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Arithmetically Cohen–Macaulay bundles

on cubic threefolds

Mart́ı Lahoz, Emanuele Macr̀ı and Paolo Stellari

Abstract

We study arithmetically Cohen–Macaulay bundles on cubic threefolds by using derived
category techniques. We prove that the moduli space of stable Ulrich bundles of any
rank is always non-empty by showing that it is birational to a moduli space of semistable
torsion sheaves on the projective plane endowed with the action of a Clifford algebra.
We describe this birational isomorphism via wall-crossing in the space of Bridgeland
stability conditions, in the example of instanton sheaves of minimal charge.

Introduction

Fourier–Mukai techniques to study stable vector bundles on surfaces have been an extremely
useful tool for more than 30 years. In this paper, we use a construction by Kuznetsov to generalize
such a circle of ideas and study arithmetically Cohen–Macaulay (ACM) stable vector bundles on
smooth projective cubic hypersurfaces. The basic idea is to use a semiorthogonal decomposition
of the derived category of coherent sheaves to “reduce dimension”. The disadvantage of this
approach is that we have to consider complexes and a notion of stability for them; this forces us
to restrict to the cubic threefold case (and to special examples in the fourfold case, treated in a
forthcoming paper). The advantage is that this may lead to a general approach to study ACM
stable bundles in higher dimensions.

ACM bundles and semiorthogonal decompositions

Let Y ⊂ Pn+1 be a smooth complex cubic n-fold, and let OY (H) denote the corresponding
very ample line bundle. A vector bundle F on Y is called arithmetically Cohen–Macaulay if
dimH i(Y, F (jH)) = 0 for all i = 1, . . . , n − 1 and all j ∈ Z. In algebraic geometry, the interest
in studying stable ACM bundles (and their moduli spaces) on projective varieties arose from the
papers [Beau02, Dru00, Ili99, IM00, MT01]. In fact, in [Dru00] it is proved that the moduli space
of rank two instanton sheaves on a cubic threefold is isomorphic to the blow-up of the intermediate
Jacobian in (minus) the Fano surface of lines. The intermediate Jacobian can be used both to
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control the isomorphism type of the cubic, via the Clemens–Griffiths/Tyurin Torelli theorem,
and to prove the non-rationality of the cubic (see [CG72]). From a more algebraic viewpoint,
ACM bundles correspond to maximal Cohen–Macaulay (MCM) modules over the graded ring
associated with the projectively embedded variety, and as such they have been extensively studied
in the past years (see, for example, [Yos90]).

In a different direction, Kuznetsov studied in [Kuz04] semiorthogonal decompositions of the
derived category of a cubic hypersurface. In fact, as we review in Section 1.1, there exists a non-
trivial triangulated subcategory TY ⊂ Db(Y ) which might encode the birational information of
the cubic. For example, in the case of a cubic threefold Y , it is proven in [BMMS12] that the
isomorphism class of Y can be recovered directly from TY as a sort of “categorical version” of
the Clemens–Griffiths/Tyurin Torelli Theorem. In [Kuz10] it is conjectured that a cubic fourfold
is rational if and only if the category TY is equivalent to the derived category of a K3 surface.
For the interpretation of TY as a category of matrix factorization, we refer to [Orl09], while
[BB13] deals with the interpretation as a summand of the Chow motive of Y.

For cubic threefolds, a different description of TY is available, via Kuznetsov’s semiorthogonal
decomposition of the derived category of a quadric fibration (see [Kuz08]). Indeed, as we review
in Section 1.3, TY is equivalent to a full subcategory of the derived category of sheaves on P2 with
the action of a sheaf of Clifford algebras B0 (determined by fixing a structure of quadric fibration
on the cubic). We denote by Ξ : TY ↪→ Db(P2,B0) the induced fully faithful functor. The key
observation (which is not surprising if we think of ACM bundles as MCM modules, see [CH11,
Section 2] and [Orl09]) is the following: given a stable ACM bundle F on Y , a certain twist of F
by the very ample line bundle OY (H) belongs to TY (this is Lemma 1.6). Hence, the idea is to
study basic properties of ACM bundles on Y (for example, existence and irreducibility of the
moduli spaces) by using the functor Ξ, and so by considering them as complexes of B0-modules
on P2. The principle is that, since Db(P2,B0) has dimension two, although it is not intrinsic to
the cubic, it should still lead to several simplifications. The main question now becomes whether
there exists a notion of stability for objects in Db(P2,B0) which corresponds to the usual stability
for ACM bundles. In this paper we suggest that, for cubic threefolds, such a notion of stability
in Db(P2,B0) should be Bridgeland stability [Bri07].

Results

Let Y be a cubic threefold. By fixing a line l0 in Y , the projection from l0 to P2 gives a structure
of a conic fibration on (a blow-up of) Y . The sheaf of algebras B0 on P2 mentioned before is
nothing but the sheaf of even parts of the Clifford algebras associated with this conic fibration (see
[Kuz10]). Denote by Coh(P2,B0) the abelian category of coherent B0-modules and by Db(P2,B0)
the corresponding bounded derived category.

As a first step in the study of ACM bundles on Y , we consider the moduli spaces Md of
Gieseker stable B0-modules in Coh(P2,B0) with Chern character (0, 2d,−2d), for any d > 1.
These moduli spaces are tightly related to the geometry of Y and the first general result we can
prove is the following (see Theorem 2.12).

Theorem A. The moduli space Md is irreducible with a morphism Υ : Md → |OP2(d)| whose
fiber over a general smooth curve C in |OP2(d)| is the disjoint union of 25d−1 copies of the
Jacobian of C. Moreover, the stable locus Ms

d is smooth of dimension d2 + 1.

The geometry of M1 and M2 can be understood more explicitly. Indeed, it turns out that
M1 is the Fano variety of lines in Y blown up at the line l0 (see Proposition 2.13). On the
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other hand, M2 is a birational model of the intermediate Jacobian of Y (see Theorem 3.10 for a
more detailed statement). Both results are obtained via wall-crossing in the space of Bridgeland
stability conditions on the triangulated category Db(P2,B0). Notice that such a wall-crossing
depends on the choice of a line inside the cubic threefold. As a corollary, one gets that the
moduli space of instanton sheaves on Y (of charge two) is isomorphic to a moduli space of
Bridgeland stable objects in Db(P2,B0) with prescribed Chern character (see Theorem 3.10).

As TY can be naturally identified with a full subcategory of Db(P2,B0), via the functor Ξ,
one may want to consider objects of Md which are contained in TY . These generically correspond
to ACM bundles on Y . This way we can achieve the following theorem, which generalizes one of
the main results in [CHGS12].

Theorem B. Let Y be a cubic threefold. Then, for any r > 2, the moduli space of stable rank r
Ulrich bundles is non-empty and smooth of dimension r2 + 1.

Recall that an Ulrich bundle E is an ACM bundle whose graded module
⊕

m∈ZH
0(Y,E(m))

has 3 rk(E) generators in degree one (see Section 2.5 for a discussion about the chosen normal-
ization). Compared to the first part of [CHGS12, Theorem 1.2], our result removes the genericity
assumption.

We believe that Theorem A will also be useful in studying the irreducibility of the moduli
space of stable Ulrich bundles. In fact, we expect the functor Ξ to map all stable Ulrich bundles
on Y to Bridgeland stable objects in Db(P2,B0), thus generalizing Theorem 3.10 to the case
r > 2.

It is maybe worth pointing out that the proof of Theorem B, which is contained in Section
2.5, is based upon the same deformation argument as in [CHGS12]. The main difference is that,
by using our categorical approach and the moduli spaces Md, we can make it work also for small
rank (r = 2, 3). Indeed, the argument in [CHGS12] relies on the existence of an ACM curve on Y
of degree twelve and genus ten, proved by Geiß and Schreyer in the appendix to [CHGS12], only
for a generic cubic threefold, using Macaulay2. Moreover, although we have focused on cubic
threefolds, we believe that our approach might work for any quadric fibration. In particular,
other interesting Fano threefolds of Picard rank one are the intersection of three quadrics in P6,
the quartic hypersurface containing a double line, and the double covering of P3 ramified along
a quartic with an ordinary double point (see [Beau77]).

Related work

The idea of using semiorthogonal decompositions to study ACM bundles by reducing dimension
is influenced by [Kuz12]. More precisely, in loc. cit., Kuznetsov proposes to understand the
geometry of moduli spaces of instanton bundles (of any charge) on cubic threefolds via the
category Db(P2,B0) and the functor Ξ.

There have been many studies about ACM bundles of rank two in dimensions two and three.
Besides the already mentioned results on instanton bundles on cubic threefolds, some papers in
this direction are [AM09, BF09, CF09, CM05, Mad00]. The higher rank case has been investigated
in [AG99, AM09, Mad05]. The papers [Mir10] and [PLT09] give a few examples of indecomposable
ACM bundles of arbitrarily high rank. The already mentioned papers [CH11, CHGS12] contain
a systematic study of stable ACM bundles in higher rank on cubic surfaces and threefolds. A
general existence result for Ulrich bundles on hypersurfaces is given in [HUB91].

Regarding preservation of stability via the functor Ξ, the papers [BMMS12, MS12] study the
case of ideal sheaves of lines on a cubic threefold.
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Plan of the paper

This paper is organized as follows. Section 1 collects basic facts about semiorthogonal decompo-
sitions and general results about ACM bundles on cubic hypersurfaces. In particular, we show
that stable ACM bundles are objects of TY (up to twists) and state a simple cohomological
criterion for a coherent sheaf in TY to be ACM (see Lemmas 1.6 and 1.9). In Section 1.3 we
review Kuznetsov’s work on quadric fibrations.

Section 2 concerns the case of cubic threefolds where the first two results mentioned above
are proved. The argument is based on a detailed description of the easiest case of M1, which
involves Bridgeland stability conditions (see Section 2.2). Some background on the latter subject
is provided in the same section. In Sections 2.4 and 2.5 we prove Theorems A and B, respectively.
The geometric applications to some simple wall-crossing phenomena are described in detail in
Section 3, where we study the geometry of M2 and its relation to instanton bundles.

Notation

Throughout this paper we work over the complex numbers. For a smooth projective variety X,
we denote by Db(X) the bounded derived category of coherent sheaves on X. We refer to [Huy06]
for basics on derived categories. If X is not smooth, we denote by Xreg the regular part of X. We
set homi(−,−) := dim Homi(−,−), where Homi(−,−) is computed in an abelian or triangulated
category which will be specified each time. This paper assumes some familiarity with basic
constructions and definitions about moduli spaces of stable bundles. For example, we do not
define explicitly the notion of slope and Gieseker stability, of Harder–Narasimhan (HN) and
Jordan–Hölder (JH) factors of a (semistable) vector bundle. For this, we refer to [HL10]. The
same book is our main reference for the standard construction of moduli spaces of stable sheaves.
For the twisted versions of them we refer directly to [Sim94, Lie07].

In the following, we will use the short-hand notation (semi)stable to refer to stable (respec-
tively, semistable). Gieseker stability will be simply called stability, while slope stability will be
called µ-stability.

1. The derived category of a cubic hypersurface

In this section we show that, on a smooth cubic hypersurface Y , all stable ACM bundles are well
behaved with respect to Kuznetsov’s semiorthogonal decomposition of the derived category. In
particular, after recalling the notion of semiorthogonal decomposition of a derived category, we
show that stable ACM bundles on Y belong to the non-trivial component TY of Db(Y ), up to
twists by line bundles. We also introduce one of the basic tools for studying the derived category
of cubic threefolds: Kuznetsov’s description of the derived category of a quadric fibration.

1.1 Semiorthogonal decompositions

Let X be a smooth projective variety, and let Db(X) be its bounded derived category of coherent
sheaves.

Definition 1.1. A semiorthogonal decomposition of Db(X) is a sequence of full triangulated
subcategories T1, . . . ,Tm ⊆ Db(X) such that HomDb(X)(Ti,Tj) = 0 for i > j, and for all

G ∈ Db(X), there exists a chain of morphisms in Db(X)

0 = Gm → Gm−1 → . . .→ G1 → G0 = G

234



ACM bundles on cubic threefolds

with cone(Gi → Gi−1) ∈ Ti for all i = 1, . . . ,m. We will denote such a decomposition by
Db(X) = 〈T1, . . . ,Tm〉.

Definition 1.2. An object F ∈ Db(X) is exceptional if Homp
Db(X)

(F, F ) = 0 for all p 6= 0, and

HomDb(X)(F, F ) ∼= C. A collection {F1, . . . , Fm} of objects in Db(X) is called an exceptional
collection if Fi is an exceptional object for all i, and Homp

Db(X)
(Fi, Fj) = 0 for all p and all i > j.

Remark 1.3. An exceptional collection {F1, . . . , Fm} in Db(X) provides a semiorthogonal decom-
position

Db(X) = 〈T, F1, . . . , Fm〉 ,
where, by abuse of notation, we denoted by Fi the triangulated subcategory generated by Fi
(equivalent to the bounded derived category of finite dimensional vector spaces). Moreover,

T := 〈F1, . . . , Fm〉⊥ =
{
G ∈ Db(X) : Homp(Fi, G) = 0 for all p and i

}
.

Similarly, one can define ⊥〈F1, . . . , Fm〉 = {G ∈ T : Homp(G,Fi) = 0 for all p and i}.

Let F ∈ Db(X) be an exceptional object. Consider the two functors, respectively left and
right mutation, LF ,RF : Db(X)→ Db(X) defined by

LF (G) := cone (ev : RHom(F,G)⊗ F → G)

RF (G) := cone
(
ev∨ : G→ RHom(G,F )∨ ⊗ F

)
[−1] ,

(1.1.1)

where RHom(−,−) := ⊕p Homp
Db(X)

(−,−)[−p]. More intrinsically, let ι⊥F and ιF⊥ be the full

embeddings of ⊥F and F⊥, respectively, into Db(X). Denote by ι∗⊥F and ι!⊥F the left and right

adjoints of ι⊥F and by ι∗
F⊥

and ι!
F⊥

the left and right adjoints of ιF⊥ , respectively. Then LF =

ιF⊥ ◦ ι∗F⊥ , while RF = ι⊥F ◦ ι!⊥F (see, for example, [Kuz07, Section 2]).

The main property of mutations is that, given a semiorthogonal decomposition of Db(X)

〈T1, . . . ,Tk, F,Tk+1, . . . ,Tn〉 ,

we can produce two new semiorthogonal decompositions

〈T1, . . . ,Tk,LF (Tk+1), F,Tk+2, . . . ,Tn〉

and

〈T1, . . . ,Tk−1, F,RF (Tk),Tk+1, . . . ,Tn〉 .

Let us specify the relation between left and right mutations that will be used throughout this
paper. Denote by SX = (−)⊗ωX [dim(X)] the Serre functor of X. We have the following lemma
(which actually works more generally for any admissible subcategory in Db(X)).

Lemma 1.4. If F is an exceptional object, then RSX(F ) is right adjoint to LF while RF is left
adjoint to LF .

Proof. This follows from the remark that ⊥(SX(F )) = F⊥ and by using adjunction between the
functors ι∗D, ιD, and ι!D for D equal to ⊥F or to F⊥.

1.2 ACM bundles on cubics

Let Y be a smooth cubic n-fold, namely a smooth projective hypersurface of degree three in
Pn+1. We set OY (H) := OPn+1(H)|Y . According to Remark 1.3, as observed by Kuznetsov, the
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derived category Db(Y ) of coherent sheaves on Y has a semiorthogonal decomposition

Db(Y ) = 〈TY ,OY ,OY (H), . . . ,OY ((n− 2)H)〉 , (1.2.1)

where, by definition,

TY := 〈OY , . . . ,OY (n− 2)〉⊥

=
{
G ∈ Db(Y ) : Homp

Db(Y )
(OY (iH), G) = 0 for all p and i = 0, . . . , n− 2

}
.

Let us first recall the following definition.

Definition 1.5. (i) A vector bundle F on a smooth projective variety X of dimension n is
arithmetically Cohen–Macaulay (ACM) if dimH i(X,F (jH)) = 0 for all i = 1, . . . , n− 1 and all
j ∈ Z.

(ii) An ACM bundle F is called balanced if µ(F ) ∈ [−1, 0).

The following lemmas show that the category TY and stable ACM bundles are closely related.

Lemma 1.6. Let Y ⊂ Pn+1 be a smooth cubic n-fold. Let F be a balanced µ-stable ACM bundle
with rk(F ) > 1. Then F ∈ TY .

Proof. We want to show that hi(Y, F (−jH)) = 0 for all i ∈ Z and j ∈ {0, . . . , n− 2}. Since F
is ACM, we already have hi(Y, F (−jH)) = 0 for i ∈ {1, . . . , n− 1} and any j. Hence, we only
need to prove that h0(Y, F (−jH)) = hn(Y, F (−jH)) = 0 for j ∈ {0, . . . , n− 2}. But, on the one
hand, we have

h0(Y, F (−jH)) = hom(OY (jH), F ) = 0

for j > 0, since F is µ-semistable with µ(F ) < 0. On the other hand,

hn(Y, F (−jH)) = extn(OY (jH), F ) = hom(F,OY ((−n+ 1 + j)H)) = 0

for −n + 1 + j < −1, because F is µ-semistable with −1 6 µ(F ). It remains to prove that the
vector space Hom(F,OY ((−n+ 1 + j)H)) is trivial for j = n− 2. But this is immediate, since F
is a µ-stable sheaf of rank greater than one.

Remark 1.7. The previous lemma can be generalized slightly. Indeed, the same proof works for a
balanced ACM bundle of rank greater than one, if it is µ-semistable and Hom(F,OY (−H)) = 0.

Remark 1.8. When n = 4, the Serre functor of the subcategory TY is isomorphic to the shift
by two (see [Kuz10, Theorem 4.3]). Thus, as an application of the result above and [KM09,
Theorem 4.3], one gets that the smooth locus of any moduli space of µ-stable ACM vector
bundles on Y carries a closed symplectic form.

Lemma 1.9. Let Y ⊂ Pn+1 be a smooth cubic n-fold and let F ∈ Coh(Y ) ∩TY . Assume

H1(Y, F (H)) = 0 ,

H1(Y, F ((1− n)H)) = . . . = Hn−1(Y, F ((1− n)H)) = 0 .
(1.2.2)

Then F is an ACM bundle.

Proof. We start by proving that H i(Y, F (jH)) = 0 for all i = 1, . . . , n− 1 and all j ∈ Z. Denote
by i : Y ↪→ Pn+1 the embedding of Y . For m ∈ Z, we recall the Beilinson spectral sequence from
[Huy06, Proposition 8.28]:

Ep,q1 := Hq(Pn+1, i∗F (p+m))⊗ Ω−pPn+1(−p)⇒ Ep+q =

{
F (m) if p+ q = 0 ,

0 otherwise.
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We first consider the case when m = 1. Since F ∈ TY , we have Ep,q1 = 0 for p = −n+1, . . . ,−1

and all q. By assumption, Ep,q1 = 0, also for p = −n and q = 1, . . . , n − 1, and E0,1
1 = 0. As

a consequence, all the differentials d−n−1,qr are 0 for all q = 1, . . . , n − 1 and all r > 0. Hence,
E−n−1,q1 = 0 for all q = 1, . . . , n− 1. A similar argument shows that E0,q

1 = 0 for all q = 1, . . . , n.
Summing up, we have the following vanishing:

H i(Y, F (jH)) = 0 for all i = 1, . . . , n− 1 and all j = −n, . . . , 0, 1 , (1.2.3)

H0(Y, F (jH)) = 0 for all j 6 0 , (1.2.4)

Hn(Y, F (jH)) = 0 for all j > −n+ 2 . (1.2.5)

Now, on the one hand, by using the Beilinson spectral sequence for m > 1 and the vanishing
(1.2.3) and (1.2.4), we can prove by induction on m that

H i(Y, F (jH)) = 0 for all i = 1, . . . , n− 1 and all j 6 0 . (1.2.6)

On the other hand, for m < 1, the vanishing (1.2.3) and (1.2.5) show

H i(Y, F (jH)) = 0 for all i = 1, . . . , n− 1 and all j > 0 .

To finish the proof of the lemma, we only need to show that F is locally-free. Hence, it is
enough to prove that Ext i(F,OY ) = 0 for all i > 0. For k ∈ Z, consider the local-to-global
spectral sequence

Ep,q2 (k) = Hp(Y, Extq(F (k),OY ))⇒ Extp+q(F (k),OY ) . (1.2.7)

Assume, for a contradiction, that Ext i(F,OY ) 6= 0 for some i > 0. Then, for k � 0, E0,i
2 (k) 6= 0,

while Ep,i2 (k) = 0 for p > 0. From the spectral sequence and Serre duality, we deduce that
Hn−i(Y, F ((k−n+1)H)) 6= 0 for i = 1, . . . , n and for k � 0, contradicting (1.2.6) and (1.2.4).

Finally, for later use, we recall how to construct autoequivalences of TY (not fixing the
intersection Coh(Y ) ∩TY ).

Lemma 1.10. Let Y ⊂ Pn+1 be a smooth cubic n-fold. Then, the functor

Θ : TY → TY , F 7→ LOY
(F ⊗OY (H))

is an autoequivalence of TY .

Proof. Clearly LOY
(F ⊗OY (H)) belongs to TY , and the inverse of Θ is given by the exact

functor Θ−1(−) := OY (−H)⊗ROY
(−).

Let us revise a classical example under a slightly different perspective.

Example 1.11. Denote by MY (v) the moduli space of µ-stable torsion-free sheaves E on Y
with v := ch(E) = (2,−H,−l/2, 1/2), and let F (Y ) be the Fano surface of lines contained in a
cubic threefold Y . In [BBR08, Theorem 1] it is proven that there exists a connected component
M′Y (v) ⊂MY (v) consisting of µ-stable ACM bundles such that M′Y (v) ∼= F (Y ).

This can be obtained by using a slightly different approach. First of all, observe that the ideal
sheaves of lines Il is an element of TY for all l ⊂ Y and that F (Y ) is the moduli space of these
sheaves. By applying Θ[−1] (see Lemma 1.10), we get an exact sequence in Coh(Y )

0→ Fl := Θ(Il)[−1]→ OY ⊗C H
0(Y, Il(H))→ Il(H)→ 0 . (1.2.8)

In particular, all Fl are torsion-free sheaves with Chern character v. By (1.2.8) and Lemma 1.9,
we deduce that Fl are all ACM bundles. Since they belong to TY , we have H0(Y, Fl) = 0 and as
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they have rank two, this shows that they are µ-stable. By construction, the Fano variety of lines
is then a connected component of MY (v).

By [BBR08, Lemma 1], the connected component M′Y (v) can also be characterized as the
component of MY (v) consisting of µ-stable torsion-free sheaves G satisfying H0(Y,G(H)) 6= 0
and H0(Y,G) = 0. Also, by Lemma 1.6 and by [BMMS12, Theorem 4.1 and Proposition 4.2], all
balanced µ-stable ACM bundles G with Ext1(G,G) ∼= C2 are in M′Y (v).

Remark 1.12. The original proof in [BBR08] of the result in Example 1.11 relies on the so called
Serre’s construction which we briefly recall in a more general form (see, for example, [Arr07]).
Let X be a smooth projective manifold of dimension at least three and let E be a rank r vector
bundle on X which is spanned by its global sections. The dependency locus of r − 1 general
sections s1, . . . , sr−1 of E is a locally complete intersection subscheme V of codimension two in
X. If L = det(E), then the twisted canonical bundle KV ⊗ L−1 is generated by r − 1 sections.

Conversely, let V a codimension two locally complete intersection subscheme of X and let L
be a line bundle on X such that H2(X,L−1) = 0. If KV ⊗ L−1 is generated by r − 1 global
sections, then V can be obtained as the dependency locus of r − 1 sections of E.

This construction is ubiquitous in the literature and it has been extensively used in various
papers to produce examples of stable ACM bundles.

1.3 Quadric fibrations

The results of [Kuz08] on the structure of the derived category of coherent sheaves on a fibration
in quadrics will be the basic tools to study the derived category of cubic threefolds. We briefly
summarize them here.

Consider a smooth algebraic variety S and a vector bundle E of rank n on S. We consider the
projectivization q : PS(E)→ S of E on S endowed with the line bundle OPS(E)/S(1). Given a line

bundle L on S and an inclusion of vector bundles σ : L→ Sym2E∨, we denote by α : X ↪→ PS(E)
the zero locus of σ and by π : X → S the restriction of q to X. It is not difficult to prove that π
is a flat quadric fibration of relative dimension n− 2. The geometric picture can be summarized
by the following diagram:

X �
� α //

π
''

PS(E)

q

��
S .

The quadric fibration π : X → S carries a sheaf Bσ of Clifford algebras. In fact, Bσ is the
relative sheafified version of the classical Clifford algebra associated with a quadric on a vector
space (more details can be found in [Kuz08, Section 3]). As in the absolute case, Bσ has an even
part B0 whose description as an OS-module is as follows:

B0 ∼= OS ⊕ (∧2E ⊗ L)⊕ (∧4E ⊗ L2)⊕ . . .

The odd part B1 of Bσ is such that

B1 ∼= E ⊕ (∧3E ⊗ L)⊕ (∧5E ⊗ L2)⊕ . . .

We also write B2i = B0 ⊗ L−i and B2i+1 = B1 ⊗ L−i.
We write Coh(S,B0) for the abelian category of coherent B0-modules on S and Db(S,B0) for

its derived category.
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Theorem 1.13 ([Kuz08, Theorem 4.2]). If π : X → S is a quadric fibration as above, then there
exists a semiorthogonal decomposition

Db(X) = 〈Db(S,B0), π∗(Db(S))⊗OX/S(1), π∗(Db(S))⊗OX/S(2), . . . , π∗(Db(S))⊗OX/S(n−2)〉 ,

where Db(S,B0) is the derived category of coherent sheaves of B0-modules on S.

In order to make this result precise, we need to give the definition of the fully faithful functor
Db(S,B0) → Db(X) providing the embedding in the semiorthogonal decomposition above. The
exact functor Φ := ΦE ′ : Db(S,B0)→ Db(X) is defined as the Fourier–Mukai transform

ΦE ′(−) := π∗(−)⊗π∗B0 E ′ ,

where E ′ ∈ Coh(X) is a rank 2n−2 vector bundle on X with a natural structure of flat left
π∗B0-module defined by the short exact sequence

0 −→ q∗B0 ⊗OPS(E)/S(−2) −→ q∗B1 ⊗OPS(E)/S(−1) −→ α∗E ′ −→ 0 . (1.3.1)

In the notation of [Kuz08, Lemma 4.5], E ′ = E ′−1,1. The left adjoint functor of Φ is

Ψ(−) := π∗((−)⊗OX
E ⊗OX

detE∨[n− 2]) , (1.3.2)

where E ∈ Coh(X) is another rank 2n−2 vector bundle with a natural structure of right π∗B0-
module (see again [Kuz08, Section 4]). The analogous presentation of E is

0 −→ q∗B−1 ⊗OPS(E)/S(−2) −→ q∗B0 ⊗OPS(E)/S(−1) −→ α∗E −→ 0 . (1.3.3)

In the notation of [Kuz08, Lemma 4.5], E = E−1,0.
The category of B0-modules may be hard to work with directly. In some cases, we can reduce

to a category of modules over a sheaf of Azumaya algebras, which is easier to deal with. We
conclude this section by recalling this interpretation (see [Kuz08, Sections 3.5 and 3.6]). We
define S1 ⊂ S to be the degeneracy locus of π, namely the subscheme parametrizing singular
quadrics, and S2 ⊂ S1 to be the locus of singular quadrics of corank at least two. There are two
separate cases to consider, according to parity of n.

In this paper we just need to study the case when n is odd. To this end, let f : Ŝ → S be the
stack of second roots of OS(S1) along the section S1. An object of this stack over T → S is a triple
(L, φ, δ), where L is a line bundle over T , φ is an isomorphism of L2 with the pullback of OS(S1)
to T , and δ is a section of L such that φ(δ2) = S1 (see [AGV08, Cad07]). Locally over S, the
category of coherent sheaves on Ŝ can be identified with the category of coherent sheaves on the
double covering of S ramified along S1 which are Z/2Z-equivariant with respect to the involution
of the double covering (which only exists locally), that is, the category of coherent sheaves on
the quotient stack of the double cover by the involution. Kuznestov calls the noncommutative
variety Ŝ, “S with a Z/2Z-stack structure along S1” (see [Kuz08, Example 2.2]).

Proposition 1.14 ([Kuz08, Proposition 3.15]). There exists a sheaf of algebras A0 on Ŝ such
that f∗A0 = B0 and that

f∗ : Coh(Ŝ,A0)
∼−→ Coh(S,B0)

is an equivalence of categories. Moreover, the restriction of A0 to the complement of Ŝ2 = f−1(S2)
in Ŝ is a sheaf of Azumaya algebras.

This will be the case for any cubic threefold. In fact, since we have assumed from the beginning
that a cubic threefold is smooth and that the projection line is generic, S1 is smooth and S2 is
empty.
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2. Cubic threefolds

This section contains the proofs of our main results on ACM bundles on cubic threefolds. The
goal is to generalize a result of Casanellas–Hartshorne on Ulrich bundles.

As explained in the introduction, the idea is to use Kuznetsov’s results on quadric fibrations
to reduce the problem of studying ACM bundles on a cubic threefold to the study of complexes
of sheaves on P2 with the action of a sheaf of Clifford algebras B0.

The main technical parts are Sections 2.2 and 2.3; there we prove some results on moduli
spaces of objects in Db(P2,B0) which are stable with respect to a Bridgeland stability condition.
We come back to Ulrich bundles on cubic threefolds in Section 2.5.

2.1 The setting

Let Y ⊂ P4 be a cubic threefold. Let l0 ⊆ Y be a general line and consider the blow-up P̃ of P4

along l0. By “general” we mean that, if l is any other line meeting l0, then the plane containing
them intersects the cubic in three distinct lines (we just avoid the lines of second type, see [CG72,
Definition 6.6]). We set q : P̃→ P2 to be the P2-bundle induced by the projection from l0 onto a
plane and we denote by Ỹ the strict transform of Y via this blow-up. The restriction of q to Ỹ
induces a conic fibration π : Ỹ → P2. The geometric picture can be summarized by the following
diagram:

D

s

��

� � // Ỹ �
� α //

σ

��
π

**

P̃ = PP2(O⊕2P2 ⊕OP2(−h))

q

��
l0
� � // Y ⊂ P4 P2 .

In particular, the vector bundle E on S = P2 introduced in Section 1.3 is now O⊕2P2 ⊕OP2(−h).

Set D ⊂ Ỹ to be the exceptional divisor of the blow-up σ : Ỹ → Y . We denote by h both the
class of a line in P2 and its pull-backs to P̃ and Ỹ . We call H both the class of a hyperplane in
P4 and its pull-backs to Y , P̃, and Ỹ . We recall that O

Ỹ
(D) ∼= OỸ (H − h), the relative ample

line bundle is OP̃(H), the relative canonical bundle is OP̃(h− 3H), and the dualizing line bundle
ω
Ỹ

is isomorphic to O
Ỹ

(−h−H) (see, for example, [Kuz10, Lemma 4.1]).

The sheaf of even (respectively, odd) parts of the Clifford algebra corresponding to π, from
Section 1.3, specializes in the case of cubic threefolds to

B0 ∼= OP2 ⊕OP2(−h)⊕OP2(−2h)⊕2,

B1 ∼= O⊕2P2 ⊕OP2(−h)⊕OP2(−2h) ,
(2.1.1)

as sheaves of OP2-modules. The rank two vector bundles E ′ and E sit in the short exact sequences
provided by (1.3.1) and (1.3.3), respectively, where L = OP2(−h).

Following [Kuz10] and [BMMS12, Section 2.1], one can give a description of the full sub-
category TY in the semiorthogonal decomposition (1.2.1) of Db(Y ). Indeed, first consider the
semiorthogonal decomposition of Db(Ỹ ) in Theorem 1.13 and the one

Db(Ỹ ) = 〈σ∗(TY ),O
Ỹ
,O

Ỹ
(H), i∗OD, i∗OD(H)〉

obtained by thinking of Ỹ as the blow-up of Y along l0 and using the main result in [Orl93].
Then one shows that

RO
Ỹ
(−h) ◦ Φ(Db(P2,B0)) = 〈σ∗TY ,OỸ (h−H)〉
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and thus we get a fully faithful embedding

Ξ3 := (σ∗ ◦RO
Ỹ
(−h) ◦ Φ)−1 : TY → Db(P2,B0) . (2.1.2)

Note that, in view of [BMMS12, Proposition 2.9(i)], Ξ3(TY ) is the right orthogonal of the category
generated by B1 in Db(P2,B0).

Remark 2.1. For all m ∈ Z, we have Ψ(O
Ỹ

(mh)) = 0 (see, for example, [BMMS12, Example 2.4]).
Thus, if F ∈ TY , then Ξ3(F ) = Ψ(F ).

2.2 B0-modules and stability

Our first goal is to study moduli spaces of stable B0-modules. In this section we present how the
usual notion of stability extends to our more general situation.

Let K(P2,B0) := K(Db(P2,B0)) denote the Grothendieck group. For objects in Db(P2,B0)
we can consider the Euler characteristic

χ(−,−) :=
∑
i

(−1)i homi
Db(P2,B0)(−,−) .

A class [A] ∈ K(P2,B0) in the Grothendieck group is numerically trivial if χ([M ], [A]) = 0 for
all [M ] ∈ K(P2,B0). We define the numerical Grothendieck group N (P2,B0) as the quotient of
K(P2,B0) by numerically trivial classes.

Given K ∈ Db(P2,B0), we define its Chern character as

ch(K) := ch(Forg(K)) ∈ K(P2)⊗Q = H∗(P2,Q) ∼= Q⊕3 ,

where Forg : Db(P2,B0)→ Db(P2) is the functor forgetting the B0-action. By linearity the Chern
character extends to K(P2,B0); it factors through N (P2,B0).

Remark 2.2. (i) By [BMMS12, Proposition 2.12] we have N (P2,B0) = Z[B1]⊕Z[B0]⊕Z[B−1]. The
Chern characters ch(B−1) = (4,−7, 152 ), ch(B0) = (4,−5, 92), and ch(B1) = (4,−3, 52) are linearly
independent. Hence, the Chern character induces a group homomorphism N (P2,B0) → K(P2)
that is an isomorphism over Q.

(ii) If l ⊆ Y is a line and Il is its ideal sheaf, by [BMMS12, Example 2.11], we have

[Ξ3(Il)] = [B1]− [B0] ∈ N (P2,B0)
ch(Ξ3(Il)) = (0, 2,−2) .

(2.2.1)

(iii) Note that [B2] = [B−1]− 3[B0] + 3[B1] and [B−2] = 3[B−1]− 3[B0] + [B1].
(iv) Given [F ] = x[B−1] + y[B0] + z[B1] or ch([F ]) = (r, c1, ch2), we can compute the Euler

characteristic as a B0-module with the following formulas:

χ(F, F ) = x2 + y2 + z2 + 3xy + 3yz + 6xz

= − 7

64
r2 − 1

4
c21 +

1

2
r ch2 .

(2.2.2)

(v) Let F ∈ K(P2,B0) be such that ch(F ) = (0, 2d, z). Then

χ(B1, F ) = z + 2d and χ(B0, F ) = z + 3d . (2.2.3)

(vi) The Serre functor in Db(P2,B0) is given by − ⊗B0 B−1[2] (see, for example, [BMMS12,
Proposition 2.9]).
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We define the Hilbert polynomial of a B0-module G as the Hilbert polynomial of Forg(G) with
respect to OP2(h). Then, the notion of Gieseker (semi)stability is defined in the usual way. Moduli
spaces of semistable B0-modules have been constructed by Simpson in [Sim94, Theorem 4.7].

We can also consider the slope stability for torsion-free sheaves in Coh(P2,B0). Indeed, we
have two natural functions rank and degree on N (P2,B0):

rk : N (P2,B0)→ Z , rk(K) := rk(Forg(K)) ,

deg : N (P2,B0)→ Z , deg(K) := c1(Forg(K)).c1(OP2(h)) .

Given K ∈ Coh(P2,B0) with rk(K) 6= 0, we can define the slope µ(K) := deg(K)/ rk(K) and
the notion of µ-(semi)stability in the usual way. When we say that K is either torsion-free or
torsion of dimension d, we always mean that Forg(K) has this property.

Remark 2.3. As the rank of B0 and that of B1 are both four, a consequence of [BMMS12, Lemma
2.13(i)] is that these two objects are µ-stable. Moreover, all morphisms B0 → B1 are injective.

Lemma 2.4. Let A,B ∈ Coh(P2,B0) be such that ch(A) = ch(B). Assume that one of the
following two conditions is satisfied:

– either A and B are torsion-free sheaves and µ-semistable, or

– A and B are torsion sheaves pure of dimension one and semistable.

Then Ext2(A,B) = 0. If A = B is actually stable, then χ(A,A) 6 1.

Proof. The first claim follows directly from Serre duality. Indeed, by Remark 2.2(vi), we have

Ext2(A,B) = Hom(B,A⊗B0 B−1)∨ = 0 ,

since −⊗B0 B−1 preserves stability. For the second, simply observe that

χ(A,A) = hom(A,A)− ext1(A,A) = 1− ext1(A,A) 6 1 .

Bridgeland stability. We will need to study stability for objects in Db(P2,B0) which are not
necessarily sheaves. To this end, we briefly recall the concept of Bridgeland stability condition.
For all details we refer to [Bri07, KS08].

Definition 2.5. A (numerical, full) Bridgeland stability condition on Db(P2,B0) consists of a
pair σ = (Z,A), where

– Z : N (P2,B0)→ C,

– A is the heart of a bounded t-structure on Db(P2,B0),
satisfying the following compatibilities:

(a) For all 0 6= G ∈ A,

Z(G) ∈ {z ∈ C∗ : z = |z| exp(iπφ), 0 < φ 6 1} .

(b) Harder–Narasimhan filtrations exist with respect to σ-stability, namely for any 0 6= G ∈ A,
there is a filtration in A

0 = G0 ⊂ G1 ⊂ . . . ⊂ GN = G

such that Fi := Gi/Gi−1 is σ-semistable and φ(F1) > . . . > φ(FN ).

(c) The support property holds, namely there exists a constant C > 0 such that, for all σ-
semistable F ∈ A,

‖F‖ 6 C · |Z(F )| .
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The notion of σ-semistability in part (b) of Definition 2.5 can be made precise as follows. By
part (a), any 0 6= G ∈ A has a phase φ(G) := 1

πarg(Z(G)) ∈ (0, 1]. The notion of σ-stability in
part (b) is then given with respect to the phase: G ∈ A is σ-(semi)stable if, for all subobjects
G′ ⊂ G in A, φ(G′) < φ(G) (respectively, φ(G′) 6 φ(G)). Finally, we denoted by ‖−‖ any norm
in N (P2,B0)⊗ R. The support property is necessary for the deformation of stability conditions
and for the existence of a well-behaved wall and chamber structure (this is [Bri08, Section 9];
the general statement we need is [BM11, Proposition 3.3]).

We will only need a special family of stability conditions on Db(P2,B0).

Definition 2.6. For m ∈ R>0, we define

Zm : N (P2,B0) −→ C

[F ] 7−→ rm2 − 9r

64
− c1

2
− ch2

2
+m
√
−1(r + c1) ,

where ch([F ]) = (r, c1, ch2).

By the explicit computations in Remark 2.2,

Zm([B0]) = 4m2 − 5

16
−m
√
−1 ,

Zm([B1]) = 4m2 − 5

16
+m
√
−1 ,

Zm([Ξ3(Il)]) = 2m
√
−1 .

(2.2.4)

To define an abelian category which is the heart of a bounded t-structure on Db(P2,B0), let
T,F ⊆ Coh(S, β) be the following two full additive subcategories: The non-trivial objects in T
are the sheaves A ∈ Coh(P2,B0) such that their torsion-free part has Harder–Narasimhan factors
(with respect to µ-stability) of slope µ > −1. A non-trivial twisted sheaf A ∈ Coh(P2,B0) is an
object in F if A is torsion-free and every µ-semistable Harder–Narasimhan factor of A has slope
µ 6 −1. It is easy to see that (T,F) is a torsion theory and following [Bri08], we define the heart
of the induced t-structure as the abelian category

A :=
{
A ∈ Db(P2,B0) : Hi(A) = 0 for i 6∈ {−1, 0}, H−1(A) ∈ F, H0(A) ∈ T

}
.

By Remarks 2.2 and 2.3, B0[1],B1,Ξ3(Il) ∈ A.

Lemma 2.7. The pair σm := (Zm,A) defines a stability condition in Db(P2,B0) for all m > 1
4 .

Proof. This follows exactly in the same way as in [Bri08, Proposition 7.1 and Section 11] and
[Tod13, Proposition 3.13]. The only non-standard fact that we need is a Bogomolov–Gieseker
inequality for torsion-free µ-stable sheaves. This is precisely Lemma 2.4: for A ∈ Coh(P2,B0)
torsion-free and µ-stable, χ(A,A) 6 1 gives us the desired inequality.

By proceeding as in [Tod13, Section 3], to prove the lemma we only have to show property
(a) in the definition of the stability condition. Let A be a torsion-free µ-stable sheaf. Assume
further µ(A) = −1, and so Im(Zm([A])) = 0. By (2.2.2) and the fact that r > 0, we have

Re(Zm([A])) = rm2 − 9r

64
− c1

2
− ch2

2
=

1

r

(
−χ(A,A) +m2r2 − 1

4
(r + c1)

2

)
.

We need to prove the inequality Re(Zm([A])) > 0, namely −χ(A,A) +m2r2 > 0. By [BMMS12,
Lemma 2.13], r > 4, and so for all m > 1

4 , we have Re(Zm([A])) > 0, as we wanted.
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We also observe that all the arguments in [Tod08] generalize to the non-commutative setting
(see also [Lie07, Lie06]). In particular, for all m > 1

4 , it makes sense to speak about moduli spaces
of σm-semistable objects in A as Artin stacks (of finite-type over C, if we fix the numerical class),
and about moduli space of σm-stable objects as algebraic spaces.

Remark 2.8. As in [MS12, Lemma 5.5], the objects B0[1] and B1 are σm-stable for all m > 1
4 .

2.3 Moduli spaces of stable B0-modules: general results

Keeping in mind (2.2.1), we are interested in the following moduli spaces of Gieseker semistable
sheaves in (P2,B0).

Definition 2.9. Let d > 1. We denote by Md the moduli space of semistable B0-modules with
numerical class d[B1] − d[B0], or equivalently, with Chern character (0, 2d,−2d). We denote by
Ms

d ⊆Md the open subset of stable B0-modules.

Example 2.10. Let C ′ ⊂ Y be a rational curve of degree d. Note that, by using for example
Theorem 62 of J. Starr’s PhD thesis at Harvard University (2000), one can see that there exists a
2d-dimensional family of smooth rational curves of degree d on Y . We can consider the following
construction due to Kuznetsov [Kuz04, Lemma 4.6]. Set

Fd := LOY
(i∗OC′(d−1))[−1] = ker

(
H0(Y, i∗OC′(d− 1))⊗OY

ev→ i∗OC′(d− 1)
)
∈ TY , (2.3.1)

where i : C ′ ↪→ Y . Then Ξ3(Fd) ∈ 〈B1〉⊥. Suppose C ′ ∩ l0 = ∅. Denote by j the composition
C ′ ↪→ Ỹ

π−→ P2 and suppose that, if we let C := j(C ′), the morphism j|C′ is birational. As C ′

and l0 do not intersect, we can argue exactly as in [BMMS12, Example 2.4]. In particular, using
that Ψ(O

Ỹ
(mh)) = 0 for all integers m, we conclude that

Ξ3(Fd) ∼= j∗(E|C′ ⊗OC′(−1))⊗OP2(2h) .

So Forg(Ξ3(Fd)) is a rank two torsion-free sheaf supported on C and Ξ3(Fd) ∈ Ms
d. The d = 1

case is treated in Example 2.11 below. We will also use this example for d = 2 and d = 3. In
such cases, there always exists a curve C ′ ⊂ Y with the properties above.

Example 2.11. We can specialize the previous example to the case when C ′ ⊂ Y is a line l
which does not intersect l0, namely d = 1. In such a case, we have Fd ∼= Il and

Ξ3(Il) ∼= j∗(E|l)⊗OP2(h) . (2.3.2)

Moreover, we have an isomorphism as OP2-modules

Ξ3(Il) ∼= Ol ⊕Ol(−h) .

Indeed, by (2.2.1), the Chern character of Ξ3(Il) as an OP2-module is

ch(Ξ3(Il)) = (0, 2,−2) .

Therefore, Ξ3(Il) ∼= Ol(a)⊕Ol(−1− a) for a ∈ Z>0. Since, by [BMMS12, Lemma 4.8], we have

0 = HomDb(P2,B0)(B0(h),Ξ3(Il)) = HomP2(OP2 ,Ol(a− 1)⊕Ol(−2− a)) ,

we deduce that a = 0, as we wanted.

It is a standard fact (it follows, for example, as in [BM14, Example 9.5]) that the assignment

Υ : Md → |OP2(d)| G 7→ supp Forg(G) .
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extends to a morphism which is well defined everywhere. Theorem A then becomes the following
statement.

Theorem 2.12. The moduli space Md is irreducible, and for a general smooth curve C ∈ |OP2(d)|,
we have

Υ−1(C) ∼=
⊔

25d−1

JC ,

where JC = {L ∈ Pic(C) L is algebraically equivalent to OC} is the Jacobian of C. Moreover,
the stable locus Ms

d is smooth of dimension d2 + 1.

Before proceeding with the general proof which is carried out in the next section, we examine
the easy case d = 1.

Proposition 2.13. The moduli space M1 = Ms
1 is isomorphic to the Fano surface of lines F (Y )

blown up at the line l0. In particular, M1 is smooth and irreducible.

To prove Proposition 2.13, we use wall-crossing techniques from [BM14] for the family of
Bridgeland stability conditions σm of Lemma 2.7. The precise result we need is the following
lemma, whose proof is exactly the same as that of [MS12, Lemma 5.7].

Lemma 2.14. Let F ∈M1.

(i) If F ∈ 〈B1〉⊥, then F is σm-stable for all m > 1
4 . Moreover, in this case F ∈ A ∩ Ξ3(TY ).

By [BMMS12, Theorem 4.1], F ∼= Ξ3(Il) for some line l 6= l0 in Y .

(ii) If F 6∈ 〈B1〉⊥, then F sits in a short exact sequence

0→ B0 → B1 → F → 0 , (2.3.3)

and F becomes σm-semistable for m =
√
5
8 with Jordan–Hölder filtration

B1 → F → B0[1] .

By [BMMS12, Example 2.11], the object Ξ3(Il0) sits in the distinguished triangle

B0[1]→ Ξ3(Il0)→ B1 ,

which is the Harder–Narasimhan filtration of Ξ3(Il0) for m > m0 :=
√
5
8 . Thus, all such exten-

sions (2.3.3) get contracted to Ξ3(Il0), which is indeed σm-stable for m ∈ (m0 − ε,m0). The
wall-crossing phenomenon described in [MS12, Section 5.2] carries over and this proves Proposi-
tion 2.13.

2.4 Proof of Theorem 2.12

The argument is divided into various steps.

Step 1: Deformation theory. For any G ∈ Md, we have χ(G,G) = −d2. Hence, to prove that
Ms

d is smooth of dimension d2 + 1, it is enough to show that it is non-empty and that

Hom2
Db(P2,B0)(G,G) = 0

for any G ∈Md. The fact that Ms
d is non-empty is a consequence of the next step. The vanishing

of Hom2
Db(P2,B0)(G,G) follows directly from Lemma 2.4.

Step 2: Fibers of Υ : Md → |OP2(d)|. We claim that for a smooth curve C ∈ |OP2(d)|, we have

Υ−1(C) ∼=
⊔

25d−1

Pic0(C) . (2.4.1)
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Recall that the conic fibration π degenerates along a smooth quintic ∆ ⊂ P2. We denote ∆|C
by
∑5d

i=1 pi (the points are possibly non-distinct) and, abusing notation, we set 1
2pi to be the

section in Ĉ corresponding to the second root of pi. As in Proposition 1.14, we can consider the

stack P̂2 over P2 of second roots of OP2(∆) along the section ∆. We denote by ψ : P̂2 → P2 the
natural projection. We then have an equivalence of abelian categories

ψ∗ : Coh(P̂2,A0)→ Coh(P2,B0) .

Given a smooth curve C ⊂ P2 we can restrict this construction to ψ : Ĉ → C, where Ĉ is
a twisted curve (stack of second roots of (C, ∆|C)). The restriction A0|Ĉ is a sheaf of (trivial)

Azumaya algebras; that is, there exists a vector bundle of rank two, EC,0 ∈ Coh(Ĉ), such that
A0|Ĉ = End(EC,0) (see, for example, [Kuz08, Corollary 3.16]) and

Coh(Ĉ)
∼−→ Coh(Ĉ, A0|Ĉ)

∼−→ Coh(C, B0|C)
G 7−→ G⊗ E∨C,0 7−→ ψ∗(G⊗ E∨C,0)

is an equivalence of categories. In particular,

B0|C = ψ∗(End(EC,0)) .

Moreover, there certainly exists an M ∈ Pic(Ĉ) such that ch2(ψ∗(E
∨
C,0 ⊗ M)) = −2d as an

OP2-module. Thus, ψ∗(E
∨
C,0 ⊗M) ∈ Md. Since EC,0 is determined up to tensorization by line

bundles, we can assume directly that ψ∗E
∨
C,0 ∈Md.

As EC,0 is a rank two vector bundle on Ĉ, it is clear that the fiber of Υ over the smooth

curve C consists of line bundles on Ĉ. By [Cad07, Corollary 3.1.2], an invertible sheaf on Ĉ is of

the form ψ∗L⊗O
Ĉ

(∑5d
i=1

λi
2 pi

)
, where L ∈ Pic(C) and λi ∈ {0, 1}. On the other hand, as E∨C,0

has rank two, we have

ch2

(
ψ∗

(
E∨C,0 ⊗ ψ∗L⊗OĈ

( 5d∑
i=1

λi
2
pi

)))
= ch2

(
ψ∗(E

∨
C,0)

)
as objects in Db(P2) with L ∈ Pic(C) and λi ∈ {0, 1}, if and only if 2 degL+

∑5d
i=1 λi = 0.

Let J be the set of all subsets of {1, . . . , 5d} of even cardinality and, for I ∈ J , set τI to be
the cardinality of I. Then the discussion above can be rewritten as

Υ−1(C) =
⊔
I∈J

{
ψ∗

(
E∨C,0 ⊗ ψ∗L⊗OĈ

(∑
i∈I

1

2
pi

))
: L ∈ Pic−τI (C)

}
.

Hence

Υ−1(C) ∼=
⊔
I∈J

Pic−τI (C) ,

which is precisely (2.4.1), because J has cardinality 25d−1.

Step 3: Md is irreducible. To prove the irreducibility of Md, we follow the same strategy as in
[KLS06]. We first prove that Md is connected by simply following the same argument as in the
proof of [KLS06, Theorem 4.4]. Indeed, by Proposition 2.13, we know that M1 is connected. Now
if 1 6 d1 6 d2 < d and d1 + d2 = d, we have the natural maps ϕd1,d2 : Md1 ×Md2 →Md sending
the pair (E1, E2) to E1 ⊕ E2. Their images coincide with the semistable locus of Md, which
is then connected by induction. The existence of a connected component in Md consisting of
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purely stable objects can be excluded by using an argument of Mukai as in the proof of [KLS06,
Theorem 4.1]. For the convenience of the reader, let us outline here some details.

The aim is to show that, if there exists a connected component X of the moduli space Md

consisting only of stable sheaves, then X ∼= Md. Take a point F ∈ X and assume that there
is a G ∈ Md \ X. The arguments in [KLS06, Lemma 4.2] and in [KLS06, § 4.3] show that we
can essentially assume that there is a universal family F ∈ Coh(X ×Md) with two projections
p : X ×Md → X and q : X ×Md →Md. By Lemma 2.4, we have Hom2

Db(P2,B0)(G
′, F ′) = 0 for

all G′, F ′ ∈Md. Hence a computation of local groups Ext shows that

Ext0p(q
∗G,F) = Ext2p(q

∗G,F) = 0 ,

while Ext1p(q
∗G,F) is locally free of rank d2 < 1 + d2 = dim(X) (the last equality follows again

from Step 1). If we replace G by F , we get a complex of OX -modules

0 // A0
α // A1

β // A2
// 0 (2.4.2)

such that H i(A•) ∼= Extip(q
∗F,F) (more generally, this holds for any base change S → X).

It turns out that the point F ∈ X is the degeneracy locus of the map α (see [KLS06, Lemma
4.3]). Thus, blowing up X at F , we get f : Z → X providing, as in (2.4.2), a new complex of
OZ-modules

A′0
α′ // A′1

β′ // A′2

with an inclusion f∗A0 ⊆ A′0. Let D be the exceptional divisor in Z and let W ′ be the middle
cohomology of

0 // A′0
// f∗A1

// A′2
// 0

If M := A′0/f
∗A0, then, by the same computations of the Chern classes as in [KLS06, § 4.4], we

get c(W ′) = f∗c(W ) · c(−M). As the ranks of W and W ′ are smaller than dim(X), one gets a
contradiction as cdim(X)(W

′) = 0 while, using that M ∼= OD(D), one shows that the component
in degree dim(X) of f∗c(W ) · c(−M) is not trivial.

Hence, to conclude that Md is irreducible, it is enough to show that it is normal. Since, by
Lemma 2.4, Hom2

Db(P2,B0)(G,G) = 0 for all G ∈Md, the Kuranishi map is trivial. Following then

the notation of [KLS06, § 2.7], the quadratic part µ of the Kuranishi map is also trivial and the
null-fiber F = µ−1(0) coincides with Hom1

Db(P2,B0)(G,G), which is obviously normal. Then we

can apply [KLS06, Proposition 3.8]; that is, if we consider a slice S of an orbit of a semistable
point [q] of the corresponding Quot-space, we have that OS,[q] is a normal domain. Since being
normal is an open property, we can use the arguments in the proof of [KLS06, Proposition 3.11]
to prove that the locus Rss of semistable points of the Quot-space is normal. A GIT-quotient of
a normal scheme is normal. Hence, Md is normal, since it is a GIT-quotient of Rss.

This finally concludes the proof of Theorem 2.12.

Remark 2.15. When d = 1, the map Υ has a very natural and well-known geometrical inter-
pretation. In fact, given a B0-module F supported on a general line l ⊂ P2, we can consider all
the lines l′ in Y such that Ξ3(Il′) ∼= F . By Proposition 2.13, we have to count the number of
lines l′ that map to l via the projection from l0 (where the lines that intersect l0 are mapped
to the projection of the tangent space of the intersection point). The lines that intersect l0 form
an Abel–Prym curve in F (Y ), so they do not dominate |OP2(1)|. Hence, we need only to count
the skew lines to l0 that map to l. The preimage of l via the projection is a cubic surface, so it
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contains 27 lines. The line l intersects the degeneration quintic ∆ in five points, which give us
five coplanar pairs of lines intersecting l0. Hence we have 27− 10− 1 = 24 lines skew to l0 that
project to l. Indeed, if Bll0 F (Y ) is the blow-up of F (Y ) along l0, we have a finite morphism
Bll0 F (Y )→ |OP2(1)| which is 24 : 1 (see, for example, [Beau81, Proof of Theorem 4]).

For applications to stable sheaves on cubic threefolds, as in Lemma 2.14, we consider the
subset

Nd := 〈B1〉⊥ ∩Md . (2.4.3)

Lemma 2.16. The subset Nd is well defined; namely, it does not depend on the chosen represen-
tative in the S-equivalence class.

Proof. First of all, we observe that by Remark 2.2(v), for all A ∈ Md, we have χ(B1, A) = 0.
Moreover, by Serre duality, Hom2(B1, A) = 0, since A is torsion. Hence, we have Hom(B1, A) = 0
if and only if A ∈ Nd.

Let A ∈ Md and let A1, . . . , Am be its Jordan–Hölder factors. It is enough to show the
following claim: A ∈ Nd if and only if Ai ∈ Nd for all i. As observed in Step 3 of the proof of
Theorem 2.12, we have Ai ∈Mdi for some di > 0. The claim then directly follows from the long
exact sequence in cohomology (by applying Hom(B1,−) to the Jordan–Hölder filtration of A)
and by the previous observation.

By semi-continuity, the condition of belonging to Nd is open in families. We also have the
following result.

Proposition 2.17. The subset Nd is non-empty and dense in Md.

Proof. This is a well-known general fact. The proof we give here mimics [BM13, Theorem 2.15].
We first recall that, as proved in Step 3 of the proof of Theorem 2.12, by considering the maps
φd1,d2 : Md1 ×Md2 →Md, the subset Ms

d consisting of stable sheaves in Md is open, non-empty,
and dense.

We can now proceed by induction on d. The case d = 1 is precisely Lemma 2.14.

Assume then d > 1, and let Ad−1 ∈ Nd−1. Since Ms
d is non-empty, we can assume that Ad−1

is stable. Then we can find A1 ∈ N1 such that Hom(Ad−1, A1) = Hom(A1, Ad−1) = 0 (in fact,
any A1 ∈ N1 works, since Ad−1 is stable). By Remark 2.2(v), we have

χ(A1, Ad−1) = (d− 1)χ(A1, A1) = −(d− 1) < 0 .

Hence, Ext1(A1, Ad−1) 6= 0. Consider a non-trivial extension

0→ Ad−1 → Ad → A1 → 0 .

Then Ad ∈ Nd and Hom(Ad, Ad) ∼= C, namely Ad is a simple sheaf. Since, by Lemma 2.4,
Ext2(Ad, Ad) = 0, we can consider a maximal-dimensional family of simple sheaves containing
Ad. Hence, since both being stable and belonging to Nd are open properties, we have that

∅ 6= Nd ∩Ms
d ⊂Ms

d

is an open subset, and therefore dense. Since Ms
d is dense in Md, this concludes the proof.

2.5 Ulrich bundles

We now apply the results on B0-modules of the previous section to study Ulrich bundles on a
cubic threefold Y . The goal is to prove Theorem B from the introduction.
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Definition 2.18. An ACM bundle F on Y is called Ulrich if the graded module

H0
∗ (Y, F ) :=

⊕
m∈Z

H0(Y, F (mH))

has 3 rk(F ) generators in degree one.

We refer to [CHGS12, Section 1] for the basic properties of Ulrich bundles on projective
varieties. In particular, we recall the following presentation of stable Ulrich bundles due to the
Hartshorne–Serre construction.

Lemma 2.19. A stable Ulrich bundle F of rank r on a cubic threefold Y admits the following
presentation:

0→ OY (−H)⊕r−1 → F → IC ⊗OY ((r − 1)H)→ 0 , (2.5.1)

where C is a smooth connected curve of degree (3r2 − r)/2 and arithmetic genus r3 − 2r2 + 1.

Proof. By definition, F (H) is generated by global sections, so G := coker(OY (−H)⊕r−1 ↪→ F ) is
a torsion-free sheaf of rank one. By choosing the sections appropriately, we get G = IC⊗OY (sH),
where C ⊂ Y is a smooth curve. By [CHGS12, Lemma 2.4(iii)], we have c1(F (H)) = r, so
s = r − 1. Since h1(Y, IC) = 0, we know that C is connected. By [CH11, Proposition 3.7], we

have degC = 3r2−r
2 and by Riemann–Roch, we get pa(C) = r3 − 2r2 + 1.

From Lemma 2.19, it is standard to compute the Chern character of an Ulrich bundle F of
rank r by using Hirzebruch–Riemann–Roch:

ch(F ) = (r, 0,−r · l, 0) , (2.5.2)

where l denotes the class of a line in Y .

Remark 2.20. Notice that, in their definition of Ulrich bundles [CHGS12, Definition 2.1], Casanel-
las and Hartshorne impose the generators to be in degree zero. Hence, their Ulrich bundles can be
obtained from ours by twisting by OY (H) and vice versa. We prefer this normalization, since then
Ulrich bundles are balanced ACM bundles (recall Definition 1.5). Moreover, with this normaliza-
tion, instanton bundles of minimal charge (see Definition 3.7 and the subsequent comments) are
also Ulrich bundles.

Denote by MsU
r the moduli space of stable Ulrich bundles of rank r > 2. It is smooth of dimen-

sion r2+1 since for any such bundle E, we have dim Ext1(E,E) = r2+1 while dim Ext2(E,E) = 0.

To prove that MsU
r is non-empty, the strategy is to show the existence of low rank Ulrich

bundles (r = 2, 3) and then use a “standard” deformation argument [CHGS12, Theorem 5.7].
The existence of rank two Ulrich bundles is well known [Dru00, MT01]. They usually appear
in the literature as instanton bundles (see Section 3). In [CHGS12] the authors construct rank
three Ulrich bundles, relying on the existence of an ACM curve on Y of degree twelve and genus
ten (see Lemma 2.19). The existence of such curves is proved, using Macaulay2, by Geiß and
Schreyer in the appendix, only for a generic cubic threefold.

Our approach to construct Ulrich bundles of rank three is different (for completeness we
also construct rank two Ulrich bundles). In particular, we do not use the Hartshorne–Serre
construction (see Lemma 2.19), but the structure of conic fibration of a blow-up of Y . We have
computed the image in Db(P2,B0) of the ideal sheaves of lines in Y in Example 2.11. We can
therefore consider extensions of them, and use deformation theory to cover the subset Nd ⊂Md
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(for d = 2, 3). If G is a general sheaf in Nd, then the object Ξ−13 (G) will be a stable ACM bundle
of rank d, which will automatically be Ulrich.

The advantage of our approach is that by using the category TY we are able to reduce all
computations to the category Db(P2,B0), via the functor Ξ3. Thus, the existence result needed
goes back to Theorem 2.12.

Given G ∈ Nd, we want to study Ξ−13 (G) ∈ TY . In order to show that it is an ACM bundle
we want to see how the vanishings in Lemma 1.9 can be checked in Db(P2,B0).

Lemma 2.21. We have the following natural isomorphisms:

RHomDb(Y )(OY (2H), F )[2] ∼= RHomDb(P2,B0)(ΩP2(2h)⊗ B0,Ξ3(F ))

∼= RHomDb(P2)(ΩP2(2h),Ξ3(F )) ,

RHomDb(Y )(OY (−H), F ) ∼= RHomDb(P2,B0)(B−1,Ξ3(F ))

∼= RHomDb(P2)(OP2 ,Forg(Ξ3(F ⊗B0 B1)))

for all F ∈ TY .

Proof. For the first series of isomorphisms, we start with the following chain of natural isomor-
phisms, which follows directly from the definitions:

RHomDb(Y )(OY (2H), F ) ∼= RHomDb(Y )(OY (2H),Ξ−13 (Ξ3(F )))

∼= RHomDb(Y )(OY (2H), σ∗ ◦RO
Ỹ
(−h) ◦ Φ ◦ Ξ3(F ))

∼= RHomDb(P2,B0)(Ψ ◦ LO
Ỹ
(H)(OỸ (2H)),Ξ3(F )) .

(2.5.3)

By (1.1.1), LO
Ỹ
(H)OỸ (2H) is given by

LO
Ỹ
(H)OỸ (2H) = cone

(
O
Ỹ

(H)⊕5
ev−→ O

Ỹ
(2H)

)
. (2.5.4)

By definition of Ψ (1.3.2), we have the following two exact triangles in Db(P2,B0):

B1[1]→ B0(h)⊗ q∗OP̃4(H)[1]→Ψ(O
Ỹ

(2H)) ,

B1 ⊗ q∗OP̃4(−H)[1]→ B0(h)[1]→Ψ(O
Ỹ

(H)) .

Since Ξ3(F ) ∈ 〈B1〉⊥ and q∗OP̃4(H) = O⊕2P2 ⊕OP2(h), we have

RHomDb(P2,B0)(Ψ(O
Ỹ

(2H)),Ξ3(F )) = RHomDb(P2,B0)(B0(h)⊗ q∗OP̃4(H)[1],Ξ3(F ))

= RHomDb(P2,B0)(B0 ⊗ (OP2(h)⊕2 ⊕OP2(2h))[1],Ξ3(F )) ,

and since q∗OP̃4(−H) = 0,

RHomDb(P2,B0)(ΨOỸ (H),Ξ3F ) = RHomDb(P2,B0)(B0(h)[1],Ξ3(F )) .

Therefore, combining (2.5.3) and (2.5.4) we have

RHomDb(Y )(OY (2H), F ) ∼=
∼= RHomDb(P2,B0)

(
B0 ⊗ cone(OP2(h)⊕5

ev−→ OP2(h)⊕2 ⊕OP2(2h))[1],Ξ3(F )
)

∼= RHomDb(P2,B0)
(
B0 ⊗ ΩP2(2h),Ξ3(F )

)
[−2]

∼= RHomDb(P2)

(
ΩP2(2h),Ξ3(F )

)
[−2] ,

where we have used cone(OP2(h)⊕5
ev−→ OP2(h)⊕2⊕OP2(2h)) ∼= ΩP2(2h)[1], and the first series of

isomorphisms follows.
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It remains to prove the second series of isomorphisms of the lemma. We start with the
following chain of natural isomorphisms, which follows directly from the definitions:

RHomDb(Y )(OY (−H), F ) ∼= RHomDb(Y )(OY (−H),Ξ−13 (Ξ3(F )))

∼= RHomDb(Y )(OY (−H), σ∗ ◦RO
Ỹ
(−h) ◦ Φ ◦ Ξ3(F ))

∼= RHomDb(P2,B0)(Ψ ◦ LO
Ỹ
(H)(OỸ (−H)),Ξ3(F ))

∼= RHomDb(P2,B0)(Ψ(O
Ỹ

(−H)),Ξ3(F ))

∼= RHomDb(P2,B0)(B−1,Ξ3(F )) .

(2.5.5)

The last isomorphism is an easy computation, and the lemma follows.

Now we are ready to give a geometric interpretation of the objects of Nd (recall (2.4.3)).

Proposition 2.22. If d = 2, 3 and G is a general sheaf in Nd, then the object Ξ−13 (G) is a stable
ACM bundle of rank d.

Proof. Again the argument can be divided in a few parts.

Step 1: The object Ξ−13 G is a coherent sheaf. By Example 2.10, the sheaf Fd is in TY and
Ξ3(Fd) ∈ Nd. By semi-continuity, for G ∈ Nd general, the object Ξ−13 (G) has to be a sheaf.

Step 2: First vanishing. We want to show that H i(Y,Ξ−13 (G)⊗OY (−2H)) = 0 for i = 1, 2. By
Lemma 2.21, we need to prove that Hom0

Db(P2)(ΩP2(2h), G) = 0.

Before that, by Example 2.11, we observe that

Hom0
Db(P2,B0)(B0,Ξ3(Il)) = Hom0

P2(OP2 ,Ol ⊕Ol(−1)) ∼= C ,

and all other Hom-groups are trivial. The extension of d sheaves Ξ3(Il) (with different l) lies in
Ms

d. By semicontinuity and induction on d, we have

Hom0
Db(P2,B0)(B0, G) ∼= H0(P2, G) ∼= Cd (2.5.6)

for G general in Md. Notice that here we are implicitly using that χ(B0, G) = d. Indeed, this
follows from (2.2.3).

Case 1: Rank d = 2. Let G be supported in jC : P1 ↪→ C ∈ |OP2(2)|. Let C be smooth
and intersect ∆ transversally. Note that ΩP2(2h)|C ∼= i∗(OP1(1)⊕2), so we have to show that
H0(P1, G(−1)) = 0. By (2.5.6) and semi-continuity, there are only two possibilities for G (as an
OP2-module):

G ∼= jC∗ (OP1(1)⊕OP1(−1)) , (2.5.7)

G ∼= O⊕2C . (2.5.8)

If we are in situation (2.5.8), then the desired vanishing holds.

Assume now G ∼= jC∗(OP1(1)⊕OP1(−1)). Recall that G = ψ∗(L⊗E∨C,0) for some L ∈ Pic(Ĉ).

We use a method from [Beau02, Ili99]. The projective bundle P(L⊗ E∨C,0)→ Ĉ corresponds by

definition to the conic bundle over Ĉ induced by the conic fibration π : Ỹ → P2. More precisely,
π−1(C) is a conic bundle over C with ten singular fibers π−1(C ∩∆) =

⋃10
i=1 li ∪ l′i. The lines li
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and l′i are (−1)-curves. Then, we have

P(L⊗ E∨C,0)

��

ψ′ // P(Forg(ψ∗(L⊗ E∨C,0))) =: SC

��
Ĉ

ψ // C ,

where the map ψ′ factors through π−1(C) → P(ψ∗(L ⊗ E∨C,0)), which corresponds to the blow-
down of ten (−1)-curves, say li for i = 1, . . . 10. The fact that Forg(ψ∗(L⊗E∨C,0)) = jC∗(OP1(1)⊕
OP1(−1)) implies that P(Forg(ψ∗(L⊗E∨C,0))) is isomorphic to the second Hirzebruch surface, so

we have a section c of π−1(C) → C such that c2 = −2. Recall that the canonical bundle of Ỹ
is O

Ỹ
(−H − h) = O

Ỹ
(−D − SC), where D is the exceptional divisor. The adjunction formula

gives KSC
≡ − D|SC

. By the adjunction formula c2 = −2 implies that D · c = 0. Hence, we can
see c as a rational curve in Y of degree two. The space of conics in Y is four-dimensional, but
by Theorem 2.12, M2 has dimension five.

Case 2: Rank d = 3. Let G be supported in C ∈ |OP2(3)|. Let C be smooth and intersect
∆ transversally. Note that ΩP2(2h)|C = F is an Atiyah bundle of degree three, so we have to
show that H0(C,G⊗ F∨) = 0. By (2.5.6) and semi-continuity, G has only three possibilities (as
OP2-module):

G ∼= Atiyah bundle of degree three, (2.5.9)

G ∼= (jC)∗(L1 ⊕ L2) , (2.5.10)

G ∼= (jC)∗(L0 ⊕ L3) , (2.5.11)

where jC denotes the embedding and the Li are generic line bundles of degree i on C.

If we are in situation (2.5.9), then the desired vanishing holds.

As before, assume for a contradiction that (2.5.10) holds. The fact that Forg(ψ∗(L⊗E∨C,0)) =

(jC)∗(L1 ⊕ L2) implies that P(Forg(ψ∗(L ⊗ E∨C,0))) → C has a section c of π−1(C) → C such

that c2 = −1. Recall that the canonical bundle of Ỹ is O
Ỹ

(−H − h) = O
Ỹ

(−D + h − SC),
where D is the exceptional divisor. The adjunction formula gives KSC

≡ (−D + h)|SC
. By the

adjunction formula c2 = −1 implies that D · c = h · c− 1 = 2. Hence, we can see c as an elliptic
quintic curve in Y meeting the projection line l0 in two points. The space of elliptic quintic
curves in Y is ten-dimensional [MT01, Theorem 4.5], so the ones meeting l0 in two points form
an eight-dimensional family [MT01, Lemma 4.6], but M3 has dimension ten (by Theorem 2.12).

It remains to consider the last case (2.5.11). The fact that Forg(ψ∗(L⊗E∨C,0)) ∼= (jC)∗(L0⊕L3)
implies that P(Forg(ψ∗(L⊗E∨C,0)))→ C has a section c of π−1(C)→ C such that c2 = −3. Recall

that the canonical bundle of Ỹ is O
Ỹ

(−H − h) = O
Ỹ

(−D+ h−SC), where D is the exceptional
divisor. The adjunction formula gives KSC

≡ (−D + h)|SC
. By the adjunction formula c2 = −3

implies that D · c = h · c − 3 = 0. Hence, we can see c as an elliptic curve in Y of degree three
(hence plane). The space of plane cubics in Y is nine-dimensional, but by Theorem 2.12, M3 has
dimension ten.

Step 3: Second vanishing and stability. We want to show that H1(Y,Ξ−13 (G)⊗OY (H)) = 0. By
the second part of Lemma 2.21, we need to prove that H1(P2,Forg(G ⊗B0 B1)) = 0. Again we
can argue as in Step 1 by semi-continuity and use that G = Ξ3(Fd) satisfies the vanishing. Thus
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Ξ−13 (G) is an ACM bundle. As observed in [CHGS12, Section 5], Ξ−13 (G) is stable since there are
no Ulrich bundles of rank one on a cubic threefold.

Note that the sheaves Ξ−13 (G) in Proposition 2.22 are Ulrich. Since they lie in TY , the same
argument of [CHGS12, Lemma 2.4] shows that their restriction to a generic hyperplane section
is again Ulrich.

To complete the non-emptiness statement of Theorem B, we should prove that there are
stable Ulrich bundles for all ranks r > 4. For this we can use the same deformation argument as
in the proof of [CHGS12, Theorem 5.7].

Remark 2.23. Note that we have also reproven that MsU
r is smooth of dimension r2 + 1. Indeed,

the computations dim Ext1(F, F ) = r2 + 1 and dim Ext2(F, F ) = 0 have already been done in
Step 1 of Theorem 2.12.

Remark 2.24. The proof above fails, for the case d = 1, essentially only in Step 2; more precisely,
the restriction ΩP2(2h)|C to a line C ⊂ P2 is not semistable.

3. The d = 2 case and the instanton bundles on cubic threefolds

In this section we will describe explicitly the wall-crossing phenomena that link the space M2 to
the moduli space of semistable instanton sheaves on Y . This example, together with Section 2.2,
should motivate our expectation that the geometry of the moduli spaces Md is tightly related to
that of classical geometric objects associated with cubic threefolds.

The argument is a bit involved and thus we prefer to sketch it here for the convenience of
the reader. First of all, we need to analyze how stability and semistability of special objects in
Db(P,B0) vary in the family of stability conditions described in Lemma 2.7 (see Section 3.1).
This is conceptually rather standard but computationally a bit involved. Once this is settled,
one can consider instanton sheaves E and look at their images under the functor Ξ3. It turns
out that they are all stable B0-modules if E is locally free (see Lemma 3.9). On the other hand,
special attention has to be paid to instanton sheaves E which are not locally free. The most
delicate cases are when they are extensions of ideal sheaves of two lines, one of which is the line
of projection l0.

Having the toy model of M1 in mind, it is rather clear that all this leads naturally to a
wall-crossing phenomenon. This will be described in Theorem 3.10, where again we combine
the classical description of the moduli space of semistable instanton sheaves [Dru00] and the
machinery of (Bridgeland) stability conditions from Section 3.1.

As in Section 2.2, the approach follows closely the discussion in [MS12, Section 5], but since
the corresponding numerical class is not primitive, we need some extra arguments.

3.1 Stability

We consider the stability function Zm (see Definition 2.6) and the (Bridgeland) stability condition
σm = (Zm,A) (see Lemma 2.7).

A (semi)stable B0-module F ∈ M2 remains σm-(semi)stable for all m > m0 =
√
5
8 . More

precisely, we have the following lemma.

Lemma 3.1. Let F ∈M2.
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(a) If m > m0 =
√
5
8 , then F is σm-stable or F is the extension of two σm-stable coherent

B0-modules of class [B1]− [B0] (so is properly σm-semistable).

(b) If F ∈ N2 and F is stable, then F is σm-stable for all m > 1
4 . If F is properly semistable,

then F is the extension of two σm-stable coherent B0-modules of class [B1] − [B0] for all
m > 1

4 .

(c) Assume m = m0. Then F is σm-semistable and falls in one of the following cases:

(c.i) We have F ∈ N2, and F is σm0-stable.
(c.ii) We have F ∈ N2, and F is properly σm0-semistable and its JH-factors are two σm0-stable

coherent B0-modules of class [B1]− [B0].
(c.iii) We have F ∈ M2 \ N2, F is properly σm0-semistable, and its JH-factors are B0[1], B1,

and a coherent B0-module of class of class [B1]− [B0].
(c.iv) We have F ∈M2 \N2, F is properly σm0-semistable, and its JH-factors are twice B0[1]

and twice B1.

Proof. Suppose that 0 → A → F → B → 0 destabilizes F in the stability condition σm for
m > 1

4 , where A,B ∈ A and A is σm-stable. We have

0→ H−1(B)→ A→ F → H0(B)→ 0

and Im(Zm([F ])) = 4m. Note that Jm := Im(Zm) is an additive function in K(Coh(P2,B0)) that
takes values in mZ. Moreover, by the main property of the stability function since A,B ∈ A,
we have Jm(A), Jm(B) > 0. Thus, Jm(A) can only take values in {0,m, 2m, 3m, 4m}. Note also
that, since F and H0(B) are torsion, rk(H−1(B)) = rk(A).

Let ch([A]) = (r, c1, ch2). Observe that ReZm(F ) = 0, hence A destabilizes if ReZm(A) 6 0.
Since A is σm-stable, we distinguish two cases: either A is torsion or A is torsion-free of rank
r = rk(A) = rk(H−1(B)) > 0.

If A is torsion, then rk(H−1(B)) = 0 and since H−1(B) ∈ F, we have H−1(B) = 0. By
[BMMS12, Lemma 2.13(ii)], we have that c1 is even. As F ∈ M2 is a semistable B0-module,
c1 6 2. In that case, A cannot be supported on points (F is locally free on its support), so we
have c1 = 2. In order to destabilize F in the stability condition σm, we need

Re (Zm([A])) = rm2 − 9r

64
− c1

2
− ch2

2
6 0 ,

so ch2 > −2. But F ∈M2 and since c1 = 2, we have ch2 6 −2. Thus ch([A]) = (0, 2,−2) and F
is a properly σm-semistable object (for all m > 1

4) whose JH-factors have class [B1]− [B0].

Suppose now that A ∈ T is torsion-free, so all its HN-factors with respect to the slope
stability have slope µ > −1. Note that Jm(A) > 0 since A cannot be supported on points.
Moreover, if Jm(A) = 4m, then Jm(B) = 0, φ(B) = 1, and B would not destabilize F . So
Jm(A) ∈ {m, 2m, 3m}.

In order to σm-destabilize F , we need

Re(Zm([A])) = rm2 − 9r

64
− c1

2
− ch2

2
=

1

r

(
−χ(A,A) +m2r2 − 1

4
(r + c1)

2

)
6 0 . (3.1.1)

Moreover, we can assume that A is µ-stable. Then, by Lemma 2.4, we have −1 6 −χ(A,A). Since
m 6 Jm(A) 6 3m, we have −9

4 6 −1
4 (r + c1)

2. Thus, from (3.1.1) and the previous inequalities
we deduce m2r2 − 13

4 6 0. Since m > 1
4 and r ∈ 4N>0, this implies r = 4.

Now we go through a case by case study depending on Jm(A).
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Case Jm(A) = m. In this case c1 = −3 and r = 4, so (3.1.1) becomes −χ(A,A) + 16m2− 1
4 6 0.

Sincem > 1
4 and−χ(A,A) = hom1(A,A)−1, we have hom1(A,A)−1

4 < 0, soA is rigid. Moreover,
ch2 = 5

2 , by (2.2.2). Hence, A ∼= B1 and [B] = [B1] − 2[B0]. Moreover, since 16m2 − 5
4 6 0, we

have m 6
√
5
8 .

Case Jm(A) = 2m. Under this assumption c1 = −2, which is impossible by [BMMS12, Lem-
ma 2.13(ii)].

Case Jm(A) = 3m. Here c1 = −1 and r = 4, so (3.1.1) becomes −χ(A,A) + 16m2 − 9
4 6 0.

Since m > 1
4 and −χ(A,A) = hom1(A,A) − 1, we have hom1(A,A) − 9

4 < 0, which implies
hom1(A,A) 6 2.

(a) If A is rigid, then ch2 = 3
2 , by (2.2.2). Hence A ∼= B2, which is impossible since 0 6=

hom(B2, F ) = h0(P2, F (−h)) contradicts the Gieseker semistability of F ∈M2.

(b) If χ(A,A) = 0, then ch2 = 1, by (2.2.2). This implies that [A] 6∈ Z[B−1] ⊕ Z[B0] ⊕ Z[B1],
which contradicts [BMMS12, Proposition 2.12].

(c) If χ(A,A) = −1, then ch2 = 1
2 . Hence [A] = −[B0] + 2[B1], so B ∼= B0[1]. In particular,

H0(B) = 0. Moreover, 16m2 − 5
4 6 0, so m 6

√
5
8 .

Summarizing, if F ∈ N2 is stable, then it is σm-stable for all m > 1
4 . If F ∈ N2 is properly

semistable, then its two JH-factors are σm-stable for all m > 1
4 . If F ∈M2\N2, since χ(B1, F ) = 0

we have

hom(B1, F ) = hom1(B1, F ) = hom1(F,B0) = hom(F,B0[1]) ,

and F admits a morphism from B1 and also has a morphism to B0[1]. Hence it could be Jm(A) ∈
{m, 3m}.

We study more precisely these two cases. If Jm(A) = m, then we claim that there exist the
following exact sequences in A:

0→ B1 → F → C → 0, where [C] = [B1]− 2[B0] ,
0→ C ′ → F → B0[1]→ 0, where [C ′] = 2[B1]− [B0] .

(3.1.2)

The second exact sequence is obtained from the first one using χ(B1, F ) = 0, so homA(F,B0[1]) 6=
0. Indeed, it remains to prove that F → B0[1] needs to be surjective in A. If not, let L be the
cokernel. Clearly H0(L) = 0. Then L = L′[1], where L′ is a torsion-free B0-module in F. Let
T := ImA(F → B0[1]). Note that H0(T ) is a torsion sheaf. Then, if L′ 6= 0, B0 → L′ needs to
be injective and H−1(T ) = 0. Therefore T ∈ T and it is a quotient of F as a B0-module. We
know that F is a Gieseker semistable B0-module and c1(T ) > 2. This implies c1(L

′) > −3, which
contradicts L′ ∈ F, since by [BMMS12, Lemma 2.13(i)] rk(L′) > 4.

Equivalently, if we are in the case Jm(A) = 3m, then we claim that we get again the exact
sequences (3.1.2). Indeed, now the first exact sequence is obtained from the second one by using
χ(B1, F ) = 0, so homA(B1, F ) 6= 0. In that case we need to prove that B1 → F is injective in A.
If it is not, let K be the kernel. Clearly H−1(K) = 0. Then K is a B0-module in T. If K 6= 0,
then K → B1 needs to be injective. Hence T := ImA(B1 → F ) ∈ T and it is a subobject of
F as a B0-module. We know that F is a Gieseker semistable B0-module and c1(T ) 6 2. This
implies c1(K) 6 −5, which contradicts the fact that K ∈ T, since by [BMMS12, Lemma 2.13(i)]
rk(K) > 4.

In both cases we can summarize the situation in the following commutative diagram of exact
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sequences of σm0-semistable objects in A:

0

��

0

��
0 // B1 // C ′

��

// D

��

// 0

0 // B1 // F

��

// C

��

// 0

B0[1]

��

B0[1]

��
0 0 .

(3.1.3)

On the one hand, by the middle vertical exact sequence, we have H−1(C ′) = 0. Hence, by
the top horizontal exact sequence, H−1(D) = 0 or H−1(D) = B1. Note that H−1(D) = B1 6∈ F,
so D ∈ Coh(P2,B0).

Summing up, when m = m0, we have in those cases that B0[1] and B1 are two JH-factors
of F . Moreover, the remaining part D of the JH-filtration is a σm0-semistable B0-module, with
class [B1]− [B0].

When C ∈ 〈B1〉⊥ (equivalently, D ∈ N1), we fall into case (c.iii) and the JH-factors for
m = m0 are B0[1], B1, and D. When C 6∈ 〈B1〉⊥ (equivalently, D ∈ M1 \N1), we fall into case
(c.iv).

Let w be the numerical class 2[B1]−2[B0]. As a consequence of the previous lemma we get that
M2 embeds inside Mσm(P2,B0;w) when m > m0. With the aim of proving the other inclusion,
we need the following lemma, which adapts [MS12, Lemma 5.8] to our situation.

Lemma 3.2. Let m1 > m0 =
√
5
8 and let G be a σm1-(semi)stable object with numerical class w.

Then G is σm-(semi)stable for all m > m0 and σm0-semistable.

Proof. Assume, for a contradiction, that G is not σm-semistable (respectively, σm-stable) for
m > m0. Then we have an exact sequence in A

0→ A→ G→ B → 0 ,

where A 6= 0 is σm-stable and Re(Zm(A)) < 0 (respectively, Re(Zm(A)) 6 0). Let ch(A) =
(r, c1, ch2). The same argument as in [MS12, Lemma 5.8] shows that r 6= 0 and Im(Zm(A)) ∈
{m, 2m, 3m}. But then, the same casuistry as in Lemma 3.1 shows that this can only happen
when m < m0 (respectively, m < m0 or m = m0 and G 6∈ 〈B1〉⊥).

Now, let G ∈ Mσm1 (P2,B0;w) be a (semi)stable object for m1 > m0. By Lemma 3.2, we
have two possibilities: either G is σm-(semi)stable for all m > m0, or m1 = m0 and G either
stabilizes or destabilizes for all m > m0. We will see in Lemma 3.5 that it destabilizes or stabilizes
depending on whether hom(B1,G) is maximal in its S-equivalence class or not.

Lemma 3.3. Let G ∈ A be a σm-(semi)stable object for all m > m0, with numerical class w.
Then G is a (semi)stable B0-module, pure of dimension one.
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Proof. We argue as in [MS12, Lemma 5.9] to deduce that G is a pure B0-module of dimension
one. If A is a stable B0-module that destabilizes G, then ReZm(A) 6 0 (respectively, < 0), so G
would not be σm-(semi)stable.

As a straightforward consequence of the previous lemmas, we get the following.

Corollary 3.4. Let w = 2[B1]− 2[B0]. Then M2 = Mσm(P2,B0;w) for all m > m0 =
√
5
8 .

Finally, we study in general the S-equivalence classes in Mσm0 (P2,B0;w) which contain objects
outside 〈B1〉⊥. In particular, we will study the S-equivalence classes of the objects F ∈M2, which
become σm0-semistable with JH-factors as in cases (c.iii) and (c.iv) of Lemma 3.1. The following
lemma will be useful in the next section to prove Theorem 3.10.

Lemma 3.5. Let w = 2[B1]− 2[B0]. An object G in Mσm0 (P2,B0;w) \ 〈B1〉⊥ falls into one of the
following cases:

(a) The object G is in the S-equivalence class of B0[1]⊕ B1 ⊕ Ξ3(Il), with l 6= l0. The indecom-
posable objects in this S-equivalence class in Mσm0 (P2,B0;w) are represented by:

(a.i) Gieseker semistable B0-modules in M2 \N2 that are parametrized by a P2;
(a.ii) Gieseker properly semistable B0-modules in M2 \ N2 that are parametrized by a P1

contained in the P2 above; in the complement P1 inside P2, the B0-modules are Gieseker
stable;

(a.iii) an extension of Ξ3(Il0) and Ξ3(Il), which lies in 〈B1〉⊥.

(b) The object G is in the S-equivalence class of B⊕20 [1] ⊕ B⊕21 . The indecomposable objects in
this S-equivalence class in Mσm0 (P2,B0;w) are represented by:

(b.i) Gieseker properly semistable B0-modules G ∈M2 \N2; they have hom(B1, G) = 2, their
S-equivalence classes as B0-modules are parametrized by a P2, and each S-equivalence
class is C2;

(b.ii) indecomposable extensions of Ξ3(Il0) with itself, which are then in 〈B1〉⊥;
(b.iii) objects G such that hom(B1, G) = 1.

These are the only S-equivalence classes that contain σm0-semistable objects that get properly
destabilized for m > m0 and m < m0.

Proof. If G 6∈ 〈B1〉⊥, then B1 → G is necessarily an injection in A. Indeed, let T := ImA(B1 →
F ). Since B1 is σm0-stable, with Re (Zm0(B1)) = 0, if T 6∼= B1, then Re (Zm0(T )) > 0. This
contradicts the semistability of G. Thus, B1 is a JH-factor of G. Since χ(B1, G) = 0, we have
hom(B1, G) = hom(G,B0[1]). The same argument shows that G → B0[1] is necessarily a surjec-
tion in A. Thus, B0[1] is another JH-factor of G.

Hence, as in the proof of Lemma 3.1, G necessarily sits in the commutative diagram (3.1.3).
Note that D ∈ A, but unlike in Lemma 3.1, D is not necessarily in Coh(P2,B0), because we
have not assumed that G is in Coh(P2,B0).

If D ∈ 〈B1〉⊥, then D ∼= Ξ3(Il) for some line l, by [BMMS12, Theorem 4.1]. Note that
D ∈ Coh(P2,B0) if and only if l 6= l0 and then, we are in case (a). If D 6∈ 〈B1〉⊥ or l = l0, then
D is still properly σm0-semistable, with JH-factors B0[1] and B1 and we are in case (b).

Suppose that we are in case (a) and let G be a representative in the S-equivalence class such
that hom(B1, G) 6= 0. Note that an element in Hom1(B0[1],B1) corresponds to an element in the
projective line P1 which is the exceptional locus of the map M1 → F (Y ) described in Proposition
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2.13. Taking the unique non-trivial extension of one of these B0-modules with Ξ3(Il), we obtain
a P1 of properly semistable B0-modules (this is case (a.ii)).

Now we start with an element in Hom1(Ξ3(Il),B1). By Example 2.11, we have

hom1(Ξ3(Il),B1) = h1(P1,OP1(−1)⊕OP1(−2)) = 1 .

Let C ′ ∈ Hom1(Ξ3(Il),B1). Clearly C ′ ∈ Coh(P2,B0) since Ξ3(Il) and B1 are also elements of
Coh(P2,B0).

Note that hom1(B0[1], C ′) = 3, because

0→ Hom(B0,B1)→ Hom1(B0[1], C ′)→ Hom(B0,Ξ3(Il))→ 0 .

Let G ∈ Hom1(B0[1], C ′). We want to see that G is a B0-module. We have

0→ H−1(G)→ B0 → C ′ → H0(G)→ 0 .

Since B0 is torsion-free and rk(C ′) = rk(B0), either B0 → C′ is zero, or H−1(G) = 0. Hence, the
non-trivial extensions between B0[1] and C ′ are B0-modules and they are parametrized by a P2.
When the first extension is trivial, that is, C ′ = B1 ⊕ Ξ3(Il), we recover the previous case.

Finally, we want to see that these extensions G are Gieseker semistable B0-modules. Since G
is σm0-semistable, up to choosing ε small enough, G is σm-semistable for all m ∈ (m0,m0 + ε).
Indeed, if not, by [Bri08, Proposition 9.3], the HN-factors of G in the stability condition σm,
for m ∈ (m0,m0 + ε), would survive in the stability condition σm0 . This would contradict the
σm0-semistability of G. Since we have seen that M2 = Mσm(P2,B0;w) for all m > m0, we get
that G ∈M2 and thus case (a.i). If G is properly semistable, then G is the extension of two stable
B0-modules, G1 and G2. Since hom(B1, G) 6= 0, we can suppose that G1 ∈ N1 and G2 ∈M1 \N1,
and we are in the aforementioned P1.

Now, suppose that we are in case (a) and let G be a representative in the S-equivalence class
in 〈B1〉⊥. Since hom1(B1,Ξ3(Il)) = 0, we need to start with an element in Hom1(B1,B0[1]). By
[BMMS12, Exercise 2.11], the only non-trivial extension in Hom1(B1,B0[1]) is Ξ3(Il0) and we get
case (a.iii). Thus we conclude the analysis of case (a).

Suppose that we are in case (b) and let G be a representative in the S-equivalence class
such that hom(B1, G) = 2. By the same argument as before, an extension C of B1 with itself
needs to be a subobject of G in A while an extension C ′ of B0[1] with itself is a quotient of
G in A. Note that necessarily C = B⊕21 and C ′ = B⊕20 [1]. Hence we consider an element in
G ∈ Hom1(B⊕20 [1],B⊕21 ).

Equivalently we can construct G as the extension of two sheaves G1 and G2 in the exceptional
locus of the map M1 → F (Y ) described in Proposition 2.13. Each of them is parametrized by a
P1. But since the roles of G1 and G2 are symmetric, we obtain that the S-equivalence classes of
the G as objects in M2 are parametrized by P1×P1 quotiented by the natural involution. Thus,
the S-equivalence classes of the objects G are parametrized by a P2 and we obtain case (b.i).
Note that Ext1(G1, G2) ∼= C2.

Let G be in 〈B1〉⊥ and suppose that we are in case (b). Again, G is obtained from an element
in Hom1(B⊕21 ,B⊕20 [1]). Equivalently, we can construct G as the extension of the two unique non-
trivial extensions in Hom1(B1,B0[1]). Each of them is Ξ3(Il0) and Ext1(Ξ3(Il0),Ξ3(Il0)) ∼= C2.
This is case (b.ii)

The remaining indecomposable objects G in case (b) have hom(B1, G) = 1 (as in (b.iii))
and the last statement of the lemma follows from the fact that these are the only S-equivalence
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classes that contain the objects G such that hom(B1, G) 6= 0 and the objects G′ such that
hom(G′,B1) 6= 0.

Remark 3.6. Notice that the S-equivalence classes in cases (a) and (b) contain the B0-modules
in cases (c.iii) and (c.iv) of Lemma 3.1, respectively. Moreover, from Lemma 3.5 and [Bri08,
Proposition 9.3], it follows that a σm0-semistable object G remains semistable for σm with m >
m0 if and only if hom(B1, G) is maximal in its S-equivalence class. This happens in cases (a.i)
and (b.i) of the previous lemma. Under these circumstances, two objects G1 and G2 in the same
S-equivalence class in σm0 belong to different S-equivalence classes in σm for m > m0. For this,
one uses that G1 and G2 are Gieseker (semi)stable and invokes Corollary 3.4. On the other hand,
G remains semistable for σm with m < m0 if hom(B1, G) = 0. This happens in cases (a.iii) and
(b.ii) of Lemma 3.5. It is clear that if G is as in case (b.iii), then G is not σm-semistable for
m > m0 or 1

4 < m < m0.

3.2 Instanton sheaves

Now we want to give a geometric interpretation of Mσm(P2,B0;w) for m 6 m0. The appropriate
objects are the instanton sheaves.

Definition 3.7. We say that E ∈ Coh(Y ) is an instanton sheaf if E is a Gieseker semistable
sheaf of rank two and Chern classes c1(E) = 0 and c2(E) = 2. When E is locally free, we call it
an instanton bundle.

An instanton sheaf according to the definition above would be called an instanton sheaf
of charge two in the existing literature. In general, an instanton bundle of charge s > 2 is a
locally free sheaf E of rank two with Chern classes c1(E) = 0 and c2(E) = s, and such that
H1(Y,E(−1)) = 0 (see, for example, [Kuz04, Definition 2.4]). It is easy to show that if the
charge is minimal (that is, c2(E) = 2), then the condition H1(Y,E(−1)) = 0 is automatically
satisfied (see [Kuz12, Corollary 3.3]).

Remark 3.8. By [Dru00, Theorem 3.5], each semistable instanton sheaf falls under one of the
following cases:

(1) The sheaf E is stable and locally free.

(2) The sheaf E is stable but not locally free. In this case, E is obtained by the construction in
Example 2.10. In fact, these are the only stable instanton sheaves that are not locally free.

(3) The sheaf E is properly semistable. In this situation, E is extension of two ideal sheaves of
lines in Y .

Moreover, given a stable instanton bundle E, the bundle E(1) is globally generated [Dru00,
Theorem 2.4], so E is an Ulrich bundle. Indeed, E is associated with a non-degenerate smooth
elliptic quintic C via the Serre construction (see [Dru00, Corollary 2.6] and compare it with
Lemma 2.19).

The following will be crucial in our analysis.

Lemma 3.9. Let E be a stable instanton bundle. Then Ξ3(E) is a stable B0-module.

Proof. Let F be a stable instanton bundle of minimal charge. By [Dru00, Corollary 2.6] a stable
Ulrich bundle F of rank two is associated with a non-degenerate smooth elliptic quintic C via
the Serre construction

0→ OY (−H)→ F → IC(H)→ 0 . (3.2.1)
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Note that Ψ(σ∗OY (−H)) = B−1 and Ψ(σ∗OY (H)) = B2[1]. Applying the functor Ψ ◦ σ∗ to
the short exact sequence

0→ IC(H)→ OY (H)→ OC(H)→ 0 ,

we get

0→ H−1(Ψ(σ∗IC(H)))→ B2
f→ Ψ(σ∗OC(H))→ H0(Ψ(σ∗IC(H)))→ 0 . (3.2.2)

On the other hand, from (3.2.1) we obtain

0→ H−1(Ψ(σ∗F ))→ H−1(Ψ(σ∗IC(H)))
g→ B−1 → H0(Ψ(σ∗F ))→ H0(Ψ(σ∗IC(H)))→ 0 .

(3.2.3)
Observe that H−1(Ψ(σ∗IC(H))) ⊆ B2 is a non-trivial torsion-free sheaf of rank four. Hence, the
map g is either injective or zero.

Step 1: Assume that the associated elliptic quintic C does not intersect l0. Since C ∩ l0 = ∅,
we have Ψ(σ∗OC(H)) = F

C̃
[1], where F

C̃
is a rank two torsion-free bundle supported on the

irreducible curve C̃ = π(σ−1(C)) ⊂ P2. Hence, (3.2.2) becomes

0→ H−1(Ψ(σ∗IC(H)))→ B2
f→ F

C̃
→ H0(Ψ(σ∗IC(H)))→ 0 .

On the one hand, note that f could be surjective, be zero, or have cokernel supported on points.
Indeed, by [BMMS12, Lemma 2.13(ii)], the image of f is supported on points, trivial, or a rank
two torsion-free subsheaf of F

C̃
. As F

C̃
is torsion-free, the first possibility cannot be realized.

Thus f has to be as we claimed above.

Now we observe that g in (3.2.3) is injective. Assume, by contradiction, that g is zero. Hence,
we have the following exact sequence:

0→ B−1 → H0(Ψ(σ∗F ))→ H0(Ψ(σ∗IC(H)))→ 0 .

If H0(Ψ(σ∗IC(H))) is supported at most in dimension zero, then we have

0 6= Hom2(B1,B−1) ↪→ Hom2(B1,H0(Ψ(F ))) .

Note that we have an exact triangle

H−1(Ψ(σ∗F ))[1]→ Ψ(σ∗F )→ H0(Ψ(σ∗F )) ,

so this would imply Hom2(B1,Ψ(σ∗F )) 6= 0. But F ∈ TY , so Ψ(σ∗F ) ∈ 〈B1〉⊥ and we get a
contradiction. If f and g are zero, then H−1(Ψ(σ∗F )) = B2 and we get a contradiction because
Hom0(B1,H−1(Ψ(σ∗F ))) 6= 0. The case when f is surjective and g is trivial can be excluded by
a similar argument as we would have B−1 ∼= H0(Ψ(σ∗F )).

Therefore, g is injective and Ψ(σ∗F ) is a torsion sheaf with class 2[B1]− 2[B0].

Step 2: Assume that the associated elliptic quintic C intersects l0 transversally in a point. Since
C ∩ l0 = {p}, we have Ψ(σ∗OC(H)) = Ψ(OC′∪γ(H)), where by abuse of notation we denote by
C ′ the strict transform of C and γ ⊂ D is the line σ−1(p). Hence, (3.2.2) becomes

0→ H−1(Ψ(σ∗IC(H)))→ B2
f→ Ψ(OC′∪γ(H))→ H0(Ψ(σ∗IC(H)))→ 0 . (3.2.4)

To characterize Ψ(OC′∪γ(H)) better, consider the exact sequence on Coh(Ỹ )

0→ Ip,C′(H)→ OC′∪γ(H)→ Oγ(H)→ 0 . (3.2.5)
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On the one hand, we need to compute Ψ(Oγ(H)). As γ ⊂ D it makes sense to consider the ideal
sheaf Iγ,D which is actually equal to Iσ−1(p),σ−1(l0) = σ∗Ip,l0 = σ∗(Ol0(−H)) = OD(−H). Now,
tensoring the exact sequence

0→ OD(−H)→ OD → Oγ → 0

by D = H − h, we have

0→ OD(−h)→ OD(D)→ Oγ(H − h)→ 0 . (3.2.6)

By [BMMS12, Exercise 2.11] and applying the functor Ψ, it provides the exact triangle

B−1[1]→ B0[1]→ Ψ(Oγ(H − h)) .

By construction, we know that Ψ(Oγ(H − h)) is a torsion sheaf in degree −1 and we have the
following exact sequence:

0→ B−1 → B0 → H−1(Ψ(Oγ(H − h)))→ 0 .

By definition Ψ(F ⊗O
Ỹ

(mh)) = π∗(F ⊗OỸ (mh)⊗ E ⊗O
Ỹ

(h))[1] = Ψ(F )⊗O
Ỹ

(mh). Hence, if
we tensor (3.2.6) by O

Ỹ
(h) and we apply Ψ again, we get that Ψ(Oγ(H)) is a torsion sheaf in

degree −1 and we get the following exact sequence:

0→ B1 → B2 → H−1(Ψ(Oγ(H)))→ 0 . (3.2.7)

Note that Hom(B2,H−1(Ψ(Oγ(H)))) ∼= C.

Using the discussion above and (3.2.5), we get the commutative diagram

0

��

0

��
0 // H−1(Ψ(σ∗IC(H))) //

��

B1

��
B2
f
��

B2

��
0 // H−1(Ψ(Ip,C′(H))) // H−1(Ψ(OC′∪γ(H)))

��

h // H−1(Ψ(Oγ(H)))

��

// 0

H−1(Ψ(Ip,C′(H))) // H0(Ψ(σ∗IC(H)))

��

0

0 .

(3.2.8)

Furthermore, we have Ψ(Ip,C′(H)) ∼= F
C̃′

[1], where F
C̃′

is a rank two torsion-free sheaf supported

on C̃ ′ = π(C ′) ⊂ P2 which is irreducible. Indeed, by definition,

Ψ(Ip,C′(H)) = π∗(Ip,C′(H)⊗ E ⊗O
Ỹ

(h))[1] .

Since the fibers of π restricted to C ′ are only points or empty, we have

Ψ(Ip,C′(H)) = R0π∗(Ip,C′(H)⊗ E ⊗O
Ỹ

(h))[1] ,

where R0π∗(Ip,C′(H)⊗ E ⊗O
Ỹ

(h)) is a sheaf supported on C̃ ′ = π(C ′). Observe that C ′ ⊂ Ỹ is
a quartic, so the image π(C ′) is a line, a conic, or a quartic in P2. The first two possibilities are
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not realized and this means that C ′ → C̃ ′ is birational. Hence, by base chance, R0π∗(Ip,C′(H)⊗
E ⊗O

Ỹ
(h)) has rank on C̃ ′ equal to the rank of Ip,C′(H)⊗ E ⊗O

Ỹ
(h) on C ′, which is two.

We claim that g in (3.2.3) is injective. Assume, by contradiction, that g is zero. Hence, we
have the following exact sequence:

0→ B−1 → H0(Ψ(σ∗F ))→ H0(Ψ(σ∗IC(H)))→ 0 ,

and we have two cases depending on the behavior morphism f ′ := h◦f : B2 → H−1(Ψ(Oγ(H))).

Case (a.1). If the map f ′ is non-zero, then (3.2.8) yields the sequence

0→ H−1(Ψ(σ∗IC(H)))→ B1
f1→ F

C̃′
→ H0(Ψ(σ∗IC(H)))→ 0 ,

where f1 could be zero, be surjective, or have cokernel supported on points (see Step 1). If
coker f1 = H0(Ψ(σ∗IC(H))) is supported at most in dimension zero, then we have

0 6= Hom2(B1,B−1) ↪→ Hom2(B1,H0(Ψ(σ∗F ))) .

So we get a contradiction with Ψ(σ∗F ) ∈ 〈B1〉⊥. Assume that f1 and g are both zero. Then
H−1(Ψ(σ∗F )) = B1 and we get a contradiction as Hom0(B1,H−1(Ψ(σ∗F ))) 6= 0. Hence, f1 is
surjective and then, as in Step 1, g is injective.

Case (b.1). On the other hand, the map f ′ could be zero, in which case f would factor through
B2 → H−1(Ψ(Ip,C′(H))). In this case, we get a sequence

0→ H−1(Ψ(σ∗IC(H)))→ B2
f2→ F

C̃′
→ K → 0 ,

where f2 could be zero, be surjective, or have cokernel supported on points (see again Step 1).
Moreover, we have

0→ K → H0(Ψ(σ∗IC(H)))→ H−1(Ψ(Oγ(H)))→ 0 . (3.2.9)

If K is supported at most in dimension zero, then

Ext1(B1,H0(Ψ(σ∗IC(H)))) = Ext1(B1,H−1(Ψ(Oγ(H)))) = 0 ,

by (3.2.9) and (3.2.7). So, again we have

0 6= Hom2(B1,B−1) ↪→ Hom2(B1,H0(Ψ(σ∗F ))) ,

contradicting the fact that Ψ(σ∗F ) ∈ 〈B1〉⊥. If f2 and g are zero, then H−1(Ψ(σ∗F )) = B2 and
we get a contradiction because Hom0(B1,H−1(Ψ(σ∗F ))) 6= 0. As in the previous step, f cannot
be surjective whenever g is trivial.

Therefore, g is injective and Ψ(σ∗F ) is a torsion sheaf with class 2[B1]− 2[B0].

Step 3: Assume that the associated elliptic quintic C intersects l0 with multiplicity m in a point.
Since C ∩ l0 = {p} with multiplicity m > 1, with the notation of Step 2, we have Ψ(σ∗OC(H)) =
Ψ(OC′∪mγ(H)). Note that we have the following exact sequence on Coh(Ỹ ):

0→ Imp,C′(H)→ OC′∪mγ(H)→ Omγ(H)→ 0 . (3.2.10)

Moreover, we have the exact sequence

0→ O(m−1)γ(H)→ Omγ(H)→ Oγ(H)→ 0 ,

so Ψ(Omγ(H)) is a successive extension of Ψ(Oγ(H)).
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Then, we can also distinguish between two cases, depending on whether the morphism

B2 → H−1(Ψ(Omγ(H)))

arising from (3.2.10) and (3.2.2) is non-zero (case (a.2)), or f factors through the morphism
B2 → H−1(Ψ(Ip,C′(H))) as in (3.2.2) (case (b.2)).

If we are in case (b.2), exactly the same arguments as in case (b.1) show that Ψ(σ∗F ) is a
torsion sheaf with class 2[B1] − 2[B0]. So we can suppose that we are in case (a.2) and we have
the following diagram:

0

��

0

��
0 // H−1(Ψ(σ∗IC(H))) //

��

K ′

��
B2
f
��

B2

��
0 // H−1(Ψ(Ip,C′(H))) // H−1(Ψ(OC′∪γ(H)))

��

// H−1(Ψ(Omγ(H)))

��

// 0

H−1(Ψ(Ip,C′(H))) // H0(Ψ(σ∗IC(H)))

��

// L′

��

// 0

0 0 .

By the horseshoe lemma we have the following exact sequence:

0→ B⊕m1 → B⊕m2 → H−1(Ψ(Omγ(H)))→ 0 .

So, we have K ′ ∼= B1 and L′ ∼= H−1(Ψ(O(m−1)γ(H))) and we get the following exact sequence:

0→ H−1(Ψ(σ∗IC(H)))→ B1
f3→ F

C̃′
→ H0(Ψ(σ∗IC(H)))→ H−1(Ψ(O(m−1)γ(H)))→ 0 ,

where f3 could be zero, be surjective, or have cokernel supported on points (see the argument in
Step 1).

We claim that g in (3.2.3) is injective. Running the same machinery as in the previous steps,
we assume, by contradiction, that g is zero. Hence, we have the following exact sequence:

0→ B−1 → H0(Ψ(σ∗F ))→ H0(Ψ(σ∗IC(H)))→ 0 .

If coker f3 is supported at most in dimension zero,

Ext1(B1,H0(Ψ(σ∗IC(H))) = Ext1(B1,H0(Ψ(Omγ(H)))) = 0 .

So, we have 0 6= Hom2(B1,B−1) ↪→ Hom2(B1,H0(Ψ(σ∗F ))), contradicting Ψ(σ∗F ) ∈ 〈B1〉⊥.
Thus, it remains to deal with the case when f3 and g are zero. But then H−1(Ψ(σ∗F )) = B1 and
we get a contradiction because Hom0(B1,H−1(Ψ(σ∗F ))) 6= 0.

If f factors through B2 → H−1(Ψ(Ip,C′(H))) and K is supported at most in dimension zero,
then

Ext1(B1,H0(Ψ(σ∗IC(H)))) = Ext1(B1,H−1(Ψ(Oγ(H)))) = 0 ,
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by (3.2.9) and (3.2.7). So, again we have 0 6= Hom2(B1,B−1) ↪→ Hom2(B1,H0(Ψ(σ∗F ))) and we
get a contradiction with Ψ(σ∗F ) ∈ 〈B1〉⊥. As in the previous steps, if f2 and g are zero, then
H−1(Ψ(σ∗F )) = B2 and we get a contradiction because Hom0(B1,H−1(Ψ(σ∗F ))) 6= 0. Therefore,
Ψ(σ∗F ) is a torsion sheaf with class 2[B1]− 2[B0].

Step 4: Assume that the associated elliptic quintic C intersects l0 in s distinct points (possibly
with multiplicity). Since C ∩ l0 = {p1, . . . , ps}, with the notation of Steps 2 and 3, we have
Ψ(σ∗OC(H)) = Ψ(OC′∪m1γ1∪...∪msγs(H)). Note that we have the following exact sequence in

Coh(Ỹ ):

0→ Im1p1∪...∪msps,C′(H)→ OC′∪m1γ1∪...∪msγs(H)→
s⊕
i=1

Omiγi(H)→ 0 , (3.2.11)

since the lines γi are disjoint. Then, we can reduce to the previous steps.

From Step 1-4, we get that if F is a stable Ulrich bundle of rank two, then Ψ(σ∗F ) is a torsion
sheaf with class 2[B1]− 2[B0].

Step 5: We can now show that Ψ(σ∗F ) is stable. Suppose it is not, and let E ↪→ Ψ(σ∗F ) be a
destabilizing B0-module. Then, ch(E) = (0, 2, z) for some z > −2. Since

Hom(B1, E) ↪→ Hom(B1,Ψ(σ∗F )) = 0 ,

we have χ(B1, E) 6 0. By (2.2.3), we have z = −2 and E ∈ 〈B1〉⊥. By [BMMS12, Theorem 4.1],
we get E ∼= Ξ3(Il) for some line l ∈ F (Y ) \ {l0} and Il ↪→ F contradicts the stability of F .

Denote by Minst
Y the moduli space of semistable instanton sheaves. By [Dru00, Theorem 4.8],

Minst
Y is isomorphic to the blow-up f : Minst

Y → J(Y ) of the intermediate Jacobian J(Y ) of Y
along (a translate of) −F (Y ). Here F (Y ) is the Fano surface of lines in Y . Recall that the Abel–
Jacobi map establishes an isomorphism Alb(F (Y ))

∼→ J(Y ). Moreover, the Albanese morphism
provides an embedding F (Y ) ↪→ Alb(F (Y )) defined after picking a special point, in our case
l0 (see [CG72]). Recall that the closure of the locus of stable non-locally-free instanton sheaves
(case (2) in Remark 3.8) forms the exceptional divisor of f . Stable non-locally-free instanton
sheaves are associated with a smooth conic inside Y via the Serre construction and they are sent
to the residual line of the conic.

We denote by F (Y ) the strict transform of F (Y ) under f . Since we have chosen l0 general
(that is, such that for any other line l meeting l0, the plane containing them intersects the cubic
in three distinct lines), F (Y ) ∩ (−F (Y )) is the Abel–Prym curve Cl0 ⊂ J(Y ) consisting of all
lines inside Y that intersect l0 (see, for example, [LN13, Section 5]). Note that F (Y ) parametrizes
properly semistable instanton sheaves that fall under case (3) in Remark 3.8 and are extensions
of Il0 and Il, for l a line in Y (possibly equal to l0). Indeed, semistable instanton sheaves under
case (3) have second Chern class c2(E) = l + l0.

Therefore, F (Y ) intersects the divisor contracted by f , in the locus where E is semistable,
and it is the extension of Il0 and Il with l ∩ l0 6= ∅. From the point of view of the conics, this
corresponds to the case when the conic over l degenerates to l0 ∪ l′, where l, l′, l0 are coplanar
and in general position.

Theorem 3.10. The moduli space M2 is the blow-up of Minst
Y along F (Y ).
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Proof. Let E be a semistable instanton sheaf. We claim that if Ξ3(E) ∈ Coh(P2,B0), then
Ξ3(E) ∈M2 (that is, it is semistable) and, by Lemma 3.1, Ξ3(E) ∈Mσm(P2,B0;w) for all m > 1

4 .
Combining Remark 3.8 and [BMMS12, Example 2.4, Example 2.11, Step 5 in Proposition 3.3],
we can distinguish three cases where Ξ3(E) ∈ Coh(P2,B0).

One possibility is that E is a stable instanton bundle. In this case, Ξ3(E) ∈M2 follows from
Lemma 3.9.

Another possibility is that E is a stable instanton sheaf which is not locally free. In that case
E can be associated with a smooth conic via the Serre construction. If the conic does not intersect
the line of projection, then Ξ3(E) ∈ M2 follows from Example 2.10. If the conic intersects the
line of projection in one point or two points (even tangentially), then the same computations as
in Steps 2, 3, and 4 of the proof of Lemma 3.9 show again that Ξ3(E) ∈ Coh(P2,B0). By Step
5 of the proof of Lemma 3.9, Ξ3(E) is stable, so in M2.

Finally, the last possibility is that E is a properly semistable sheaf and the two JH-factors are
Il and Il′ , where we may have l = l′, but in any case l, l′ 6= l0. Then Ξ3(E) ∈M2 follows from a
direct computation based on the fact that Ξ3(Il) and Ξ3(Il′) are in Ms

1 (see Lemma 2.14).

Hence, by [BMMS12, Exercise 2.11], the only cases in which Ξ3(E) 6∈ Coh(P2,B0) appear
when E is a properly semistable sheaf and Il0 is a JH-factor. Indeed, this is the only case where
Ξ3(E) 6∈M2 and we need to push our analysis a bit further.

When Il0 and Il with l 6= l0 are the JH-factors of E, hom(Ξ3(E),B1) = 1. Hence, the

HN-filtration of Ξ3(E) for m > m0 =
√
5
8 is

B0[1] ⊂ C[1] ⊂ Ξ3(E) ,

where 0→ C[1]→ Ξ3(E)→ B1 → 0 and 0→ B0[1]→ C[1]→ Ξ3(Il)→ 0 are exact sequences in
the abelian category A which is the heart of the bounded t-structure in the stability condition
in Lemma 2.7. If the two JH-factors of E are both isomorphic to Il0 , then hom(Ξ3(E),B1) = 2.
Hence, the HN-filtration of Ξ3(E) for m > m0 is

B0[1] ⊂ B⊕20 [1] ⊂ C[1] ⊂ Ξ3(E) ,

where 0 → B⊕20 [1] → C[1] → B1 → 0 and 0 → C[1] → Ξ3(E) → B1 → 0 are exact sequences in
the abelian category A.

In both cases, this means that Ξ3(E) is σm0-semistable. As a consequence, up to choosing
ε small enough, Ξ3(E) is σm-semistable for all m ∈ (m0 − ε,m0). Indeed, if not, by [Bri08,
Proposition 9.3], the HN-factors of Ξ3(E) in the stability condition σm, for m ∈ (m0 − ε,m0),
would survive in the stability condition σm0 . This would contradict the σm0-semistability of
Ξ3(E).

Since the quotient Ξ3(E)→ B1 σm-destabilizes Ξ3(E), for m > m0, we have

Ξ3(E) 6∈Mσm(P2,B0;w) for m > m0 :=

√
5

8
,

Ξ3(E) ∈Mσm(P2,B0;w) for m ∈ (m0 − ε,m0] and ε > 0 small enough,

where w := 2[B1]− 2[B0].
We claim that Minst

Y = Mσm(P2,B0;w) for all m ∈ (m0 − ε,m0] and ε > 0 sufficiently small.
More precisely, we need to show that, for m ∈ (m0 − ε,m0), the objects Ξ3(E) are the only
σm-semistable objects in A with class w, when E is a semistable instanton sheaf. First observe
that, if G ∈ A is a σm-semistable object, for some m ∈ (m0 − ε,m0) and with class w, then

265



Mart́ı Lahoz, Emanuele Macr̀ı and Paolo Stellari

G ∈ 〈B1〉⊥. Indeed, if hom(B1, G) 6= 0, then the image T := ImA(B1 → G) destabilizes G, for
m ∈ (m0 − ε,m0) and ε > 0 small enough, since Re (Zm0(T )) > 0.

By [Bri08, Proposition 9.3], up to replacing ε, we can assume that all such objects G are σm0-
semistable. By Lemma 3.2, we have two possibilities: either G is σm-semistable for all m > m0, or
G is properly σm0-semistable and destabilizes for all m > m0. In the first case, G is a (semi)stable
element of N2 by Lemma 3.3 and the discussion above. Thus, by the proof of Proposition 2.22,
Ξ−13 (G) is either a balanced ACM bundle of rank two (that is, an instanton bundle) or as in case
(2) of Remark 3.8.

If G destabilizes for all m > m0, then G needs to be in cases (a) and (b) of Lemma 3.5. Since
G ∈ 〈B1〉⊥, Lemma 3.5 tell us that G ∼= Ξ3(E), where E is a properly semistable sheaf with Il0
as a JH-factor.

Having proved this, we are ready to show that M2 is the blow-up of Minst
Y along F (Y ). In

view of Corollary 3.4, one has to study the objects F ∈ Mσm(P2,B0;w) = M2 for all m > m0

and w = 2[B1]−2[B0], which become σm0-semistable with JH-factors as in cases (c.iii) and (c.iv)
of Lemma 3.1. Indeed, by Lemma 3.1, these are the only objects that could be contracted. By
Remark 3.6, the ones falling in case (a.i) of Lemma 3.5 get contracted to the S-equivalence classes
of the instanton sheaves which are extensions of Il0 and Il (l 6= l0). For the same reason, the
ones in case (b.i) of Lemma 3.5 are contracted to the S-equivalence class of the instanton sheaves
which are extensions of Il0 with itself. Moreover, again by Lemma 3.5, each contracted fiber is
P2 and the birational map M2 →Minst

Y is a well-defined morphism.

Applying [Luo93, Theorem 2], we conclude that M2 is isomorphic to the blow-up of Minst
Y at

F (Y ).

As a corollary of the previous proof we get the following result, which is of interest in itself.

Corollary 3.11. Let w = 2[B1] − 2[B0] and m0 =
√
5
8 . Then Minst

Y = Mσm(P2,B0;w), for all
m ∈ (m0 − ε,m0] and ε > 0 sufficiently small.
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