777-0.3690$ ATOM 4 H P09 1-6.1550 1.4895-1.9043 ATOM 5 C P09 1-4.8212 0.2711-0.8048 ATOM 6 O P09 1-3.6729 0.5732-1.1397 ATOM 7 N P09 1-5.1140-0.9681-0.3580 ATOM 8 H P09 1-6.0754-1.1924-0.1539 ATOM 9 C P09 1-4.1598-2.0692-0.4242 ATOM 10 C P09 1-3.8794-2.4659-1.8669 ATOM 11 H P09 1-4.8092-2.7901-2.3344 ATOM 12 H P09 1-3.4704-1.6257-2.4253 ATOM 13 H P09 1-3.1618-3.2837-1.8961 ATOM 14 C P09 1-4.7484-3.2483 0.3502 ATOM 15 H P09 1-4.0411-4.0765 0.3579 ATOM 16 H P09 1-4.9774-2.9747 1.3808 ATOM 17 H P09 1-5.6641-3.5889-0.1357 ATOM 18 C P09 1-2.8540-1.6634 0.2704 ATOM 19 O P09 1-1.7611-2.0363-0.1533 ATOM 20 N P09 1-2.9735-0.9423 1.3971 ATOM 21 H P09 1-3.8981-0.6742 1.6993 ATOM 22 C P09 1-1.8460-0.6467 2.2709 ATOM 23 C P09 1-1.3157-1.9134 2.9293 ATOM 24 H P09 1-2.1105-2.3636 3.5241 ATOM 25 H P09 1-0.9813-2.6286 2.1798 ATOM 26 H P09 1-0.4779-1.6728 3.5806 ATOM 27 C P09 1-2.3308 0.34413 .3301 ATOM 28 H P09 1-1.5073 0.61403 .9899 ATOM 29 H P09 1-2.7230 $1.2520 \quad 2.8705$ ATOM 30 H P09 1-3.1140-0.1177 3.9335 ATOM 31 C P09 1-0.7291 0.05401 .4888 ATOM 32 O P09 $10.4531-0.05971 .8367$ ATOM 33 N P09 1-1.1008 0.86470 .4908 ATOM 34 H P09 1-2.0636 0.84010 .1710

ATOM 35 C P09 1-0.1473 1.6774-0.2294 ATOM 36 C P09 1-0.8501 $2.5902-1.2664$ ATOM 37 H P09 1-1.1633 2.0515 -2.1611 ATOM 38 C P09 10.60532 .74290 .6724 ATOM 39 H P09 $1 \quad 1.67632 .57150 .5505$ ATOM 40 O P09 10.25572 .71622 .0315 ATOM 41 H P09 $10.59871 .8908 \quad 2.3970$ ATOM 42 C P09 1-1.2454 4.37550 .3237 ATOM 43 H P09 1 -1.4823 5.40680 .0579 ATOM 44 H P09 1-1.4862 4.23821 .3771 ATOM 45 C P09 1-1.9853 3.3739-0.5902 ATOM 46 H P09 1-2.6953 $2.7506-0.0515$ ATOM 47 H P09 1-2.5523 3.8886-1.3678 ATOM 48 C P09 10.22724 .07740 .0341 ATOM 49 H P09 10.91174 .87840 .3128 ATOM 50 C P09 10.1899 3.7015-1.4470 ATOM 51 H P09 $11.14543 .3515-1.8344$ ATOM 52 H P09 1-0.1879 4.5102-2.0750 ATOM 53 C P09 10.8829 0.7941-0.9458 ATOM 54 O P09 11.9862 1.2437-1.2733 ATOM 55 N P09 1 0.5360-0.4717-1.2181 ATOM 56 H P09 1-0.3510-0.8383-0.8877 ATOM 57 C P09 1 1.4333-1.3761-1.9275 ATOM 58 C P09 1 1.6015-0.9435-3.3783 ATOM 59 H P09 1 0.6299-0.9737-3.8724 ATOM 60 H P09 12.0020 0.0672-3.4349 ATOM 61 H P09 1 $2.2818-1.6198-3.8920$ ATOM 62 C P09 1 0.8388-2.7821-1.8631 ATOM 63 H P09 1 1.5039-3.4793-2.3711 ATOM 64 H P09 1 0.7018-3.1074-0.8318 ATOM 65 H P09 1-0.1317-2.7991-2.3599 ATOM 66 C P09 1 2.8058-1.4418-1.2341 ATOM 67 O P09 1 3.8189-1.7053-1.8779 ATOM 68 N P09 1 2.8107-1.2797 0.1023 ATOM 69 H P09 1 1.9496-1.0115 0.5644 ATOM 70 C P09 1 4.0098-1.3973 0.9221 ATOM 71 C P09 14.5547 -2.8197 0.8913 ATOM 72 H P09 1 3.7947-3.5005 1.2764 ATOM 73 H P09 1 4.8139-3.1124-0.1244 ATOM 74 H P09 1 5.4430-2.8903 1.5163 ATOM 75 C P09 1 3.6230-1.0150 2.3509 ATOM 76 H P09 1 4.5018-1.0610 2.9927 ATOM 77 H P09 1 3.2056-0.0080 2.3886 ATOM 78 H P09 1 $2.8755-1.71222 .7326$ ATOM 79 C P09 1 5.0959-0.4014 0.4783 ATOM 80 O P09 1 6.2823-0.6107 0.7436 ATOM 81 N P09 $14.67710 .7266-0.1035$ ATOM 82 H P09 $13.7108 \quad 0.8103-0.3966$ ATOM 83 C P09 $15.6143 \quad 1.7432-0.5144$ ATOM 84 H P09 $1 \quad 6.2094 \quad 2.08330 .3337$ ATOM 85 H P09 16.2978 1.3697-1.2801 ATOM 86 H P09 15.0593 2.5862-0.9179

COMPND Ac-Aib 2 -(S)-VI-Aib ${ }_{2}$-NHMe-P310 REMARK Energy (ZPE) $=-2080.946006$ REMARK \#IF $=0$
ATOM 1 C P10 5.38221 .27740 .1719 ATOM 2 H P10 5.77460 .89851 .1159 ATOM 3 H P10 5.3528 0.4447-0.5305 ATOM 4 H P10 $6.0513 \quad 2.0468-0.2075$ ATOM 5 C P10 3.98341 .76820 .4009

ATOM 6 O P10 3.07361 .01020 .7446 ATOM 7 N P10 3.75183 .08170 .1949 ATOM 8 H P10 4.5317 3.6822 -0.0222 ATOM 9 C P10 2.48373 .71610 .5406 ATOM 10 C P10 2.5034 5.1373-0.0213 ATOM 11 H P10 2.6683 5.1383-1.0994 ATOM 12 H P10 1.5552 5.63130 .1867 ATOM 13 H P10 3.29755 .71270 .4572 ATOM 14 C P10 2.27933 .74162 .0489 ATOM 15 H P10 1.32744 .21122 .2900 ATOM 16 H P10 2.28112 .73202 .4560 ATOM 17 H P10 3.08514 .31522 .5072 ATOM 18 C P10 $1.3271 \quad 2.9649-0.1345$ ATOM 19 O P10 0.23442 .84100 .4175 ATOM 20 N P10 $1.5603 \quad 2.5157-1.3782$ ATOM 21 H P10 2.4804 2.6537-1.7686 ATOM 22 C P10 $0.5326 \quad 1.9276-2.2256$ ATOM 23 C P10 $1.2288 \quad 1.3421-3.4536$ ATOM 24 H P10 1.9913 0.6167 -3.1659 ATOM 25 H P10 0.4986 0.8496-4.0944 ATOM 26 H P10 1.7017 2.1414-4.0265 ATOM 27 C P10 -0.4897 $2.9775-2.6414$ ATOM 28 H P10-1.2480 $2.5310-3.2813$ ATOM 29 H P10 -0.9785 3.4062-1.7678 ATOM 30 H P10 0.0189 3.7695-3.1915 ATOM 31 C P10 -0.1694 0.7682-1.5032 ATOM 32 O P10 -1.3433 $0.4949-1.7615$ ATOM 33 N P10 $0.57290 .0451-0.6490$ ATOM 34 H P10 $1.50690 .3641-0.4070$ ATOM 35 C P10 0.0673-1.1529 0.0056 ATOM 36 C P10 1.1507-1.6756 0.9648 ATOM 37 H P10 1.5202-0.8502 1.5792 ATOM 38 H P10 $0.6790-2.39511 .6406$ ATOM 39 C P10 2.2617-2.3010 0.1905 ATOM 40 C P10 2.1441 -2.6711-1.1204 ATOM 41 C P10 0.9167-2.5309-1.9427 ATOM 42 H P10 1.0391 -1.7241-2.6736 ATOM 43 H P10 0.7242 -3.4406 -2.5169 ATOM 44 C P10 -0.2672-2.2440-1.0271 ATOM 45 H P10 -1.1335-1.9395-1.6122 ATOM 46 H P10 -0.5405-3.1422 -0.4727 ATOM 47 N P10 $3.3374-3.1836-1.5640$ ATOM 48 H P10 3.5093-3.5321-2.4911 ATOM 49 C P10 $4.2492-3.1580-0.5398$ ATOM 50 C P10 5.5819-3.5628-0.5063 ATOM 51 H P10 6.0647-3.9802-1.3812 ATOM 52 C P10 6.2677-3.4091 0.6880 ATOM 53 H P10 $7.3056-3.71290 .7464$ ATOM 54 C P10 5.6419-2.8688 1.8236 ATOM 55 H P10 6.2083-2.7644 2.7409 ATOM 56 C P10 4.3167-2.4695 1.7861 ATOM 57 H P10 3.8429-2.0505 2.6661 ATOM 58 C P10 3.5998-2.6077 0.5923 ATOM 59 C P10 -1.1809-0.8534 0.8389 ATOM 60 O P10 -1.9587-1.7672 1.1309 ATOM 61 N P10 -1.3634 0.40671 .2538 ATOM 62 H P10 -0.7170 1.13040 .9530 ATOM 63 C P10 -2.5070 0.80302 .0660 ATOM 64 C P10-2.5312 2.33002 .1241 ATOM 65 H P10 -1.6149 2.69832 .5868 ATOM 66 H P10 -2.6116 2.76281 .1264

ATOM 67 H P10-3.3813 2.6583 2.7208 ATOM 68 C P10-2.4047 0.22493 .4709 ATOM 69 H P10 -3.2676 0.52844 .0607 ATOM 70 H P10 -2.3677-0.8624 3.4401 ATOM 71 H P10-1.4982 0.60133 .9456 ATOM 72 C P10-3.8239 $0.3580 \quad 1.4058$ ATOM 73 O P10 -4.8146 0.11042 .0897 ATOM 74 N P10 -3.8391 0.33750 .0600 ATOM 75 H P10-2.9714 0.4950 -0.4423 ATOM 76 C P10-5.0295 0.0253-0.7200 ATOM 77 C P10-4.6177-0.0151-2.1917 ATOM 78 H P10 -3.8229 -0.7431-2.3588 ATOM 79 H P10 -5.4791-0.2808-2.8032 ATOM 80 H P10 -4.2578 $0.9662-2.5043$ ATOM 81 C P10-6.1121 1.0777-0.5137 ATOM 82 H P10-6.3999 1.1380 0.5341 ATOM 83 H P10 -5.7326 $2.0478-0.8366$ ATOM 84 H P10 -6.9893 $0.8239-1.1060$ ATOM 85 C P10 -5.5774-1.3716-0.3787 ATOM 86 O P10 -6.7591-1.6497-0.5984 ATOM 87 N P10 -4.6950-2.2752 0.0587 ATOM 88 H P10 -3.7638-1.9785 0.3262 ATOM 89 C P10 -5.1016-3.6259 0.3599 ATOM 90 H P10 -5.5745-4.0870 -0.5075 ATOM 91 H P10 -4.2209-4.2025 0.6311 ATOM 92 H P10 -5.8124-3.6545 1.1889

COMPND Ac-Aib 2 -(S)-VI-Aib ${ }_{2}$-NHMe-M310
REMARK Energy $($ ZPE $)=-2080.945027$
REMARK \#IF $=0$
ATOM 1 C P10 5.6352-1.6465 1.3331 ATOM 2 H P10 6.4610-2.1185 0.8052 ATOM 3 H P10 5.6761-0.5691 1.1768 ATOM 4 H P10 5.7441-1.8307 2.4019 ATOM 5 C P10 4.2909 -2.1478 0.8979 ATOM 6 O P10 3.2416-1.6764 1.3446 ATOM 7 N P10 $4.2744-3.1295-0.0263$ ATOM 8 H P10 5.1509-3.5312-0.3202 ATOM 9 C P10 3.0493-3.8196-0.4159 ATOM 10 C P10 2.5101-4.6642 0.7299 ATOM 11 H P10 1.5950 -5.1690 0.4262 ATOM 12 H P10 3.2551-5.4123 1.0013 ATOM 13 H P10 2.2932 -4.0433 1.5971 ATOM 14 C P10 3.3717-4.6990-1.6236 ATOM 15 H P10 4.1050-5.4566-1.3429 ATOM 16 H P10 2.4704-5.2085-1.9616 ATOM 17 H P10 3.7716-4.1111-2.4506 ATOM 18 C P10 1.9965-2.7944-0.8575 ATOM 19 O P10 0.7999-2.9621-0.6239 ATOM 20 N P10 2.4450-1.7482-1.5693 ATOM 21 H P10 3.4379-1.6663-1.7293 ATOM 22 C P10 1.5537-0.7893-2.2076 ATOM 23 C P10 0.8232-1.4280 -3.3806 ATOM 24 H P10 0.2324-2.2800-3.0476 ATOM 25 H P10 $0.1564-0.7043-3.8453$ ATOM 26 H P10 1.5543-1.7641-4.1159 ATOM 27 C P10 2.3996 0.3929-2.6794 ATOM 28 H P10 2.9342 0.8521-1.8468 ATOM 29 H P10 3.1219 0.0583-3.4260 ATOM 30 H P10 1.7597 1.1445-3.1400 ATOM 31 C P10 0.5411-0.2445-1.1902

ATOM 32 O P10 0.6017 0.0501-1.5423 ATOM 33 N P10 $0.9985-0.02970 .0561$ ATOM 34 H P10 1.8930-0.4308 0.3201 ATOM 35 C P10 $0.2147 \quad 0.64631 .0790$ ATOM 36 C P10 $0.1168 \quad 2.0888 \quad 0.6588$ ATOM 37 H P10 0.5668 2.0799-0.3349 ATOM 38 H P10 0.87962 .46111 .3457 ATOM 39 C P10 1.11172 .92840 .6891 ATOM 40 C P10 2.21922 .60861 .4210 ATOM 41 C P10 $2.3728 \quad 1.3925 \quad 2.2551$ ATOM 42 H P10 3.12490 .72611 .8232 ATOM 43 H P10 2.73331 .64363 .2563 ATOM 44 C P10 $1.03140 .6683 \quad 2.3836$ ATOM 45 H P10 $1.2035-0.35452 .7250$ ATOM 46 H P10 0.41011 .16563 .1303 ATOM 47 N P10 $3.19393 .5569 \quad 1.2271$ ATOM 48 H P10 4.10473 .54961 .6525 ATOM 49 C P10 2.72854 .51100 .3591 ATOM 50 C P10 $3.34215 .6564-0.1426$ ATOM 51 H P10 4.35125 .92500 .1449 ATOM 52 C P10 2.6155 6.4378-1.0276 ATOM 53 H P10 3.0664 7.3333-1.4370 ATOM 54 C P10 1.3076 6.0898-1.4036 ATOM 55 H P10 0.7699 6.7233-2.0984 ATOM 56 C P10 0.6993 4.9530-0.8989 ATOM 57 H P10 0.3109 4.6927-1.1930 ATOM 58 C P10 1.4091 4.1438 -0.0043 ATOM 59 C P10 1.0902-0.1043 1.3767 ATOM 60 O P10 2.03130 .47871 .9241 ATOM 61 N P10 1.1444-1.4025 1.0523 ATOM 62 H P10 $0.3691-1.82900 .5535$ ATOM 63 C P10 $2.3364-2.20951 .2829$ ATOM 64 C P10 2.5691 -2.4230 2.7727 ATOM 65 H P10 $2.6967-1.47013 .2830$ ATOM 66 H P10 3.4611-3.0270 2.9272 ATOM 67 H P10 1.7094-2.9442 3.1949 ATOM 68 C P10 2.1353-3.5521 0.5820 ATOM 69 H P10 1.2780-4.0701 1.0134 ATOM 70 H P10 3.0224-4.1695 0.7171 ATOM 71 H P10 1.9521-3.4177-0.4844 ATOM 72 C P10 3.5698-1.5485 0.6433 ATOM 73 O P10 4.6922-1.7416 1.1053 ATOM 74 N P10 $3.3537-0.8257-0.4726$ ATOM 75 H P10 $2.3998-0.6637-0.7815$ ATOM 76 C P10 4.4320-0.2221-1.2456 ATOM 77 C P10 5.3391-1.2880-1.8477 ATOM 78 H P10 5.7876-1.9009-1.0682 ATOM 79 H P10 6.1323-0.8160 -2.4245 ATOM 80 H P10 4.7501 -1.9247-2.5090 ATOM 81 C P10 3.7949 0.6080-2.3598 ATOM 82 H P10 4.5749 1.1131-2.9282 ATOM 83 H P10 3.1104 1.3538-1.9543 ATOM 84 H P10 3.2377-0.0418-3.0361 ATOM 85 C P10 5.2543-0.7524-0.3850 ATOM 86 O P10 6.4159 1.0327-0.6905 ATOM 87 N P10 4.61091 .34410 .6265 ATOM 88 H P10 3.69821 .00070 .9007 ATOM 89 C P10 5.2744 2.30521 .4725 ATOM 90 H P10 5.68303 .12230 .8776 ATOM 91 H P10 $6.0950 \quad 1.8480 \quad 2.0302$ ATOM 92 H P10 4.55092 .70792 .1769

COMPND Ac-Aib ${ }_{5}$-NHMe-P310
REMARK Energy $(Z P E)=-1680.465008$
REMARK \#IF = 0
ATOM 1 C P11 1-6.1625-1.9280 0.3925 ATOM 2 H P11 1-5.8385-2.4901 1.2670 ATOM 3 H P11 1-7.0446-1.3428 0.6439 ATOM 4 H P11 1-6.4241-2.6459-0.3854 ATOM 5 C P11 1-5.0179-1.0927-0.0985 ATOM 6 O P11 1-3.8992-1.5737-0.2979 ATOM 7 N P11 1-5.2639 0.2190-0.2982 ATOM 8 H P11 1-6.2083 0.5510-0.1800 ATOM 9 C P11 1-4.3147 1.1192-0.9456 ATOM 10 C P11 1-4.8742 $2.5370-0.8367$ ATOM 11 H P11 1-5.8163 2.6040 -1.3834 ATOM 12 H P11 1-5.0488 2.8167 0.2030 ATOM 13 H P11 1-4.1747 3.2459-1.2772 ATOM 14 C P11 1-4.1088 $0.7351-2.4048$ ATOM 15 H P11 1-3.4073 1.4197-2.8773 ATOM 16 H P11 1-3.7151-0.2769-2.4834 ATOM 17 H P11 1-5.0650 0.7910 -2.9251 ATOM 18 C P11 1-2.9706 1.0943-0.2057 ATOM 19 O P11 1-1.9116 1.2654-0.8090 ATOM 20 N P11 1-3.0225 0.93921 .1267 ATOM 21 H P11 1-3.9257 0.80371 .5549 ATOM 22 C P11 1-1.8501 0.99941 .9884 ATOM 23 C P11 1-2.2715 0.52363 .3785 ATOM 24 H P11 1-3.0224 1.20033 .7896 ATOM 25 H P11 1-2.6847-0.4854 3.3434 ATOM 26 H P11 1-1.4103 0.52524 .0451 ATOM 27 C P11 1-1.2983 2.41772 .0558 ATOM 28 H P11 1 -0.4311 2.45132 .7123 ATOM 29 H P11 1-1.0011 2.76361 .0670 ATOM 30 H P11 1-2.0692 3.08012 .4499 ATOM 31 C P11 1-0.7630 0.03651 .4901 ATOM 32 O P11 10.42640 .27131 .7142 ATOM 33 N P11 1-1.1711-1.0822 0.8742 ATOM 34 H P11 1-2.1533-1.1973 0.6409 ATOM 35 C P11 1-0.2397-2.1196 0.4504 ATOM 36 C P11 1-1.0097-3.1158-0.4158 ATOM 37 H P11 1-1.8007-3.5820 0.1729 ATOM 38 H P11 1-1.4665-2.6231-1.2744 ATOM 39 H P11 1-0.3330-3.8928-0.7688 ATOM 40 C P11 1 $0.3674-2.82741 .6549$ ATOM 41 H P11 $11.0585-3.60061 .3253$ ATOM 42 H P11 1 0.9064-2.1232 2.2866 ATOM 43 H P11 1-0.4324-3.2886 2.2344 ATOM 44 C P11 1 0.8730-1.5274-0.4275 ATOM 45 O P11 $11.9839-2.0625-0.4770$ ATOM 46 N P11 $1 \quad 0.5491-0.4612-1.1726$ ATOM 47 H P11 1-0.3605-0.0298-1.0425 ATOM 48 C P11 $11.46390 .1523-2.1259$ ATOM 49 C P11 $10.8348 \quad 1.4644-2.5936$ ATOM 50 H P11 1 -0.1161 1.2640-3.0891 ATOM 51 H P11 $10.6502 \quad 2.1348-1.7537$ ATOM 52 H P11 $1 \quad 1.5008 \quad 1.9561-3.3014$ ATOM 53 C P11 1 1.7027-0.7692-3.3151 ATOM 54 H P11 12.3893 -0.3010-4.0177 ATOM 55 H P11 1 2.1275-1.7182-2.9919 ATOM 56 H P11 1 0.7526-0.9561-3.8163 ATOM 57 C P11 12.8029 0.5121-1.4607

ATOM 58 O P11 13.8349 0.5655-2.1271 ATOM 59 N P11 12.75850 .8348 -0.1553 ATOM 60 H P11 11.89110 .70370 .3560 ATOM 61 C P11 $13.9298 \quad 1.2753 \quad 0.5904$ ATOM 62 C P11 13.51951 .42042 .0560 ATOM 63 H P11 12.73632 .17412 .1498 ATOM 64 H P11 13.14230 .47892 .4559 ATOM 65 H P11 14.38021 .73692 .6439 ATOM 66 C P11 14.44352 .61040 .0660 ATOM 67 H P11 $15.3248 \quad 2.91280 .6285$ ATOM 68 H P11 14.7050 2.5399-0.9878 ATOM 69 H P11 $13.66603 .3650 \quad 0.1911$ ATOM 70 C P11 $1 \quad 5.04730 .2186 \quad 0.5513$ ATOM 71 O P11 16.22240 .54290 .7402 ATOM 72 N P11 $14.6674-1.05580 .4114$ ATOM 73 H P11 1 3.7091-1.2719 0.1610 ATOM 74 C P11 15.6397 -2.1215 0.4124 ATOM 75 H P11 1 6.2176-2.1150 1.3372 ATOM 76 H P11 1 5.1169-3.0708 0.3284 ATOM 77 H P11 1 6.3370-2.0254-0.4228

COMPND Ac-Aib 5 -NHMe-M310 REMARK Energy $($ ZPE $)=-1680.464965$ REMARK \#IF $=0$
ATOM 1 C P11 1 6.1621-1.9282 0.3937 ATOM 2 H P11 1 5.8375-2.4910 1.2676 ATOM 3 H P11 1 6.4247-2.6456-0.3844 ATOM 4 H P11 1 7.0437-1.3428 0.6463 ATOM 5 C P11 1 5.0176-1.0931-0.0979 ATOM 6 O P11 $13.8989-1.5740-0.2971$ ATOM 7 N P11 $15.2638 \quad 0.2185-0.2985$ ATOM 8 H P11 $16.20830 .5504-0.1804$ ATOM 9 C P11 14.3148 1.1182-0.9466 ATOM 10 C P11 $14.1088 \quad 0.7329-2.4055$ ATOM 11 H P11 $15.0650 \quad 0.7882$-2.9259 ATOM 12 H P11 1 3.7149-0.2791-2.4832 ATOM 13 H P11 13.4074 1.4172-2.8786 ATOM 14 C P11 14.8746 2.5361-0.8390 ATOM 15 H P11 14.1751 3.2447-1.2800 ATOM 16 H P11 15.04932 .81660 .2004 ATOM 17 H P11 15.8166 2.6024-1.3858 ATOM 18 C P11 $12.9707 \quad 1.0942-0.2067$ ATOM 19 O P11 11.9117 1.2650-0.8102 ATOM 20 N P11 13.02260 .94021 .1259 ATOM 21 H P11 13.92590 .80481 .5541 ATOM 22 C P11 11.85041 .00151 .9876 ATOM 23 C P11 11.29872 .41982 .0534 ATOM 24 H P11 12.06973 .08272 .4466 ATOM 25 H P11 11.00132 .76461 .0643 ATOM 26 H P11 10.43172 .45432 .7102 ATOM 27 C P11 12.27180 .52723 .3782 ATOM 28 H P11 11.41070 .52964 .0448 ATOM 29 H P11 $12.6851-0.48183 .3442$ ATOM 30 H P11 13.02291 .20443 .7884 ATOM 31 C P11 10.76320 .03801 .4905 ATOM 32 O P11 1-0.4262 0.27301 .7146 ATOM 33 N P11 1 1.1712-1.0811 0.8754 ATOM 34 H P11 $12.1534-1.19650 .6422$ ATOM 35 C P11 1 0.2398 -2.1190 0.4527 ATOM 36 C P11 1-0.3673-2.8257 1.6579 ATOM 37 H P11 $1 \quad 0.4326-3.28632 .2378$

ATOM 38 H P11 1-0.9063-2.1210 2.2889
ATOM 39 H P11 1-1.0583-3.5993 1.3290
ATOM 40 C P11 1 1.0098-3.1160-0.4126
ATOM 41 H P11 10.3331 -3.8933-0.7649
ATOM 42 H P11 1 1.4667-2.6241-1.2716
ATOM 43 H P11 $11.8008-3.5817 \quad 0.1765$
ATOM 44 C P11 $1-0.8729-1.5277-0.4259$
ATOM 45 O P11 1-1.9838-2.0629-0.4750
ATOM 46 N P11 1-0.5490-0.4621-1.1718
ATOM 47 H P11 1 0.3607-0.0307-1.0423
ATOM 48 C P11 1-1.4638 0.1504-2.1259
ATOM 49 C P11 1-1.7023 -0.7723-3.3143
ATOM 50 H P11 1-0.7521-0.9592-3.8153
ATOM 51 H P11 1-2.1267-1.7211-2.9901
ATOM 52 H P11 1-2.3891-0.3050-4.0173
ATOM 53 C P11 $1-0.8349 \quad 1.4622-2.5946$
ATOM 54 H P11 1-1.5009 1.9531-3.3031
ATOM 55 H P11 $1-0.6508$ 2.1334-1.7553
ATOM 56 H P11 $1 \quad 0.1162 \quad 1.2616-3.0897$
ATOM 57 C P11 1-2.8029 0.5106-1.4612
ATOM 58 O P11 1-3.8349 $0.5630-2.1277$
ATOM 59 N P11 1-2.7587 $0.8345-0.1560$
ATOM 60 H P11 1-1.8913 0.70400 .3554
ATOM 61 C P11 1-3.9301 $1.2757 \quad 0.5890$
ATOM 62 C P11 1-4.4435 2.61040 .0633
ATOM 63 H P11 1-3.6660 3.36510 .1880
ATOM 64 H P11 1-4.7048 $2.5390-0.9905$
ATOM 65 H P11 $1-5.32502 .91330 .6253$
ATOM 66 C P11 1-3.5201 $1.4222 \quad 2.0546$
ATOM 67 H P11 1-4.3807 1.73962 .6419
ATOM 68 H P11 1 -3.1433 0.48102 .4556
ATOM 69 H P11 1-2.7367 2.17572 .1479
ATOM 70 C P11 1-5.0477 0.21910 .5507
ATOM 71 O P11 1-6.2227 0.54370 .7392
ATOM 72 N P11 1-4.6678-1.0555 0.4121
ATOM 73 H P11 1-3.7094-1.2718 0.1621
ATOM 74 C P11 1-5.6400-2.1212 0.4140
ATOM 75 H P11 1-6.2179-2.1139 1.3387
ATOM 76 H P11 1-6.3373-2.0259-0.4213
ATOM 77 H P11 1-5.1172-3.0705 0.3308

COMPND Ac-Aib2-(1R,2R,4R)-IIIawr-Aib2-NHMe-P310 REMARK Energy(ZPE)=-1869.877938 REMARK \#IF $=0$
ATOM 1 C P12 6.1406 1.4622-0.0553 ATOM 2 H P12 5.79252 .23230 .6316 ATOM 3 H P12 7.00830 .96270 .3701 ATOM 4 H P12 $6.43331 .9529-0.9837$ ATOM 5 C P12 $5.00640 .5275-0.3493$ ATOM 6 O P12 3.9071 0.9379-0.7346 ATOM 7 N P12 $5.2337-0.7869-0.1551$ ATOM 8 H P12 6.1637-1.0765 0.1048 ATOM 9 C P12 4.2947-1.8281-0.5624 ATOM 10 C P12 4.8080-3.1584-0.0125 ATOM 11 H P12 5.7724-3.3973-0.4636 ATOM 12 H P12 4.9238-3.1224 1.0713 ATOM 13 H P12 4.1099-3.9557-0.2634 ATOM 14 C P12 4.1733-1.8868 -2.079 ATOM 15 H P12 3.4707-2.6661-2.3675 ATOM 16 H P12 3.8201-0.9359-2.475 ATOM 17 H P12 5.1506-2.1133-2.5055 ATOM 18 C P12 $2.9165-1.56970 .0635$ ATOM 19 O P12 1.8837-1.8777-0.5297 ATOM 20 N P12 $2.9177-1.04991 .3023$ ATOM 21 H P12 3.8102 -0.8175 1.7117 ATOM 22 C P12 $1.7209-0.8435 \quad 2.1068$ ATOM 23 C P12 $2.1355-0.0830 \quad 3.366$ ATOM 24 H P12 $2.8280-0.68893 .9523$ ATOM 25 H P12 2.61730 .86413 .1183 ATOM 26 H P12 $1.25690 .1201 \quad 3.976$ ATOM 27 C P12 $1.0799-2.1759 \quad 2.48$ ATOM 28 H P12 $0.1939-2.00453 .0881$ ATOM 29 H P12 0.7922 -2.7305 1.5881 ATOM 30 H P12 1.7960-2.7663 3.0517 ATOM 31 C P12 $0.70020 .0305 \quad 1.369$ ATOM 32 O P12 -0.4889 0.00831 .6965 ATOM 33 N P12 1.15090 .84520 .4043 ATOM 34 H P12 2.13080 .82970 .1368 ATOM 35 C P12 0.2426 1.7113-0.3139 ATOM 36 C P12 0.9908 2.5442-1.3843 ATOM 37 H P12 2.0405 2.2674-1.4601 ATOM 38 H P12 0.5246 2.4341-2.3626 ATOM 39 C P12 0.7592 3.9809-0.8577 ATOM 40 H P12 0.8600 4.7674-1.5996 ATOM 41 O P12-0.5880 3.8731-0.4010 ATOM 42 C P12 -0.3472 2.86750 .5734 ATOM 43 H P12 -1.2523 $2.6065 \quad 1.1098$ ATOM 44 C P12 $0.8263 \quad 3.4348 \quad 1.3372$ ATOM 45 H P12 1.07733 .21662 .3645 ATOM 46 C P12 1.52124 .12900 .4369 ATOM 47 H P12 2.47864 .61670 .5491 ATOM 48 C P12 -0.8963 $0.9063-0.9461$ ATOM 49 O P12 -1.9999 1.4191-1.1404 ATOM 50 N P12-0.6216-0.3587-1.2976 ATOM 51 H P12 $0.2857-0.7578-1.0757$ ATOM 52 C P12 -1.5939-1.2074-1.9743 ATOM 53 C P12-1.0421-2.6325-1.9825 ATOM 54 H P12 -0.1137-2.6686-2.5537 ATOM 55 H P12 -0.8413-2.9834-0.9696 ATOM 56 H P12 -1.7636 -3.3002 -2.4520 ATOM 57 C P12 -1.8282-0.7242-3.3998 ATOM 58 H P12 -2.5504-1.3668-3.8992 ATOM 59 H P12 -2.2077 0.2964-3.4040

ATOM 60 H P12 -0.8847-0.7575-3.9452 ATOM 61 C P12 -2.9273-1.2499-1.2088 ATOM 62 O P12-3.9807-1.4516-1.8097 ATOM 63 N P12 -2.8623-1.1455 0.1315 ATOM 64 H P12 -1.9802 -0.8978 0.5671 ATOM 65 C P12-4.0335-1.2651 0.9906 ATOM 66 C P12 -3.5893-0.9604 2.4214 ATOM 67 H P12 -2.8425-1.6883 2.7421 ATOM 68 H P12 -3.1550 0.03692 .4954 ATOM 69 H P $12-4.4469-1.02483 .0899$ ATOM 70 C P12 -4.6213-2.6687 0.9190 ATOM 71 H P12 -5.4904-2.7399 1.5702 ATOM 72 H P12 -4.9230-2.9101-0.0982 ATOM 73 H P12 -3.8698 -3.3868 1.2494 ATOM 74 C P12 -5.1031 -0.2191 0.6308 ATOM 75 O P12 -6.2887-0.4108 0.9123 ATOM 76 N P12 -4.6652 0.92970 .1056 ATOM 77 H P12 -3.7043 1.0032-0.2073 ATOM 78 C P12-5.5817 1.9944-0.2215 ATOM 79 H P12 -6.1467 2.30050 .6596 ATOM 80 H P12 -5.0119 $2.8442-0.5887$ ATOM 81 H P12-6.2936 1.6864-0.9905 COMPND Ac-Aib2-(1R,2R,4R)-IIIawr-Aib2-NHMe-M310 REMARK Energy $($ ZPE $)=-1869.8758$ REMARK \#IF $=0$
ATOM 1 C P12-6.0450 1.4168-0.3682 ATOM 2 H P12-5.7486 2.20510 .3225 ATOM 3 H P12-6.2599 1.8820-1.3304 ATOM 4 H P12 -6.9472 0.93450 .0018 ATOM 5 C P12-4.8966 0.4690-0.5430 ATOM 6 O P12 -3.7694 0.8603-0.8599 ATOM 7 N P $12-5.1431-0.8372-0.3174$ ATOM 8 H P12-6.0903-1.1211-0.1218 ATOM 9 C P12-4.1703-1.8843-0.6099 ATOM 10 C P12-3.9316-2.0030-2.1090 ATOM 11 H P12 -4.8720 -2.2551-2.5993 ATOM 12 H P12 - $3.5553-1.0654-2.5148$ ATOM 13 H P12 -3.2047-2.7869-2.3128 ATOM 14 C P12 -4.7130 -3.1972-0.0466 ATOM 15 H P12-3.9939-3.9975-0.2157 ATOM 16 H P12-4.9069-3.1217 1.0239 ATOM 17 H P12 -5.6411-3.4615 -0.5560 ATOM 18 C P12-2.8499-1.5818 0.1102 ATOM 19 O P12 -1.7669-1.8770 -0.3940 ATOM 20 N P12 -2.9472-1.0409 1.3355 ATOM 21 H P12-3.8674-0.8247 1.6888 ATOM 22 C P12-1.8044-0.8413 2.2167 ATOM 23 C P12 -1.2410-2.1773 2.6839 ATOM 24 H P12 -2.0155-2.7185 3.2277 ATOM 25 H P12 -0.9148-2.7770 1.8355 ATOM 26 H P12 -0.3908-2.0146 3.3432 ATOM 27 C P12 -2.2788-0.0137 3.4107 ATOM 28 H P12 -1.4419 0.18064 .0798 ATOM 29 H P12-2.6991 0.93993 .0888 ATOM 30 H P12-3.0383-0.5667 3.9659 ATOM 31 C P12 -0.7117-0.0284 1.5114 ATOM 32 O P12 $0.4714-0.15861 .8293$ ATOM 33 N P12 -1.1084 0.88020 .6042 ATOM 34 H P12 -2.0758 0.89430 .2937 ATOM 35 C P12 -0.1492 1.7644-0.0203 ATOM 36 C P12 0.51862 .75990 .9554 ATOM 37 H P12 0.17562 .61111 .9767 ATOM 38 H P12 1.60042 .66440 .9148

ATOM 39 C P12 0.07344 .11580 .3574 ATOM 40 H P12 0.71464 .96330 .5795 ATOM 41 O P12 0.0900 3.8168-1.0422 ATOM 42 C P12 -0.8697 $2.7788-0.9951$ ATOM 43 H P12 -1.0873 $2.3858-1.9845$ ATOM 44 C P12-1.9998 3.4113-0.2138 ATOM 45 H P12 -3.0376 3.1264-0.2873 ATOM 46 C P12-1.4044 4.25580 .6267 ATOM 47 H P12 -1.8443 4.84281 .4197 ATOM 48 C P12 0.9077 0.9800-0.8087 ATOM 49 O P12 2.0090 1.4737-1.0622 ATOM 50 N P12 $0.5726-0.2502-1.2256$ ATOM 51 H P12 -0.3169-0.6594-0.9544 ATOM 52 C P12 1.4944-1.0786-1.9927 ATOM 53 C P12 1.6817-0.5255-3.3993 ATOM 54 H P12 $0.7187-0.5226-3.9107$ ATOM 55 H P12 2.0724 0.4898-3.3689 ATOM 56 H P12 $2.3775-1.1514-3.9548$ ATOM 57 C P12 0.9137-2.4910-2.0582 ATOM 58 H P12 1.5988-3.1402-2.6021 ATOM 59 H P12 0.7511 -2.8983-1.0600 ATOM 60 H P12 -0.0434-2.4754-2.5806 ATOM 61 C P12 2.8549-1.1912-1.2827 ATOM 62 O P12 3.8818-1.3817-1.9306 ATOM 63 N P12 2.8362-1.1572 0.0631 ATOM 64 H P12 1.9697-0.9252 0.5365 ATOM 65 C P12 4.0265-1.3446 0.8826 ATOM 66 C P12 4.5878-2.7515 0.7174 ATOM 67 H P12 $3.8339-3.47501 .0296$ ATOM 68 H P12 4.8573-2.9418-0.3197 ATOM 69 H P12 5.4732-2.8700 1.3392 ATOM 70 C P12 3.6215-1.1136 2.3385 ATOM 71 H P12 $4.4958-1.21462 .9801$ ATOM 72 H P12 3.1908 -0.1210 2.4746 ATOM 73 H P12 $2.8804-1.85522 .6401$ ATOM 74 C P12 5.1084-0.2997 0.5569 ATOM 75 O P12 6.2925-0.5239 0.8203 ATOM 76 N P12 4.68640 .87690 .0830 ATOM 77 H P12 3.7243 0.9807-0.2184 ATOM 78 C P12 5.6176 1.9399-0.2059 ATOM 79 H P12 $6.22152 .1691 \quad 0.6724$ ATOM 80 H P12 6.2930 1.6714-1.0215 ATOM 81 H P12 5.0568 2.8265-0.4910

COMPND Ac-Aib $2-(1 \mathrm{R}, 2 \mathrm{R}, 4 \mathrm{R})-\mathrm{Var}-\mathrm{Aib}_{2}-\mathrm{NHMe}-\mathrm{P} 310$
REMARK Energy $($ ZPE $)=-1987.511795$ REMARK \#IF $=0$
ATOM 1 C P13 6.0431 $0.2238-0.5211$ ATOM 2 H P13 5.8216 1.1795-0.0486 ATOM 3 H P13 6.8390 -0.2767 0.0263 ATOM 4 H P13 $6.3862 \quad 0.4269-1.5360$ ATOM 5 C P13 4.7814-0.5817-0.6004 ATOM 6 O P13 3.7360-0.1088-1.0559 ATOM 7 N P13 4.8339-1.8471-0.1362 ATOM 8 H P13 5.7243-2.2058 0.1719 ATOM 9 C P13 3.7523-2.8097-0.3203 ATOM 10 C P13 4.0985-4.0575 0.4919 ATOM 11 H P13 5.0131-4.5087 0.104 ATOM 12 H P13 4.2423-3.8188 1.5464 ATOM 13 H P13 3.2961-4.7888 0.4055 ATOM 14 C P13 3.5821-3.1607-1.7923 ATOM 15 H P13 2.7751 -3.8802-1.9147 ATOM 16 H P13 3.3474-2.2723-2.3763

ATOM 17 H P13 4.5089-3.5990 -2.1629 ATOM 18 C P13 2.4382-2.2469 0.2402 ATOM 19 O P13 1.3576-2.5391-0.2706 ATOM 20 N P13 $2.5443-1.48471 .3406$ ATOM 21 H P13 3.4724-1.2927 1.6867 ATOM 22 C P13 1.4140-0.9682 2.1016 ATOM 23 C P13 $1.9744-0.07633 .2078$ ATOM 24 H P13 $2.5803-0.67333 .8914$ ATOM 25 H P13 2.58610 .72812 .7973 ATOM 26 H P13 $1.1538 \quad 0.36513 .7714$ ATOM 27 C P13 0.5990-2.1092 2.704 ATOM 28 H P13 -0.2278-1.7051 3.2844 ATOM 29 H P13 0.1993 -2.7539 1.9221 ATOM 30 H P13 1.2422-2.6976 3.3586 ATOM 31 C P13 0.4954-0.1019 1.2286 ATOM 32 O P13-0.6613 0.12471 .5937 ATOM 33 N P13 0.99230 .39840 .0901 ATOM 34 H P13 1.9509 0.1955-0.1754 ATOM 35 C P13 0.1774 1.2035-0.7997 ATOM 36 C P13 0.9974 1.6022-2.0623 ATOM 37 H P13 1.9607 1.0957-2.0888 ATOM 38 H P13 0.4509 1.3403-2.9697 ATOM 39 C P13 1.1064 3.1378-1.9515 ATOM 40 H P13 1.4463 3.6171-2.8675 ATOM 41 C P13-0.3114 3.4631-1.4667 ATOM 42 H P13-1.0887 3.1246-2.1493 ATOM 43 H P13 -0.4509 4.5187-1.2295 ATOM 44 C P13-0.2067 $2.5992-0.1985$ ATOM 45 H P13-1.0651 2.55780 .4656 ATOM 46 C P13 1.07263 .14040 .3783 ATOM 47 C P13 1.8956 3.4562-0.7097 ATOM 48 C P13 3.1809 3.9276-0.5114 ATOM 49 H P13 $3.82624 .1689-1.3482$ ATOM 50 C P13 3.62744 .10310 .8008 ATOM 51 H P13 4.62274 .49110 .9806 ATOM 52 C P13 2.8071 $3.7918 \quad 1.881$ ATOM 53 H P13 $3.1728 \quad 3.9392 \quad 2.8899$ ATOM 54 C P13 1.51863 .29251 .6776 ATOM 55 H P13 $0.88653 .0355 \quad 2.5202$ ATOM 56 C P13-1.0808 0.4283-1.2054 ATOM 57 O P13-2.1099 1.0217-1.5390 ATOM 58 N P13 -0.9925-0.9093-1.2103 ATOM 59 H P13-0.1307-1.3553-0.9089 ATOM 60 C P13-2.0942-1.7698-1.6209 ATOM 61 C P13-1.7294-3.2011-1.2268 ATOM 62 H P13 -0.8231-3.5095-1.7493 ATOM 63 H P13-1.5502 -3.2788-0.1532 ATOM 64 H P13 -2.5394-3.8756-1.5013 ATOM 65 C P13 -2.3222-1.6756-3.1238 ATOM 66 H P13 -3.1462 -2.3221-3.4194 ATOM 67 H P13 -2.5588 -0.6534-3.4147 ATOM 68 H P13 -1.4168-1.9938-3.6414 ATOM 69 C P13 -3.3880 -1.4151-0.8681 ATOM 70 O P13 -4.4843-1.6197-1.3852 ATOM 71 N P13 -3.2477-0.9636 0.3922 ATOM 72 H P13-2.3186-0.7414 0.7360 ATOM 73 C P13-4.3796-0.6780 1.2648 ATOM 74 C P13 -3.8255-0.0754 2.5560 ATOM 75 H P13 -3.1809-0.7993 3.0570 ATOM 76 H P13 -3.2429 0.82382 .3538 ATOM 77 H P13 -4.6494 0.17683 .2225 ATOM 78 C P13-5.1612-1.9469 1.5821 ATOM 79 H P13 -5.9953-1.7125 2.2408

ATOM 80 H P13 -5.5482-2.4029 0.6732 ATOM 81 H P13-4.5012-2.6552 2.0842 ATOM 82 C P13-5.3098 0.38160 .6492 ATOM 83 O P13-6.4912 0.45700 .9964 ATOM 84 N P13-4.7457 1.2613-0.1839 ATOM 85 H P13-3.8037 1.0974-0.5205 ATOM 86 C P13-5.5179 2.3235-0.7802 ATOM 87 H P13-6.0183 2.9110-0.0102 ATOM 88 H P13-4.8474 2.9707-1.3401 ATOM 89 H P13-6.2807 1.9333-1.4583

COMPND Ac-Aib 2 -(1R,2R,4R)-Var-Aib 2 -NHMe-M310 REMARK Energy $($ ZPE $)=-1987.5085$
REMARK \#IF $=0$
ATOM 1 C P13-5.8240-0.3830-1.0786 ATOM 2 H P13-5.9014 0.0311-2.0824 ATOM 3 H P13 -6.6776-1.0295-0.8855 ATOM 4 H P13-5.8485 $0.4477-0.3716$ ATOM 5 C P13-4.5067-1.0886-0.9433 ATOM 6 O P13 -3.4466-0.5812-1.3151 ATOM 7 N P13-4.5247-2.2986-0.3454 ATOM 8 H P13 -5.4133-2.7164-0.1185 ATOM 9 C P13-3.3341-3.1338-0.2562 ATOM 10 C P13-2.9028-3.6217-1.6328 ATOM 11 H P13 -3.7090 -4.2118-2.0689 ATOM 12 H P13 -2.6792 -2.7800 -2.2862 ATOM 13 H P13-2.0132 -4.2432-1.5485 ATOM 14 C P13-3.6568-4.3184 0.6535 ATOM 15 H P13 -2.7728-4.9429 0.7748 ATOM 16 H P13 -3.9890-3.9868 1.6379 ATOM 17 H P13 -4.4425-4.9264 0.2022 ATOM 18 C P13-2.1967-2.3426 0.4020 ATOM 19 O P13-1.0259-2.5086 0.0626 ATOM 20 N P13-2.5360-1.5253 1.4126 ATOM 21 H P13 -3.5118-1.4388 1.6545 ATOM 22 C P13-1.5471-0.8961 2.2777 ATOM 23 C P13 -0.8586-1.9333 3.1537 ATOM 24 H P13-1.6051-2.4254 3.7774 ATOM 25 H P13 -0.3542-2.6793 2.5415 ATOM 26 H P13 -0.1203-1.4532 3.7929 ATOM 27 C P13-2.2703 0.13973 .1376 ATOM 28 H P13-1.5539 0.65873 .7732 ATOM 29 H P13 -2.7877 0.8756 2.5206 ATOM 30 H P13 -2.9978 -0.3578 3.7811 ATOM 31 C P13-0.5057-0.1456 1.4364 ATOM 32 O P13 0.6749-0.0988 1.7835 ATOM 33 N P13-0.9606 0.53690 .3709 ATOM 34 H P13-1.9130 0.39820 .0507 ATOM 35 C P13 -0.0959 1.4492-0.3531 ATOM 36 C P13 0.46712 .59030 .5421 ATOM 37 H P13 $0.1435 \quad 2.4648 \quad 1.5737$ ATOM 38 H P13 $1.55512 .5848 \quad 0.5136$ ATOM 39 C P13-0.0783 3.8798-0.1082 ATOM 40 H P13 $0.4492 \quad 4.78320 .1917$ ATOM 41 C P13 -0.0225 3.4924-1.5942 ATOM 42 H P13 0.9837 3.2606-1.9369 ATOM 43 H P13-0.4844 4.2343-2.2463 ATOM 44 C P13 -0.9133 2.2513-1.4265 ATOM 45 H P13-1.1537 1.6701-2.3155 ATOM 46 C P13-2.0870 $2.8767-0.7088$ ATOM 47 C P13-1.5647 3.88550 .1086 ATOM 48 C P13-2.3915 4.63840 .9218 ATOM 49 H P13-1.9919 5.4174 1.5605

ATOM 50 C P13 -3.7655 4.38790 .8837 ATOM 51 H P13-4.4352 4.97971 .4960 ATOM 52 C P13-4.2854 3.39760 .0570 ATOM 53 H P13-5.3558 3.23190 .0312 ATOM 54 C P13-3.4455 2.6216-0.7459 ATOM 55 H P13-3.8466 1.8425-1.3802 ATOM 56 C P13 1.0566 0.6909-1.0285 ATOM 57 O P13 2.0877 1.2814-1.3661 ATOM 58 N P13 0.9053-0.6246-1.2376 ATOM 59 H P13 0.0917-1.1104-0.8738 ATOM 60 C P13 1.9627-1.4208-1.8500 ATOM 61 C P13 2.1386-1.0570-3.3184 ATOM 62 H P13 1.2093-1.2649-3.8499 ATOM 63 H P13 $2.3877-0.0037-3.4308$ ATOM 64 H P13 2.9382-1.6543-3.7521 ATOM 65 C P13 1.5870-2.8964-1.7217 ATOM 66 H P13 $2.3606-3.5054-2.1878$ ATOM 67 H P13 1.4821-3.1915-0.6780 ATOM 68 H P13 0.6393 -3.0849-2.2275 ATOM 69 C P13 3.2914-1.2372-1.0955 ATOM 70 O P13 4.3635-1.3871-1.6779 ATOM 71 N P13 $3.2064-0.99460 .2268$ ATOM 72 H P13 $2.2968-0.82010 .6416$ ATOM 73 C P13 $4.3737-0.88911 .0928$ ATOM 74 C P13 5.1166-2.2165 1.1777 ATOM 75 H P13 $4.4496-2.97281 .5932$ ATOM 76 H P13 5.4514-2.5373 0.1934 ATOM 77 H P13 5.9837-2.1112 1.8273 ATOM 78 C P13 3.8809-0.4821 2.4818 ATOM 79 H P13 4.7324-0.3762 3.1526 ATOM 80 H P13 $3.33430 .4608 \quad 2.4462$ ATOM 81 H P13 3.2158-1.2502 2.8794 ATOM 82 C P13 5.32670 .22330 .6226 ATOM 83 O P13 6.51830 .19950 .9404 ATOM 84 N P13 4.7796 1.2475-0.0408 ATOM 85 H P13 3.8268 1.1766-0.3776 ATOM 86 C P13 5.5835 $2.3628-0.4777$ ATOM 87 H P13 6.13972 .78210 .3607 ATOM 88 H P13 6.3009 2.0651-1.2460 ATOM 89 H P13 4.9277 3.1274-0.8864

COMPND Ac-Aib $2_{2}-(1 R, 2 R, 4 R)-V d m-$ Aib $_{2}$-NHMe-P310 REMARK Energy $($ ZPE $)=-1912.493059$ REMARK \#IF $=0$
ATOM 1 C P14 6.13140 .67470 .0912 ATOM 2 H P14 5.81431 .51460 .7076 ATOM 3 H P14 6.90090 .10990 .6131 ATOM 4 H P14 6.5526 1.0796-0.8295 ATOM 5 C P14 4.9283-0.1479-0.2596 ATOM 6 O P14 3.9026 0.3628-0.7183 ATOM 7 N P14 5.0062-1.4760-0.0363 ATOM 8 H P14 5.8830-1.8590 0.2816 ATOM 9 C P14 3.9869-2.4151-0.4947 ATOM 10 C P14 4.3186-3.7857 0.0942 ATOM 11 H P14 5.2775-4.1332-0.2937 ATOM 12 H P14 4.3708-3.7485 1.1830 ATOM 13 H P14 3.5547-4.5061-0.1948 ATOM 14 C P14 3.9532-2.4818-2.0157 ATOM 15 H P14 3.2003-3.1959-2.3431 ATOM 16 H P14 3.7168-1.5077-2.4405 ATOM 17 H P14 4.9292-2.8043-2.3785 ATOM 18 C P14 2.6095-2.0008 0.0446 ATOM 19 O P14 1.5878-2.2058-0.6095

ATOM 20 N P14 2.5985-1.4716 1.2792 ATOM 21 H P14 3.4916-1.3315 1.7273 ATOM 22 C P14 1.4012-1.1316 2.0355 ATOM 23 C P14 1.8568-0.5031 3.3505 ATOM 24 H P14 2.3942-1.2434 3.9452 ATOM 25 H P14 2.51320 .35073 .1775 ATOM 26 H P14 $0.9891-0.17043 .9180$ ATOM 27 C P14 $0.5620-2.37632 .3165$ ATOM 28 H P14-0.3144-2.1018 2.9005 ATOM 29 H P14 0.2339-2.8406 1.3876 ATOM 30 H P14 1.1622-3.0903 2.8807 ATOM 31 C P14 0.5251-0.1093 1.2951 ATOM 32 O P14-0.6535 0.03341 .6342 ATOM 33 N P14 1.06910 .60360 .3020 ATOM 34 H P14 2.04200 .46020 .0491 ATOM 35 C P14 $0.2648 \quad 1.4985-0.5155$ ATOM 36 C P14-0.1487 2.82430 .2049 ATOM 37 H P14-1.0061 2.70070 .8624 ATOM 38 C P14 1.1099 2.0328-1.7092 ATOM 39 H P14 2.0985 1.5764-1.7322 ATOM 40 H P14 0.6166 1.8167-2.6588 ATOM 41 C P14 1.9075 3.7837-0.1616 ATOM 42 C P14 3.3075 4.2833-0.1236 ATOM 43 H P14 3.3872 5.2705-0.5872 ATOM 44 H P14 3.9720 3.6180-0.6833 ATOM 45 H P14 3.68794 .35540 .8956 ATOM 46 C P14 1.11913 .35900 .8391 ATOM 47 C P14 1.37643 .30012 .3020 ATOM 48 H P14 1.23142 .28782 .6861 ATOM 49 H P14 0.67373 .93912 .8454 ATOM 50 H P14 2.38753 .61942 .5556 ATOM 51 C P14 1.1463 3.5560-1.4516 ATOM 52 H P14 1.4919 4.1325-2.3094 ATOM 53 C P14-0.2912 3.7792-0.9837 ATOM 54 H P14-1.0442 3.4641-1.7063 ATOM 55 H P14-0.4787 $4.8040-0.6604$ ATOM 56 C P14-0.9658 0.7475-1.0398 ATOM 57 O P14-2.0352 1.3307-1.2344 ATOM 58 N P14-0.8051-0.5556-1.3211 ATOM 59 H P14 0.0789-1.0109-1.1095 ATOM 60 C P14-1.8531-1.3561-1.9415 ATOM 61 C P14-1.4133-2.8192-1.8946 ATOM 62 H P14-0.4895-2.9486-2.4595 ATOM 63 H P14-1.2402 -3.1458-0.8686 ATOM 64 H P14-2.1847-3.4463-2.3399 ATOM 65 C P14 -2.0810 -0.9222 -3.3838 ATOM 66 H P14-2.8678-1.5243 -3.8339 ATOM 67 H P14-2.3746 0.1253-3.4298 ATOM 68 H P14-1.1577-1.0607-3.9471 ATOM 69 C P14-3.1702-1.2635-1.1535 ATOM 70 O P14 -4.2481-1.4117-1.7263 ATOM 71 N P14-3.0684-1.1039 0.1789 ATOM 72 H P14-2.1627-0.8852 0.5815 ATOM 73 C P14-4.2246-1.0924 1.0647 ATOM 74 C P14-3.7251-0.7833 2.4761 ATOM 75 H P14-3.0217-1.5533 2.7975 ATOM 76 H P14-3.2195 0.18172 .5148 ATOM 77 H P14-4.5692-0.7715 3.1644 ATOM 78 C P14-4.9362-2.4401 1.0549 ATOM 79 H P14 -5.7986-2.4048 1.7181 ATOM 80 H P14 -5.2731-2.6947 0.0519 ATOM 81 H P14-4.2476-3.2092 1.4069 ATOM 82 C P14-5.2081 0.0308 0.6927

ATOM 83 O P14-6.3911-0.0349 1.0369 ATOM 84 N P14-4.6956 1.10400 .0819 ATOM 85 H P14-3.7453 1.0787-0.2705 ATOM 86 C P14-5.5302 2.2289-0.2621 ATOM 87 H P14-6.0265 2.62550 .6241 ATOM 88 H P14-4.9064 3.0062-0.6963 ATOM 89 H P14-6.3003 1.9484-0.9842

COMPND Ac-Aib 2 -(1R,2R,4R)-Vdm-Aib ${ }_{2}$-NHMe-M310 REMARK Energy $($ ZPE $)=-1912.4899$
REMARK \#IF $=0$
ATOM 1 C P14-5.7319 0.5957-1.5142
ATOM 2 H P14-5.6748 1.5177-0.9357
ATOM 3 H P14-5.6413 0.8600-2.5667
ATOM 4 H P14-6.7001 0.1311-1.3403
ATOM 5 C P14-4.5783-0.2879-1.1411 ATOM 6 O P14-3.4098 0.0135-1.3971 ATOM 7 N P14-4.8777-1.4248-0.4766 ATOM 8 H P14-5.8483-1.6670-0.3531 ATOM 9 C P14-3.8894-2.4650 -0.2208 ATOM 10 C P14-3.4452-3.1282-1.5175 ATOM 11 H P14 -4.3109-3.5799-2.0023 ATOM 12 H P14-2.9970 -2.3978-2.1891 ATOM 13 H P14-2.7090 -3.9022-1.3081 ATOM 14 C P14-4.5213-3.4916 0.7188 ATOM 15 H P14-3.7946-4.2640 0.9671 ATOM 16 H P14-4.8668-3.0266 1.6428 ATOM 17 H P14-5.3694-3.9706 0.2268 ATOM 18 C P14-2.6757-1.8645 0.4955 ATOM 19 O P14-1.5335-2.2433 0.2399 ATOM 20 N P14-2.9191-0.9651 1.4623 ATOM 21 H P14-3.8734-0.6911 1.6435 ATOM 22 C P14-1.8651-0.4887 2.3511 ATOM 23 C P14-1.3882-1.6013 3.2734 ATOM 24 H P14-2.2251-1.9449 3.8817 ATOM 25 H P14-0.9958-2.4377 2.6972 ATOM 26 H P14-0.6009-1.2325 3.9283 ATOM 27 C P14-2.4298 0.67593 .1623 ATOM 28 H P14-1.6571 1.0836 3.8131 ATOM 29 H P14-2.7924 1.47272 .5115 ATOM 30 H P14-3.2524 0.32753 .7891 ATOM 31 C P14-0.6894 0.0545 1.5223 ATOM 32 O P14 0.4756-0.0808 1.8961 ATOM 33 N P14-1.0199 0.76900 .4326 ATOM 34 H P14-1.9608 0.68050 .0638 ATOM 35 C P14-0.0371 $1.5140-0.3318$ ATOM 36 C P14-0.7627 2.4810-1.3395 ATOM 37 H P14-1.1912 1.9623-2.1974 ATOM 38 C P14 0.7751 $2.5240 \quad 0.5297$ ATOM 39 H P14 $0.46352 .4778 \quad 1.5721$ ATOM 40 H P14 $1.8391 \quad 2.2984 \quad 0.478$ ATOM 41 C P14-0.9958 4.17460 .2051 ATOM 42 C P14-1.4113 5.14181 .2540 ATOM 43 H P14-1.0242 $6.1418 \quad 1.0403$ ATOM 44 H P14-1.0043 4.85162 .2279 ATOM 45 H P14-2.4946 5.20731 .3527 ATOM 46 C P14-1.7355 3.3235-0.5230 ATOM 47 C P14-3.2136 3.1507-0.5214 ATOM 48 H P14-3.5259 $2.2538 \quad 0.0209$ ATOM 49 H P14-3.5984 3.0433-1.5380 ATOM 50 H P14-3.7071 4.0044-0.0563 ATOM 51 C P14 0.4515 3.8909-0.1183 ATOM 52 H P14 1.15564 .67990 .1451

ATOM 53 C P14 0.3427 3.5095-1.595 ATOM 54 H P14 1.2566 3.0844-2.006 ATOM 55 H P14-0.0129 4.3319-2.2164 ATOM 56 C P14 $0.93360 .5691-1.0546$ ATOM 57 O P14 1.9981 0.9924-1.5201 ATOM 58 N P14 0.6142-0.7308-1.1369 ATOM 59 H P14-0.2270-1.0821-0.6906 ATOM 60 C P14 1.5435-1.6997-1.7066 ATOM 61 C P14 1.6881-1.5054-3.2101 ATOM 62 H P14 0.7177-1.6583-3.6833 ATOM 63 H P14 $2.0451-0.5032-3.4378$ ATOM 64 H P14 $2.3964-2.2297-3.6081$ ATOM 65 C P14 1.0180-3.1041-1.4122 ATOM 66 H P14 $1.7058-3.8385 \quad-1.83$ ATOM 67 H P14 $0.9223-3.2766-0.3404$ ATOM 68 H P14 0.0378-3.2402-1.8702 ATOM 69 C P14 2.9181-1.5899-1.0226 ATOM 70 O P14 3.9432-1.9009-1.6252 ATOM 71 N P14 $2.9189-1.22060 .2734$ ATOM 72 H P14 $2.0490-0.92920 .7083$ ATOM 73 C P14 4.1302-1.1575 1.08 ATOM 74 C P14 4.7428-2.5411 1.2618 ATOM 75 H P14 4.0262 -3.1843 1.7738 ATOM 76 H P14 4.9954-2.9832 0.2999 ATOM 77 H P14 5.6469-2.4663 1.8631 ATOM 78 C P14 3.7457-0.5777 2.4411 ATOM 79 H P14 4.6345-0.4940 3.065 ATOM 80 H P14 3.29070 .40802 .3354 ATOM 81 H P14 3.0308-1.2360 2.9369 ATOM 82 C P14 5.1662-0.1964 0.4714 ATOM 83 O P14 6.3607-0.3055 0.7601 ATOM 84 N P14 4.6978 0.8038-0.2821 ATOM 85 H P14 $3.73190 .7940-0.5888$ ATOM 86 C P14 5.5927 1.7767-0.8596 ATOM 87 H P14 6.1818 2.2655-0.0832 ATOM 88 H P14 6.2835 1.3132-1.5677 ATOM 89 H P14 5.0031 2.5263-1.3811

COMPND Ac-Aib $2-(1 \mathrm{R}, 2 \mathrm{~S}, 4 \mathrm{R})-\mathrm{V}-\mathrm{Aib}_{2}-\mathrm{NHMe}-\mathrm{P} 310$ REMARK Energy $($ ZPE $)=-1833.953988$ REMARK \#IF $=0$
ATOM 1 C P15-6.0930 1.5259-0.2947 ATOM 2 H P15 -5.7344 2.1383-1.1210 ATOM 3 H P15-6.9816 0.9817-0.6071 ATOM 4 H P15 -6.3560 2.19560 .5242 ATOM 5 C P15-4.9805 0.63070 .1624 ATOM 6 O P15-3.8713 1.0767 0.4690 ATOM 7 N P15-5.2406-0.6923 0.2046 ATOM 8 H P15-6.1789-1.0005 0.0028 ATOM 9 C P15-4.3261-1.6652 0.7948 ATOM 10 C P15 -4.8691-3.0604 0.4877 ATOM 11 H P15-5.8403-3.1936 0.9670 ATOM 12 H P15 -4.9813-3.2171-0.5859 ATOM 13 H P15-4.1905-3.8156 0.8818 ATOM 14 C P15-4.2077-1.4573 2.2985 ATOM 15 H P15-3.5218-2.1875 2.7235 ATOM 16 H P15 -3.8346-0.4593 2.5224 ATOM 17 H P15 -5.1901-1.5834 2.7542 ATOM 18 C P15-2.9420-1.5524 0.1398 ATOM 19 O P15-1.9168-1.7661 0.7854 ATOM 20 N P15-2.9335-1.2732-1.1746 ATOM 21 H P15 -3.8227-1.1079-1.6219 ATOM 22 C P15-1.7372-1.2459-2.0045

ATOM 23 C P15-2.1435 -0.7262-3.3833 ATOM 24 H P15 -2.8550-1.4141-3.8430 ATOM 25 H P15-2.5987 0.2632-3.3168 ATOM 26 H P15-1.2648 -0.6645-4.0235 ATOM 27 C P15-1.1226-2.6359-2.1244 ATOM 28 H P15-0.2373-2.5939-2.7557 ATOM 29 H P15 -0.8366-3.0198-1.1463 ATOM 30 H P15-1.8518-3.3101 -2.5741 ATOM 31 C P15 -0.6954-0.2673-1.4486 ATOM 32 O P15 $0.4941-0.3942-1.7512$ ATOM 33 N P15-1.1274 0.7432-0.6830 ATOM 34 H P15 -2.1030 0.7932-0.3999 ATOM 35 C P15 -0.2018 1.7462-0.1787 ATOM 36 C P15 0.3546 2.6519-1.3055 ATOM 37 H P15 1.4416 2.6807-1.2914 ATOM 38 H P15 0.0234 2.2744-2.2731 ATOM 39 C P15 -0.2768 $4.0370-0.9963$ ATOM 40 H P15 -0.2691 4.7223-1.8414 ATOM 41 C P15-1.6403 3.6076-0.4505 ATOM 42 H P15 -2.2323 3.0257-1.1602 ATOM 43 H P15-2.2311 $4.4400-0.0676$ ATOM 44 C P15-1.0337 2.76710 .6809 ATOM 45 H P15-1.7160 2.27341 .3702 ATOM 46 C P15 -0.0656 3.76161 .2712 ATOM 47 H P15 0.27623 .75452 .2970 ATOM 48 C P15 0.37924 .52580 .2705 ATOM 49 H P15 1.15995 .27360 .3175 ATOM 50 C P15 $0.9041 \quad 1.08210 .6432$ ATOM 51 O P15 2.01331 .60690 .7674 ATOM 52 N P15 $0.5890-0.07631 .2430$ ATOM 53 H P15 -0.3175-0.4923 1.0550 ATOM 54 C P15 1.5214-0.7988 2.0972 ATOM 55 C P15 0.9227-2.1753 2.3855 ATOM 56 H P15 -0.0400-2.0659 2.8861 ATOM 57 H P15 0.7693-2.7393 1.4648 ATOM 58 H P15 1.5943-2.7353 3.0350 ATOM 59 C P15 1.7569-0.0426 3.3983 ATOM 60 H P15 $2.4552-0.59034 .0280$ ATOM 61 H P15 2.16630 .94673 .2002 ATOM 62 H P15 0.80810 .06163 .9258 ATOM 63 C P15 2.8598-1.0402 1.3780 ATOM 64 O P15 3.8998-1.1595 2.0229 ATOM 65 N P15 2.8059-1.1963 0.0420 ATOM 66 H P15 1.9345-0.9999-0.4419 ATOM 67 C P15 3.9749-1.5181-0.7658 ATOM 68 C P15 3.5457-1.4955-2.2329 ATOM 69 H P15 2.7780 -2.2512 -2.4065 ATOM 70 H P15 3.1392-0.5229-2.5111 ATOM 71 H P15 4.4043-1.7178-2.8651 ATOM 72 C P15 4.5235-2.8954-0.4118 ATOM 73 H P15 5.3902-3.1177-1.0315 ATOM 74 H P15 4.8184-2.9399 0.6347 ATOM 75 H P15 3.7524-3.6439-0.5984 ATOM 76 C P15 5.0735-0.4522-0.6138 ATOM 77 O P15 6.2497-0.7261-0.8662 ATOM 78 N P15 $4.67400 .7851-0.3032$ ATOM 79 H P15 3.7177 0.9458-0.0077 ATOM 80 C P15 5.6239 1.8643-0.1878 ATOM 81 H P15 6.1962 1.9727-1.1096 ATOM 82 H P15 5.08202 .78720 .0030 ATOM 83 H P15 6.32791 .69170 .6295

REMARK Energy $($ ZPE $)=-1833.9511$ REMARK \#IF $=0$
ATOM 1 C P15-6.1969 1.5168 0.2526 ATOM 2 H P15-5.8388 2.18621 .0336 ATOM 3 H P15 -6.4931 $2.1294-0.5991$ ATOM 4 H P15 -7.0648 0.97000 .6147 ATOM 5 C P15-5.0708 0.6238-0.1736 ATOM 6 O P15-3.9752 1.0771-0.5174 ATOM 7 N P15-5.3011-0.7046-0.1452 ATOM 8 H P15 -6.2289-1.0235 0.0866 ATOM 9 C P15 -4.3705-1.6866-0.6934 ATOM 10 C P15 -4.2719-1.5576-2.2075 ATOM 11 H P15 -5.2534-1.7390 -2.6456 ATOM 12 H P15 -3.9316-0.5623-2.4885 ATOM 13 H P15 -3.5662-2.2885-2.5978 ATOM 14 C P15 -4.8764-3.0755 -0.3056 ATOM 15 H P15 -4.1849-3.8343-0.6691 ATOM 16 H P15 -4.9705-3.1773 0.7763 ATOM 17 H P15 -5.8502-3.2562-0.7636 ATOM 18 C P15 -2.9834-1.5086-0.0615 ATOM 19 O P15-1.9599-1.7478-0.7010 ATOM 20 N P15 -2.9638-1.1412 1.2300 ATOM 21 H P15 -3.8487-0.9583 1.6790 ATOM 22 C P15-1.7556-1.0514 2.0372 ATOM 23 C P15-1.1496-2.4330 2.2593 ATOM 24 H P15-1.8794-3.0635 2.7674 ATOM 25 H P15 -0.8786-2.8941 1.3104 ATOM 26 H P15 -0.2568-2.3515 2.8756 ATOM 27 C P15 -2.1371-0.4162 3.3735 ATOM 28 H P15-1.2479-0.3067 3.9924 ATOM 29 H P15-2.5886 0.56663 .2301 ATOM 30 H P15 -2.8447-1.0581 3.9007 ATOM 31 C P15 -0.7146-0.1333 1.3839 ATOM 32 O P15 $0.4775-0.25301 .6781$ ATOM 33 N P15-1.1530 0.81020 .5385 ATOM 34 H P15-2.1369 0.84100 .2884 ATOM 35 C P15-0.2385 1.7508-0.0924 ATOM 36 C P15-1.0257 2.6347-1.1037 ATOM 37 H P15 -0.5470 2.6559-2.0819 ATOM 38 H P15-2.0382 2.2518-1.2307 ATOM 39 C P15-1.0165 4.0349-0.4298 ATOM 40 H P15-1.8028 $4.6957-0.7893$ ATOM 41 C P15-1.0426 3.6450 1.0505 ATOM 42 H P15-1.9234 $3.0680 \quad 1.3396$ ATOM 43 H P15 -0.9267 4.50161 .7145 ATOM 44 C P15 $0.24192 .8080 \quad 0.9555$ ATOM 45 H P15 0.61752 .34451 .8644 ATOM 46 C P15 $1.15223 .7998 \quad 0.2705$ ATOM 47 H P15 $2.22653 .8206 \quad 0.3732$ ATOM 48 C P15 $0.3989 \quad 4.5452-0.5426$ ATOM 49 H P15 0.7370 5.2881-1.2530 ATOM 50 C P15 $0.89330 .9886-0.7826$ ATOM 51 O P15 $2.01831 .4778-0.9036$ ATOM 52 N P15 $0.5860-0.2140-1.2960$ ATOM 53 H P15-0.3302-0.6182-1.1217 ATOM 54 C P15 1.5416-0.9889-2.0770 ATOM 55 C P15 1.8011-0.3227-3.4227 ATOM 56 H P15 $0.8637-0.2613-3.9763$ ATOM 57 H P15 $2.20160 .6810-3.2862$ ATOM 58 H P15 2.5169-0.9084-3.9963 ATOM 59 C P15 0.9553-2.3851-2.2842 ATOM 60 H P15 1.6594-2.9952-2.8486 ATOM 61 H P15 0.7509-2.8733-1.3305

ATOM 62 H P15 0.0245-2.3194-2.8487 ATOM 63 C P15 2.8689-1.1729-1.3216 ATOM 64 O P15 3.9187-1.3285-1.9427 ATOM 65 N P15 $2.7973-1.24300 .0204$ ATOM 66 H P15 1.9234-1.0022 0.4783 ATOM 67 C P15 3.9588-1.4979 0.8631 ATOM 68 C P15 4.5262-2.8892 0.6094 ATOM 69 H P15 $3.7664-3.63400 .8488$ ATOM 70 H P15 4.8236-3.0033-0.4310 ATOM 71 H P15 5.3956-3.0504 1.2441 ATOM 72 C P15 3.5087-1.3827 2.3196 ATOM 73 H P15 $4.3588-1.56242 .9766$ ATOM 74 H P15 $3.0981-0.39492 .5300$ ATOM 75 H P15 2.7402 -2.1278 2.5306 ATOM 76 C P15 5.0515-0.4345 0.6575 ATOM 77 O P15 6.2253-0.6803 0.9480 ATOM 78 N P15 4.64720 .77490 .2571 ATOM 79 H P15 3.6955 0.9056-0.0669 ATOM 80 C P15 5.58811 .85440 .0853 ATOM 81 H P15 6.14552 .02891 .0061 ATOM 82 H P15 6.3056 1.6378-0.7095 ATOM 83 H P15 5.0392 $2.7568-0.1723$

COMPND Ac-Aib 2 -(1R,2S,4R)-Vdm-Aib 2 -NHMe-P310 REMARK Energy $($ ZPE $)=-1912.494595$ REMARK \#IF $=0$
ATOM 1 C P16-6.1199 1.4515-0.4865 ATOM 2 H P16-5.7521 1.9815-1.3638 ATOM 3 H P16-7.0165 0.8939-0.7494 ATOM 4 H P16-6.3746 2.19580 .2684 ATOM 5 C P16-5.0208 0.5857 0.0525 ATOM 6 O P16-3.8942 1.0323 0.2842 ATOM 7 N P16-5.3130 -0.7156 0.2575 ATOM 8 H P16-6.2625-1.0220 0.1135 ATOM 9 C P16-4.4099-1.6314 0.9471 ATOM 10 C P16-4.9971-3.0376 0.8301 ATOM 11 H P16 -5.9604 -3.0783 1.3413 ATOM 12 H P16 -5.1384-3.3248-0.2125 ATOM 13 H P16-4.3310-3.7572 1.3039 ATOM 14 C P16 -4.2501-1.2400 2.4101 ATOM 15 H P16-3.5767-1.9323 2.9115 ATOM 16 H P16-3.8434-0.2340 2.4975 ATOM 17 H P16 -5.2249-1.2773 2.8968 ATOM 18 C P16-3.0387-1.6437 0.2559 ATOM 19 O P16-2.0070-1.8250 0.9015 ATOM 20 N P16 -3.0460-1.5133-1.0807 ATOM 21 H P16-3.9347-1.3570-1.5320 ATOM 22 C P16-1.8613-1.6280-1.9209 ATOM 23 C P16-2.2663-1.2427-3.3433 ATOM 24 H P16 -3.0132-1.9442-3.7185 ATOM 25 H P16-2.6795 -0.2335-3.3777 ATOM 26 H P16-1.3967-1.2869-3.9970 ATOM 27 C P16-1.3127-3.0503-1.8931 ATOM 28 H P16 -0.4390 -3.1249-2.5375 ATOM 29 H P16-1.0275-3.3363-0.8818 ATOM 30 H P16 -2.0812-3.7340-2.2543 ATOM 31 C P16-0.7716-0.6410-1.4811 ATOM 32 O P16 $0.4097-0.8556-1.7659$ ATOM 33 N P16-1.1560 0.4695-0.8403 ATOM 34 H P16-2.1286 0.5906-0.5708 ATOM 35 C P16-0.1928 1.4869-0.4442 ATOM 36 C P16 0.3978 2.2427-1.6594 ATOM 37 H P16 1.4859 2.2334-1.6421

ATOM 38 H P16 0.0566 1.7725-2.5821 ATOM 39 C P16-0.1809 3.6710-1.5004 ATOM 40 H P16-0.1397 4.2661-2.4123 ATOM 41 C P16-1.5622 3.3602 -0.9250 ATOM 42 H P16-2.1775 2.7318-1.5729 ATOM 43 H P16-2.1182 4.2525-0.6364 ATOM 44 C P16 -0.9867 2.62730 .2899 ATOM 45 H P16-1.6875 2.23721 .0273 ATOM 46 C P16 0.01393 .64660 .7896 ATOM 47 C P16 $0.49864 .2778-0.2907$ ATOM 48 C P16 0.88820 .87560 .4513 ATOM 49 O P16 $2.0228 \quad 1.35660 .5069$ ATOM 50 C P16 0.40633 .75312 .2194 ATOM 51 H P16 1.17284 .51242 .3749 ATOM 52 H P16 0.79832 .80082 .5869 ATOM 53 H P16-0.4537 4.00422 .8468 ATOM 54 C P16 1.6097 5.2582-0.3980 ATOM 55 H P16 2.4436 4.8315-0.9649 ATOM 56 H P16 1.98885 .55860 .5788 ATOM 57 H P16 1.2949 6.1576-0.9342 ATOM 58 N P16 $0.5246-0.18391 .1919$ ATOM 59 H P16-0.4026-0.5784 1.0657 ATOM 60 C P16 1.4287-0.8586 2.1140 ATOM 61 C P16 $0.7531-2.15562 .5584$ ATOM 62 H P16 -0.1790-1.9297 3.0782 ATOM 63 H P16 $0.5212-2.79131 .7033$ ATOM 64 H P16 $1.4114-2.69613 .2373$ ATOM 65 C P16 1.72770 .01823 .3231 ATOM 66 H P16 $2.3682-0.51584 .0222$ ATOM 67 H P16 2.23280 .93373 .0203 ATOM 68 H P16 0.79060 .27223 .8195 ATOM 69 C P16 $2.7458-1.25531 .4253$ ATOM 70 O P16 3.7808-1.3556 2.0818 ATOM 71 N P16 $2.6822-1.5558 \quad 0.1151$ ATOM 72 H P16 1.8221-1.3756-0.3943 ATOM 73 C P16 3.8388-2.0189-0.6412 ATOM 74 C P16 3.4223-2.1404-2.1072 ATOM 75 H P16 2.6215-2.8745-2.2068 ATOM 76 H P16 3.0689-1.1869-2.4998 ATOM 77 H P16 4.2750-2.4736-2.6975 ATOM 78 C P16 4.3205-3.3726-0.1336 ATOM 79 H P16 5.1911-3.6898-0.7046 ATOM 80 H P16 $4.5890-3.32170 .9194$ ATOM 81 H P16 3.5237-4.1060-0.2641 ATOM 82 C P16 4.9850-0.9930 -0.5985 ATOM 83 O P16 6.1482-1.3465-0.8084 ATOM 84 N P16 $4.64290 .2889-0.4332$ ATOM 85 H P16 3.6947 0.5285-0.1657 ATOM 86 C P16 5.6440 1.3274-0.4304 ATOM 87 H P16 $6.21621 .3131-1.3585$ ATOM 88 H P16 5.1477 2.2901-0.3357 ATOM 89 H P16 6.34311 .20620 .4001

COMPND Ac-Aib 2 -(1R,2S,4R)-Vdm-Aib 2 -NHMe-M310 REMARK Energy $($ ZPE $)=-1912.4903$ REMARK \#IF $=0$
ATOM 1 C P16 6.2209 1.5587-0.1608 ATOM 2 H P16 5.8727 2.1997-0.9695 ATOM 3 H P16 6.45302 .19720 .6918 ATOM 4 H P16 7.1257 1.0418-0.4730 ATOM 5 C P16 5.1130 0.62790 .2311 ATOM 6 O P16 3.98551 .04140 .5164 ATOM 7 N P16 5.3977-0.6905 0.2394

ATOM 8 H P16 6.3474-0.9748 0.0570 ATOM 9 C P16 4.4846-1.6984 0.7690 ATOM 10 C P16 4.3112-1.5403 2.2737 ATOM 11 H P16 5.2785-1.6674 2.7601 ATOM 12 H P16 3.9154-0.5552 2.5152 ATOM 13 H P16 3.6207-2.2932 2.6489 ATOM 14 C P16 5.0640-3.0732 0.4377 ATOM 15 H P16 4.3900 -3.8519 0.7920 ATOM 16 H P16 5.2077-3.1966-0.6364 ATOM 17 H P16 6.0245-3.2013 0.9396 ATOM 18 C P16 3.1207-1.5947 0.0741 ATOM 19 O P16 2.0835-1.8785 0.6726 ATOM 20 N P16 3.1326-1.2422-1.2210 ATOM 21 H P16 4.0219-1.0213-1.6431 ATOM 22 C P16 1.9442-1.2138-2.0620 ATOM 23 C P16 1.4220-2.6245-2.3087 ATOM 24 H P16 2.1909-3.2054-2.8184 ATOM 25 H P16 1.1706-3.1128-1.3682 ATOM 26 H P16 0.5301-2.5865 -2.9309 ATOM 27 C P16 $2.3267-0.5467-3.3825$ ATOM 28 H P16 1.4514-0.4823-4.0271 ATOM 29 H P16 2.7170 0.4590-3.2191 ATOM 30 H P16 3.0849-1.1424-3.8935 ATOM 31 C P16 0.8399-0.3558-1.4298 ATOM 32 O P16-0.3409-0.5549-1.7273 ATOM 33 N P16 1.2143 0.6322-0.6054 ATOM 34 H P16 $2.19100 .7240-0.3420$ ATOM 35 C P16 0.2398 1.5516-0.0329 ATOM 36 C P16 0.94862 .50200 .9750 ATOM 37 H P16 0.42512 .53871 .9306 ATOM 38 H P16 1.96812 .16351 .1621 ATOM 39 C P16 0.90973 .86720 .2482 ATOM 40 H P16 1.64594 .57900 .6209 ATOM 41 C P16 1.0295 3.4271-1.2117 ATOM 42 H P16 1.9447 2.8743-1.4370 ATOM 43 H P16 0.9159 4.2538-1.9131 ATOM 44 C P16 -0.2323 2.5535-1.1418 ATOM 45 H P16 -0.5455 $2.0410-2.0498$ ATOM 46 C P16-1.2151 $3.5590-0.5731$ ATOM 47 C P16-0.5273 4.34630 .2681 ATOM 48 C P16-0.8531 0.75630 .6828 ATOM 49 O P16-2.0039 1.1819 0.7949 ATOM 50 C P16-2.6469 3.6152-0.9690 ATOM 51 H P16-3.2035 $4.3458-0.3810$ ATOM 52 H P16-3.1226 $2.6424-0.8489$ ATOM 53 H P16-2.7418 3.8939-2.0234 ATOM 54 C P16-1.0035 5.4272 1.1707 ATOM 55 H P16-0.8173 5.1695 2.2184 ATOM 56 H P16-2.0713 5.61481 .0580 ATOM 57 H P16-0.4717 6.36400 .9816 ATOM 58 N P16-0.4644-0.3984 1.2525 ATOM 59 H P16 $0.4701-0.75631 .0773$ ATOM 60 C P16-1.3463-1.1990 2.0914 ATOM 61 C P16-1.6704-0.4651 3.3876 ATOM 62 H P16 -0.7426-0.2745 3.9279 ATOM 63 H P16-2.1652 0.48293 .1821 ATOM 64 H P16-2.3246-1.0744 4.0081 ATOM 65 C P16 -0.6288-2.5131 2.3983 ATOM 66 H P16-1.2805 -3.1546 2.9901 ATOM 67 H P16 -0.3497-3.0335 1.4816 ATOM 68 H P16 0.2781 -2.3144 2.9708 ATOM 69 C P16-2.6479-1.5630 1.3599 ATOM 70 O P16-3.6661-1.8215 2.0001

ATOM 71 N P16-2.5880-1.6531 0.0192 ATOM 72 H P16 -1.7432 -1.3540-0.4578 ATOM 73 C P16-3.7345-2.0309-0.7960 ATOM 74 C P16-4.1429-3.4750 -0.5316 ATOM 75 H P16-3.3051-4.1306-0.7716 ATOM 76 H P16-4.4177-3.6151 0.5119 ATOM 77 H P16 -4.9920 -3.7410-1.1583 ATOM 78 C P16-3.3366-1.8656-2.2626 ATOM 79 H P16 -4.1845-2.1147-2.8994 ATOM 80 H P16-3.0206-0.8438-2.4737 ATOM 81 H P16-2.5116-2.5384-2.5017 ATOM 82 C P16-4.9262-1.0890 -0.5507 ATOM 83 O P16-6.0788-1.4654-0.7775 ATOM 84 N P16-4.6414 0.1659-0.1850 ATOM 85 H P16 -3.6960 0.40990 .0890 ATOM 86 C P16-5.6979 1.1217 0.0428 ATOM 87 H P16-6.3606 0.79670 .8479 ATOM 88 H P16 -5.2542 2.07580 .3150 ATOM 89 H P16-6.2996 1.2542-0.8571

COMPND Ac-Aib 2 -(1R,2S,4R)-IIIbwr-Aib 2 -NHMe-P310 REMARK Energy $($ ZPE $)=-1869.877922$ REMARK \#IF $=0$
ATOM 1 C P17-6.1033 1.4892-0.3267 ATOM 2 H P17-5.7550 2.0823-1.1713 ATOM 3 H P17-6.9905 0.9313-0.6179 ATOM 4 H P17-6.3640 2.17820 .4768 ATOM 5 C P17-4.9815 0.61330 .1443 ATOM 6 O P17-3.8746 1.0746 0.4368 ATOM 7 N P17-5.2290-0.7105 0.2153 ATOM 8 H P17-6.1649-1.0318 0.0232 ATOM 9 C P17-4.3018-1.6630 0.8191 ATOM 10 C P17-4.8371-3.0685 0.5477 ATOM 11 H P17 -5.8023-3.1980 1.0400 ATOM 12 H P17 -4.9593-3.2494-0.5209 ATOM 13 H P17-4.1489-3.8100 0.9512 ATOM 14 C P17-4.1726-1.4211 2.3169 ATOM 15 H P17 -3.4796-2.1383 2.7523 ATOM 16 H P17 -3.8031-0.4165 2.5160 ATOM 17 H P17 -5.1506-1.5421 2.7831 ATOM 18 C P17-2.9234-1.5547 0.1510 ATOM 19 O P17-1.8926-1.7534 0.7926 ATOM 20 N P17-2.9247-1.2970-1.1677 ATOM 21 H P17 -3.8172-1.1455-1.6133 ATOM 22 C P17-1.7317-1.2720-2.0025 ATOM 23 C P17-2.1443-0.7683-3.3853 ATOM 24 H P17-2.8528-1.4654-3.8358 ATOM 25 H P17 -2.6055 0.2188-3.3283 ATOM 26 H P17-1.2680 -0.7081-4.0287 ATOM 27 C P17-1.1091-2.6595-2.1097 ATOM 28 H P17 -0.2269-2.6197-2.7456 ATOM 29 H P17 -0.8163-3.0304-1.1287 ATOM 30 H P17-1.8365-3.3426-2.5486 ATOM 31 C P17-0.6952-0.2835-1.4552 ATOM 32 O P17 0.4978-0.4122-1.7415 ATOM 33 N P17-1.1357 $0.7367-0.7070$ ATOM 34 H P17-2.1206 0.8132-0.4650 ATOM 35 C P17-0.2145 1.7403-0.2097 ATOM 36 C P17 $0.3083 \quad 2.6639-1.3314$ ATOM 37 H P17 -0.0162 $2.2879-2.2998$ ATOM 38 H P17 1.3914 2.7533-1.3174 ATOM 39 C P17-0.4051 3.9946-0.9805 ATOM 40 H P17 -0.5843 $4.6682-1.8128$

ATOM 41 O P17-1.6393 3.5164-0.4358 ATOM 42 C P17-1.0600 2.77140 .6266 ATOM 43 H P17 -1.8200 2.31351 .2534 ATOM 44 C P17-0.1157 3.76841 .2501 ATOM 45 H P17 0.22043 .75592 .2758 ATOM 46 C P17 0.28174 .54530 .2451 ATOM 47 H P17 1.02825 .32590 .2481 ATOM 48 C P17 0.90111 .09990 .6164 ATOM 49 O P17 $2.0021 \quad 1.64300 .7273$ ATOM 50 N P17 0.5932-0.0492 1.2346 ATOM 51 H P17-0.3116-0.4731 1.0523 ATOM 52 C P17 1.5269-0.7536 2.1037 ATOM 53 C P17 0.9274-2.1232 2.4210 ATOM 54 H P17-0.0339-2.0022 2.9215 ATOM 55 H P17 $0.7713-2.70541 .5122$ ATOM 56 H P17 1.6000-2.6701 3.0803 ATOM 57 C P17 1.76100 .03083 .3883 ATOM 58 H P17 $2.4567-0.50434 .0313$ ATOM 59 H P17 2.17261 .01493 .1703 ATOM 60 H P17 0.81130 .14803 .9112 ATOM 61 C P17 2.8654-1.0100 1.3897 ATOM 62 O P17 3.9042-1.1203 2.0377 ATOM 63 N P17 2.8121-1.1844 0.0561 ATOM 64 H P17 1.9396-1.0019-0.4309 ATOM 65 C P17 3.9804-1.5216-0.7465 ATOM 66 C P17 3.5501-1.5237-2.2135 ATOM 67 H P17 2.7839 -2.2838-2.3739 ATOM 68 H P17 $3.1412-0.5567-2.5073$ ATOM 69 H P17 4.4086-1.7547-2.8427 ATOM 70 C P17 4.5279-2.8932-0.3693 ATOM 71 H P17 5.3916-3.1289-0.9882 ATOM 72 H P17 4.8269-2.9196 0.6766 ATOM 73 H P17 3.7546-3.6434-0.5392 ATOM 74 C P17 5.0794-0.4538-0.6126 ATOM 75 O P17 6.2555-0.7327-0.8588 ATOM 76 N P17 $4.68070 .7894-0.3242$ ATOM 77 H P17 $3.72380 .9570-0.0363$ ATOM 78 C P17 5.6316 1.8700-0.2300 ATOM 79 H P17 6.1994 1.9642-1.1561 ATOM 80 H P17 5.0910 2.7958-0.0504 ATOM 81 H P17 6.33931 .70910 .5864

COMPND Ac-Aib 2 -(1R,2S,4R)-IIIbwr-Aib 2 -NHMe-M310 REMARK Energy $($ ZPE $)=-1869.8755$
REMARK \#IF $=0$
ATOM 1 C P17-6.1828 1.57660 .1175 ATOM 2 H P17-5.8301 2.27880 .8715 ATOM 3 H P17-6.4652 $2.1510-0.7650$ ATOM 4 H P17-7.0582 1.05140 .4932 ATOM 5 C P17-5.0572 0.6587-0.2534 ATOM 6 O P17-3.9522 1.0888-0.5972 ATOM 7 N P17-5.2993 -0.6656-0.1754 ATOM 8 H P17 -6.2335-0.9670 0.0539 ATOM 9 C P17-4.3685-1.6763-0.6680 ATOM 10 C P17 -4.2393-1.6063-2.1837 ATOM 11 H P17 -5.2147-1.7917-2.6336 ATOM 12 H P17 -3.8804-0.6268-2.4953 ATOM 13 H P17-3.5366-2.3604-2.5326 ATOM 14 C P17-4.8956-3.0446-0.2375 ATOM 15 H P17 -4.2035-3.8230 -0.5555 ATOM 16 H P17 -5.0142-3.1025 0.8451 ATOM 17 H P17 -5.8608 -3.2349-0.7095 ATOM 18 C P17-2.9919-1.4873-0.0166

ATOM 19 O P17-1.9592-1.7605-0.6276 ATOM 20 N P17-2.9912-1.0718 1.2603 ATOM 21 H P17-3.8815-0.8638 1.6873 ATOM 22 C P17-1.7938 -0.9605 2.0818 ATOM 23 C P17-1.2047-2.3362 2.3730 ATOM 24 H P17-1.9470-2.9365 2.8992 ATOM 25 H P17 - 0.9268 -2.8410 1.4490 ATOM 26 H P17-0.3184-2.2362 2.9962 ATOM 27 C P17-2.1871-0.2619 3.3827 ATOM 28 H P17-1.3056-0.1305 4.0081 ATOM 29 H P17-2.6293 0.71633 .1885 ATOM 30 H P17 -2.9064-0.8742 3.9290 ATOM 31 C P17-0.7379-0.0836 1.3991 ATOM 32 O P17 0.4544-0.2107 1.6884 ATOM 33 N P17-1.1635 0.84290 .5280 ATOM 34 H P17-2.1488 0.90050 .2898 ATOM 35 C P17-0.2293 1.7368-0.1279 ATOM 36 C P17 -0.9983 $2.6562-1.1100$ ATOM 37 H P17 -2.0251 $2.3153-1.2293$ ATOM 38 H P17-0.5299 $2.7054-2.0911$ ATOM 39 C P17-0.9284 4.0126-0.3588 ATOM 40 H P17-1.7539 $4.6919-0.5487$ ATOM 41 O P17-0.9230 3.58091 .0040 ATOM 42 C P17 0.2665 2.7991 0.9129 ATOM 43 H P17 $0.5372 \quad 2.3715 \quad 1.8731$ ATOM 44 C P17 1.22863 .75870 .2566 ATOM 45 H P17 2.30073 .73720 .3634 ATOM 46 C P17 $0.47744 .5354-0.5216$ ATOM 47 H P17 0.7876 5.2952 -1.2239 ATOM 48 C P17 0.8810 0.9510 -0.8219 ATOM 49 O P17 1.9996 1.4429-0.9868 ATOM 50 N P17 0.5608-0.2692-1.2761 ATOM 51 H P17 -0.3560 -0.6589-1.0738 ATOM 52 C P17 1.4957-1.0962-2.0281 ATOM 53 C P17 1.7306-0.5168-3.4172 ATOM 54 H P17 $0.7830-0.4875-3.9558$ ATOM 55 H P17 $2.1350 \quad 0.4922-3.3542$ ATOM 56 H P17 $2.4339-1.1399-3.9661$ ATOM 57 C P17 $0.8880-2.4951-2.1354$ ATOM 58 H P17 1.5548-3.1405-2.7058 ATOM 59 H P17 $0.7296-2.9325-1.1488$ ATOM 60 H P17-0.0739 -2.4435-2.6471 ATOM 61 C P17 2.8349-1.2483-1.2869 ATOM 62 O P17 3.8727-1.4476-1.9152 ATOM 63 N P17 2.7849-1.2373 0.0576 ATOM 64 H P17 $1.9150-0.98430 .5154$ ATOM 65 C P17 3.9541-1.4577 0.8991 ATOM 66 C P17 4.4998-2.8689 0.7195 ATOM 67 H P17 3.7329-3.5879 1.0101 ATOM 68 H P17 4.7819-3.0467-0.3164 ATOM 69 H P17 5.3749-3.0068 1.3519 ATOM 70 C P17 3.5213-1.2501 2.3507 ATOM 71 H P17 4.3766-1.3949 3.0093 ATOM 72 H P17 3.1189-0.2483 2.5033 ATOM 73 H P17 $2.7497-1.97502 .6149$ ATOM 74 C P17 5.0572-0.4227 0.6162 ATOM 75 O P17 $6.2320-0.6682 \quad 0.9020$ ATOM 76 N P17 4.66280 .76750 .1524 ATOM 77 H P17 3.7077 0.8928-0.1632 ATOM 78 C P17 $5.61611 .8210-0.0961$ ATOM 79 H P17 6.2019 2.0269 0.8001 ATOM 80 H P17 6.3071 1.5553-0.8994 ATOM 81 H P17 5.0758 2.7204-0.3803

COMPND Ac-Aib 2 -(1R,2S,4R)-IIIbmb-Aib $2_{2}$-NHMe-P310 REMARK Energy(ZPE)=-1987.512821 REMARK \#IF $=0$
ATOM 1 C P18-6.0696 1.7257-0.5413 ATOM 2 H P18 -5.6755 2.1817-1.4480 ATOM 3 H P18 -7.0063 1.2203-0.7660 ATOM 4 H P18 -6.2629 2.52430 .1757 ATOM 5 C P18 -5.0289 0.81380 .0359 ATOM 6 O P18 -3.8621 1.18100 .2011 ATOM 7 N P18 -5.4225-0.4363 0.3561 ATOM 8 H P18-6.3992-0.6678 0.2614 ATOM 9 C P18 -4.5821-1.3668 1.1043 ATOM 10 C P18-5.2845-2.7241 1.1155 ATOM 11 H P18-6.2352-2.6446 1.6451 ATOM 12 H P18 -5.4735-3.0833 0.1032 ATOM 13 H P18-4.6670-3.4549 1.6358 ATOM 14 C P18 -4.3543-0.8712 2.5261 ATOM 15 H P18-3.7144-1.5667 3.0655 ATOM 16 H P18 -3.8777 0.10792 .5215 ATOM 17 H P18-5.3145-0.7998 3.0370 ATOM 18 C P18-3.2349 -1.5505 0.3919 ATOM 19 O P18 -2.2024-1.7522 1.0299 ATOM 20 N P18-3.2683-1.5395-0.9507 ATOM 21 H P 18 -4.1550 -1.3598-1.3972 ATOM 22 C P18-2.1165-1.8160-1.7983 ATOM 23 C P18 -2.5201-1.5056-3.2394 ATOM 24 H P 18 -3.3351-2.1639-3.5448 ATOM 25 H P18-2.8436 -0.4691-3.3458 ATOM 26 H P18-1.6738-1.6782 -3.9023 ATOM 27 C P18-1.6794-3.2704-1.6711 ATOM 28 H P18 -0.8183-3.4532 -2.3110 ATOM 29 H P 18 -1.4063 -3.5036 -0.6432 ATOM 30 H P18-2.4998 -3.9183-1.9799 ATOM 31 C P18-0.9430-0.8912-1.4529 ATOM 32 O P18 0.2125-1.2250-1.7262 ATOM 33 N P18 -1.2269 $0.3017-0.9127$ ATOM 34 H P18-2.1785 0.5224-0.6304 ATOM 35 C P18 -0.1700 1.2584-0.6301 ATOM 36 C P18 0.4622 1.8301-1.9272 ATOM 37 H P18 $0.0358 \quad 1.3187-2.7901$ ATOM 38 H P18 $1.54141 .6978-1.9354$ ATOM 39 C P18 0.0455 3.3192-1.9124 ATOM 40 H P18 $0.1153 \quad 3.8068-2.8828$ ATOM 41 C P18-1.3474 3.2148-1.2757 ATOM 42 H P18-2.0411 $2.5994-1.8515$ ATOM 43 H P18-1.8015 4.1839-1.0664 ATOM 44 C P18 -0.8377 2.52680 .0030 ATOM 45 H P18-1.5661 2.27930 .7725 ATOM 46 C P18 0.25463 .48220 .3984 ATOM 47 C P18 0.8006 3.9775-0.7897 ATOM 48 C P18 0.74993 .86681 .6299 ATOM 49 H P18 0.33263 .47542 .5505 ATOM 50 C P18 $1.86114 .8643-0.7641$ ATOM 51 H P18 2.2948 5.2488-1.6799 ATOM 52 C P18 1.80594 .78041 .6596 ATOM 53 H P18 2.20135 .11332 .6115 ATOM 54 C P18 2.35475 .27020 .4784 ATOM 55 H P18 3.17155 .98050 .5239 ATOM 56 C P18 0.87750 .64540 .3016 ATOM 57 O P18 2.04771 .03270 .2826 ATOM 58 N P18 $0.4511-0.29801 .1555$ ATOM 59 H P18-0.5052 -0.6329 1.0929 ATOM 60 C P18 $1.3273-0.91342 .1430$ ATOM 61 C P18 $0.5820-2.10362 .7464$ ATOM 62 H P18 -0.3350-1.7619 3.2284 ATOM 63 H P18 $0.3169-2.83201 .9796$ ATOM 64 H P18 $1.2107-2.58743 .4928$ ATOM 65 C P18 1.69530 .08613 .2323 ATOM 66 H P18 $2.3340-0.38723 .9755$ ATOM 67 H P18 2.22250 .94052 .8112 ATOM 68 H P18 0.78230 .43393 .7169

ATOM 69 C P18 2.6020-1.4711 1.4875 ATOM 70 O P18 3.6426-1.5665 2.1351 ATOM 71 N P18 $2.4846-1.91740 .2229$ ATOM 72 H P18 $1.6280-1.7255-0.2867$ ATOM 73 C P18 3.5808-2.5486-0.5015 ATOM 74 C P18 $3.1033-2.8085-1.9303$ ATOM 75 H P18 2.2462-3.4837-1.9182 ATOM 76 H P18 $2.8054-1.8829-2.4230$ ATOM 77 H P18 $3.9060-3.2733-2.5014$ ATOM 78 C P18 $3.9834-3.86450 .1530$ ATOM 79 H P18 $4.7920-4.3251-0.4115$ ATOM 80 H P18 $4.3145-3.70471 .1770$ ATOM 81 H P18 3.1252-4.5376 0.1557 ATOM 82 C P18 4.7977 -1.6126 -0.6084 ATOM 83 O P18 5.9253-2.0727-0.8069 ATOM 84 N P18 $4.5514-0.2992-0.5797$ ATOM 85 H P18 3.6307 0.0350 -0.3182 ATOM 86 C P18 $5.61830 .6604-0.7257$ ATOM 87 H P18 $6.16460 .4893-1.6536$ ATOM 88 H P18 $5.1888 \quad 1.6590-0.7466$ ATOM 89 H P18 6.32860 .59840 .1020

COMPND Ac-Aib ${ }_{2}-(1 R, 2 S, 4 R)-I I I b m b-$ Aib $_{2}-$ NHMe-M310 REMARK Energy $($ ZPE $)=-1987.5071$ REMARK \#IF $=0$
ATOM 1 C P18 6.0363 2.2716-0.1163 ATOM 2 H P18 5.5934 2.8350-0.9366 ATOM 3 H P18 6.14182 .94840 .7316 ATOM 4 H P18 7.0210 1.9167-0.4124 ATOM 5 C P18 5.09931 .16790 .2720 ATOM 6 O P18 3.92451 .39090 .5795 ATOM 7 N P18 $5.5887-0.08830 .2489$ ATOM 8 H P18 $6.5677-0.2172 \quad 0.0458$ ATOM 9 C P18 4.8534-1.2388 0.7657 ATOM 10 C P18 4.6760-1.1363 2.2747 ATOM 11 H P18 5.6579-1.1067 2.7472 ATOM 12 H P18 $4.1244-0.23512 .5378$ ATOM 13 H P18 4.1291-2.0004 2.6466 ATOM 14 C P18 5.6433-2.4955 0.4016 ATOM 15 H P18 5.1073-3.3804 0.7417 ATOM 16 H P18 5.7961-2.5709-0.6757 ATOM 17 H P18 6.6159-2.4763 0.8959 ATOM 18 C P18 3.4821-1.3423 0.0834 ATOM 19 O P18 2.5077-1.7932 0.6843 ATOM 20 N P18 3.4319-0.9735-1.2069 ATOM 21 H P18 4.2742 -0.6065-1.6241 ATOM 22 C P18 2.2536-1.1172-2.0514 ATOM 23 C P18 1.9410-2.5882-2.2995 ATOM 24 H P18 2.7947 -3.0540-2.7919 ATOM 25 H P18 1.7438 -3.1053-1.3613 ATOM 26 H P18 $1.0664-2.6805-2.9403$ ATOM 27 C P18 2.5409-0.4026-3.3714 ATOM 28 H P18 $1.6692-0.4665-4.0206$ ATOM 29 H P18 2.7805 0.6493-3.2088 ATOM 30 H P18 3.3804-0.8826-3.8769 ATOM 31 C P18 1.0359-0.4268-1.4231 ATOM 32 O P18 -0.1035-0.7855-1.7278 ATOM 33 N P18 $1.2636 \quad 0.5991-0.5878$ ATOM 34 H P18 $2.21660 .8258-0.3177$ ATOM 35 C P18 0.1657 1.3694-0.0201 ATOM 36 C P18 0.72842 .46150 .9359 ATOM 37 H P18 1.79242 .30061 .1074 ATOM 38 H P18 0.22392 .44791 .9015 ATOM 39 C P18 0.47443 .78370 .1730 ATOM 40 H P18 1.11334 .60300 .4964 ATOM 41 C P18 0.6097 3.3097-1.2822

ATOM 42 H P18 1.5951 2.9068-1.5215 ATOM 43 H P18 0.3434 4.0803-2.0058 ATOM 44 C P18 -0.4843 2.2306-1.1521 ATOM 45 H P18 -0.7241 1.6395-2.0321 ATOM 46 C P18-1.5987 3.0820-0.6047 ATOM 47 C P18-1.0064 4.04730 .2142 ATOM 48 C P18-2.9647 3.0722-0.8165 ATOM 49 H P18 -3.4255 2.3282-1.4557 ATOM 50 C P18-1.7748 4.99050 .8734 ATOM 51 H P18-1.3208 5.73421 .5180 ATOM 52 C P18-3.7411 4.0392-0.1782 ATOM 53 H P18-4.8125 4.0602-0.3388 ATOM 54 C P18-3.1555 4.98140 .6640 ATOM 55 H P18-3.7769 5.7238 1.1502 ATOM 56 C P18 -0.7869 0.44150 .7360 ATOM 57 O P18-1.9669 0.74310 .9209 ATOM 58 N P18-0.2528-0.6835 1.2385 ATOM 59 H P18 $0.7153-0.91151 .0361$ ATOM 60 C P18-1.0168-1.6231 2.0475 ATOM 61 C P18-1.3401-1.0269 3.4113 ATOM 62 H P18 -0.4077-0.7951 3.9270 ATOM 63 H P18-1.9257-0.1154 3.3056 ATOM 64 H P18-1.9075-1.7398 4.0063 ATOM 65 C P18 -0.1717-2.8867 2.2115 ATOM 66 H P18 -0.7230-3.6201 2.7986 ATOM 67 H P18 $0.0785-3.32181 .2431$ ATOM 68 H P18 $0.7570-2.64822 .7311$ ATOM 69 C P18-2.3133-2.0464 1.3362 ATOM 70 O P18 -3.2958-2.3947 1.9881 ATOM 71 N P18 -2.2741-2.0887-0.0082 ATOM 72 H P18-1.4539-1.7312 -0.4866 ATOM 73 C P18 -3.3923-2.5401 -0.8260 ATOM 74 C P18 -3.6793-4.0187-0.5935 ATOM 75 H P18-2.7906-4.5976-0.8478 ATOM 76 H P18 -3.9407-4.2055 0.4463 ATOM 77 H P18 -4.5042 -4.3401-1.2267 ATOM 78 C P18 -3.0135-2.3096-2.2891 ATOM 79 H P18 -3.8429-2.6038-2.9309 ATOM 80 H P18 -2.7732 -1.2622 -2.4744 ATOM 81 H P18 -2.1421-2.9136-2.5464 ATOM 82 C P18-4.6566-1.7055-0.5583 ATOM 83 O P18 -5.7740-2.1674-0.8038 ATOM 84 N P18-4.4737-0.4457-0.1507 ATOM 85 H P18-3.5508-0.1377 0.1346 ATOM 86 C P18-5.5990 0.42100 .1014 ATOM 87 H P18 -6.2054 $0.5382-0.7976$ ATOM 88 H P18 -6.2391 0.02160 .8913 ATOM 89 H P18-5.2252 1.39520 .4059

ANNEX 7.A. Convergence test for explicit MeOH REMD simulation


ANNEX 9.A. Correlation between MMPBSA results and available experimental data.

## Correlations between MM-PBSA predicted and experimental binding

 energies for $\alpha$-trombin.
$\mathrm{N}_{\text {wat }}=10$








Correlations between MM-PBSA predicted and experimental binding energies for penicillopepsin.



$\mathrm{N}_{\text {wat }}=60$


## Correlations between MM-PBSA predicted and experimental binding energies for avidin.



ANNEX 10.A. Scripts used for the automatization of MD/Nwat-MMGBSA protocol on PPIs. Script for the selection of interfacial residues.
from pymol import stored

```
def interfaceResidues(cmpx, cA='c. A', cB='c. B', cutoff=1.0,
selName="interface"):
    | | |
    interfaceResidues -- finds 'interface' residues between two chains in
```

a complex.
PARAMS
cmpx
The complex containing $c A$ and $c B$
CA
The first chain in which we search for residues at an
interface
with cB
cB
The second chain in which we search for residues at an
interface
with CA
cutoff
The difference in area OVER which residues are considered
interface residues. Residues whose dASA from the complex
to
a single chain is greater than this cutoff are kept. Zero
keeps all residues.
selName
The name of the selection to return.

## RETURNS

* A selection of interface residues is created and named depending on what you passed into selName
* An array of values is returned where each value is: ( modelName, residueNumber, dASA )

NOTES
If you have two chains that are not from the same PDB that you
want
to complex together, use the create command like:
create myComplex, pdb1WithChainA or pdb2withChainX
then pass myComplex to this script like: interfaceResidues myComlpex, c. A, c. X

This script calculates the area of the complex as a whole.
Then,
it separates the two chains that you pass in through the
arguments
CA and cB, alone. Once it has this, it calculates the
difference
and any residues ABOVE the cutoff are called interface residues.
AUTHOR:
Jason Vertrees, 2009.
" " "

```
    # Save user's settings, before setting dot_solvent
    oldDS = cmd.get("dot_solvent")
    cmd.set("dot_solvent", 1)
    # set some string names for temporary objects/selections
    tempC, selName1 = "tempComplex", selName+"1"
    chA, chB = "chA", "chB"
    # operate on a new object & turn off the original
    cmd.create(tempC, cmpx)
    cmd.disable(cmpx)
    # remove cruft and inrrelevant chains
    cmd.remove(tempC + " and not (polymer and (%s or %s))" % (cA, cB))
    # get the area of the complete complex
    cmd.get_area(tempC, load_b=1)
    # copy the areas from the loaded b to the q, field.
    cmd.alter(tempC, 'q=b')
    # extract the two chains and calc. the new area
    # note: the q fields are copied to the new objects
    # chA and chB
    cmd.extract(chA, tempC + " and (" + cA + ")")
    cmd.extract(chB, tempC + " and (" + cB + ")")
    cmd.get_area(chA, load_b=1)
    cmd.get_area(chB, load_b=1)
    # update the chain-only objects w/the difference
    cmd.alter( "%s or %s" % (chA,chB), "b=b-q" )
    # The calculations are done. Now, all we need to
    # do is to determine which residues are over the cutoff
    # and save them.
    stored.r, rVal, seen = [], [], []
    cmd.iterate('%s or %s' % (chA, chB),
'stored.r.append((model,resi,b))')
    cmd.enable(cmpx)
    cmd.select(selName1, None)
    for (model,resi,diff) in stored.r:
        key=resi+"-"+model
        if abs(diff)>=float(cutoff):
            if key in seen: continue
            else: seen.append(key)
            rVal.append( (model,resi,diff) )
            # expand the selection here; I chose to iterate over
stored.r instead of
                            # creating one large selection b/c if there are too many
residues PyMOL
        # might crash on a very large selection. This is pretty
much guaranteed
        # not to kill PyMOL; but, it might take a little longer to
run.
    cmd.select( selName1, selName1 + " or (%s and i. %s)" %
(model,resi))
    # this is how you transfer a selection to another object.
    cmd.select(selName, cmpx + " in " + selName1)
    # clean up after ourselves
```

```
cmd.delete(selName1)
cmd.delete(chA)
cmd.delete (chB)
cmd.delete (tempC)
# show the selection
cmd.enable(selName)
# reset users settings
cmd.set("dot_solvent", oldDS)
return rVal
cmd.extend("interfaceResidues", interfaceResidues)
```


## Script for the automatization of Nwat-MMGBSA calculations.

```
#!/bin/tcsh
#
# Written by I. Maffucci and A. Contini, 2014; based on the work reported
in J. Chem. Theory Comput., 2013, 9 (6), pp 2706-2717
#
# Given a "list" of PDB complexes, this script setup MMPBSA calculations
including $n explicit water closest to PPI interface.
# An input file called "complex_features.txt" and containing the
definitions of "receptor mask", "ligand mask" and "last residue" is also
required.
#
# The script assumes that solvated MD trajectories were previously obtained
and are stored in $TRAJ/$n.
#
# The following standard name are also used:
# solvated topology file: $z_complex_wat.top
# solvated trajectory file: $z_complex.prod4.mdcrd
# with $z = system name
#
# AmberTools14 needs to be installed and environment variables correctly
specified
# pymol needs to be installed to generate interfaces
#
# This scripts assumes that the solvated MD trajectory is made by 1000
frames.
#
# run as: qsub NWAT_MMPBSA_PyPPIs_2.2_HPC.pbs
#
######################################################
# HERE ARE VARIABLES THAT NEED TO BE MODIFIED BY USER#
######################################################
#
#
#PBS -N MMPBSA_PPI
#PBS -1 nodes=1:ppn=6
#PBS -o MMPBSA_PPI.log
#PBS -q batch
#PBS -l walltime=120:0:0
set AMBERV = 14 # amber version
#
setenv TRAJ "/home/studenti/giacomo/MMPBSA_ff14SB_TIP3P_4ns" # path to
trajectories
#
```

```
setenv INTPATH "/home/studenti/giacomo/Complexes" # path to complexes
#
setenv EXTPARAMS "/home/studenti/giacomo/MMPBSA_ffi4SB_TIP3P_4ns/2SIC" #
path to parameters not included in standard ff, if any
#
set r = 10 # interval between trajectory frames selected for
MMGBSA calculation (suggested values for production = 10 or 20)
#
set g = 8 # kind of GB model for MMGBSA calculations (i.e. g = 1 for
igb=1; suggested values = 1, 5, 8)
# mind that the correct GB radius (mbondi, mbondi2 or
mbondi3) need to be set in the solvated prmtop
set cut = 0.50 # set interface cutoff for pymol interface definition
#
set argv = POLAR # flag to set the kind of interface to be selected.
ALL = all residues; POLAR = polar residues
#
source /data/software/amber/amber$AMBERV/amber$AMBERV.csh # modify
accordingly to your amber installation
#
# flag to activate the strip of structural ions; 0 = no stripping; !=0 =
stripping accordingly to ionmask
# Note that if you want to strip structural ions such as CA or MG, you need
to create a modified "complex_features.txt" (complex_features_strip.txt)
# with updated recmask, ligmask and lastres to be used only in the
generation of MMGBSA input
#
set stripstructions = 0
if ($stripstructions != 0) then
        set ionmask = ":CA*"
else
        set ionmask = ""
endif
#
#####################################################
# END OF USER MODIFIABLE VARIABLES #
#####################################################
#
set NPROCS = `wc -l < $PBS_NODEFILE`
#
cd $PBS_O_WORKDIR
#
# option "ALL" or "POLAR"
#
if ($argv == ALL | $argv == POLAR) then
    echo "the interface will consider "$argv" residues"
    else
        echo "please specify POLAR or ALL"
        exit
endif
if (! -e interface.pymol) then
        echo "the interface.pymol script needs to be in the current
directory"
    exit
endif
#
@ f = (1000 / $r) # total number of frames used in MMPBSA
#
echo "calculation begun on "`date`
```

```
#
echo "
Average Delta
Mean" > RESULTS_"$argv".txt
#
foreach z (`awk 'f;/name/{f=1}' complex_features.txt | awk '{print $1}'`)
    echo 'run interface.pymol' > tmp.pml # Generate the input and run
Pymol
    echo 'load '$INTPATH'/complex_'$z'_leap.pdb' >> tmp.pml
    echo 'myInterfaceResidues = interfaceResidues("complex_'$z'_leap",
CA="c. A", cB="c. B", cutoff='$cut', selName="interface")' >> tmp.pml
    echo 'save '$z'_interface.pdb, interface' >> tmp.pml
    echo 'quit' >> tmp.pml
    pymol -c tmp.pml
    mkdir $z
        echo "$z" >> RESULTS_$argv.txt
        if ($argv == ALL) then
    # the following command create a mask for ALL residues
    awk '{print $6}' "$z"_interface.pdb | awk '\!x[$0]++' | awk
'/./' | awk '{print ":"$0","}' | awk '/ key (start|stop) / {next}
{printf("%s", $0)} END {print ""}' > "$z"_intmask_"$argv".txt
    else if ($argv == POLAR) then
        awk '/ARG/ || /ASH/ || /ASP/ || /GLH/ || /GLN/ || /GLU/ || /HID/
|| /HIE/ || /HIP/ || /LYN/ || /LYS/ || /SER/ || /THR/ || /TRP/ ||
/TYR/{print}' "$z"_interface.pdb | awk '{print $6}' | awk '\!x[$0]++' | awk
'/./' | awk '{print ":"$0","}' | awk '/ key (start|stop) / {next}
{printf("%s", $0)} END {print ""}' > "$z"_intmask_"$argv".txt
    endif
#
# set MMPBSA variables
#
    set intmask = `cat "$z"_intmask_"$argv".txt`
PP interface mask
    if ($stripstructions == 0) then
        set recmask = `awk "/"$z"/" complex_features.txt | awk '{print
$2}'` # set receptor mask
    set ligmask = `awk "/"$z"/" complex_features.txt | awk '{print
$3}'` # set ligand mask
    set lastres = `awk "/"$z"/" complex_features.txt | awk '{print
$4}'`# set last residue number
        else
            set recmask = `awk "/"$z"/" complex_features_strip.txt | awk
'{print $2}'` # set receptor mask
            set ligmask = `awk "/"$z"/" complex_features_strip.txt | awk
'{print $3}'` # set ligand mask
            set lastres = `awk "/"$z"/" complex_features_strip.txt | awk
'{print $4}'` # set last residue number
    endif
#
# cleanup
        rm "$z"_interface.pdb
        rm "$z"_intmask_"$argv".txt
        rm tmp.pml
#
# create a file named nwat.dat containing the nr. of closest water
molecules to include in top/mdcrd; modify to your needs
#
    cd $z
        printf %"s\n" 0 10 20 30 40 50 60 70 > nwat.dat # for production
```

```
    #printf %"s\n" 10 20 > nwat.dat # for debug
    foreach n (`cat nwat.dat`)
    # set variables for MMPBSA input
    @ a = $lastres + $n
    @ w = $lastres + 1
    @ b = $a + 1
    # create directories named nwatn, where n is nr. of closest water
molecules
                    mkdir nwat$n
                    cd nwat$n
        # generate ligand topologies
    cat > lig_gen.cpptraj << EOF
parmstrip $recmask,:Cl-,:Na+,:WAT,$ionmask
parmbox nobox
parmwrite out ligand.top amber
EOF
    $AMBERHOME/bin/cpptraj -i lig_gen.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > lig_cpptraj.log
    # generate trajectory for nwat > 0
            if ($n != 0) then
                            echo "trajin $TRAJ/$z/"$z"_complex_wat.prod4.mdcrd 1 1000
$r" > cmplx_trj_gen.cpptraj
                            echo "center @CA,C,N mass origin\nimage origin
center\nstrip :Cl-,:Na+,"$ionmask"\nclosest $n $intmask noimage\ntrajout
nwat$n.$z.mdcrd nobox" >> cmplx_trj_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i cmplx_trj_gen.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > cmplx_trj_cpptraj.log
    # generate complex pdb for nwat > 0
    echo "trajin $TRAJ/$z/"$z"_complex_wat.prod4.mdcrd 1 1" >
cmplx_pdb_gen.cpptraj
    echo "center @CA,C,N mass origin\nimage origin
center\nstrip :Cl-,:Na+,"$ionmask"" >> cmplx_pdb_gen.cpptraj
                                    echo "closest $n $intmask noimage\ntrajout
nwat$n.$z.pdb pdb" >> cmplx_pdb_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i cmplx_pdb_gen.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > cmplx_pdb_gen_cpptraj.log
    # generate receptor pdb for nwat > 0
    echo "trajin $TRAJ/$z/"$z"_complex_wat.prod4.mdcrd 1 1" >
rec_pdb_gen.cpptraj
    echo "center @CA,C,N mass origin\nimage origin
center\nstrip :Cl-,:Na+,"$ionmask"" >> rec_pdb_gen.cpptraj
                                    echo "closest $n $intmask noimage\nstrip
"$ligmask"\ntrajout nwat$n.$z.rec.pdb pdb" >> rec_pdb_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i rec_pdb_gen.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > rec_pdb_gen_cpptraj.log
    # use leap to generate the top
    echo "source leaprc.ff14SB\nsource
leaprc.gaff\nloadamberparams frcmod.ionsjc_tip3p\nloadamberparams
frcmod.ionslm_1264_tip3p" > leap.in
                                    foreach l (`ls $EXTPARAMS/*off`)
                                    echo "loadoff "$l"" >> leap.in
```

```
    end
    foreach m (`ls $EXTPARAMS/*prep`)
        echo "loadamberprep "$m"" >> leap.in
    end
    foreach o (`ls $EXTPARAMS/*frcmod*`)
        echo "loadamberparams "$o"" >> leap.in
    end
    echo "set default PBRadii mbondi3" >> leap.in
    echo "cmp=loadpdb nwat"$n"."$z".pdb" >> leap.in
    echo "rec=loadpdb nwat"$n"."$z".rec.pdb" >> leap.in
    echo "saveamberparm cmp nwat$n.$z.top nwat$n.$z.crd" >>
leap.in
        echo "saveamberparm rec nwat$n.$z.rec.top
nwat$n.$z.crd" >> leap.in
    $AMBERHOME/bin/tleap -f leap.in
    # generate MMPBSA input for nwat > 0; change to modify MM-PBSA/GBSA
protocol. See Amber14 manual for details
    echo "&general\nreceptor_mask="$recmask":"$w"-"$a",
ligand_mask="$ligmask", startframe=1, endframe="$f", \
interval=1, verbose=1,\n/\n&pb\nistrng=0.15, radiopt=0" >
mmpbsa_closest_nwat$n.in
    else
    # generate trajectory for nwat = 0
    cat > gen0.cpptraj << EOF
trajin $TRAJ/$z/$z.complex_wat.prod4.mdcrd 1 1000 $r
autoimage
strip :Cl-,:Na+,:WAT,$ionmask
trajout nwat$n.$z.mdcrd nobox
EOF
    # workaround for heredocs
    sed -i 's/'$z'.complex/'$z'_complex/g' gen0.cpptraj
    $AMBERHOME/bin/cpptraj -i gen0.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > traj_nwat0_cpptraj.log
    # generate receptor and complex topologies for nwat=0
    cat > topgen0.cpptraj << EOF
parmstrip :Cl-,:Na+,:WAT,$ionmask
parmbox nobox
parmwrite out nwat$n.$z.top amber
parmstrip $ligmask
parmwrite out nwat$n.$z.rec.top amber
EOF
                            $AMBERHOME/bin/cpptraj -i topgen0.cpptraj -p
$TRAJ/$z/"$z"_complex_wat.top > top_nwat0_cpptraj.log
    # generate MMPBSA input for nwat = 0; change to modify MM-PBSA/GBSA
protocol. See Amber14 manual for details
    echo "&general\nreceptor_mask="$recmask",
ligand_mask="$ligmask", startframe=1, endframe="$f", \
interval=1, verbose=1,\n/\n&pb\nistrng=0.15, radiopt=0" >
mmpbsa_closest_nwat$n.in
```

endif

```
#
# execute MMPBSA and print results
#
    if ($stripstructions == 0) then
                            $MPI_HOME/bin/mpirun -machinefile $PBS_NODEFILE -np
$NPROCS $AMBERHOME/bin/MMPBSA.py.MPI -O -i mmpbsa_closest_nwat$n.in -o
FINAL_RESULTS_CLOSEST$n -cp nwat$n.$z.top -rp nwat$n.$z.rec.top -lp
ligand.top -y nwat$n.$z.mdcrd > MMPBSA.out
                            grep "DELTA TOTAL" FINAL_RESULTS_CLOSEST"$n" | sed
"s/DELTA TOTAL/NWAT="$n"/g" >> $PBS_O_WORKDIR/RESULTS_"$argv".txt
                        else
                            $MPI_HOME/bin/mpirun -machinefile $PBS_NODEFILE -np
$NPROCS $AMBERHOME/bin/MMPBSA.py.MPI -O -i mmpbsa_closest_nwat$n.in -o
FINAL_RESULTS_CLOSEST$n -cp nwat$n.$z.top -rp nwat$n.$z.rec.top -lp
ligand.top -y nwat$n.$z.mdcrd > MMPBSA.out
                grep "DELTA TOTAL" FINAL_RESULTS_CLOSEST"$n" | sed
"s/DELTA TOTAL/NWAT="$n"/g" >>
$PBS_O_WORKDIR/RESULTS_strip_"$ionmask"_"$argv".txt
                                    endif
                                    cd ..
        end
        cd ..
            endif
end
#
# the script terminates
#
echo "calculations ended on "`date`
#
```

ANNEX 11.A. Additional information about penicillopesin system Correlation between experimental free energy of binding and predicted binding energies obtained for penicillopepsin by analyzing the first ns of one of the three MD simulations run on a CPU hardware.



Nwat $=30$



Nwat $=50$



Correlation between experimental free energy of binding and predicted binding energies obtained for penicillopepsin by analyzing the 4th ns of one of the three MD simulations run on a GPU hardware.




$\mathrm{Nwat}=40$


ANNEX 11.B. Additional information about MDM2 system. Correlation between experimental free energy of binding and predicted binding energies obtained for MDM2 with Nwat = 0-70 by analyzing the first ns of a MD simulation run on a CPU hardware.


Correlation between experimental free energy of binding and predicted binding energies obtained for MDM2 with Nwat $=0$ - 70 by analyzing the $4^{\text {th }} \mathbf{n s}$ of a MD simulation run on a GPU hardware.


## Correlation between experimental free energy of binding and predicted

 binding energies obtained for MDM2 with Nwat = 0-70 by analyzing the $4^{\text {th }}$ ns of a MD simulation run on a CPU Nwart $_{\text {Nwat }}=10$

ANNEX 11.C. Additional information about BCL-X ${ }_{L}$ system Correlation between experimental free energy of binding and predicted binding energies obtained for $B C L-X_{L}$ with Nwat $=0$ - 50 by analyzing the first ns of a MD simulation run on a GPU hardware.







Correlation between experimental free energy of binding and predicted binding energies obtained for $B C L-X_{L}$ with Nwat $=0$ - 50 by analyzing the $4^{\text {th }}$ ns of a MD simulation run on a GPU hardware.






Correlation between experimental free energy of binding and predicted binding energies obtained for $B C L-X_{L}$ with Nwat $=0$ - 50 by analyzing the $4^{\text {th }} \mathrm{ns}$ of a MD simulation run on a CPU hardware.






ANNEX 11.D. Additional information about XIAP-BIR2
Correlation between experimental free energy of binding and predicted binding energies obtained for XIAP-BIR2 with Nwat $=0-90$ by analyzing the first ns of a MD simulation run on a CPU hardware.




wat-50









Correlation between experimental free energy of binding and predicted binding energies obtained for XIAP-BIR2 with Nwat $=0$ - 90 by analyzing the $4^{\text {th }}$ ns of a MD simulation run on a GPU hardware.













Correlation between experimental free energy of binding and predicted binding energies obtained for XIAP-BIR2 with Nwat $=0-90$ by analyzing the $4^{\text {th }}$ ns of a MD simulation run on a CPU hardware.









ANNEX 11.E. Additional information about HIV1-protease system. Correlation between experimental free energy of binding and predicted binding energies obtained for HIV1-protease with Nwat $=0$ - 70 by analyzing the first ns $\underset{\text { Nwat }=0}{ }$ of a MD simulation run on $\underset{\text { Nwat }=10}{\text { CPU }}$ hardware.









Correlation between experimental free energy of binding and predicted binding energies obtained for HIV1-protease with Nwat $=0$ - 70 by analyzing the $4^{\text {th }}$ ns of a MD simulation run on a GPU hardware.



Nwat $=20$




wat $=60$



Correlation between experimental free energy of binding and predicted binding energies obtained for HIV1-protease with Nwat $=0$ - 70 by analyzing the $4^{\text {th }} \underset{\text { Nwat }=0}{\text { ns }}$ of a MD simulation run on a CPU Nward $=10$


*wat -20




wat $=60$



```
    ANNEX 11.F. Scripts used for the automatization of the MD/Nwat-MMGBSA protocol
Ligand parametrization.
#!/bin/tcsh
# Alessandro Contini 2014
# Given a multimol2 named multimol2_c1.mol2, the scripts uses antechamber
and
# parmchk2 to generate .prep and .frcmods for each ligand
#
# usage: tcsh PARAMETERIZE_AC.csh
#
# do preliminary setup
source /usr/local/amber14/amber14.csh
setenv WORKDIR `pwd`
if (-e charges.txt) then
    rm charges.txt
endif
if (-e names.txt) then
    rm names.txt
endif
if (! -d BCC) then
    mkdir BCC
endif
if (! -e multimol2_c1.mol2) then
    echo "multimol2_c1.mol2 must be in the current directory"
else
    #edit multimol2s to delete the "Q" before the residue name (I guess
it is a bug in MOE)
            sed -i 's/1 Q/1 /g' multimol2*
            #create list
            awk '/@<TRIPOS>MOLECULE/{getline; print}' multimol2_c1.mol2 | awk
'{print substr($0,0,4)}' > list
    set max = `grep -o "@<TRIPOS>MOLECULE" multimol2_c1.mol2 | wc -l`
    set a = 1
    #split the multimol2, calculate molecule net charge and grab residue
name
    foreach n (`cat list`)
            if ($a <= $max) then
                awk
"/^@<TRIPOS>MOLECULE/,/^MOE/{if(++m==1)n++;if(n=="$a")print;if(/^#/)m=0}"
multimol2_c1.mol2 > ligand_"$n".mol2
                                babel -imol2 ligand_"$n".mol2 --partialcharge mmff94 -omol2
tmp
                                set c = `awk '{print $9}' tmp | awk '{sum+=$1} END {print
sum}' | awk '{printf "%.0f\n", $1}'`
                                    rm tmp
                                    echo $c >> charges.txt # print charges for debug
                                    set name = `awk '/@<TRIPOS>ATOM/{getline; print}'
ligand_"$n".mol2 | awk '{print $(NF-1)}' | awk '{print substr( $0,
length($0) -2,length($0))}'`
                                    echo $name >> names.txt
    #run ac and parmchk
                                antechamber -i ligand_$n.mol2 -fi mol2 -o $name.prep -fo
prepi -nc $c -c bcc -rn $name -pf y
                parmchk2 -i $name.prep -f prepi -o $name.frcmod
                                    mv $name.prep BCC
                                    mv $name.frcmod BCC
                                    @ a ++
            endif
    end
endif
```

```
Nwat-MMGBSA.
#!/bin/tcsh
#
# Written by I. Maffucci and A. Contini, 2014; based on the work reported
in J. Chem. Theory Comput., 2013, 9 (6), pp 2706-2717
#
# Given a set of PDB complexes, this script setup MMGBSA calculations
including $n explicit water closest to ligand mask.
# The sript assumes that solvated .top and MD trajectories are stored in
$WORKDIR/$n.
#
# The following standard name are also used:
# solvated topology file: $z_complex_wat.top
# solvated trajectory file: $z_complex.prod$nprod.mdcrd
# with $z = system name and $nprod = production run number
#
# AmberToolsl4 needs to be installed and environment variables correctly
specified
#
# ATTENTION!
# Automatic ligand recognition only works if the ligand is a single chain
(no "TER" inbetween) and is the last residue or set of residues of the
complex.
# If ions or cofactors need to be considered as part of the receptor, they
must be placed "before" the ligand in the original PDB file.
#
# run as: tcsh NWAT_MMPBGBSA_5.1_MPI.csh >& NWAT_MMPBGBSA_5.1_MPI.log &
#
######################################################
# HERE ARE VARIABLES THAT NEED TO BE MODIFIED BY USER#
######################################################
#
set AMBERV = 14 # modify accordingly to your Amber installation
#
set solv = "GB" # PB = MMPBSA; GB = MMGBSA
#
set nproc = 6 # set n }\mp@subsup{}{}{\circ}\mathrm{ of processors for MMGBSA calculations (max 6
on born)
#
set nprod = 4 # which is the number of production run to be
analyzed?
#
set frames = 1000 # total number of frames in trajectory
#
set r=10 # interval between trajectory frames selected for
MMGBSA calculation (suggested values for production = 10 or 20)
#
set nwat = "0 10 20 30 40 50" # set Nwat walues; typical values for
screening water effect are 0 10 20 30 40 50; for fixed Nwat run 0 30
#
# define residues/ions that are NOT receptor or ligand
set nonlig = ":Na+,:Cl-,:MG,:ZN,:ATP,:GTP"
#
#####################################################
# END OF USER MODIFIABLE VARIABLES #
#####################################################
#
source /usr/local/amber$AMBERV/amber$AMBERV.csh # modify accordingly to
your amber installation
```

```
#
setenv WORKDIR `pwd`
#
mkdir MM"$solv"SA
#
echo "MM"$solv"SA calculation begun on "`date`
#
echo " Average Delta Std. Dev. Std. Err. of
Mean" > $WORKDIR/MM"$solv"SA/RESULTS_$solv.txt
#
#foreach z (`cat $WORKDIR/list_debug`) # for debug
foreach z (`ls */*top | awk -F/ '{print $1F}'`)
    # check if trajectory exists and is compressed
    if (-e $WORKDIR/$z/"$z"_complex_wat.prod"$nprod".mdcrd.bz2) then
            set bz = ".bz2"
        else if (-e $WORKDIR/$z/"$z"_complex_wat.prod"$nprod".mdcrd.gz) then
            set bz = ".gz"
        else if (-e $WORKDIR/$z/"$z"_complex_wat.prod"$nprod".mdcrd) then
            set bz = ""
        else
            echo "I cannot find "$z"_complex_wat.prod"$nprod" trajectory"
            exit
        endif
        #see if ligand is a single residue or not
        # do a pdb file from coordinates
        cat << EOF | cpptraj -p $WORKDIR/$z/$z\_complex_wat.top
trajin $WORKDIR/$z/$z\_complex_wat.prod$nprod.mdcrd$bz 1 1
strip :WAT,$nonlig
trajout tmp.rst restart
EOF
        cat << EOF | cpptraj -p $WORKDIR/$z/$z\_complex_wat.top
parmstrip :WAT,$nonlig nobox
parmwrite out tmp1.top amber
EOF
ambpdb -p tmp1.top < tmp.rst > tmp
    #define last receptor residue
        set y = `tac tmp | awk '/TER/ && ++n ==1 {getline; print$5}'`
        #define first ligand residue
        @ f = $y + 1
        #define last ligand residue
        set l = `tac tmp | awk 'NR==2 {print$5}'`
        #rm tmp
        if ($f == $l) then
            set x = "$f"
        else
            set x = "$f-$l"
        endif
        echo ""$z" ligand residue numbers are: "$x""
        #start MM-PBSA/GBSA calculation
        mkdir MM"$solv"SA/$z
    echo "$z" >> MM"$solv"SA/RESULTS_$solv.txt
    cd $WORKDIR/MM"$solv"SA/$z
    if ($solv == GB) then
        # check the PBRadii set and define the GB model (only if GB method
is used)
    set radii = `awk '/FLAG RADIUS_SET/{getline;getline;print $NF}'
$WORKDIR/$z/"$z"_complex_wat.top | sed 's/(//g'| sed 's/)//g'`
```

```
    if ($radii == mbondi3) then
    set g = 8
    else if ($radii == mbondi2) then
    set g = 5
        else if ($radii == mbondi) then
        set g = 1
    else
        echo "cannot determine the RADIUS SET from topology"
        exit
        endif
        echo "the radius set is "$radii", setting igb="$g""
    endif
\# create a file named nwat. dat containing the nr. of closest water molecules to include in top/mdcrd.
        printf %"s\n" "$nwat" > nwat.dat # for Nwat screen
    foreach n (`cat nwat.dat`)
            # set variables for MMPB/GBSA input
            set a = `echo $l+$n | bc` # last water residue
        @ w = $l + 1 # first water residue
                            @ b = $a + 1 # first ecluded water
                            mkdir nwat$n # create directories named nwatn, where n is
nr. of closest water molecules
            cd nwat$n
\# generate ligand topologies
                            echo "parmstrip :1-"$y","$nonlig",:WAT\nparmbox nobox\nparmwrite
out ligand.top amber" > lig_gen.cpptraj
    $AMBERHOME/bin/cpptraj -i lig_gen.cpptraj -p
"$WORKDIR"/"$z"/"$z"_complex_wat.top > lig_cpptraj.log
    # generate trajectory for nwat > 0
        if ($n != 0) then
            echo "trajin
"$WORKDIR"/"$z"/"$z"_complex_wat.prod"$nprod".mdcrd"$bz" 1 $frames "$r"" >
cmplx_trj_gen.cpptraj
                            echo "center @CA,C,N mass origin\nimage origin
center\nstrip "$nonlig"\nclosest "$n" :"$x" noimage" >>
cmplx_trj_gen.cpptraj
                            echo "trajout nwat"$n"."$z".mdcrd nobox" >>
cmplx_trj_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i cmplx_trj_gen.cpptraj -p
"$WORKDIR"/"$z"/"$z"_complex_wat.top > cmplx_trj_gen_cpptraj.log
    # generate complex topologies for nwat > 0
                            echo "parmstrip "$nonlig"\nparmbox nobox\nparmwrite out
tmp.top amber" > cmplx_top1_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i cmplx_top1_gen.cpptraj -p
"$WORKDIR"/"$z"/"$z"_complex_wat.top > cmplx_top1_nwat_cpptraj.log
#assuming max water number = 60000
echo "parmstrip :"$b"-60000\nparmbox
nobox\nparmwrite out nwat"$n"."$z".top amber" > cmplx_top2_gen.cpptraj
                            $AMBERHOME/bin/cpptraj -i cmplx_top2_gen.cpptraj -p tmp.top
> cmplx_top2_nwat_cpptraj.log
    # generate receptor topologies for nwat > 0
                            echo "parmstrip :"$x"\nparmbox nobox\nparmwrite out
nwat"$n"."$z"_rec.top amber" > rec_top_gen.cpptraj
    $AMBERHOME/bin/cpptraj -i rec_top_gen.cpptraj -p
nwat"$n"."$z".top > rec_top_nwat_cpptraj.log
```

\# generate MMPB/GBSA input for nwat $>0$; change to modify MM-

```
PBSA/GBSA protocol. See Amber14 manual for details
                        if ($solv == GB) then
                                    echo "&general\nreceptor_mask=:1-"$y":"$w"-"$a",
ligand_mask=:"$x", \
interval=1, verbose=1,\n/\n&gb\nigb="$g", saltcon=0.15," >
mmpbsa_closest_nwat$n.in
                                    else if ($solv == PB) then
                                    echo "&general\nreceptor_mask=:1-"$y":"$w"-"$a",
ligand_mask=:"$x", \
interval=1, verbose=1,\n/\n&pb\nistrng=0.150, radiopt=0" >
mmpbsa_closest_nwat$n.in
                            endif
    else
# generate trajectory for nwat = 0
    echo "trajin
```

"\$WORKDIR"/"\$z"/"\$z"_complex_wat.prod"\$nprod".mdcrd"\$bz" 1 \$frames "\$r"" >
gen0.cpptraj
echo "autoimage\nstrip "\$nonlig", :WAT\ntrajout
nwat"\$n"."\$z".mdcrd nobox" >> gen0.cpptraj
\$AMBERHOME/bin/cpptraj -i gen0.cpptraj -p
"\$WORKDIR"/"\$z"/"\$z"_complex_wat.top > traj_nwat0_cpptraj.log
\# generate receptor and complex topologies for nwat=0
echo "parmstrip "\$nonlig",:WAT\nparmbox nobox\nparmwrite
out nwat"\$n"."\$z".top amber" > topgen0.cpptraj
echo "parmstrip :"\$x"\nparmwrite out nwat"\$n"."\$z"_rec.top
amber" >> topgen0.cpptraj
\$AMBERHOME/bin/cpptraj -i topgen0.cpptraj -p
"\$WORKDIR"/"\$z"/"\$z"_complex_wat.top > top_nwat0_cpptraj.log
\# generate MMPB/GBSA input for nwat $=0$; change to modify MM-
PBSA/GBSA protocol. See Amber14 manual for details
if (\$solv == GB) then
echo "\&general\nreceptor_mask=:1-"\$y",
ligand_mask=:"\$x", interval=1, verbose=1, \n/\n\&gb\nigb="\$g", saltcon=0.15,"
> mmpbsa_closest_nwat\$n.in
else if (\$solv == PB) then
echo "\&general\nreceptor_mask=:1-"\$y",
ligand_mask=:"\$x", interval=1, verbose=1, \n/\n\&pb\nistrng=0.150, radiopt=0"
> mmpbsa_closest_nwat\$n.in
endif
endif
\# execute MMPB/GBSA and print results
\$MPI_HOME/bin/mpirun -np \$nproc \$AMBERHOME/bin/MMPBSA.py.MPI -O
-i mmpbsa_closest_nwat\$n.in -o FINAL_RESULTS_CLOSEST\$n \}
-cp nwat"\$n"."\$z".top -rp nwat"\$n"."\$z"_rec.top -lp
ligand.top -y nwat\$n.\$z.mdcrd >\& MMPBSA. out
grep "DELTA TOTAL" FINAL_RESULTS_CLOSEST"\$n" sed "s/DELTA
TOTAL/NWAT="\$n"/g" >> \$WORKDIR/MM"\$solv"SA/RESULTS_\$solv.txt
cd ..
end
cd \$WORKDIR
rm tmp*
end
\#
\# the script terminates
\#
echo "MM"\$solv"SA calculations ended on "`date`


[^0]:    ${ }^{\text {a }}$ Calculated as the sum of $310^{-}$and $\alpha$-helix content of CTAA, averaged with respect to the $25-50,50-75,75-100 \mathrm{~ns}$ time intervals.

[^1]:    ${ }^{\text {a }}$ Averaged with respect to the 50-100, 100-150. 150-200, 200-250 ns time intervals. ${ }^{\text {b }}$ For Ac-Aib ${ }_{5}$-NHMe peptide $11 \mathrm{P} \%$ $=47.7 \pm 3.1, \mathrm{M} \%=43.3 \pm 3.5, \mathrm{H} \%=91.0 \pm 4.7$ and h.e. $<5 \%{ }^{\mathrm{c}}$ The stereochemical descriptors refers to the $\mathrm{C} \alpha$
    

