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ABSTRACT 

Air pollution exposure is a major problem worldwide and has been linked to many diseases. 

PM10 is one of the components of air pollution and it includes a mixture of compounds. Several 

studies suggest that PM produces significant effects on respiratory and cardiovascular system, in 

relation to acute as well as chronic exposure. This process has been extensively studied, but to 

date it has not yet been fully understood. Ambient particles have been shown to produce a strong 

inflammatory reaction, and beside pro-inflammatory mediators, cell-derived membrane 

Extracellular Vesicles (EVs) are also released. EVs (particularly microvesicles) might be the 

ideal candidate to mediate the effects of air pollution, since potentially they could transfer 

miRNAs, after internalization within target cells through surface-expressed ligands, enabling 

intercellular communication in the body. Another gap in our current knowledge regarding PM-

related health effects is the identification of susceptible subjects. Recent research findings 

pointed out obesity as a susceptibility factor to the adverse effects of PM exposure partly due to 

an increase in particle absorption. According these findings, our hypothesis is that, EVs might be 

the ideal candidate mechanism to mediate the effects of air pollution, since potentially they could 

be produced by the respiratory system, reach the systemic circulation and lead to the 

development of endothelial dysfunction. Moreover, EVs after internalization within target cells 

through surface-expressed ligands, may transfer miRNAs enabling intercellular communication 

in the body. Finally, obese individuals might represent one of the best population to investigate 

the effects of environmental air particles on several molecular mechanisms and, as a final 

objective, on cardiovascular and respiratory parameters. The main proposal of this research 

project is to develop the appropriate statistical methodology to address the following specific 

aims: 

 Aim 1. Determine whether exposure to air particles and PM-associated metals can 

modify EVs in plasma  in terms of miRNAs content. 

 Aim 2. Determine whether the changes found in ECVs (Aim 1) are associated with 

respiratory, cardiac and inflammatory outcomes such as: single breath carbon monoxide 

diffusing capacity DLcoRapp, Forced expiratory volume in the 1st second  FEV1, Forced 

Vital Capacity FVC, Heart Rate, Sistolic Blood Pressure SBP, Diastolic Blood Pressure 

DBP, C-Reactive Protein CRP, and Fibrinogen. 

 Aim 3. Investigate the potential role of miRNAs as mediators of the effect of PM10 

exposure on respiratory, cardiac and inflammatory outcomes listed in Aim2. 



 

 
 

We used a cross-sectional study investigating the effects of particulate air pollution on a 

population of susceptible overweight/obese subjects, recruited in Lombardy Region, Italy. The 

population study will include 2000 overweighed/obese (BMI between 25 and 29.9 is considered 

overweight and an adult who has a BMI of 30 or higher is considered obese  subjects, recruited 

at the Center for Obesity and Weight Control  (Department of Environmental and Occupational 

Health, University of Milan and IRCCS Fondazione Ca’Granda – Ospedale Maggiore 

Policlinico). We will follow a two-stage, split sample study design.  The first (discovery) stage 

involves genome-wide miRNA expression profiling, by means of OpenArray technology, among 

1000 of the aforementioned 2000 participants (the first 1000 subjects consecutively recruited at 

the Center  for Obesity and Weight Control). The second (replication) stage involves a 

replication analysis of the top 10 miRNAs that resulted from the first stage. At December 31, 

2013 (first stage) we recruited 1303 subjects, 87% of whom living in the province of Milan. At 

April 2015 we recruited a total of 1786 evaluable subjects. Due to technical problems the 

replication data were not available for statistical analysis at the time  of the layout of the thesis. 

Different normalization strategies on miRNAs expression data were evaluated and compared in 

different set of miRNAs: Endogenous U6, Global Mean and  Mean of 4 more stable miRNAs. 

The performance of the different normalization strategies was assessed by: (1) evaluating their 

ability to reduce the experimental induced (technical) variation, (2) determining their power to 

extract true biological variation. We showed for large scale miRNA expression profiling Global 

Mean normalization strategy outperforms the other normalization strategy in terms of: 

 better reduction of technical variation: 

- lower % of miRNAs differentially expressed before and after FDR adjustment 

- lower Fold change range; 

 more accurate appreciation of biological changes. 

- higher % of miRNAs differentially expressed before and after FDR adjustment; 

- higher Fold Change range; 

PM10 exposure assessment is based on daily PM10 concentration estimates by the FARM model 

(the flexible air quality regional model), a three-dimensional Eulerian grid model for dispersion, 

transformation and deposition of particulates, capable to simulate PM10 concentration. By means 

of ArchGis software the residential address of each subject was georeferenced and the resulting 

map was superimposed on the map of FARM Model. In this this way to each subject was 

attributed: (a) the estimated daily exposure of the cell containing their residential address; (b) the 

exposure of the cell containing the address of the Center for Obesity and Work; (c) the daily 



 

 
 

average exposure for Milan, calculated as the average of the 22 cells that falls into the city 

boundaries. 

Since in each run of OpenArray were simultaneous analysed up to 4 OpenArray plates, identified 

by a barcode, for a total of 12 samples (3 per plate)  it was possible identify an  hierarchical data 

structure with three levels: sample level (level-1), barcode level (level-2) and run level (level-3).  

In order to verify the association between miRNAs expression and PM10 we developed a three-

levels hierarchical linear model (HLM) using the MIXED procedure in SAS. 

The following list of first 10 top miRNAs were identified: miR_106a_002169, 

miR_152_000475, miR_181a_2__002317, miR_218_000521, miR_27b_000409, 

miR_30d_000420, miR_652_002352, miR_92a_000431, miR_25_000403, miR_375_000564. 

Simple mediation models were applied in order to investigate the role of miRNAs expression as 

potential mediator on the effect of PM10  on respiratory, cardiac and inflammatory outcomes 

such as: single breath carbon monoxide diffusing capacity DLco, Forced expiratory volume in 

the 1st second  FEV1, Forced Vital Capacity FVC, Heart Rate, Sistolic Blood Pressure SBP, 

Diastolic Blood Pressure DBP, C-Reactive Protein CRP, and Fibrinogen. 95% BC bootstrap 

Confidence intervals for Indirect effect were estimated.  

Finally, Multiple Parallel mediation models were applied in order to investigate the role of a set 

of miRNAs expression identified by means of simple mediation models as potential set of 

parallel mediator on the effect of PM10  on respiratory, cardiac and inflammatory outcomes. 

 A significant indirect effect of PM10 on: 

- DLcoRapp, was found through the following mediators: mir_106a_002169, 

mir_152_000475, mir_218_000521 expression; 

- FEV1Rapp was found through the following mediators: mir_27b_000409 

mir_30d_000420 mir_92a_000431 mir_181a_2_002317 mir_218_000521 expression; 

- FVCRapp was found through the following mediators: mir_27b_000409, 

mir_92a_000431 and mir_181a_2_002317 expression; 

- Heart Rate was found through the following mediator: mir_218_000521 expression; 

- Sistolic Blood Pressure was found through the following mediator: mir_92a_000431 

expression; 

- CRP was found through the following mediator: mir_106a_002169 and mir_652_002352 

expression. 

- Fibrinogeno was found through the following mediator: mir_375_000564 expression. 

Finally, the total indirect effect of PM10 exposure: 



 

 
 

- on DLcoRapp obtained summed the indirect effects across all mediators: 

mir_106a_002169, mir_152_000475,  and mir_218_000521 expression is statistically 

different from zero; 

- on FEV1Rapp obtained summed the indirect effects across all mediators: 

mir_27b_000409 mir_30d_000420 mir_92a_000431 mir_181a_2_002317 

mir_218_000521 expression is statistically different from zero; 

- on FVCRapp obtained summed the indirect effects across all mediators mir_27b_000409, 

mir_92a_000431 and mir_181a_2_002317 expression is statistically different from zero; 

- on CRP obtained summed the indirect effects across all mediators mir_106a_002169 and 

mir_652_002352 expression is statistically different from zero. 
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1. INTRODUCTION 

1.1 Air pollution 

Air pollution exposure is a major problem worldwide and has been linked to many diseases. Air 

pollution consists of gas and particle contaminants that are present in the atmosphere. Gaseous 

pollutants include SO2 , NOx , ozone, carbon monoxide (CO), volatile organic compounds 

(VOCs), certain toxic air pollutants, and some gaseous forms of metals. Particle pollution (PM2.5 

and PM10) includes a mixture of compounds. The majority of these compounds can be grouped 

into five categories: sulfate, nitrate, elemental (black) carbon, organic carbon, and crustal 

material (Table 1). 

Some pollutants are released directly into the atmosphere. These include gases, such as SO2, and 

some particles, such as crustal material and elemental carbon. Other pollutants are formed in the 

air. Ground-level ozone forms when emissions of NOx and VOCs react in the presence of 

sunlight. Similarly, some particles are formed from other directly emitted pollutants. For 

example, particle sulfates result from SO2 and ammonia (NH3) gases reacting in the atmosphere. 

Commonly, emissions come from large stationary fuel combustion sources (such as electric 

utilities and industrial boilers), industrial and other processes (such as metal smelters, petroleum 

refineries, cement kilns, manufacturing facilities, and solvent utilization), and mobile sources 

including highway vehicles and non-road sources (such as recreational and construction 

equipment, marine vessels, aircraft, and locomotives). Sources emit different combinations of 

pollutants. For example, electric utilities release SO2 , NOx , and Particles Fossil fuel combustion 

is the primary source contributing to CO2 emissions. Major sources of fossil fuel combustion 

include electricity generation, transportation (including personal and heavy-duty vehicles), 

industrial processes, residential, and commercial [1]. 
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Table 1: Health, Environmental, and Climate Effects of Air Pollution Components. U.S Environmental Protection 

Agency's Report 2010 

 

Health, Environmental, and Climate Effects of Air Pollution 

Pollutant Health Effects Environmental and Climate Effects 

Ozone (O3) 

Decreases lung function and causes 

respiratory symptoms, such as 

coughing and shortness of breath; 

aggravates asthma and other lung 

diseases leading to increased 

medication use, hospital admissions, 

emergency department (ED) visits, 

and premature mortality. 

Damages vegetation by visibly injuring leaves, 

reducing photosynthesis, impairing 

reproduction and growth, and decreasing crop 

yields. Ozone damage to plants may alter 

ecosystem structure, reduce biodiversity, and 

decrease plant uptake of CO2. Ozone is also a 

greenhouse gas that contributes to the warming 

of the atmosphere. 

Particulate 

Matter (PM) 

Short-term exposures can aggravate 

heart or lung diseases leading to 

symptoms, increased medication use, 

hospital admissions, ED visits, and 

premature mortality; long-term 

exposures can lead to the 

development of heart or lung disease 

and premature mortality. 

Impairs visibility, adversely affects ecosystem 

processes, and damages and/or soils structures 

and property. Variable climate impacts 

depending on particle type. Most particles are 

reflective and lead to net cooling, while some 

(especially black carbon) absorb energy and 

lead to warming. Other impacts include 

changing the timing and location of traditional 

rainfall patterns. 

Lead (Pb) 

Damages the developing nervous 

system, resulting in IQ loss and 

impacts on learning, memory, and 

behavior in children. Cardiovascular 

and renal effects in adults and early 

effects related to anemia. 

Harms plants and wildlife, accumulates in soils, 

and adversely impacts both terrestrial and 

aquatic systems. 

Oxides of 

Sulfur (SOx) 

Aggravate asthma, leading to 

wheezing, chest tightness and 

shortness of breath, increased 

medication use, hospital admissions, 

and ED visits; very high levels can 

cause respiratory symptoms in 

people without lung disease. 

Contributes to the acidification of soil and 

surface water and mercury methylation in 

wetland areas. Causes injury to vegetation and 

local species losses in aquatic and terrestrial 

systems. Contributes to particle formation with 

associated environmental effects. Sulfate 

particles contribute to the cooling of the 

atmosphere. 

Oxides of 

Nitrogen 

(NOx) 

Aggravate lung diseases leading to 

respiratory symptoms, hospital 

admissions, and ED visits; increase 

susceptibility to respiratory 

infection. 

Contributes to the acidification and nutrient 

enrichment (eutrophication, nitrogen saturation) 

of soil and surface water. 

Leads to biodiversity losses. Impacts levels of 

ozone, particles, and methane with associated 

environmental and climate effects. 

Carbon 

Monoxide 

(CO) 

Reduces the amount of oxygen 

reaching the body’s organs and 

tissues; aggravates heart disease, 

resulting in chest pain and other 

symptoms leading to hospital 

admissions and ED visits. 

Contributes to the formation of CO2 and ozone, 

greenhouse gases that warm the atmosphere. 

Ammonia 

(NH3) 

Contributes to particle formation 

with associated health effects. 

Contributes to eutrophication of surface water 

and nitrate contamination of ground water. 

Contributes to the formation of nitrate and 
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1.2 Particulate Matter 

PM is a mixture of suspended particles that vary in chemical composition and size. Particulate 

matter varies in number, size, shape, surface area, chemical composition and characteristics, and 

can be of both natural and anthropological origin. The size distribution of urban ambient particle 

pollution is usually characterized by aerodynamic diameter (AED) which is defined as the 

diameter of a sphere of unit density (lg/cm
3
) that has the same inertial properties in the gas as the 

particle of interest. The size distribution of suspended particles in the atmosphere is tri-modal 

and includes coarse particles, line particles, and ultrafine particles. Coarse particles (PM2,5-10: 

often defined as those with an aerodynamic diameter > 2.5μm) are primarily produced by natural 

mechanisms such as grinding and wind, and derive mainly from soil and other crustal materials. 

Fine particles (PM2.5: diameter < 2.5 μm ) are derived chiefly from combustion processes. In the 

urban environment these process are associated with transportation, manufacturing, and power 

generation. Ultrafine particles are often defined as particles less than or equal to 0,1 μm.  

Particles can either be directly emitted into the air (primary PM) or be formed in the atmosphere 

from gaseous precursors such as sulfur dioxide, oxides of nitrogen, ammonia and non-methane 

volatile organic compounds (secondary particles). Primary PM and the precursor gases can have 

both man-made (anthropogenic) and natural (non-anthropogenic) sources. Anthropogenic 

sources include combustion engines (both diesel and petrol), solid-fuel (coal, lignite, heavy oil 

and biomass) combustion for energy production in households and industry, other industrial 

activities (building, mining, manufacture of cement, ceramic and bricks, and smelting), and 

erosion of the pavement by road traffic and abrasion of brakes and tires. Agriculture is the main 

source of ammonium. Secondary particles are formed in the air through chemical reactions of 

gaseous pollutants. They are products of atmospheric transformation of nitrogen oxides (mainly 

emitted by traffic and some industrial processes) and sulfur dioxide resulting from the 

combustion of sulfur-containing fuels. Secondary particles are mostly found in fine PM. 

PM10 and PM2.5 include inhalable particles that are small enough to penetrate the thoracic region 

of the respiratory system. The health effects of inhalable PM are well documented. They are due 

to exposure over both the short term (hours, days) and long term (months, years) and include: 

 respiratory and cardiovascular morbidity, such as aggravation of asthma, respiratory 

symptoms and an increase in hospital admissions; 

 mortality from cardiovascular and respiratory diseases and from lung cancer. 

There is good evidence of the effects of short-term exposure to PM10 on respiratory health, but 

for mortality, and especially as a consequence of long-term exposure, PM2.5 is a stronger risk 

factor than the coarse part of PM10 (particles in the 2.5–10 μm range). All-cause daily mortality 
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is estimated to increase by 0.2–0.6% per 10 μg/m3 of PM10 [2, 3].Long-term exposure to PM2.5 is 

associated with an increase in the long-term risk of cardiopulmonary mortality by 6–13% per 10 

μg/m3 of PM2.5 [4-6]. Susceptible groups with pre-existing lung or heart disease, as well as 

elderly people and children, are particularly vulnerable. For example, exposure to PM affects 

lung development in children, including reversible deficits in lung function as well as chronically 

reduced lung growth rate and a deficit in long term lung function [7].  There is no evidence of a 

safe level of exposure or a threshold below which no adverse health effects occur. The exposure 

is ubiquitous and involuntary, increasing the significance of this determinant of health. At 

present, at the population level, there is not enough evidence to identify differences in the effects 

of particles with different chemical compositions or emanating from various sources. It should 

be noted, however, that the evidence for the hazardous nature of combustion-related PM (from 

both mobile and stationary sources) is more consistent than that for PM from other sources [8].  

The black carbon part of PM2.5, which results from incomplete combustion, has attracted the 

attention of the air quality community owing to the evidence for its contribution to detrimental 

effects on health as well as on climate. Many components of PM attached to black carbon are 

currently seen as responsible for health effects, for instance organics such as PAHs that are 

known carcinogens and directly toxic to the cells, as well as metals and inorganic salts. 

1.3 PM and Cardiovascular Health Effects 

According to the WHO, diseases of  heart and cardiovascular system are the largest single cause 

of death (accounting for about 3.7 million deaths) in the European Union. Cardiovascular 

diseases account for the largest number of premature deaths before 75 years of age [9].  

Numerous health studies have shown acute [10-15] and chronic [16-18] particulate air pollution 

exposures to be associated with early death, particularly from cardiovascular and respiratory 

disease [10, 11, 19]. Metals, which are constituents of particulate air pollution, are also 

associated with CVD [19-38]. Epidemiological and animal studies have suggested many 

potential mechanisms by which particles may impact health. Airway or parenchymal 

inflammatory responses to particulate matter (PM) have been hypothesized to be the inciting   

events of  a cascade of pathophysiologic changes in autonomic cardiac, systemic inflammation, 

and hemostatic activities. All these processes may ultimately lead to the acute cardiac events 

associated with PM exposure [39]. However, the relative importance of each potential pathways 

and the steps along these pathways are not well understood, particularly as to how they relate to 

specific particle components and sources, for which biological pathways are likely to differ. One 

of the most important gaps in our current knowledge regarding PM-related health effects is the 
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identification of susceptible subjects [40]. Recent research findings pointed out obesity as a 

susceptibility factor to the adverse effects of PM exposure partly due to an increase in particle 

absorption [40, 41]. A positive correlation between exhaled nitric oxide, a marker of pulmonary 

inflammation, and Body Mass Index (BMI) have been shown in healthy adults [42]. BMI was 

associated with a graded increase in the estimated total lung dose of deposited fine particles in an 

inhalation study of healthy children (6–13 years of age) [43]. In a panel study of 44 senior 

citizens, vascular inflammatory response (measured by C-reactive protein) to ambient levels of 

PM2.5 (particulate matter with aerodynamic diameter ≤2.5μm) averaged over 1–7 days was 

greater in obese (BMI ≥ 30 kg/m2) than in non-obese subjects [44]. Moreover, a differential  

autonomic cardiac response (measured as heart rate variability) to metal particulates have been 

observed between  obese and non-obese individuals [40]. These findings suggest that obese 

individuals might represent a candidate population to investigate PM mediated cardiovascular 

effects and related pathogenetic mechanisms. The mechanisms linking PM exposure and 

cardiovascular disease have not yet been fully elucidated. It has been proposed that inhaled fine 

particulate matter translocates directly into systemic circulation through the pulmonary capillary 

bed, promoting atherothrombosis by breaching endothelial integrity and inciting a local 

inflammatory reaction [45]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed mechanism for air pollution effects on exosomes release and cell-to-cell communication. 
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However, just a very small fraction of these fine and ultrafine particles accumulate in extra 

pulmonary organs such as the liver and the spleen, [46] and currently there is no final evidence 

that fine particles physically enter and deposit in blood vessels. An alternative hypothesis is that 

ambient particles produce a strong inflammatory reaction in the lungs followed by the release of 

proinflammatory mediators that are able to reach the systemic circulation (Figure 1) [47, 48]. In 

spite of more than two decades of mechanistic research, at front of high degree of consistency of 

the epidemiology findings showing increased cardiovascular risk, the evidence on intermediate 

mechanisms remains moderate or weak [49]. In addition, inflammatory and oxidative responses 

have little specificity and can be activated by a multitude of trigger, thus limiting our capability 

to correlate them to air pollution exposure as well as to provide the groundwork for the 

development of targeted biomarkers and prevention strategies. Beside the release of 

proinflammatory mediators, cell-derived membrane vesicles are also released, representing 

another  new mode of intercellular communication that has recently become the subject of 

increasing interest [48]. 

1.4 Extracellular Vescicles (EVs) and microRNAs in PM-related cardiovascular effects  

Intercellular communication is an essential hallmark of multicellular organisms and can be 

mediated through direct cell–cell contact or transfer of secreted molecules. In the last two 

decades, a third mechanism for intercellular communication has emerged that involves 

intercellular transfer of extracellular vesicles (EVs). EVs might be the ideal candidate to mediate 

the effects of air pollution, since potentially they could be produced by the respiratory system, 

[50, 51] reach the systemic circulation [52] and lead to the development of  endothelial 

disfunction [53]. EVs are spherical structures limited by a lipid bilayer that can be generated by 

cells and secreted into the extracellular space and are likely composed of both exosomes (EXs) 

and microvesicles (MVs). There are various types of secreted membrane microvesicles that have 

distinct structural and  biochemical properties depending on their intracellular site of origin, and 

these features probably affect their function. Microparticles originating from platelets, 

endothelial cells and monocytes have been most extensively studied [54]. Platelet microparticles 

were originally studied because of their procoagulant activity [54] and recent studies have 

investigated their involvement in the pathophysiology of vascular disorders [54]. They could also  

participate in a defensive shedding of complement attack complexes [55] or in deployment of 

immunomodulating activities [56]. The term exosome is used to identify a particular subgroup of 

vesicles, ranging from 40 to 100 nanometers (nm), released as a consequence of multivesicular 

endosome (a membrane-bound intracellular vesicle, containing EXs) fusion with the plasma 
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membrane [57], whereas the term microvesicle is used for those EVs, larger than 100 nm, that 

are shed from the plasma membrane. EVs are released from cell membranes by triggers such as 

endotoxin encounter, hypoxia or oxidative stress conditions, cytokines release, thrombin 

production [58] and could be one of the means used by tissues to adapt to these stimuli [59]. In 

particular, DNA damaging conditions have been related to activation of  the p53 that leads to 

increased exosomes secretion [60]. EV membranes are enriched in molecules characteristic of 

their parent cell and express adhesion molecules on their surface (i.e., ICAM1), which could 

favor their capture by recipient cells. The fate of exosomes after binding the surface of recipient 

cells is not known but recent evidence suggests that they might fuse with recipient cell 

membranes and deliver their content directly into the cytoplasm of the recipient cells.  It has 

been suggested that EVs, after internalization in the target cells through surface-expressed 

ligands, may transfer microRNAs (miRNAs) [61, 62]  allowing intercellular and inter-organ 

communication in the body [62]. Moreover, miRNA expression in circulating exosomes has 

been detected also in plasma of normal subjects and a predictive role of peripheral blood miRNA 

signatures in human disease has been also hypothesized. MiRNAs are small, endogenous, single 

stranded noncoding RNAs of 20-22 nucleotides [63] that post-transcriptionally regulate gene 

expression by either triggering mRNA cleavage or repressing translation [64]. One single 

miRNA can regulate hundreds of mRNAs in interrelated gene pathways and a single mRNA can 

be targeted by several different miRNAs [65]. Moreover, miRNA expression in circulating EVs 

has been detected also in plasma of normal subjects and a predictive role of peripheral blood 

miRNA signatures in human diseases has been also hypothesized [62]. Changes in the 

expression of several miRNAs  have been implicated in disease mechanisms that may be related 

to PM exposure such as oxidative stress [66] and regulation of inflammation [67].  Recently, our 

group showed in foundry workers of an electric-steel plant facility that air particles, particularly 

those rich in lead and cadmium, are able to modify miRNAs expression in blood [68].
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2. AIM AND HYPOTHESES 

According these findings, our hypothesis is that obese individuals might represent one of the best 

population to investigate the effects of environmental air particles on several molecular 

mechanisms and, as a final objective, on cardiovascular and respiratory parameters. EVs might 

be the ideal candidate mechanism to mediate the effects of air pollution, since potentially they 

could be produced by the respiratory system, reach the systemic circulation and lead to the 

development of endothelial dysfunction. Moreover, EVs after internalization within target cells 

through surface-expressed ligands, may transfer miRNAs enabling intercellular communication 

in the body. The main proposal of this research project is to develop the appropriate statistical 

methodology to address the following specific aims: 

 Aim 1. Determine whether exposure to air particles and PM-associated metals can 

modify EVs in plasma  in terms of miRNAs content. 

 Aim 2. Determine whether the changes found in ECVs (Aim 1) are associated with 

respiratory, cardiac and inflammatory outcomes such as: single breath carbon monoxide 

diffusing capacity DLco, Forced expiratory volume in the 1st second  FEV1, Forced Vital 

Capacity FVC, Heart Rate, Sistolic Blood Pressure SBP, Diastolic Blood Pressure DBP, 

C-Reactive Protein CRP, and Fibrinogen. 

 Aim 3. Investigate the potential role of miRNAs as mediators of the effect of PM10 

exposure on respiratory, cardiac and inflammatory outcomes listed in Aim2.
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3. METHODS 

3.1 Study design 

The SPHERE study is a cross-sectional study investigating the effects of particulate air pollution 

on a population of susceptible overweight/obese subjects, recruited in Lombardy Region, Italy. 

Lombardy is situated in the Northern part of Italy and is divided physically into three parts from 

north to south: Alpine and pre-Alpine mountains, foothills and a zone of alluvial plains sloping 

to the Po river. The region covers an area of 23.864 km
2
 with a population of about 10 million 

people [69] and consists of 12 provinces, among which Milan is the regional capital. The 

Milan metropolitan area is home to 7 million inhabitants with 1,3 million residing in the core 

municipality [70]. 

3.2  Study Population 

The population study will include 2000 overweighed/obese (BMI between 25 and 29.9 is 

considered overweight and an adult who has a BMI of 30 or higher is considered obese  subjects, 

recruited at the Center for Obesity and Weight Control  (Department of Environmental and 

Occupational Health, University of Milan and IRCCS Fondazione Ca’Granda – Ospedale 

Maggiore Policlinico). This study population has been chosen because some evidence shows that 

obesity may bring greater susceptibility [71, 72] to the adverse cardiovascular effects of PM 

exposure. In addition, It has been shown that obese people are more  susceptible to the effect of 

inflammation in the short-term exposure to PM, presenting higher levels of C-reactive protein 

and interleukin-6, compared with normal-weight subjects, at the same exposure of PM level [44]. 

The recruitment period started in September 2010 and will continue until the end of 2015. The 

eligibility criteria for participants are as follows: 1)  older than  18 years at enrollment;  2) 

obese/overweight according to the following definition: overweight is defined as a BMI between 

25 and 30 kg/cm², obesity is defined as a BMI of 30 kg/cm² or more; 4) domiciled in Lombardy 

at the time of the recruitment; 5) agreement to  sign an informed consent and donate a blood 

sample. Exclusion criteria include:  experienced previously diagnosed cancer, heart disease or 

stroke in the last year or other chronic diseases such as multiple sclerosis, Alzheimer’s disease, 

Parkinson’s disease, depression, bipolar disorder, schizophrenia and epilepsy.  

Epidemiological and Clinical Data collection 

At recruitment, each study subject is asked to: 

- fill in a lifestyle and a diet questionnaire,  

http://en.wikipedia.org/wiki/Milan
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- donate a 15 ml blood sample (for molecular tests), 

- provide a 50 ml urine sample (for metal internal dose assessment),  

- provide a lock of hair cut next to the root in the occipital area of the head (for metal 

internal dose assessment) 

As part of the routine protocol, for each subject presenting at the Center, extensive physical 

examination, spirometry, ECG are performed and biochemical tests are also collected, including  

Emocrome, Fibrinogen, C-reactive protein, Total cholesterol, HDL, LDL, Triglyceride, Serum 

creatinine, AST, ALT, Gamma-Glutamyltransferase, Glucose, Homocysteine, TSH, Glycated 

haemoglobin, Postprandial glycaemia, Insulin level, 2-hour post glucose insulin level, Urinary 

pH, Uric acid.  

Lifestyle questionnaire 

The lifestyle questionnaire collects information on socio-demographic data, residential area 

(complete address, characteristics of the house, and traffic), education, past and present health 

status of the subjects and their first-degree relatives, medications in the last year, employment 

history and for employed subjects address of the plant of their current work, smoking history, 

passive smoking at home and at workplace, physical activity levels and sedentary behavior 

commuting time and transport mode. 

Diet questionnaire 

The  questionnaire on eating habits included questions on the number of servings from each food 

in a usual week or month. Several different types of food were investigated, including: legumes, 

vegetables, fruits, nuts, red and white meat, fish, eggs, dairy products, cereals, snacks, oil and 

butter, alcoholic beverage, thea and coffee. Number of servings from each food were translated 

into usual daily micronutrients intake weighting for serving size, age class and gender. Both 

questionnaires were checked for completeness at the time of data collection in order to ensure 

high quality data. 

Lung and cardiac function  

Pulmonary functions are measured, at the same day of blood drawing, with an electronic flow 

volume spirometer V-max 22 with Autobox (SensorMedics), according to European Respiratory 

Society/American Thoracic Society guidelines (ERS/ATS 2005) [73]. Tests are performed on 

patients in the sitting position, and are repeated until at least three reproducible forced expiratory  

curves have been obtained. Lung function parameters are: forced expiratory volume in one 

second  (FEV1),; forced vital capacity (FVC); best peak expiratory flow (PEF); forced expiratory 

flows at  25%, 50%, and 75% of FVC (FEF25, FEF50, FEF75); mid-expiratory flow (FEF25–
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75) derived from the  best maneuver (defined as the one with the highest sum of FEV1 + FVC). 

The single breath carbon monoxide diffusing capacity (DLco) is also measured [74]. All 

parameters are expressed as a  percentage of the predicted normal values, [75] and adjusted for 

sex, age, height. A resting ECG and rhythm strip is also recorded and blood pressure is measured 

with the participant supine, after 5 minutes of rest. 

3.3 Two-stage, split sample study design 

We will follow a two-stage, split sample study design.  We foresee to collect at least 600 

subjects/year. The first (discovery) stage involves genome-wide miRNA expression profiling 

among 1000 of the aforementioned 2000 participants (the first 1000 subjects consecutively 

recruited at the Center  for Obesity and Weight Control). The second (replication) stage involves 

a replication analysis of the top 10 miRNAs that resulted from the first stage.  

First stage 

At December 31, 2013 we recruited 1303 subjects, 87% of whom living in the province of 

Milan. Evaluable patients were 1250. Mean BMI of our study population is 33.5 Kg/cm
2
 (±5.5): 

nearly 27.8% are overweight, 38.6% are obese, and 33.6% severe obese. The percentage of 

obese individuals in Lombardy is about 10.3% of the total adult population [76]. The 

participation rate in the years 2010-2013 was 90%. The study population is composed by 74% of 

female, mean aged 52 years.   

Second Stage 

At April 2015 we recruited a total of 1786 evaluable subjects. 

Due to technical problems the replication data were not available at the time for statistical 

analysis at the time  of the layout of the thesis. Statistical analisys results were performed only 

on data coming from First Stage.  

3.4 Laboratory Methods 

Stage 1 will involve using the OpenArray technology (Applied Bioscience)  that allows to run 

2,688 TaqMan® qPCR reactions in parallel. In Stage 2, we will replicate the results obtained on 

the discovery set by standard real time PCR on an Applied Biosystems 7900HT Real-Time PCR 

System. Laboratory methods can be summarized as follows: 

 Isolations ECVs: Plasma was thawed on ice and subjected to 3 consecutive centrifuged, 

this passage has been useful to eliminate dead cells and debris. The supernatant was 
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subjected to ultracentrifuge and then it was discarded and the pellet remaining were 

stored at -20 ° C. 

 miRNAs extraction: miRNAs were extracted using the Qiagen Kit miRNReasy Mini Kit 

and RNeasyMinEluteClean Up Kit. 

 High throughput miRNAs: high throughput analysis is the set of scientific analysis able 

to perform tests on a large number of data in a limited time due to machinery and 

automated instrumentation. For a complete analysis of all miRNAs we performed a 

reverse transcription, followed by a reaction of preamplification  and then we evaluated 

the expression of miRNAs through a Real-Time PCR. 

 Reverse transcription: this technique of reverse transcription allows to produce cDNA 

starting from RNA and for this reason is a technique that is exploited to study gene 

expression. 

 Reaction of preamplification: knowing that the amount of miRNAs contained in the 

microvesicles extracted from 1.5 mL of plasma is very low, before the Real-time PCR 

must perform a reaction of preamplification.  

 Real Time PCR: The product of the reaction of preamplification was transferred from the 

plate 96 to 384 , performing an ottuplicato. Finally, using the Robot AccuFillTM System 

( Life Technologies) was set up the Open Array Plate formed by 48 subarray with 64 

holes, for a total of 3072 holes of 300 μm in diameter and 300 μm of depth (Figure 2). 

Each hole has an outer hydrophobic , while inside it has a hydrophilic coating (the 

reagents are kept inside by means of surface tension).  

 

 

 

 

 

 

 

 

Figure 2: OpenaArray Plate. 

In this system, each real time PCR reaction has a final volume of 33 nanoliters. After loading the 

sample, the plate was covered with adhesive Lid and filled with fluid immersion. 
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The plate thus prepared was loaded in QuantStudioTM 12K Flex OpenArray (Life technologies) 

which allows the simultaneous analysis of up to 4 OpenArray plates, for a total of 12 samples (3 

per plate). The Real-Time PCR , also ca called quantitative PCR or real-time quantitative. PCR 

(RTQ - PCR), is a method of amplification  (polymerase chain reaction or PCR) and 

simultaneous 

 quantification of samples for DNA and cDNA. The fluorescence is generated during PCR due to 

several possible chemical reactions. (Figure 3). The main chemical are based on the binding of 

fluorescent dyes that intercalate in the double helix of DNA , such as SYBR Green, or the 

hybridisation of specific probes , such as TaqMan probes. In this experiment it were used 

TaqMan probes.The use of probes revealing fluorescence is one of the most reliable and accurate 

method because the TaqMan probes are designed so as to pair up to specific target sequences.  

A typical cycle of OpenArrayflex normal PCR and includes 3 phases: 

1. Heat denaturation of template DNA (94-99 °C); 

2. Annealing to the sequence of the oligonucleotides (30-65 °C); 

3. Extension by the DNA polymerase from the heat-resistant primers (65-72 °C). 

 

Figure 3: QuantStudioTM 12K OpenArray and OpenaArray flex Real Time PCR cycle.  

The real time PCR is quantitative, as the data is collected during the exponential growth phase, 

when the quantity of the product of the reaction is directly proportional to the initial amount of 

nucleic acid. The quantification of the miRNA is based on the fluorescence detected at each 

reaction cycle : every cycle, the cDNA molecules doubled, reaching a plateau when the reactants 
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are exhausted and the operation of the enzyme decreases drastically. After finishing the reaction, 

the instrument software provides results in terms of: Related Cycle Threshold (CRT): the number 

of PCR cycles at which the efficiency of the reaction Real-Time PCR miRNA target is maximal. 

The higher the CRT , the lower the expression of miRNA. In order to evaluate the goodness of 

the reaction a parameter called Ampscore was used. A good amplified has a Ampscore 

exceeding 1.24. This means that the curve representing its amplification , as a result of the Real -

Time PCR, has the characteristic of an exponential growth curve. With this information, 

determine the Ampscore can also help to discriminate false positives and false negatives. 

3.5 Air pollution exposure assessment 

Exposure is defined using a multifaceted approach, which integrates information coming from 

PM10 assessment with personal dose of metals in urine and hair. In particular, PM10 is assigned to 

each subjects following two approaches: I. use of daily PM10 concentration series from air 

quality monitors; II. use of daily PM10 concentration estimates by the FARM model (the flexible 

air quality regional model), a three-dimensional Eulerian grid model for dispersion, 

transformation and deposition of particulates, capable to simulate PM10 concentration using a 4 

km–dispersion grid [15].   

1. Air Monitoring Stations data from ARPA Lombardy: we collected recordings of daily 

PM10 data by 81 fixed monitoring stations selected by the Regional Environmental 

Protection Agency (ARPA Lombardy) from the approximately 150 monitors of the 

Regional Air Monitoring Network throughout Lombardy region, (Figure 4) on the basis 

of their reliability determined by standardized quality control procedures and correlation 

with in-situ measurements, of continuity of recording and of the ability to represent local 

background air pollution. Three stations are located in the city of Milan (“Verziere”, 

“Pascal-Città Studi” and “via Senato”). We used daily concentration measured by single 

monitors in the study area to characterize PM10 exposure, at the date of recruitment and 

until 365 days before, for each subject. Thus, we are able to estimate both short- and 

long-term exposure to the pollutant investigated.  As air monitoring station recordings for 

the area of interest are available from 2001, older exposures might also be estimated. 

Moreover, as patients were not recruited all at once, but during the first visit to the Center 

for Obesity and Work, PM10 exposure was not tied to a specific date, but randomly 

assigned during the work week,  ensuring a great variability of  exposure distributions. 
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Figure 4: PM10  monitoring stations in Lombardy region 

Data on meteorological variables were obtained from the monitoring stations of the Regional 

Environmental Protection Agency measuring respectively temperature (233 monitors) and 

relative humidity (163 monitors). (Figure 5) The apparent temperature were calculated using 

the following formula: 

𝑇𝑎𝑝𝑝 =  − 2.653 + 0.994 ∗ 𝑇𝐸𝑀𝑃 + 0.0153 ∗ 𝐷𝐸𝑊2 

where the drew point DEW is defined as:   

𝐷𝐸𝑊 = (
𝑈

100

1

8) ∗ (112 + (0.9 ∗ 𝑇𝐸𝑀𝑃)) + 0.1 ∗ 𝑇𝐸𝑀𝑃 − 112 

  

 

 

 

 

 

 

 

Figure 5: Temperature and Humidity  monitoring stations in Lombardy region.  
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2. FARM model (flexible air quality regional model) by ARPA Lombady: Estimated daily 

average concentrations of PM10 for the years 2007-2012 based on the FARM model were 

obtained from ARPA Lombardy. The FARM model is a chemical transport model  able 

to treat the main processes of chemical and physical nature of formation and removal of 

pollutants, in addition to the transport and dispersion by the action of wind and 

atmospheric mixing. The model provide an estimate of PM10 concentration in the 

atmosphere, from a considerable number of data that can be grouped as follows: 

information needed to characterize in space and time the emissions in the area of interest, 

information on meteorological variables involved in the processes of transport and 

dispersion of pollutants in the air, concentrations of conditions present at the boundary of 

this area and the beginning of the simulation period. The input data are built from 

meteorological observations of weather and hydrological network of ARPA and from the 

processing of the results of the global meteorological model of the European Centre 

ECMWF (European Centre for Medium-Range Weather Forecasts). The initial and 

boundary conditions are obtained starting from the data of the ARPA network of air 

quality and the results of the model CHIMERE 

(http://www.lmd.polytechniques.fr/chimere/chimere.php) applied at continental scale 

within the France forecasting system Prev'air. Finally, data on measured and simulated 

concentrations are harmonized through interpolation techniques [65, 77].Data elaborated 

by modeling systems integrates the ones of the monitoring network and allow to know air 

quality state on an extensive way on the territory.  

 

 

 

 

 

 

 

 

 

Figure 6: Grid 4x4Km from FARM model by ARPA Lombardy applied on the map of Lombardy Region. 

 

 4x4 Km 
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FARM model allows to assess the population's risk of exposure to air pollution in regions 

where there are no direct observations. By this model the Lombardy region is divided 

into a grid of 1678 cells (4x4 km), each associated with daily PM10 concentration 

estimates. (Figure 6). Thus, the advantage of FARM dispersion modeling, on monitors, is 

that it allows to assess the population's risk  of exposure to air pollution in regions where 

there are no direct observations. Data estimated from the models are available until 2012, 

since the data validation imply a lag time of nearly 6 months and will soon be available 

for further data analysis. Data estimated from the models are available until 2012, since 

the data validation imply a lag time of nearly 6 months and will soon be available for 

further data analysis. Given the time window of available data, will be possible to 

estimate both short-term (days) and long-term (months, years) exposure to the pollutants 

investigated at or before the index date (date of recruitment for each subject. 
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4. STATISTICAL ANALYSIS                                                                               

Statistical analysis follows different strategies in the two different stages. We proceeded 

according   the steps explained in the following paragraphs. 

4.1 Ambient exposure attribution 

Verification and possible correction of address of domicile / residence of subjects was performed 

as first step. Allocation of geographic coordinates to addresses of domicile / residence was 

performed using the GPSvisualizer software. ArchGIs was used for the attribution of individual 

ambient exposure to each subjects of the pilot study. In detail for the previous points I and II :  

1. Air Monitoring Stations data from ARPA Lombardy: We geocoded the monitoring 

stations and the addresses of study subjects  in order to assign them the daily PM10 

concentration from: (1) the monitor at the lower distance to home address, defined 

“subject’s residence”; (2) the nearest monitor to the Center for Obesity and Work 

(“Verziere”), defined “Policlinico”; (3) daily exposure for Milan created averaging the 

three available city monitors, defined as “average Milan”(Figure 7). 

 

Figure 7: Attribution of PM10 from exposure Monitoring Stations ARPA to subjects . 

Handling missing data in Air Monitoring Stations data series 

In case of incomplete series, the missing data is estimated based on the values measured on the 

same day in other stations and the ratio between the annual average recorded in the station that 
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has the missing data and annual averages of the other stations (63,64). The other stations were 

chosen among those closest and strongest correlation. The final series has been created averaging 

over monitors and imputing missing values under proportionality assumptions. Each station and 

pollutants had missing daily averages data. To fill the gaps for each pollutant A, first the q 

stations with yearly data coverage higher than 90% were selected (1 ≤ q < n). Then a daily 

variability profile pd was calculated as follows, based on the observation that relationships 

between observed concentrations of PM10 (expressed as Pearson correlation coefficient) at the 

different selected sites were always higher than 0.7: 

𝑝𝑑 =
∑ [𝐴]𝑑,𝑘

𝑞
𝑘=1

∑ 𝛽𝑑,𝑘 ∗ [𝐴]𝑦,𝑘
𝑞
𝐾=1

 

Where: 

𝛽𝑑,𝑘= 0 if [𝐴]𝑑,𝑘=missing                                                                                                                                        

𝛽𝑑,𝑘= 1 if [𝐴]𝑑,𝑘=not missing 

[𝐴]𝑑,𝑘 = daily average concentration of the pollutant A measured at the station k. 

[𝐴]𝑦,𝑘= yearly average concentration of the pollutant A measured at the station k.                                                  

Then the data series for the q stations and the missing data days j were completed as follows: 

[𝐴]𝑗,𝑘 = 𝑝𝑗 ∗ [𝐴]𝑦,𝑘 

To complete the time series of the n-q stations with yearly data coverage less than 90%, first an 

overall  

pollutants daily average was calculated from the q stations: 

[𝐴]𝑑 = 
1

𝑞
∗ ∑ [𝐴]𝑑,𝑘

𝑞
𝑘=1  

Thus a correlation line was built for the z (n-q) station with data coverage < 90%, starting from 

the i  

daily average available:  

[𝐴]𝑖,𝑧 = 𝑎 ∗ [𝐴]𝑖,𝑑 + 𝑏 

The calculated slope (a) and intercept (b) was finally used to estimate the lost values j at each z 

station: 

[𝐴]𝑗,𝑧 = 𝑎̂ ∗ [𝐴]𝑗 + 𝑏̂ 



 

31 
 

With such an approach it was possible to improve the data coverage to almost 100% for all the 

monitoring stations selected; only a few days were still missing for PM10  (no measurement 

available at all, 2 days out of 1460 days of observations).  

2. FARM model by ARPA Lombardy: The residential address of each subject was 

georeferenced and the resulting map was superimposed on the map of FARM Model  

(Figure 8). In this this way to each subject was attributed: (a) the estimated daily 

exposure of the cell containing their residential address; (b) the exposure of the cell 

containing the address of the Center for Obesity and Work; (c) the daily average 

exposure for Milan, calculated as the average of the 22 cells that falls into the city 

boundaries. 

 

Figure 8: Attribution of PM10 exposure from FARM Model  to subjects. 

A map of predicted PM10 concentration for the study period 2010-2012 is shown in Figure 9. We 

assume that the day of the visit subjects are exposed to levels of PM10 measured by the 

“Policlinico” station, as the time elapsed in the Hospital to perform all the examinations 

(approximately five hours) is supposed to be sufficient to experience outcomes related to very 

short-term effect. About 57% of SPHERE subjects live in the city and an additional 28% work in 

Milan (even if they live outside the city), overall a 67% of subjects spent many hours a day in the 

city or travelling from workplace to residence. Thus, longer exposure effects are evaluated by 

both residential and Milan monitors using appropriate lag time from recruitment date, as 

sensitivity analysis. 
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Figure 9: Prediction of PM10 concentration by FARM model (2010-2012) 

However, very high correlation was observed among the three sources of exposition 

(RPoliclinico vs Average Milan=0.99; RSubjects’ Residence vs Average Milan=0.94; 

RPoliclinico vs Subjects’ Residence=0.99).With the intent of giving a map representation of 

PM10 from monitoring stations, we applied the Empirical Bayesian kriging (EBK) to expand the 

monitors PM10 point observation to the whole Lombardy territory. Empirical Bayesian kriging 

(EBK) is a geostatistical interpolation method that automates the most difficult aspects of 

building a valid kriging model. Other kriging methods in Geostatistical Analyst require you to 

manually adjust parameters in order to receive accurate results, but EBK automatically calculates 

these parameters through a process of subsetting and simulations. Empirical Bayesian kriging 

also differs from other kriging methods by accounting for the error introduced by estimating the 

underlying semivariogram [78, 79].  

A map of observed PM10 mean concentration for the whole study period 2010-2013 is shown in 

(Figure 10). 
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Figure 10: Prediction of PM10 concentration by Empirical Bayesian Kriging (2010-2013). 

We assume that the day of the visit subjects are exposed to levels of PM10 measured by the 

“Policlinico” station, as the time elapsed in the Hospital to perform all the examinations 

(approximately five hours) is supposed to be sufficient to experience outcomes related to very 

short-term effect. The use of both monitoring stations and Eulerian model is forced for very 

recent data, when data estimated from FARM model are not available, while monitors data are. 

4.2 miRNAs expression data analysis 

Stage 1 

The new technology used for real-time PCRs allowed to get a quantitative measurement in terms 

of Related Cycle Threshold (Crt) of the expression of the entire miRNome. Crt is the number of 

PCR cycles at which the efficiency of the reaction Real-Time PCR miRNA target is maximal. 

Thus the starting point was a dataset containing the Crt values of 733 human miRNAs for each 

subject of the first stage analysis (N=1250). First of all it was applied an automatic miRNAs 

selection, setting missing values and values with Crt >27 or Amp score >1.24 equal to the 

detection limit of CRT=28. In this way, miRNAs assumed not to be detected because having a 

Crt above the threshold of 28 was set at 28. The choice of Crt=28 (lower than the usual value of 

detection limit used in  Real-time PCR) is due to the need of preamplification reaction, the large 
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number of miRNAs target and low volume of Real Time reaction. Afterwards, in order to try to 

remove the background noise, three different strategies of miRNAs selection were performed. 

 SET1: Removing miRNAs completely not expressed (Crt=28) in    all samples:  527 

miRNAs remaining; 

 SET2: Removing miRNAs do not  expressed (Crt=28) in at least 30% of samples : 152 

miRNAs remaining (keeping miRNAs expressed (Crt≠28) in at least 70% of samples); 

 SET3: Removing miRNAs do not  expressed (Crt=28) in at least 10% of samples : 105 

miRNAs remaining (keeping miRNAs expressed (Crt≠28) in at least 90% of samples); 

On each of these miRNAs sets three different normalization methods were applied. The 

normalization aimed at removing experiment-specific effects in order to maximize the true 

biological information contained in expression measures. No consensus exists about which 

procedure performs best [80, 81], the following normalization methods were applied: 

 Endogenous U6:  

DELTACrt= Crt- (Arithmetic Mean Ct of U6 across samples)  

 Global Mean: 

 DELTACrt= Crt- (Arithmetic Mean Crt of each miRNAs across samples) 

 Mean of 4 more stable miRNAs:  

DELTACRT= CRT- (Arithmetic Mean Crt of 4 more stable miRNAs across samples). Finally, 

after calculating DELTACRT, relative quantification defined as: RQ=2^(-DELTACRT)[82]  

were calculated for each normalization methods applied. The performance of the different 

normalization strategies is assessed by [80, 81]: (1) evaluating their ability to reduce the 

experimental induced (technical) variation, (2) determining their power to extract true biological 

variation. 

4.3 Association between miRNAs expression and PM10 exposure 

Standard descriptive statistics were used to summarize data. In order to verify the association 

between miRNAs expression and PM10 we first fitted multiple linear regression models. We 

checked the assumptions of models by means of both graphical inspections and formal test 

which were particularly useful given the judge amount of miRNA to be tested. 

We will validate the "iid" assumption of linear regression by examining the residuals of our final 

model and testing the heteroscedasticity by means of the White test, moreover the  Durbin-

Watson  

statistic was used to test  for first order correlation of error terms. We tested the normality 

assumption of errors using the normal probability plot and the Shapiro-Wilks statistic. Finally 



 

35 
 

plots of residuals versus predicted values and Lack of Fit tests were used to explore potential 

nonlinearity. Logarithmic transformation on miRNA expression was performed in order to 

improve the normality and linearity assumptions. The following adjusting variables were 

selected a priori, based on previous work investigating associations between miRNAs and 

particles in foundry workers [68]: age, body mass index, cigarette smoking (never, former, or 

current), and pack-years. We adjusted for percent of granulocytes (to control for possible shifts 

in leukocyte differential count), date, Seasonality (using sine and cosine) and apparent 

temperature. It was assumed that: 

 Exposure: Is the daily PM10 exposure estimate (µg/m^
3
) from Eulerian model for the 4x4 

km cell containing the address of the Center for Obesity and Weight Control. The 

exposure lag period chosen for the analysis is of zero days (daily exposure of blood 

collection day). The hypothesis underlying this choice is that, the mechanism starting 

with PM10  inhalation, with subsequent inflammatory reaction in lungs, release of ECVs 

by the respiratory system in systemic circulation, and finally the potential transfer of 

miRNAs by ECVs, is a short term mechanism. Thus, ideally, the subject arrived at the 

Center for Obesity and Weight Controls inhaled the exposure estimated by Eulerian 

model in the 4x4 km cell containing the address of the Centre which triggers the above 

mechanisms. 

 Outcome: Is the Relative quantification RQ of each miRNAs. log2 transformation was 

applied in order to satisfy the normality assumption of linear regression model.  

Since in each run of OpenArray were simultaneous analysed up to 4 OpenArray plates, identified 

by a barcode, for a total of 12 samples (3 per plate)  it was possible identify an  hierarchical data 

structure with three levels: sample level (level-1), barcode level (level-2) and run level (level-3) 

(Figure 11).  

 

Figure 11: Three levels hierarchical data structure: run level (level-1), barcode level (level-2) and sample level 

(level-3). In each run of OpenArray were simultaneous analysed up to 4 OpenArray plates,  identified by a barcode, 

for a total of 12 samples (3 per plate). 



 

36 
 

We developed a three-levels hierarchical linear model (HLM) [83, 84] using the MIXED 

procedure in SAS. The equations necessary for estimating three-levels mixed effect linear model 

are: 

 Level-1  i samples  : The level-1 model for three-level HLM, for sample i, barcode j, and 

run k, can be given as follows:  

                                    Yijk = π0jk + π1jk A1ijk + eijk                                                                      (Eq.1) 

In (Eq.1), Yijk is represented as the miRNAs expression of sample i associated with barcode  j, 

and run k. Predictor is A1ijk (say, A). The coefficient π0jk is the intercept, π1jk is the slope for A. 

Further, A1ijk is a continuous predictor, and is grand-mean centered. 

Grand mean centering was defined previously, under two-level HLM. The term eijk represents the 

random effect for sample i, barcode j, and run k, which is normally distributed with mean zero 

and variance σ
2 

. 

 Level-2  j barcode: The level-2 model is formulated by using level-1 intercept π0jk and 

slopes π1jk  as outcomes. The level-2 equation, where X1jk, is a continuous predictor  and 

grand-mean centered, can be given as follows: 

                                                             π0jk = β00k +β01k X1jk  + r0jk                                                      (Eq.2) 

                                                              π1jk = β10k +β11k X1jk + r1jk 

The parameters β00k, β10k are level-2 intercepts. Further, the coefficients β01k ,  β11k, are level-2 

slopes. The terms r0jk, r1jk, and are random effects for barcode j, and run k.  

 Level-3  k barcode:   For run k, the level-3 model can be formulated as follows: 

                                                       β00k = γ000 + γ001 W1k +  u00k                                                          (Eq.3) 

β01k = γ010 + γ011 W1k + u01k 

β10k = γ100 + γ101 W1k + u10k 

β11k = γ110 + γ111 W1k +  u11k 

In the level-three model, the level-2 intercepts and slopes are used as outcomes. The terms u00k, 

u02k, u10k, u11k in (Eq.3) are random effects associated with run k. The single-equation can be 

formulated as follows, by substituting (Eq.3) in (Eq.2), and then substituting the newly produced 

(Eq.2) in (Eq.1).      

Yijk = π0jk + π1jk A1ijk + eijk        

Yijk =β00k +β01k X1jk  + r0jk + β10k  A1ijk +β11k X1jk  A1ijk + r1jk  A1ijk+ eijk             

Yijk = γ000 + γ001 W1k + γ010 X1jk + γ011 W1k X1jk + γ100 A1ijk  + γ101 W1k A1ijk + γ110 X1jk  A1ijk  + 

+ γ111 W1k X1jk  A1ijk   +[ u00k  + u01k  X1jk  +u10k A1ijk   + u11k X1jk  A1ijk   + r0jk+ r1jk  A1ijk+ eijk   ]  

(Eq.4)  
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In (Eq.4), the parameter γ000 is interpreted as the predicted miRNAs expression for a reference 

sample associated with a reference barcode in a reference run (in this case, we assume all Xs, Ws, 

and As equal to zero). The terms γ001, γ010, γ100, are the simple effects of individual sample, 

barcode, and run level predictors. The parameters γ011, γ101, γ110, represent simple two-way 

interaction effects of the sample, barcode, and run level predictor. The terms γ111, represent the 

three-way interaction effect on miRNAs expression due to sample, barcode, and run level 

predictors. Equation (Eq.4) also consists of residual terms associated with all three levels. The 

level-1 residual, eijk, is the unique effect of sample i on miRNA expression, associated with 

barcode  j, and run  k. Similarly, r0jk is the unique effect of barcode j from run k, and u00k is the 

unique run effect for kth run for a reference barcode and reference sample. The terms r’s and u’s 

are level-2 and level-3 residual terms respectively associated with slopes. The interaction terms 

of random effect and individual predictor or cross-level predictors are also present in the above 

model. For example, the term { r1jk A1ijk } is the interaction of the unique effect associated with 

sample A-slope, and { u11k X1jk  A1ijk } is the three-way interaction between X, A, and the 

residual term associated with the slope of X. 

Assumptions  

The following assumptions can be made for three-level HLM.  

a) The error terms of each level-1 unit should have a mean of zero, and the error terms 

should be multivariate normally distributed. If, for example, we consider level-1 and 

level-2 units as sample and barcode, respectively, then the mean of the error within each 

barcode  should be zero, and these error terms should be multivariate normally 

distributed.  

b) It is assumed that the relationship between predictors and outcome variables, at all three 

levels, is linear.  

c) Another assumption is the homogeneity of variance. That is, all barcodes should have 

equal variances in the sample.  

d)  Level-1 predictors are independent of the level-1 error term. In other words, the 

covariance between the level-1 predictors and the error term should equal zero.  

e) Level-2 and level-3 error terms have a mean of zero and follow a multivariate normal 

distribution.  

f) Level-2 predictors are independent of all level-2 error terms and level-3 predictors are 

independent of all level-3 error terms.  

g) The level-1 error terms are independent of (uncorrelated to) level-2, and level-3 error 

terms in the model. That is, the correlation is zero between the level-1 error term and the 
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level-2 error term in the model for the level-1 intercept, or the error term in any of the 

equations used to estimate the slopes of level-1 variables. 

The use of three-levels hierarchical linear models allowed to investigate other variability sources 

linked to the outcome. In particular we inspect the following research questions:  

1) how much of the variability in miRNAs expression is attributable to barcodes and runs? 

2) does the association between the level-1 predictor PM10 vary among barcode or run?  

To answer to this questions we proceeded according the following model selection strategy: 

 Model 1 - Unconditional model: For the three-level HLM, the unconditional model is 

formulated by using no predictors in the model and just random effect for the intercept to 

estimate the amount of variance in miRNA expression attributable to barcodes and runs. 

The resulting level-1, level-2 and level-3 unconditional models are: 

Level –1 Unconditional model:  

                                                   Yijk = π0jk +  eijk                                                         (Eq.5) 

Level-2 Unconditiona         

                                                     π0jk = β00k + r0jk                                                        (Eq.6)                                                                                                                            

                                                                 π1jk = β10k + r1jk 

Level-3 Unconditional model: 

                                                   β00k = γ000 +  u00k                                                                            (Eq.7) 

β10k = γ100 +  u10k 

SAS code 

proc mixed data=dataset method=ml; 

class barcode run; 

model mirna=/solution; 

random intercept/sub=run type=vc; 

random intercept/sub=barcode(run) type=vc;run; 

This model allows to answer to the first research question, we used the three variance 

estimates to calculate the intra-class correlation coefficients ICCs for barcode and 

𝐼𝐶𝐶𝑏𝑎𝑟𝑐𝑜𝑑𝑒 =
𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒

2

𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒
2 +𝜎𝑟𝑢𝑛

2 +𝜎𝑒𝑟𝑟𝑜𝑟
2                                                                                (Eq.8) 

 

𝐼𝐶𝐶𝑟𝑢𝑛 =
𝜎𝑟𝑢𝑛

2

𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒
2 +𝜎𝑟𝑢𝑛

2 +𝜎𝑒𝑟𝑟𝑜𝑟
2                                                                                       (Eq.9)                                                                      

ICCbarcode expresses the similarity (correlation between) of samples in the same barcode 

(within the same run); or alternatively informs us of how much of the total variation in 
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miRNAs expression exists between barcode. ICCrun expresses the similarityof barcode 

within the same run, ignoring within-class variation. 

 Model 2: Model 1 + level - 1 fixed effect. We included the sample-level predictor PM10  

proc mixed data= dataset covtest method=ml; 

class barcode run; 

model mirna=PM10_policlinico /solution; 

random intercept /sub=run type=vc; 

random intercept /sub=barcode(run) type=vc;run; 

Results indicate the relationship between level-1 predictor PM10 and  the outcome miRNAs 

expression. 

 Model 3: Model2 + random slopes for level-1 predictor PM10. We expanded Model 2 

specifying the PM10 predictor as random slope at both barcode and run level.  

proc mixed data=dataset covtest method=ml; 

class barcode run; 

model mirna=PM10_policlinico /solution; 

random intercept PM10_policlinico /sub=run type=vc; 

random intercept PM10_policlinico /sub=barcode(run) type=vc; run; 

This model allows to answer to the second research question: fixed effects results provide 

the same information as Model2, random slope results reveal if the relationships between 

the level-1 predictor PM10 and the outcome miRNAs expression vary between barcode 

and run. This analysis was conducted for exploratory purposes initially on the first top 10 

miRNAs identified by a simple multivariable regression model and then applied to the 

three sets of miRNAs identified. The final model was adjusted for age, body mass index, 

cigarette smoking (never, former, or current), and pack-years. We adjusted for percent of 

granulocytes (to control for possible shifts in leukocyte differential count), date, 

Seasonality (using sine and cosine) and apparent temperature. The results were reported 

as Variation(%)=[2^(β*10) -1]x100 expresses the percentage variation in miRNAs 

expression associated with an increase of 10 (µg/m^3) in PM10. 

Finally, to control the expected proportion of incorrectly rejected null hypothesis in 

multiple comparisons, false discovery rate control (FDR) [85, 86] was applied. On the 

basis of FDR p-value significance (threshold of 0.20 or 0.10) and a set of top miRNAs 

were identified. 



 

40 
 

4.4 Mediation Analysis 

4.4.1 The Simple Mediation Model 

Mediation analysis is a statistical method used to help answer the question as to how some causal 

agent X transmits its effect on Y. What is the mechanism, be it emotional, cognitive, biological, 

or otherwise, by which X influences Y? The most basic of mediation models—the simple 

mediation model—is represented in conceptual diagram form in Figure 12. As can be seen, this 

model contains two consequent variables (M) and (Y) and two antecedent variables (X) and (M), 

with X causally influencing Y and M, and M causally influencing Y. A simple mediation model 

is any causal system in which at least one causal antecedent X variable is proposed as 

influencing an outcome Y through a single intervening variable M. In such a model, there are 

two distinct pathways by which a specific X variable is proposed as influencing Y. These 

pathways are found by tracing every way one can get from X to Y while never tracing in a 

direction opposite to the direction an arrow points. One pathway leads from X to Y without 

passing through M and is called the direct effect of X on Y. The second pathway from X to Y is 

the indirect effect of X on Y through M. It first passes from antecedent X to consequent M and 

then from antecedent M to consequent Y. The indirect effect represents how Y is influenced by X 

through a causal sequence in which X influences M, which in turn influences Y. In a mediation 

model, M is typically called a mediator variable. Once X exerts its effect on M, then M’s causal 

influence on Y produces variation in Y. 

When thinking about whether a phenomenon or theory you are studying could be conceptualized 

as a mediation process, it is important to keep in mind that mediation is ultimately a causal 

explanation. It is assumed that the relationships in the system are causal, and, importantly, that M 

is causally located between X and Y. It must be assumed, if not also empirically substantiated, 

that X causes M, which in turn causes Y. M cannot possibly carry X’s effect on Y if M is not 

located causally between X and Y. 

Estimation of the Direct, Indirect, and Total Effects of X 

When empirically testing a causal process that involves a mediation n component, of primary 

interest is the estimation and interpretation of the direct and indirect effects along with inferential 

tests thereof. To derive these effects, one must also estimate the constituent components of the 

indirect effect, meaning the effect of X on M as well as the effect of M on Y, although the 

constituent components of the indirect effect are not of primary interest in modern mediation 

analysis. Many researchers often estimate the total effect of X on Y as well, although doing so is 

not required for the purpose of interpretation. 
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Figure 12 Conceptual (Panel A) and Statistical (Panel B) diagram of simple mediation model. 

The simple mediation model represented in the form of a statistical diagram can be found in 

Figure 12 (Panel B). Notice that in comparing Panel A and B, there is little difference between 

the conceptual and statistical diagrams representing a simple mediation model. As there are two 

consequent variables in this diagram, two linear models are required, one for each consequent. 

This statistical diagram represents two equations:  

                                                              𝑀 = 𝑖1  + 𝑎𝑋 + 𝑒𝑀                                          (Eq.10) 

                                                                𝑌 = 𝑖2  + 𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑌                                 (Eq.11) 

where 𝑖1  and 𝑖2   are regression intercepts, 𝑒𝑀 and 𝑒𝑌 are errors in the estimation of M and Y, 

respectively, and a, b, and 𝑐′ are the regression coefficients given to the antecedent variables in 

the model in the estimation of the consequents. The coefficients of the model are treated as 

estimates of the putative causal influences of each variable in the system on others, and the 

analytical goal is to estimate these coefficients, piece them together, and interpret. These 

coefficients can be estimated by conducting two OLS regression analyses. 

The Direct Effect of X on Y 

In (Eq.11), 𝑐′ estimates the direct effect of X on Y. A generic interpretation of the direct effect is 

that two cases that differ by one unit on X but are equal on M are estimated to differ by 𝑐′units 

on Y. More formally,  

                                            𝑐′ = [𝑌̂ |(𝑋 = 𝑥, 𝑀 = 𝑚)] − [𝑌̂ |(𝑋 = 𝑥 − 1, 𝑀 = 𝑚)]               (Eq.12) 

where m is any value of M, | means conditioned on or given, and the hat over Y means estimated 

or expected from the model. In other words, for two cases with M = m but that differ by one unit 

on X, 𝑐′ is the estimated value of Y for the case with X = x minus the estimated value of Y for the 

case with X = x − 1. As can be determined looking at equation 4.3, the sign of 𝑐′tells whether the 

case one unit higher on X is estimated to be higher(𝑐′= +) or lower (𝑐′= −) on Y. So a positive 

direct effect means that the case higher on X is estimated to be higher on Y, whereas a negative 

direct effect means that the case higher on X is estimated to be lower on Y. In the special case 
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where X is dichotomous, with the two values of X differing by a single unit (e.g., X = 1 and X = 

0), 𝑌̂ can be interpreted as a group mean, so   𝑐′ = [𝑌̅ |(𝑋 = 𝑥, 𝑀 = 𝑚)] − [𝑌̅ |(𝑋 = 𝑥 − 1, 𝑀 =

𝑚)], meaning 𝑐′ estimates the difference between the two group means holding M constant. This 

is equivalent to what in analysis of covariance terms is called an adjusted mean difference. 

The Indirect Effect of X on Y 

Before defining the indirect effect, it is first necessary to discuss what a and b estimate. In this 

model, a quantifies how much two cases that differ by one unit on X are estimated to differ on M, 

with the sign determining whether the case higher on X is estimated to be higher (+) or lower (−) 

on M.  That is, 𝑎 = [𝑀̂ |(𝑋 = 𝑥)] − [𝑀̂ |(𝑋 = 𝑥 − 1)] , when X is a dichotomous variable coded 

by a unit difference, a in (Eq.10) represents the difference between the two group means on M:     

                                                        a = [M |(X = x)] − [M | (X = x − 1)] 

The b coefficient from equation (Eq.11) has an interpretation analogous to  𝑐′, except with M as 

the antecedent. Two cases that differ by one unit on M but that are equal on X are estimated to 

differ by b units on Y. As with a and  𝑐′, the sign of b determines whether the case higher on M is 

estimated as higher (+) or lower (−) on Y: 

𝑏 = [𝑌̂ |(𝑀 = 𝑚, 𝑋 = 𝑥)] − [𝑌̂ |(𝑀 = 𝑚 − 1, 𝑋 = 𝑥)] 

The indirect effect of X on Y through M is the product of a and b. The indirect effect tells us that 

two cases that differ by one unit on X are estimated to differ by ab units on Y as a result of the 

effect of X on M which, in turn, affects Y. The indirect effect will be positive (meaning the case 

higher on X is estimated to be higher on Y) if a and b are both positive or both negative, whereas 

it will be negative (meaning the case higher on X is estimated to be lower on Y) if either a or b, 

but not both, is negative. Although one can interpret the indirect effect without considering the 

signs of a and b, doing so can be dangerous, because the sign of ab is determined by two 

different configurations of the signs of a and b. A certain theory you are testing might predict ab 

to be positive because, according to the process the theory explains, a and b should both be 

positive. But what if, after estimation, a and b turned out to be negative? This would yield a 

positive indirect effect as predicted, yet this pattern of results for a and b is exactly opposite to 

what the theory predicts, and this should cast some doubt on whether the theory is adequately 

describing the process generating your data. 
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The Total Effect of X on Y 

The direct and indirect effects perfectly partition how differences in X map on to differences in 

Y, the so-called total effect of X, denoted here as c. The total effect c quantifies how much two 

cases that differ by one unit on X are estimated to differ on Y. That is, 

𝑐 = [𝑌̂ |(𝑋 = 𝑥)] − [𝑌̂ |(𝑋 = 𝑥 − 1)] 

In a simple mediation model, c can be derived by estimating Y from X alone: 

                                                                  Y = i3 + cX + eY                                                   (Eq.13) 

When X is a dichotomous variable coded by a single unit difference, c is the difference between 

the group means on Y: c = [Y | (X = x)]−[Y | (X = x−1)]. Regardless of whether X is dichotomous, 

the total effect of X on Y is equal to the sum of the direct and indirect effects of X: c = 𝑐′+ ab. 

This relationship can be rewritten as ab = c-𝑐′, which provides another definition of the indirect 

effect. The indirect effect is the difference between the total effect of X on Y and the effect of X 

on Y controlling for M, the direct effect. 

That the total effect of X is the sum of the direct and indirect effects can be illustrated by 

substituting (Eq.11) into equation (Eq.12), thereby expressing Y as a function of only X: 

𝑌 = 𝑖2  + 𝑏(𝑖1+𝑎𝑋 + 𝑒𝑀) + 𝑐′𝑋 + 𝑒𝑌 

which can be equivalently written as:  

                                           𝑌 = (𝑖2  + 𝑏𝑖1 ) + (𝑎𝑏 + 𝑐′)𝑋 + (𝑒𝑌 + 𝑏𝑒𝑀 )                           (Eq.14) 

 

Although it may not look obvious, (Eq.14) is a simple linear function of X, just as (Eq.13). In 

fact, equations (Eq.13)and (Eq.14)are identical if you make the following substitutions: c = ab + 

𝑐′, i3 = i2 + bi1, and 𝑒𝑌 from equation (Eq.13) = (𝑒𝑌 + 𝑏𝑒𝑀 ) from equation (Eq.14). So ab + 𝑐′ 

has the same interpretation as c. The sum of the direct and indirect effects quantifies how much 

two cases that differ by a unit on X are estimated to differ on Y. 

4.4.2 Statistical Inferences  

Inference about the Direct Effect of X on Y 

The direct effect quantifies the estimated difference in Y between two cases that differ by one 

unit on X independent of M’s influence on Y. Inference for the direct effect of X on Y in a 

mediation analysis is typically undertaken using the standard method used for inference for any 

regression coefficient in a regression model. This involves testing a null hypothesis about T𝑐′ 

against an alternative hypothesis or the construction of a confidence interval for T𝑐′. Except in 

unusual circumstances, researchers focus on ascertaining whether a claim that T𝑐′ is different 

from zero is justified based on the data available. If so, this supports the argument that X is 
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related to Y independent of the mechanism represented by M. If not, one can claim that there is 

no evidence of association between X and Y when the mechanism through M is accounted for. In 

other words, X does not affect Y independent of M’s effect on Y. In terms of a null hypothesis, 

this means testing H0 : T𝑐′= 0 against the alternative Ha : T𝑐′ ≠  0. Framed in terms of a 

confidence interval, this involves determining whether an interval estimate for T𝑐′ includes zero.  

Inference about the Indirect Effect of X on Y through M 

The indirect effect quantifies how much two cases that differ by a unit on X are estimated to 

differ on Y as a result of X’s influence on M, which in turn influences Y. The indirect effect is 

relevant as to whether X’s effect on Y can be said to be transmitted through the mechanism 

represented by the X → M → Y causal chain of events. As with the direct effect, investigators 

typically want to know whether the data allow for the claim that this estimated difference in Y 

attributable to this mechanism can be said to be different from zero. If so, one can claim M 

serves as a mediator of the effect of X on Y. As with inference about the direct effect, this 

inference can be formulated in terms of a null hypothesis test about TaTb or by constructing an 

interval estimate. There are more than a dozen of available approaches [87-90] to statistical 

inference for the indirect effect, the most popular are: 

 The Normal Theory Approach (Sobel Test). Also called the product of coefficients 

approach to inference, the delta method, or the Sobel test, the normal theory approach is 

based on the same theory of inference used for inference about the direct effect, as well 

as other inferential tests widely used in the social sciences and described in elementary 

statistics books. The indirect effect ab is a sample-specific instantiation of TaTb, which is 

subject to sampling variance. With an estimate of the standard error of ab and assuming 

the sampling distribution of ab is normal, a p-value for ab can be derived given a specific 

null hypothesized value of TaTb, or an interval estimate can be generated. Before the 

normal theory approach can be implemented, an estimate of the standard error of ab is 

needed. There are a few such estimators circulating in the literature that have been used 

in mediation analysis [91-94]. The simplest is a function of a and b and their standard 

errors:  

                                                         𝑠𝑒𝑎𝑏 = √𝑎2 𝑠𝑒𝑏
2 + 𝑏2 𝑠𝑒𝑎

2                                                  (Eq.15) 

where 𝑠𝑒𝑎
2 and 𝑠𝑒𝑏

2 are the squared standard errors of a and b, respectively. A slightly 

more complex estimator includes an additional term: 

                                                  𝑠𝑒𝑎𝑏 = √𝑎2 𝑠𝑒𝑏
2 + 𝑏2 𝑠𝑒𝑎 

2 + 𝑠𝑒𝑎 
2 𝑠𝑒𝑏

2                                       (Eq.16) 
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In practice, it typically makes little difference which estimator is used [92, 95]. (Eq.15) is 

sometimes called the “first-order” delta estimator of the standard error and (Eq.16) the 

“second-order” estimator. 

With an estimate of the standard error of the indirect effect, the null hypothesis that TaTb 

= 0 can be tested against the alternative that TaTb ≠0 by taking the ratio of ab to its 

standard error: 

𝑍 =
𝑎𝑏

𝑠𝑒𝑎𝑏
 

and deriving the proportion of the standard normal distribution more extreme than ±Z. 

Using confidence intervals over null hypothesis testing, the standard error of ab can be 

used to generate an interval estimate for TaTb by assuming normality of the sampling 

distribution of ab and applying the following equation: 

                                          𝑎𝑏 − 𝑍𝑐𝑖%𝑠𝑒𝑎𝑏 ≤  𝑇𝑎𝑇𝑏 ≤ 𝑎𝑏 + 𝑍𝑐𝑖%𝑠𝑒𝑎𝑏                   (Eq.17) 

where ci is the confidence desired (e.g., 95) and Zci% is the value of the standard normal 

distribution above which (100 − ci)/2% percent of the distribution resides.  

The normal theory approach is simple enough to conduct, and it can be conducted by 

hand fairly easily if one is careful using the output from any statistical software that 

estimates a, b, and their standard errors. Moreover the normal theory approach can be 

conducted even if one does not have the data used to estimate a, b, and their standard 

errors. Although most researchers would have the original data from their own studies, 

there could be some circumstances in which it is not available (time has passed; the data 

were destroyed, lost, or stored on an obsolete storage medium; etc.). In addition, one 

could apply this approach using the regression coefficients and standard errors provided 

in the tables or text of published studies conducted by someone else that include a 

mediation analysis but not a formal test of the indirect effect. 

These benefits aside (ease of computation, not requiring the data), the normal theory 

approach suffers from two flaws that make it difficult to recommend. First, whether 

inference is based on a hypothesis test or the construction of a confidence interval, this 

method assumes that the sampling distribution of ab is normal. But it has been shown 

analytically and through simulation that the distribution is quite irregular in sample sizes 

that characterize most empirical studies [96, 97]. Because it is never possible to know for 

certain whether the sampling distribution is close enough to normal given the 

characteristics of one’s problem to safely apply a method that assumes normality, it is 

desirable to use a test that does not require this assumption, if one is available. There are 

several inferential tests available  that do not require this assumption and that better 
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respect the irregularity of the sampling distribution of ab than does the normal theory 

approach. Second, simulation research that has compared this approach to various 

competing inferential methods has shown that it is one of the lowest in power and 

generates confidence intervals that tend to be less accurate than some other methods 

described next [98]. If X does influence Y indirectly through M, the normal theory 

approach is relatively less likely to detect it than competing alternatives. So its relatively 

low power combined with the unrealistic normality assumption suggest to avoid the 

Sobel test when possible. A possible alternative is the calculation of Bootstrap 

Confidence Interval. 

 Bootstrap Confidence Intervals. The downfall of the normal theory approach is the 

assumption it makes about the shape of the sampling distribution of the indirect effect 

over repeated sampling from the population. As a member of a class of procedures 

known as resampling methods, bootstrapping [99-103]  is a versatile method that can be 

applied to many inferential problems a researcher might confront. It is especially useful 

when the behaviour of a statistic over repeated sampling is either not known, too 

complicated to derive, or highly context dependent. Regardless of the inferential 

problem, the essence of bootstrapping remains constant across applications. The original 

sample of size n is treated as a miniature representation of the population originally 

sampled. Observations in this sample are then “resampled” with replacement, and some 

statistic of interest is calculated in the new sample of size n constructed through this 

resampling process. Repeated over and over—thousands of times ideally—a 

representation of the sampling distribution of the statistic is constructed empirically, and 

this empirical representation is used for the inferential task at hand. In mediation analysis, 

bootstrapping is used to generate an empirically derived representation of the sampling 

distribution of the indirect effect, and this empirical representation is used for the 

construction of a confidence interval for TaTb. Unlike the normal theory approach, no 

assumption is made about the shape of the sampling distribution of ab. Bootstrap 

confidence intervals better respect the irregularity of the sampling distribution of ab and, 

as a result, yield inferences that are more likely to be accurate than when the normal 

theory approach is used. When used to test a hypothesis, the result is a test with higher 

power. There are six steps involved in the construction of a bootstrap confidence interval 

for TaTb: 

1. Take a random sample of n cases from the original sample, sampling those cases with 

replacement, where n is the size of the original sample. This is called a bootstrap sample. 
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2. Estimate the indirect effect ab* in the bootstrap sample, where ab* is the product of a 

and b from (Eq.10) and (Eq.11). 

3. Repeat (1) and (2) above a total of k times, where k is some large number, saving the 

value of ab* each time. Generally, k of at least a few thousand is preferred. More than 

10,000 typically is not necessary, but in principle, the more the better.  

4. Sort the k indirect effects ab estimated from steps (1), (2), and (3) from low to high. 

5. For a ci% confidence interval, find the value of ab in this distribution of k estimates that 

defines the 0.5(100 − ci)th percentile of the distribution. This is the lower bound of a ci% 

confidence interval. It will be the value of ab in ordinal position 0.005k (100 − ci) of the 

sorted distribution. 

6. Find the value of ab* in this distribution of k estimates that defines the [100 − 0.5(100 − 

ci)]th percentile of the distribution. This is the upper bound of a ci% confidence interval. 

It will be the value of ab in ordinal position k [1 − 0.005(100 − ci)] + 1 of the sorted 

distribution. 

To illustrate steps (1), (2), and (3) of this bootstrap sampling and estimation process, 

Table 2 provides a small-scale example. Suppose to have a sample of n = 10 cases in a 

study measured on variables X, M, and Y, and suppose to generate a bootstrap sampling 

distribution of the indirect effect of X on Y through M. Using the original data in the 

leftmost columns of the table, the obtained indirect effect is ab = 0.770. This is a point 

estimate of TaTb. A bootstrap confidence interval for TaTb is constructed by repeatedly 

taking a random sample of size n from the original sample, with replacement, and 

estimating the indirect effect in each resample. 

Table 2: Bootstrap Estimates of a, b, and the Indirect Effect ab When Taking Two Bootstrap Samples from an 

Original Sample of Size n = 10 Original sample Bootstrap sample 1 Bootstrap sample 2 

Original Sample 

 

Bootstrap sample1 

 
Bootstrap sample2 

Case X M Y 

 

Case X M Y 

 

Case X M Y 

              1 4.1 3.4 2.1 

 

1 3.8 6.3 3.2 

 

1 4.5 2.5 4.3 

2 4.2 5.4 2.2 

 

2 4.2 5.4 2.2 

 

2 4.3 8.6 5.3 

3 3.3 3.2 4.6 

 

3 4.5 2.5 4.3 

 

3 4.1 3.4 2.1 

4 4.3 8.6 5.3 

 

4 3.3 3.2 4.6 

 

4 3.0 5.3 6.5 

5 3.0 5.3 6.5 

 

5 4.1 3.4 2.1 

 

5 4.8 2.1 4.8 

6 4.5 2.5 4.3 

 

6 4.9 2.9 3.3 

 

6 4.5 3.3 5.1 

7 3.8 6.3 3.2 

 

7 4.5 3.3 5.1 

 

7 4.2 5.4 2.2 

8 4.9 2.9 3.3 

 

8 4.3 8.6 5.3 

 

8 4.9 2.9 3.3 

9 4.5 3.3 5.1 

 

9 4.8 2.1 4.8 

 

9 3.3 3.2 4.6 

10 4.8 2.1 4.8 

 

10 3.0 5.3 6.5 

 

10 3.8 6.3 3.2 

        

 

        

 

        

a 

  

1.16 

 

a 

  

2.14 

 

a 

  

1.16 

b 

  

3.24 

 

b 

  

3.15 

 

b 

  

3.18 

ab 

  

3.76 

 

ab* 

  

6.74 

 

ab* 

  

3.69 
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The middle columns of Table 2 contain one such bootstrap sample, which yields an 

indirect effect of ab = 0.526. The rightmost columns contain a second bootstrap sample 

with an indirect effect of ab= 1.039. As this process is repeated over and over, a 

distribution of ab is built which functions as an empirical proxy for the unknown 

sampling distribution of ab when taking a random sample of size n from the original 

population. Steps (5) and (6) are generic ways of describing how the endpoints of a 

confidence interval are constructed given k bootstrap estimates of the indirect effect. A 

specific example will help. If a ci = 95% confidence interval is desired, the lower and 

upper bounds of the interval are defined as the bootstrap values of ab  that define the 

2.5th and 97.5th percentiles in the distribution of k values of ab. Suppose k = 10, 000. In 

that case, after sorting the 10,000 values of ab obtained from repeated bootstrap sampling 

from low to high, the 2.5th and 97.5th percentiles of the distribution will be in ordinal 

positions 0.005(10, 000)(100−95) = 250 and (10, 000)[1−0.005(100−95)] + 1 = 9,751 in 

the sorted list, respectively. These are the lower and upper bounds of the 95% confidence 

interval for TaTb. Obviously, this is a computationally intensive process that requires a 

computer.  

The use of bootstrap confidence as inferential approach it is not without its pitfalls and 

criticisms:  

- first, in order to have much confidence in bootstrap-based inference, it is clearly 

important that one is able to muster some faith in the quality of one’s sample as a 

reasonable representation of the population with respect to the distribution of the 

measured variables. Bootstrapping is founded on the notion that resampling with 

replacement from one’s sample mimics the original sampling process. But if the 

sample does not adequately represent the population from which the sample was 

derived, then bootstrapping will produce results that are hard to trust. It is not 

required that the original sample be obtained randomly from the population, but 

merely that the distribution of the measured variables roughly mirrors the 

population distributions. Random sampling facilitates this representativeness, of 

course, but it isn’t required; 

- second, bootstrapping is particularly useful relative to the normal theory approach 

in smaller samples, because it is in smaller samples that the non-normality of the 

sampling distribution of ab is likely to be most severe, the large sample 

asymptotics of the normal theory approach are harder to trust, and the power 

advantages of bootstrapping are more pronounced. But if the original sample is 
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very small, in principle, there is a strong potential for one or two cases to distort a 

bootstrap analysis even more than they do a more traditional inferential 

procedure. If the original sample is very small, an unusual case or two are highly 

likely to appear in a bootstrap sample multiple times, and this can distort a 

bootstrap analysis; 

- third, because bootstrap confidence intervals are based on random resampling of 

the data, the endpoints of the confidence interval are not fixed quantities. Rather, 

each time a bootstrap confidence interval is produced from the same data, a 

slightly different confidence interval will result, however the sampling variation 

from analysis to analysis can be made arbitrarily small simply by setting the 

number of bootstrap samples to an arbitrarily large number. This raises the 

question as to how many bootstrap samples is enough. It can be shown that the 

variation in the estimation of the limits of a confidence interval shrinks 

remarkably quickly as the number of bootstrap samples increases. Generally 

speaking, 5,000 to 10,000 bootstrap samples is sufficient in most applications. 

There is relatively little added value to increasing it above 10,000, as the gain in 

precision is fairly marginal beyond that. 

A bootstrap confidence interval calculated using the approach just described is 

called a percentile bootstrap confidence interval, because it is based entirely on 

values of ab* that demarcate the upper and lower (100 − ci)/2% of the distribution 

of k bootstrap estimates of the indirect effect. It is also possible calculate  bias-

corrected bootstrap confidence intervals (BC bootstrap confidence intervals) are 

like percentile confidence intervals but the endpoints are adjusted as a function of 

the proportion of k values of ab* that are less than ab, the point estimate of the 

indirect effect calculated in the original data. The endpoints will be adjusted 

upward or downward to varying degrees depending on that proportion. A 

variation on this variation, known as the bias-corrected and accelerated bootstrap 

confidence interval, makes an additional adjustment based on the skew of the 

distribution of k bootstrap estimates. The following steps [87, 104-106]; allow to 

generate a bias-corrected bootstrap confidence interval for the indirect effect: 

1. Follow steps (1) through (4) to generate k bootstrap estimates of the indirect effect, ab* 

as described before. 

2. Calculate 𝑍(𝑝̃), the Z-score that cuts off the lower 100 𝑝̃ % of the standard normal 

distribution from the rest of the distribution, and 𝑝̃ is the proportion of the k values of 

ab* that are less than ab calculated using the original data. 
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3. Calculate Zlow = Zci +2 𝑍(𝑝̃) and Zhigh = −Zci +2 𝑍(𝑝̃)), where Zci is the Z-score that cuts 

off the lower (100 − ci%)/2 percent of the standard normal distribution from the rest of 

the distribution. For instance, for a 95% confidence interval, Z95 = −1.96. 

4. Calculate plow and phigh, the proportion of the standard normal distribution the left of 

Zlow and Zhigh, respectively. 

5. Find the value of ab* in the distribution of k estimates that defines the 100plow percentile 

of the distribution. This is the lower bound of a ci% bias-corrected bootstrap confidence 

interval, and will be the value of ab* in ordinal position (plow)k of the sorted 

distribution. If (plow)k is not an integer, round it down to the lowest integer. 

6. Find the value of ab* in the distribution of k estimates that defines the 100phigh 

percentile of the distribution. This is the upper bound of a ci% bias-corrected bootstrap 

confidence interval, and will be the value of ab* in ordinal position (phigh)k of the sorted 

distribution. If (phigh)k is not an integer, round it up to the next highest integer. 

Observe that the upper and lower bounds of the 95% bootstrap confidence 

intervals calculated earlier are not equidistant from the point estimate. This is not 

due to the random resampling process but instead reflects the actual asymmetry of 

the sampling distribution of ab. Confidence intervals based on the normal theory 

approach to inference, by contrast, impose a symmetry constraint on this distance. 

The endpoints of a 95% confidence interval using equation 4.9 are necessarily 

1.96 standard errors from the point estimate. The endpoints are symmetrical 

around the point estimate. Thus, percentile-based and BC bootstrap confidence 

intervals are called “asymmetric,” whereas normal theory confidence intervals are 

“symmetric.” Asymmetric approaches to interval estimation are preferred when 

the sampling distribution of the estimator is asymmetric and non-normal, as is the 

case for the sampling distribution of ab. 

Bootstrapping is not the only approach to the construction of asymmetric 

confidence intervals. Although bootstrapping is recommended, it does have a few 

weaknesses, among them that it requires the original data (not usually a real 

problem typically), the endpoints of the confidence interval will vary from run to 

run (but not if you seed the random number generator yourself), and it isn’t 

implemented in all software one might choose to use. An alternative to get around 

these problems: Monte Carlo confidence intervals. Monte Carlo confidence 

intervals [87, 98, 107] are simulation-based. This approach relies on the fact that 

though the distribution of ab is not normal, the sampling distributions of a and b 

tend to be nearly so. Furthermore, in simple mediation analysis using OLS 
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regression, a and b are independent across repeated sampling (i.e., their 

covariance is zero). Thus, an empirical approximation of the sampling distribution 

of ab can be generated by randomly sampling values of a and b from normally 

distributed populations with μ = a, σ = sea and μ = b, σ = seb, respectively, where 

a, b, sea, and seb are the OLS regression coefficients and standard errors from the 

mediation analysis. The sampled values of a and b are then multiplied together to 

produce ab*, and this process is repeated k times. Over the k replications, the 

upper and lower bounds of the confidence interval for ab can be generated using 

the procedure described in steps (4) through (6) for the construction of bootstrap 

confidence intervals. Monte Carlo method is almost as good as bootstrapping and 

better than the normal theory approach.   

Inference about the Total Effect of X on Y 

In a simple mediation model, the total effect of X on Y is the sum of the direct effect of X on Y 

and indirect effect of X on Y through M. Whereas there are many choices available for inferences 

about the indirect effect, inference for the total effect is simple and straightforward. Although the 

total effect is the sum of two pathways of influence, it can be estimated simply by regressing Y 

on X. The regression coefficient for X in that model, c in equation 4.4, is the total effect of X. 

Inference can be framed in terms of a null hypothesis test (H0 : Tc = 0 versus the alternative Ha : 

Tc ≠0) or whether an interval estimate for Tc includes zero.  

4.4.3 The Parallel Multiple Mediator Model 

In a parallel multiple mediator model, antecedent variable X is modelled as influencing 

consequent Y directly as well as indirectly through two or more mediators, with the condition 

that no mediator causally influences another. Figure 13 depicts a parallel multiple mediator 

model with k mediators in conceptual form (Panel A) and in statistical diagram (Panel B). 

Observe that the parallel multiple mediator model looks much like a simple mediation model 

except that it includes more than one mediator. A defining feature of the parallel multiple 

mediator model that distinguishes it from an alternative multiple mediator model, for example 

the serial multiple mediator model, is the constraint that no mediator is modelled as influencing 

another mediator in the model. This constraint is apparent in Figure 13 by the absence of any 

unidirectional arrows linking any mediator to any other mediator. This is not to say that the 

mediators are assumed to be independent. In fact, in most circumstances, the mediators are likely 

to be correlated. Even if they are not, there still may be some advantage to estimating a parallel 

multiple mediator model with k mediators rather than k simple mediation models.  
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Figure 13 Conceptual (Panel A) and Statistical (Panel B) representing a parallel multiple mediator model with k 

mediators. 

Doing so could result in a power boost for tests of indirect effects if each mediator is correlated 

with Y, and doing so affords the ability to compare the sizes of the indirect effects through 

different mediators. In principle, the number of mediators one can include in a parallel multiple 

mediator model is limited only by the number of cases in one’s data file and the number of 

variables one has the foresight to measure as possible mediators. In practice, models with two 

mediators are most commonly estimated. But parallel multiple mediator models can be found 

with three, six, and even as many as seven mediators in a model simultaneously. As can be seen 

in Figure 13, a parallel multiple mediator model with k mediators has k + 1 consequent variables 

(one for each of the k mediators M and one for the outcome variable Y) and so requires k + 1 

equations to estimate all the effects of X on Y. These equations are:  

                                    𝑀𝑖   = 𝑖𝑀𝑖 + 𝑎𝑖𝑋 + 𝑒𝑀𝑖   for all i = 1 to k                                        (Eq.17) 

                                        𝑌 = 𝑖𝑌 + 𝑐′𝑋 + ∑ 𝑏𝑖𝑀𝑖
𝑘
𝑖=1 +𝑒𝑌                                                   (Eq.18) 

In this set of equations, 𝑎𝑖 estimates the effect of X on 𝑀𝑖   , bi estimates the effect of  𝑀𝑖   on Y 

controlling for X and the other k − 1 M variables, and c’ estimates the effect of X on Y holding all 

k M variables constant. Consider a parallel multiple mediator with three proposed mediators. 

With k = 3 mediators, four equations are needed: 

                                                 𝑀1   = 𝑖𝑀1 + 𝑎1𝑋 + 𝑒𝑀1                                                      (Eq.19) 

                                                 𝑀2   = 𝑖𝑀2 + 𝑎2𝑋 + 𝑒𝑀2                                                      (Eq.20) 

                                                 𝑀3   = 𝑖𝑀3 + 𝑎3𝑋 + 𝑒𝑀3                                                      (Eq.21) 
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                                       𝑌 = 𝑖𝑌 + 𝑐′𝑋 + 𝑏1𝑀1 + 𝑏2𝑀2 + 𝑏3𝑀3 + 𝑒𝑀3                               (Eq.22) 

In equations (Eq.19), (Eq.20), and (Eq.21), 𝑎1, 𝑎2, and 𝑎3 quantify the amount by which two 

cases that differ by one unit on X are estimated to differ on 𝑀1   , 𝑀2   , and  𝑀3   , respectively. In 

equation (Eq.22), 𝑏1 estimates the amount by which two cases that differ by a unit on 𝑀1 differ 

on 𝑌 holding 𝑀2, 𝑀3, and X constant. Similarly, 𝑏2 estimates the amount by which two cases 

that differ by a unit on 𝑀2 differ on Y holding 𝑀1, 𝑀3, and X constant, and 𝑏3 estimates the 

amount by which two cases that differ by a unit on 𝑀3 differ on Y holding 𝑀1, 𝑀2, and X 

constant. Finally, c′ estimates the amount by which two cases that differ by one unit on X differ 

on Y holding 𝑀1, 𝑀2, and 𝑀3 constant. The interpretations of 𝑎𝑖 and c′ are not dependent on the 

scale of measurement of X. Whether X is a dichotomous variable or a continuum, the 

interpretation is the same. However, when X is a dichotomous variable with the two groups 

coded by a one unit difference, these can be interpreted as estimated mean differences. For 

instance, suppose the two groups are coded with X = 0 or X = 1. In that case: 

𝑎𝑖 = [𝑀𝑖
̅̅ ̅|(𝑋 = 1)] − [𝑀𝑖

̅̅ ̅|(𝑋 = 0)] and 𝑎𝑖 = [𝑌 ∗̅̅ ̅̅ |(𝑋 = 1)] − [𝑌 ∗̅̅ ̅̅ |(𝑋 = 0)] 

 where 𝑌 ∗̅̅ ̅̅  is an adjusted mean, with all mediators set to their sample means: 

𝑌 ∗̅̅ ̅̅ = 𝑖𝑌 + 𝑐′𝑋 + ∑ 𝑏𝑖𝑀̅𝑖

𝑘

𝑖=1

 

Direct and Indirect Effects in a Parallel Multiple Mediator Model 

In a parallel multiple mediator as in Figure 13, X is modeled to exert its effect on Y through k + 1 

pathways. One pathway is direct, from X to Y without passing through any of the proposed 

mediators, and the other k pathways are indirect, each through a single mediator. In a multiple 

mediator model, the indirect effects are referred to as specific indirect effects. Thus, a model 

with k mediators has k specific indirect effects, one through   𝑀1    (X →  𝑀1    → Y), one through 

  𝑀2    (X →  𝑀2    → Y), and so forth, up through   𝑀𝑘    (X →  𝑀𝑘   → Y). As in a simple 

mediation model, the indirect effect of X on Y through a given mediator   𝑀𝑖    is quantified as the 

product of paths linking X to Y through Mi. In a parallel multiple mediator model, only two paths 

link X to Y through   𝑀𝑖   . The first of these paths is the effect of X to   𝑀𝑖   , and the second is the 

path from   𝑀𝑖    to Y. The regression coefficients corresponding to these paths, when multiplied 

together, yield the specific indirect effect of X on Y through   𝑀𝑖   . So consider the three-mediator 

parallel multiple mediator model estimated with equations (Eq.19) through (Eq.20). In this 

model, the specific indirect of X on Y through   𝑀1    is 𝑎1𝑏1, the specific indirect effect through 

  𝑀2    is 𝑎2𝑏2, and the specific indirect effect of X through 𝑀3 is 𝑎3𝑏3. Most generally, regardless 

of the number of mediators, the specific indirect effect of X on Y through   𝑀𝑖    is estimated as 
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𝑎𝑖𝑏𝑖 from equations (Eq.17) and (Eq.18). A specific indirect effect is interpreted just as in the 

simple mediation model, except with the addition of controlling for all other mediators in the 

model. Thus, the specific indirect effect of X on Y through   𝑀𝑖    is the estimated amount by 

which two cases that differ by a unit on X are estimated to differ on Y as a result of the effect of 

X on   𝑀𝑖   , which in turn affects Y, holding all other mediators constant. When added together, 

the specific indirect effects yield the total indirect effect of X on Y through all mediators in the 

model. In a model with k mediators: 

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑋 𝑜𝑛 𝑌 = ∑ 𝑎𝑖𝑏𝑖

𝑘

𝑖=1

 

For example, in a parallel multiple mediator model with three mediators represented by 

equations (Eq.19) through (Eq.22), the total indirect effect of X on Y is 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3. The 

direct effect of X quantifies how much two cases that differ by a unit on X are estimated to differ 

on Y independent of all mediators. As discussed earlier, this is 𝑐′ in the model of Y from X and all 

mediators (e.g., equation (Eq.22) for the three-mediator model, or equation (Eq.18) more 

generally). As in the simple mediation model, the sum of the direct and indirect effects is the 

total effect of X. In a model with k mediators, from the coefficients in equations (Eq.17) and 

(Eq.18). 

                                                𝑐 = 𝑐′ + ∑ 𝑎𝑖𝑏𝑖
𝑘
𝑖=1                                                                  (Eq.23) 

where c is the total effect of X. The total effect can also be estimated by regressing Y on X alone 

For instance, in the three mediator model, c = 𝑐′+ 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3. Isolation of the total 

indirect effect in equation (Eq.23) shows that the total indirect effect is equal to the difference 

between the total and the direct effects of X: 

𝑐 − 𝑐′ = ∑ 𝑎𝑖𝑏𝑖

𝑘

𝑖=1

 

Inference about the Direct Effect 

As in the simple mediation model, inference about the direct effect of X on Y is straightforward. 

A test of the null hypothesis H0 : Tc’ = 0 versus the alternative Ha : Tc’ ≠0 is available in the 

output from any statistical package that can estimate (Eq.18) using OLS regression. 

Alternatively, a confidence interval can be constructed using equation 𝑐′ − 𝑡𝑐% 𝑆𝑒𝑐′ ≤ 𝑇𝑐’ ≤

 𝑐′ − 𝑡𝑐% 𝑆𝑒𝑐′ . 
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Inference about Specific Indirect Effects 

The normal theory approach for the indirect effect in a simple mediation model can be used for 

statistical inference about specific indirect effects in a parallel multiple mediator model without 

modification. For the specific indirect effect of X on Y through   𝑀𝑖   , the first-order standard 

error estimator is: 

𝑆𝑒𝑎𝑖𝑏𝑖
= √𝑎𝑖

2𝑆𝑒𝑏𝑖

2 + 𝑏𝑖
2𝑆𝑒𝑎𝑖

2  

where Sebi

2  and Seai

2     are the squared standard errors of aiand bi. The second order estimator is: 

𝑆𝑒𝑎𝑖𝑏𝑖
= √𝑎𝑖

2𝑆𝑒𝑏𝑖

2 + 𝑏𝑖
2𝑆𝑒𝑎𝑖

2 + 𝑆𝑒𝑏𝑖

2 𝑆𝑒𝑎𝑖
2  

A test of the null hypothesis that TaiTbi = 0 is constructed by dividing aibi by the estimated standard error 

and deriving a p-value from the standard normal distribution. Alternatively, a ci% confidence interval can 

be constructed as aibi − Z𝑐𝑖%𝑆𝑒𝑎𝑖𝑏𝑖
 ≤ TaiTbi ≤ aibi + Z𝑐𝑖%𝑆𝑒𝑎𝑖𝑏𝑖

 where 𝑐𝑖 is the confidence desired (e.g., 

95) and Z𝑐𝑖% is the value under the normal distribution that cuts off the upper (100 − 𝑐𝑖)/2% of the 

distribution from the rest.  

However this approach is hard to trust. It makes the unrealistic assumption of normality of the sampling 

distribution of the specific indirect effect, and it is one of the more conservative tests available. Also in 

this case bootstrap confidence intervals are the better approach to inference when the original data are 

available for analysis. No assumptions about the shape of the sampling distribution of aibiare made, and 

bootstrap confidence intervals tend to be more powerful than competing methods such as the normal 

theory approach [108]. Using the same procedure described before, a bootstrap confidence interval for a 

specific indirect effect is constructed by taking a random sample with replacement of size n from the 

sample, estimating each specific indirect effect aibi ∗ in the resulting data, and repeating this resampling 

and estimation many times. With several thousand bootstrap estimates of each specific indirect effect, 

endpoints of the confidence interval are calculated using either the percentile or bias corrected method. If 

zero is outside of a 𝑐𝑖% confidence interval, then TaiTbiis declared different from zero with 𝑐𝑖%  

confidence, whereas if the confidence interval straddles zero, the conclusion is that there is insufficient 

evidence that X affects Y through   𝑀𝑖   . 

Pairwise Comparisons between Specific Indirect Effects 

In a multiple mediator model, it is sometimes of interest to test whether one indirect effect is statistically 

different from another. If the indirect effect of X through mediator i (i.e., aibi) is pertinent to the 

mechanism postulated by one theory and the indirect effect of X through mediator j (i.e., ajbj) quantifies 

the mechanism relevant to a second theory, an inference about whether TaiTbi = TajTbj affords a claim as 

to whether one mechanism accounts for more of the effect of X on Y than the other mechanism [109, 110], 
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with an important caveat described below. Although it might seem that such a comparison between 

specific indirect effects would be impossible if the mediators are measured on different metrics, it turns 

out this is not a problem at all. Remember that the specific indirect effect is interpreted as the amount by 

which two cases differing by a unit on X are estimated to differ on Y through the intervening variable 

independent of the other intervening variables. Notice that this interpretation does not include the metric 

of the intervening variable. Specific indirect effects are scaled entirely in terms of the metrics of X and Y 

[68, 89, 111], so two specific indirect effects of the same antecedent on the same consequent can be 

meaningfully compared even if the mediator variables are measured on entirely different scales. Thus, 

standardization is not necessary to conduct an inferential test of  the equality of specific indirect effects 

from X to Y in a multiple mediator model. 

Two inferential approaches have been most widely discussed and disseminated in the literature. A normal 

theory approach is described by [68, 111] based on dividing  aibi−ajbj by an estimate of its standard 

error. One estimator of the standard error of the difference is: 

𝑆𝑒aibi−ajbj
= √𝑏𝑖

2𝑆𝑒𝑎𝑖
2 − 2bibj𝐶𝑂𝑉aiaj

+ 𝑏𝑗
2𝑆𝑒𝑎𝑗

2 + 𝑎𝑗
2𝑆𝑒𝑏𝑗

2 − 2aia𝑗 𝐶𝑂𝑉bibj + 𝑎𝑖
2𝑆𝑒𝑏𝑖

2     

where 𝐶𝑂𝑉aiaj
 is the covariance between aiand a𝑗 , and 𝐶𝑂𝑉bibj is the covariance between bi and bj. 

[111] Offers a different standard error estimator that does not require the covariance between aiand a𝑗  by 

assuming it is zero, which is equivalent to constraining the correlation between the residuals in the models 

of   𝑀𝑖    and   𝑀𝑗    to be zero: 

𝑆𝑒aibi−ajbj
= √𝑏𝑖

2𝑆𝑒𝑎𝑖
2 + 𝑏𝑗

2𝑆𝑒𝑎𝑗
2 + 𝑎𝑗

2𝑆𝑒𝑏𝑗

2 − 2aia𝑗 𝐶𝑂𝑉bibj + 𝑎𝑖
2𝑆𝑒𝑏𝑖

2  

The ratio of the difference to its standard error is then calculated and a p-value for a test of the null  

hypothesis that TaiTbi = TajTbjcan be derived using the standard normal distribution. Alternatively, a 95% 

confidence interval for the difference can be computed as: 

                                                       (aibi−ajbj) ± 1.96𝑆𝑒aibi−ajbj
                                                                                                     (Eq.23) 

In this expression, 1.96 can be replaced with an appropriate critical Z from a table of normal probabilities 

for different confidence levels (e.g., 1.645 for 90% or 2.57 for 99% confidence). 

Like all normal theory approaches discussed thus far, this method requires the assumption that the 

sampling distribution of the difference between specific indirect effects is normal. It turns out that this is a 

fairly reasonable assumption, but since an assumption can never be proven true, bootstrapping offers an 

alternative test without requiring this assumption. A bootstrap confidence interval is derived by 

estimating the difference between specific indirect effects over repeated bootstrap sampling and model 

estimation. Using the resulting empirical approximation of the sampling distribution of the difference 

between specific indirect effects, a confidence interval for the difference can be constructed using either 

the percentile method described earlier or through bias correction. 

In a model with k mediators, will be conducted k(k − 1)/2 pairwise comparisons, one for each possible 

difference between specific indirect effects. A confidence interval that does not contain zero provides 
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evidence that the two indirect effects are statistically different from each other, whereas a confidence 

interval that straddles zero supports the claim of no difference between the specific indirect effects. 

It is tempting to treat this as a test of the difference in strength of the mechanisms at work linking X to Y, 

or that one indirect effect is larger than another in an absolute sense. However, such an interpretation is 

justified only if the point estimates for the two specific indirect effects being compared are of the same 

sign. Consider, for instance, the case where aibi = −0.30 and ajbj = 0.30. A test of the difference between 

these specific indirect effects may lead to the claim that their difference is not zero, but this does not 

imply the mechanisms are of different strength or that one indirect effect is bigger. The point estimates 

suggest one mechanism results in a positive difference in Y, whereas the other yields a negative difference 

of equal magnitude. In an absolute sense, they are equal in size by the point estimates, yet statistically 

different by an inferential test which considers their sign. But one indirect effect is not stronger than the 

other. Nor can we say that X exerts a larger effect on Y through one of the mediators relative to the other. 

Inference about the Total Indirect Effect 

A multiple mediator model also contains a total indirect effect, defined as the sum of all specific indirect 

effects. It is possible to conduct an inferential test of the total indirect effect using either the normal 

theory approach or a bootstrap confidence interval. The normal theory approach requires an estimate of 

the standard error of the total indirect effect, but the formula for  constructing it is quite complicated even 

in multiple mediator models with only two mediators. Given such complicated expressions is 

recommended to use a bootstrap confidence interval obtained as described before.
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5. RESULTS                                                                                                

5.1 Study Population description at screening Stage. 

Table 1 and Table 2 summarize continuous and categorical variables collected  in the study at stage 1. A 

total of 1250 subjects, mainly women (74%), were enrolled (participation rate in the years 2010-2013 was 

90%) with a mean age of 51.9±13.6 years and a mean BMI of 33.5±5.5 kg/m^2: 7.8% are overweight, 

38.6% obese, and 33.6% severe obese (BMI ≥ 35 Kg/cm2). About 34% of subjects are former smokers 

and about 15% are current smokers with a median of 14.5 Pack/years. About 57% of SPHERE subjects 

live in the city and an additional 28% work in Milan (even if they live outside the city), overall a 67% of 

subjects spent many hours a day in the city or travelling from workplace to residence.  Thus, longer 

exposure effects are evaluated by both residential and Milan monitors using appropriate lag time from 

recruitment date, as sensitivity analysis. 

    

Table 3: Characteristics of study participants and data collected from the self-reported questionnaire at December 

31, 2013.  

Characteristics Categories n=1250 (Stage 1) 

   Sex Male 330 (26.4%) 

 Female 920 (73.6%) 

   Age Years (mean±SD) 51.9±13.6 

   Education Primary school or less 105 (8.4%) 

 
Secondary school 325 (26.0%) 

 
High school 493 (39.4%) 

 
University 188 (15.0%) 

 
Others 87 (7.0%) 

 
Missing 52 (4.2%) 

   Occupation Employee 714 (57.1%) 

 
Unemployed 102 (8.2%) 

 
Pensioner 304 (24.3%) 

 
Housewife 93 (7.4%) 

 
Missing 37 (3.0%) 

   Ethnicity White 1198(95.8%) 

 
Black 11 (0.9%) 

 
Asian 3 (0.3%) 

 
South America 38 (3.0%) 

   Year of enrollment 2010 129 (10.3%) 

 
2011 419 (33.5%) 

 
2012 385 (30.8%) 

 
2013 317 (25.4%) 

   Season of enrollment Winter 320 (25.6%) 

 
Spring 313 (25.0%) 

 
Summer 190 (15.2%) 

 
Autumn 427 (34.2%) 

   Smoking Never 599 (47.9%) 

 
Former 431 (34.5%) 

 
Current 190 (15.2%) 
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Missing 30 (2.4%) 

   Cigarettes smoked* [cigarettes/day]  <= 5  53 (27.9%) 

 
 5-10 53 (27.9%) 

 
 10-15 33 (17.4%) 

 
 15-20 37 (19.6%) 

 
 20-40 13 (6.8%) 

 
Missing 1 (0.5%) 

   Pack/years (n=1153) Median [Q1, Q3] 
 

 

Among current and former smokers 14.5 [6.1-28.0] 

 

Including nonsmokers  0 [0-13.5] 

   Alcohol consumption  Yes 636 (50.9%) 

 
No 518 (41.4%) 

 
Missing 96 (7.7%) 

   Residence area City 534 (42.7%) 

 Peripheral area 331 (26.5%) 

 Rural area 30 (2.4%) 

 
Village/small city 206 (16.5%) 

 
Missing 149 (11.9%) 

   
Living area 

Province of Milan (Excluding City of 

Milan) 
379 (30.3%) 

 City of Milan 713 (57.0%) 

 Outside Milan 158 (12.7%) 

   
Work area 

Province of Milan (Excluding City of 

Milan) 
94 (13.1%) 

 City of Milan 339 (47.5%) 

 
Outside Milan 34 (4.8%) 

 
Missing 247 (34.6%) 

      

 

Table 4: Characteristics of the study subjects and mean levels of the clinical measure investigated at December 31, 

2013. 

Characteristics N Mean±SD or N(%) 

   BMI, Kg/cm
2
 1247 33.5±5.5 

   BMI categorical 
  

  <30 Kg/cm
2
 

 
347 (27.8%) 

  30-35 Kg/cm
2
 

 
483 (38.6%) 

  ≥35 Kg/cm
2
 

 
420 (33.6%) 

   Waist circumference, cm 1237 101.3±13.1 

   Blood pressure, mmHg 1247 
 

  Sistolic 
 

125.4±15.8 

  Diastolic 
 

78.5±9.5 

  Above 140/90 mmHg 
 

60 (4.8%) 

  Below 140/90 mmHg 

 

1190 (95.2%) 

   Heart rate, bPM 1243 67.6±10.4 

   Uric acid 1163 5.2±1.4 

   Fibrinogen, mg/dl 1129 335±59 

   C-reactive protein 1160 0.3 [0.1-0.5] 

   Total cholesterol, mg/dl 1165 215.1±41 

  HDL 
 

59.2±15.5 



 

61 
 

  LDL 
 

134.7±36.3 

   Triglyceride 1164 107 [77-145.5] 

   Serum creatinine, mg/dL 1165 0.8±0.3 

   AST, U/I 1159 19 [16-23] 

   ALT, U/I 1160 21 [16-30.5] 

   Gamma-Glutamyltransferase, U/L 1162 19 [13-30] 

   Glucose 1155 92 [86-101] 

   Homocysteine 1151 10.4 [8.6-12.7] 

   TSH 1163 1.7 [1.2-2.5] 

   Glycated hemoglobin, mmol/mol 1159 39 [36.6-43] 

   Postprandial glycaemia, mg/dl 1162 99 [90-112] 

   Insulin level 1158 12.3 [8.8-18] 

   2-hour post glucose insulin level 1155 46.4 [27.6-73] 

   Urinary pH  1144 5.6±0.7 

   Emocrome 1156 
 

White blood cells 
 

6.8±1.7 

Red blood cells 
 

4.8±0.4 

Hemoglobin 
 

13.8±1.4 

Hematocrit 
 

40.7±3.4 

Mean Corpuscolar Volume 
 

85.1±6.4 

Platelets 
 

249.7±59 
      

5.2 Comparison between FARM model and monitoring station PM10 levels. 

Air quality modeling and ambient measurements are two different ways to estimate actual ambient 

concentrations of pollutants in the atmosphere. Both modeling and measurements have some degree of 

uncertainty associated with their estimates. The uncertainty of the FARM model results both from that of 

the model (due to the inability to perfectly describe the physical phenomena) and from that associated 

with the input data. Figure14 shows the box plots comparing PM10 concentrations of the two methods of 

exposure assessment by year: estimated PM10 concentrations are slightly lower than observed across 

investigated years. Table 3 reports a description of PM10 levels between 2010 and 2012 and by 

season, and selected weather variable distribution.   
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Figure 14: Mean PM10 level observed by monitors and estimated by FARM model by place and across years. 

PM10 air concentrations depends, besides emissions, on  weather conditions during the days, in 

particular by rainfall, atmospheric stability and wind. PM10 levels follows a seasonal trend, with 

critic periods concentrated in autumn and winter seasons, which are characterized by 

atmospheric stability, calm wind and absence of precipitations. PM10 air concentrations depends, 

besides emissions, on  weather conditions during the days, in particular by rainfall, atmospheric 

stability  and wind. Figure 15 shows the distributions of daily mean PM10 concentrations of all 

monitors and of all grid cells with  a monitor falling into their boundary. 

Table 5: PM10 profile and weather variables at the time of blood sampling for the entire period of the SPHERE 

Study and by seasons. 

    Mean SD Min Q1 Median Q3 Max 

PM 10 (µg/m
3
)               

Monitory station (n=1250) 

       
 

Policlinico 47.0 30.5 7.0 26.0 38.0 59.0 174.0 

 
Subjects’ residence 44.2 28.3 3.0 24.0 36.0 56.0 171.0 

 
Average Milan 46.7 29.5 7.7 25.7 37.7 60.0 170.7 

FARM Model Estimate (n=931) 

       
 

Policlinico 34.5 18.0 6.2 21.6 29.8 41.8 104.7 

 
Subjects’ residence 33.8 18.3 4.0 20.4 29.7 42.1 113.1 

 
Average Milan 35.6 18.7 6.4 22.8 30.4 43.1 113.0 
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Autumn/Winter 

       Monitory station (n=747) 

       
 

Policlinico 58.8 33.5 7.0 33.0 52.0 76.0 174.0 

 
Subjects’ residence 55.0 30.8 3.0 33.0 48.0 72.0 171.0 

 
Average Milan 58.6 31.8 11.3 34.3 51.3 76.7 170.7 

FARMModel Estimate (n=569) 

       
 

Policlinico 40.1 19.4 7.4 26.6 35.9 52.8 104.7 

 
Subjects’ residence 39.5 19.6 4.9 25.8 35.6 51.4 113.1 

 
Average Milan 41.7 20.0 6.4 27.2 37.0 55.3 113.0 

Spring/Summer 

       Monitory station (n=503) 

       
 

Policlinico 29.4 11.7 8.0 22.0 27.0 37.0 85.0 

 
Subjects’ residence 28.2 12.2 6.0 20.0 26.0 35.0 85.0 

 
Average Milan 28.9 11.8 7.7 21.0 26.7 36.3 74.7 

FARM Model Estimate (n=362) 

       
 

Policlinico 25.6 10.7 6.2 18.6 23.9 30.6 74.1 

 
Subjects’ residence 24.9 11.2 4.0 17.6 22.3 30.9 69.2 

  Average Milan 26.0 10.8 7.2 18.8 24.2 30.8 73.1 

Weather variables (all seasons) (n=1250)               

 
Relative humidity 69.3 18.4 9.0 56.0 68.0 85.0 106.2 

 
Temperature 12.6 7.8 -8.0 6.3 12.1 18.6 30.0 

  Apparent temperature 11.2 8.8 -9.0 3.8 10.6 18.0 31.9 

 

SD: standard deviation, PM: particulate matter, Min: minimum, Q1: first quartile, Q3: third quartile, 

Max=maximum. 

Monitoring stations available from 2010-2013. 

FARM Model Estimate available from 2010-2012. 

 

PM10 air concentrations depends, besides emissions, on  weather conditions during the days, in 

particular by rainfall, atmospheric stability  and wind. Figure 15 shows the distributions of daily 

mean PM10 concentrations of all monitors and of all grid cells with  a monitor falling into their 

boundary. Darker area highlights winter months, characterized by major differences between the 

two methods of exposure assessment. 

The winter months (October to February) are those where there is a more obvious difference 

between the two methods of exposure assessment; for the rest of the year the distributions are 

similar. In order to examine model performance of FARM model we used a standard 

performance metric: the mean fractional bias (MFB), which is a measure of  the tendency of the 

model to over or under predict the observation from monitors.  The MFB is defined as the 

normalized average difference between all model-observed pairs: 
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𝑀𝐹𝐵 =
1

𝑁
∑ (

𝐶𝑚 − 𝐶𝑜

𝐶𝑜
)

𝑁

𝑖=1

 

and can vary between 200% and 200%. The model performance goal is met when the MFB is 

between ±30% [112]. (76,77). We obtain a MFB=-16% for the entire period of comparison and 

of MFB2010=-3%, MFB2011=-29%, MFB2012=-28%, by year.  

 

Figure 15:  Estimated and observed daily mean PM10 concentrations (2010-2012). 

These results suggest the fulfillment of the objective of performance, although with a tendency to 

underestimate the observed concentrations (negative values for the statistical index MFB). The 

differences between the two methods are consistent with what reported by ARPA Lombardy in 

the Annual Assessment Of Air Quality Modeling for years 2009-2011. (78). 

Figure 16 shows mean concentration (2010-2012) measured by monitors and estimated by the 

FARM model in the corresponding cell. Each point is the PM10 mean concentration of  a single 

monitor. Very high correlation was observed among the three sources of exposition (RPoliclinico 

vs Average Milan=0.99; RSubjects’ Residence vs Average Milan=0.94; RPoliclinico vs 

Subjects’ Residence=0.99). The cone dotted lines represents the range of quality data established 

by law [113]   for the mean of the pollutant over the period, that is equal to ±50% [112, 114].  

All the average concentrations fall into the quality range, except for three monitors, quite 

isolated and far from subjects’ residences. The analysis was performed both by year and over the 

period 2010-2012 and comparable results were found. When comparing modeling results to 

observations, the measurements should not be considered the absolute truth. The differences 
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between the two methods of exposure assessment may be partly explained by the issue related to 

comparing a point measurement to a volumetric grid cell averaged modeled concentration. 

 

Figure 16: PM10 mean concentration (2010-2012) measured by monitors and estimated by the FARM model in the 

corresponding cell. 

PM modeling use a 4 km on a side in the horizontal and between 10 to 10000 meters in the 

vertical. Since the modeling results represent an average concentration over the entire grid cell 

and the observations likely do not represent the average concentration over the same volume of 

air, it is not possible to exactly match modeled results to measurements[112]. 

We can summarize as follows the pros e cons of using PM10 exposure from FARM model air and 

from monitoring stations: 

FARM model: 

 provides an estimate of PM10 for a grid of 1678 cells 4x4Km; ; 

 no missing values in PM10 series; 

 is not easy to obtain (formal request to ARPA Lombardy); 

 validation requires long times (7-8 months); 

 high complexity of the model and the variables that feed it; 

Monitoring Stations: 

 easy availability from the site ARPA air quality; 

 validation times from 3 to 6 months, but not validated series are also available; 



 

66 
 

 provides a punctual PM10  measure  by 81 air monitoring stations; 

 lengthy procedure of estimation of missing data that is not always possible when the 

number of missing is high. 

In conclusion, individual air pollution exposure assessment is determined using two sources 

of information: actual monitor measurements for each and every day starting from 

January 1st, 1990 and a regional well validated modelling systems applied starting from 

2007. This allows us to estimate both short-term (days) and long-term (months, years) 

exposure to the pollutants. Personal exposure of each study subject will be attributed based 

on their residential and work addresses and on questionnaire information on their time 

patterns (time at home, time at work, communing time, number of days at work, etc.). We 

decide to use FARM model data exposure for the analysis of the association between PM10 

exposure and miRNAs expression. 

5.3 Comparison between Normalization Strategies. 

The performance of the different normalization strategies was assessed by [81]: (1) evaluating 

their ability to reduce the experimental induced (technical) variation, (2) determining their power 

to extract true biological variation. The point (1) was assessed calculating the standard deviation 

(SD) for each individual miRNAs across all samples upon applying different normalization 

procedures and plotting the cumulative distribution of the deltaCrt SD values (Figure 17).     

Figure 17: Cumulative distribution of deltaCrt SD values upon applying different normalization procedures applied 

on miRNAs SET3.             

Lower standard 

deviations denote 

better removal of 

experimentally 

induced noise : 

technical variation + 

biological variation 



 

67 
 

The comparison of the mean standard deviation between the three normalization strategies for 

the 50% least and 50% more variable miRNAs was performed by means of paired ttest (Figure 

18), the results can be summarized as follows: 

 For the 50% least variable miRNAs all three normalization strategies result in a 

significant decrease of the mean SD value respect to Not normalized data; 

 For the 50% most variable miRNAs only d and c normalization strategy result in a 

significant decrease of the mean SD value respect to Not normalized data; 

 For both 50% least and most variable miRNAs Global mean result in a significant 

decrease in of the mean SD value respect to Mean 4 more miRNAs data (p < 0.001);  

 As true differentially expressed miRNAs predominantly reside in the most variable half 

of the dataset, only Global mean normalization is capable of reducing the number of false 

negatives. Reduction of false positives is possible with both normalization strategies (d 

and c) but to different extents as Global mean normalization results in a stronger decrease 

of technical variation for the 50% least variable miRNAs. 

 

Figure 18: Comparison of Mean SD between the three normalization strategies for the 50% least and 50% more  

variable miRNAs was performed by means of paired ttest. 

The point (2) was assessed by a new experiment aimed to evaluate how different normalization 

strategies affect biological changes. We consider a single OpenArray plate with three sample and 

proceeded in the whole-genome profiling of 733 human miRNAs for the three samples, with two 

replicates performed by the same operator in the same day. Repeated measures analysis by 

means of proc mixed in SAS was performed in order to: 
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SAS code 

PROC MIXED DATA=miRNA ; 

class time sample ; 

model log2_RQ_1 = sample time / ddfm=kenwardroger;  

repeated time ;  

random samplename; 

lsmestimate Replicates “replicate 2 vs replicate 1" -1 1 /;  

lsmestimate Sample "sample 1 vs sample 2" 1 -1 0;  

lsmestimate Sample "sample 1 vs sample 3" 1 0 -1;  

lsmestimate Sample "sample 2 vs sample 3" 0 1 -1;  

run; 

1) Evaluate the normalization strategy performance in reducing technical variation on SET3 

(136miRNAs): 

Comparison between the two replicates in terms of miRNAs expression obtained for the three 

samples. The results are summarized in Table 4 and showed that the lowest percentage (8.82%) 

of miRNAs differentially expressed is obtained with the Global Mean normalization strategy, as 

well as the lowest Fold Change range (0.2-1.1). 

Table 6: Results of evaluation of normalization strategy performance in reducing technical variation on SET3 (136 

miRNAs). 

 

2)  Evaluate the normalization strategy performance in extracting true biological variation on 

SET3 (136 miRNAs): 

Comparison between the three samples in terms of miRNAs expression obtained  at the two 

replicates. Results were summarized in Table5. The comparison between the three samples in 

terms of miRNAs expression obtained at the two replicates showed that the higher percentage 

(1vs2:47.8%, 1vs3:78.7%, 2vs3:50.0% ) of miRNAs differentially expressed is obtained with the 

Global Mean normalization strategy, as well as the higher Fold Change range (1vs2:0.37-5.7, 

1vs3:0.7-9.14, 2vs3:0.6-6.3). 
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Table 7: Results of evaluation of normalization strategy performance in in extracting true biological variation on 

SET3 (136 miRNAs). 

 

In conclusion we can state that for large scale miRNA expression profiling Global Mean 

normalization strategy outperforms the other normalization strategy in terms of: 

 better reduction of technical variation: 

 lower % of miRNAs differentially expressed before and after FDR adjustment 

 lower Fold change range; 

 more accurate appreciation of biological changes. 

 higher % of miRNAs differentially expressed before and after FDR adjustment; 

 higher Fold Change range; 

5.4 Association between miRNAs expression and PM10 exposure 

In order to verify the association between miRNAs expression and PM10 we first fitted multiple 

linear regression models. As exposure was considered the daily PM10 exposure estimate 

(µg/m^3) from Eulerian model for the 4x4 km cell containing the address of the Center for 

Obesity and Weight Control. The exposure lag period chosen for the analysis is of zero days 

(daily exposure of blood collection day). As outcome was considered the Relative quantification 

RQ of each miRNAs. log2 transformation was applied in order to satisfy the normality and 

linearity assumptions of linear regression model. We tested the normality assumption of errors 

using the normal probability plot and the Shapiro-Wilks statistic. Finally, for each miRNA, plots 

of residuals versus predicted values and Lack of Fit tests were used to explore potential 

nonlinearity of PM10 and apparent temperature. Moreover, test we tested for nonlinearity of PM10 

and apparent temperature using penalized splines in generalized linear models for all miRNAs 

included in the analysis by mean of graphical inspection and by formal test of linearity. We 

excluded a nonlinear relation between PM10 or apparent temperature and miRNAs expression. In 

particular Figure19 reports the results of non-linearity testing for the first nine top miRNAs 

selected.  
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The following adjusting variables were selected  age, body mass index, cigarette smoking (never, 

former, or current), and pack-years. We adjusted for percent of granulocytes (to control for 

possible shifts in leukocyte differential count), date, Seasonality (using sine and cosine) and 

apparent temperature.  Since in each run of OpenArray were simultaneous analysed up to 4 

OpenArray plates, identified by a barcode, for a total of 12 samples (3 per plate)  it was possible 

identify an  hierarchical data structure with three levels: sample level (level-1), barcode level 

(level-2) and run level (level-3). We developed three-levels HLM using the MIXED procedure in 

SAS. 

 

Figure 19: Penalized Splines: testing Non linearity on the association of PM10 of and first 9 top miRNAs selected. 

The use of three-levels hierarchical linear models allowed to investigate other variability sources 

linked to the outcome. In particular we inspect the following research questions:  

1) how much of the variability in miRNAs expression is attributable to barcodes and runs? 

2) does the association between of the level-1 predictor PM10 vary among barcode or run?  

To answer to this questions we proceeded according the following model selection strategy: 

 Model1- Unconditional model: We fit the following model to answer to the first 

question. As miRNA variable we use  miR_106a_002169 which is the first top miRNA 

identified in the multivariable simple regression analysis 

SAS code 
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proc mixed data=dataset method=ml; 

class barcode run; 

model mirna=/solution; 

random intercept/sub=run type=vc; 

random intercept/sub=barcode(run) type=vc;run; 

We used the three variance estimates to calculate the intraclass correlation coefficients 

ICCs for barcode and for run: 

𝐼𝐶𝐶𝑏𝑎𝑟𝑐𝑜𝑑𝑒 =
𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒

2

𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒
2 + 𝜎𝑟𝑢𝑛

2 + 𝜎𝑒𝑟𝑟𝑜𝑟
2

=
0.1407

0.1407 + 0.7912 + 0.6875
= 0.0868 

 𝐼𝐶𝐶𝑟𝑢𝑛 =
𝜎𝑟𝑢𝑛

2

𝜎𝑏𝑎𝑟𝑐𝑜𝑑𝑒
2 +𝜎𝑟𝑢𝑛

2 +𝜎𝑒𝑟𝑟𝑜𝑟
2 =

0.7912

0.1407+0.7912+0.6875
= 0.4885 

The 8.6% of the variation in miRNAs expression exists between barcode and 48.8% exist 

between run, leaving 42.6% of the variance in miRNAs expression within samples. Thus 

a practically meaningful proportion of the variance in miRNA expression exists at the 

barcode and above all at run levels, providing support for the use of a three-level 

analytical model. 

 Model 2: Model1 + level-1 fixed effect. We included the sample-level predictor PM10  

SAS code 

proc mixed data= dataset covtest method=ml; 

class barcode run; 

model mirna=PM10_policlinico /solution; 

random intercept /sub=run type=vc; 

random intercept /sub=barcode(run) type=vc;run; 

Results from fixed effects indicate the relationship between level-1 predictor PM10 and 

the outcome miRNAs expression 

 Model 3: Model2 + random slopes for level-1 predictor PM10. We expanded Model 2 

specifying the PM10 predictor as random slope at both barcode and run level.  

SAS code 

proc mixed data=dataset covtest method=ml; 

class barcode run; 

model mirna=PM10_policlinico /solution; 

random intercept PM10_policlinico /sub=run type=vc; 

random intercept PM10_policlinico /sub=barcode(run) type=vc;run; 
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This model allows to answer to the second research question: fixed effects results provide the 

same information as Model2, random slope results reveal if the relationships between level-1 

predictor PM10 and the outcome miRNAs expression vary between barcode and run. 

Results from the three models can be summarize in Table 8: 

In both Model2 and Model3 sample level predictor PM10 is significant, suggesting that an 

increase of 1 (µg/m^
3
) in PM10 is associated with  a decrease (respectively β=-0.020 Model2 and 

β=--0.012) in miR_106a_002169 expression. Examining the random effects section, we see that 

significant variability in barcode and run intercept, as well as the coefficients associated with 

PM10, existed even after controlling for the sample level fixed effect. 

 

Table 8. Estimates from three-level hierarchical linear model predicting miRNA expression (miR_106a_002169). 

 

  Model1   Model2   Model3 
 

 

Fixed Effect 

     
 

 

Intercept 11.84 

 

12.13* 

 

12.05 
 

  

(0.09) 

 

(0.10) 

 

(0.11) 
 

 

PM10 

  

-0.020* 

 

-0.012* 
 

    

(0.002) 

 

(0.003) 
 

 

Error variance 

     
 

 

Level-1 0.6875* 

 

0.6786* 

 

0.6576* 
 

  

(0.04) 

 

(0.04) 

 

(0.04) 
 

 

Intercept(barcode) 0.1407* 

 

0.1434* 

 

0.1334* 
 

  

(0.04) 

 

(0.04) 

 

(0.04) 
 

 

Intercept (run) 0.7912 

 

0.7529 

 

0.8327 
 

  

(0.06) 

 

(0.06) 

 

(0.06) 
 

 

Slope (PM10)B 

    

0.03* 
 

      

(0.04) 
 

 

Slope (PM10)R 

    

0.08 
 

      

(0.05) 
 

 

Model Fit 

     
 

 

AIC 2418.7 

 

2410.2 

 

2254.8 
 

 

BIC 2529.1 

 

2521.9 

 

2389.7 
 

 
Note: *Statistically significant p<0.05; Barcode ICC=, Run ICC= B=random effect at barcode level, R=random 

effect at run level. Value based on SAS PROC MIXED. Entries show parameter estimates with standard error in 

parentheses. Estimation Method=ML; Satterthwaite degrees of freedom. 

 

 
 

 
 

Thus the association between PM10 and miRNAs expression varies significantly among barcode 

and run (as denoting by sub-B and sub R respectively). Thus coefficient associated with this 

variable may be stronger/weaker from barcode to barcode within a run. Examining the AIC and 

BIC values at the bottom of Table 6, we can see that each progressive model exhibited better fit 

to the data. The results obtained from the final model, Model3 adjusted for age, body mass 

index, cigarette smoking, percent of granulocytes, date, Seasonality (using sine and cosine) and 
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apparent temperature, were reported in Table7, Table8 and Table9, one for each set of miRNAs 

used (Set1, Set2 and Set3). Each table reports the significant associations found between 

miRNAs expression and exposure according to the FDR p-value threshold 0.10 for the first 10 

top miRNAs. We can observe that for each set of miRNAs we obtain almost the same first 10 top 

miRNAs even if with a different order given by the raw and FDR p-value. Looking at the results 

obtained on the three sets of miRNAs the following list of first 10 top miRNAs were identified: 

miR_106a_002169, miR_152_000475, miR_181a_2__002317, miR_218_000521, 

miR_27b_000409, miR_30d_000420, miR_652_002352, miR_92a_000431, miR_25_000403, 

miR_375_000564. These miRNAs are now being confirmed by Real Time PCR on the next 1000 

enrolled patients enrolled.  

RESULTS:  miRNAs SET 1 

Table 9: Association between FARM model estimate of PM10 daily exposure and miRNAs expression (SET1: 527 

miRNAs) 

miRNAs Estimate  95% CI 
VARIATION          

(%) 

RAW  

pvalue 

FDR  

pvalue 

miR_106a_002169 -0.012 -0.017 -0.007 -8.11 <0.001 <0.001 

miR_152_000475 -0.013 -0.019 -0.007 -8.69 <0.001 <0.001 

miR_181c__002333 0.01 0.006 0.014 6.99 <0.001 <0.001 

miR_218_000521 -0.015 -0.022 -0.008 -9.72 <0.001 <0.001 

miR_27b_000409 -0.016 -0.024 -0.009 -10.74 <0.001 <0.001 

miR_30d_000420 -0.016 -0.022 -0.009 -10.21 <0.001 <0.001 

miR_652_002352 -0.023 -0.033 -0.013 -14.88 <0.001 <0.001 

miR_674_002021 0.01 0.005 0.014 6.97 <0.001 <0.001 

miR_92a_000431 -0.011 -0.017 -0.006 -7.53 <0.001 <0.001 

miR_181a_2__002317 -0.015 -0.022 -0.007 -9.79 <0.001 <0.001 

Three-level HLM model adjusted for age, body mass index, cigarette smoking, percent of granulocytes, date, 

Seasonality (using sine and cosine) and apparent temperature. Only significant FDR-pvalues according to the 

threshold of 0.10 were shown. Estimate=2^(β*10),  Variation(%)=[2^(β*10) -1]x100 expresses the percentage 

variation in miRNAs expression associated with an increase of 10 (µg/m^3) in PM10. 

 

RESULTS:  miRNAs SET 2 

Table 10: Association between FARM model estimate of PM10 daily exposure and miRNAs expression (SET2: 152 

miRNAs) 

miRNAs Estimate  95% CI 
VARIATION          

(%) 

RAW  

pvalue 

FDR  

pvalue 

miR_106a_002169 -0.012 -0.017 -0.007 -8.11 <0.001 <0.001 
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miR_152_000475 -0.013 -0.019 -0.007 -8.69 <0.001 <0.001 

miR_218_000521 -0.015 -0.022 -0.008 -9.72 <0.001 <0.001 

miR_27b_000409 -0.016 -0.024 -0.009 -10.74 <0.001 <0.001 

miR_30d_000420 -0.016 -0.022 -0.009 -10.21 <0.001 <0.001 

miR_652_002352 -0.023 -0.033 -0.013 -14.88 <0.001 <0.001 

miR_92a_000431 -0.011 -0.017 -0.006 -7.53 <0.001 <0.001 

miR_181a_2__002317 -0.015 -0.022 -0.007 -9.79 0.0001 0.0014 

miR_25_000403 -0.012 -0.018 -0.006 -8.12 0.0001 0.0014 

miR_375_000564 -0.017 -0.026 -0.009 -11.38 0.0001 0.0014 

Three-level HLM model adjusted for age, body mass index, cigarette smoking, percent of granulocytes, date, 

Seasonality (using sine and cosine) and apparent temperature. Only significant FDR-pvalues according to the 

threshold of 0.10 were shown. Estimate=2^(β*10),  Variation(%)=[2^(β*10) -1]x100 expresses the percentage 

variation in miRNAs expression associated with an increase of 10 (µg/m^3) in PM10. 

 

RESULTS:  miRNAs SET 3 

Figure 19: Association between FARM model estimate of PM10 daily exposure and miRNAs expression (SET2: 105 

miRNAs) 

miRNAs Estimate  95% CI 
VARIATION          

(%) 

RAW  

pvalue 

FDR  

pvalue 

miR_106a_002169 -0.012 -0.017 -0.007 -8.11 <0.001 <0.001 

miR_152_000475 -0.013 -0.019 -0.007 -8.69 <0.001 <0.001 

miR_218_000521 -0.015 -0.022 -0.008 -9.72 <0.001 <0.001 

miR_27b_000409 -0.016 -0.024 -0.009 -10.74 <0.001 <0.001 

miR_30d_000420 -0.016 -0.022 -0.009 -10.21 <0.001 <0.001 

miR_652_002352 -0.023 -0.033 -0.013 -14.88 <0.001 <0.001 

miR_92a_000431 -0.011 -0.017 -0.006 -7.53 <0.001 <0.001 

miR_25_000403 -0.012 -0.018 -0.006 -8.12 0.0001 0.0012 

miR_720_002895 -0.011 -0.016 -0.006 -7.32 0.0001 0.0012 

let_7c_000379 -0.014 -0.022 -0.007 -9.45 0.0002 0.0016 

Three-level HLM model adjusted for age, body mass index, cigarette smoking, percent of granulocytes, date, 

Seasonality (using sine and cosine) and apparent temperature. Only significant FDR-pvalues according to the 

threshold of 0.10 were shown. Estimate=2^(β*10),  Variation(%)=[2^(β*10) -1]x100 expresses the percentage 

variation in miRNAs expression associated with an increase of 10 (µg/m^3) in PM10. 
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Figure 20: Association between eulerian estimate of PM10 daily exposure and  miR_106a,miR_152, mir_218, 

expression. for age, body mass index, cigarette smoking, percent of granulocytes, date, Seasonality (using sine and 

cosine) and apparent temperature. 

5.5 Mediation Analysis to investigate the role of miRNAs expression as mediator of the 

effect of PM10 on respiratory, cardiac and inflammatory outcome. 

5.5.1 Simple Mediation Models 

Simple mediation models were applied in order to investigate the role of miRNAs expression as 

potential mediator on the effect of PM10  on respiratory, cardiac and inflammatory outcomes 

such as: single breath carbon monoxide diffusing capacity DLco, Forced expiratory volume in 

the 1st second  FEV1, Forced Vital Capacity FVC, Heart Rate, Sistolic Blood Pressure SBP, 

Diastolic Blood Pressure DBP, C-Reactive Protein CRP, and Fibrinogen. Following tables 

reports the results of simple mediation model involving miRNAs showed a significant indirect 

effect of PM10 on respiratory, cardiac and inflammatory outcomes. The results obtained for the 

remaining miRNAs were reported in Appendix1. 

DLco  

 

 

Figure 21: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and DLcoRapp= (Measured DLco / Theoretical DLco)*100  as dependent variable.  

mir_106a_002169: Results of Simple Mediation Analysis for mediator mir_106a_002169 were 

reported in Table11: 

 the regression analysis representing path c is significant. The F-statistic was 10.428 and 

the p-value was <0.001. PM10 is positively associated with DLcoRapp and the regression 

coefficient for PM10 (β=0.063 95% CI: -0.0001-0.127) is statistically significantly 
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different from zero (p=0.051), this means that two patients who differ by 1 µg/m^3 in 

PM10 exposure level are estimated to differ by 0.063 in DLcoRapp level, the positive sign 

suggests that patients with higher PM10 exposure show higher DLcoRapp level. This 

results is quite controversial suggesting the intrigiung possibility that short term PM10 

exposure differentially altercytokine pathways; 

 

Table 11: Simple Mediation Analysis results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error 

and bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin. miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLco / Theoretical DLco)*100  

*Sobel test. 

 

 the regression analysis representing path a is significant. The F-statistic was 5.351 and 

the p-value was <0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with miR_106a_002169 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that miR_106a_002169 expression decreases by 

0.773% for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 9.602 

and the p-value was <0.001. The regression coefficient for miR_106a_002169  is 

statistically significantly different from zero (p=0.037) and miR_106a_002169 

expression is positively correlated with DLcoRapp, in particular, back-trasforming results 

due to the log2 trasformation of miRNAs expression data appears that 1% change in  

miR_106a_002169 expression is associated with an increase of 0.014  in DLcoRapp; 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.011 0.003 -0.016 -0.006 <0.001 c' 0.074 0.033 0.010 0.138 0.023

M(miR_106a_002169) ­ ­ ­ ­ ­ b 0.978 0.468 0.059 1.897 0.037
costant i 1 13.363 0.732 11.926 14.800 <0.001 i 2 37.577 11.245 15.500 59.653 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 0.000 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.074 0.033 0.010 0.138 0.023

Indirect Effect of PM 10  on DLcoRapp -0.011 0.006 ­ ­ 0.064*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp -0.011 0.005 -0.024 -0.003 ­

Consequent

M(miR_106a_002169) Y(DLcoRapp)

95% CI

R 2 =0.041
F(6,744)=5.351, p<0.001

95% CI

R 2 =0.083
F(7,743)=9.602, p<0.001

95% CI

Boot 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001
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 the regression analysis representing path c’ estimated a direct effect c’=0.074  (95% 

CI:0.010-0.138 pvalue=0.023). This represents the estimated difference in DLcoRapp 

between two patients with the same  miR_106a_002169 expression level but who differ 

by 1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that 

patients with higher PM10 exposure but with the same miR_106a_002169 expression 

level is estimated to be 0.074 units higher in DLcoRapp. The indirect effect -0.011 means 

that two patients who differ by 1 µg/m^3 in their PM10 exposure level are estimated to by 

differ -0.011 in DLcoRapp level as a result of the tendency of those with higher PM10 

exposure level to have lower miR_106a_002169 expression level (because a is negative), 

which in turn translates into higher DLcoRapp level (because b is positive). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely below zero (-0.024; -0.003). In this case the normal 

theory-based Sobel test (Z= -1.852, p=0.064) does not agree with the inference made 

using a biased correct bootstrap confidence interval. mir_152_000475: Results of Simple 

Mediation Analysis for mediator mir_152_000475 were reported in Table11. 

 

Table 12:  Simple Mediation Analysis results for mediator mir_152_000475 on log2 scale. Bootstrap standard error 

and bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLco / Theoretical DLco)*100  

*Sobel test. 

 

 the regression analysis representing path c is significant. The F-statistic was 10.428 and 

the p-value was <0.001. PM10 is positively associated with DLcoRapp and the regression 

coefficient for PM10 (β=0.063 95% CI: -0.0001-0.127) is statistically and significantly 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.007 0.003 -0.014 -0.001 0.0319 c' 0.070 0.032 0.007 0.133 0.030

M(miR_152_000475) ­ ­ ­ ­ ­ b 0.949 0.355 0.252 1.646 0.008
costant i 1 6.589 0.963 4.698 8.479 <0.001 i 2 44.392 9.617 25.513 63.272 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.070 0.032 0.007 0.133 0.030

Indirect Effect of PM 10  on DLcoRapp -0.007 0.004 ­ ­ 0.108*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp -0.007 0.004 -0.016 -0.002 ­

Consequent

M(miR_152_000475) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.021 R 2 =0.086
F(6,744)=2.623, p=0.016 F(7,743)=10.032, p<0.001

95% CI

Boot 95% CI
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different from zero (p=0.051), this means that two patients who differ by 1 µg/m^3 in 

PM10 exposure level are estimated to differ by 0.063 in DLcoRapp level, the positive sign 

suggests that patients with higher PM10 exposure show higher DLcoRapp level;  

 the regression analysis representing path a is significant. The F-statistic was 2.623 and 

the p-value was 0.016. The regression coefficient for PM10 is significantly different from 

zero (p=0.0319) and PM10 is negatively correlated with mir_152_000475 expression, in 

particular, back-trasforming results due to the log2 trasformation of miRNAs expression 

data appears that mir_152_000475 expression decreases by 0.491% for an increase of 1 

µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 10.032 

and the p-value was p<0.001. The regression coefficient for mir_152_000475  is 

statistically significantly different from zero (p=0.008) and mir_152_000475 expression 

is positively correlated with DLcoRapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_152_000475 expression is associated with an increase of 0.014  in  DLcoRapp; 

 the regression analysis representing path c’ estimated a direct effect c’=0.070  (95% 

CI:0.007-0.133 pvalue=0.030). This represents the estimated difference in DLcoRapp 

between two patients with the same  mir_152_000475 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_152_000475 expression level is 

estimated to be 0.070 units higher in DLcoRapp. 

The indirect effect -0.007 means that two patients who differ by 1 µg/m^3 in their PM10 

exposure level are estimated to by differ -0.007 in DLcoRapp level as a result of the tendency of 

those with higher PM10 exposure level to have lower mir_152_000475 expression level (because 

a is negative), which in turn translates into higher DLcoRapp level (because b is positive). 

Finally, the indirect effect is statistically different from zero, as revealed by the 95% BC 

bootstrap confidence interval that is interely below zero (-0.016; -0.002). In this case the normal 

theory-based Sobel test (Z= -1.608, p=0.108) does not agree with the inference made using a 

biased correct bootstrap confidence interval. 

mir_218_000521: Results of Simple Mediation Analysis for mediator mir_218_000521 were 

reported in Table13: 

 the regression analysis representing path c is significant. The F-statistic was 10.428 and 

the p-value was <0.001. PM10 is positively associated with DLcoRapp and the regression 

coefficient for PM10 (β=0.063 95% CI: -0.0001-0.127) is statistically significantly 
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different from zero (p=0.051), this means that two patients who differ by 1 µg/m^3 in 

PM10 exposure level are estimated to differ by 0.063 in DLcoRapp level, the positive sign 

suggests that patients with higher PM10 exposure show higher DLcoRapp level; 

Table 13: Simple Mediation Analysis results for mediator mir_218_000521 on log2 scale. Bootstrap standard error 

and bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.miRNAs expression was log2 transformed. Back transforming in model with miRNAs 

expression as independent variable and PM10 as dependent variable it was obtained the %change in miRNAs 

expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLco / Theoretical DLco)*100.  

*Sobel test. 

 

 the regression analysis representing path a is significant. The F-statistic was 2.773 and 

the p-value was p=0.011. The regression coefficient for PM10 is statistically significantly 

different from zero (p=0.001) and PM10 is negatively correlated with mir_218_000521 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that miR_218_000521 expression decreases by 0.821% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 10.770 

and the p-value was <0.001. The regression coefficient for miR_218_000521  is 

statistically significantly different from zero (p=0.037) and miR_218_000521 expression 

is negatively correlated with DLcoRapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

miR_218_000521 expression is associated with a decrease of 0.016  in DLcoRapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.050  (95% CI:-

0.013-0.113 pvalue=0.121). This represents the estimated difference in DLcoRapp 

between two patients with the same  miR_218_000521 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.012 0.004 -0.019 -0.005 0.001 c' 0.050 0.032 -0.013 0.113 0.121

M(miR_218_000521) ­ ­ ­ ­ ­ b -1.103 0.320 -1.730 -0.475 <0.001
costant i 1 2.962 1.067 0.868 5.056 0.006 i 2 53.911 9.346 35.563 72.260 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.050 0.032 -0.013 0.113 0.121

Indirect Effect of PM 10  on DLcoRapp 0.013 0.006 ­ ­ 0.021*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp 0.013 0.006 0.004 0.027 ­

Consequent

95% CI

Boot 95% CI

M(miR_218_000521) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.022 R 2 =0.092
F(6,744)=2.773, p=0.011 F(7,743)=10.770, p<0.001
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with higher PM10 exposure but with the same miR_218_000521 expression level is 

estimated to be 0.050 units higher in DLcoRapp. 

The indirect effect 0.013 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.013 in DLcoRapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower miR_218_000521 expression level (because a is 

negative), which in turn translates into lower DLcoRapp level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely below zero (-0.004; -0.027). In this case the normal theory-

based Sobel test (Z= 2.313, p=0.027) agrees with the inference made using a biased correct 

bootstrap confidence interval.  

FEV1Rapp 

 

Figure 22: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and FEV1Rapp= (Measured FEV1 / Theoretical FEV1)*100  as dependent variable. 

mir_27b_000409: Results of Simple Mediation Analysis for mediator mir_27b_000409 were 

reported in Table14: 

 the regression analysis representing path c is significant. The F-statistic was 7.217 and 

the p-value was <0.001. PM10 is positively associated with FEV1Rapp and the regression 

coefficient for PM10 (β=0.025 95% CI: -0.044-0.094) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.025 in FEV1Rapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FEV1Rapp level. However this relationship is not statistically significantly different from 

zero (p=0.473); 
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Table 14: Simple Mediation Analysis results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it 

was obtained the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

 the regression analysis representing path a is significant. The F-statistic was 6.203 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p=0.001) and PM10 is negatively correlated with mir_27b_000409 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_27b_000409 expression decreases by 0.931% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 6.930 

and the p-value was <0.001. The regression coefficient for mir_27b_000409  is 

statistically significantly different from zero (p=0.031) and mir_27b_000409 expression 

is negatively correlated with FEV1Rapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_27b_000409 expression is associated with a decrease of 0.009 in FEV1Rapp; 

 the regression analysis representing path c’ estimated a direct effect c’=0.016  (95% CI:-

0.053-0.085 pvalue=0.644). This represents the estimated difference in FEV1Rapp 

between two patients with the same  mir_27b_000409 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_27b_000409 expression level is 

estimated to be 0.016 units higher in FEV1Rapp. The indirect effect 0.009 means that 

two patients who differ by 1 µg/m^3 in their PM10 exposure level are estimated to by 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.014 0.004 -0.022 -0.005 0.001 c' 0.016 0.035 -0.053 0.085 0.644

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.655 0.303 -1.249 -0.060 0.031
costant i 1 7.967 1.140 5.728 10.206 <0.001 i 2 105.923 9.937 86.416 125.430 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.016 0.035 -0.053 0.085 0.644

Indirect Effect of Pm 10  on FEV 1 Rapp 0.009 0.005 ­ ­ 0.080*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.009 0.005 0.002 0.020 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 = 0.053 R 2 =0.066
F(7,780)=6.203, p<0.001 F(8,779)=6.930, p<0.001

Consequent
M(miR_27b_000409) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI
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differ 0.009 in FEV1Rapp level as a result of the tendency of those with higher PM10 

exposure level to have lower mir_27b_000409 expression level (because a is negative), 

which in turn translates into lower FEV1Rapp level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.002; 0.020). In this case the normal 

theory-based Sobel test (Z= 1.748, p=0.080) does not agree with the inference made 

using a biased correct bootstrap confidence interval. 

mir_30d_000420: Results of Simple Mediation Analysis for mediator mir_30d_000420 were 

reported in Table15: 

 

Table 15: Simple Mediation Analysis results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it 

was obtained the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test. 
 

 the regression analysis representing path c is significant. The F-statistic was 7.217 and 

the p-value was <0.001. PM10 is positively associated with FEV1Rapp and the regression 

coefficient for PM10 (β=0.025 95% CI: -0.044-0.094) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.025 in FEV1Rapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FEV1Rapp level. However this relationship is not statistically significantly different from 

zero (p=0.473); 

 the regression analysis representing path a is significant. The F-statistic was 4.073 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.015 0.004 -0.023 -0.008 <0.001 c' 0.015 0.035 -0.054 0.084 0.673

M(miR_30d_000420) ­ ­ ­ ­ ­ b -0.663 0.336 -1.322 -0.005 0.048
costant i 1 9.233 1.029 7.213 11.253 <0.001 i 2 106.833 10.130 86.947 126.719 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.015 0.035 -0.054 0.084 0.673

Indirect Effect of Pm 10  on FEV 1 Rapp 0.010 0.006 ­ ­ 0.082*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.010 0.006 0.001 0.023 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.035 R 2 =0.066
F(7,780)=4.073, p<0.001 F(8,779)=6.827, p<0.001

Consequent
M(miR_30d_000420) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI
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different from zero (p<0.001) and PM10 is negatively correlated with mir_30d_000420 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_30d_000420 expression decreases by 1.062% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 6.827 

and the p-value was <0.001. The regression coefficient for mir_30d_000420 is 

statistically significantly different from zero (p=0.048) and mir_30d_000420 expression 

is negatively correlated with FEV1Rapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_30d_000420 expression is associated with a decrease of 0.010 in FEV1Rapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.015  (95% CI:-

0.054-0.084 pvalue=0.673). This represents the estimated difference in FEV1Rapp 

between two patients with the same  mir_30d_000420 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_30d_000420 expression level is 

estimated to be 0.015 units higher in FEV1Rapp. 

The indirect effect 0.010 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.010 in FEV1Rapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_30d_000420 expression level (because a is 

negative), which in turn translates into lower FEV1Rapp level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.023). In this case the normal theory-

based Sobel test (Z= 1.742, p=0.082) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

mir_92a_000431: Results of Simple Mediation Analysis for mediator mir_92a_000431 were 

reported in Table16: 

 the regression analysis representing path c is significant. The F-statistic was 7.217 and 

the p-value was <0.001. PM10 is positively associated with FEV1Rapp and the regression 

coefficient for PM10 (β=0.025 95% CI: -0.044-0.094) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.025 in FEV1Rapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FEV1Rapp level. However this relationship is not statistically significantly different from 

zero (p=0.473); 
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Table 16: Simple Mediation Analysis results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it 

was obtained the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 
 

 the regression analysis representing path a is significant. The F-statistic was 4.177 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_92a_000431 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_92a_000431 expression decreases by 0.808% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 7.041 

and the p-value was <0.001. The regression coefficient for mir_92a_000431 is 

statistically significantly different from zero (p=0.019) and mir_92a_000431 expression 

is negatively correlated with FEV1Rapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_92a_000431 expression is associated with a decrease of 0.014 in FEV1Rapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.014  (95% CI:-

0.055-0.083 pvalue=0.694). This represents the estimated difference in FEV1Rapp 

between two patients with the same  mir_92a_000431 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_92a_000431 expression level is 

estimated to be 0.014 units higher in FEV1Rapp. 

M(miR_92a_000431)

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' 0.014 0.035 -0.055 0.083 0.694

M(miR_92a_000431) ­ ­ ­ ­ ­ b -0.961 0.409 -1.765 -0.158 0.019
costant i 1 12.841 0.843 11.187 14.495 <0.001 i 2 113.051 10.976 91.506 134.596 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.014 0.035 -0.055 0.083 0.694

Indirect Effect of Pm 10  on FEV 1 Rapp 0.011 0.006 ­ ­ 0.051*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.011 0.006 0.003 0.027 ­

F(7,780)=7.217, p<0.001

R 2 =0.036 R 2 =0.0674
F(7,780)=4.177, p<0.001 F(8,779)=7.041, p<0.001

95% CI

Consequent

95% CI 95% CI

R 2 = 0.061

Y(FEV 1 Rapp)

Boot 95% CI
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The indirect effect 0.011 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.011 in FEV1Rapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_92a_000431 expression level (because a is 

negative), which in turn translates into lower FEV1Rapp level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.003; 0.027). In this case the normal theory-

based Sobel test (Z= 1.953, p=0.080) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

mir_181a_2_002317: Results of Simple Mediation Analysis for mediator mir_181a_2_002317 

were reported in Table17: 

 the regression analysis representing path c is significant. The F-statistic was 7.217 and 

the p-value was <0.001. PM10 is positively associated with FEV1Rapp and the regression 

coefficient for PM10 (β=0.025 95% CI: -0.044-0.094) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.025 in FEV1Rapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FEV1Rapp level. However this relationship is not statistically significantly different from 

zero (p=0.473); 

 

Table 17: Simple Mediation Analysis results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard 

error and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, 

glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it 

was obtained the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test. 

 the regression analysis representing path a is significant. The F-statistic was 2.870 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.017 0.004 -0.025 -0.008 <0.001 c' 0.011 0.035 -0.058 0.080 0.754

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.854 0.299 -1.441 -0.268 0.004
costant i 1 1.956 1.153 -0.307 4.219 0.0901 i 2 102.379 9.636 83.463 121.295 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.011 0.035 -0.058 0.080 0.754

Indirect Effect of Pm 10  on FEV 1 Rapp 0.014 0.006 ­ ­ 0.023*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.014 0.005 0.005 0.026 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.025 R 2 =0.071
F(7,780)=2.870, p=0.006 F(8,779)=7.395, p<0.001

Consequent
M(miR_181a_2_002317) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI
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different from zero (p<0.001) and PM10 is negatively correlated with 

mir_181a_2_002317 expression, in particular, back-trasforming results due to the log2 

trasformation of miRNAs expression data appears that mir_181a_2_002317 expression 

decreases by 1.137% for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 7.395 

and the p-value was <0.001. The regression coefficient for mir_181a_2_002317 is 

statistically significantly different from zero (p=0.004) and mir_181a_2_002317 

expression is negatively correlated with FEV1Rapp, in particular, back-trasforming 

results due to the log2 trasformation of miRNAs expression data appears that 1% change 

in  mir_181a_2_002317 expression is associated with a decrease of 0.012 in FEV1Rapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.011  (95% CI:-

0.058-0.080 pvalue=0.754). This represents the estimated difference in FEV1Rapp 

between two patients with the same  mir_181a_2_002317 expression level but who differ 

by 1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that 

patients with higher PM10 exposure but with the same mir_181a_2_002317 expression 

level is estimated to be 0.011 units higher in FEV1Rapp. 

The indirect effect 0.014 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.014 in FEV1Rapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_181a_2_002317 expression level (because a is 

negative), which in turn translates into lower FEV1Rapp level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.005; 0.026). In this case the normal theory-

based Sobel test (Z= 2.269, p=0.023) agrees with the inference made using a biased correct 

bootstrap confidence interval. 

mir_218_000521: Results of Simple Mediation Analysis for mediator mir_218_000521 were 

reported in Table18: 

 the regression analysis representing path c is significant. The F-statistic was 7.217 and 

the p-value was <0.001. PM10 is positively associated with FEV1Rapp and the regression 

coefficient for PM10 (β=0.025 95% CI: -0.044-0.094) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.025 in FEV1Rapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FEV1Rapp level. However this relationship is not statistically significantly different from 

zero (p=0.473); 
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Table 18: Simple Mediation Analysis results for mediator mir_218_000521 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it 

was obtained the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test. 

 the regression analysis representing path a is significant. The F-statistic was 3.773 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_218_000521 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_218_000521 expression decreases by 1.110% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 6.841 

and the p-value was p<0.001. The regression coefficient for mir_218_000521 is 

statistically significantly different from zero (p=0.046) and mir_218_000521 expression 

is negatively correlated with FEV1Rapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_218_000521 expression is associated with a decrease of 0.009 in FEV1Rapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.015  (95% CI:-

0.055-0.084 pvalue=0.682). This represents the estimated difference in FEV1Rapp 

between two patients with the same  mir_218_000521 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_218_000521 expression level is 

estimated to be 0.015 units higher in FEV1Rapp. 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.016 0.004 -0.024 -0.009 <0.001 c' 0.015 0.035 -0.055 0.084 0.682

M(miR_218_000521) ­ ­ ­ ­ ­ b -0.658 0.329 -1.303 -0.013 0.046
costant i 1 3.583 1.051 1.520 5.646 <0.001 i 2 103.066 9.716 83.994 122.139 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.015 0.035 -0.055 0.084 0.682

Indirect Effect of Pm 10  on FEV 1 Rapp 0.0106 0.0060 ­ ­ 0.077*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.011 0.006 0.001 0.023 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.033 R 2 =0.066
F(7,780)=3.773, p<0.001 F(8,779)=6.841, p<0.001

Consequent
M(miR_218_000521) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI
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The indirect effect 0.011 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.011 in FEV1Rapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_218_000521 expression level (because a is 

negative), which in turn translates into lower FEV1Rapp level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.023). In this case the normal theory-

based Sobel test (Z= 1.771, p=0.077) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

FVCRapp 

 

Figure 23: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and FVCRapp=(Measured FVC / Theoretical FVC)*100  as dependent variable. 

 

mir_27b_000409: Results of Simple Mediation Analysis for mediator mir_27b_000409 were 

reported in Table19: 

 the regression analysis representing path c is significant. The F-statistic was 15.999 and 

the p-value was <0.001. PM10 is positively associated with FVCRapp and the regression 

coefficient for PM10 (β=0.051 95% CI: -0.016-0.117) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.051 in FVCRapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FVCRapp  level. However this relationship is not statistically significantly different from 

zero (p=0.134); 
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Table 19: Simple Mediation Analysis results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test. 
 

 the regression analysis representing path a is significant. The F-statistic was 6.203 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p=0.001) and PM10 is negatively correlated with mir_27b_000409 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_27b_000409 expression decreases by 0.931% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 14.739 

and the p-value was p<0.001. The regression coefficient for mir_27b_000409  is 

statistically significantly different from zero (p=0.022) and mir_27b_000409 expression 

is negatively correlated with FVCRapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_27b_000409 expression is associated with a decrease of 0.010 in FVCRapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.042  (95% CI:-

0.025-0.108 pvalue=0.222). This represents the estimated difference in FVCRapp 

between two patients with the same  mir_27b_000409 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_27b_000409 expression level is 

estimated to be 0.042 units higher in FVCRapp. 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.014 0.004 -0.022 -0.005 0.001 c' 0.042 0.034 -0.025 0.108 0.220

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.669 0.291 -1.240 -0.098 0.0216
costant i 1 7.967 1.140 5.728 10.206 <0.001 i 2 102.841 9.549 84.096 121.585 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.042 0.034 -0.025 0.108 0.220

Indirect Effect of Pm10 on FVCRapp 0.009 0.005 ­ ­ 0.068*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.009 0.005 0.001 0.021 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.053 R 2 =0.132
F(7,780)=6.203, p<0.001 F(8,779)=14.739, p<0.001

Consequent

M(miR_27b_000409) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI
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The indirect effect 0.009 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.009 in FVCRapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_27b_000409 expression level (because a is 

negative), which in turn translates into lower FVCRapp level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.021). In this case the normal theory-

based Sobel test (Z= 1.826, p=0.068) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

mir_92a_000431: Results of Simple Mediation Analysis for mediator mir_92a_000431 were 

reported in Table20: 

 the regression analysis representing path c is significant. The F-statistic was 15.999 and 

the p-value was <0.001. PM10 is positively associated with FVCRapp and the regression 

coefficient for PM10 (β=0.051 95% CI: -0.016-0.117) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.051 in FVCRapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 

FVCRapp  level. However this relationship is not statistically significantly different from 

zero (p=0.134); 

 

Table 20: Simple Mediation Analysis results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test. 

M(miR_92a_000431) Y(FVCRapp)
Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' 0.042 0.034 -0.025 0.108 0.221

M(miR_92a_000431) ­ ­ ­ ­ ­ b -0.773 0.394 -1.546 0.001 0.050
costant i 1 12.841 0.843 11.187 14.495 <0.001 i 2 107.428 10.562 86.694 128.162 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.042 0.034 -0.025 0.108 0.221

Indirect Effect of Pm10 on FVCRapp 0.009 0.005 ­ ­ 0.089*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.009 0.005 0.001 0.023 ­

F(7,780)=15.999, p<0.001

R 2 =0.036 R 2 =0.130
F(7,780)=4.177, p<0.001 F(8,779)=14.531, p<0.001

95% CI

Consequent

95% CI 95% CI

R 2 = 0.126

Boot 95% CI
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 the regression analysis representing path a is significant. The F-statistic was 4.177 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_92a_000431 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_92a_000431 expression decreases by 0.808% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 14.531 

and the p-value was p<0.001. The regression coefficient for mir_92a_000431 is 

statistically significantly different from zero (p=0.050) and mir_92a_000431 expression 

is negatively correlated with FVCRapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_92a_000431 expression is associated with a decrease of 0.011 in FVCRapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.042  (95% CI:-

0.025-0.108 pvalue=0.222). This represents the estimated difference in FVCRapp 

between two patients with the same  mir_92a_000431 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_92a_000431 expression level is 

estimated to be 0.042 units higher in FVCRapp. 

The indirect effect 0.009 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.009 in FVCRapp level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_92a_000431 expression level (because a is 

negative), which in turn translates into lower FVCRapp level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.023). In this case the normal theory-

based Sobel test (Z= 1.699, p=0.089) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

mir_181a_2_002317: Results of Simple Mediation Analysis for mediator mir_181a_2_002317 

were reported in Table 21: 

 the regression analysis representing path c is significant. The F-statistic was 15.999 and 

the p-value was <0.001. PM10 is positively associated with FVCRapp and the regression 

coefficient for PM10 (β=0.051 95% CI: -0.016-0.117) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.051 in FVCRapp 

level, the positive sign suggests that patients with higher PM10 exposure show higher 
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FVCRapp  level. However this relationship is not statistically significantly different from 

zero (p=0.134); 

 the regression analysis representing path a is significant. The F-statistic was 2.870 and 

the p-value was p=0.006. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is positively correlated with mir_181a_2_002317 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_181a_2_002317 expression increases by 

0.292% for an increase of 1 µg/m^3 in PM10; 

 

Table 21: Simple Mediation Analysis results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard 

error and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, 

glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable 

it was obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test. 

 

 the regression analysis representing path b is also significant. The F-statistic was 15.029 

and the p-value was p<0.001. The regression coefficient for mir_181a_2_002317 is 

statistically significantly different from zero (p=0.007) and mir_181a_2_002317 

expression is negatively correlated with FVCRapp, in particular, back-trasforming results 

due to the log2 trasformation of miRNAs expression data appears that 1% change in  

mir_181a_2_002317 expression is associated with a decrease of 0.011 in FVCRapp. 

 the regression analysis representing path c’ estimated a direct effect c’=0.038  (95% CI:-

0.029-0.104 pvalue=0.266). This represents the estimated difference in FVCRapp 

between two patients with the same  mir_181a_2_002317 expression level but who differ 

by 1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a 0.004 -0.017 -0.025 -0.008 <0.001 c' 0.038 0.034 -0.029 0.104 0.266

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.778 0.287 -1.342 -0.214 0.007
costant i 1 1.956 1.153 -0.307 4.219 0.0901 i 2 99.029 9.269 80.835 117.224 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.038 0.034 -0.029 0.104 0.266

Indirect Effect of Pm10 on FVCRapp 0.013 0.006 ­ ­ 0.029*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.013 0.006 0.003 0.026 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.025 R 2 =0.134
F(7,780)=2.870, p=0.006 F(8,779)=15.029, p<0.001

Consequent

M(miR_181a_2_002317) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI
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patients with higher PM10 exposure but with the same mir_181a_2_002317  expression 

level is estimated to be 0.038 units higher in FVCRapp. 

The indirect effect 0.013 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.013 in FVCRapp level as a result of the tendency of those with 

higher PM10 exposure level to have higher mir_181a_2_002317  expression level (because a is 

positive), which in turn translates into lower FVCRapp level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.003; 0.026). In this case the normal theory-

based Sobel test (Z=2.186, p=0.029) agrees with the inference made using a biased correct 

bootstrap confidence interval. 

Heart Rate 

 

Figure 24: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and Heart Rate as dependent variable. 

mir_218_000521: Results of Simple Mediation Analysis for mediator mir_218_000521 were 

reported in Table 22: 

 the regression analysis representing path c is significant. The F-statistic was 10.428 and 

the p-value was <0.001. The regression coefficient for PM10 is significantly different 

from zero (p=0.026) and PM10 is positively associated with Heart Rate and the regression 

coefficient for PM10 (β=0.044 95% CI: -0.005-0.082) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.044 bpm in Heart 

Rate, the positive sign suggests that patients with higher PM10 exposure show higher 

Heart Rate ; 

 the regression analysis representing path a is significant. The F-statistic was 3.411 and 

the p-value was p=0.020. The regression coefficient for PM10 is statistically significantly 
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different from zero (p<0.001) and PM10 is negatively correlated with mir_218_000521 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_218_000521 expression decreases by 1.151% 

for an increase of 1 µg/m^3 in PM10; 

 

Table 22: Simple Mediation Analysis results for mediator mir_218_000521on log2 scale. Bootstrap standard error 

and bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable 

it was obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 the regression analysis representing path b is also significant. The F-statistic was 9.686  

and the p-value was p<0.001. The regression coefficient for mir_218_000521 is not 

statistically significantly different from zero (p=0.068) and mir_218_000521 expression 

is negatively correlated with FVCRapp, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  

mir_218_000521 expression is associated with a decrease of 0.006 bpm in Heart Rate. 

 the regression analysis representing path c’ estimated a direct effect c’=0.039  (95% CI:-

0.001-0.078, pvalue=0.048). This represents the estimated difference in Heart Rate 

between two patients with the same  mir_218_000521 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_218_000521 expression level is 

estimated to be 0.039 bpm higher in Heart Rate. 

The indirect effect 0.004 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.004 bpm in Heart Rate as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_218_000521 expression level (because a is 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.044 0.020 0.0051 0.082 0.026
costant ­ ­ ­ ­ ­ i 3 50.191 3.161 43.987 56.394 <0.001

X(PM 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' 0.039 0.020 0.001 0.078 0.048

M(miR_218_000521) ­ ­ ­ ­ ­ b -0.371 0.204 -0.771 0.028 0.068
costant i 1 4.110 0.532 3.066 5.154 <0.001 i 2 51.717 3.265 45.308 58.126 <0.001

Effect SE p

Total effect of PM 10  on Heart Rate c 0.044 0.020 0.005 0.082 0.026

Direct Effect of PM 10  on Heart Rate c' 0.039 0.020 0.001 0.078 0.048

Indirect Effect of PM 10  on Heart Rate 0.004 0.003 ­ ­ 0.114*

Effect Boot SE p

Indirect Effect of PM 10  on Heart Rate 0.004 0.002 0.001 0.010 ­

F(5,850)=10.428, p<0.001

R 2 =0.020 R 2 =0.064
F(5,850)=3.411, p=0.005 F(6,849)=9.686, p<0.001

95% CI

Boot 95% CI

Consequent

95% CI

R 2 =0.060

95% CI

M(miR_218_000521) Y(Heart Rate)
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negative), which in turn translates into lower Heart Rate (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.010). In this case the normal theory-

based Sobel test (Z=1.762, p=0.114) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

SBP: Sistolic Blood Pressure 

 

Figure 25: : Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression Systolic Blood Pressure as dependent variable. 

mir_92a_000431: Results of Simple Mediation Analysis for mediator mir_92a_000431 were 

reported in Table 23: 

 the regression analysis representing path c is significant. The F-statistic was 27.761 and 

the p-value was <0.001. PM10 is negatively associated with SBP and the regression 

coefficient for PM10 (β=-0.012 95% CI: -0.072;-0.047) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.012 mmHg in SBP 

level, the negative sign suggests that patients with higher PM10 exposure show lower SBP  

level. However this relationship is not statistically significantly different from zero 

(p=0.682); 

 the regression analysis representing path a is significant. The F-statistic was 5.454 and 

the p-value was p=0.037. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negativelyy correlated with mir_92a_000431 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_92a_000431 expression decreases by 0.821% 

for an increase of 1 µg/m^3 in PM10;  
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Table 23: Simple Mediation Analysis results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was 

obtained the change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 the regression analysis representing path b is also significant. The F-statistic was 24.172 

and the p-value was p<0.001. The regression coefficient for mir_92a_000431 is not 

statistically significantly different from zero (p=0.124) and mir_92a_000431 expression 

is negatively correlated with SBP, in particular, back-trasforming results due to the log2 

trasformation of miRNAs expression data appears that 1% change in  mir_92a_000431 

expression is associated with a decrease of 0.011 mmHg in SBP level. 

 the regression analysis representing path c’ estimated a direct effect c’=-0.019  (95% CI:-

0.079-0.041 pvalue=0.533). This represents the estimated difference in SBP between two 

patients with the same  mir_92a_000431 expression level but who differ by 1 µg/m^3 in 

their PM10 exposure level. The coefficient is negative, meaning that patients with higher 

PM10 exposure but with the same mir_92a_000431 expression level is estimated to be 

0.019 mmHg lower in SBP level. 

The indirect effect 0.007 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.007mmHg in SBP level as a result of the tendency of those with 

higher PM10 exposure level to have lower mir_92a_000431 expression level (because a is 

negative), which in turn translates into lower SBP level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.001; 0.017). In this case the normal theory-

M(miR_92a_000431) Y(SBP)
Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' -0.019 0.030 -0.079 0.041 0.533

M(miR_92a_000431) ­ ­ ­ ­ ­ b -0.555 0.360 -1.261 0.152 0.124
costant i 1 13.433 0.449 12.552 14.315 <0.001 i 2 106.806 6.754 93.549 120.063 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.019 0.030 -0.079 0.041 0.5333

Indirect Effect of Pm 10  on SBP 0.007 0.004 ­ ­ 0.159*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.007 0.004 0.001 0.017 ­

R 2 =0.164

F(6,851)=27.761, p<0.001

95% CI 95% CI

Consequent

R 2 =0.037
F(6,851)=5.454, p<0.001

95% CI

Boot 95% CI

R 2 =0.166
F(7,850)=24.172, p<0.001
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based Sobel test (Z=1.409, p=0.159) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

DBP:Diastolic Blood Pressure 

No miRNAs showed a significant indirect effect of PM10 on Diastolic Blood Pressure 

 

Figure 26: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and Diastolic Blood Pressure as dependent variable. 

CRP: C-Reactive Protein 

 

Figure 27: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and C-reactive protein as dependent variable. 

mir_106a_002169: Results of Simple Mediation Analysis for mediator mir_106a_002169 were 

reported in Table 24: 

 the regression analysis representing path c is significant. The F-statistic was 25.951 and 

the p-value was <0.001. and PM10 is positively associated with Heart Rate and the 

regression coefficient for PM10 (β=0.002 95% CI: -0.002-0.006) this means that two 
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patients who differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.002 

mg/l in CRP, the positive sign suggests that patients with higher PM10 exposure show 

higher CRP. However the regression coefficient for PM10 is not significantly different 

from zero (p=0.351); 

 

Table 24: Simple Mediation Analysis results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was 

obtained the percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 the regression analysis representing path a is significant. The F-statistic was 6.532 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_106a_002169 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_106a_002169 expression decreases by 0.849% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 23.049 

and the p-value was p<0.001. The regression coefficient for mir_106a_002169 is 

statistically significantly different from zero (p=0.027) and mir_106a_002169 expression 

is negatively correlated with CRP, in particular, back-trasforming results due to the log2 

trasformation of miRNAs expression and CRP level  appears that 1% change in  

mir_106a_002169 expression is associated with a decrease of 0.03 mg/l in CRP level. 

 the regression analysis representing path c’ estimated a direct effect c’=0.001  (95% CI:-

0.003-0.005 pvalue=0.581). This represents the estimated difference in CRP between two 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.012 0.003 -0.017 -0.007 <0.001 c' 0.001 0.002 -0.003 0.005 0.581

M(miR_106a_002169) ­ ­ ­ ­ ­ b -0.062 0.028 -0.116 -0.007 0.027
costant i 1 13.102 0.394 12.330 13.875 <0.001 i 2 -3.539 0.482 -4.485 -2.593 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.001 0.002 -0.003 0.005 0.581

Indirect Effect of Pm 10  on CRP 0.0008 0.0004 ­ ­ 0.047*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0008 0.0004 0.0002 0.0017 ­

R 2 = 0.156

F(6,840)=25.951, p<0.001

R 2 =0.045 R 2 =0.163
F(6,840)=6.532, p<0.001 F(7,839)=23.049, p<0.001

95% CI

Consequent

M(miR_106a_002169) Y(CRP)

95% CI 95% CI

Boot 95% CI
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patients with the same  mir_92a_000431 expression level but who differ by 1 µg/m^3 in 

their PM10 exposure level. The coefficient is positive, meaning that patients with higher 

PM10 exposure but with the same mir_106a_002169 expression level is estimated to be 

0.001 mg/l lower in CRP level. 

The indirect effect 0.0008 means that two patients who differ by 1 µg/m^3 in their PM10 

exposure level are estimated to by differ 0.0008 mg/l in CRP level as a result of the tendency of 

those with higher PM10 exposure level to have lower mir_106a_002169 expression level 

(because a is negative), which in turn translates into lower CRP level (because b is negative). 

Finally, the indirect effect is statistically different from zero, as revealed by the 95% BC 

bootstrap confidence interval that is interely above zero (0.0002; 0.0017). In this case the normal 

theory-based Sobel test (Z=1.985, p=0.047) agrees with the inference made using a biased 

correct bootstrap confidence interval. 

mir_652_002352: Results of Simple Mediation Analysis for mediator mir_652_002352 were 

reported in Table 24: 

 the regression analysis representing path c is significant. The F-statistic was 25.951 and 

the p-value was <0.001. and PM10 is positively associated with Heart Rate and the 

regression coefficient for PM10 (β=0.002 95% CI: -0.002-0.006) this means that two 

patients who differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.002 

mg/l in CRP, the positive sign suggests that patients with higher PM10 exposure show 

higher CRP. However the regression coefficient for PM10 is not significantly different 

from zero (p=0.351); 

 the regression analysis representing path a is significant. The F-statistic was 5.596 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_652_002352 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_652_002352 expression decreases by 1.513% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 22.949 

and the p-value was p<0.001. The regression coefficient for mir_652_002352 is 

statistically significantly different from zero (p=0.038) and mir_652_002352 expression 

is negatively correlated with CRP, in particular, back-trasforming results due to the log2 

trasformation of miRNAs expression appears that 1% change in  mir_652_002352 

expression is associated with a decrease of 0.004 mg/l in CRP level. 
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Table 25: Simple Mediation Analysis results for mediator mir_652_002352 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature. 

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was 

obtained the percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test. 
 

 the regression analysis representing path c’ estimated a direct effect c’=0.001  (95% CI:-

0.003-0.005 pvalue=0.534). This represents the estimated difference in CRP between two 

patients with the same  mir_652_002352 expression level but who differ by 1 µg/m^3 in 

their PM10 exposure level. The coefficient is positive, meaning that patients with higher 

PM10 exposure but with the same mir_652_002352 expression level is estimated to be 

0.001 mg/l higher in CRP level. 

The indirect effect 0.0006 means that two patients who differ by 1 µg/m^3 in their PM10 

exposure level are estimated to by differ 0.0006 mg/l in CRP level as a result of the tendency of 

those with higher PM10 exposure level to have lower mir_652_002352 expression level (because 

a is negative), which in turn translates into lower SBP level (because b is negative). Finally, the 

indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.0001; 0.0014). In this case the normal theory-

based Sobel test (Z=1.828, p=0.068) does not agree with the inference made using a biased 

correct bootstrap confidence interval. 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.022 0.005 -0.032 -0.012 <0.001 c' 0.001 0.002 -0.003 0.005 0.534

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.028 0.014 -0.055 -0.002 0.038
costant i 1 8.086 0.807 6.502 9.670 <0.001 i 2 -4.117 0.335 -4.774 -3.460 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.001 0.002 -0.003 0.005 0.534

Indirect Effect of Pm 10  on CRP 0.0006 0.0003 ­ ­ 0.068*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0006 0.0003 0.0001 0.0014 ­

R 2 = 0.156

F(6,840)=25.951, p<0.001

95% CI

Boot 95% CI

95% CI 95% CI

R 2 =0.038 R 2 =0.161
F(6,840)=5.596, p<0.001 F(7,839)=22.949, p<0.001

Consequent

M(miR_652_002352) Y(CRP)
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Fibrinogen 

 

Figure 28: Statistical Diagram for the Simple mediation model with PM10 as independent variable, M as miRNAs 

expression and Fibrinogen as dependent variable. 

mir_375_000564: Results of Simple Mediation Analysis for mediator mir_375_000564 were 

reported in Table 26: 

 the regression analysis representing path c is significant. The F-statistic was 18.709 and 

the p-value was <0.001. PM10 is positively associated with Fibrinogen and the regression 

coefficient for PM10 (β=0.217 95% CI: -0.016-0.450) this means that two patients who 

differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.217 g/l in 

Fibrinogen, the positive sign suggests that patients with higher PM10 exposure show 

higher Fibrinogen level. Hower the regression coefficient for PM10 is not significantly 

different from zero (p=0.068) 

 the regression analysis representing path a is significant. The F-statistic was 5.116 and 

the p-value was p<0.001. The regression coefficient for PM10 is statistically significantly 

different from zero (p<0.001) and PM10 is negatively correlated with mir_375_000564 

expression, in particular, back-trasforming results due to the log2 trasformation of 

miRNAs expression data appears that mir_375_000564 expression decreases by 1.185% 

for an increase of 1 µg/m^3 in PM10; 

 the regression analysis representing path b is also significant. The F-statistic was 16.865 

and the p-value was p<0.001. The regression coefficient for mir_375_000564 is 

statistically significantly different from zero (p=0.023) and mir_375_000564 expression 

is negatively correlated with Fibrinogen, in particular, back-trasforming results due to the 

log2 trasformation of miRNAs expression data appears that 1% change in  
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mir_375_000564 expression is associated with a decrease of 0.030 g/l in Fibrinogen 

level. 

 

Table 26: Simple Mediation Analysis results for mediator mir_375_000564 on log2 scale. Bootstrap standard error 

and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it 

was obtained the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable 

it was obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 the regression analysis representing path c’ estimated a direct effect c’=0.181  (95% CI:-

0.054-0.415 pvalue=0.130). This represents the estimated difference in Fibrinogen 

between two patients with the same  mir_375_000564 expression level but who differ by 

1 µg/m^3 in their PM10 exposure level. The coefficient is positive, meaning that patients 

with higher PM10 exposure but with the same mir_375_000564 expression level is 

estimated to be 0.181 g/l higher in Fibrinogen level.  

The indirect effect 0.036 means that two patients who differ by 1 µg/m^3 in their PM10 exposure 

level are estimated to by differ 0.036 g/l in Fibrinogen level as a result of the tendency of those 

with higher PM10 exposure level to have lower mir_375_000564 expression level (because a is 

negative), which in turn translates into lower Fibrinogen level (because b is negative). Finally, 

the indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence interval that is interely above zero (0.002; 0.099). In this case the normal theory-

based Sobel test (Z=1.914, p=0.056) agrees with the 

inference made using a biased correct bootstrap confidence interval.  

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.017 0.005 -0.026 -0.008 <0.001 c' 0.181 0.119 -0.054 0.415 0.130

M(miR_375_000564) ­ ­ ­ ­ ­ b -2.108 0.923 -3.920 -0.297 0.023
costant i 1 3.912 0.709 2.521 5.303 <0.001 i 2 157.897 19.049 120.506 195.287 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.181 0.119 -0.054 0.415 0.130

Indirect Effect of Pm 10  on Fibrinogen 0.036 0.024 ­ ­ 0.056*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.036 0.024 0.002 0.099 ­

Boot 95% CI

95% CI 95% CI

95% CI

Consequent

M(miR_375_000564) Y(Fibrinogen)

R 2 =0.036
F(6,818)=5.116, p<0.001

R 2 =0.126
F(7,817)=16.865, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001
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5.5.2 Parallel Multiple Mediation Models 

DLco 

 

Figure 29: Statistical Diagram for the Parallel Multiple Mediation model with PM10 as independent variable, M1 

(miR_106a_002169), M2 (miR_152_000475) and M3 (miR_218_000521) as miRNAs expression and DLcoRapp as 

dependent variable. 

Table 27 shows the results of the the four best fitting OLS regression models that define the 

parallel multiple mediator model reresented in Figure 29. Regression analysis representing paths 

a1,a2 and a3 are significant as show the p-values for the F statistics. Moreover, back-trasforming 

results due to the log2 trasformation of miRNAs expression data, appears that: 

 mir_106a_00216 expression decreases by 0.773% for an increase of 1 µg/m^3 in PM10; 

 mir_152_000475 expression decreases by 0.491% for an increase of 1 µg/m^3 in PM10; 

 mir_218_000521 expression decreases by 0.821% for an increase of 1 µg/m^3 in PM10; 

Regression analysis representing paths b1,b2 and b3 is also significant (F statistic 12.973, 

p<0.001) and back-trasforming results due to the log2 trasformation of miRNAs expression data 

appears that 1% change in: 

 mir_375_000564 expression is associated with a decrease of 0.016  in DLcoRapp; 

 mir_152_000475 expression is associated with an increase of 0.048 in DLcoRapp; 

 mir_218_000521 expression is associated with a of 0.037 in DLcoRapp; 

The total effect  from estimating DLcoRapp  from PM10 alone is statistically significantly 

different from zero β=0.064 (95%CI: 0.0004;0.127; p-value=0.049), this means that two patients 

who differ by 1 µg/m^3 in PM10 exposure level are estimated to differ by 0.064 in DLcoRapp, 

the positive sign suggests that patients with higher PM10 exposure show higher DLcoRapp level. 

Very little of the variance in mir_106a_00216 or mir_152_000475 or mir_218_000521 



 

105 
 

expression is explained by PM10 (respectively R
2
 = 0.041, R

2
 = 0.021, R

2
 = 0.022), and about a 

sixth of the variance in DLcoRapp  is accounted for by proposed mediators and PM10, R
2
 = 

0.136.  

The most relevant information pertinent to the process being modeled is the direct and indirect 

effects of PM10 on DLcoRapp. Starting first with the indirect effect through mir_106a_00216 

expression, this indirect effect is estimated as 0.012, meaning that two patients that differ by  1 

µg/m^3 in their  PM10 exposure level are estimated to differ by 0.012 units in their DLcoRapp 

through mir_106a_00216 expression, having higher DLcoRapp (because the indirect effect is 

positive). This indirect effect is positive as a result of the tendency of those with higher PM10 

exposure level to have higher mir_106a_00216 expression level (because a1 is positive), which 

in turn translates into higher DLcoRapp level (because b1 is positive). 

The second indirect effect of PM10 exposure on DLcoRapp modeled through mir_152_000475 

expression, is estimated as -0.024, meaning that two patients that differ by  1 µg/m^3 in their  

PM10 exposure level  are estimated to differ by -0.024 in their DLcoRapp through 

mir_152_000475 expression, having lower DLcoRapp (because the indirect effect is negative). 

This indirect effect is negative as a result of the tendency of those with higher PM10 exposure 

level to have lower mir_152_000475 expression level (because a2 is negative), which in turn 

translates into higher DLcoRapp level (because b2 is positive). 

The third indirect effect of PM10 exposure on DLcoRapp modeled through mir_2018_000521 

expression, is estimated as 0.031, meaning that two patients that differ by  1 µg/m^3 in their  

PM10 exposure level  are estimated to differ by 0.031 in their DLcoRapp through 

mir_218_000521 expression, having higher DLcoRapp (because the indirect effect is positive). 

This indirect effect is positive as a result of the tendency of those with higher PM10 exposure 

level to have lower mir_218_000521 expression level (because a3 is negative), which in turn 

translates into lower DLcoRapp level (because b3 is negative). 

 The total indirect effect of PM10 exposure on DLcoRapp obtained summed the indirect effects 

across all mediators is 0.020, this is positive, meaning that that two patients that differ by  1 

µg/m^3 in their  PM10 exposure level  are estimated to differ by 0.020  in their DLcoRapp as a 

result of the effect of PM10 exposure on the mediators, which in turn influence DLcoRapp. The 

total indirect effect often is not of much interest in a multiple mediator model, and sometimes it 

will be small even when the specific indirect effects are relatively large, which seems 

paradoxical. The direct effect, c′ = 0.044, quantifies the effect of PM10 exposure on DLcoRapp 

independent of the effect of the proposed mediators on DLcoRapp. Irrespective of the effects of 

PM10 exposure on mediators (mir_106a_00216, mir_152_000475 and mir_218_000521 
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expression level)  and how those mediators relate to DLcoRapp, an increase of 1 µg/m^3 in PM10 

exposure is associated with an increase of 0.044 in DLcoRapp (because c′ is positive). The total 

effect of PM10 exposure on DLcoRapp is not determined at all by the mediators proposed as 

intervening between X and Y. As it was in the simple mediation model, c = 0.064. As promised, 

this total effect partitions cleanly into the direct effect plus the sum of the specific indirect 

effects: 

c = c′+ a1b1 + a2b2 + a3b3 = 0.044 + (-0.011*-1.105)+(-0.007*-3.332) + (-0.012*-2.599) = 0.064 

meaning that the total indirect effect of PM10 exposure (i.e., the sum of the specific indirect 

effects) is difference between the total and direct effects of PM10 exposure: 

c − c′= a1b1 + a2b2 + a3b3 = 0.064 − 0.044 = 0.012 – 0.024+0.031 = 0.020 

The total indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence intervals (0.001;0.039), this supports the claim that mir_106a_00216, 

mir_152_000475 and mir_218_000521 expression mediate the effect of PM10 exposure on 

DLcoRapp. Also the indirect effects for the mediators  mir_152_000475 and  mir_2018_000521 

expression  are statistically different from zero, as revealed by the 95% BC bootstrap confidence 

intervals. Respectively for mir_152_000475 expression it is interely below zero (-0.005; -0.004) 

and for  mir_2018_000521 expression it is interely above zero (0.016;0.051). These results agree 

with the inferences made using the normal theory-based Sobel test. The estimate for the specific 

indirect effects (C1) through miR_106A_002169 minus the specific indirect effect through 

miR_152_000475 (a1b1 - a2b2) is  0.012-(-0.024)=0.036 and the 95% BC bootstrap confidence 

interval is entirely above zero (0.009;0.082) meaning that these specific indirect effect are 

statistically different from each other.  

The estimate for the specific indirect effects (C2) through miR_106A_002169 minus the specific 

indirect effect through miR_218_000521 (a1b1 - a3b3) is  0.012-(-0.031)=0.0.19 and the 95% BC 

bootstrap confidence interval straddles zero  (-0.040;0.000) meaning that these specific indirect 

effect are not statistically different from each other. Finally, the estimate for the specific indirect 

effects (C3) through mir_152_000475 minus the specific indirect effect through 

miR_218_000521 (a2b2 - a3b3) is  (-0.024 - 0.031)=-0.055 and the 95% BC bootstrap confidence 

interval is entirely below zero (-0.099;-0.024) meaning that these specific indirect effect are 

statistically different from each other. It is tempting to treat this as a test of the difference in 

strength of the mechanisms at work linking X to Y, or that one indirect effect is larger than 

another in an absolute sense.  

However, such an interpretation is justified only if the point estimates for the two specific 

indirect effects being compared are of the same  sign. Consider, for instance, the case where aibi 

= −0.30 and ajbj = 0.30. A test of the difference between these specific indirect effects may lead 
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to the claim that their difference is not zero, but this does not imply the mechanisms are of 

different strength or that one indirect effect is bigger. The point estimates suggest one 

mechanism results in a positive difference in Y, whereas the other yields a negative difference of 

equal magnitude. In an absolute sense, they are equal in size by the point estimates, yet 

statistically different by an inferential test which considers their sign. But one indirect effect is 

not stronger than the other. Nor can we  say that X exerts a larger effect on Y through one of the 

mediators relative to the other.  
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Table 27: Parallel Multiple Mediation Analysis results for mediators M1 (miR_106a_002169), M2 (miR_152_000475) and M3 (miR_218_000521) on log2 scale. Bootstrap standard 

error and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained the %change in miRNAs expression : (2^β -1)*100 

for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was obtained the change in DLcoRapp: β log2(101/100)  

associated with 1%change in miRNAs expression.  

Contrasts for pairwaise comparisons between specific indirect effects:  (C1) miR_106A_002169 minus miR_152_000475, (C2)  miR_106A_002169 minus miR_218_000521, (C3)  

miR_152_000475 minus miR_218_000521. 

*Sobel test. 
 

Y(DLCORapp)

Antecedent Coeff. SE p Coeff. SE p Coeff. SE p Coeff. SE p

X(Pm 10 ) a 1 -0.011 0.003 -0.016 -0.006 <0.001 a 2 -0.007 0.003 -0.014 -0.001 0.033 a 3 -0.012 0.004 -0.019 -0.005 0.001 c' 0.044 0.032 -0.019 0.107 0.169

M 1 (miR_106a_002169) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 1 -1.105 0.781 -2.638 0.429 0.158

M 2 (miR_152_000475) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 2 3.332 0.682 1.994 4.670 <0.001

M 3 (miR_218_000521) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 3 -2.599 0.396 -3.376 -1.822 <0.001
costant iM 13.390 0.733 11.951 14.828 <0.001 iM 6.603 0.964 4.710 8.496 <0.001 iM 2.959 1.068 0.862 5.057 0.006 i Y 51.435 11.832 28.207 74.662 <0.001

Effect SE p

Total effect of Pm 10  on DLcoRapp 0.064 0.032 0.0004 0.127 0.049

Direct Effect of Pm 10  on DLcoRapp 0.044 0.032 -0.019 0.107 0.169

Indirect Effect of Pm 10 on DLcoRapp 
M 1 (miR_106a_002169) 0.012 0.009 ­ ­ 0.188*

M 2 (miR_152_000475) -0.024 0.012 ­ ­ 0.054*
M 3 (miR_218_000521) 0.031 0.011 ­ ­ 0.004*

Effect Boot SE p

Indirect Effect of Pm 10  on DLcoRapp 

Total 0.020 0.010 0.001 0.039 ­
M 1 (miR_106a_002169) 0.012 0.008 -0.001 0.029 ­

M 2 (miR_152_000475) -0.024 0.013 -0.055 -0.004 ­

M 3 (miR_218_000521) 0.031 0.009 0.016 0.051 ­

(C 1 ) 0.036 0.018 0.009 0.082 ­

(C 2 ) -0.019 0.010 -0.040 0.000 ­
(C 3 ) -0.055 0.019 -0.099 -0.024 ­

M 3 (miR_218_000521)
Consequent

95% CI 95% CI95% CI

Boot 95% CI

M 1 (miR_106a_002169)

95% CI

R2=0.041

F(6,743)=5.307, p<0.001

R2=0.021

F(6,743)=2.599, p=0.017

M 2 (miR_152_000475)

R2=0.022

F(6,743)=2.766, p=0.0115

R2=0.136

F(9,740)=12.973, p<0.001

95% CI
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FEV1  

 

Figure 30: Statistical Diagram for the Parallel Multiple Mediation model with PM10 as independent variable, M1 

(miR_27b_000409), M2 (miR_30d_000420), M3 (miR_92a_000431), M4 (miR_181a_2_002317), M5 

(miR_218_000521) as miRNAs expression and FEV1 as dependent variable. 

Table 28 shows the results of the the four best fitting OLS regression models that define the 

parallel multiple mediator model reresented in Figure 30. Regression analysis representing paths 

a1, a2, a3, a4, a5  are significant as show the p-values for the F statistics. Moreover, back-

trasforming results due to the log2 trasformation of miRNAs expression data, appears that: 

 miR_27b_000409 expression decreases by 0.931 for an increase of 1 µg/m^3 in PM10; 

 miR_30d_000420 expression decreases by 1.062  for an increase of 1 µg/m^3 in PM10; 

 miR_92a_000431 expression decreases by 0.808 for an increase of 1 µg/m^3 in PM10; 

 miR_181a_2_002317 expression decreases by 1.137  for an increase of 1 µg/m^3 in PM10; 

 miR_218_000521 expression decreases by 1.110  for an increase of 1 µg/m^3 in PM10; 
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Regression analysis representing paths b1, b2, b3, b4 and b5 is also significant (F statistic 5.078, 

p<0.001) and back-trasforming results due to the log2 trasformation of miRNAs expression data 

appears that 1% change in: 

 miR_27b_000409 expression is associated with a decrease of 0.017 in FEV1Rapp; 

 miR_30d_000420 expression is associated with an increase of 0.603 in FEV1Rapp; 

 miR_92a_000431 expression is associated with a decrease of 0.730 in FEV1Rapp; 

 miR_181a_2_002317 expression is associated with a decrease of 0.877 in FEV1Rapp; 

 miR_218_000521 expression is associated with a decrease of 0.157 of in FEV1Rapp; 

The total effect from estimating FEV1Rapp from PM10 alone is 0.025 (95%CI: -0.044;0.094; p-

value=0.473), this means that two patients who differ by 1 µg/m^3 in PM10 exposure level are 

estimated to differ by 0.025 in FEV1Rapp, the positive sign suggests that patients with higher 

PM10 exposure show higher FEV1Rapp level. However this total effect is not statistically 

significant. 

The most relevant information pertinent to the process being modeled is the direct and indirect 

effects of PM10 on FEV1Rapp. Starting first with the indirect effect through miR_27b_000409 

expression, this indirect effect is estimated as 0.0002, meaning that two patients that differ by 1 

µg/m^3 in their  PM10 exposure level are estimated to differ by 0.0002 in their FEV1Rapp level 

through miR_27b_000409 expression, having higher FEV1Rapp (because the indirect effect is 

positive). This indirect effect is positive as a result of the tendency of those with higher PM10 

exposure level to have lower miR_27b_000409 expression level (because a1 is negative), which 

in turn translates into lower FEV1Rapp level (because b1 is negative). 

The second indirect effect of PM10 exposure on FEV1Rapp modeled through miR_30d_000420 

expression, is estimated as -0.009, meaning that two patients that differ by 1 µg/m^3 in their  

PM10 exposure level are estimated to differ by -0.009 in their FEV1Rapp through 

miR_30d_000420 expression, having lower FEV1Rapp (because the indirect effect is negative). 

This indirect effect is negative as a result of the tendency of those with higher PM10 exposure 

level to have lower miR_30d_000420 expression level (because a2 is negative), which in turn 

translates into higher FEV1Rapp level (because b2 is positive). The third indirect effect of PM10 

exposure on FEV1Rapp modeled through miR_92a_000431 expression, is estimated as 0.009, 

meaning that two patients that differ by 1 µg/m^3 in their  PM10 exposure level  are estimated to 

differ by 0.009 in their FEV1Rapp through miR_92a_000431 expression, having higher 

FEV1Rapp (because the indirect effect is positive). This indirect effect is positive as a result of 

the tendency of those with higher PM10 exposure level to have lower miR_92a_000431 
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expression level (because a3 is negative), which in turn translates into lower FEV1Rapp level 

(because b3 is negative). 

The fourth indirect effect of PM10 exposure on FEV1Rapp modeled through 

miR_181a_2_002317 expression, is estimated as 0.015, meaning that two patients that differ by 

1 µg/m^3 in their PM10 exposure level are estimated to differ by 0.015 in their FEV1Rapp 

through miR_181a_2_002317 expression, having higher FEV1Rapp (because the indirect effect 

is positive). This indirect effect is positive as a result of the tendency of those with higher PM10 

exposure level to have lower miR_181a_2_002317 expression level (because a4 is negative), 

which in turn translates into lower FEV1Rapp level (because b4 is negative). 

The fifth indirect effect of PM10 exposure on FEV1Rapp modeled through miR_218_000521 

expression, is estimated as 0.003, meaning that two patients that differ by  1 µg/m^3 in their 

PM10 exposure level  are estimated to differ by 0.003 in their FEV1Rapp through 

miR_218_000521 expression, having higher FEV1Rapp (because the indirect effect is positive). 

This indirect effect is positive as a result of the tendency of those with higher PM10 exposure 

level to have lower miR_218_000521 expression level (because a5 is negative), which in turn 

translates into lower FEV1Rapp level (because b5 is negative). 

The total indirect effect of PM10 exposure on FEV1Rapp obtained summed the indirect effects 

across all mediators is 0.017, this is positive, meaning that that two patients that differ by 1 

µg/m^3 in their PM10 exposure level are estimated to differ by 0.017 in their FEV1Rapp as a 

result of the effect of PM10 exposure on the mediators, which in turn influence FEV1Rapp. The 

direct effect, c′ = 0.009, quantifies the effect of PM10 exposure on FEV1Rapp independent of the 

effect of the proposed mediators on FEV1Rapp. Irrespective of the effects of PM10 exposure on 

mediators (miR_27b_000409, miR_30d_000420, miR_92a_000431, miR_181a_2_002317 and 

miR_218_000521 expression level) and how those mediators relate to FEV1Rapp, an increase of 

1 µg/m^3 in PM10 exposure is associated with an increase of 0.009 in FEV1Rapp (because c′ is 

positive). The total effect of PM10 exposure on DLcoRapp is not determined at all by the 

mediators proposed as intervening between X and Y. As it was in the simple mediation model, c 

= 0.025. As promised, this total effect partitions cleanly into the direct effect plus the sum of the 

specific indirect effects: 

c = c′+ a1b1 + a2b2 + a3b3 = 0.044 + (-0.011*-1.105)+(-0.007*-3.332) + (-0.012*-2.599) = 0.064 

meaning that the total indirect effect of PM10 exposure (i.e., the sum of the specific indirect 

effects) is difference between the total and direct effects of PM10 exposure: 

c − c′= a1b1 + a2b2 + a3b3 = 0.064 − 0.044 = 0.012 – 0.024+0.031 = 0.020 

The total indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence intervals (0.001;0.039), this supports the claim that mir_106a_00216, 
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mir_152_000475 and mir_218_000521 expression mediate the effect of PM10 exposure on 

DLcoRapp. Also the indirect effects for the mediators  mir_152_000475 and  mir_2018_000521 

expression  are statistically different from zero, as revealed by the 95% BC bootstrap confidence 

intervals. Respectively for mir_152_000475 expression it is interely below zero (-0.005; -0.004) 

and for  mir_2018_000521 expression it is interely above zero (0.016;0.051). These results agree 

with the inferences made using the normal theory-based Sobel test. The estimate for the specific 

indirect effects (C1) through miR_106A_002169 minus the specific indirect effect through 

miR_152_000475 (a1b1 - a2b2) is  0.012-(-0.024)=0.036 and the 95% BC bootstrap confidence 

interval is entirely above zero (0.009;0.082) meaning that these specific indirect effect are 

statistically different from each other.  

The estimate for the specific indirect effects (C2) through miR_106A_002169 minus the specific 

indirect effect through miR_218_000521 (a1b1 - a3b3) is  0.012-(-0.031)=0.0.19 and the 95% BC 

bootstrap confidence interval straddles zero  (-0.040;0.000) meaning that these specific indirect 

effect are not statistically different from each other. Finally, the estimate for the specific indirect 

effects (C3) through mir_152_000475 minus the specific indirect effect through 

miR_218_000521 (a2b2 - a3b3) is  (-0.024 - 0.031)=-0.055 and the 95% BC bootstrap confidence 

interval is entirely below zero (-0.099;-0.024) meaning that these specific indirect effect are 

statistically different from each other. It is tempting to treat this as a test of the difference in 

strength of the mechanisms at work linking X to Y, or that one indirect effect is larger than 

another in an absolute sense.  
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Table 28: Parallel Multiple Mediation Analysis results for mediators M1 (miR_106a_002169), M2 (miR_152_000475), M3 (miR_218_000521), M4 (miR_181a_2_002317), M5 

(miR_218_000521)  on log2 scale. Bootstrap standard error and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated 

haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained the %change in miRNAs expression : (2^β -1)*100 

for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1Rapp as independent variable and miRNAs expression as dependent variable it was obtained the change in FEV1Rapp: β log2(101/100)  

associated with 1%change in miRNAs expression.  

Contrasts for pairwaise comparisons between specific indirect effects:  (C1) miR_27B_000409 minus miR_30D_000420, (C2)  miR_27B_000409 minus miR_92A_000431, (C3)  

miR_27B_000409 minus miR_181A_2__002317, (C4)  miR_27B_000409 minus  miR_218_000521, (C5)  miR_30D_000420 minus miR_92A_000431, (C6)  miR_30D_000420 

minus miR_181A_2__002317, (C7)  miR_30D_000420 minus miR_218_000521, (C8)  miR_92A_000431 minus miR_181A_2__002317, (C9)  miR_92A_000431 minus 

miR_218_000521, (C10) miR_181A_2__002317 minus miR_218_000521.  

*Sobel test. 

Y(FEV 1 Rapp)

Antecedent Coeff. SE p Coeff. SE p Coeff. SE p Coeff. SE p Coeff. SE p Coeff. SE p

X(Pm 10 ) a 1 -0.014 0.004 -0.022 -0.005 0.001 a 2 -0.015 0.004 -0.023 -0.008 <0.001 a 3 -0.012 0.003 -0.018 -0.006 <0.001 a 4 -0.017 0.004 -0.025 -0.008 <0.001 a 5 -0.016 0.004 -0.024 -0.009 <0.001 c' 0.009 0.035 -0.061 0.078 0.808

M 1 (miR_27b_000409) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 1 -0.017 0.482 -0.963 0.928 0.971

M 2 (miR_30d_000420) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 2 0.603 0.626 -0.626 1.832 0.336

M 3 (miR_92a_000431) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 3 -0.730 0.596 -1.900 0.440 0.221

M 4 (miR_181a_2_002317) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 4 -0.877 0.535 -1.926 0.173 0.101

M 5 (miR_218_000521) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 5 -0.157 0.430 -1.001 0.687 0.715

costant i M 7.967 1.140 5.728 10.206 <0.001 i M 9.233 1.029 7.213 11.253 <0.001 i M 12.841 0.843 11.187 14.495 <0.001 i M 1.956 1.153 -0.307 4.219 0.090 i M 3.583 1.051 1.520 5.646 <0.001 i Y 106.934 11.420 84.516 129.351 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp 0.025 0.035 -0.044 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp 0.009 0.035 -0.061 0.078 0.808

Indirect Effect of Pm 10  on FEV1Rapp 

M 1 (miR_27b_000409) 0.0002 0.007 ­ ­ 0.973*

M 2 (miR_30d_000420) -0.009 0.010 ­ ­ 0.362*

M 3 (miR_92a_000431) 0.009 0.008 ­ ­ 0.258*

M 4 (miR_181a_2_002317) 0.015 0.010 ­ ­ 0.140*

M 5 (miR_218_000521) 0.003 0.007 ­ ­ 0.723*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV1Rapp 

Total 0.017 0.007 0.003 0.032 ­

M 1 (miR_27b_000409) 0.0002 0.007 -0.014 0.013 ­

M 2 (miR_30d_000420) -0.009 0.011 -0.033 0.009 ­

M 3 (miR_92a_000431) 0.009 0.007 -0.002 0.024 ­

M 4 (miR_181a_2_002317) 0.015 0.010 -0.003 0.037 ­

M 5 (miR_218_000521) 0.003 0.008 -0.015 0.018 ­

(C 1 ) 0.010 0.014 -0.017 0.040 ­

(C 2 ) -0.008 0.010 -0.031 0.010 ­

(C 3 ) -0.014 0.014 -0.045 0.010 ­

(C 4 ) -0.002 0.010 -0.021 0.018 ­

(C 5 ) -0.018 0.014 -0.048 0.008 ­

(C 6 ) -0.024 0.017 -0.062 0.006 ­

(C 7 ) -0.012 0.014 -0.041 0.016 ­

(C 8 ) -0.006 0.011 -0.029 0.016 ­

(C 9 ) 0.006 0.010 -0.012 0.029 ­

(C 10 ) 0.012 0.016 -0.016 0.046 ­

F(7,780)=4.073, p<0.001 F(7,780)=2.870, p=0.006 F(12,755)=5.078, p<0.001F(7,780)=3.773, p<0.001

M 1 (miR_27b_000409) M 2 (miR_30d_000420) M 4 (miR_181a_2_002317)

95% CI 95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M 3 (miR_92a_000431)

95% CI

R2=0.036

F(7,780)=4.177, p<0.001

M 5 (miR_218_000521)

95% CI

R2=0.033

95% CI

R2=0.053 R2=0.035 R2=0.025 R 2 =0.073

F(7,780)=6.203, p<0.001
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FVCRapp 

 

Figure 31: Statistical Diagram for the Parallel Multiple Mediation model with PM10 as independent variable, M1 

(miR_27b_000409), M2 (miR_92a_000431), M3 (miR_181a_2_002317) as miRNAs expression and FVCRapp as 

dependent variable. 

Table 29 shows the results of the the four best fitting OLS regression models that define the 

parallel multiple mediator model reresented in Figure 31. Regression analysis representing paths 

a1,a2 and a3 are significant as show the p-values for the F statistics. Moreover, back-trasforming 

results due to the log2 trasformation of miRNAs expression data, appears that: 

 mir_27b_000409 expression decreases by 0.931% for an increase of 1 µg/m^3 in PM10; 

 mir_92a_000431 expression decreases by 0.808% for an increase of 1 µg/m^3 in PM10; 

 mir_181a_2_002317 expression decreases by 1.137% for an increase of 1 µg/m^3 in PM10; 

Regression analysis representing paths b1,b2 and b3 is also significant (F statistic 12.050, 

p<0.001) and back-trasforming results due to the log2 trasformation of miRNAs expression data 

appears that 1% change in: 

 mir_27b_000409 expression is associated with a decrease of 0.003 g/l in FVCRapp; 

 mir_92a_000431 expression is associated with a decrease of 0.003 g/l in FVCRapp; 

 mir_181a_2_002317 expression is associated with an increase of 0.006 g/l in FVCRapp; 

The estimate for the total effect obtained estimating FVCRapp from PM10 alone is β=0.051 

(95%CI: -0.016;0.117; p-value=0.134), this means that two patients who differ by 1 µg/m^3 in 

PM10 exposure level are estimated to differ by 0.051 in FVCRapp, the positive sign suggests that 

patients with higher PM10 exposure show higher FVCRapp level. However the total effect is not 
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statistically significantly different from zero. Very little of the variance in mir_106a_00216 or 

mir_152_000475 or mir_2018_000521 expression is explained by PM10 (respectively R
2
 = 

0.053, R
2
 = 0.036, R

2
 = 0.025), and about a sixth of the variance in FVCRapp is accounted for by 

proposed mediators and PM10, R
2
 = 0.134.  

The most relevant information pertinent to the process being modeled is the direct and indirect 

effects of PM10 on FVCRapp. Starting first with the indirect effect through mir_27b_000409 

expression, this indirect effect is estimated as 0.002, meaning that two patients that differ by  1 

µg/m^3 in their  PM10 exposure level are estimated to differ by 0.002 in their FVCRapp through 

mir_27b_000409 expression, having higher FVCRapp (because the indirect effect is positive). 

This indirect effect is positive as a result of the tendency of those with higher PM10 exposure 

level to have lower mir_27b_000409 expression level (because a1 is negative), which in turn 

translates into lower FVCRapp level (because b1 is negative). 

The second indirect effect of PM10 exposure on FVCRapp modeled through mir_92a_000431 

expression, is estimated as 0.002, meaning that two patients that differ by  1 µg/m^3 in their  

PM10 exposure level  are estimated to differ by 0.002 in their FVCRapp through 

mir_92a_000431 expression, having lower FVCRapp (because the indirect effect is negative). 

This indirect effect is negative as a result of the tendency of those with higher PM10 exposure 

level to have lower mir_92a_000431 expression level (because a2 is negative), which in turn 

translates into lower FVCRapp level (because b2 is negative). 

The third indirect effect of PM10 exposure on FVCRapp modeled through mir_181a_2_002317 

expression, is estimated as 0.010, meaning that two patients that differ by  1 µg/m^3 in their  

PM10 exposure level  are estimated to differ by 0.010 in their FVCRapp through 

mir_181a_2_002317 expression, having higher FVCRapp (because the indirect effect is 

positive). This indirect effect is positive as a result of the tendency of those with higher PM10 

exposure level to have lower mir_181a_2_002317 expression level (because a3 is negative), 

which in turn translates into lower FVCRapp level (because b3 is negative). 

 The total indirect effect of PM10 exposure on FVCRapp obtained summed the indirect effects 

across all mediators is 0.014, this is positive, meaning that that two patients that differ by  1 

µg/m^3 in their  PM10 exposure level are estimated to differ by 0.014  in their FVCRapp as a 

result of the effect of PM10 exposure on the mediators, which in turn influence FVCRapp. The 

direct effect, c′ = 0.036, quantifies the effect of PM10 exposure on FVCRapp independent of the 

effect of the proposed mediators on FVCRapp. Irrespective of the effects of PM10 exposure on 

mediators (mir_27b_000409, mir_92a_000431 and mir_181a_2_002317 expression level)  and 

how those mediators relate to FVCRapp, an increase of 1 µg/m^3 in PM10 exposure is associated 
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with an increase of 0.036 in FVCRapp (because c′ is positive). The total effect of PM10 exposure 

on FVCRapp is not determined at all by the mediators proposed as intervening between X and Y. 

As it was in the simple mediation model, c = 0.051. As promised, this total effect partitions 

cleanly into the direct effect plus the sum of the specific indirect effects: 

c = c′+ a1b1 + a2b2 + a3b3 = 0.036 + (-0.014*-0.175)+(-0.012*-0.182) + (-0.017*-0.588) = 0.051 

meaning that the total indirect effect of PM10 exposure (i.e., the sum of the specific indirect 

effects) is difference between the total and direct effects of PM10 exposure: 

c − c′= a1b1 + a2b2 + a3b3 = 0.051 − 0.036 = 0.002 +0.002+0.010 = 0.051 

The total indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence intervals (0.002;0.029), this supports the claim that mir_27b_000409, 

mir_92a_000431 and mir_181a_2_002317 expression mediate the effect of PM10 exposure on 

FVCRapp. However,  the indirect effects for all the mediators  are not statistically different from 

zero, as revealed by the 95% BC bootstrap confidence intervals which straddle zero. These 

results agree with the inferences made using the normal theory-based Sobel test.  

The estimate for the specific indirect effects (C1) through miR_27b_000409 minus the specific 

indirect effect through  miR_92a_000431 (a1b1 - a2b2) is  0.0024-0.0021=0.0003.  

The estimate for the specific indirect effects (C2) through miR_27b_000409 minus the specific 

indirect effect through  miR_181a_2__002317 (a1b1 - a3b3) is  0.0024-0.0097=-0.007.  

The estimate for the specific indirect effects (C3) through miR_92a_000431 minus the specific 

indirect effect through  miR_181a_2__002317 (a2b2 - a3b3) is  0.0021-0.0097=-0.008.  

These specific indirect effect are not statistically different from zero as shown by the  95% BC 

bootstrap confidence intervals. 
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Table 29: Parallel Multiple Mediation Analysis results for mediators M1 (miR_27b_000409), M2 (miR_92a_000431) and M3 (miR_181a_2_002317) on log2 scale. Bootstrap 

standard error and bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained the %change in miRNAs expression : (2^β -1)*100 

for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was obtained the change in FVCRapp: β log2(101/100)  

associated with 1%change in miRNAs expression. 

Contrasts for pairwaise comparisons between specific indirect effects:  (C1) miR_27b_000409 minus  miR_92A_000431, (C2) miR_27b_000409 minus  miR_181a_2__002317, 

(C3) miR_92a_000431 minus  miR_181a_2__002317.  

*Sobel test. 

Y(FVCRapp)

Antecedent Coeff. SE p Coeff. SE p Coeff. SE p Coeff. SE p

X(Pm 10 ) a 1 -0.014 0.004 -0.022 -0.005 0.001 a 2 -0.012 0.003 -0.02 -0.006 <0.001 a 3 -0.017 0.004 -0.025 -0.008 <0.001 c' 0.036 0.034 -0.030 0.103 0.285

M 1 (miR_27b_000409) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 1 -0.175 0.451 -1.060 0.711 0.699

M 2 (miR_92a_000431) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 2 -0.182 0.530 -1.222 0.858 0.732

M 3 (miR_181a_2_002317) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 3 -0.588 0.400 -1.373 0.198 0.142
costant iM 7.967 1.140 5.728 10.206 <0.001 iM 12.841 0.843 11.187 14.495 <0.001 iM 1.956 1.153 -0.307 4.219 0.090 i Y 102.383 10.861 81.062 123.704 <0.001

Effect SE p

Total effect of Pm 10  on FVCRapp 0.051 0.034 -0.016 0.117 0.134

Direct Effect of Pm 10  on FVCRapp 0.036 0.034 -0.030 0.103 0.285

Indirect Effect of Pm 10  on FVCRapp 
M 1 (miR_27b_000409) 0.0024 0.006 ­ ­ 0.713*

M 2 (miR_92a_000431) 0.0021 0.006 ­ ­ 0.741*
M 3 (miR_181a_2_002317) 0.001 0.007 ­ ­ 0.180*

Effect Boot SE p

Indirect Effect of Pm 10  on FVCRapp  

Total 0.0142 0.007 0.002 0.029 ­

M 1 (miR_27b_000409) 0.0024 0.006 -0.01 0.015 ­

M 2 (miR_92a_000431) 0.0021 0.005 -0.010 0.012 ­

M 3 (miR_181a_2_002317) 0.010 0.007 -0.003 0.025 ­

(C 1 ) 0.0003 0.009 -0.016 0.020 ­

(C 2 ) -0.007 0.011 -0.029 0.013 ­

(C 3 ) -0.008 0.010 -0.027 0.010 ­

Consequent

95% CI

R2=0.053 R2=0.036

M 1 (miR_27b_000409) M 2 (miR_92a_000431) M 3 (miR_181a_2_002317)

95% CI 95% CI 95% CI

95% CI

Boot 95% CI

R2=0.025 R 2 =0.134

F(7,780)=6.203, p<0.001 F(7,780)=4.177, p<0.001 F(7,780)=2.870, p=0.006 F(10,777)=12.050, p<0.001
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CRP 

 

Figure 32: Statistical Diagram for the Parallel Multiple Mediation model with PM10 as independent variable, M1 

(miR_27b_000409), M2 (miR_652_002352) as miRNAs expression and CRP as dependent variable. 

Table 30 shows the results of the the three best fitting OLS regression models that define the 

parallel multiple mediator model reresented in Figure 32. Regression analysis representing paths 

a1, a2 are significant as show the p-values for the F statistics. Moreover, back-trasforming results 

due to the log2 trasformation of miRNAs expression data, appears that: 

 mir_27b_000409 expression decreases by -0.979% for an increase of 1 µg/m^3 in PM10; 

 mir_652_002352 expression decreases by -1.459% for an increase of 1 µg/m^3 in PM10; 

Regression analysis representing paths b1, and b2 is also significant (F statistic 17.781, p<0.001) 

and back-trasforming results due to the log2 trasformation of miRNAs expression data and CRP 

levels appears that 1% change in: 

 mir_27b_000409 expression is associated with a decrease of 0.011 g/l in CRP; 

 mir_652_002352 expression is associated with a decrease of 0.024 g/l in CRP; 

The estimate for the total effect obtained estimating CRP from PM10 alone is β=0.002 (95%CI: -

0.002; 0.006; p-value=0.3946), this means that two patients who differ by 1 µg/m^3 in PM10 

exposure level are estimated to differ by 0.002 mg/l in CRP level, the positive sign suggests that 

patients with higher PM10 exposure show higher CRP level. However the total effect is not 

statistically significantly different from zero. Very little of the variance in mir_27b_000409 or 

mir_92a_000431 expression is explained by PM10 (respectively R
2
 = 0.053, R

2
 = 0.037), and 

about a sixth of the variance in FVCRapp is accounted for by proposed mediators and PM10, R
2
 

= 0.162.  
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The most relevant information pertinent to the process being modeled is the direct and indirect 

effects of PM10 on CRP. Starting first with the indirect effect through mir_27b_000409 

expression, this indirect effect is estimated as 0.0002, meaning that two patients that differ by  1 

µg/m^3 in their  PM10 exposure level are estimated to differ by 0.0002 mg/l in their CRP through 

mir_27b_000409 expression, having higher CRP (because the indirect effect is positive). This 

indirect effect is positive as a result of the tendency of those with higher PM10 exposure level to 

have lower mir_27b_000409 expression level (because a1 is negative), which in turn translates 

into lower CRP level (because b1 is negative). 

The second indirect effect of PM10 exposure on CRP modeled through mir_652_002352 

expression, is estimated as 0.0005, meaning that two patients that differ by  1 µg/m^3 in their  

PM10 exposure level  are estimated to differ by 0.0005 in their CRP through mir_652_002352 

expression, having higher CRP (because the indirect effect is positive). This indirect effect is 

negative as a result of the tendency of those with higher PM10 exposure level to have lower 

mir_652_002352 expression level (because a2 is negative), which in turn translates into lower 

CRP level (because b2 is negative). 

The total indirect effect of PM10 exposure on CRP obtained summed the indirect effects across 

all mediators is 0.0007, this is positive, meaning that that two patients that differ by  1 µg/m^3 in 

their  PM10 exposure level are estimated to differ by 0.0007 in their CRP as a result of the effect 

of PM10 exposure on the mediators, which in turn influence CRP. The direct effect, c′ = 0.001, 

quantifies the effect of PM10 exposure on CRP independent of the effect of the proposed 

mediators on CRP. Irrespective of the effects of PM10 exposure on mediators (mir_27b_000409, 

mir_652_002352 expression level)  and how those mediators relate to CRP, an increase of 1 

µg/m^3 in PM10 exposure is associated with an increase of 0.001 in CRP (because c′ is positive). 

The total effect of PM10 exposure on CRP is not determined at all by the mediators proposed as 

intervening between X and Y. As it was in the simple mediation model, c = 0.002. As promised, 

this total effect partitions cleanly into the direct effect plus the sum of the specific indirect 

effects: 

c = c′+ a1b1 + a2b2 = 0.001 + (-0.014*-0.011)+(-0.021*-0.024) = 0.002 

meaning that the total indirect effect of PM10 exposure (i.e., the sum of the specific indirect 

effects) is difference between the total and direct effects of PM10 exposure: 

c − c′= a1b1 + a2b2 = 0.002 – 0.001 = 0.0002 +0.0005= 0.0007 

The total indirect effect is statistically different from zero, as revealed by the 95% BC bootstrap 

confidence intervals (0.0001;0.0014), this supports the claim that mir_27b_000409, 

mir_652_002352  expression mediate the effect of PM10 exposure on CRP. However,  the 

indirect effects for all the mediators  are not statistically different from zero, as revealed by the 
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95% BC bootstrap confidence intervals which straddle zero. These results agree with the 

inferences made using the normal theory-based Sobel test.  

The estimate for the specific indirect effects (C1) through miR_27b_000409 minus the specific 

indirect effect through  miR_652_002352 (a1b1 - a2b2) is  0.0002-0.0005=-0.0004, and the 95% 

BC bootstrap confidence interval straddles zero  meaning that it is not statistically different from 

zero. 
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Table 30: Parallel Multiple Mediation Analysis results for mediators M1 (miR_27b_000409) and M2 (miR_652_002352) on log2 scale. Bootstrap standard error and bootstrap 95% 

were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained the %change in miRNAs expression : (2^β -1)*100 

for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the percentage change in CRP: 100(1.01^ β  -1)  

associated with 1%change in miRNAs expression. 

Contrasts for pairwaise comparisons between specific indirect effects:  (C1) miR_27b_000409 minus miR_652_002352  

*Sobel test. 

Y(CRP)

Antecedent Coeff. SE p Coeff. SE p Coeff. SE p

X(Pm 10 ) a 1 -0.014 0.004 -0.022 -0.006 <0.001 a 2 -0.021 0.005 -0.032 -0.011 <0.001 c' 0.001 0.002 -0.003 0.005 0.603

M 1 (miR_27b_000409) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 1 -0.011 0.023 -0.055 0.034 0.638

M 2 (miR_652_002352) ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ b 2 -0.024 0.017 -0.059 0.010 0.162
costant iM 8.183 1.085 6.053 10.314 <0.001 iM 8.388 1.414 5.612 11.164 <0.001 i Y -3.485 0.575 -4.615 -2.356 <0.001

Effect SE p

Total effect of Pm 10  on CRP 0.002 0.002 -0.002 0.006 0.3946

Direct Effect of Pm 10  on CRP 0.001 0.002 -0.003 0.005 0.603

Indirect Effect of Pm 10 on CRP
M 1 (miR_27b_000409) 0.0002 0.0003 ­ ­ 0.6529*
M 2 (miR_652_002352) 0.0005 0.0004 ­ ­ 0.197*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP

Total 0.0007 0.0003 0.0001 0.0014 ­

M 1 (miR_27b_000409) 0.0002 0.0003 -0.0004 0.0008 ­

M 2 (miR_652_002352) 0.0005 0.0004 0.0000 0.0014 ­

(C 1 ) -0.0004 0.0006 -0.0016 0.0006 ­

Consequent
M 1 (miR_27b_000409) M 2 (miR_652_002352)

95% CI 95% CI 95% CI

95% CI

Boot 95% CI

R2=0.053 R2=0.037 R2 =0.162

F(6,831)=6.572, p<0.001 F(7,831)=4.611, p<0.001 F(9,829)= 17.781, p<0.001
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6. DISCUSSION AND FUTURE DIRECTIONS 

The proposed research will help to shed light on the chain of events that from air pollution 

exposure leads to CVD trying to explore a new mechanism which involves alteration of 

extracellular vesicles production and content. Our findings, if confirmed, could lead to the 

identification of potentially-reversible alterations that might be also considered as potential target 

for new diagnostic and therapeutic interventions. Results on the first 1000 enrolled subjects have 

highlighted a statistical significant association at level 0.10 after FDR adjustment of 

miR_106a_002169, miR_152_000475, miR_181a_2__002317, miR_218_000521, 

miR_27b_000409, miR_30d_000420, miR_652_002352, miR_92a_000431,miR_25_000403, 

miR_375_000564 expression with PM10 exposure estimated by Eulerian model of the cell 

containing the address of the Center for Obesity. The use of the daily FARM PM10 exposure 

estimate of the 4*4 km cell of subject residence for the  same day of blood collection produced 

similar results. The candidate miRNAs were subjected to pathway exploration using the 

Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, CA) . Using this 

software, top-ranked pathways were also determined. Moreover are provided the biological 

functions associated with these miRNAs, such as the diseases in which they are involved (Figure 

33). 

 

Figure 33: Biological functions and diseases associated with candidate miRNAs. 
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Inflammatory diseases, inflammatory response and respiratory disease resulted the first three 

top-ranked pathways. 

A new experiment was set up in order to evaluate the performance of different normalization 

strategies in reducing technical variation and extracting true biological variation. Results showed 

that for large scale miRNA expression profiling Global Mean normalization strategy outperforms 

the other normalization strategy in terms of : 

 better reduction of technical variation: 

- lower % of miRNAs differentially expressed before and after FDR adjustment 

- lower Fold change range; 

 more accurate appreciation of biological changes. 

- higher % of miRNAs differentially expressed before and after FDR adjustment; 

- higher Fold Change range; 

Individual air pollution exposure assessment is determined using two sources of information: 

actual monitor measurements for each and every day starting from January 1st, 1990 and  The 

FARM model, a regional well validated modelling systems applied starting from 2007. The 

winter months (October to February) are those where there is a more obvious difference between 

the two methods of exposure assessment; for the rest of the year the distributions are similar. The 

examination of model performance of FARM model suggests the fulfillment of the objective of 

performance, although with a tendency to underestimate the observed concentrations. However 

the differences between the two methods are consistent with what reported by ARPA Lombardy 

in the Annual Assessment Of Air Quality Modeling for years 2009-2011, and the huge amount 

of available data offer the opportunity to implement new modelling techniques as long as they 

might come out. 

Potential non linearity, was investigated  by means of generalized additive models using 

penalized splines. We tested for nonlinearity of PM10 and apparent temperature using penalized 

splines in generalized linear models. We excluded a nonlinear relation between PM10 or apparent 

temperature and miRNAs expression. Mixed effect models was developed in order to take into 

account of other variability sources linked to the outcome due to the hierarchical data structure 

with three levels: sample level (level-1), barcode level (level-2) and run level (level-3). Results 

showed that the association between PM10 and miRNAs expression varies significantly among 

barcode and run, providing inputs for the biologists in order to improve the repeatability of the 

experiment in future analysis. 

Simple Mediation Models and Parallel Multiple Mediation Models have proven useful and 

appropriate tools to investigate the role of miRNAs expression as mediator of the effect of PM10 



 

124 

 

on respiratory, cardiac and inflammatory outcomes. We estimated the Indirect Effect of PM10 on 

outcome through the mediator  as the product a*b, and  applied Sobel test for testing the null 

hypothesis that the ‘‘true’’ indirect  effect  is  zero,  with  the  p-value  derived  from  the  

standard normal distribution (Normal Theory Approach). However  the sampling distribution of 

the indirect effect a*b tends to be asymmetric, with nonzero skewness and kurtosis. We applied 

bootstrapping as alternative more powerful than the Normal Theory Approach.  In particular we 

calculated percentiles bootstrap confidence intervals, because they are based entirely on values 

of ab* that demarcate the upper and lower (100 − ci)/2% of the distribution of k bootstrap 

estimates of the indirect effect, and  bias-corrected bootstrap confidence intervals (BC bootstrap 

confidence intervals). They are like percentile confidence intervals but the endpoints are adjusted 

as a function of the proportion of k values of ab* that are less than ab, the point estimate of the 

indirect effect calculated in the original data. The endpoints will be adjusted upward or 

downward to varying degrees depending on that proportion. Although bootstrapping is 

recommended, it does have a few weaknesses, among them that it requires the original data (not 

usually a real problem typically), the endpoints of the confidence interval will vary from run to 

run (but not if you seed the random number generator yourself), and it isn’t implemented in all 

software one might choose to use. An alternative to get around these problems: Monte Carlo 

confidence intervals. A significant indirect effect of PM10 on: 

- DLcoRapp, was found through the following mediators: mir_106a_002169, 

mir_152_000475, mir_218_000521 expression; 

- FEV1Rapp was found through the following mediators: mir_27b_000409 

mir_30d_000420 mir_92a_000431 mir_181a_2_002317 mir_218_000521 expression; 

- FVCRapp was found through the following mediators: mir_27b_000409, 

mir_92a_000431 and mir_181a_2_002317 expression; 

- Heart Rate was found through the following mediator: mir_218_000521 expression; 

- Sistolic Blood Pressure was found through the following mediator: mir_92a_000431 

expression; 

- CRP was found through the following mediator: mir_106a_002169 and mir_652_002352 

expression. 

- Fibrinogeno was found through the following mediator: mir_375_000564 expression. 

Finally, a the total indirect effect of PM10 exposure: 

- on DLcoRapp obtained summed the indirect effects across all mediators: 

mir_106a_002169, mir_152_000475,  and mir_218_000521 expression was statistically 

different from zero; 
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- on FEV1Rapp obtained summed the indirect effects across all mediators: 

mir_27b_000409 mir_30d_000420 mir_92a_000431 mir_181a_2_002317 

mir_218_000521 expression was statistically different from zero; 

- on FVCRapp obtained summed the indirect effects across all mediators mir_27b_000409, 

mir_92a_000431 and mir_181a_2_002317 expression was statistically different from 

zero; 

- on CRP obtained summed the indirect effects across all mediators mir_106a_002169 and 

mir_652_002352 expression was statistically different from zero; 

From a a literature review [115,118] , has emerged an important role of these miRNAs, for 

example mir_106a_002169, mir_92a_000431 and mir_652_002352 effectively regulate 

macrophage inflammatory responses through modulating leukocyte SIRPa synthesis. As an 

important signaling molecule, SIRPa modulates many aspects of leukocyte inflammatory 

responses, including activation, chemotaxis, and phagocytosis. These miRNAs are involved in 

macrophage infiltration through the direct suppression of expression of signal-regulatory protein 

α (SIRP α). A downregulation of mir_106a_002169 and mir_92a_000431 seems to act in favor 

of the differentiation of monocytes into macrophages. Macrophage infiltration occurs in many 

tissue types, such as adipose tissue, the vascular system, liver and muscle and it is involved in 

the processes of formation of atherosclerotic plaques. The resident macrophages in tissues and 

organs play critical roles in controlling physiological functions and systemic homeostasis in 

tissues. miRNAs are a set of potent regulators of macrophage differentiation, infiltration, 

activation and cell-cell interactions. 

Future directions in research activities will be: 

- Apply mediation analysis to the three-levels HLM models developed.  

- Deepen and apply a the modern approach to mediation analysis based on counterfactual 

framework; 

- Replicate the analysis on data coming from standard real time-PCR validation on the set 

of 10 top miRNAs identified in stage 1 on 1000 subjects enrolled in stage2; 

- Using exposure measured by personal passive samplers on a subgroup of 200 selected 

subjects; 

- Using exposure to metals as measured in urine and hair to estimate short/medium term 

exposure; 
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7. APPENDIX 1: RESULTS 

DLcoRapp: Single breath carbon monoxide diffusing capacity 

 
mir_25_000403 

Table 1: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test 

 
 

mir_27b_000409

Table 2: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin. 

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.007 0.003 -0.014 -0.001 0.0244 c' 0.068 0.032 0.004 0.131 0.037

M(miR_25_000403) ­ ­ ­ ­ ­ b 0.585 0.366 -0.133 1.303 0.110
costant i 1 8.959 0.938 7.118 10.799 <0.001 i 2 45.405 9.914 25.943 64.868 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.068 0.032 0.004 0.131 0.037

Indirect Effect of PM 10  on DLcoRapp -0.004 0.004 ­ ­ 0.220*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp -0.004 0.003 -0.0126 0.0003 ­

Consequent

M(miR_25_000403) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.076

F(7,743)=10.428, p<0.001

R 2 =0.122 R 2 =0.083
F(6,744)=1.533, p=0.040 F(7,743)=9.322, p<0.001

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.005 0.004 -0.013 0.003 0.2064 c' 0.069 0.032 0.006 0.132 0.033

M(miR_27b_000409) ­ ­ ­ ­ ­ b 1.053 0.297 0.470 1.636 <0.001
costant i 1 6.436 1.148 4.182 8.690 <0.001 i 2 43.869 9.488 25.241 62.496 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.069 0.032 0.006 0.132 0.033

Indirect Effect of PM 10  on DLcoRapp -0.005 0.005 ­ ­ 0.250*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp -0.005 0.004 -0.015 0.001 ­

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.017 R 2 =0.083
F(6,744)=2.113, p=0.049 F(7,743)=9.602, p<0.001

95% CI

Boot 95% CI

Consequent

M(miR_27b_000409) Y(DLcoRapp)

95% CI 95% CI
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mir_30d_000420 

 Table 3: Simple Mediation Analysis Results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated hemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test. 

 

 

 

mir_92a_000431 

Table 4: Simple Mediation Analysis Results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated hemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test. 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a 0.004 -0.009 -0.016 -0.002 0.013 c' 0.063 0.032 -0.001 0.126 0.054

M(miR_30d_000420) ­ ­ ­ ­ ­ b -0.085 0.330 -0.733 0.563 0.797
costant i 1 8.459 1.041 6.415 10.502 <0.001 i 2 51.363 9.779 32.165 70.561 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.063 0.032 -0.001 0.126 0.054

Indirect Effect of PM 10  on DLcoRapp 0.001 0.003 ­ ­ 0.812*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp 0.001 0.003 -0.006 0.008 ­

Boot 95% CI

Consequent

M(miR_30d_000420) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.078

F(7,743)=8.936, p<0.001

R 2 =0.012 R 2 =0.083
F(6,744)=1.545, p=0.021 F(7,743)=9.602, p<0.001

95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.007 0.003 -0.012 -0.001 0.0259 c' 0.068 0.032 0.004 0.131 0.036

M(miR_92a_000431) ­ ­ ­ ­ ­ b 0.715 0.402 -0.075 1.504 0.076
costant i 1 12.122 0.853 10.448 13.796 <0.001 i 2 41.983 10.547 21.277 62.689 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.068 0.032 0.004 0.131 0.036

Indirect Effect of PM 10  on DLcoRapp -0.005 0.004 ­ ­ 0.190*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp -0.005 0.004 -0.016 0.000 ­

95% CI

R 2 =0.078

F(7,743)=8.936, p<0.001

R 2 =0.012 R 2 =0.082
F(6,744)=1.484, p<0.001 F(7,743)=9.415, p<0.001

Boot 95% CI

Consequent

M(miR_92a_000431) Y(DLcoRapp)

95% CI 95% CI
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mir_181a_2_0002317 

Table 5: Simple Mediation Analysis Results for mediator mir_181a_2_0002317on log2 scale. Bootstrap standard error and 

bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated hemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test. 

 

 

mir_375_000564  

Table 6: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated hemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100  

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.014 0.004 -0.022 -0.006 0.0005 c' 0.062 0.033 -0.002 0.126 0.059

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.116 0.297 -0.699 0.467 0.697
costant i 1 1.628 1.157 -0.644 3.900 0.160 i 2 50.834 9.384 32.411 69.256 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.062 0.033 -0.002 0.126 0.059

Indirect Effect of PM 10  on DLcoRapp 0.002 0.004 ­ ­ 0.709*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp 0.002 0.005 -0.007 0.012 ­

Consequent

M(miR_181a_2_002317) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.022 R 2 =0.078
F(6,744)=2.823, p=0.010 F(7,743)=9.949, p<0.001

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.017 0.004 -0.026 -0.009 <0.001 c' 0.062 0.033 -0.002 0.126 0.058

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.075 0.270 -0.604 0.455 0.783
costant i 13.8143     1.2730 1.3151     6.3135 0.003 i 2 50.929 9.429 32.420 69.439 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.062 0.033 -0.002 0.126 0.058

Indirect Effect of PM 10  on DLcoRapp 0.001 0.005 ­ ­ 0.790*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp 0.001 0.005 -0.009 0.012 ­

Consequent

M(miR_375_000564) Y(DLcoRapp)

95% CI 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.040 R 2 =0.078

F(6,744)=4.736, p<0.001 F(7,743)=8.939, p<0.001

95% CI

Boot 95% CI
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mir_652_002352 

Table 7: Simple Mediation Analysis Results for mediator mir_652_002352on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated hemoglobin.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DLcoRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in DLcoRapp : β log2(101/100)  associated with 1%change in miRNAs expression. 

DLcoRapp= (Measured DLcoRapp / Theoretical DLcoRapp)*100. 

*Sobel test. 

 

 

FEV1 Rapp:  
mir_25_000403 

Table 8: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it was obtained 

the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.063 0.032 -0.0001 0.127 0.051
costant ­ ­ ­ ­ ­ i 3 50.645 9.366 32.257 69.033 <0.001

X(PM 10 ) a -0.009 0.004 -0.016 -0.002 0.0131 c' 0.063 0.032 -0.001 0.126 0.054

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.085 0.330 -0.733 0.563 0.797
costant i 1 8.459 1.041 6.415 10.502 <0.001 i 2 51.363 9.779 32.165 70.561 <0.001

Effect SE p

Total effect of PM 10  on DLcoRapp c 0.063 0.032 -0.0001 0.127 0.051

Direct Effect of PM 10  on DLcoRapp c' 0.063 0.032 -0.001 0.126 0.054

Indirect Effect of PM 10  on DLcoRapp 0.001 0.003 ­ ­ 0.812*

Effect Boot SE p

Indirect Effect of PM 10  on DLcoRapp 0.001 0.003 -0.006 0.008 ­

Consequent

M(miR_652_002352) Y(DLcoRapp)

Boot 95% CI

95% CI 95% CI

R 2 =0.078

F(7,743)=10.428, p<0.001

R 2 =0.012 R 2 =0.078
F(6,744)=1.145, p=0.040 F(7,743)=8.936, p<0.001

95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' 0.022 0.035 -0.048 0.091 0.537

M(miR_25_000403) ­ ­ ­ ­ ­ b -0.269 0.374 -1.003 0.466 0.473
costant i 1 9.740 0.926 7.924 11.557 <0.001 i 2 103.323 10.329 83.047 123.600 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.022 0.035 -0.048 0.091 0.537

Indirect Effect of Pm 10  on FEV 1 Rapp 0.003 0.005 ­ ­ 0.496*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.003 0.005 -0.006 0.014 ­

F(7,780)=7.217, p<0.001

R 2 =0.033 R 2 =0.158
F(7,780)=7.217, p<0.001 F(8+K37,839)=22.459, p<0.001

95% CI

Consequent
M(miR_25_000403) Y(FEV 1 Rapp)

95% CI 95% CI

R 2 = 0.061

Boot 95% CI
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mir_106a_002169

Table 9: Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it was obtained 

the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

 

 

 

mir_152_000475

Table 10: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it was obtained 

the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.012 0.003 -0.017 -0.007 <0.001 c' 0.019 0.036 -0.051 0.088 0.597

M(miR_106a_002169) ­ ­ ­ ­ ­ b -0.519 0.474 -1.448 0.411 0.274
costant i 1 13.463 0.730 12.029 14.896 <0.001 i 2 107.688 11.576 84.965 130.412 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.019 0.036 -0.051 0.088 0.597

Indirect Effect of Pm 10  on FEV 1 Rapp 0.006 0.006 ­ ­ 0.297*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.006 0.006 -0.003 0.021 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.044 R 2 =0.062
F(7,780)=5.136, p<0.001 F(8,779)=6.467, p<0.001

Consequent
M(miR_106a_002169) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.012 0.004 -0.019 -0.005 <0.001 c' 0.020 0.035 -0.050 0.089 0.580

M(miR_152_000475) ­ ­ ­ ­ ­ b -0.464 0.362 -1.176 0.247 0.201
costant i 1 7.308 0.954 5.435 9.182 <0.001 i 2 104.099 10.015 84.439 123.760 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.020 0.035 -0.050 0.089 0.580

Indirect Effect of Pm 10  on FEV 1 Rapp 0.006 0.005 ­ ­ 0.246*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.006 0.005 -0.002 0.016 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.038 R 2 =0.063
F(7,780)=4.437, p<0.001 F(8,779)=6.525, p<0.001

Consequent
M(miR_152_000475) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI
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mir_375_000564 

Table 11: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it was obtained 

the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

 

 

mir_652_002352

Table 12: Simple Mediation Analysis Results for mediator mir_652_002352 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FEV1 as independent variable and miRNAs expression as dependent variable it was obtained 

the change in FEV1Rapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FEV1Rapp = (Measured FEV1 / Theoretical FEV1)*100  

*Sobel test 

 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.018 0.005 -0.027 -0.009 <0.001 c' 0.022 0.035 -0.047 0.092 0.531

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.162 0.270 -0.692 0.368 0.548
costant i 1 4.004 1.282 1.487 6.521 0.002 i 2 101.357 9.727 82.263 120.451 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.022 0.035 -0.047 0.092 0.531

Indirect Effect of Pm 10  on FEV 1 Rapp 0.003 0.005 ­ ­ 0.565*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.003 0.005 -0.006 0.014 ­

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.038 R 2 =0.061
F(7,780)=4.378, p<0.001 F(8,779)=6.355, p<0.001

Consequent
M(miR_375_000564) Y(FEV 1 Rapp)

95% CI 95% CI

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.025 0.035 -0.0436 0.094 0.473
costant ­ ­ ­ ­ ­ i 3 100.708 9.663 81.740 119.676 <0.001

X(Pm 10 ) a -0.021 0.005 -0.032 -0.011 <0.001 c' 0.023 0.035 -0.047 0.092 0.517

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.103 0.234 -0.562 0.356 0.659
costant i 1 8.632 1.480 5.726 11.538 <0.001 i 2 101.600 9.876 82.213 120.987 <0.001

Effect SE p

Total effect of Pm 10  on FEV 1 Rapp c 0.025 0.035 -0.0436 0.094 0.473

Direct Effect of Pm 10  on FEV 1 Rapp c' 0.023 0.035 -0.047 0.092 0.517

Indirect Effect of Pm 10  on FEV 1 Rapp 0.002 0.005 ­ ­ 0.670*

Effect Boot SE p

Indirect Effect of Pm 10  on FEV 1 Rapp 0.002 0.005 -0.007 0.013 ­

95% CI

Boot 95% CI

R 2 = 0.061

F(7,780)=7.217, p<0.001

R 2 =0.037 R 2 =0.061
F(7,780)=4.290, p<0.001 F(8,779)=6.333, p<0.001

Consequent
M(miR_652_002352) Y(FEV 1 Rapp)

95% CI 95% CI
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FVCRapp:  

 
mir_27b_000409

Table 13: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test 

 

 

 

mir_27b_000409 

Table 14: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' 0.048 0.034 -0.019 0.115 0.158

M(miR_25_000403) ­ ­ ­ ­ ­ b -0.202 0.360 -0.908 0.504 0.575
costant i 1 9.740 0.926 7.924 11.557 <0.001 i 2 99.475 9.931 79.980 118.969 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.048 0.034 -0.019 0.115 0.158

Indirect Effect of Pm10 on FVCRapp 0.003 0.005 ­ ­ 0.592*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.003 0.005 -0.008 0.013 ­

F(7,780)=15.999, p<0.001

R 2 =0.033 R 2 =0.126
F(7,780)=3.759, p<0.001 F(8,779)=14.027, p<0.001

95% CI

Consequent

M(miR_25_000403) Y(FVCRapp)

95% CI 95% CI

R 2 = 0.126

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.015 0.004 -0.023 -0.008 <0.001 c' 0.042 0.034 -0.025 0.109 0.219

M(miR_30d_000420) ­ ­ ­ ­ ­ b -0.565 0.323 -1.199 0.068 0.080
costant i 1 9.233 1.029 7.213 11.253 <0.001 i 2 102.726 9.744 83.600 121.853 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.042 0.034 -0.025 0.109 0.219

Indirect Effect of Pm10 on FVCRapp  0.0087     0.0055 ­ ­ 0.116*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.009 0.006 -0.001 0.022 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.035 R 2 =0.129
F(7,780)=4.073, p<0.001 F(8,779)=14.420, p<0.001

Consequent

M(miR_30d_000420) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI
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mir_106a_002169 

Table 15: Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test. 

 

 

 

mir_152_000475

Table 16: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.012 0.003 -0.017 -0.007 <0.001 c' 0.046 0.034 -0.021 0.113 0.178

M(miR_106a_002169) ­ ­ ­ ­ ­ b -0.370 0.455 -1.264 0.525 0.418
costant i 1 13.463 0.730 12.029 14.896 <0.001 i 2 102.482 11.132 80.630 124.334 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.046 0.034 -0.021 0.113 0.178

Indirect Effect of Pm10 on FVCRapp 0.005 0.006 ­ ­ 0.435*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.005 0.006 -0.005 0.018 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.044 R 2 =0.126
F(7,780)=5.136, p<0.001 F(8,779)=14.076, p<0.001

Consequent

M(miR_106a_002169) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.012 0.004 -0.019 -0.005 <0.001 c' 0.046 0.034 -0.021 0.112 0.180

M(miR_152_000475) ­ ­ ­ ­ ­ b -0.418 0.348 -1.101 0.267 0.231
costant i 1 7.308 0.954 5.435 9.182 <0.001 i 2 100.559 9.629 81.657 119.461 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.046 0.034 -0.021 0.112 0.180

Indirect Effect of Pm10 on FVCRapp 0.005 0.005 ­ ­ 0.274*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.005 0.005 -0.004 0.016 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.038 R 2 =0.127
F(7,780)=4.437, p<0.001 F(8,779)=14.187, p<0.001

Consequent

M(miR_152_000475) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI
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mir_218_000521 

Table 17: Simple Mediation Analysis Results for mediator mir_218_000521 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test. 

 

 

 

 

mir_375_000564

Table 18: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.016 0.004 -0.024 -0.009 <0.001 c' 0.042 0.034 -0.025 0.109 0.218

M(miR_218_000521) ­ ­ ­ ­ ­ b -0.533 0.316 -1.153 0.088 0.092
costant i 1 3.583 1.051 1.520 5.646 <0.001 i 2 99.416 9.347 81.069 117.764 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.042 0.034 -0.025 0.109 0.218

Indirect Effect of Pm10 on FVCRapp 0.009 0.006 ­ ­ 0.126*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.009 0.006 -0.003 0.021 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.033 R 2 =0.129
F(7,780)=3.773, p<0.001 F(8,779)=14.386, p<0.001

Consequent

M(miR_218_000521) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.018 0.005 -0.027 -0.009 <0.001 c' 0.049 0.034 -0.018 0.115 0.153

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.102 0.260 -0.611 0.407 0.694
costant i 1 4.004 1.282 1.487 6.521 0.002 i 2 97.916 9.352 79.558 116.274 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.016 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.049 0.034 -0.018 0.115 0.153

Indirect Effect of Pm10 on FVCRapp 0.002 0.005 ­ ­ 0.705*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.002 0.005 -0.009 0.013 ­

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.038 R 2 =0.126
F(7,780)=4.378, p<0.001 F(8,779)=14.004, p<0.001

Consequent

M(miR_375_000564) Y(FVCRapp)

95% CI 95% CI

95% CI

Boot 95% CI
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mir_652_002352

Table 19: Simple Mediation Analysis Results for mediator mir_652_002352 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with FVCRapp as independent variable and miRNAs expression as dependent variable it was 

obtained the change in FVCRapp: β log2(101/100)  associated with 1%change in miRNAs expression. 

FVCRapp = (Measured FVC / Theoretical FVC)*100  

*Sobel test 

 

 

Heart Rate: 
 

mir_25_000403

Table 20:  Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.051 0.034 -0.0155 0.117 0.134
costant ­ ­ ­ ­ ­ i 3 97.508 9.289 79.274 115.742 <0.001

X(Pm 10 ) a -0.021 0.005 -0.032 -0.011 <0.001 c' 0.049 0.034 -0.018 0.115 0.152

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.084 0.225 -0.525 0.357 0.709
costant i 1 8.632 1.480 5.726 11.538 <0.001 i 2 98.232 9.494 79.594 116.869 <0.001

Effect SE p

Total effect of Pm10 on FVCRapp c 0.051 0.034 -0.0155 0.117 0.134

Direct Effect of Pm10 on FVCRapp c' 0.049 0.034 -0.018 0.115 0.152

Indirect Effect of Pm10 on FVCRapp 0.002 0.005 ­ ­ 0.719*

Effect Boot SE p

Indirect Effect of Pm10 on FVCRapp 0.002 0.005 -0.008 0.012 ­

95% CI

Boot 95% CI

R 2 = 0.126

F(7,780)=15.999, p<0.001

R 2 =0.037 R 2 =0.126
F(7,780)=4.290, p<0.001 F(8,779)=14.001, p<0.001

Consequent

M(miR_652_002352) Y(FVCRapp)

95% CI 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' 0.035 0.022 -0.007 0.077 0.105

M(miR_25_000403) ­ ­ ­ ­ ­ b -0.052 0.231 -0.506 0.402 0.823
costant i 1 9.809 0.496 8.836 10.783 <0.001 i 2 51.705 4.038 43.780 59.630 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.035 0.022 -0.007 0.077 0.105

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 ­ ­ 0.829*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 -0.004 0.006 ­

Consequent

M(miR_25_000403) Y(Heart Rate)

R 2 =0.034
F(6,848)=4.938, p<0.001

R 2 =0.061
F(7,847)=7.920, p<0.001

R 2 =0.061

95% CI 95% CI

95% CI

Boot 95% CI

F(6,848)=9.242, p<0.001
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mir_27_000409

Table 21: Simple Mediation Analysis Results for mediator mir_27_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_30d_000420

Table 22: Simple Mediation Analysis Results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.016 0.004 -0.024 -0.008 <0.001 c' 0.035 0.022 -0.008 0.077 0.110

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.070 0.186 -0.436 0.295 0.7065
costant i 1 8.550 0.616 7.340 9.759 <0.001 i 2 51.797 3.700 44.535 59.059 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.035 0.022 -0.008 0.077 0.110

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 ­ ­ 0.716*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 -0.005 0.007 ­

95% CI 95% CI

Consequent

M(miR_27b_000409) Y(Heart Rate)

95% CI

Boot 95% CI

R 2 =0.054
F(6,848)=7.989, p<0.001

R 2 =0.062
F(7,847)=7.934, p<0.001

R 2 =0.061

F(6,848)=9.242, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.010 <0.001 c' 0.034 0.022 -0.008 0.076 0.116

M(miR_30d_000420) ­ ­ ­ ­ ­ b -0.094 0.204 -0.495 0.307 0.646
costant i 1 9.084 0.562 7.981 10.187 <0.001 i 2 52.051 3.820 44.553 59.549 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.034 0.022 -0.008 0.076 0.116

Indirect Effect of Pm 10 on Heart Rate 0.002 0.004 ­ ­ 0.654*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.002 0.004 -0.005 0.009 ­

95% CI

F(6,848)=5.664, p<0.001
R 2 =0.062

F(7,847)=7.944, p<0.001

Boot 95% CI

95% CI

95% CI

R 2 =0.061

F(6,848)=9.242, p<0.001

Consequent

M(miR_30d_000420) Y(Heart Rate)

R 2 =0.039
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mir_92a_000431

Table 23: Simple Mediation Analysis Results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_106a_002169

Table 24: Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and 

bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' 0.035 0.022 -0.007 0.077 0.106

M(miR_92a_000431) ­ ­ ­ ­ ­ b -0.060 0.254 -0.559 0.439 0.813
costant i 1 13.438 0.451 12.552 14.323 <0.001 i 2 52.010 4.778 42.629 61.385 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.035 0.022 -0.007 0.077 0.106

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 ­ ­ 0.818*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.001 0.003 -0.005 0.007 ­

Consequent

M(miR_92a_000431) Y(Heart Rate)

R 2 =0.038
F(6,848)=5.608, p=0.0003

R 2 =0.061
F(7,847)=7.921, p<0.001

95% CI95% CI

95% CI

Boot 95% CI

R 2 =0.061

F(6,848)=9.242, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.013 0.003 -0.018 -0.008 <0.001 c' 0.037 0.022 -0.006 0.080 0.088

M(miR_106a_002169) ­ ­ ­ ­ ­ b 0.107 0.294 -0.470 0.684 0.716
costant i 1 13.115 0.390 12.349 13.880 <0.001 i 2 49.791 5.103 39.775 59.807 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.037 0.022 -0.006 0.080 0.088

Indirect Effect of Pm 10 on Heart Rate -0.001 0.004 ­ ­ 0.721*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate -0.001 0.004 -0.009 0.005 ­

95% CI 95% CI

R 2 =0.047
F(6,848)=7.039, p<0.001

R 2 =0.062
F(7,847)=7.932, p<0.001

M(miR_106a_002169) Y(Heart Rate)

Consequent

95% CI

Boot 95% CI

R 2 =0.061

F(6,848)=9.242, p<0.001
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mir_152_000475

Table 25: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_181a_2_002317

Table 26: Simple Mediation Analysis Results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard error and 

bootstrap 95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.013 0.003 -0.019 -0.006 <0.001 c' 0.033 0.022 -0.009 0.075 0.124

M(miR_152_000475) ­ ­ ­ ­ ­ b -0.195 0.224 -0.635 0.245 0.386
costant i 1 7.031 0.512 6.027 8.035 <0.001 i 2 52.565 3.692 45.318 59.812 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.033 0.0215 -0.009 0.0753 0.124

Indirect Effect of Pm 10 on Heart Rate 0.003 0.003 ­ ­ 0.412*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.003 0.003 -0.002 0.008 ­

R 2 =0.036
F(6,848)=5.239, p<0.001

R 2 =0.062
F(7,847)=8.027, p<0.001

95% CI

Boot 95% CI

R 2 =0.061

F(6,848)=9.242, p<0.001

95% CI

Consequent

95% CI

M(miR_152_000475) Y(Heart Rate)

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.017 0.004 1.206 3.606 <0.001 c' 0.034 0.022 -0.009 0.076 0.117

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.101 0.188 -0.469 0.268 0.591
costant i 1 2.406 0.611 1.206 3.606 <0.001 i 2 51.440 3.370 44.825 58.055 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.034 0.022 -0.009 0.076 0.117

Indirect Effect of Pm 10 on Heart Rate 0.002 0.003 ­ ­ 0.603*

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.002 0.003 -0.004 0.008 ­

95% CI

F(6,848)=9.242, p<0.001

R 2 =0.061

95% CI 95% CI

Boot 95% CI

Consequent

M(miR_181a_2_002317) Y(Heart Rate)

R 2 =0.028
F(6,848)=3.586, p<0.001

R 2 =0.062
F(6,848)=7.956 p<0.001
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mir_375_000564

Table 27: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_652_002352

Table 28: Simple Mediation Analysis Results for mediator mir_652_002352 on log2 scale. Bootstrap standard error and bootstrap 

95% CI were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Heart Rate as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Heart Rate : β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.018 0.004 -0.027 -0.009 <0.001 c' 0.033 0.022 -0.009 0.075 0.126

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.144 0.167 -0.472 0.184 0.389
costant i 1 3.7337 0.686 2.387 5.080 <0.001 i 2 51.735 3.397 45.068 58.402 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.033 0.022 -0.009 0.075 0.126

Indirect Effect of Pm 10 on Heart Rate 0.003 0.003 ­ ­ 0.412

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.003 0.003 -0.002 0.009 ­

Consequent

95% CI 95% CI

M(miR_375_000564) Y(Heart Rate)

R 2 =0.0356
F(6,848)=4.5185, p<0.001

R 2 =0.0622
F(7,847)=8.025, p<0.001

R 2 =0.061

F(6,848)=9.242, p<0.001

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c 0.036 0.021 -0.0062 0.077 0.095
costant ­ ­ ­ ­ ­ i 3 51.197 3.339 44.645 57.750 <0.001

X(Pm 10 ) a -0.023 0.005 -0.033 -0.013 <0.001 c' 0.032 0.022 -0.011 0.074 0.142

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.173 0.144 -0.455 0.109 0.228
costant i 1 8.094 0.799 6.527 9.661 <0.001 i 2 52.600 3.534 45.663 59.536 <0.001

Effect SE p

Total effect of Pm 10  on Heart Rate c 0.036 0.021 -0.006 0.077 0.095

Direct Effect of Pm 10 on Heart Rate c' 0.032 0.022 -0.011 0.074 0.142

Indirect Effect of Pm 10 on Heart Rate 0.004 0.003 ­ ­ 0.255

Effect Boot SE p

Indirect Effect of Pm 10 on Heart Rate 0.004 0.003 -0.002 0.074 ­

R 2 =0.0630
F(7,847)=8.1345, p<0.001

95% CI

Consequent

M(miR_652_002352) Y(Heart Rate)

95% CI

Boot 95% CI

95% CI

R 2 =0.040
F(6,848)=5.856, p<0.001

R 2 =0.061

F(6,848)=9.242, p<0.001
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DBP: Diastolic Blood Pressure 

 
 mir_25_000403 

Table 29: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_27b_000409

Table 30: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' -0.032 0.020 -0.071 0.007 0.106

M(miR_25_000403) ­ ­ ­ ­ ­ b 0.034 0.214 -0.386 0.453 0.875
costant i 1 9.796 0.494 8.826 10.765 <0.001 i 2 72.370 3.724 65.061 79.680 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.032 0.020 -0.071 0.007 0.106

Indirect Effect of Pm 10 on DBP -0.0004 0.0027 ­ ­ 0.879*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP -0.0004 0.003 -0.005 0.005 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_25_000403) Y(DBP)

R 2 =0.033
F(6,851)=4.775, p<0.001

R 2 =0.056
F(7,850)=7.675, p<0.001

R 2 =0.059

F(6,851)=8.960 p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.008 <0.001 c' -0.036 0.020 -0.075 0.003 0.074

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.192 0.172 -0.530 0.146 0.2647
costant i 1 8.546 0.613 7.343 9.748 <0.001 i 2 74.342 3.411 67.647 81.038 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.036 0.020 -0.075 0.003 0.074

Indirect Effect of Pm 10 on DBP 0.003 0.003 ­ ­ 0.296*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.003 0.003 -0.002 0.010 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_27b_000409) Y(DBP)

R 2 =0.053
F(6,851)=3.632, p<0.001

R 2 =0.061
F(7,850)=7.860, p<0.001

R 2 =0.059

F(6,851)=8.960 p<0.001
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mir_30d_000420

Table 31: Simple Mediation Analysis Results for mediator mir_30d_000420on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_92a_000431

Table 32: Simple Mediation Analysis Results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.010 <0.001 c' -0.031 0.020 -0.070 0.009 0.125

M(miR_30d_000420) ­ ­ ­ ­ ­ b 0.113 0.189 -0.257 0.483 0.549
costant i 1 9.072 0.560 7.974 10.170 <0.001 i 2 71.674 3.553 64.760 78.589 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.031 0.020 -0.070 0.009 0.125

Indirect Effect of Pm 10 on DBP -0.002 0.003 ­ ­ 0.561*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP -0.002 0.003 -0.008 0.004 ­

Consequent

M(miR_30d_000420) Y(DBP)

R 2 =0.039
F(6,851)=5.708, p<0.001

R 2 =0.060
F(7,850)=7.725, p<0.001

95% CI 95% CI

95% CI

Boot 95% CI

R 2 =0.059

F(6,851)=8.960 p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' -0.032 0.020 -0.071 0.008 0.114

M(miR_92a_000431) ­ ­ ­ ­ ­ b 0.090 0.235 -0.371 0.552 0.701
costant i 1 13.433 0.449 12.552 14.315 <0.001 i 2 71.486 4.410 62.829 80.143 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.032 0.020 -0.071 0.008 0.114

Indirect Effect of Pm 10 on DBP -0.001 0.003 ­ ­ 0.710*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP -0.001 0.003 -0.007 0.005 ­

R 2 =0.037
F(6,851)=5.454, p<0.001

R 2 =0.060
F(7,850)=7.693, p<0.001

95% CI 95% CI

Consequent

M(miR_92a_000431) Y(DBP)

95% CI

Boot 95% CI

R 2 =0.059

F(6,851)=8.960 p<0.001
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mir_106a_002169

Table 33: Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_152_000475

Table 34: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.018 0.004 -0.026 -0.009 <0.001 c' -0.013 0.031 -0.073 0.047 0.666

M(miR_106a_002169) ­ ­ ­ ­ ­ b -0.045 0.236 -0.509 0.419 0.850
costant i 1 3.789 0.685 2.445 5.134 <0.001 i 2 99.527 4.807 90.092 108.961 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.012 0.030 -0.072 0.047 0.682

Direct Effect of Pm 10 on DBP c' -0.013 0.031 -0.073 0.047 0.666

Indirect Effect of Pm 10 on DBP 0.001 0.003 ­ ­ 0.881*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.001 0.003 -0.006 0.008 ­

M(miR_106a_002169) Y(DBP)

R 2 =0.036
F(6,851)=4.541, p<0.001

R 2 =0.164
F(7,850)=23.773, p<0.001

Consequent

95% CI 95% CI

95% CI

Boot 95% CI

R 2 =0.059

F(6,851)=8.960 p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' -0.033 0.020 -0.072 0.006 0.097

M(miR_152_000475) ­ ­ ­ ­ ­ b -0.037 0.208 -0.445 0.370 0.857
costant i 1 7.046 0.509 6.047 8.044 <0.001 i 2 72.963 3.409 66.271 79.654 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.033 0.020 -0.072 0.006 0.097

Indirect Effect of Pm 10 on DBP 0.001 0.003 ­ ­ 0.862*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.001 0.003 -0.004 0.007 ­

M(miR_152_000475) Y(DBP)

R 2 =0.036
F(6,851)=5.240, p<0.001

R 2 =0.060
F(7,850)=7.676, p<0.001

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

R 2 =0.059

F(6,851)=8.960 p<0.001
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mir_181a_2_002317

Table 35: Simple Mediation Analysis Results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

  

 

mir_218_000521

Table 36: Simple Mediation Analysis Results for mediator mir_218_000521 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.009 <0.001 c' -0.035 0.020 -0.074 0.004 0.078

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.150 0.173 -0.490 0.190 0.387
costant i 1 2.360 0.609 1.166 3.555 <0.001 i 2 73.053 3.106 66.958 79.149 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.0197 -0.071 0.0061 0.098

Direct Effect of Pm 10 on DBP c' -0.035 0.0199 -0.074 0.004 0.078

Indirect Effect of Pm 10 on DBP 0.003 0.003 ­ ­ 0.408*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.003 0.003 -0.003 0.010 ­

F(6,851)=3.858, p<0.001 F(7,850)=7.785, p<0.001
R 2 =0.027 R 2 =0.060

F(6,851)=8.960 p<0.001

M(miR_181a_2_002317)

95% CI 95% CI

Boot 95% CI

95% CI

Consequent

Y(DBP)

R 2 =0.059

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.009 <0.001 c' -0.029 0.020 -0.068 0.010 0.142

M(miR_218_000521) ­ ­ ­ ­ ­ b 0.201 0.190 -0.172 0.573 0.290
costant i 1 4.643 0.556 3.551 5.734 <0.001 i 2 71.768 3.201 65.484 78.051 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.0197 -0.071 0.0061 0.0984

Direct Effect of Pm 10 on DBP c' -0.029 0.0199 -0.068 0.01 0.142

Indirect Effect of Pm 10 on DBP -0.003 0.0034 ­ ­ 0.313*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP -0.003 0.003 -0.010 0.004 ­

F(6,851)=4.718, p<0.001
R 2 =0.061

F(7,850)=7.841, p<0.001

Consequent

M(miR_218_000521) Y(DBP)

R 2 =0.032

R 2 =0.059

F(6,851)=8.960 p<0.001

95% CI 95% CI

95% CI

Boot 95% CI
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mir_375_000564

Table 37: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_652_002352

Table 38: Simple Mediation Analysis Results for mediator mir_652_002352 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with DBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in DBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.018 0.004 -0.026 -0.009 <0.001 c' -0.033 0.020 -0.072 0.006 0.102

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.001 0.154 -0.303 0.302 0.998
costant i 1 3.789 0.685 2.445 5.134 <0.001 i 2 72.701 3.135 66.548 78.854 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.033 0.020 -0.072 0.006 0.102

Indirect Effect of Pm 10 on DBP 0.001 0.003 ­ ­ 0.998*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.001 0.003 -0.005 0.006 ­

95% CI 95% CI

95% CI

Consequent

M(miR_375_000564) Y(DBP)

R 2 =0.036
F(6,851)=5.322 , p<0.001

R 2 =0.059
F(7,850)=7.678, p<0.001

R 2 =0.059

F(6,851)=8.960 p<0.001

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(Pm 10 ) ­ ­ ­ ­ ­ c -0.033 0.020 -0.0711 0.006 0.098
costant ­ ­ ­ ­ ­ i 3 72.699 3.078 66.658 78.741 <0.001

X(Pm 10 ) a -0.022 0.005 -0.032 -0.012 <0.001 c' -0.035 0.020 -0.074 0.004 0.078

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.117 0.133 -0.378 0.143 0.377
costant i 1 8.074 0.794 6.515 9.633 <0.001 i 2 73.647 3.260 67.249 80.045 <0.001

Effect SE p

Total effect of Pm 10  on DBP c -0.033 0.020 -0.071 0.006 0.098

Direct Effect of Pm 10 on DBP c' -0.035 0.020 -0.074 0.004 0.078

Indirect Effect of Pm 10 on DBP 0.003 0.003 ­ ­ 0.398*

Effect Boot SE p

Indirect Effect of Pm 10  on DBP 0.003 0.003 -0.003 0.010 ­

Boot 95% CI

95% CI 95% CI

95% CI

Consequent

M(miR_652_002352) Y(DBP)

R 2 =0.039
F(6,851)=5.824, p<0.001

R 2 =0.060
F(7,850)=7.789, p<0.001

R 2 =0.059

F(6,851)=8.960 p<0.001
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SBP: Systolic Blood Pressure 
 

mir_25_000403

Table 39: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_27b_000409 

Table 40: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.006 <0.001 c' -0.015 0.030 -0.075 0.045 0.621

M(miR_25_000403) ­ ­ ­ ­ ­ b -0.222 0.328 -0.865 0.421 0.498
costant i 1 9.796 0.494 8.826 10.765 <0.001 i 2 101.531 5.709 90.326 112.737 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.015 0.030 -0.075 0.045 0.6213

Indirect Effect of Pm 10  on SBP 0.003 0.003 ­ ­ 0.519*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.003 0.003 -0.003 0.009 _

Consequent

95% CI

95% CI

Boot 95% CI

M(miR_25_000403) Y(SBP)

R 2 =0.033
F(6,851)=4.775, p<0.001

R 2 =0.164
F(7,850)=23.84, p<0.001

R 2 =0.164

F(6,851)=27.761, p<0.001

95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.008 <0.001 c' -0.015 0.031 -0.074 0.045 0.635

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.134 0.264 -0.652 0.385 0.6128
costant i 1 8.546 0.613 7.343 9.748 <0.001 i 2 100.500 5.234 90.227 110.773 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.015 0.031 -0.074 0.045 0.6349

Indirect Effect of Pm 10  on SBP 0.002 0.004 ­ ­ 0.626*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.002 0.004 -0.005 0.010 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_27b_000409) Y(SBP)

R 2 =0.053
F(6,851)=7.969, p<0.001

R 2 =0.164
F(7,850)=23.811, p<0.001

R 2 =0.164

F(6,851)=27.761, p<0.001
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mir_30d_000420 

Table 41: Simple Mediation Analysis Results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_106a_002169

Table 42: Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.010 <0.001 c' -0.017 0.031 -0.077 0.043 0.585

M(miR_30d_000420) ­ ­ ­ ­ ­ b -0.255 0.289 -0.823 0.313 0.378
costant i 1 9.072 0.560 7.974 10.170 <0.001 i 2 101.671 5.401 91.071 112.271 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.017 0.031 -0.077 0.043 0.5852

Indirect Effect of Pm 10  on SBP 0.004 0.004 ­ ­ 0.396*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.004 0.004 -0.003 0.014 ­

Boot 95% CI

Consequent

M(miR_30d_000420) Y(SBP)

R 2 =0.039
F(6,851)=5.783, p<0.001

R 2 =0.165
F(7,850)=23.899, p<0.001

95% CI 95% CI

95% CI

R 2 =0.164

F(6,851)=27.761, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.013 0.003 -0.018 -0.008 <0.001 c' -0.019 0.031 -0.079 0.041 0.527

M(miR_106a_002169) ­ ­ ­ ­ ­ b -0.547 0.417 -1.365 0.271 0.190
costant i 1 13.100 0.388 12.338 13.861 <0.001 i 2 106.521 7.216 92.357 120.685 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.019 0.031 -0.079 0.041 0.5274

Indirect Effect of Pm 10  on SBP 0.007 0.005 ­ ­ 0.212*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.007 0.005 -0.001 0.018 ­

R 2 =0.164

F(6,851)=27.761, p<0.001

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_106a_002169) Y(SBP)

R 2 =0.047
F(6,851)=6.951,p<0.001

R 2 =0.165
F(7,850)=24.061, p<0.001
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mir_152_000475

Table 43:  Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_181a_2_002317

Table 44: Simple Mediation Analysis Results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' -0.013 0.030 -0.072 0.047 0.681

M(miR_152_000475) ­ ­ ­ ­ ­ b -0.011 0.318 -0.636 0.613 0.972
costant i 1 7.046 0.509 6.047 8.044 <0.001 i 2 99.437 5.228 89.175 109.698 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.6817

Direct Effect of Pm 10  on SBP c' -0.013 0.030 -0.072 0.047 0.681

Indirect Effect of Pm 10  on SBP 0.001 0.003 ­ ­ 0.973*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.001 0.003 -0.007 0.007 ­

R 2 =0.164

F(6,851)=27.761, p<0.001

95% CI 95% CI

95% CI

Boot 95% CI

M(miR_152_000475) Y(SBP)

R 2 =0.036
F(6,851)=5.240, p<0.001

R 2 =0.164
F(7,850)=23.767, p<0.001

Consequent

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.009 <0.001 c' -0.019 0.031 -0.079 0.041 0.533

M(miR_181a_2_002317) _ _ _ _ _ b -0.394 0.266 -0.916 0.127 0.138
costant i 1 2.360 0.609 1.166 3.555 <0.001 i 2 100.287 4.758 90.948 109.626 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.682

Direct Effect of Pm 10  on SBP c' -0.019 0.031 -0.079 0.041 0.533

Indirect Effect of Pm 10  on SBP 0.007 0.004 ­ ­ 0.170*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.007 0.004 -0.001 0.015 ­

R 2 =0.164

F(6,851)=27.761, p<0.001

Consequent

M(miR_181a_2_002317) Y(SBP)

R 2 =0.027
F(6,851)=3.858, p<0.001

R 2 =0.166
F(7,850)= 24.143, p<0.001

95% CI 95% CI

Boot 95% CI

95% CI
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mir_218_000521

Table 45: Simple Mediation Analysis Results for mediator mir_218_000521 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_375_000564

Table 46: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.009 <0.001 c' -0.008 0.031 -0.068 0.052 0.797

M(miR_218_000521) ­ ­ ­ ­ ­ b 0.277 0.291 -0.294 0.848 0.341
costant i 1 4.643 0.556 3.551 5.734 <0.001 i 2 98.071 4.909 88.435 107.707 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.0302 -0.072 0.0468 0.6817

Direct Effect of Pm 10  on SBP c' -0.008 0.0305 -0.068 0.0521 0.797

Indirect Effect of Pm 10  on SBP -0.005 0.0042 ­ ­ 0.362*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP -0.005 0.004 -0.014 0.003 ­

R 2 =0.164

F(6,851)=27.761, p<0.001

Consequent

M(miR_218_000521) Y(SBP)

R 2 =0.032
F(6,851)=4.718, p<0.001

R 2 =0.165
F(7,850)=23.922, p<0.001

95% CI

Boot 95% CI

95% CI

95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.018 0.004 -0.026 -0.009 <0.001 c' -0.013 0.031 -0.073 0.047 0.666

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.045 0.236 -0.509 0.419 0.850
costant i 1 3.789 0.685 2.445 5.134 <0.001 i 2 99.527 4.807 90.092 108.961 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.682

Direct Effect of Pm 10  on SBP c' -0.013 0.031 -0.073 0.047 0.666

Indirect Effect of Pm 10  on SBP 0.001 0.004 ­ ­ 0.854*

Effect Boot SE p

Indirect Effect of Pm 10  on SBP 0.001 0.004 -0.006 0.008 ­

R 2 =0.164

Boot 95% CI

95% CI 95% CI

95% CI

Consequent

M(miR_375_000564) Y(SBP)

R 2 =0.036
F(6,851)=5.322, p<0.001

R 2 =0.164
F(7,850)=23.773, p<0.001

F(6,851)=27.761, p<0.001
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mir_652_002352

Table 47: : Simple Mediation Analysis Results for mediator mir_652_002352on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with SBP as independent variable and miRNAs expression as dependent variable it was obtained the 

change in SBP: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

CRP:  

 
mir_25_000403

Table 48: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c -0.012 0.030 -0.0716 0.047 0.682
costant ­ ­ ­ ­ ­ i 3 99.357 4.720 90.093 108.621 <0.001

X(Pm 10 ) a -0.022 0.005 -0.032 -0.012 <0.001 c' -0.011 0.031 -0.071 0.049 0.711

M(miR_652_002352) ­ ­ ­ ­ ­ b 0.047 0.204 -0.353 0.447 0.817
costant i 1 8.074 0.794 6.515 9.633 <0.001 i 2 98.975 5.001 89.160 108.791 <0.001

Effect SE p

Total effect of Pm 10  on SBP c -0.012 0.030 -0.072 0.047 0.682

Direct Effect of Pm 10  on SBP c' -0.011 0.031 -0.071 0.049 0.711

Indirect Effect of Pm 10  on SBP -0.001 0.005 ­ ­ 0.821

Effect Boot SE p

Indirect Effect of Pm 10  on SBP -0.001 0.005 -0.011 0.007 ­

Boot 95% CI

95% CI 95% CI

95% CI

Consequent

M(miR_652_002352) Y(SBP)

R 2 =0.039
F(6,851)=5.824, p<0.001

R 2 =0.164
F(7,850)=23.776, p<0.001

R 2 =0.164

F(6,851)=27.761, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.012 0.003 -0.018 -0.005 <0.001 c' 0.002 0.002 -0.002 0.006 0.436

M(miR_25_000403) ­ ­ ­ ­ ­ b -0.026 0.022 -0.069 0.017 0.231
costant i 1 9.850 0.501 8.867 10.833 <0.001 i 2 -4.087 0.383 -4.839 -3.335 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.002 0.006 0.436

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 ­ ­ 0.272*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 -0.0001 0.0008 ­

Consequent

M(miR_25_000403) Y(CRP)

95% CI

R 2 =0.032 R 2 =0.158

R 2 = 0.156

F(6,840)=25.951, p<0.001

F(6,840)=4.619, p<0.001 F(7,839)=22.459, p<0.001

95% CI

Boot 95% CI

95% CI
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mir_27b_000409

 Table 49: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

mir_30d_000420

Table 50: Simple Mediation Analysis Results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.014 0.004 -0.022 -0.006 <0.001 c' 0.002 0.002 -0.003 0.006 0.476

M(miR_27b_000409) ­ ­ ­ ­ ­ b -0.031 0.018 -0.066 0.004 0.0813
costant i 1 8.696 0.617 7.486 9.906 <0.001 i 2 -4.076 0.352 -4.767 -3.384 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.003 0.006 0.476

Indirect Effect of Pm 10  on CRP 0.0004 0.0003 ­ ­ 0.128*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0004 0.0003 0.0000 0.0010 ­

95% CI 95% CI

R 2 =0.052 R 2 =0.159

R 2 = 0.156

F(6,840)=25.951, p<0.001

F(6,840)=7.727, p<0.001 F(7,839)=22.733, p<0.001

Consequent

M(miR_27b_000409) Y(CRP)

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.015 0.004 -0.022 -0.008 <0.001 c' 0.001 0.002 -0.003 0.006 0.481

M(miR_30d_000420) _ _ _ _ _ b -0.030 0.020 -0.068 0.008 0.126
costant i 1 9.256 0.559 8.159 10.353 <0.001 i 2 -4.067 0.365 -4.783 -3.351 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.001 0.002 -0.003 0.006 0.481

Indirect Effect of Pm 10  on CRP 0.0004 0.0003 ­ ­ 0.160*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0004 0.0003 0.0000 0.0011 ­

R 2 =0.036 R 2 =0.159
F(6,840)=5.205, p<0.001 F(7,839)=22.615, p<0.001

95% CI

Boot 95% CI

Consequent

M(miR_30d_000420) Y(CRP)

95% CI 95% CI

R 2 = 0.156

F(6,840)=25.951, p<0.001
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mir_92a_000431

 Table 51: Simple Mediation Analysis Results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

mir_152_000475

 Table 52: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

M(miR_92a_000431) Y(CRP)
Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.012 0.003 -0.017 -0.006 <0.001 c' 0.001 0.002 -0.003 0.006 0.482

M(miR_92a_000431) ­ ­ ­ ­ ­ b -0.040 0.024 -0.087 0.008 0.099
costant i 1 13.424 0.455 12.530 14.317 <0.001 i 2 -3.812 0.452 -4.699 -2.925 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.3512

Direct Effect of Pm 10  on CRP c' 0.001 0.002 -0.003 0.006 0.4824

Indirect Effect of Pm 10  on CRP 0.001 0.0003 ­ ­ 0.138*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.001 0.0003 0.000 0.001 ­

95% CI

Boot 95% CI

Consequent

95% CI 95% CI

R 2 =0.036 R 2 =0.159
F(6,840)=5.194, p<0.001 F(7,839)=22.679, p<0.001

R 2 = 0.156

F(6,840)=25.951, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' 0.002 0.002 -0.002 0.006 0.439

M(miR_152_000475) _ _ _ _ _ b -0.026 0.021 -0.067 0.016 0.224
costant i 1 7.053 0.516 6.040 8.066 <0.001 i 2 -4.163 0.351 -4.851 -3.475 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.002 0.006 0.439

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 ­ ­ 0.264*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 -0.0001 0.0008 ­

R 2 = 0.156

F(6,840)=25.951, p<0.001

Consequent

M(miR_152_000475) Y(CRP)

95% CI 95% CI

R 2 =0.035 R 2 =0.158
F(6,840)=5.001, p<0.001 F(7,839)=22.467, p<0.001

95% CI

Boot 95% CI



 

152 

 

mir_181a_2_002317 

 Table 53: Simple Mediation Analysis Results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_218_000521

Table 54: Simple Mediation Analysis Results for mediator mir_218_000521 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.016 0.004 -0.024 -0.008 <0.001 c' 0.002 0.002 -0.002 0.006 0.429

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -0.017 0.018 -0.052 0.018 0.340
costant i 1 2.453 0.617 1.241 3.665 <0.001 i 2 -4.303 0.320 -4.931 -3.675 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.002 0.006 0.429

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 ­ ­ 0.366*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0003 0.0002 -0.0001 0.0007 ­

R 2 = 0.156

F(6,840)=25.951, p<0.001

95% CI 95% CI

R 2 =0.025 R 2 =0.157
F(6,840)=5.001, p<0.001 F(7,839)=22.371, p<0.001

Consequent

M(miR_181a_2_002317) Y(CRP)

95% CI

Boot 95% CI

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.009 <0.001 c' 0.002 0.002 -0.002 0.006 0.279

M(miR_218_000521) ­ ­ ­ ­ ­ b 0.020 0.019 -0.018 0.058 0.293
costant i 1 4.682 0.564 3.574 5.790 <0.001 i 2 -4.440 0.330 -5.087 -3.793 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.002 0.006 0.279

Indirect Effect of Pm 10  on CRP -0.0003 0.0003 ­ ­ 0.317*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP -0.0003 0.0003 -0.0009 0.0001 ­

R 2 = 0.156

F(6,840)=25.951, p<0.001

R 2 =0.158
F(6,840)=4.463, p<0.001 F(7,839)=22.404, p<0.001

95% CI

Boot 95% CI

Consequent

M(miR_218_000521) Y(CRP)

95% CI 95% CI

R 2 =0.031
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mir_375_000564

 Table 55: Simple Mediation Analysis Results for mediator mir_375_000564 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression and CRP was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with CRP as independent variable and miRNAs expression as dependent variable it was obtained the 

percentage change in CRP: 100(1.01^ β  -1)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

Fibrinogen: 

 
mir_25_000403

Table 56: Simple Mediation Analysis Results for mediator mir_25_000403 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.002 0.002 -0.0021 0.006 0.351
costant ­ ­ ­ ­ ­ i 3 -4.345 0.317 -4.967 -3.722 <0.001

X(Pm 10 ) a -0.017 0.004 -0.026 -0.008 <0.001 c' 0.002 0.002 -0.002 0.006 0.406

M(miR_375_000564) ­ ­ ­ ­ ­ b -0.011 0.016 -0.042 0.020 0.475
costant i 1 3.829 0.692 2.470 5.187 <0.001 i 2 -4.301 0.323 -4.935 -3.667 <0.001

Effect SE p

Total effect of Pm 10  on CRP c 0.002 0.002 -0.002 0.006 0.351

Direct Effect of Pm 10  on CRP c' 0.002 0.002 -0.002 0.006 0.406

Indirect Effect of Pm 10  on CRP 0.0002 0.0002 ­ ­ 0.496*

Effect Boot SE p

Indirect Effect of Pm 10  on CRP 0.0002 0.0002 -0.0002 0.0007 ­

F(6,840)=25.951, p<0.001

R 2 = 0.156

F(6,840)=5.065, p<0.001 F(7,839)=22.304, p<0.001

95% CI

Boot 95% CI

Consequent

M(miR_375_000564) Y(CRP)

95% CI 95% CI

R 2 =0.040 R 2 =0.157

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.011 0.003 -0.018 -0.005 <0.001 c' 0.204 0.120 -0.031 0.438 0.088

M(miR_25_000403) ­ ­ ­ ­ ­ b -1.160 1.281 -3.674 1.355 0.366
costant i 1 9.871 0.512 8.866 10.876 <0.001 i 2 161.094 22.619 116.696 205.493 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.204 0.120 -0.031 0.438 0.088

Indirect Effect of Pm 10  on Fibrinogen 0.013 0.021 ­ ­ 0.399*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.013 0.021 -0.018 0.068 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_25_000403) Y(Fibrinogen)

R 2 =0.033
F(6,818)=4.575, p<0.001

R 2 =0.122
F(6,817)=16.150, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001
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mir_27b_000409

Table 57: Simple Mediation Analysis Results for mediator mir_27b_000409 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_30d_000420

Table 58: Simple Mediation Analysis Results for mediator mir_30d_000420 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.016 0.004 -0.023 -0.008 <0.001 0.204 0.120 -0.031 0.439 0.088

M(miR_27b_000409) _ _ _ _ _ -0.806 1.038 -2.842 1.231 0.438
costant i 1 8.703 0.632 7.463 9.944 <0.001 156.663 20.817 115.802 197.523 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.204 0.120 -0.031 0.439 0.088

Indirect Effect of Pm 10  on Fibrinogen 0.013 0.023 ­ ­ 0.460*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.013 0.023 -0.027 0.068 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_27b_000409) Y(Fibrinogen)

R 2 =0.058 R 2 = 0.121
F(6,818)=8.342, p<0.001 F(7,817)=16.115, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.010 <0.001 c' 0.202 0.120 -0.034 0.438 0.094

M(miR_30d_000420) _ _ _ _ _ b -0.910 1.129 -3.125 1.305 0.420
costant i 1 9.131 0.581 7.991 10.272 <0.001 i 2 157.959 21.401 115.952 199.965 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.202 0.120 -0.034 0.438 0.094

Indirect Effect of Pm 10  on Fibrinogen 0.015 0.025 ­ ­ 0.438*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.015 0.025 -0.026 0.077 ­

Boot 95% CI

Consequent

M(miR_30d_000420) Y(Fibrinogen)

R 2 =0.038
F(6,818)=5.445, p<0.001

R 2 =0.121
F(7,817)=16.122, p<0.001

95% CI 95% CI

95% CI

R 2 = 0.121

F(6,818)=18.709, p<0.001
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mir_92a_000431

Table 59:  Simple Mediation Analysis Results for mediator mir_92a_000431 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

mir_106a_002169 

Table 60:  Simple Mediation Analysis Results for mediator mir_106a_002169 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.011 0.003 -0.017 -0.005 <0.001 c' 0.213 0.120 -0.022 0.448 0.075

M(miR_92a_000431) _ _ _ _ _ b -0.339 1.409 -3.104 2.426 0.810
costant i 1 13.512 0.466 12.598 14.426 <0.001 i 2 154.228 26.727 101.766 206.690 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.213 0.120 -0.022 0.448 0.075

Indirect Effect of Pm 10  on Fibrinogen 0.004 0.020 ­ ­ 0.816*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.004 0.020 -0.032 0.053 ­

95% CI 95% CI

Consequent

M(miR_92a_000431) Y(Fibrinogen)

95% CI

Boot 95% CI

R 2 =0.037
F(6,818)=5.153, p<0.001

R 2 =0.121
F(7,817)=16.026, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.012 0.003 -0.017 -0.007 <0.001 c' 0.197 0.120 -0.039 0.433 0.102

M(miR_106a_002169) ­ ­ ­ ­ ­ b -1.627 1.628 -4.823 1.568 0.318
costant i 1 13.146 0.403 12.356 13.937 <0.001 i 2 171.042 28.454 115.191 226.894 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.0678

Direct Effect of Pm 10  on Fibrinogen c' 0.197 0.120 -0.039 0.433 0.1021

Indirect Effect of Pm 10  on Fibrinogen 0.020 0.026 ­ ­ 0.337*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.020 0.026 -0.024 0.083 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_106a_002169) Y(Fibrinogen)

R 2 =0.045
F(6,818)=6.392, p<0.001

R 2 =0.122
F(7,817)=16.179, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001
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mir_152_000475

Table 61: Simple Mediation Analysis Results for mediator mir_152_000475 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

mir_181a_2_002317 

Table 62: Simple Mediation Analysis Results for mediator mir_181a_2_002317 on log2 scale. Bootstrap standard error and 

bootstrap 95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, 

temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

 

 

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.012 0.003 -0.019 -0.006 <0.001 c' 0.194 0.120 -0.040 0.429 0.105

M(miR_152_000475) _ _ _ _ _ b -1.895 1.241 -4.332 0.541 0.127
costant i 1 7.121 0.528 6.085 8.157 <0.001 i 2 163.145 20.717 122.480 203.811 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.0678

Direct Effect of Pm 10  on Fibrinogen c' 0.194 0.120 -0.040 0.429 0.1046

Indirect Effect of Pm 10  on Fibrinogen 0.023 0.023 ­ ­ 0.173*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.023 0.023 -0.011 0.083 ­

95% CI 95% CI

95% CI

Boot 95% CI

Consequent

M(miR_152_000475) Y(Fibrinogen)

R 2 =0.0370
F(6,818)=5.239, p<0.001

R 2 =0.123
F(7,817)=16.395, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.017 0.004 -0.025 -0.009 <0.001 c' 0.180 0.120 -0.055 0.415 0.133

M(miR_181a_2_002317) ­ ­ ­ ­ ­ b -2.188 1.033 -4.215 -0.161 0.034
costant i 1 2.382 0.634 1.139 3.626 <0.001 i 2 154.861 18.873 117.816 191.906 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.180 0.120 -0.055 0.415 0.133

Indirect Effect of Pm 10  on Fibrinogen 0.037 0.027 ­ ­ 0.064*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.037 0.027 -0.005 0.106 ­

95% CI 95% CI

Boot 95% CI

95% CI

Consequent

M(miR_181a_2_002317) Y(Fibrinogen)

R 2 =0.0263
F(6,818)=3.689, p<0.001

R 2 =0.126
F(7,817)=16.746, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001
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mir_218_000521

Table 63: Simple Mediation Analysis Results for mediator mir_218_000521 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test 

 

 

 

 

 

mir_652_002352

Table 64: Simple Mediation Analysis Results for mediator mir_652_002352 on log2 scale. Bootstrap standard error and bootstrap 

95% were obtained for Indirect effect. Models adjusted for age, sex, bmi, smoking status, glycated haemoglobin, temperature.  

miRNAs expression was log2 transformed.  

Back transforming in model with miRNAs expression as independent variable and PM10 as dependent variable it was obtained 

the %change in miRNAs expression : (2^β -1)*100 for an increase 1 µg/m^3 in PM10. 

Back transforming in model with Fibrinogen as independent variable and miRNAs expression as dependent variable it was 

obtained the change in Fibrinogen: β log2(101/100)  associated with 1%change in miRNAs expression. 

*Sobel test. 

 

  

Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.017 0.004 -0.024 -0.009 <0.001 c' 0.181 0.120 -0.055 0.416 0.132

M(miR_218_000521) ­ ­ ­ ­ ­ b -2.175 1.132 -4.397 0.047 0.055
costant i 1 4.637 0.578 3.502 5.772 <0.001 i 2 159.732 19.443 121.568 197.896 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.181 0.120 -0.055 0.416 0.132

Indirect Effect of Pm 10  on Fibrinogen 0.036 0.027 ­ ­ 0.083*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.0361 0.0273 -0.007 0.103 ­

Boot 95% CI

95% CI

Consequent

M(miR_218_000521) Y(Fibrinogen)

R 2 =0.034
F(6,818)=4.741, p<0.001

R 2 =0.013
F(7,817)=16.115, p<0.001

95% CI 95% CI

R 2 = 0.121

F(6,818)=18.709, p<0.001

M(miR_652_002352) Y(Fibrinogen)
Antecedent Coeff. SE p Coeff. SE p

X(PM 10 ) ­ ­ ­ ­ ­ c 0.217 0.119 -0.0159 0.450 0.068
costant ­ ­ ­ ­ ­ i 3 149.649 18.752 112.841 186.456 <0.001

X(Pm 10 ) a -0.022 0.005 -0.032 -0.012 <0.001 c' 0.199 0.120 -0.037 0.434 0.098

M(miR_652_002352) ­ ­ ­ ­ ­ b -0.828 0.801 -2.401 0.745 0.302
costant i 1 8.055 0.818 6.449 9.661 <0.001 i 2 156.314 19.831 117.389 195.240 <0.001

Effect SE p

Total effect of Pm 10  on Fibrinogen c 0.217 0.119 -0.016 0.450 0.068

Direct Effect of Pm 10  on Fibrinogen c' 0.199 0.120 -0.037 0.434 0.098

Indirect Effect of Pm 10  on Fibrinogen 0.018 0.024 ­ ­ 0.328*

Effect Boot SE p

Indirect Effect of Pm 10  on Fibrinogen 0.018 0.024 -0.020 0.075 ­

Boot 95% CI

95% CI 95% CI

95% CI

Consequent

R 2 =0.040
F(6,818)=5.601, p<0.001

R 2 =0.122
F(7,817)=16.190, p<0.001

R 2 = 0.121

F(6,818)=18.709, p<0.001
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8. APPENDIX 2:  SAS MACRO PROCESS FOR MEDIATION ANALYSIS 

* PROCESS for SAS v2.13 */. 

* Copyright 2012-2014 */. 

* by Andrew F. Hayes */. 

* www.afhayes.com */. 

 

* Documentation available in Appendix A of http://www.guilford.com/p/hayes3; 

 

* Permission is hereby granted, free of charge, to any person obtaining a 

copy of this software; 

* and associated documentation files (the "Software"), to use the software in 

this form.  Distribution; 

* after modification is prohibited, as is its use for any commercial purpose 

without authorization;   

* This software should not be posted or stored on any webpage, server, or 

directory accessible to; 

* the public whether free or for a charge unless written permission has been 

granted by the copyright; 

* holder.  The copyright holder requests that this software be distributed by 

directing users to; 

* processmacro.org where the latest release of the software and related 

documentation is archived and; 

* can be downloaded; 

 

* THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ; 

* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ; 

* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ; 

* IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, ; 

* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT ; 

* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ; 

* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE ; 

 

* The above text should be included in any distribution of the software; 

 

%macro bcboot (databcbt=,estmte=9999); 

temp=&databcbt; 

temp[rank(temp)]=&databcbt; 

badlo=0; 

badhi=0; 

if (&estmte ^= 9999) then; 

  do;pv=(temp < &estmte);pv=pv[+]/boot; 

  ppv=pv; 

  if (pv > 0.5) then;do;ppv=1-pv;end; 

  y5=sqrt(-2*log(ppv)); 

  

xp=y5+((((y5*p4+p3)*y5+p2)*y5+p1)*y5+p0)/((((y5*q4+q3)*y5+q2)*y5+q1)*y5+q0); 

  if (pv <= .5) then;do;xp=-xp;end; 

  cilow=round(boot*(probnorm(2*xp+xp2))); 

  cihigh=int(boot*(probnorm(2*xp+(-xp2))))+1; 

  if (cilow < 1) then;do;cilow=1;booterr=1;badlo=1;end; 

  if (cihigh > boot) then;do;cihigh=boot;booterr=1;badhi=1;end; 

  llcit=temp[cilow,1]; 

  ulcit=temp[cihigh,1]; 

  end; 

if (&estmte=9999) then;do;llcit=temp[cilow,1];ulcit=temp[cihigh,1];end; 

%mend; 

 

%macro bcci (data=,var=,point=9999,conf=95); 

proc iml; 

use &data; 
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read all var{&var} into perdata; 

xx=(perdata = .);xx=xx[,+]; 

j=1;do i = 1 to nrow(perdata);if xx[i,1]=0 

then;do;perdata[j,]=perdata[i,];j=j+1;end;end; 

perdata=perdata[1:j-1,]; 

berror=0; 

p0=-.322232431088; 

p1 = -1; 

p2 = -.342242088547; 

p3 = -.0204231210245; 

p4 = -.0000453642210148; 

q0 = .0993484626060; 

q1 = .588581570495; 

q2 = .531103462366; 

q3 = .103537752850; 

q4 = .0038560700634; 

conf=&conf; 

if ((floor(conf) >= 100) | (floor(conf) <= 50)) then;do;conf=95;end; 

alpha2=(1-(conf/100))/2; 

y5=sqrt(-2*log(alpha2)); 

xp2=-

(y5+((((y5*p4+p3)*y5+p2)*y5+p1)*y5+p0)/((((y5*q4+q3)*y5+q2)*y5+q1)*y5+q0)); 

boot=nrow(perdata); 

temp=perdata; 

temp[rank(temp)]=perdata; 

badlo=0;badhi=0; 

if (&point ^= 9999) then; 

  do;pv=(temp < &point);pv=pv[+]/boot; 

  if ((pv=0) | (pv=1)) then;do;berror=2;end; 

  if (berror=0) then;do; 

    ppv=pv; 

    if (pv > 0.5) then;do;ppv=1-pv;end; 

    y5=sqrt(-2*log(ppv)); 

    

xp=y5+(((((y5*p4+p3)*y5+p2)*y5+p1)*y5+p0)/((((y5*q4+q3)*y5+q2)*y5+q1)*y5+q0))

; 

    if (pv <= .5) then;do;xp=-xp;end; 

    cilow=round(boot*(probnorm(2*xp+xp2))); 

    cihigh=int(boot*(probnorm(2*xp+(-xp2))))+1; 

    if (cilow < 1) then;do;berror=1;end; 

    if (cihigh > boot) then;do;berror=1;end; 

    if (berror=0) then;do; 

      llcit=temp[cilow,1]; 

      ulcit=temp[cihigh,1]; 

      nametmp="Conf%"//"LLCI"//"ULCI"; 

   outp=conf//llcit//ulcit; 

      print outp [label="Bias corrected confidence interval:" rowname = 

nametmp format = 10.4];  

    end; 

  end; 

end; 

if (&point = 9999) then;do; 

  cilowp=round(boot*(probnorm(xp2))); 

  cihighp=int(boot*(probnorm(-xp2)))+1; 

  if (cilowp < 1) then;do;berror=1;end; 

  if (cihighp > boot) then;do;berror=1;end; 

  if (berror=0) then;do; 

    llcitp=temp[cilowp,1]; 

    ulcitp=temp[cihighp,1]; 

    nametmp="Conf%"//"LLCI"//"ULCI"; 

 outp=conf//llcitp//ulcitp; 

    print outp [label="Percentile confidence interval:" rowname = nametmp 

format = 10.4];  
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  end; 

end; 

if (berror=1) then;do; 

  print "Error: Decrease your confidence or increase the number of bootstrap 

estimates."; 

end; 

if (berror=2) then;do; 

  print "Error: Impossible point estimate provided"; 

end; 

quit;  

%mend; 

 

%macro process (data=,vars=,model=77,y=,m=,x=,w=,z=,v=,q=,conf=95, 

  hc3=0,cluster=,wmodval=999,zmodval=999,vmodval=999,qmodval=999,mmodval=999, 

  

xmodval=999,boot=1000,center=0,quantile=0,effsize=0,normal=0,varorder=2,total

=0, 

  plot=0,detail=1,iterate=10000,converge=0.00000001,percent=0,jn=0,coeffci=1, 

  

covmy=0,contrast=0,seed=0,save=xxx,mc=0,decimals=10.4,covcoeff=0,olsdichy=0,o

lsdichm=0,ws=0); 

options pagesize=32767; 

proc iml; 

use &data; 

read all var{&vars} into dat; 

vnames={&vars}; 

yname={&y};xname={&x};mnames={&m}; 

if ("&w" = "") then wname="xxx";else wname = "&w"; 

if ("&z" = "") then zname="xxx";else zname = "&z"; 

if ("&v" = "") then vname="xxx";else vname = "&v"; 

if ("&q" = "") then qname="xxx";else qname = "&q"; 

if ("&save" = "") then saveboot="xxx";else saveboot="&save"; 

if ("&cluster" = "") then clname="xxx";else clname = "&cluster"; 

 

wname=upcase(wname);zname=upcase(zname);vname=upcase(vname);qname=upcase(qnam

e);clname=upcase(clname); 

ninit=nrow(dat); 

xx=(dat = .);xx=xx[,+]; 

j=1;do i = 1 to nrow(dat);if xx[i,1]=0 then;do;dat[j,]=dat[i,];j=j+1;end;end; 

dat=dat[1:j-1,]; 

n=nrow(dat); 

p0=-.322232431088; 

p1 = -1; 

p2 = -.342242088547; 

p3 = -.0204231210245; 

p4 = -.0000453642210148; 

q0 = .0993484626060; 

q1 = .588581570495; 

q2 = .531103462366; 

q3 = .103537752850; 

q4 = .0038560700634; 

badend=0;priorlo=-9999999;priorhi=9999999; 

criterr=0;cluster=0;clsdmy=0;jndich=0;booterr=0; 

wvdich=0;mod74dic=0; 

effsize=(&effsize=1); 

covcoeff=(&covcoeff=1); 

note=j(10,1,0);notes=1;iterr=0;clsmtch=0; 

quantile=(&quantile=1);jn=(&jn=1);contrast=(&contrast=1); 

center=(&center=1);detail=(&detail=1);coeffci=(&coeffci=1); 

conf=(&conf);bconoff=(&percent ^= 1); 

covmy=floor(&covmy);if (covmy < 0 | covmy > 2) then;do;covmy=0;end; 

if ((floor(conf) >= 100) | (floor(conf) <= 50)) then;do; 

  conf=95;note[notes,1]=1;notes=notes+1; 
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  end; 

if (n < ninit) then;do;nmiss=ninit-n;note[notes,1]=11;notes=notes+1;end; 

errs=0;quantd=j(1,6,0);quantc=j(1,6,0);mcheck=0;ttt=0; 

plot=(&plot ^= 0); 

runerrs=j(50,1,0); 

model=floor(&model); 

normal=(&normal); 

ws=(&ws); 

olsdichm=(&olsdichm=1);olsdichy=(&olsdichy=1); 

if (ws=1) then;do; 

  if (effsize=1) then;do; 

    note[notes,1]=19;notes=notes+1;effsize=0; 

  end; 

  if (normal=1) then;do; 

    note[notes,1]=16;notes=notes+1;normal=0; 

  end; 

end; 

if (model ^= 4) then;do;ws=0;end; 

if ((jn = 1) & (model ^= 1) & (model ^= 3)) then;do; 

  note[notes,1]=7;notes=notes+1; 

end; 

if ((model > 76) | (model < 1)) then;do; 

  model=77;criterr=1;errs=errs+1;runerrs[errs,1]=19; 

end; 

toteff=0;toteff=((&total=1)*((model=4) | (model=6))); 

varorder=(&varorder); 

hc3=(&hc3 ^= 0); 

centvar={'xxx'}; 

modelm= 

{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1, 

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2, 

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3, 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4, 

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5, 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6, 

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7, 

 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8, 

 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9, 

 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 10, 

 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11, 

 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 12, 

 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 13, 

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14, 

 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 15, 

 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 16, 

 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 17, 

 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 18, 

 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 19, 

 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 20, 

 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21, 

 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 22, 

 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23, 

 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 24, 

 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25, 

 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 26, 

 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 27, 

 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 28, 

 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 29, 

 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 30, 

 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 31, 

 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 32, 

 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 33, 

 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 34, 
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 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 35, 

 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 36, 

 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 37, 

 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 38, 

 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 39, 

 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 40, 

 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 41, 

 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 42, 

 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 43, 

 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 44, 

 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 45, 

 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 46, 

 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 47, 

 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 48, 

 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 49, 

 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 50, 

 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 51, 

 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 52, 

 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 53, 

 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 54, 

 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 55, 

 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 56, 

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 57, 

 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 58, 

 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 59, 

 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 60, 

 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 61, 

 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 62, 

 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 63, 

 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 64, 

 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 65, 

 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 66, 

 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 67, 

 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 68, 

 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 69, 

 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 70, 

 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 71, 

 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 72, 

 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 73, 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 74, 

 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 75, 

 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 76, 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77}; 

 

wm=modelm[model,1]; 

zm=modelm[model,2]; 

wzm=modelm[model,3]; 

vy=modelm[model,4]; 

qy=modelm[model,5]; 

vqy=modelm[model,6]; 

wy=modelm[model,7]; 

zy=modelm[model,8]; 

wzy=modelm[model,9]; 

vxy=modelm[model,10]; 

qxy=modelm[model,11]; 

vqxy=modelm[model,12]; 

wmy=modelm[model,13]; 

wvmy=modelm[model,14]; 

wvxy=modelm[model,15]; 

zmy=modelm[model,16]; 

wzmy=modelm[model,17]; 

xmy=modelm[model,18]; 

if (ncol(xname) ^= 1) then;do;errs=errs+1;runerrs[errs,1]=20;criterr=1;end; 
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if (ncol(yname) ^= 1) then;do;errs=errs+1;runerrs[errs,1]=21;criterr=1;end; 

if ((&mmodval=0) & (&wmodval = 0) & (model=3 | model=2) & (contrast=1)) 

then;do; 

  errs=errs+1;runerrs[errs,1]=31;criterr=1; 

end; 

xlist = 

((wm=1)|(zm=1)|(wzm=1)|(wy=1)|(zy=1)|(wzy=1)|(vxy=1)|(qxy=1)|(vqxy=1)|(wvxy=1

)|(xmy=1)); 

mlist = ((vy=1)|(qy=1)|(vqy=1)|(zmy=1)|(wmy=1)|(wzmy=1)|(xmy=1)|(model < 4)); 

bad=0; 

if (criterr=0) then;do;  

  werr=0;verr=0;qerr=0;zerr=0;yerr=1;xerr=1; 

  

wlist=((wm=1)|(wzm=1)|(wy=1)|(wzy=1)|(wm=1)|(wvmy=1)|(wvmy=1)|(wvxy=1)|(wzmy=

1)); 

  if ((wlist=1) & (wname = "XXX")) 

then;do;werr=1;wlist=0;errs=errs+1;runerrs[errs,1]=4; 

  end; 

  if ((wlist=1) & 

((wname=qname)|(wname=vname)|(wname=zname)|(wname=xname)|(wname=yname))) 

then;do; 

    werr=4;errs=errs+1;runerrs[errs,1]=12; 

  end; 

  zlist=((zm=1)|(wzm=1)|(zy=1)|(wzy=1)|(zmy=1)|(wzmy=1)); 

  if ((zlist=1) & (zname = "XXX")) 

then;do;zerr=1;zlist=0;errs=errs+1;runerrs[errs,1]=5; 

  end; 

  if ((zlist=1) & 

((zname=qname)|(zname=vname)|(zname=wname)|(zname=xname)|(zname=yname))) 

then;do; 

    zerr=4;errs=errs+1;runerrs[errs,1]=13; 

  end; 

  qlist=((qy=1)|(vqy=1)|(qxy=1)|(vqxy=1)); 

  if ((qlist=1) & (qname = "XXX")) 

then;do;qerr=1;qlist=0;errs=errs+1;runerrs[errs,1]=6; 

  end; 

  if ((qlist=1) & 

((qname=zname)|(qname=vname)|(qname=wname)|(qname=xname)|(qname=yname))) 

then;do; 

    qerr=4;errs=errs+1;runerrs[errs,1]=14; 

  end; 

  vlist=((vy=1)|(vqy=1)|(vxy=1)|(vqxy=1)|(wvmy=1)|(wvxy=1)); 

  if ((vlist=1) & (vname = "XXX")) 

then;do;verr=1;vlist=0;errs=errs+1;runerrs[errs,1]=7; 

  end; 

  if ((vlist=1) & 

((vname=zname)|(vname=qname)|(vname=wname)|(vname=xname)|(vname=yname))) 

then;do; 

    qerr=4;errs=errs+1;runerrs[err,1]=15; 

  end; 

  if ((wlist=0) & (wname ^= "XXX")) 

then;do;werr=2;errs=errs+1;runerrs[errs,1]=8; 

  end; 

  if ((zlist=0) & (zname ^= "XXX")) 

then;do;zerr=2;errs=errs+1;runerrs[errs,1]=9; 

  end; 

  if ((qlist=0) & (qname ^= "XXX")) 

then;do;qerr=2;errs=errs+1;runerrs[errs,1]=10; 

  end; 

  if ((vlist=0) & (vname ^= "XXX")) 

then;do;verr=2;errs=errs+1;runerrs[errs,1]=11; 

  end; 

  if (hc3=1) then;do;note[notes,1]=3;notes=notes+1; 



 

164 

 

  end; 

  alpha2=(1-(conf/100))/2; 

  y5=sqrt(-2*log(alpha2)); 

  xp2=-

(y5+((((y5*p4+p3)*y5+p2)*y5+p1)*y5+p0)/((((y5*q4+q3)*y5+q2)*y5+q1)*y5+q0)); 

  cons=j(n,1,1); 

  temp=(n*t(dat)*dat)-(t(dat[+,])*dat[+,]); 

  temp=temp/(n*(n-1));temp=sqrt(vecdiag(temp));temp=(temp = 0);temp=temp[+,]; 

  temp2=1; 

 

  do i = 1 to ncol(vnames); 

     if (vnames[,i]=xname) then;do;tmp2=dat[,i];end; 

  end; 

 

  if (ws=1) then;do; 

    temp2=(n*t(tmp2)*tmp2)-(t(tmp2[+,])*tmp2[+,]);temp2=temp2/(n*(n-1)); 

  end; 

  if ((temp > 0 & ws=0) | ((temp > 0) & (ws=1) & (temp2 ^=0))) then;do; 

    criterr=1;errs=errs+1;runerrs[errs,1]=27; 

  end; 

  nmeds=ncol(mnames); 

  mcmats=I(nmeds*2); 

  mccoeff=j((nmeds*2),1,0); 

  sobel=j(nmeds,4,-999); 

  if ((model = 6) & (nmeds > 4)) then;do;errs=errs+1;runerrs[errs,1]=2; 

  end; 

  if ((model < 4) & (nmeds > 1)) then;do;errs=errs+1;runerrs[errs,1]=3; 

  end; 

  nmods=(model=74); 

  bad=0;intcnt=1;modvals=0;modvalsd=0; 

  yintemp={"INT_1" "INT_2" "INT_3" "INT_4" "INT_5" "INT_6" "INT_7" "INT_8" 

"INT_9" "INT_10" "INT_11" "INT_12"}; 

  yintemp=yintemp||{"INT_13" "INT_14" "INT_15" "INT_16" "INT_17" "INT_18" 

"INT_19" "INT_20" "INT_21" "INT_22"}; 

  yintemp=yintemp||{"INT_23" "INT_24" "INT_25" "INT_26" "INT_27" "INT_28" 

"INT_29" "INT_30" "INT_31" "INT_32"}; 

  yintemp=yintemp||{"INT_33" "INT_34" "INT_35" "INT_36" "INT_37" "INT_38" 

"INT_39" "INT_40" "INT_41" "INT_42"}; 

  yintemp=yintemp||{"INT_43" "INT_44" "INT_45" "INT_46" "INT_47" "INT_48" 

"INT_49" "INT_50" "INT_51" "INT_52"}; 

  yintemp=yintemp||{"INT_53" "INT_54" "INT_55" "INT_56" "INT_57" "INT_58" 

"INT_59" "INT_60" "INT_61" "INT_62"}; 

  

cntname="(C1)"//"(C2)"//"(C3)"//"(C4)"//"(C5)"//"(C6)"//"(C7)"//"(C8)"//"(C9)

"//"(C10)"; 

  

cntname=cntname//"(C11)"//"(C12)"//"(C13)"//"(C14)"//"(C15)"//"(C16)"//"(C17)

"//"(C18)"//"(C19)"//"(C20)"; 

  

cntname=cntname//"(C21)"//"(C22)"//"(C23)"//"(C24)"//"(C25)"//"(C26)"//"(C27)

"//"(C28)"//"(C29)"//"(C30)"; 

  

cntname=cntname//"(C31)"//"(C32)"//"(C33)"//"(C34)"//"(C35)"//"(C36)"//"(C37)

"//"(C38)"//"(C39)"//"(C40)"; 

  

cntname=cntname//"(C41)"//"(C42)"//"(C43)"//"(C44)"//"(C45)"//"(C46)"//"(C47)

"//"(C48)"//"(C49)"//"(C50)"; 

  

cntname=cntname//"(C51)"//"(C52)"//"(C53)"//"(C54)"//"(C55)"//"(C56)"//"(C57)

"//"(C58)"//"(C59)"//"(C60)"; 

  

cntname=cntname//"(C61)"//"(C62)"//"(C63)"//"(C64)"//"(C65)"//"(C66)"//"(C67)

"//"(C68)"//"(C69)"//"(C70)"; 
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cntname=cntname//"(C71)"//"(C72)"//"(C73)"//"(C74)"//"(C75)"//"(C76)"//"(C77)

"//"(C78)"//"(C79)"//"(C80)"; 

  

cntname=cntname//"(C81)"//"(C82)"//"(C83)"//"(C84)"//"(C85)"//"(C86)"//"(C87)

"//"(C88)"//"(C89)"//"(C90)"; 

  

cntname=cntname//"(C91)"//"(C92)"//"(C93)"//"(C94)"//"(C95)"//"(C96)"//"(C97)

"//"(C98)"//"(C99)"//"(C100)"; 

  cntname=cntname//"(C101)"//"(C102)"//"(C103)"//"(C104)"//"(C105)"; 

  apathnam="a path"//"a1 path"//"a2 path"//"a3 path"//"a4 path"//"a5 

path"//"a6 path"//"a7 path"//"a8 path"//"a9 path"//"a10 path"; 

  bpathnam="b path"//"b1 path"//"b2 path"//"b3 path"//"b4 path"//"b5 

path"//"b6 path"//"b7 path"//"b8 path"//"b9 path"//"b10 path"; 

  modvnm = {"xxxxxxxxxxxxxxxx"}||{"xxx"}||{"xxx"}||{"xxx"}||{"xxx"}; 

  modvnm2 = modvnm; 

  mlab="M1    ="//"M2    ="//"M3    ="//"M4    ="//"M5    ="//"M6    ="//"M7    

="//"M8    ="//"M9    ="//"M10   ="; 

  

m=j(n,nmeds,1);mmat=j(16,nmeds,0);ymat=j(8,nmeds,0);deco=j(10,1,0);modmat=j(5

,5,999); 

  modmatv=j(1,5,1);modmatp=j(1,5,0);modprod=modmatv; 

  iterate=abs(floor(&iterate));converge=abs(&converge); 

  boot=abs(floor(&boot));adjust=0; 

  if ((ws=1) & (&mc > 0)) then;do;note[notes,1]=17;notes=notes+1;end; 

  mc=(abs(floor(&mc))*(1-ws)); 

  if ((mc > 0) & (model > 5)) then;do; 

    if (boot = 0) then;do;boot=mc;end; 

    mc=0; 

 note[notes,1]=12;notes=notes+1; 

  end; 

  if (boot ^= 0) then;do; 

    cilow=floor(boot*(1-

(conf/100))/2);cihigh=floor((boot*(conf/100)+(boot*(1-(conf/100))/2)))+1; 

    do until ((cilow > 0) & (cihigh <= boot)); 

      cilow=floor(boot*(1-

(conf/100))/2);cihigh=floor((boot*(conf/100)+(boot*(1-(conf/100))/2)))+1; 

      if ((cilow < 1) | (cihigh > boot)) 

then;do;boot=floor((boot+1000)/1000)*1000;adjust=1; 

      end; 

    end; 

    if (adjust = 1) then;do;note[notes,1]=6;notes=notes+1;end; 

  end; 

  if ((mc > 0) & ((model > 3) & (model < 6))) then;do;boot=0;bconoff=0;end; 

  if ((boot > 0) & (mc > 0)) then;do;mc=0;end; 

  savboot=0; 

  if ((saveboot ^= "xxx") & (boot > 0) & (model > 3)) then;do;savboot=1; 

  end; 

  if ((savboot=1) & (ws=1)) then;do; 

    note[notes,1]=20;notes=notes+1;savboot=0; 

  end; 

  if ((boot ^= 0) | (mc ^= 0)) then;do; 

    bootsz=boot; 

 if (mc > 0) then;do;bootsz=mc;end; 

    cilow=round(bootsz*(1-

(conf/100))/2);cihigh=int((bootsz*(conf/100)+(bootsz*(1-(conf/100))/2)))+1; 

    do until ((cilow > 0) & (cihigh <= bootsz)); 

      cilow=floor(bootsz*(1-

(conf/100))/2);cihigh=floor((bootsz*(conf/100)+(bootsz*(1-(conf/100))/2)))+1; 

      if ((cilow < 1) | (cihigh > bootsz)) 

then;do;bootsz=floor((bootsz+1000)/1000)*1000;adjust=1; 

      end; 

    end; 
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 boot=bootsz; 

 if (mc > 0) then;do;mc=bootsz;end; 

 if ((boot > 0) & (mc > 0) & ((model > 3) & (model < 6))) 

then;do;boot=0;end; 

    if ((adjust = 1) & (boot > 0)) then;do;note[notes,1]=6;notes=notes+1;end; 

 if ((adjust = 1) & (mc > 0)) then;do;note[notes,1]=13;notes=notes+1;end; 

  end; 

  if ((model = 6) & (nmeds > 1)) then;do; 

    mmpaths=j((nmeds+2),(nmeds+2),0); 

    if (nmeds = 2) then;do;indboot=j((boot+1),3,999); 

    end; 

    if (nmeds = 3) then;do;indboot=j((boot+1),7,999); 

    end; 

    if (nmeds = 4) then;do;indboot=j((boot+1),15,999); 

    end; 

    indlbl={"Total", "Ind1:", "Ind2:", "Ind3:", "Ind4:", "Ind5:", "Ind6:", 

"Ind7:", "Ind8:", "Ind9:"}; 

    indlbl=indlbl//{"Ind10:", "Ind11:", "Ind12:", "Ind13:", "Ind14:", 

"Ind15:"}; 

    indlbl2={"Ind1", "Ind2", "Ind3", "Ind4", "Ind5", "Ind6", "Ind7", "Ind8", 

"Ind9"}; 

    indlbl2=indlbl2//{"Ind10", "Ind11", "Ind12", "Ind13", "Ind14", "Ind15"}; 

    indces=j((boot+1),4,999); 

  end; 

  if (model < 4) then;do;boot=0;cmat=j(10,1,0);zmat=j(10,1,0); 

  end; 

  nvarch=j(1,ncol(dat),0);wmatch=0;zmatch=0;vmatch=0;qmatch=0;mmatch=0; 

  minprobe=0;maxprobe=0; 

  do i = 1 to ncol(vnames); *[b]; 

    if (vnames[,i]=yname) then;do; 

      y=dat[,i];nvarch[1,i]=1;yerr=0; 

      if 

((yname=xname)|(yname=wname)|(yname=zname)|(yname=vname)|(yname=qname)) 

then;do; 

        errs=errs+1;runerrs[errs,1]=17; 

      end; 

    end; 

    if (vnames[,i]=xname) then;do; 

      x=dat[,i];nvarch[1,i]=1;xdich=1;xerr=0; 

      do jj = 1 to n; 

        if ((x[jj,1] ^= max(x)) & (x[jj,1] ^= min(x))) then;do;xdich=0;goto 

leave; 

        end; 

      end; 

      leave: 

      xmean=x[+,]/n; 

      if ((center = 1) & ((model < 4) | (xlist > 0))) then;do; 

        meanvec=j(n,1,xmean);x=x-meanvec;centvar=centvar||xname; 

      end; 

      xmean=x[+,]/n; 

      tmp=x-(cons*xmean); 

      xsd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

      if (xdich=0) then;do; 

        quantc[1,6]=1;matx=(xmean-xsd)//xmean//(xmean+xsd); 

  if ((&xmodval = 999) & (quantile = 0)) then;do; 

    if ((matx[1,1] < min(x)) & (model=74)) 

then;do;matx[1,1]=min(x);minprobe=1;end; 

    if ((matx[3,1] > max(x)) & (model=74)) 

then;do;matx[3,1]=max(x);maxprobe=1;end; 

  end; 

        if (quantile = 1) then;do; 

          quantd[1,6]=1;quantc[1,6]=0;tmp=x;tmp[rank(tmp)]=x; 
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matx=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

        end; 

      end; 

      if (xdich=1) then;do;matx=min(x)//max(x); 

     if (model=74) then;do;matx=min(x);mod74dic=1;end; 

      end; 

      if (&xmodval ^= 999) then;do;matx=&xmodval;quantd[1,6]=0;quantc[1,6]=0; 

      end; 

    end; 

    if ((werr=0) & (wlist=1)) then;do; 

      if (vnames[,i]=wname) then;do; 

        werr=0;wmatch=1;w=dat[,i]; 

        if (center = 1) then;do; 

          wmean=w[+,]/n;meanvec=j(n,1,wmean);w=w-

meanvec;centvar=centvar||wname; 

        end; 

        nvarch[1,i]=1;nmods=nmods+1;wmean=w[+,]/n;tmp=w-(cons*wmean); 

        wsd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

        wdich=1; 

        do jj=1 to n; 

          if ((w[jj,1] ^= max(w)) & (w[jj,1] ^= min(w))) then;do;wdich=0;goto 

leave2; 

          end; 

        end; 

        leave2: 

        if (model = 3) then;do;jndich=wdich;jnmin=min(w);jnmax=max(w); 

        end; 

        if (wdich = 0) then;do; 

          matw=(wmean-wsd)//wmean//(wmean+wsd);quantc[1,1]=1; 

    if ((&wmodval=999) & (quantile=0)) then;do; 

      if (matw[1,1] < min(w)) 

then;do;matw[1,1]=min(w);minprobe=1;end; 

      if (matw[3,1] > max(w)) 

then;do;matw[3,1]=max(w);maxprobe=1;end; 

    end; 

          if (quantile = 1) then;do; 

            quantd[1,1]=1;quantc[1,1]=0;tmp=w;tmp[rank(tmp)]=w; 

            

matw=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

          end; 

        end; 

        if (wdich=1) 

then;do;matw=min(w)//max(w);wvdich=1;cmaxw=max(w);cminw=min(w); 

        end; 

        if (&wmodval ^= 999) 

then;do;matw=&wmodval;quantd[1,1]=0;quantc[1,1]=0; 

        end; 

        modmatv[1,1]=nrow(matw); 

        modmat[(1:nrow(matw)),1]=matw; 

        modvnm[1,1]=wname; 

        modmatp[1,1]=1; 

      end; 

    end; 

    if ((zerr=0) & (zlist=1)) then;do; 

      if (vnames[,i]=zname) then;do; 

        zerr=0;zmatch=1;z=dat[,i]; 

        if (center = 1) then;do; 

          zmean=z[+,]/n;meanvec=j(n,1,zmean);z=z-

meanvec;centvar=centvar||zname; 

        end; 
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        nvarch[1,i]=1;nmods=nmods+1;zmean=z[+,]/n;tmp=z-(cons*zmean); 

        zsd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

        zdich=1; 

        do jj=1 to n; 

          if ((z[jj,1] ^= max(z)) & (z[jj,1] ^= min(z))) then;do;zdich=0;goto 

leave3; 

          end; 

        end; 

        leave3: 

        if (zdich = 0) then;do; 

          matz=(zmean-zsd)//zmean//(zmean+zsd);quantc[1,2]=1; 

    if ((&zmodval=999) & (quantile=0)) then;do; 

      if (matz[1,1] < min(z)) 

then;do;matz[1,1]=min(z);minprobe=1;end; 

      if (matz[3,1] > max(z)) 

then;do;matz[3,1]=max(z);maxprobe=1;end; 

    end; 

          if (quantile = 1) then;do; 

            quantd[1,2]=1;quantc[1,2]=0;tmp=z;tmp[rank(tmp)]=z; 

            

matz=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

          end; 

        end; 

        if (zdich=1) then;do;matz=min(z)//max(z); 

        end; 

        if (&zmodval ^= 999) 

then;do;matz=&zmodval;quantd[1,2]=0;quantc[1,2]=0; 

        end; 

        modmatv[1,2]=nrow(matz); 

        modmat[(1:nrow(matz)),2]=matz; 

        modvnm[1,2]=zname; 

        modmatp[1,2]=1; 

      end; 

    end; 

    if ((verr=0) & (vlist=1)) then;do; 

      if (vnames[,i]=vname) then;do; 

        verr=0;vmatch=1;v=dat[,i]; 

        if (center = 1) then;do; 

          vmean=v[+,]/n;meanvec=j(n,1,vmean);v=v-

meanvec;centvar=centvar||vname; 

        end; 

        nvarch[1,i]=1;nmods=nmods+1;vmean=v[+,]/n;tmp=v-(cons*vmean); 

        vsd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

        vdich=1; 

        do jj=1 to n; 

          if ((v[jj,1] ^= max(v)) & (v[jj,1] ^= min(v))) then;do;vdich=0;goto 

leave4; 

          end; 

        end; 

        leave4: 

        if (vdich = 0) then;do; 

          matv=(vmean-vsd)//vmean//(vmean+vsd);quantc[1,3]=1; 

    if (&vmodval=999) then;do; 

      if (matv[1,1] < min(v)) 

then;do;matv[1,1]=min(v);minprobe=1;end; 

      if (matv[3,1] > max(v)) 

then;do;matv[3,1]=max(v);maxprobe=1;end; 

    end; 

          if (quantile = 1) then;do; 

            quantd[1,3]=1;quantc[1,3]=0;tmp=v;tmp[rank(tmp)]=v; 
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matv=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

          end; 

        end; 

        if (vdich=1) 

then;do;matv=min(v)//max(v);wvdich=1;cmaxv=max(v);cminv=min(v); 

        end; 

        if (&vmodval ^= 999) 

then;do;matv=&vmodval;quantd[1,3]=0;quantc[1,3]=0; 

        end; 

        modmatv[1,3]=nrow(matv); 

        modmat[(1:nrow(matv)),3]=matv; 

        modvnm[1,3]=vname; 

        modmatp[1,3]=1; 

      end; 

    end; 

    if ((qerr=0) & (qlist=1)) then;do; 

      if (vnames[,i]=qname) then;do; 

        qerr=0;qmatch=1;q=dat[,i]; 

        if (center = 1) then;do; 

          qmean=q[+,]/n;meanvec=j(n,1,qmean);q=q-

meanvec;centvar=centvar||qname; 

        end; 

        nvarch[1,i]=1;nmods=nmods+1;qmean=q[+,]/n;tmp=q-(cons*qmean); 

        qsd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

        qdich=1; 

        do jj=1 to n; 

          if ((q[jj,1] ^= max(q)) & (q[jj,1] ^= min(q))) then;do;qdich=0;goto 

leave5; 

          end; 

        end; 

        leave5: 

        if (qdich = 0) then;do; 

          matq=(qmean-qsd)//qmean//(qmean+qsd);quantc[1,4]=1; 

    if ((&qmodval=999) & (quantile = 0)) then;do; 

      if (matq[1,1] < min(q)) 

then;do;matq[1,1]=min(q);minprobe=1;end; 

      if (matq[3,1] > max(q)) 

then;do;matq[3,1]=max(q);maxprobe=1;end; 

    end; 

          if (quantile = 1) then;do; 

            quantd[1,4]=1;quantc[1,4]=0;tmp=q;tmp[rank(tmp)]=q; 

            

matq=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

          end; 

        end; 

        if (qdich=1) then;do;matq=min(q)//max(q); 

        end; 

        if (&qmodval ^= 999) 

then;do;matq=&qmodval;quantd[1,4]=0;quantc[1,4]=0; 

        end; 

        modmatv[1,4]=nrow(matq); 

        modmat[(1:nrow(matq)),4]=matq; 

        modvnm[1,4]=qname; 

        modmatp[1,4]=1; 

      end; 

    end; 

    if (vnames[,i]=clname) then;do; 

      cld=dat[,i];cvname=vnames[,i];nvarch[1,i]=1;clsmtch=1; 

    end; 

    do j = 1 to ncol(mnames); 
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      if (vnames[,i]=mnames[1,j]) then;do; 

        mmatch=mmatch+1;m[,j]=dat[,i]; 

        if ((center=1) & (nvarch[1,i]=0) & (mlist > 0)) then;do; 

          tmp=m[,j]; 

          meanvec=j(n,1,(tmp[+,]/n));m[,j]=m[,j]-meanvec;mmmm=m[,j]; 

          centvar=centvar||mnames[1,j]; 

        end; 

        nvarch[1,i]=1; 

        dichm=1; 

        do jj=1 to n; 

          if ((m[jj,j] ^= max(m[,j])) & (m[jj,j] ^= min(m[,j]))) 

then;do;dichm=0;goto leave6; 

          end; 

        end; 

        leave6: 

  if ((dichm=1) & (olsdichm =1)) 

then;do;note[notes,1]=18;notes=notes+1;end; 

        if ((dichm=1) & (model > 3) & (mcheck = 0) & (olsdichm=0)) 

then;do;errs=errs+1;runerrs[errs,1]=1;mcheck=1; 

        end; 

        if ((model <=3) & (ncol(mnames) = 1)) then;do; 

          tmp=m[,j]; 

          nmods=nmods+1;mmean=tmp[+,]/n;tmp=m[,j]-(cons*mmean); 

          msd=sqrt((1/(n-1))*(t(tmp)*tmp)); 

          mdich=1; 

          do jj=1 to n; 

            if ((m[jj,j] ^= max(m[,j])) & (m[jj,j] ^= min(m[,j]))) 

then;do;mdich=0;goto leave7; 

            end; 

          end; 

          leave7: 

          if (model = 1) 

then;do;jndich=mdich;jnmin=min(m[,j]);jnmax=max(m[,j]); 

          end; 

          if (mdich=0) then;do; 

            matm=(mmean-msd)//mmean//(mmean+msd);quantc[1,5]=1; 

   if ((&mmodval=999) & (quantile=0)) then;do; 

     if (matm[1,1] < min(m[,j])) 

then;do;matm[1,1]=min(m[,j]);minprobe=1;end; 

        if (matm[3,1] > max(m[,j])) 

then;do;matm[3,1]=max(m[,j]);maxprobe=1;end; 

   end; 

            if (quantile = 1) then;do; 

              quantd[1,5]=1;quantc[1,5]=0;tmp=m[,j];tmp[rank(tmp)]=m[,j]; 

              

matm=tmp[floor(n*0.10),1]//tmp[floor(n*0.25),1]//tmp[floor(n*0.5),1]//tmp[flo

or(n*0.75),1]//tmp[floor(n*0.9),1]; 

            end; 

          end; 

          if (mdich = 1) then;do;matm=min(m)//max(m); 

          end; 

          if (&mmodval ^= 999) then;do; 

            matm=&mmodval;quantd[1,5]=0;quantc[1,5]=0; 

          end; 

          modmatv[1,5]=nrow(matm); 

          modmat[(1:nrow(matm)),5]=matm; 

          modvnm[1,5]=mnames[1,j]; 

          modmatp[1,5]=1; 

        end; 

      end; 

    end; 

  end;  

  if (minprobe=1)then;do;note[notes,1]=14;notes=notes+1;end; 
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  if (maxprobe=1)then;do;note[notes,1]=15;notes=notes+1;end; 

  if ((clname ^= "XXX") & (clsmtch = 0)) 

then;do;errs=errs+1;runerrs[errs,1]=23; 

  end; 

  if (clname ^= "XXX") then;do; 

    if ((clname=zname) | (clname=vname) | (clname=wname) | (clname=xname) | 

(clname=yname) | (clname=qname)) then;do; 

      errs=errs+1;runerrs[errs,1]=24; 

    end; 

  end; 

  if ((wlist=1) & (werr=0) & (wmatch=0)) 

then;do;werr=3;errs=errs+1;runerrs[errs,1]=4; 

  end; 

  if ((zlist=1) & (zerr=0) & (zmatch=0)) 

then;do;zerr=3;errs=errs+1;runerrs[errs,1]=5; 

  end; 

  if ((qlist=1) & (qerr=0) & (qmatch=0)) 

then;do;qerr=3;errs=errs+1;runerrs[errs,1]=6; 

  end; 

  if ((vlist=1) & (verr=0) & (vmatch=0)) 

then;do;verr=3;errs=errs+1;runerrs[errs,1]=7; 

  end; 

  if (yerr = 1) then;do;errs=errs+1;runerrs[errs,1]=16; 

  end; 

  if (xerr = 1) then;do;errs=errs+1;runerrs[errs,1]=32; 

  end; 

  if ((model=6) & (nmeds < 2)) then;do;errs=errs+1;runerrs[errs,1]=18; 

  end; 

  if (mmatch < ncol(mnames)) then;do;errs=errs+1;runerrs[errs,1]=25; 

  end; 

end;  

 

 

 

if (clname ^= "XXX") then;do; 

  cld=design(cld);cluster=ncol(cld);cld=cld[,2:ncol(cld)];clsdmy=ncol(cld); 

  if (clsdmy > 19) then;do;errs=errs+1;runerrs[err,1]=26; 

  end; 

end; 

dichy=1; 

do jj=1 to n; 

  if ((y[jj,1] ^= max(y)) & (y[jj,1] ^= min(y))) then;do;dichy=0;goto leave8; 

  end; 

  leave8: 

end; 

if ((dichy=1) & (olsdichy = 1)) then;do;note[notes,1]=18;notes=notes+1;end; 

if (dichy = 1) then;do;jncrit=xp2*xp2; 

  if (ws=1) then;do;critterr=1;errs=errs+1;runerrs[errs,1]=28;end; 

end; 

ncovs = ncol(dat)-nvarch[,+]; 

if ((effsize=1) & (covmy ^= 0) & (ncovs > 0) & (model > 3) & (model < 7)) 

then;do; 

  note[notes,1]=22;notes=notes+1;effsize=0; 

end; 

if (ws=1 & ncovs < nmeds) 

then;do;critterr=1;errs=errs+1;runerrs[errs,1]=29;end; 

if (ws=1 & ncovs > nmeds) 

then;do;critterr=1;errs=errs+1;runerrs[errs,1]=30;end; 

if (errs = 0) then;do;  *[cccc]; 

  tmp1=quantd[,+];tmp2=quantc[,+];   

  if (tmp1 > 0) then;do;note[notes,1]=4;notes=notes+1; 

  end; 

  if (tmp2 > 0) then;do;note[notes,1]=5;notes=notes+1; 
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  end; 

  if (ncovs > 0) then;do; 

    c=j(n,ncovs,0);cnames={"x"};j=1; 

    do i = 1 to ncol(vnames); 

      if (nvarch[1,i]=0) then;do; 

        c[,j]=dat[,i];nvarch[1,i]=1;j=j+1;cnames=cnames||vnames[,i]; 

      end; 

    end; 

    cnames=cnames[1,2:ncol(cnames)]; 

    if (ws=1) then;do; 

    covmean=c[+,]/n; 

    do i = 1 to ncovs; 

      meanvec=j(n,1,covmean[1,i]); 

   c[,i]=c[,i]-meanvec; 

    end; 

    centvar=centvar||cnames; 

       x=c[,1:ncovs]; 

    if (ncovs=nmeds) then;do;ncovs=0;end; 

 end; 

  end; 

  names=yname||xname||mnames||wname||zname||vname||qname; 

  if (ncovs > 0) then;do; 

    names=names||cnames; 

  end; 

  if ((dichy=1) & (effsize=1)) then;do; 

    note[notes,1]=2;notes=notes+1; 

  end; 

  if ((model > 3) & (model < 6)) then;do; 

    indeff=j(nmeds,1,0);indboot=j((boot+1),nmeds,999); 

 if (mc > 0) then;do;indboot=j((mc+1),nmeds,999);end; 

    if ((effsize=1) & (dichy=0)) then;do; 

      rmeff=j((boot+1),(nmeds+1),999); 

      abpseff=j((boot+1),(nmeds+1),999); 

      abcseff=j((boot+1),(nmeds+1),999); 

      pmeff=j((boot+1),(nmeds+1),999); 

      r245=j((boot+1),1,999); 

      kappa2=j((boot+1),1,999); 

    end; 

  end; 

  if ((model = 6) & (effsize=1) & (dichy=0)) then;do; 

    rmeff=j((boot+1),ncol(indboot),999); 

    abpseff=j((boot+1),ncol(indboot),999); 

    abcseff=j((boot+1),ncol(indboot),999); 

    pmeff=j((boot+1),ncol(indboot),999); 

  end; 

  if (nmods > 0) then;do; 

    tmp=1; 

    do i = 1 to 5; 

      if (modmatp[1,i]=1) then;do; 

        

modmat[,tmp]=modmat[,i];modvnm[1,tmp]=modvnm[1,i];modmatv[1,tmp]=modmatv[1,i]

; 

        tmp=tmp+1; 

      end; 

    end; 

    

modmat=modmat[,(1:nmods)];modvnm=modvnm[,(1:nmods)];modmatv=modmatv[,(1:nmods

)]; 

    do i = 1 to (ncol(modmatv)-1); 

      tmp=1; 

      do j = (i+1) to ncol(modmatv); 

        tmp=tmp*modmatv[1,j]; 

      end; 
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      modprod[1,i]=tmp; 

    end; 

    modvals=j((modmatv[1,1]*modprod[1,1]),nmods,0); 

    do i = 1 to nmods; 

      strt=1;fnsh=0; 

      do while (fnsh < nrow(modvals)); 

        do j = 1 to modmatv[1,i]; 

          tmp=j(modprod[1,i],1,modmat[j,i]); 

          fnsh=fnsh+nrow(tmp); 

          modvals[(strt:fnsh),i]=tmp; 

          strt=fnsh+1; 

        end; 

      end; 

    end; 

    if (model = 74) then;do;modvals=matx;modvnm=xname; 

    end; 

    vmat=j(8,nrow(modvals),0); 

    vmat[1,1:nrow(modvals)]=j(1,nrow(modvals),1); 

    vmat[5,1:nrow(modvals)]=j(1,nrow(modvals),1); 

 indeff=j(nrow(modvals),1,0); 

    if (model ^= 5) then;do; 

      indboot=j(((boot+1)*nmeds),nrow(modvals),-99999999); 

      indbootp=j((boot+1),nmeds,-99999999); 

    end; 

  end; 

  if (nmods > 0) then;do; 

    do i = 1 to ncol(modvals); 

      if (modvnm[1,i]=wname) then;do;wcol=i; 

      end; 

      if (modvnm[1,i]=zname) then;do;zcol=i; 

      end; 

      if (modvnm[1,i]=vname) then;do;vcol=i; 

      end; 

      if (modvnm[1,i]=qname) then;do;qcol=i; 

      end; 

    end; 

  end; 

  if (dichy=1) then;do; 

    omx=max(y);omn=min(y);y=(y=omx);rcd=omn||0;rcd1=omx||1;rcd=rcd//rcd1; 

  end; 

  data=cons||y||m||x; 

  datamed=data;datayed=data; 

  datanm={"CONSTANT"}//yname//t(mnames)//xname; 

  datanmm={"CONSTANT"}//yname//t(mnames)//xname; 

  datanmy={"CONSTANT"}//yname//t(mnames)//xname; 

  yintkey={" "}||{" "}||{" "}||{" "}||{" "}||{" "}; 

  if ((model < 4) & (errs = 0)) then;do; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||mnames||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datayed=datayed||(x#m); 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

    do i = 1 to nrow(modvals); 

      vmat[1,i]=1; 

      vmat[2,i]=modvals[i,1]; 

    end; 

  end; 

  if ((model = 2) | (model = 3)) then;do; 

    int1=x#w; 

    datayed=datayed||w||int1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//wname//yintemp[1,intcnt]; 
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    intcnt=intcnt+1; 

    do i = 1 to nrow(modvals); 

      vmat[2,i]=modvals[i,2]; 

      vmat[3,i]=modvals[i,1]; 

      vmat[4,i]=modvals[i,1]#modvals[i,2]; 

    end; 

  end; 

  if (model = 3) then;do; 

    yintkeyt=yintemp[1,intcnt]||mnames||{"  X"}||wname||{"  "}||{"   

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

    int1=w#m;int2=x#w#m; 

    datayed=datayed||int1||int2; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||mnames||{"  

X"}||wname;yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

  end; 

  if ((model = 4) | (model = 5)) then;do; 

    vmat=j(8,1,1); 

  end; 

  yintkey2=yintkey; 

  if (wm = 1) then;do; 

    int1=x#w; 

    datamed=datamed||w||int1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmm=datanmm//wname//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

    do i = 1 to nrow(modvals); 

      vmat[2,i]=modvals[i,wcol]; 

    end; 

    if (zm = 1) then;do; 

      int1=x#z; 

      datamed=datamed||z||int1; 

      yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

      datanmm=datanmm//zname//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      do i = 1 to nrow(modvals); 

        vmat[3,i]=modvals[i,zcol]; 

      end; 

    end; 

    if (wzm = 1) then;do; 

      yintkeyt=yintemp[1,intcnt]||wname||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

      datanmm=datanmm//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{"  

X"}||zname;yintkey=yintkey//yintkeyt; 

      datanmm=datanmm//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      int1=w#z; 

      int2=x#w#z; 

      datamed=datamed||int1||int2; 

      do i = 1 to nrow(modvals); 

        vmat[4,i]=(modvals[i,wcol])#(modvals[i,zcol]); 

      end; 

    end; 

  end; 

  mdatcol=ncol(datamed); 

  mintkey=yintkey; 
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  yintkey={" "}||{" "}||{" "}||{" "}||{" "}||{" "}; 

  medints=intcnt-1; 

  if ((vy=1) | (xmy=1)) then;do; 

    mp=1; 

    do i = 1 to nrow(modvals); 

      vmat[6,i]=modvals[i,1]; 

    end; 

    if (vy=1) then;do; 

      datayed=datayed||v; 

      datanmy=datanmy//vname; 

      mmods=1; 

      do i = 1 to nrow(modvals); 

        vmat[6,i]=modvals[i,vcol]; 

      end; 

      if (qy=1) then;do; 

        mp=2;datayed=datayed||q; 

        datanmy=datanmy//qname; 

        mmods=2; 

        do i = 1 to nrow(modvals); 

          vmat[7,i]=modvals[i,qcol]; 

        end; 

      end; 

      if (vqy=1) then;do; 

        mp=3;datayed=datayed||(v#q); 

        mmodls=3; 

        do i = 1 to nrow(modvals); 

          vmat[8,i]=modvals[i,vcol]#modvals[i,qcol]; 

        end; 

      end; 

    end; 

    mints=j(n,(nmeds*mp),0); 

    do i = 0 to (nmeds-1); 

      if ((i = 0) & (vqy=1)) then;do; 

        yintkeyt=yintemp[1,intcnt]||vname||{"  X"}||qname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

      if (vy=1) then;do; 

        mints[,((i*mp)+1)]=m[,(i+1)]#v; 

        yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||vname||{" 

"}||{" "};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

      if (xmy=1) then;do; 

        mints[,((i*mp)+1)]=m[,(i+1)]#x; 

        yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||xname||{" 

"}||{" "};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

      if (qy=1) then;do; 

        mints[,((i*mp)+2)]=m[,(i+1)]#q; 

        yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||qname||{" 

"}||{" "};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

        if (vqy=1) then;do; 

          mints[,((i*mp)+3)]=m[,(i+1)]#v#q; 

          yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||vname||{"  

X"}||qname;yintkey=yintkey//yintkeyt; 

          datanmy=datanmy//yintemp[1,intcnt]; 
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          intcnt=intcnt+1; 

        end; 

      end; 

    end; 

    datayed=datayed||mints; 

  end; 

  mp=1; 

  if (wvmy=1) then;do; 

    mp=2; 

    do i = 1 to nrow(modvals); 

      vmat[8,i]=modvals[i,wcol]#modvals[i,vcol]; 

    end; 

  end; 

  mints2=j(n,(nmeds*mp),0); 

  if (wmy=1) then;do; 

    do i = 1 to nrow(modvals); 

      vmat[7,i]=modvals[i,wcol]; 

    end; 

    if ((wy=0) & (model > 3)) then;do; 

      datayed=datayed||w; 

      datanmy=datanmy//wname; 

    end; 

    do i = 0 to (nmeds-1); 

      if ((i = 0) & (wvmy = 1)) then;do; 

        datayed=datayed||(w#v); 

        yintkeyt=yintemp[1,intcnt]||wname||{"  X"}||vname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

      mints2[,((i*mp)+1)]=m[,(i+1)]#w; 

      yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||wname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

      datanmy=datanmy//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      if (wvmy=1) then;do; 

        mints2[,((i*mp)+2)]=m[,(i+1)]#w#v; 

        yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||wname||{"  

X"}||vname;yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

    end; 

    datayed=datayed||mints2; 

  end; 

  mp=1; 

  if (zmy=1) then;do; 

    do i = 1 to nrow(modvals); 

      vmat[6,i]=modvals[i,zcol]; 

    end; 

    if (wzmy=1) then;do; 

      mp=2; 

      do i = 1 to nrow(modvals); 

        vmat[8,i]=modvals[i,zcol]#modvals[i,wcol]; 

      end; 

    end; 

  end; 

  if (zmy=1) then;do; 

    mints3=j(n,(nmeds*mp),0); 

    if (zy=0) then;do; 

      datayed=datayed||z; 

      datanmy=datanmy//zname; 

    end; 
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    do i = 0 to (nmeds-1); 

      if ((i=0) & (wzmy = 1) & (wzy=0)) then;do; 

        datayed=datayed||(w#z); 

        yintkeyt=yintemp[1,intcnt]||wname||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

      mints3[,((i*mp)+1)]=m[,(i+1)]#z; 

      yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

      datanmy=datanmy//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      if (wzmy = 1) then;do; 

        mints3[,((i*mp)+2)]=m[,(i+1)]#w#z; 

        yintkeyt=yintemp[1,intcnt]||mnames[1,(i+1)]||{"  X"}||wname||{"  

X"}||zname;yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

    end; 

    datayed=datayed||mints3; 

  end; 

  decoc=1; 

  modmat=j(5,5,999);modmatv=j(1,5,1);modmatp=j(1,5,0);modprod=modmatv; 

  if ((wy = 1) & (model > 3)) then;do; 

    datayed=datayed||w||x#w; 

    decoc=decoc+1; 

    deco[decoc,1]=ncol(datayed)-1; 

    modmatv[1,1]=nrow(matw); 

    modmat[(1:nrow(matw)),1]=matw; 

    modvnm2[1,1]=wname; 

    modmatp[1,1]=1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//wname//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

  end; 

  if (zy = 1) then;do; 

    datayed=datayed||z||x#z; 

    decoc=decoc+1; 

    deco[decoc,1]=ncol(datayed)-1; 

    modmatv[1,2]=nrow(matz); 

    modmat[(1:nrow(matz)),2]=matz; 

    modvnm2[1,2]=zname; 

    modmatp[1,2]=1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//zname//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

  end; 

  if (wzy = 1) then;do; 

    datayed=datayed||w#z||x#w#z; 

    decoc=decoc+1; 

    deco[decoc,1]=ncol(datayed)-1; 

    yintkeyt=yintemp[1,intcnt]||wname||{"  X"}||zname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{"  

X"}||zname;yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 
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  end; 

  if (vxy = 1) then;do; 

    datayed=datayed||x#v; 

    decoc=decoc+1; 

    deco[decoc,1]=ncol(datayed)-1; 

    modmatv[1,3]=nrow(matv); 

    modmat[(1:nrow(matv)),3]=matv; 

    modvnm2[1,3]=vname; 

    modmatp[1,3]=1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||vname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

    if (qxy = 1) then;do; 

      datayed=datayed||x#q; 

      decoc=decoc+1; 

      deco[decoc,1]=ncol(datayed)-1; 

      modmatv[1,4]=nrow(matq); 

      modmat[(1:nrow(matq)),4]=matq; 

      modvnm2[1,4]=qname; 

      modmatp[1,4]=1; 

      yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||qname||{" "}||{" 

"};yintkey=yintkey//yintkeyt; 

      datanmy=datanmy//yintemp[1,intcnt]; 

      intcnt=intcnt+1; 

      if (vqxy = 1) then;do; 

        datayed=datayed||x#v#q; 

        decoc=decoc+1; 

        deco[decoc,1]=ncol(datayed)-1; 

        yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||vname||{"  

X"}||qname;yintkey=yintkey//yintkeyt; 

        datanmy=datanmy//yintemp[1,intcnt]; 

        intcnt=intcnt+1; 

      end; 

    end; 

  end; 

  if (wvxy = 1) then;do; 

    datayed=datayed||x#w#v; 

    decoc=decoc+1; 

    deco[decoc,1]=ncol(datayed)-1; 

    yintkeyt=yintemp[1,intcnt]||xname||{"  X"}||wname||{"  

X"}||vname;yintkey=yintkey//yintkeyt; 

    datanmy=datanmy//yintemp[1,intcnt]; 

    intcnt=intcnt+1; 

  end; 

  modvalsd=0;ttt=modmatp[,+];ssss=modmatp[,+]; 

  if (ssss > 0) then;do; 

    tmp=1; 

    do i = 1 to 5; 

      if (modmatp[1,i]=1) then;do; 

        modmat[,tmp]=modmat[,i]; 

        modvnm2[1,tmp]=modvnm2[1,i]; 

        modmatv[1,tmp]=modmatv[1,i]; 

        tmp=tmp+1; 

      end; 

    end; 

    modmat=modmat[,(1:ttt)]; 

    modvnm2=modvnm2[,(1:ttt)]; 

    modmatv=modmatv[,(1:ttt)]; 

    do i = 1 to (ncol(modmatv)-1); 

      tmp=1; 

      do j = (i+1) to ncol(modmatv); 

        tmp=tmp*modmatv[1,j]; 
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      end; 

      modprod[1,i]=tmp; 

    end; 

    modvalsd=j((modmatv[1,1]*modprod[1,1]),ttt,0); 

    do i = 1 to ttt; 

      strt=1;fnsh=0; 

      do while (fnsh < nrow(modvalsd)); 

        do j = 1 to modmatv[1,i]; 

          tmp=j(modprod[1,i],1,modmat[j,i]); 

          fnsh=fnsh+nrow(tmp); 

          modvalsd[(strt:fnsh),i]=tmp; 

          strt=fnsh+1; 

        end; 

      end; 

    end; 

  end; 

  if (ttt > 0) then;do; 

    do i = 1 to ncol(modvalsd); 

      if (modvnm2[1,i] = wname) then;do;wcol=i; 

      end; 

      if (modvnm2[1,i] = zname) then;do;zcol=i; 

      end; 

      if (modvnm2[1,i] = vname) then;do;vcol=i; 

      end; 

      if (modvnm2[1,i] = qname) then;do;qcol=i; 

      end; 

    end; 

    directv=j(nrow(modvalsd),1,1); 

    if (wy=1) then;do;directv=directv||modvalsd[,wcol]; 

    end; 

    if (zy=1) then;do;directv=directv||modvalsd[,zcol]; 

    end; 

    if (wzy=1) then;do;directv=directv||(modvalsd[,wcol])#(modvalsd[,zcol]); 

    end; 

    if (vxy=1) then;do;directv=directv||modvalsd[,vcol]; 

    end; 

    if (qxy=1) then;do;directv=directv||modvalsd[,qcol]; 

    end; 

    if (vqxy=1) then;do;directv=directv||(modvalsd[,vcol])#(modvalsd[,qcol]); 

    end; 

    if (wvxy=1) then;do;directv=directv||(modvalsd[,vcol])#(modvalsd[,wcol]); 

    end; 

  end; 

  ydatacol=ncol(datayed); 

  if (ncovs > 0) then;do; 

    if (covmy ^= 2) then;do; 

      datamed=datamed||c; 

    end; 

    if (covmy ^= 1) then;do; 

      datayed=datayed||c; 

    end; 

    covmeans=c[+,]/n; 

  end; 

  if (cluster > 0) then;do; 

    datamed=datamed||cld; 

    datayed=datayed||cld; 

    cldmeans=cld[+,]/n; 

  end; 

  mst=3; 

  mnd=mst+nmeds-1; 

  ydatacol=ncol(datayed); 

  mdatacol=ncol(datamed); 

  if (ncovs > 0) then;do; 
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    datanmy=datanmy//(cnames`); 

    if (model > 3) then;do; 

      datanmm=datanmm//(cnames`); 

    end; 

  end; 

  datanmy={"constant"}//datanmy[3:nrow(datanmy),1]; 

  if (model > 3) then;do; 

    datanmm={"constant"}//datanmm[3:nrow(datanmm),1]; 

  end; 

  amm=j(2,1,0);abmm=j(2,1,0);mnv=datayed[,2]/n;mnv=mnv[+,];mnv=j(n,1,mnv); 

  ssty=(datayed[,2]-mnv)##2;ssty=ssty[+,]; 

  sigma=(n*t(datayed)*datayed)-(t(datayed[+,])*datayed[+,]); 

  sigma=sigma/(n*(n-1)); 

  if (ws=1) then;do; 

    stddevm=vecdiag(sigma);stddevm=sqrt(stddevm[3:(nmeds+2),1]); 

  end; 

  stddevy=sqrt(sigma[2,2]); 

  stddevx=sqrt(sigma[(3+nmeds),(3+nmeds)]); 

  r2xy=(sigma[2,(3+nmeds)]/(stddevy*stddevx))##2; 

  r2my=(sigma[2,3]/(stddevy*sqrt(sigma[3,3])))##2; 

  ctot=sigma[2,(3+nmeds)]/sigma[(3+nmeds),(3+nmeds)]; 

  if ((model = 4) & (nmeds = 1) & (cluster = 0) & (ncovs = 0)) then;do; 

    kappaa=sigma[2,3]*sigma[2,4]; 

    kappab=sqrt((sigma[3,3]*sigma[2,2])-(sigma[2,3]*sigma[2,3])); 

    kappac=sqrt((sigma[4,4]*sigma[2,2])-(sigma[2,4]*sigma[2,4])); 

    kappad=sigma[4,4]*sigma[2,2]; 

    kappae=sqrt((sigma[4,4]*sigma[3,3])-(sigma[3,4]*sigma[3,4])); 

    amm[1,1]=(kappaa+(kappab*kappac))/kappad; 

    amm[2,1]=(kappaa-(kappab*kappac))/kappad; 

    if (sigma[3,4] < 0) then;do; 

      amma=min(amm); 

    end; 

    if (sigma[3,4] > 0) then;do; 

      amma=max(amm); 

    end; 

    abmm[1,1]=-amma*(kappac/kappae); 

    abmm[2,1]=amma*(kappac/kappae); 

  end; 

  datatm=datamed; 

  dataty=datayed; 

  mdlnms2=compress(char(model))//yname//xname; 

  mdlnms={"Model ="}//{"Y     = "}//{"X     = "}; 

  if (ws=1) then;do; 

    mdlnms2=compress(char(model))//yname; 

    mdlnms={"Model ="}//{"Y     = "}; 

  end; 

  do i = 1 to ncol(mnames); 

    mdlnms2=mdlnms2//mnames[1,i]; 

    if ((i=1) & (ncol(mnames)=1)) then; 

      mdlnms=mdlnms//{"M     = "}; 

      else mdlnms=mdlnms//mlab[i,1]; 

  end; 

  if (wname ^= "XXX") then;do; 

    mdlnms2=mdlnms2//wname; 

    mdlnms=mdlnms//{"W     = "}; 

  end; 

  if (zname ^= "XXX") then;do; 

    mdlnms2=mdlnms2//zname; 

    mdlnms=mdlnms//{"Z     = "}; 

  end; 

  if (vname ^= "XXX") then;do; 

    mdlnms2=mdlnms2//vname; 

    mdlnms=mdlnms//{"V     = "}; 
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  end; 

  if (qname ^= "XXX") then;do; 

    mdlnms2=mdlnms2//qname; 

    mdlnms=mdlnms//{"Q     = "}; 

  end; 

  if ((jn = 1) & (model = 1) & (jndich = 1)) then;do; 

    note[notes,1]=8; 

    notes=notes+1; 

  end; 

  if ((jn = 1) & (model = 3) & (jndich = 1)) then;do; 

    note[notes,1]=8; 

    notes=notes+1; 

  end; 

  yes=((nrow(modvals)=1) & (contrast=1) & (model = 3 | model = 2)); 

  yes2=((nrow(modvals)=1) & (contrast=1) & (model = 2)); 

 

  print "************************* PROCESS Procedure for SAS Release 2.13 

*************************"; 

  print "Written by Andrew F. Hayes, Ph.D.  http://www.afhayes.com"; 

  print "Documentation available in Hayes (2013).  

www.guilford.com/p/hayes3"; 

  print 

"****************************************************************************

**************"; 

  print mdlnms2 [rowname = mdlnms label = "Model and Variables"]; 

  if (ncovs > 0) then;do; 

    print cnames [label = "Statistical controls:"]; 

  end; 

  print n [label = "Sample size:" format = 7.0]; 

  if (cluster > 0) then;do; 

    print cluster [label = "Clustering variable and number of clusters:" 

rowname = cvname]; 

  end; 

  if ((model > 3) & (&seed ^= 0)) then;do; 

    seedt=&seed; 

 print seedt [label = "Custom seed:"]; 

  end; 

  do bt = 1 to (boot+1); *[b]; 

    if ((bt = 2) & (savboot = 1)) then;do; 

    bootstrp=j(boot,ncol(bootcoef),-999); 

 end; 

 bootcoef=0; 

    if (bt > 1) then;do; 

      rk=1; 

      do while (rk = 1);  

        v=floor((ranuni(j(n,1,&seed)))*n)+1; 

        datayed=dataty[v,]; 

        detcheck=det(t(datayed)*datayed); 

  rk=(detcheck=0); 

        if (model > 3) then;do; 

    datamed=datatm[v,]; 

    detcheck=det(t(datamed)*datamed); 

    if (rk=1) then;do;rk=(detcheck=0);end; 

        end; 

  sigma=(n*t(datayed)*datayed)-(t(datayed[+,])*datayed[+,]); 

        sigma=sigma/(n*(n-1)); 

        temp=vecdiag(sigma); 

        * rk=temp[2:nrow(temp),1];*rk=(rk = 0);*rk=rk[+,]; 

  bad=bad+rk; 

  false=1; 

      end; 

      stddevy=sqrt(sigma[2,2]); 

   stddevx=sqrt(sigma[(3+nmeds),(3+nmeds)]); 
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   ctot=sigma[2,(3+nmeds)]/sigma[(3+nmeds),(3+nmeds)]; 

      if ((model = 4) & (nmeds = 1) & (cluster = 0) & (ncovs = 0)) then;do; 

     r2xy=(sigma[2,4]/(stddevy*stddevx))##2; 

        r2my=(sigma[2,3]/(stddevy*sqrt(sigma[3,3])))##2; 

        sstot=sigma[2,2]*(n-1); 

        kappaa=sigma[2,3]*sigma[2,4]; 

        kappab=sqrt((sigma[3,3]*sigma[2,2])-(sigma[2,3]*sigma[2,3])); 

        kappac=sqrt((sigma[4,4]*sigma[2,2])-(sigma[2,4]*sigma[2,4])); 

        kappad=sigma[4,4]*sigma[2,2]; 

        kappae=sqrt((sigma[4,4]*sigma[3,3])-(sigma[3,4]*sigma[3,4])); 

        amm[1,1]=(kappaa+(kappab*kappac))/kappad; 

        amm[2,1]=(kappaa-(kappab*kappac))/kappad; 

        if (sigma[3,4] < 0) then;do; 

          amma=min(amm); 

        end; 

        if (sigma[3,4] > 0) then;do; 

          amma=max(amm); 

        end; 

        abmm[1,1]=-amma*(kappac/kappae); 

        abmm[2,1]=amma*(kappac/kappae); 

      end; 

 end; 

 * mediator model; 

    if (model > 3) then;do;  

      do im = 1 to nmeds; 

     xm=cons||datamed[,((mnd+1):mdatacol)]; 

  xmnm={"Constant"}//datanmm[((2+nmeds):nrow(datanmm)),1]; 

  invxtx=inv(xm`*xm); 

  coeff=invxtx*xm`*datamed[,(2+im)]; 

        if (model = 6) then;do; 

    if (im = 1) then;do; 

      xm=cons||datamed[,((mnd+1):mdatacol)]; 

            invxtx=inv(xm`*xm); 

   coeff=invxtx*xm`*datamed[,(2+im)]; 

    end; 

    if (im > 1) then;do; 

      xm=cons||datamed[,(3:(im+1))]||datamed[,((mnd+1):mdatacol)]; 

  

 xmnm={"Constant"}//datanmm[(2:im),1]//datanmm[(mnd:nrow(datanmm)),1]; 

   invxtx=inv(xm`*xm); 

   coeff=invxtx*xm`*datamed[,(2+im)]; 

   mmpaths[(im+1),(2:im)]=(coeff[(2:im),1])`; 

    end; 

  end; 

  if (ws=1) then;do; 

    coeff[1,1]=datamed[+,(2+im)]/n; 

  end; 

  bootcoef=bootcoef||(coeff[1:(nrow(coeff)-clsdmy),1])`; 

        if (bt = 1) then;do; 

    resid=datamed[,(2+im)]-xm*coeff; 

    sse=ssq(resid); 

          mse=sse/(n-ncol(xm)); 

    mnv=data[,(2+im)];mnv=mnv[+,]/n;mnv=j(n,1,mnv); 

          sstm=(data[,(2+im)]-mnv)##2;sstm=sstm[+,]; 

    k3=nrow(coeff); 

    if (hc3 = 1) then;do; 

      h=xm[,1]; 

   do i3 = 1 to n; 

     h[i3,1]=xm[i3,]*invxtx*(xm[i3,])`; 

   end; 

   do i3 = 1 to k3; 

     xm[,i3]=(resid[,ncol(resid)]/(1-h))#(xm[,i3]); 

   end; 
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    end; 

    if (hc3 ^= 1) then;do; 

      do i3 = 1 to k3; 

     xm[,i3]=sqrt(mse)#xm[,i3]; 

   end; 

    end; 

    lmat=I(nrow(coeff)); 

    lmat=lmat[,2:ncol(lmat)]; 

    hccov=invxtx*xm`*xm*invxtx; 

    mcmats[im,im]=hccov[2,2]; 

          dfnum=nrow(coeff)-1; 

    dfden=n-dfnum-1; 

          

fratio=(((lmat`)*coeff)`*inv(lmat`*hccov*lmat)*(lmat`*coeff))/dfnum; 

          coeff=coeff[1:(nrow(coeff)-clsdmy),1]; 

    mccoeff[im,1]=coeff[2,1]; 

    standerr=sqrt(vecdiag(invxtx*xm`*xm*invxtx)); 

    standerr=standerr[1:(nrow(standerr)-clsdmy),1]; 

    if (ws=1) then;do; 

      standerr[1,1]=stddevm[im,1]/sqrt(n); 

    end; 

          tratio=coeff/standerr; 

    p=2*(1-probt(abs(tratio),(n-ncol(xm)))); 

    temp=(n-ncol(xm)); 

    if (ws=1) then;do; 

      p=2*(1-probt(abs(tratio),(n-1))); 

   temp=n-1; 

          end; 

    xd=abs(xp2); 

    temp=(temp*(exp((temp-(5/6))*((xd/(temp-

(2/3)+(.11/temp)))*(xd/(temp-(2/3)+(.11/temp)))))-1)); 

          temp1=coeff-sqrt(abs(temp))*standerr; 

    temp2=coeff+sqrt(abs(temp))*standerr; 

    op=coeff||standerr||tratio||p||temp1||temp2; 

    if (ws=1) then;do; 

      op=op[1,]; 

   xmnm=apathnam[((nmeds>1)+1+(im-1)),1]; 

    end; 

    sobel[im,1]=coeff[2,1]; 

    sobel[im,2]=standerr[2,1]; 

          temp=mnames[1,im]; 

    r2full=1-(sse/sstm); 

    pfr=1-probf(fratio,dfnum,dfden); 

    summ=sqrt(r2full)||r2full||mse||fratio||dfnum||dfden||pfr; 

          if (detail = 1) then;do; 

      print 

"****************************************************************************

*************"; 

      print temp [rowname = "Outcome:" label = " "]; 

   clnm = {"R" "R-sq" "MSE" "F" "df1" "df2" "p"}; 

            if (ws ^= 1) then;do; 

              print summ [label = "Model Summary" colname = clnm 

format=&decimals]; 

   end; 

   if (coeffci=0) then;do; 

     op=op[,1:(ncol(op)-2)]; 

            end; 

   clnm = {"coeff" "se" "t" "p" "LLCI" "ULCI"}; 

   print op [label = "Model" colname = clnm rowname = xmnm 

format=&decimals]; 

   if (covcoeff=1) then;do; 

              hccovtmp=hccov[1:nrow(op),1:nrow(op)]; 

     cnamestp=xmnm`; 



 

184 

 

     print hccovtmp [label = "Covariance matrix of regression 

parameter estimates" rowname=xmnm colname=cnamestp format=&decimals]; 

   end; 

   if ((nmods > 0) & (nrow(mintkey) > 1)) then;do; 

     print mintkey [label = "Interactions:"]; 

   end; 

   if (ws = 1) then;do; 

     wsdf=n-1; 

     tmpnamb={"df = "}; 

     print wsdf [label = " " rowname=tmpnamb]; 

   end; 

    end; 

     end; 

        ymat[1,im]=coeff[2,1]; 

  if (ws=1) then;do; 

    ymat[1,im]=coeff[1,1]; 

  end; 

  if (wm = 1) then;do; 

    ymat[2,im]=coeff[4,1]; 

    if (zm = 1) then;do; 

      ymat[3,im]=coeff[6,1]; 

   if (wzm = 1) then;do; 

     ymat[4,im]=coeff[8,1]; 

   end; 

    end; 

  end; 

        if (model = 6) then;do; 

    mmpaths[(im+1),1]=coeff[(im+1),1]; 

  end; 

   end; 

 end;  

 

    * estimate model of outcome; 

    do totlp = 1 to (1+(toteff*(bt=1))); *[d]; 

   xy=cons||datayed[,3:ydatacol]; 

      if ((toteff=1) & (totlp = 2)) then;do; 

        xy=cons||datayed[,(3+nmeds):ydatacol]; 

      end;    

   if (dichy = 1) then;do; 

     meany=datayed[,2];meany=meany[+,]/n; 

     pt2=j(nrow(datayed[,2]),1,meany); 

     LL3 = datayed[,2]#log(pt2)+(1-datayed[,2])#log(1-pt2); 

     LL3 = -2*LL3[+,]; 

     pt1=j(n,1,0.5); 

     bt1=j(ncol(xy),1,0); 

     LL1=0; 

     LL2=LL3; 

     xy22=xy; 

        do jjj= 1 to iterate UNTIL (abs(LL1-LL2) < converge); 

       LL1=LL2; 

       do ijk = 1 to ncol(xy); 

      xy22[,ijk]=xy[,ijk]#pt1#(1-pt1); 

    end; 

    coeff=bt1+inv(xy22`*xy)*xy`*(datayed[,2]-pt1); 

    pt1 = 1/(1+exp(-(xy*coeff))); 

          temp1=((pt1 < .00000000000001) | (pt1 > .9999999999999)); 

    itprob=temp1[+,]; 

    if (itprob = 0) then;do; 

      LL=datayed[,2]#log(pt1)+(1-datayed[,2])#log(1-pt1); 

      LL2=-2*LL[+,]; 

    end; 

    bt1=coeff; 

     end; 
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     if ((jjj >= iterate) & (iterr = 0)) then;do; 

       errs=errs+1;runerrs[err,1]=22;iter=1; 

     end; 

     do ijk = 1 to ncol(xy); 

          xy22[,ijk]=xy[,ijk]#pt1#(1-pt1); 

     end; 

     covmat=inv(xy22`*xy); 

  if (totlp ^= 2) then;do; 

    bootcoef=bootcoef||(coeff[1:(nrow(coeff)-clsdmy),1])`; 

  end; 

   end; 

   if (dichy = 0) then;do; 

     invxtx=inv(xy`*xy); 

  coeff=invxtx*xy`*datayed[,2]; 

        if (effsize=1 & model > 3 & model < 7 & (ncovs > 0 | clsdmy > 0)) 

then;do; 

          xysdy=cons||datayed[,(4+nmeds):ydatacol]; 

    coeffsd=inv(xysdy`*xysdy)*xysdy`*datayed[,2]; 

          resid=datayed[,2]-(xysdy*coeffsd); 

          sdycov=sqrt(ssq(resid)/(n-ncol(xysdy))); 

    xvaron=datayed[,(3+nmeds)]; 

    coeffx2=inv(xysdy`*xysdy)*xysdy`*xvaron; 

          residx2=xvaron-(xysdy*coeffx2); 

          sdxcov=sqrt(ssq(residx2)/(n-ncol(xysdy))); 

        end;  

  if (totlp ^= 2) then;do; 

    bootcoef=bootcoef||(coeff[1:(nrow(coeff)-clsdmy),1])`; 

  end; 

  if ((nmeds = 1) & (ncovs = 0) & (cluster = 0) & (model = 4) & (bt 

> 1)) then;do; 

    resid=datayed[,2]-xy*coeff;sse=ssq(resid);r2full=1-(sse/sstot); 

  end; 

  if (bt = 1) then;do; 

    resid=data[,2]-xy*coeff; 

    k3=nrow(coeff); 

    sse=ssq(resid);mse=sse/(n-ncol(xy)); 

    if (hc3 = 1) then;do; 

      h=xy[,1]; 

   do i3 = 1 to n; 

     h[i3,1]=xy[i3,]*invxtx*xy[i3,]`; 

   end; 

   do i3 = 1 to k3; 

     xy[,i3]=(resid[,ncol(resid)]/(1-h))#(xy[,i3]); 

   end; 

    end; 

          if (hc3 ^= 1) then;do; 

      do i3 = 1 to k3; 

        xy[,i3]=sqrt(mse)#xy[,i3]; 

      end; 

    end; 

    covmat=invxtx*xy`*xy*invxtx; 

     end; 

   end; 

   if (bt = 1) then;do; *[f]; 

     if (model=2) then;do; 

    xy2=cons||datayed[,3:ydatacol]; 

    temp=ncol(xy2); 

    if (temp > 6) then;do; 

      xy3=xy2[,7:temp]; 

    end; 

    xy2=xy2[,1:3]||xy2[,5]; 

          if (temp > 6) then;do; 

      xy2=xy2||xy3; 
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    end; 

    invxtx=inv(xy2`*xy2); 

    coeff2=invxtx*xy2`*datayed[,2]; 

    ssem2=ssq(datayed[,2]-xy2*coeff2); 

  end; 

  standerr=sqrt(vecdiag(covmat)); 

  if (totlp=1) then;do; 

    

mcmats[(nmeds+1):ncol(mcmats),(nmeds+1):ncol(mcmats)]=covmat[2:(1+nmeds),2:(1

+nmeds)]; 

  end; 

  standerr=standerr[1:(nrow(standerr)-clsdmy),1]; 

  if (ws=1 & totlp=2) then;do; 

    standerr[1,1]=stddevy/sqrt(n); 

  end; 

  coeffplt=coeff; 

  lmat=I(nrow(coeff)); 

  lmat=lmat[,2:ncol(lmat)]; 

  dfnum=nrow(coeff)-1; 

  dfden=n-dfnum-1; 

        fratio=(((lmat`)*coeff)`*inv(lmat`*covmat*lmat)*(lmat`*coeff))/dfnum; 

  coeff=coeff[1:(nrow(coeff)-clsdmy),1]; 

  if (totlp=1) then;do; 

    mccoeff[(nmeds+1):nrow(mccoeff)]=coeff[2:(1+nmeds),1]; 

  end; 

  bbbb=coeff[2,1]; 

        if (totlp = 1) then;do; 

    deco[1,1]=2+nmeds; 

    deco=deco[1:decoc,1]; 

    covdirt=j((nrow(covmat)-clsdmy),(ncol(covmat)-clsdmy),0); 

    covdirt=covmat[deco,]; 

    covdir=j(nrow(covdirt),nrow(covdirt),0); 

    covdir=covdirt[,deco`]; 

    deco=coeff[deco,1]; 

    if (ttt > 0) then;do; 

      sedir=sqrt(vecdiag(directv*covdir*directv`)); 

   directv=directv*deco; 

    end; 

    sobel[,3]=coeff[2:(1+nmeds),1]; 

    sobel[,4]=standerr[2:(1+nmeds),1]; 

    sobel2=sobel#sobel; 

    if (varorder ^= 2) then;do; 

      sobel[,2]=sqrt(sobel2[,1]#sobel2[,4]+sobel2[,3]#sobel2[,2]); 

    end; 

    if (varorder = 2) then;do; 

      

sobel[,2]=sqrt(sobel2[,1]#sobel2[,4]+sobel2[,3]#sobel2[,2]+sobel2[,2]#sobel2[

,4]); 

    end; 

    sobel[,1]=sobel[,1]#sobel[,3]; 

    sobel[,3]=sobel[,1]/sobel[,2]; 

    sobel[,4]=2*(1-probnorm(abs(sobel[,3]))); 

  end; 

  if (dichy=0) then;do; 

    tratio=coeff/standerr; 

    p=2*(1-probt(abs(tratio),(n-ncol(xy)))); 

    if ((ws=1) & (totlp=2)) then;do; 

      p=2*(1-probt(abs(tratio),(n-1))); 

   dfden=n-1; 

    end; 

          cnms="coeff"||"se"||"t"||"p"||"LLCI"||"ULCI"; 

    op=coeff||standerr|tratio||p; 

  end; 
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        if(dichy=1) then;do; 

    tratio=coeff/standerr;   

          p=2*(1-probnorm(abs(tratio))); 

    wald=tratio#tratio; 

    cnms="coeff"||"se"||"Z"||"p"||"LLCI"||"ULCI"; 

    temp=coeff-abs(xp2)*standerr; 

    op=coeff||standerr||tratio||p||temp; 

    temp=coeff+abs(xp2)*standerr; 

    op=op||temp; 

  end; 

        if (detail = 1) then;do; 

    if (totlp=2) then;do; 

      print "********************************* TOTAL EFFECT MODEL 

*********************************"; 

      print yname [rowname = "Outcome:" label = " "]; 

    end; 

    if (totlp ^= 2) then;do; 

      print 

"****************************************************************************

*************"; 

      print yname [rowname = "Outcome:" label = " "]; 

    end; 

  end; 

  if ((dichy=1) & (bt=1) & (totlp=1)) then;do; 

    nmsd=yname||"Analysis"; 

    print rcd [label = "Coding of binary DV for analysis" colname = 

nmsd format = 9.2]; 

  end; 

        if (dichy = 0) then;do; 

    r2full=1-(sse/ssty); 

    pfr=1-probf(fratio,dfnum,dfden); 

    jndf=dfden; 

    if (ws=1) then;do; 

      wsdf=dfden; 

    end; 

    xd=abs(xp2); 

    jncrit=(dfden*(exp((dfden-(5/6))*((xd/(dfden-

(2/3)+(.11/dfden)))*(xd/(dfden-(2/3)+(.11/dfden)))))-1)); 

    summ=sqrt(r2full)||r2full||mse||fratio||dfnum||dfden||pfr; 

    temp1=coeff-sqrt(jncrit)*standerr; 

    temp2=coeff+sqrt(jncrit)*standerr; 

    op=coeff||standerr||tratio||p||temp1||temp2; 

    if (detail = 1) then;do; 

      if (ws ^= 1) then;do; 

       clnm = {"R" "R-sq" "MSE" "F" "df1" "df2" "p"}; 

        print summ [label = "Model Summary" colname = clnm format = 

&decimals]; 

   end; 

    end; 

  end; 

  if (dichy = 1) then;do; 

    LLdiff=LL3-LL2; 

    mcF = LLdiff/LL3; 

    cox=1-exp(-LLdiff/n); 

    nagel=cox/(1-exp(-(LL3)/n)); 

    pf=LL2||LLdiff||mcF||cox||nagel||n; 

    if (detail = 1) then;do; 

      clnm = {"-2LL" "Model LL" "McFadden" "CoxSnell" "Nagelkrk" 

"n"}; 

      print pf [label = "Logistic Regression Summary" colname = clnm 

format = &decimals]; 

    end; 

  end; 
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  if (totlp=2) then;do; 

    datanmy="constant"//datanmy[(nmeds+2):nrow(datanmy),1]; 

  end; 

  if (detail = 1) then;do; 

    if (coeffci = 0) then;do; 

      op=op[,1:(ncol(op)-2)]; 

    end; 

    if (ws = 1) then;do; 

      op2=op[1:(1+nmeds),]; 

   datanmy2="c' 

path"//bpathnam[(1+(nmeds>1)):((1+(nmeds>1))+(nmeds-1)),1]; 

   if (totlp=2) then;do; 

     datanmy2="c path";op2=op[1,];wsdf=n-1; 

   end; 

   print op2 [label = "Model" rowname=datanmy2 colname=cnms 

format = &decimals];   

   tmpnamb={"df = "}; 

       print wsdf [label = " " rowname=tmpnamb]; 

          end; 

    if (ws ^= 1) then;do; 

      print op [label = "Model" rowname = datanmy colname=cnms 

format = &decimals]; 

      if (covcoeff=1) then;do; 

              covmattp=covmat[1:nrow(op),1:nrow(op)]; 

     cnamestp=datanmy`; 

     print covmattp [label="Covariance matrix of regression 

parameter estimates" rowname=datanmy colname=cnamestp format=&decimals]; 

      end; 

    end; 

  end; 

  if ((ttt = 0) & (totlp = 1)) then;do; 

          deco=op[(nmeds+2),]; 

    if (ws=1) then;do; 

      deco=op[1,]; 

    end; 

  end; 

  if ((ttt = 0) & (totlp = 2)) then;do; 

    decotot = op[2,]; 

    if (ws=1) then;do; 

      decotot=op[1,]; 

    end; 

  end; 

  if ((nmods > 0) & (model > 4) & (detail = 1) & (nrow(yintkey) > 

1)) then;do; 

    print yintkey [label = "Interactions:"]; 

  end; 

  if ((nmods > 0) & (model < 4) & (detail = 1)) then;do; 

    print yintkey2 [label = "Interactions:"]; 

    if (((model = 1) | (model = 2)) & (dichy = 0) & (hc3 = 0)) 

then;do; 

            temp = (((op[4,3]#op[4,3])*(1-

r2full))/dfden)||(op[4,3]#op[4,3])||1||dfden||op[4,4]; 

   rnms=yintkey2[2,1]; 

   if (model = 2) then;do; 

     temp2=(((op[6,3]#op[6,3])*(1-

r2full))/dfden)||(op[6,3]#op[6,3])||1||dfden||op[6,4]; 

              temp = temp//temp2; 

     frat2=(dfden*(r2full-(1-(ssem2/ssty))))/(2*(1-r2full)); 

     temp2=(r2full-(1-(ssem2/ssty)))||frat2||2||dfden||(1-

probf(frat2,2,dfden)); 

     temp = temp//temp2; 

     rnms=rnms//yintkey2[3,1]//"Both"; 

   end; 
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      clnm = {"R2-chng" "F" "df1" "df2" "p"}; 

   print temp [label = "R-square increase due to 

interaction(s):" rowname=rnms colname=clnm format = &decimals]; 

    end; 

          if ((model = 3) & (dichy = 0) & (hc3 = 0)) then;do; 

      temp = (((op[8,3]#op[8,3])*(1-

r2full))/dfden)||(op[8,3]#op[8,3])||dfden||op[8,4]; 

      rnms=yintkey2[5,1]; 

      clnm = {"R2-chng" "F(1,df2)" "df2" "p"}; 

      print temp [label = "R-square increase due to three-way 

interaction:" rowname = rnms colname = clnm format = &decimals]; 

          end; 

  end; 

   end; *[f]; 

      if ((model = 6) & (totlp = 1)) then;do; 

        mmpaths[nrow(mmpaths),1]=coeff[nrow(mmpaths),1]; 

     mmpaths[nrow(mmpaths),(2:(nmeds+1))]=coeff[2:(nmeds+1),1]`; 

   end; 

   if (totlp = 1) then;do; *[g]; 

     do im = 1 to nmeds; *[h]; 

    if (model < 4) then;do; 

      ymat[1,im]=coeff[3,1]*(1-

yes);ymat[2,im]=coeff[4,1];cmat[1,im]=covmat[3,3];cmat[2,im]=covmat[4,4]; 

            

cmat[5,im]=covmat[3,4];jnb1=coeff[3,1];jnb3=coeff[4,1];jnsb1=covmat[3,3];jnsb

3=covmat[4,4]; 

      jnsb1b3=covmat[3,4]; 

      if ((model = 2) | (model = 3)) then;do; 

     

ymat[3,im]=coeff[6,1];cmat[3,im]=covmat[6,6];cmat[6,im]=covmat[3,6];cmat[8,im

]=covmat[4,6]; 

   end; 

   if (model = 3) then;do; 

     

ymat[4,im]=coeff[8,1];cmat[4,im]=covmat[8,8];cmat[7,im]=covmat[3,8];cmat[9,im

]=covmat[4,8]; 

     

cmat[10,im]=covmat[6,8];jnb1=coeff[4,1];jnb3=coeff[8,1];jnsb1=covmat[4,4];jns

b3=covmat[8,8]; 

     jnsb1b3=covmat[4,8]; 

   end; 

    end; 

          if (model > 3) then;do; 

      ymat[5,im]=coeff[(1+im),1]; 

    end; 

    if (xmy = 1) then;do; 

      ymat[6,im]=coeff[(2+nmeds+im),1]; 

    end; 

    if (vy = 1) then;do; 

      ymat[6,im]=coeff[(3+nmeds+im),1]; 

    end; 

    if ((qy = 1) & (vy = 1)) then;do; 

      ymat[6,im]=coeff[(5+nmeds+((im-1)*2)),1]; 

   ymat[7,im]=coeff[(6+nmeds+((im-1)*2)),1]; 

    end; 

          if (vqy = 1) then;do; 

      ymat[6,im]=coeff[(6+nmeds+((im-1)*3)),1]; 

   ymat[7,im]=coeff[(7+nmeds+((im-1)*3)),1]; 

   ymat[8,im]=coeff[(8+nmeds+((im-1)*3)),1]; 

    end; 

    if (wmy = 1) then;do; 

      ymat[7,im]=coeff[(3+nmeds+im-wy),1]; 

    end; 
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    if ((wmy = 1) & (vy = 1)) then;do; 

            ymat[7,im]=coeff[(4+(nmeds*2)+im-wy),1]; 

    end; 

          if ((wmy = 1) & (vy = 1) & (wvmy = 1)) then;do; 

      ymat[7,im]=coeff[(6+(nmeds*2)+((im-1)*2)-wy),1]; 

   ymat[8,im]=coeff[(7+(nmeds*2)+((im-1)*2)-wy),1]; 

    end; 

          if ((wmy = 1) & (zmy = 1)) then;do; 

      ymat[6,im]=coeff[((6-(wzy*3)+(wzm-1)+(nmeds*2)+((im-

1)*2)*wzm)+((im-1)*(1-wzm))-((zy-wzy)*2)),1]; 

            ymat[7,im]=coeff[(3-zy+im+nmeds),1]; 

   if (wzmy = 1) then;do; 

     ymat[8,im]=coeff[(7-(wzy*3)+(nmeds*2)+((im-1)*2)),1]; 

   end; 

    end; 

          if ((nmods > 0) & (model ^= 5)) then;do; 

      do indlp = 1 to nrow(modvals); 

     temp1=ymat[1:4,im]#vmat[1:4,indlp];temp1=temp1[+,]; 

     indeff[indlp,1]=temp1; 

              if (model > 6) then;do; 

       temp2=ymat[5:8,im]#vmat[5:8,indlp];temp2=temp2[+,]; 

                indeff[indlp,1]=temp1*temp2; 

              end; 

   end; 

   indboot[(bt+(im-1)*(boot+1)),]=indeff`; 

   if ((model = 8) | (model = 7)) then;do; 

     indbootp[bt,im]=ymat[2,im]*ymat[5,im]; 

     if (wdich = 1) then;do; 

       indbootp[bt,im]=indbootp[bt,im]*(cmaxw-cminw); 

     end; 

   end; 

   if ((model = 14) | (model = 15) | (model = 74)) then;do; 

     indbootp[bt,im]=ymat[1,im]*ymat[6,im]; 

     if (wvdich = 1) then;do; 

       indbootp[bt,im]=indbootp[bt,im]*(cmaxv-cminv); 

     end; 

   end; 

   if (model = 12) then;do; 

     indbootp[bt,im]=ymat[4,im]*ymat[5,im]; 

   end; 

            if (((model = 58) | (model = 59)) & (wvdich=1)) then;do; 

              indbootp[bt,im]=(ymat[1,im]*ymat[7,im]*(cmaxw-

cminw))+(ymat[2,im]*ymat[5,im]*(cmaxw-cminw)); 

              

indbootp[bt,im]=indbootp[bt,im]+(ymat[2,im]*ymat[7,im]*((cmaxw*cmaxw)-

(cminw*cminw))); 

            end; 

    end; 

          if ((model = 4) | (model = 5)) then;do; 

     temp1=ymat[1:4,im]#vmat[1:4,1];temp1=temp1[+,]; 

   temp2=ymat[5:8,im]#vmat[5:8,1];temp2=temp2[+,]; 

      indboot[bt,im]=temp1*temp2;      

            if ((effsize=1) & (dichy=0)) then;do; 

     if (ctot = 0) then;do;ctot=.00000000000001;end; 

              sumind=indboot[bt,+]; 

              if (im = nmeds) 

then;do;pmeff[bt,2:(im+1)]=indboot[bt,]/(sumind+coeff[(2+nmeds),1]);end; 

        rmeff[bt,(im+1)]=indboot[bt,im]/coeff[(2+nmeds),1]; 

     abpseff[bt,(im+1)]=indboot[bt,im]/stddevy; 

     abcseff[bt,(im+1)]=abpseff[bt,(im+1)]*stddevx; 

              if (ncovs >  0 | clsdmy > 0) then;do; 

                abpseff[bt,(im+1)]=indboot[bt,im]/sdycov; 

    abcseff[bt,(im+1)]=abpseff[bt,(im+1)]*sdxcov; 
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     end; 

              if ((nmeds = 1) & (ncovs = 0) & (cluster = 0) & (model = 4)) 

then;do; 

                r245[bt,1]=r2my-(r2full-r2xy); 

       abmmr=1; 

       if (indboot[bt,im] < 0) then;do; 

         abmmr=min(abmm); 

       end; 

       if (indboot[bt,im] > 0) then;do; 

         abmmr=max(abmm); 

       end; 

       kappa2[bt,1]=indboot[bt,im]/abmmr; 

       tmp=indboot[bt,im]/abmmr; 

     end; 

      end; 

    end; 

          if (model = 6) then;do; 

      if (nmeds = 2) then;do; 

     indboot[bt,1]=mmpaths[2,1]*mmpaths[4,2]; 

     indboot[bt,2]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[4,3]; 

     indboot[bt,3]=mmpaths[3,1]*mmpaths[4,3]; 

   end; 

   if (nmeds = 3) then;do; 

     indboot[bt,1]=mmpaths[2,1]*mmpaths[5,2]; 

     indboot[bt,2]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[5,3]; 

     indboot[bt,3]=mmpaths[2,1]*mmpaths[4,2]*mmpaths[5,4]; 

     

indboot[bt,4]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[4,3]*mmpaths[5,4]; 

     indboot[bt,5]=mmpaths[3,1]*mmpaths[5,3]; 

     indboot[bt,6]=mmpaths[3,1]*mmpaths[4,3]*mmpaths[5,4]; 

     indboot[bt,7]=mmpaths[4,1]*mmpaths[5,4]; 

   end; 

   if (nmeds = 4) then;do; 

     indboot[bt,1]=mmpaths[2,1]*mmpaths[6,2]; 

     indboot[bt,2]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[6,3]; 

     indboot[bt,3]=mmpaths[2,1]*mmpaths[4,2]*mmpaths[6,4]; 

     indboot[bt,4]=mmpaths[2,1]*mmpaths[5,2]*mmpaths[6,5]; 

     

indboot[bt,5]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[4,3]*mmpaths[6,4]; 

     

indboot[bt,6]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[5,3]*mmpaths[6,5]; 

     

indboot[bt,7]=mmpaths[2,1]*mmpaths[4,2]*mmpaths[5,4]*mmpaths[6,5]; 

     

indboot[bt,8]=mmpaths[2,1]*mmpaths[3,2]*mmpaths[4,3]*mmpaths[5,4]*mmpaths[6,5

]; 

     indboot[bt,9]=mmpaths[3,1]*mmpaths[6,3]; 

     indboot[bt,10]=mmpaths[3,1]*mmpaths[4,3]*mmpaths[6,4]; 

     indboot[bt,11]=mmpaths[3,1]*mmpaths[5,3]*mmpaths[6,5]; 

     

indboot[bt,12]=mmpaths[3,1]*mmpaths[4,3]*mmpaths[5,4]*mmpaths[6,5]; 

     indboot[bt,13]=mmpaths[4,1]*mmpaths[6,4]; 

     indboot[bt,14]=mmpaths[4,1]*mmpaths[5,4]*mmpaths[6,5]; 

     indboot[bt,15]=mmpaths[5,1]*mmpaths[6,5]; 

            end; 

            if ((effsize=1) & (dichy=0)) then;do; 

     if (ctot = 0) then;do;ctot=.00000000000001;end; 

     

pmeff[bt,]=indboot[bt,]/(indboot[bt,+]+mmpaths[nrow(mmpaths),1]); 

     rmeff[bt,]=indboot[bt,]/mmpaths[nrow(mmpaths),1]; 

     abpseff[bt,]=indboot[bt,]/stddevy; 

     abcseff[bt,]=(stddevx*indboot[bt,])/stddevy; 

              if (ncovs > 0 | clsdmy > 0) then;do; 
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                abpseff[bt,]=indboot[bt,]/sdycov; 

    abcseff[bt,]=(sdxcov*indboot[bt,]/sdycov); 

     end; 

     if ((nmeds = 1) & (ncovs = 0) & (cluster = 0) & (model = 

4)) then;do; 

                r245[bt,]=r2my-(r2full-r2xy); 

     end; 

   end; 

    end; 

  end; *[h]; 

   end; *[g]; 

 end; *[d];  

 if ((savboot = 1) & (bt > 1)) then;do;bootstrp[(bt-1),]=bootcoef; 

 end; 

  end; *[b]; 

  if (savboot=1) then;do;bootstrp=bootstrp[,2:ncol(bootstrp)]; 

    create &save from bootstrp; 

    append from bootstrp; 

  end; 

 

  if (mc > 0) then;do; 

    x1=sqrt(-

2*log(ranuni(j(mc,nrow(mcmats),&seed))))#cos((2*3.14159265358979)*(ranuni(j(m

c,nrow(mcmats),&seed)))); 

 x1=x1*root(mcmats); 

 do i = 1 to nrow(x1); 

   x1[i,]=x1[i,]+mccoeff`; 

 end; 

 do i = 1 to nmeds; 

   indboot[2:nrow(indboot),i]=x1[,i]#x1[,(i+nmeds)]; 

 end; 

  end; 

 

 

  if ((ttt = 0) & (model > 3)) then;do; 

    if (toteff = 0) then;do; 

   print "****************************** DIRECT AND INDIRECT EFFECTS 

*******************************"; 

    end; 

 if (toteff ^= 0) then;do; 

   print "*************************** TOTAL, DIRECT AND INDIRECT EFFECTS 

***************************"; 

 end; 

    if (model ^= 74) then;do; 

      if (dichy = 0) then;do; 

     clnm = {"Effect" "SE" "t" "p" "LLCI" "ULCI"}; 

     if (toteff = 1) then;do; 

          print decotot [label = "Total effect of X on Y" colname = clnm 

format = &decimals]; 

        end; 

        print deco [label = "Direct effect of X on Y" colname = clnm format = 

&decimals]; 

      end; 

      if (dichy = 1) then;do; 

        clnm = {"Effect" "SE" "Z" "p" "LLCI" "ULCI"}; 

     if (toteff = 1) then;do; 

       print decotot [label = "Total effect of X on Y" colname = clnm 

format = &decimals]; 

        end; 

        print deco [label = "Direct effect of X on Y" colname = clnm format = 

&decimals]; 

      end; 

    end; 
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  end; 

  if (ttt > 0) then;do; 

    print "****************************** DIRECT AND INDIRECT EFFECTS 

*******************************"; 

    clbs=modvnm2||"Effect"||"SE"||"t"||"p"||"LLCI"||"ULCI"; 

 tratio=directv/sedir; 

 p=2*(1-probt(abs(tratio),(n-ncol(xy)))); 

 outp=modvalsd||directv||sedir||tratio||p; 

 if (dichy = 0) then;do; 

   temp1=directv-sqrt(jncrit)*sedir; 

   temp2=directv+sqrt(jncrit)*sedir; 

   outp=outp||temp1||temp2; 

 end; 

 if (dichy = 1) then;do; 

   p=2*(1-probnorm(abs(tratio))); 

   temp=directv-abs(xp2)*sedir; 

   outp=outp||temp; 

   temp=directv+abs(xp2)*sedir; 

   outp=outp||temp; 

   clbs=modvnm2||"Effect"||"SE"||"Z"||"p"||"LLCI"||"ULCI"; 

 end; 

 if (coeffci=0) then;do; 

   outp=outp[,1:(ncol(outp)-2)]; 

 end; 

 print outp [label = "Conditional direct effect(s) of X on Y at values of 

the moderator(s)"  

              format = &decimals colname = clbs rowname = " "]; 

  end; 

  if ((nmods > 0) & (model ^= 5)) then;do; *[xx]; 

    if (model < 4) then;do; 

   print 

"****************************************************************************

*************";   

      zmat[1,1]=1*(1-yes); 

   cfse=j(nrow(modvals),1,0); 

   do mmm = 1 to nrow(modvals); 

     if (model = 1) then;do; 

    zmat[2,1]=modvals[mmm,1]##2; 

    zmat[5,1]=2*modvals[mmm,1]; 

  end; 

        if ((model = 2) | (model = 3)) then;do; 

    zmat[2,1]=modvals[mmm,2]##2; 

    zmat[3,1]=modvals[mmm,1]##2; 

    zmat[4,1]=(modvals[mmm,1]##2)*(modvals[mmm,2]##2)*(1-yes2); 

    zmat[5,1]=2*modvals[mmm,2]*(1-yes); 

    zmat[6,1]=2*modvals[mmm,1]*(1-yes); 

    zmat[7,1]=2*modvals[mmm,1]*modvals[mmm,2]*(1-yes); 

    zmat[8,1]=2*modvals[mmm,1]*modvals[mmm,2]; 

    zmat[9,1]=2*modvals[mmm,1]*(modvals[mmm,2]##2)*(1-yes2); 

    zmat[10,1]=2*(modvals[mmm,1]##2)*modvals[mmm,2]*(1-yes2); 

  end; 

  temp=zmat#cmat;cfse[mmm,1]=sqrt(temp[+,]); 

   end; 

    end; 

    if (nmods > 0) then;do; *[bbb]; 

   clbs=modvnm||"Effect"; 

   do im = 1 to nmeds; 

     obs=indboot[(1+(im-1)*(boot+1)),]`; 

  outp=modvals||obs; 

  if (model < 4) then;do; 

    tstat=obs/cfse; 

    if (dichy=0) then;do; 

      pval=2*(1-probt(abs(tstat),(n-ncol(xy)))); 
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   temp=obs-sqrt(jncrit)*cfse; 

   outp=outp||cfse||tstat||pval||temp; 

   temp=obs+sqrt(jncrit)*cfse; 

   outp=outp||temp; 

   clbs = clbs||"se"||"t"||"p"||"LLCI"||"ULCI"; 

   jnclbs=clbs; 

    end; 

    if (dichy=1) then;do; 

      pval=2*(1-probnorm(abs(tstat))); 

   temp=obs-abs(xp2)*cfse; 

   outp=outp||cfse||tstat||pval||temp; 

   temp=obs+abs(xp2)*cfse; 

   outp=outp||temp; 

   clbs=clbs||"se"||"Z"||"p"||"LLCI"||"ULCI"; 

   jnclbs=clbs; 

    end; 

  end; 

        if (boot > 0) then;do; 

    ones=j(boot,1,1); 

    estmte=indboot[(1+(im-1)*(boot+1)),]; 

          indboot2=indboot[(2+(im-1)*(boot+1)):(1+(im-1)*(boot+1)+boot),]; 

    mnind=indboot2[+,]/boot;mnind=mnind`; 

    tmp=indboot2##2;tmp=tmp[+,]; 

          stdind=(sqrt((tmp-((indboot2[+,]##2)/boot))/(boot-1)))`; 

          llci=j(1,ncol(indboot2),-999); 

    ulci=j(1,ncol(indboot2),-999); 

          do eee = 1 to ncol(indboot2); 

      inpt=indboot2[,eee];inpt2=(estmte[1,eee]*bconoff)+(9999*(1-

bconoff)); 

      %bcboot (databcbt=inpt,estmte=inpt2); 

   llci[1,eee]=llcit; 

   ulci[1,eee]=ulcit; 

   if ((badlo=1) & (llcit ^= priorlo)) then;do; 

     badend=badend||llcit; 

     priorlo=llcit; 

   end; 

   if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

     badend=badend||ulcit; 

     priorhi=ulcit; 

   end; 

    end; 

    outp=modvals||obs||stdind||llci`||ulci`; 

    clbs=modvnm||"Effect"||"Boot SE"||"BootLLCI"||"BootULCI"; 

  end; 

        mtemp=mnames[1,im]; 

  rlbs=j(nrow(modvals),1,mnames[1,im]); 

        if (model < 4) then;do; 

    if (coeffci = 0) then;do; 

      outp=outp[,1:(ncol(outp)-2)]; 

    end; 

    if (yes=0) then;do; 

          print outp [label = "Conditional effect of X on Y at values of the 

moderator(s)" colname = clbs 

    format=&decimals rowname = " "]; 

    end; 

    if (yes=1) then;do; 

            outp=outp[,3:ncol(outp)]; 

   clbs=clbs[,3:ncol(clbs)]; 

   clbs[1,1]={"Contrast"}; 

   print outp [label = "Contrast of conditional effects of X on 

Y" colname = clbs format=&decimals rowname = " "]; 

    end; 

  end; 
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  if ((model > 5) & (mod74dic ^= 1)) then;do; 

    if (im = 1) then;do; 

      print "Conditional indirect effect(s) of X on Y at values of 

the moderator(s)"; 

    end; 

    print outp [label = " " rowname = rlbs colname = clbs format = 

&decimals]; 

  end; 

  if ((model = 74) & (mod74dic = 1)) then;do; 

    if (im = 1) then;do; 

      print "Indirect effect(s) of X on Y:"; 

      clbs3=clbs[1,2:ncol(clbs)]; 

    end; 

    outp3=outp[1,2:ncol(outp)]; 

    print outp3 [label = " " rowname = rlbs colname=clbs3 format = 

&decimals]; 

  end; 

   end; 

      do i = notes to 1 by -1; 

     if ((note[i,1]=4) & (yes=0)) then;do; 

    print "Values for quantitative moderators are the 10th, 25th, 

50th, 75th, and 90th percentiles."; 

    print "Values for dichotomous moderators are the two values of 

the moderator."; 

  end; 

  if ((note[i,1]=5) & (yes=0)) then;do; 

    print "Values for quantitative moderators are the mean and 

plus/minus one SD from mean."; 

    print "Values for dichotomous moderators are the two values of 

the moderator."; 

  end; 

  if ((note[i,1]=14) & (yes=0)) then;do; 

          print "NOTE: For at least one moderator in the conditional effect 

table above, one SD"; 

    print "      below the mean was replaced with the minimum 

because one SD below the mean"; 

    print "      is outside of the range of the data."; 

        end; 

     if (note[i,1]=15) then;do; 

          print "NOTE: For at least one moderator in the conditional effect 

table above, one SD"; 

    print "      below the mean was replaced with the maximum 

because one SD above the mean"; 

    print "      is outside of the range of the data."; 

        end; 

   end; 

   if ((model = 3) & (yes=0)) then;do; 

     jnvals=j(nrow(matw),7,0); 

  jnvals[,1]=matw; 

  jnvals[,2]=jnb1+jnb3*jnvals[,1]; 

  jnvals[,3]=sqrt(jnsb1+2*jnvals[,1]*jnsb1b3+(jnvals[,1]##2)*jnsb3); 

  jnvals[,4]=jnvals[,2]/jnvals[,3]; 

  if (dichy=0) then;do; 

    jnvals[,5]=2*(1-probt(abs(jnvals[,4]),jndf)); 

  end; 

  if (dichy=1) then;do; 

    jnvals[,5]=2*(1-probnorm(abs(jnvals[,4]))); 

  end; 

  jnvals[,6]=jnvals[,2]-sqrt(jncrit)#jnvals[,3]; 

  jnvals[,7]=jnvals[,2]+sqrt(jncrit)#jnvals[,3]; 

  clbs=clbs[,1]||clbs[,3:ncol(clbs)]; 

  if (coeffci = 0) then;do; 

    jnvals=jnvals[,1:(ncol(jnvals)-2)]; 
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  end; 

  print jnvals [label = "Conditional effect of X*M interaction at 

values of W" colname = clbs rowname = " " format = &decimals]; 

   end; 

      if ((jn = 1) & ((model = 1) | (model = 3)) & (jndich=0) & (yes=0)) 

then;do; 

     ajn=(jncrit*jnsb3)-(jnb3*jnb3);bjn=2*((jncrit*jnsb1b3)-(jnb1*jnb3)); 

  cjn=(jncrit*jnsb1)-(jnb1*jnb1);radarg=(bjn*bjn)-(4*ajn*cjn); 

  den=2*ajn;nrts=0; 

  print "******************************** JOHNSON-NEYMAN TECHNIQUE 

********************************"; 

        if ((radarg >= 0) & (den ^= 0)) then;do; 

    x21=(-bjn+sqrt(radarg))/den; 

    x22=(-bjn-sqrt(radarg))/den; 

    roots = 0; 

    if ((x21 >= jnmin) & (x21 <= jnmax)) then;do; 

      nrts=1;roots=roots//x21; 

    end; 

    if ((x22 >= jnmin) & (x22 <= jnmax)) then;do; 

      nrts=nrts+1;roots=roots//x22; 

    end; 

    roots=roots||j(nrow(roots),2,0); 

          modtemp=m; 

    if (model=3) then;do;modtemp=w;end; 

          if (nrts > 0) then;do; 

      roots = roots[2:nrow(roots),1:3]; 

   rootsum=(modtemp < 

roots[1,1]);roots[1,2]=(rootsum[+]/n)*100; 

            rootsum=(modtemp > roots[1,1]);roots[1,3]=(rootsum[+]/n)*100; 

            if (nrow(roots)=2) then;do; 

              rootsum=(modtemp < roots[2,1]);roots[2,2]=(rootsum[+]/n)*100; 

              rootsum=(modtemp > roots[2,1]);roots[2,3]=(rootsum[+]/n)*100; 

            end; 

   lohilbs="Value"||"% below"||"% above"; 

   print roots [label = "Moderator values(s) defining Johnson-

Neyman significance region(s)" colname=lohilbs format = &decimals]; 

   jnvals=j((21+nrts),7,0); 

   do i = 0 to 20; 

     jnvals[(i+1),1]=jnmin+(i*((jnmax-jnmin)/20)); 

   end; 

   do i = 1 to nrts; 

     do j = 2 to nrow(jnvals); 

                if ((roots[i,1] > jnvals[(j-1),1]) & (roots[i,1] < 

jnvals[j,1])) then;do; 

      jnvals[(j+1):(21+i),1]=jnvals[j:(20+i),1]; 

      jnvals[j,1]=roots[i,1]; 

    end; 

     end; 

   end; 

      do i = 1 to nrow(jnvals); 

     jnvals[i,2]=jnb1+jnb3*jnvals[i,1]; 

     

jnvals[i,3]=sqrt(jnsb1+2*jnvals[i,1]*jnsb1b3+(jnvals[i,1]##2)*jnsb3); 

     jnvals[i,4]=jnvals[i,2]/jnvals[i,3]; 

     if (dichy = 0) then;do; 

       jnvals[i,5]=2*(1-probt(abs(jnvals[i,4]),jndf)); 

     end; 

     if (dichy = 1) then;do; 

       jnvals[i,5]=2*(1-probnorm(abs(jnvals[i,4]))); 

     end; 

     jnvals[i,6]=jnvals[i,2]-sqrt(jncrit)*jnvals[i,3]; 

     jnvals[i,7]=jnvals[i,2]+sqrt(jncrit)*jnvals[i,3]; 

   end; 
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   if (model = 1) then;do; 

     print jnvals [label = "Conditional effect of X on Y at 

values of the moderator (M)"  

              colname=jnclbs rowname = " " format = &decimals]; 

            end; 

   if (model = 3) then;do; 

     jnclbs=jnclbs[,1]||jnclbs[,3:ncol(jnclbs)]; 

     print jnvals [label = "Conditional effect of X*M on Y at 

values of the moderator (W)"  

              colname=jnclbs rowname = " " format=&decimals]; 

   end; 

    end; 

        end; 

        if (nrts = 0) then;do; 

    print "There are no statistical significance transition points 

within the observed range of the moderator"; 

        end; 

   end; 

    end; *[bbb]; 

    if ((model < 4) & (plot = 1)) then;do; 

      dataplot=j((nrow(modvals)*nrow(matx)),(ncol(modvals)+1),0); 

   tmp=1; 

   do i = 1 to nrow(modvals); 

     do j = 1 to nrow(matx); 

    dataplot[tmp,]=matx[j,1]||modvals[i,]; 

    tmp=tmp+1; 

     end; 

   end; 

   dataplot=dataplot||j(nrow(dataplot),(1+dichy),0); 

   dataplo2=j(nrow(dataplot),1,1); 

   if (model = 1) then;do; 

     

dataplo2=dataplo2||dataplot[,2]||dataplot[,1]||(dataplot[,1]#dataplot[,2]); 

   end; 

   if ((model = 2) | (model = 3)) then;do; 

     

dataplo2=dataplo2||dataplot[,3]||dataplot[,1]||(dataplot[,1]#dataplot[,3])||d

ataplot[,2]||(dataplot[,1]#dataplot[,2]); 

        if (model = 3) then;do; 

          

dataplo2=dataplo2||(dataplot[,2]#dataplot[,3])||(dataplot[,1]#dataplot[,2]#da

taplot[,3]); 

  end; 

      end; 

      do i = 1 to nrow(dataplot); 

     tmp=dataplo2[i,]; 

  if (ncovs > 0) then;do; 

    tmp=tmp||covmeans; 

  end; 

  if (cluster > 0) then;do; 

    tmp=tmp||cldmeans; 

  end; 

  dataplot[i,(ncol(dataplot)-(dichy))]=tmp*coeffplt; 

  if (dichy=1) then;do; 

    

dataplot[i,(ncol(dataplot))]=exp(tmp*coeffplt)/(1+exp(tmp*coeffplt)); 

  end; 

   end; 

      clbs=xname||modvnm||"yhat"; 

   if (dichy = 1) then;do; 

     clbs=xname||modvnm||"ln(odds)"||"prob"; 

   end; 
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   print 

"****************************************************************************

*************";  

   print dataplot [label = "Data for visualizing conditional effect of X 

on Y" colname = clbs rowname = " " format = &decimals]; 

      if (ncovs > 0) then;do; 

     print "Estimates in this table are based on setting covariates to 

their sample means"; 

   end; 

 end; 

  end; *[xx]; 

  if (((model = 8) | (model = 12) | (model = 7) | (model=14) | (model=15) | 

((model=74) & (mod74dic=0))) | (((model = 58) | (model = 59)) & (wvdich = 

1))) then;do; 

 obsprod=indbootp[1,]`; 

 if (boot > 0) then;do; 

   ones=j(boot,1,1); 

   estmte=indbootp[1,]; 

   indbootp=indbootp[2:(boot+1),]; 

   mnindp=indbootp[+,]/boot;mnindp=mnindp`; 

   tmp=indbootp##2;tmp=tmp[+,]; 

      stdindp=(sqrt((tmp-((indbootp[+,]##2)/boot))/(boot-1)))`; 

      llcip=j(1,ncol(indbootp),-999); 

      ulcip=j(1,ncol(indbootp),-999); 

      do eee = 1 to ncol(indbootp); 

  inpt=indbootp[,eee];inpt2=(estmte[1,eee]*bconoff)+(9999*(1-

bconoff)); 

  %bcboot (databcbt=inpt,estmte=inpt2); 

  llcip[1,eee]=llcit; 

  ulcip[1,eee]=ulcit; 

  if ((badlo=1) & (llcit ^= priorlo)) then;do; 

    badend=badend||llcit; 

    priorlo=llcit; 

  end; 

  if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

    badend=badend||ulcit; 

    priorhi=ulcit; 

  end; 

   end; 

   outp=obsprod||stdindp||llcip`||ulcip`; 

   clbs="Effect"||"Boot SE"||"BootLLCI"||"BootULCI"; 

   if ((model=8) | (model=12)) then;do; 

     print outp [label = "Indirect effect of highest order interaction" 

colname = clbs rowname = mnames format = &decimals]; 

   end; 

   if (model ^= 12) then;do; 

     print "****************************** INDEX OF MODERATED MEDIATION 

********************************"; 

        clbs="Index"||"Boot SE"||"BootLLCI"||"BootULCI"; 

        print outp [label = " " colname = clbs rowname= mnames format = 

&decimals]; 

  if (wvdich=1) then;do; 

          print "When the moderator is dichotomous, this is a test of 

equality of the indirect effects in the two groups"; 

        end; 

      end; 

 end; 

 if (boot = 0) then;do; 

   if ((model = 8) | (model = 12)) then;do; 

 

  clnm43="Effect"; 

     print obsprod [label = "Indirect effect of highest order 

interaction" colname = clnm43 rowname = mnames format = &decimals]; 
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   end; 

      if (model ^= 12) then;do; 

     print "******************************INDEX OF MODERATED MEDIATION 

********************************"; 

  clnm43="Index"; 

     print obsprod [label = " " colname = clnm43 rowname = mnames format 

= &decimals]; 

   end; 

 end; 

  end; 

  conmake=0;concols=0; 

  if (((model > 3) & (model < 7)) & (contrast=1) & (nmods = 0) & (nmeds > 1)) 

then;do; 

    concols=(ncol(indboot)*(ncol(indboot)-1))/2; 

 indcon=j(nrow(indboot),concols,-999); 

 conkey=" "||" "||" "; 

    temp=1; 

 conmake=1; 

    do i = 1 to (ncol(indboot)-1); 

   do j = (i+1) to (ncol(indboot)); 

     indcon[,temp]=indboot[,i]-indboot[,j]; 

  if (model ^= 6) then;do; 

    

conkeyt=mnames[1,i]||"minus"||mnames[1,j];conkey=conkey//conkeyt; 

  end; 

  if (model = 6) then;do; 

    

conkeyt=indlbl2[i,1]||"minus"||indlbl2[j,1];conkey=conkey//conkeyt; 

  end; 

  temp=temp+1; 

   end; 

 end; 

  end; 

  if ((model = 4 ) | (model = 5)) then;do;  *[ddd]; 

    clbs="Effect";rlbs="TOTAL"//mnames`; 

 obs=indboot[1,]`;obs=obs[+,]//obs; 

 if (conmake=1) then;do; 

   obs=obs//indcon[1,]`; 

   rlbs=rlbs//cntname[1:ncol(indcon),1]; 

 end; 

 outp=obs; 

 outp2=outp; 

 if ((effsize=1) & (dichy=0)) then;do; 

      tmp=pmeff[,2:ncol(pmeff)];pmeff[,1]=tmp[,+]; 

   tmp=rmeff[,2:ncol(rmeff)];rmeff[,1]=tmp[,+]; 

      tmp=abpseff[,2:ncol(abpseff)];abpseff[,1]=tmp[,+]; 

      tmp=abcseff[,2:ncol(abcseff)];abcseff[,1]=tmp[,+]; 

   eff=pmeff||rmeff||abpseff||abcseff; 

   if ((nmeds=1) & (ncovs = 0) & (cluster = 0) & (model = 4)) then;do; 

     eff=eff||r245||kappa2; 

  r245obs=r245[1,1]//r245[1,1]; 

  kappa2ob=kappa2[1,1]; 

   end; 

   pmobs=pmeff[1,1:(nmeds+1)]`; 

      rmobs=rmeff[1,1:(nmeds+1)]`; 

      psobs=abpseff[1,1:(nmeds+1)]`; 

      csobs=abcseff[1,1:(nmeds+1)]`; 

   if (contrast = 0) then;do; 

     outp2=obs||psobs||csobs||pmobs||rmobs; 

   end; 

   if (contrast = 1) then;do; 

     obs2=obs[1:nrow(psobs),]; 

  outp2=obs2||psobs||csobs||pmobs||rmobs; 
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   end; 

   clbs="ab"||"ab_ps"||"ab_cs"||"ab/c"||"ab/c'"; 

   if ((nmeds = 1) & (ncovs = 0) & (cluster = 0) & (model = 4)) then;do; 

     outp2=outp2||r245obs||(obs/abmmr); 

  clbs=clbs||"R-sq_med"||"kappa2"; 

   end; 

 end; 

    if ((boot = 0) & (mc = 0)) then;do; 

   if (nmeds = 1) then;do; 

     outp2=outp2[2,]; 

  rlbs=rlbs[2,1]; 

   end; 

   if (model=5) then;do; 

     outp2=outp2[,1:3]; 

   end; 

   print outp2 [label = "Indirect effect(s) of X on Y" rowname = rlbs 

colname = clbs format = &decimals]; 

      if ((contrast=1) & (effsize=1) & (nmeds > 1)) then;do; 

        outp2=indcon[1,]`; 

     rlbs2=cntname[1:ncol(indcon),1]; 

     print outp2 [label = "Contrast(s) between indirect effects" rowname 

= rlbs2 colname = clbs format = &decimals]; 

      end; 

    end; 

    if ((boot > 0) | (mc > 0)) then;do; 

      temp=indboot[,+];indboot=temp||indboot; 

   bootsz=boot; 

   if (mc > 0) then;do;bootsz=mc;end; 

   ones=j(bootsz,1,1); 

   if (conmake=1) then;do; 

     indboot=indboot||indcon; 

   end; 

   estmte=indboot[1,]; 

   indboot=indboot[2:(bootsz+1),]; 

   mnind=(indboot[+,]/bootsz)`; 

   tmp=indboot##2;tmp=tmp[+,]; 

      stdind=(sqrt((tmp-((indboot[+,]##2)/bootsz))/(bootsz-1)))`; 

      llci=j(1,ncol(indboot),-999); 

   ulci=j(1,ncol(indboot),-999); 

      do eee = 1 to ncol(indboot); 

  inpt=indboot[,eee];inpt2=(estmte[1,eee]*bconoff)+(9999*(1-

bconoff)); 

  %bcboot (databcbt=inpt,estmte=inpt2); 

  llci[1,eee]=llcit; 

  ulci[1,eee]=ulcit; 

  if ((badlo=1) & (llcit ^= priorlo)) then;do; 

    badend=badend||llcit; 

    priorlo=llcit; 

  end; 

  if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

    badend=badend||ulcit; 

    priorhi=ulcit; 

  end; 

   end; 

   if ((effsize=1) & (dichy=0)) then;do; 

     estmte=eff[1,]; 

  eff=eff[2:nrow(eff),]; 

  tmp=eff##2;tmp=tmp[+,]; 

        stdindf=(sqrt((tmp-((eff[+,]##2)/boot))/(boot-1)))`; 

        llcif=j(1,ncol(eff),-999); 

     ulcif=j(1,ncol(eff),-999); 

        do eee = 1 to ncol(eff); 

    inpt=eff[,eee];inpt2=(estmte[1,eee]*bconoff)+(9999*(1-bconoff)); 
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    %bcboot (databcbt=inpt,estmte=inpt2); 

    llcif[1,eee]=llcit; 

    ulcif[1,eee]=ulcit; 

    if ((badlo=1) & (llcit ^= priorlo)) then;do; 

      badend=badend||llcit; 

      priorlo=llcit; 

    end; 

    if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

      badend=badend||ulcit; 

      priorhi=ulcit; 

    end; 

     end; 

      end; 

 end; 

    if ((boot > 0) | (mc > 0)) then;do; 

   outp=obs||stdind||llci`||ulci`; 

   if (nmeds = 1) then;do; 

     outp=outp[2,];rlbs=rlbs[2,1]; 

   end; 

   clbs="Effect"||"Boot SE"||"BootLLCI"||"BootULCI"; 

   if (mc > 0) then;do; 

   clbs="Effect"||"MC SE"||"MC LLCI"||"MC ULCI"; 

   end; 

   print outp [label = "Indirect effect of X on Y" rowname = rlbs colname 

= clbs format = &decimals]; 

      if ((dichy=0) & (effsize = 1)) then;do; 

     

outp=psobs||stdindf[(2*(nmeds+1)+1):(3*(nmeds+1)),1]||(llcif[1,(2*(nmeds+1)+1

):(3*(nmeds+1))])`||(ulcif[1,(2*(nmeds+1)+1):(3*(nmeds+1))])`; 

        if (nmeds = 1) then;do; 

    outp=outp[2,]; 

  end; 

      print outp [label = "Partially standardized indirect effect of X on 

Y" rowname = rlbs colname = clbs format = &decimals]; 

        

outp=csobs||stdindf[(3*(nmeds+1)+1):(4*(nmeds+1)),1]||(llcif[1,(3*(nmeds+1)+1

):(4*(nmeds+1))])`||(ulcif[1,(3*(nmeds+1)+1):(4*(nmeds+1))])`; 

        if (nmeds = 1) then;do; 

    outp=outp[2,]; 

  end;     

      print outp [label = "Completely standardized indirect effect of X on 

Y" rowname = rlbs colname = clbs format = &decimals]; 

        

outp=pmobs||stdindf[1:(nmeds+1),1]||(llcif[1,1:(nmeds+1)])`||(ulcif[1,1:(nmed

s+1)])`; 

  if (model = 4) then;do; 

       if (nmeds = 1) then;do; 

      outp=outp[2,]; 

    end;     

        print outp [label = "Ratio of indirect to total effect of X on Y" 

rowname = rlbs colname = clbs format = &decimals]; 

          

outp=rmobs||stdindf[((nmeds+1)+1):(2*(nmeds+1)),1]||(llcif[1,((nmeds+1)+1):(2

*(nmeds+1))])`||(ulcif[1,((nmeds+1)+1):(2*(nmeds+1))])`; 

       if (nmeds = 1) then;do; 

      outp=outp[2,]; 

    end;     

        print outp [label = "Ratio of indirect to direct effect of X on Y" 

rowname = rlbs colname = clbs format = &decimals]; 

          if ((nmeds = 1) & (cluster = 0) & (ncovs = 0) & (model = 4)) 

then;do; 

      r245obs=r245obs[1,1]; 
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outp=r245obs||stdindf[(4*(nmeds+1)+1):(4*(nmeds+1)+1),1]||(llcif[1,(4*(nmeds+

1)+1):(4*(nmeds+1)+1)])`||(ulcif[1,(4*(nmeds+1)+1):(4*(nmeds+1)+1)])`; 

      print outp [label = "R-squared mediation effect size" rowname 

= rlbs colname = clbs format = &decimals]; 

            

outp=kappa2ob||stdindf[nrow(stdindf),1]||llcif[1,ncol(llcif)]||ulcif[1,ncol(u

lcif)]; 

      print outp [label = "Preacher and Kelley (2011) Kappa-squared" 

rowname = rlbs colname = clbs format = &decimals]; 

          end; 

  end; 

      end; 

    end; 

    if (normal = 1) then;do; 

   clbs2="Effect"||"se"||"Z"||"p"; 

   if (nmeds = 1) then;do; 

     print sobel [label = "Normal theory test for indirect effect" 

colname = clbs2 format = &decimals]; 

      end; 

      if (nmeds > 1) then;do; 

     rlbs2=rlbs[2:nrow(rlbs),1]; 

     print sobel [label = "Normal theory tests for specific indirect 

effects" rowname = rlbs2 colname = clbs2 format = &decimals]; 

      end; 

    end;  

 if (conmake = 1) then;do; 

    conkey=conkey[2:nrow(conkey),]; 

    conlbs=cntname[1:ncol(indcon),1]; 

    print conkey [label = "Specific indirect effect contrast definitions" 

rowname = conlbs]; 

 end; 

  end; *[dddd]; 

  if (model = 6) then;do; 

    clbs="Effect"; 

 rlbs="TOTAL"//mnames`; 

 obs=indboot[1,]`; 

 obsfsum=obs[+,]; 

 obs=obsfsum//obs; 

 indlbl=indlbl[1:nrow(obs),1]; 

 if (conmake = 1) then;do; 

   obs=obs//indcon[1,]`; 

      indlbl=indlbl//cntname[1:ncol(indcon),1]; 

 end; 

 obs2=obs; 

 if (boot = 0) then;do; 

   if ((dichy=0) & (effsize = 1)) then;do; 

     clbs="eff"||"eff_ps"||"eff_cs"||"eff/c"||"eff/c'"; 

  if (ncovs=0) then;do; 

       

obs=obs||obs/stddevy||obs*stddevx/stddevy||obs/ctot||obs/mmpaths[nrow(mmpaths

),1]; 

        end; 

  if ((ncovs > 0) | (clsdmy >  0)) then;do; 

       

obs=obs||obs/sdycov||obs*sdxcov/sdycov||obs/(obsfsum+mmpaths[nrow(mmpaths),1]

)||obs/mmpaths[nrow(mmpaths),1]; 

        end; 

  obs2=obs; 

  if (contrast=1) then;do; 

    obs2=obs[1:(nrow(obs)-concols),]; 

  end; 

   end; 
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   print obs2 [label = "Indirect effect(s) of X on Y" rowname = indlbl 

colname = clbs format = &decimals]; 

   if ((contrast=1) & (effsize=1)) then;do; 

     outp2=indcon[1,]`; 

  rlbs2=cntname[1:ncol(indcon),1]; 

  print outp2 [label = "Contrast(s) between indirect effects" 

rowname=rlbs2 colname=clbs format=&decimals]; 

   end; 

 end; 

 if (boot > 0) then;do; 

   ones=j(boot,1,1); 

   indboot=indboot[,+]||indboot; 

   if (conmake=1) then;do; 

     indboot=indboot||indcon; 

   end; 

   estmte=indboot[1,]; 

 /* here it is */; 

   indboot=indboot[2:(boot+1),]; 

   mnind=indboot[+,]/boot;mnind=mnind`; 

   tmp=indboot##2;tmp=tmp[+,]; 

      stdind=(sqrt((tmp-((indboot[+,]##2)/boot))/(boot-1)))`; 

   temp=nrow(indboot); 

   llci=j(1,ncol(indboot),-999); 

   ulci=j(1,ncol(indboot),-999); 

      do eee = 1 to ncol(indboot); 

  inpt=indboot[,eee];inpt2=(estmte[1,eee]*bconoff)+(9999*(1-

bconoff)); 

  %bcboot (databcbt=inpt,estmte=inpt2); 

  llci[1,eee]=llcit; 

  ulci[1,eee]=ulcit; 

  if ((badlo=1) & (llcit ^= priorlo)) then;do; 

    badend=badend||llcit; 

    priorlo=llcit; 

  end; 

  if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

    badend=badend||ulcit; 

    priorhi=ulcit; 

  end; 

   end; 

      obs=obs||stdind||llci`||ulci`; 

   clbs="Effect"||"Boot SE"||"BootLLCI"||"BootULCI"; 

      print obs [label = "Indirect effect(s) of X on Y" rowname = indlbl 

colname = clbs format = &decimals]; 

      if ((effsize=1) & (dichy=0)) then;do; 

     indboot=indboot[,1:(ncol(indboot)-concols)]; 

     

eff=abpseff[,+]||abpseff||abcseff[,+]||abcseff||pmeff[,+]||pmeff||rmeff[,+]||

rmeff; 

        effobs=eff[1,]; 

  /* here it is */; 

  eff=eff[2:nrow(eff),]; 

     tmp=eff##2;tmp=tmp[+,]; 

        stdindf=(sqrt((tmp-((eff[+,]##2)/boot))/(boot-1)))`; 

        llcif=j(1,ncol(eff),-999); 

  ulcif=j(1,ncol(eff),-999); 

        do eee = 1 to ncol(eff); 

    inpt=eff[,eee];inpt2=(effobs[1,eee]*bconoff)+(9999*(1-bconoff)); 

    %bcboot (databcbt=inpt,estmte=inpt2); 

    llcif[1,eee]=llcit; 

    ulcif[1,eee]=ulcit; 

    if ((badlo=1) & (llcit ^= priorlo)) then;do; 

      badend=badend||llcit; 

      priorlo=llcit; 
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    end; 

    if ((badhi=1) & (ulcit ^= priorhi)) then;do; 

      badend=badend||ulcit; 

      priorhi=ulcit; 

    end; 

     end; 

        temp2=stdindf[1:ncol(indboot),1]; 

  temp3=effobs[,1:ncol(indboot)]; 

  templow=llcif[1,1:ncol(indboot)]; 

  temphi=ulcif[1,1:ncol(indboot)]; 

  outp=temp3`||temp2||templow`||temphi`; 

  print outp [label = "Partially standardized indirect effect of X 

on Y" colname = clbs rowname = indlbl format = &decimals]; 

        temp2=stdindf[(ncol(indboot)+1):(2*ncol(indboot)),1]; 

  temp3=effobs[,(ncol(indboot)+1):(2*ncol(indboot))]; 

  templow=llcif[1,(ncol(indboot)+1):(2*ncol(indboot))]; 

  temphi=ulcif[1,(ncol(indboot)+1):(2*ncol(indboot))]; 

  outp=temp3`||temp2||templow`||temphi`; 

  print outp [label = "Completely standardized indirect effect of X 

on Y" colname = clbs rowname = indlbl format = &decimals]; 

        temp2=stdindf[(2*(ncol(indboot))+1):(3*ncol(indboot)),1]; 

        temp3=effobs[,(2*(ncol(indboot))+1):(3*ncol(indboot))]; 

        templow=llcif[1,(2*(ncol(indboot))+1):(3*ncol(indboot))]; 

  temphi=ulcif[1,(2*(ncol(indboot))+1):(3*ncol(indboot))]; 

  outp=temp3`||temp2||templow`||temphi`; 

  print outp [label = "Ratio of indirect to total effect of X on Y" 

colname = clbs rowname = indlbl format = &decimals]; 

        temp=eff[,(3*(ncol(indboot))+1):(4*(ncol(indboot)))]; 

  temp2=stdindf[(3*(ncol(indboot))+1):(4*ncol(indboot)),1]; 

  temp3=effobs[,(3*(ncol(indboot))+1):(4*ncol(indboot))]; 

  templow=llcif[1,(3*(ncol(indboot))+1):(4*ncol(indboot))]; 

  temphi=ulcif[1,(3*(ncol(indboot))+1):(4*ncol(indboot))]; 

  outp=temp3`||temp2||templow`||temphi`; 

  print outp [label = "Ratio of indirect to direct effect of X on Y" 

colname = clbs rowname = indlbl format = &decimals]; 

   end; 

    end; 

    if (nmeds = 2) then;do; 

   effkey=xname||"->"||mnames[1,1]||"->"||yname||" "||" "; 

   tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"-

>"||yname;effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,2]||"->"||yname||" "||" 

";effkey=effkey//tempkey; 

   effkey=indlbl[2:4,1]||effkey; 

 end; 

 if (nmeds = 3) then;do; 

   effkey=xname||"->"||mnames[1,1]||"->"||yname||" "||" "||" "||" "; 

   tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"->"||yname||" 

"||" ";effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,3]||"->"||yname||" 

"||" ";effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"-

>"||mnames[1,3]||"->"||yname;effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,2]||"->"||yname||" "||" "||" "||" 

";effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,2]||"->"||mnames[1,3]||"->"||yname||" 

"||" ";effkey=effkey//tempkey; 

   tempkey=xname||"->"||mnames[1,3]||"->"||yname||" "||" "||" "||" 

";effkey=effkey//tempkey; 

   effkey=indlbl[2:8,1]||effkey; 

 end; 

 if (nmeds = 4) then;do; 
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      effkey=xname||"->"||mnames[1,1]||"->"||yname||" "||" "||" "||" "||" 

"||" "; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,3]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,4]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"-

>"||mnames[1,3]||"->"||yname||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"-

>"||mnames[1,4]||"->"||yname||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,3]||"-

>"||mnames[1,4]||"->"||yname||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,1]||"->"||mnames[1,2]||"-

>"||mnames[1,3]||"->"||mnames[1,4]||"->"||yname;effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,2]||"->"||yname||" "||" "||" "||" "||" 

"||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,2]||"->"||mnames[1,3]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,2]||"->"||mnames[1,4]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,2]||"->"||mnames[1,3]||"-

>"||mnames[1,4]||"->"||yname||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,3]||"->"||yname||" "||" "||" "||" "||" 

"||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,3]||"->"||mnames[1,4]||"->"||yname||" 

"||" "||" "||" ";effkey=effkey//tempkey; 

      tempkey=xname||"->"||mnames[1,4]||"->"||yname||" "||" "||" "||" "||" 

"||" ";effkey=effkey//tempkey; 

   effkey=indlbl[2:16,1]||effkey; 

 end; 

    print effkey [label = "Indirect effect key"]; 

 if (conmake = 1) then;do; 

   conkey=conkey[2:nrow(conkey),]; 

   conlbs=cntname[1:ncol(indcon),1]; 

   print conkey [label = "Specific indirect effect contrast definitions" 

rowname = conlbs]; 

 end; 

  end; 

end; *[cccc]; 

if (bad > 0) then;do;note[notes,1]=9;notes=notes+1; 

end; 

print "****************************** ANALYSIS NOTES AND WARNINGS 

******************************"; 

do i = 1 to errs; 

  if (runerrs[i,1]=1) then;do; 

    print "ERROR: One of your declared mediators is dichotomous. This 

procedure cannot be used."; 

  end; 

  if (runerrs[i,1]=2) then;do; 

    print "ERROR: For model 6, this procedure limits the number of mediators 

to four."; 

  end; 

  if (runerrs[i,1]=3) then;do; 

    print "ERROR: For models 1, 2, and 3, only a single variable can be 

listed in the M list."; 

  end; 

  if (runerrs[i,1]=4) then;do; 

    print "ERROR: You requested a model involving W but did not provide a 

valid W variable name."; 

  end; 

  if (runerrs[i,1]=5) then;do; 
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    print "ERROR: You requested a model involving Z but did not provide a 

valid Z variable name."; 

  end; 

  if (runerrs[i,1]=6) then;do; 

    print "ERROR: You requested a model involving Q but did not provide a 

valid Q variable name."; 

  end; 

  if (runerrs[i,1]=7) then;do; 

    print "ERROR: You requested a model involving V but did not provide a 

valid V variable name."; 

  end; 

  if (runerrs[i,1]=8) then;do; 

    print "ERROR: You specified a W variable for a model that does not need 

it."; 

  end; 

  if (runerrs[i,1]=9) then;do; 

    print "ERROR: You specified a Z variable for a model that does not need 

it."; 

  end; 

  if (runerrs[i,1]=10) then;do; 

    print "ERROR: You specified a Q variable for a model that does not need 

it."; 

  end; 

  if (runerrs[i,1]=11) then;do; 

    print "ERROR: You specified a V variable for a model that does not need 

it."; 

  end; 

  if (runerrs[i,1]=12) then;do; 

    print "ERROR: The variable specified for W has already been assigned."; 

  end; 

  if (runerrs[i,1]=13) then;do; 

    print "ERROR: The variable specified for Z has already been assigned."; 

  end; 

  if (runerrs[i,1]=14) then;do; 

    print "ERROR: The variable specified for Q has already been assigned."; 

  end; 

  if (runerrs[i,1]=15) then;do; 

    print "ERROR: The variable specified for V has already been assigned."; 

  end; 

  if (runerrs[i,1]=16) then;do; 

    print "ERROR: You did not provide a valid Y variable name."; 

  end; 

  if (runerrs[i,1]=17) then;do; 

    print "ERROR: The variable specified for Y has already been assigned."; 

  end; 

  if (runerrs[i,1]=18) then;do; 

    print "ERROR: Model 6 requires more than one mediator."; 

  end; 

  if (runerrs[i,1]=19) then;do; 

    print "ERROR: You have not specified a valid model number."; 

  end; 

  if (runerrs[i,1]=20) then;do; 

    print "ERROR: At least one and only one variable must be listed for X."; 

  end; 

  if (runerrs[i,1]=21) then;do; 

    print "ERROR: At least one and only one variable must be listed for Y."; 

  end; 

  if (runerrs[i,1]=22) then;do; 

    print "ERROR: Iteration didn't converge to a solution. Interpret results 

with caution."; 

  end; 

  if (runerrs[i,1]=23) then;do; 
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    print "ERROR: You specified a clustering variable that does not exist in 

your variable list."; 

  end; 

  if (runerrs[i,1]=24) then;do; 

    print "ERROR: You specified a clustering variable that has already been 

assigned."; 

  end; 

  if (runerrs[i,1]=25) then;do; 

    print "ERROR: One of more of your M variables is not listed in the 

variables list."; 

  end; 

  if (runerrs[i,1]=26) then;do; 

    print "ERROR: A maximum of 20 cluster units is allowed. Use multilevel 

modeling instead."; 

  end; 

  if (runerrs[i,1]=27) then;do; 

    print "ERROR: One of the variables in your model is a constant."; 

  end; 

  if (runerrs[i,1]=28) then;do; 

    print "ERROR: Dichotomous Y is not permitted with WS option."; 

  end; 

  if (runerrs[i,1]=29) then;do; 

    print "ERROR: Insufficient number of variables in vars= list when using 

WS option."; 

  end; 

  if (runerrs[i,1]=30) then;do; 

    print "ERROR: Too many number of variables in vars= list when using WS 

option.  Covariates not allowed."; 

  end; 

  if (runerrs[i,1]=31) then;do; 

    print "ERROR: mmodval and wmodval cannot both be set to zero with 

contrast option."; 

  end; 

  if (runerrs[i,1]=32) then;do; 

    print "ERROR: You did not provide a valid X variable name."; 

  end; 

end; 

if (errs = 0) then;do; 

  if ((boot > 1) | (mc > 0)) then;do; 

    if ((bconoff = 1) & (boot > 0)) then;do; 

      print boot [label = "Number of bootstrap samples for bias corrected 

bootstrap confidence intervals:" format = 10.0]; 

    end; 

    if ((bconoff = 0) & (boot > 0)) then;do; 

      print boot [label = "Number of bootstrap samples for percentile 

bootstrap confidence intervals:" format = 10.0]; 

    end; 

    if (mc > 1) then;do; 

      print mc [label = "Number of samples for Monte Carlo confidence 

intervals:" format = 10.0]; 

    end; 

    if (booterr = 1) then;do; 

      badend=badend[1,2:(ncol(badend))]; 

   badend=badend`; 

      print badend [label = "WARNING: Bootstrap CI endpoints below not 

trustworthy. Decrease confidence or increase bootstraps" format = &decimals]; 

    end; 

  end; 

  print conf [label = "Level of confidence for all confidence intervals in 

output:" format = 10.4]; 

  if (((center = 1) | (ws=1)) & (ncol(centvar) > 0)) then;do; 

    centvar=centvar[1,2:ncol(centvar)]; 
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 print centvar [label = "NOTE: The following variables were mean centered 

prior to analysis:"];  

  end; 

  warnrep=0; 

  do i = 1 to notes; 

    if (note[i,1]=1) then;do; 

      print "NOTE: Confidence level restricted to between 50 and 99.9999%.  

95% confidence is provided."; 

    end; 

    if (note[i,1]=2) then;do; 

      print "NOTE: Effect size measures not available for models with 

dichotomous outcomes."; 

    end; 

    if (note[i,1]=3) then;do; 

      print "NOTE: All standard errors for continuous outcome models are 

based on the HC3 estimator."; 

    end; 

    if (note[i,1]=6) then;do; 

      print "NOTE: The number of bootstrap samples was adjusted upward given 

your desired confidence."; 

    end; 

    if (note[i,1]=7) then;do; 

      print "NOTE: The Johnson-Neyman method is available only for models 1 

and 3."; 

    end; 

    if (note[i,1]=8) then;do; 

      print "NOTE: The Johnson-Neyman method cannot be used with a 

dichotomous moderator."; 

    end; 

    if (note[i,1]=9) then;do; 

      print bad [label = "NOTE: Some bootstrap samples had to be replaced. 

The number of such replacements was:" format = 10.0]; 

    end; 

    if (note[i,1]=11) then;do; 

      print nmiss [label = "NOTE: Some cases were deleted due to missing 

data. The number of such cases was:" format = 10.0]; 

    end; 

 if (note[i,1]=12) then;do; 

      print "NOTE: Monte Carlo method available only for models 4 and 5.  

Bootstrapping was used instead."; 

    end; 

    if (note[i,1]=13) then;do; 

      print "NOTE: The number of Monte Carlo samples was adjusted upward 

given your desired confidence."; 

    end; 

 if (note[i,1]=19) then;do; 

      print "NOTE: Effect sizes not available for within-subject analyses."; 

    end; 

    if (note[i,1]=16) then;do; 

      print "NOTE: Normal theory tests not available for within-subject 

analyses.";  

    end; 

    if (note[i,1]=17) then;do; 

      print "NOTE: Monte Carlo confidence intervals not available for within-

subject analyses.";  

    end; 

 if (note[i,1]=18 & warnrep=0) then;do; 

      print "WARNING: You have requested OLS estimation with a dichotomous 

criterion."; 

      print "Interpret model coefficients and inferential statistics with 

caution.";  

      warnrep=1; 

    end; 
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    if (note[i,1]=20) then;do; 

      print "NOTE: Saving of bootstrap estimates not available for within-

subject analyses."; 

    end; 

 if (note[i,1]=22) then;do; 

      print "NOTE: Effect size option with covariates requires covariates in 

models of M and Y."; 

    end; 

  end; 

end; 

quit; 

options pagesize=54; 

%mend; 
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