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Abstract. This thesis deals with use of qualitative and quantitative 

probabilistic models for the animal-derived food safety management. 

Four unrelated models are presented: three quantitative and one 

qualitative. Two of the quantitative models concern the risk posed by 

pathogens in raw milk, in the first study, a probabilistic approach for the 

inclusion of the variability and the uncertainty in the consumers’ habits 

and the bacterial pathogenic potential is proposed while the second 

study, demonstrate how the overlook of the relationship between the 

storage time and temperature has led to overestimated results in raw 

milk-related models published so far and an equation to address the issue 

is provided. In the third study, quantitative modelling techniques are used 

to simulate the dynamics underlying the spread of Campylobacter in 

broiler flocks and quantify the potential effects that different on-farm 

mitigation strategies or management measures have on the microbial 

load in the intestine of infected birds at the end of the rearing period. In 

the qualitative study, a general approach for the estimation of the 

likelihoods of introduction of live parasites in aquaculture implants 

and the commercialization of infested product is outlined by using 

the example of Anisakids in farmed Atlantic salmon. 



 

Abstract. Questa tesi si concentra sull’utilizzo della modellazione 

probabilistica quantitativa e qualitativa per fornire informazioni in 

supporto alla gestione della sicurezza alimentare dei prodotti di origine 

animale. Quattro lavori indipendenti vengono presentati: tre quantitativi 

e uno qualitativo. Due dei tre studi quantitativi hanno riguardato la 

modellazione del rischio legato alla presenza di microrganismi patogeni 

nel latte crudo; nel primo si propone un approccio probabilistico per 

l’inclusione della variabilità e l’incertezza relativa ai fattori di patogenicità 

a livello batterico ed il comportamento dei consumatori a livello 

domestico; nel secondo si è dimostrato come i modelli di analisi del 

rischio legati al latte crudo sviluppati e pubblicati negli ultimi anni 

riportino risultati probabilmente sovrastimati a causa del non aver 

considerato la relazione che intercorre tra le variabili tempo e 

temperatura di conservazione con la probabilità che il prodotto venga 

realmente consumato e una equazione ad-hoc viene proposta. Nel terzo 

studio, le tecniche di modellazione quantitativa sono state utilizzate per 

riprodurre le dinamiche biologiche relative alla diffusione di 

Campylobacter negli allevamenti di polli da carne e quantificare l’effetto 

che diverse strategie di contenimento o gestionali possono avere sulla 

carica microbica a livello intestinale alla fine del ciclo di allevamento. Lo 

studio qualitativo ha riguardato la formulazione di un approccio generale 

per la stima delle probabilità che parassiti vivi si introducano negli 

allevamenti di acquacultura e che il prodotto infestato da larve vitali 

venga commercializzato, l’esempio di Anisakis negli allevamenti di 

Salmone Atlantico viene presentato. 
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GENERAL INTRODUCTION 

The food safety is an essential public health priority: at least one-third of 

the populations in developed countries are affected by foodborne 

illnesses every year, and the proportion is likely to be even more 

prominent in developing countries. The availability of safe food should be 

a basilar human right and the reduction of social and economic burdens 

of foodborne disease, a primary objective in all the countries. 

In theory, foodborne diseases are preventable, a deep knowledge about 

foodborne hazards and the nature of the risks that these hazards pose to 

human health, combined with the capacity to take appropriate 

interventions, should result in a significant reduction of the food-borne 

disease. Whereas in the past, the hazards associated with certain foods 

were not formally linked to specific disease because of lack of evidences 

and/or epidemiological data, nowadays, new science-based approaches 

provide an effective way for government and food safety authorities to 

protect the consumers and to plan appropriate preventive measures or 

mitigation strategies when necessary. In this context, the risk analysis 

represents the systematic procedure allowing the data on hazards in food 

to be linked to epidemiological evidences related to foodborne disease, 

making possible a reliable evaluation of the risk for human health. In 

recent years, several practical examples (3-5) demonstrated the value of 

the risk analysis as a structured and systematic approach for the 

improvement of the decision-making processes and such system became 

the standard practice for food safety management systems to ensure that 

regulatory decisions about foods are science-based and transparent. 
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Besides improving the public health, the adoption of standardized 

frameworks to systematically assess, manage and communicate the food 

safety risks is also important to maintain the consumer confidence and 

provides a sound and scientific-based regulatory foundation for domestic 

and international trade in such a globalized food system. At this respect, 

it is important to recognize the role of the risk analysis as an ‘instrument 

of guarantee’ against protectionism or unjustified barriers to the 

international trade of food; in fact, the ‘Agreement on the Application of 

Sanitary and Phytosanitary Measures’ (8) entered into force with the 

establishment of the World Tread Organization (WTO) in 1995, in Article 

5 specifies: “Members shall ensure that their sanitary or phytosanitary 

measures are based on an assessment, as appropriate to the 

circumstances, of the risks to human, animal or plant life or health, taking 

into account risk assessment techniques developed by the relevant 

international organizations.”. Thus, the Agreement clearly states that 

restrictive measures adopted because of sanitary reasons by the 

members of the WTO must be not only appropriate but also undertaken 

only if based on results obtained by recognized methodologies for the 

assessment of the risk. 

Following the publication of the Agreement and the recognition of the 

need for standard references for the assessment of the risks, different 

documented methodologies have been developed and transparent 

processes emerged. 

The World Organisation for Animal Health (OIE), together with other 

standard-setting organisations recognised by the SPS Agreement such as 
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the Codex Alimentarius Commission (CAC) and the International Plant 

Protection Convention (IPPC), have all developed guidelines on the risk 

analysis methodology to assist decision-makers. 

Approaches to Food Safety Risk Analysis. 

The Risk Analysis, as systematic process, finds its application in a wide 

range of very different contexts (e.g. financial, engineering, insurance, 

military...) and several definitions have been proposed; regardless the 

context of application, the glossary of the Society for Risk Analysis 

(Accessed 17/10/2015) defines the Risk Analysis as: “A detailed 

examination including risk assessment, risk evaluation, and risk 

management alternatives, performed to understand the nature of 

unwanted, negative consequences to human life, health, property, or the 

environment; an analytical process to provide information regarding 

undesirable events; the process of quantification of the probabilities and 

expected consequences for identified risks.”. With particular reference to 

the field of food safety, different systematic procedures to evaluate and 

manage potentially harmful effects are used and the choice of one system 

from another is a function on the type or the risk question under 

consideration; three frameworks are distinguished: 

1. World Organization for Animal Health. 

The World Organization for Animal Health (or Office International des 

Epizooties - OIE) provided a versatile standard framework for the 

assessment of the risk posed by the importation of animals and animal 

products (6). This framework is based on the standards described by the 
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Codes1 and it is mainly designed to assess the magnitude of the risk for 

specified consequences in a given situation. In this system, the risk 

assessment follows hazard identification, which is considered a separate 

step and is completed first. In the risk assessment process, four steps are 

formally recognized: (i) Entry assessment, (ii) Exposure assessment, (iii) 

Consequence assessment and Risk estimation. 

 

2. Codex Alimentarius commission. 

The framework developed by the Codex Alimentarius Commission (CAC) 

is mainly designed to answer the question related to the maximum 

amount of a substance (or pathogen) to which a person can be exposed 

from a particular source; therefore, this system is usually adopted for 

setting allowed, acceptable or tolerable levels of contaminants and 

pathogens in food (2). This framework is mainly used in quantitative 

microbiological food safety risk assessment models (QMRA) and adopts 

the terminology of the National Academy of Sciences-National Research 

Council (NAS-NRC) in which the risk assessment is divided into the four 

steps: (i) Hazard identification, (ii) Hazard characterisation, (iii) Exposure 

assessment, and (iv) Risk characterisation. 

 

3. International Plant Protection Convention (IPPC). 

The International Plant Protection Convention (IPPC) is part of the Food 

and Agriculture Organization of the United Nations (FAO), and it is 

                                                           
1 Terrestrial Animal Health Code (Terrestrial Code) and the Aquatic Animal 
Health Code (Aquatic Code) are known together as ‘the Codes’. 
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responsible for the development of the International Standards for 

Phytosanitary Measures (ISPMs) to guide governments in protecting their 

plant resources from harmful pests as a result of international trade in 

plants and plant products (7). At its simplest, the pest risk analyses (PRAs) 

process is aimed to determine whether a pest designated as ‘quarantine 

pest’ is of potential economic/health importance to an area in which it is 

not present. In this system, the risk assessment includes: (i) Pets 

categorisation, (ii) Assessment of probability of introduction and spread, 

(iii) Consequence assessment. The steps in this framework are 

conceptually similar to those reported in the OIE’s one, with the main 

exception that in the IPPC framework, the ‘pest categorisation’ (the 

equivalent to Hazard identification) is not a separate procedure. 

Under the premise that in the process of the risk analysis, the evaluation 

(risk assessment) and the management (risk management) of the risk are 

aspects of equally importance, the risk assessment is the module leading 

to the practical estimation of the risk, hence, it is strictly and solely related 

to scientific aspects of the whole process. Several definitions have been 

proposed for the word ‘risk’, but the most relevant in food safety is the 

one proposed by the CAC who defines the risk as: ‘A function of the 

probability of an adverse health effect and the severity of that effect, 

consequential to a hazard(s) in food’(1). 

At its simplest, the risk can be considered as a function of: (i) the 

probability that an unwanted event occurs, and (ii) the consequences of 

the event if it occurs. 



 

8 
 

Irrespectively to the framework adopted (OIE, CAC or PRAs) for the 

estimation of the risk, qualitative and quantitative approaches are 

distinguished: in the first, qualitative terms such as ‘high’, ‘medium’, ‘low’ 

or ‘negligible’ are used for the expression of the outcome whereas in the 

second, the risk estimates are expressed by numbers; in the middle, semi-

quantitative (or semi-qualitative) approaches can be used. 

The qualitative risk assessment can be considered as a reasoned and 

logical discussion of the available scientific evidences, epidemiological 

and biological information associated with the hazard of interest, and all 

the factors involved. This approach is typically adopted in risk analysis 

models aimed to guide the food safety authorities in the decisions related 

to risks associated with the importation of live animals or animal 

products. 

Qualitative models are usually less expensive, quicker and easier to 

present than the quantitative ones, this make those model the first option 

in routine decision-making processes and the favoured approach to be 

undertaken in situations in which food safety or health-related decisions 

are required but data are insufficient/absent (new emerging risks) or time 

is few (health emergency). Qualitative models are also chosen as a 

transparent option to define/rank risks priorities and thus, evaluate 

where the resources should be allocated and whether a more detailed 

quantitative approach is necessary. 

The quantitative approach for the assessment of the risk foresee the 

implementation of mathematical models to link the steps along the risks 
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pathway(s), those models are usually complex and time-consuming, 

require exhaustive data, and quite advanced mathematical competences. 

Quantitative models can be either deterministic or stochastic, but 

normally, the complexity of the real world and biological dynamics 

requires the adoption of probability distributions to describe the 

variability and the uncertainty surrounding the factors (inputs) involved 

in the model. In fact, when a probabilistic approach is adopted, the 

probability of an unwanted event occurring is quantified by using 

simulation techniques (e.g. Monte Carlo) and consequently, the model 

output is a probability distribution of the possible outcomes. Conversely, 

in deterministic models, the output is always a single value rather than a 

distribution; as in this case, the effect of the variability and uncertainty is 

completely ignored, the use of those models is limited to the evaluation 

of specific (or ‘what if?’) scenarios. With respect to quantitative 

approaches, it is important to emphasize that although both the inputs 

and outputs are expressed numerically, quantitative models are not 

necessarily more objective or precise than a clear and transparent 

qualitative one, and there are inevitably significant challenges in 

describing the model itself, as well as interpreting and communicating the 

results. 

In the field of food safety, any risk assessment model should ultimately 

give access to information on the level of the risk(s) related to a certain 

contaminant in the food supply and enable the decision makers to 

understand the current situation and take appropriate decision (e.g. 

setting or revising a maximum limit for that contaminant, improve the 
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surveillance system, review/establish label requirements, provide 

targeted advice to a specific population subgroup etc.). 

The availability of a model reproducing the real system, enables 

authorities to identify the various points of control along the food chain 

at which the measures could be applied, weigh up the costs and benefits 

of these different options, and choose the most effective one(s). As such, 

it offers a systematic approach to consider the likely impact of the 

possible mitigation strategies or control measures, contributing towards 

enhanced utilization of public resources by focusing on the highest food 

safety risks. Not less importantly, qualitative and quantitative models can 

be efficiently used to identify the critical points in the system and the 

areas where more research and data collection is suggested (or 

necessary) to reduce the uncertainty surrounding the risk estimates. 

The Risk analysis offers a systematic approach that all food safety 

authorities can use to make significant achievements in food safety 

issues, however, regardless of which system is chosen, it is essential for 

the analysis to be transparently documented. 

AIM OF THE WORK 

This thesis explores the use of the probabilistic modelling in the field of 

food safety with the major objective of using the systematic risk 

assessment methodologies to: (i) improve the current level of 

understanding of the dynamics of the biological system and (ii) provide 

new and science-based information for the animal derived food safety 

management. 
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OUTLINE OF THE THESIS 

The thesis is divided into two main parts, the first (chapters 2, 3 and 4) 

deals with the quantitative probabilistic modelling while the second  

(Chapter 5) with the qualitative probabilistic modelling. For each chapter, 

a general introduction explaining the rational of the work is reported. 

 

Chapter 2 – Overview 

In chapter 2, a typical ‘from farm-to-fork’ probabilistic model is presented 

and a new approach aimed to model (stochastically) the variability and 

the uncertainty in the pathogenic potential at bacteria level is proposed. 

Moreover, the model includes Bayesian methodologies used to fit 

probability distributions to questionnaire-based dataset, this allowed the 

model to capture and include the variability and the uncertainty in the 

consumers’ behaviours at household level. 

 

Chapter 3 – Overview 

The study presented in chapter 3 deals with the consequences that the 

acritical use of probability distributions and/or the overlook of 

relationship/dependency between distributions may have on the 

output(s) of quantitative models. This work is of particular relevance 

besides the strictly scientific aspect, in fact, considering that in the risk 

analysis process, the risk manager takes decisions trusting the results of 

a model provided by the risk assessor, this study highlights that not 

modelling the process correctly may lead to alarmistic but unrealistic 

scenarios. 
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Chapter 4 - Overview  

The work presented in chapter 4 is a spin-off of an extended project 

promoted by the Food and Standard Agency (FSA) in collaboration with 

the Joint Working Group on Campylobacter (JWG) aimed at reducing 

levels of Campylobacter spp. colonisation in poultry at farm level in the 

UK. The quantitative model implemented in chapter 4 reproduces the 

dynamics underlying the spread of infection in chicken broiler flocks and 

integrates the result of the epidemiological study to assess the effects of 

interventions to control campylobacter and to reduce the incidence of 

highly contaminated flocks at slaughter. This work represents a practical 

example of an applied use of probabilistic modelling to show decision-

maker the potential effect of different options and evaluate different 

scenarios. 

 

Chapter 5 – Overview 

The qualitative study presented in chapter 5 is a generalization of an in-

field model commissioned to the author by a private company. The model 

is implemented to assess the likelihood of introduction of anisakids in 

Atlantic salmon farms and the consequent commercialization of infested 

products, but the general approach proposed lead itself to be adapted to 

other parasites as well as other farmed species. 
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Chapter 2 

Multiple Strain Approach and Probabilistic Modelling of Consumer Habits 

in Quantitative Microbial Risk Assessment: A Quantitative Assessment of 

Exposure to Staphylococcal enterotoxin ‘A’ in raw milk  

General introduction 

The increasing ability of bacterial characterization highlights differences 

in the pathogenic potential at bacteria level, indicating that not all the 

strains of a given pathogen are equally capable of causing disease in 

humans. This heterogeneity is often overlooked in quantitative 

microbiological risk assessments (QMRA). 

Explicit inclusion of differences in pathogenicity across strains into QMRA 

Models in food safety, allowing the models to be updated as new 

information becomes available, would help to make models more realistic 

and to increase validity of their outputs. In this work, a probabilistic 

assessment of exposure to staphylococcal enterotoxin ‘A’ in raw milk was 

implemented to illustrate –methodologically - how the biological 

variability at bacteria level can be stochastically modelled and included in 

practice. 

The second objective of the work was to explore the importance of the 

so-called ‘Consumer Phase Module’. Despite a number of key steps 

determining the exposure take place at household level, this is another 

aspect often overlooked in quantitative microbial risk assessment. At this 
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respect, different stochastic processes were used to describe the 

variability and the uncertainty in the consumer behaviour and/or 

informative opinions where data were not available. This allowed the 

extension beyond the evaluation of the worst or “what if” scenarios only. 

For a better appreciation of the contribution of the uncertainty in the 

factors under investigation, the uncertainty components were clearly 

shown and separated from the variability by using second order plots. 
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ABSTRACT 

Quantitative microbial risk assessment (QMRA) models are extensively 

applied to inform management of a broad range of food-safety risks. 

Inevitably, QMRA modelling involves an element of simplification of the 

biological process of interest. Two features that are frequently simplified 

or disregarded are the pathogenicity of multiple strains of a single 

pathogen and consumer behaviour at household level. In this study, we 

developed a QMRA model with a ‘multiple strain’ approach and a 

consumer phase module (CPM) based on uncertainty distributions fitted 

from field data. We modelled exposure to staphylococcal enterotoxin ‘A’ 

in raw milk in Lombardy; a specific enterotoxin production module was 

thus included. The model is adaptable and could be used to assess the risk 

related to other pathogens in raw milk as well as other staphylococcal 

enterotoxins. The multiple-strain approach, implemented as a 

multinomial process, allowed the inclusion of variability and uncertainty 

with regard to pathogenicity at bacterial level. Data from 301 

questionnaires submitted to raw milk consumers were used to obtain 

uncertainty distributions for the CPM. The distributions were modelled to 

be easily updatable with further data/evidence. The sources of uncertainty 

due to the multiple strain approach and the CPM were identified and their 

impact on the output was assessed by comparing specific scenarios to the 

baseline. When the distributions reflecting the uncertainty in consumer 

behaviour where fixed to 95th percentile, the risk of exposure increased up 

to 160 times. This reflects the importance of taking into consideration the 

diversity of consumers’ habits at household level and the impact that the 
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lack of knowledge on the variables in the CPM can have on the final QMRA 

estimates. The multiple-strain approach lends itself to use in other food 

matrices besides raw milk and allows the model to better capture the 

complexity of the real world and to be capable of geographical specificity. 

1. INTRODUCTION 

Probabilistic modelling is being used with increasing frequency to address 

food safety issues. In recent years, quantitative microbial risk assessment 

(QMRA) models have been applied extensively in this area and risk 

analysis has become standard practice for food safety management 

systems to ensure that regulatory decisions about foods are science-

based and transparent (41, 42). 

Depending on the scope of the analysis, the probabilistic model is not 

necessarily “from farm to fork” (16, 18, 23), but irrespective of the 

starting and the end point on the food chain, the common thread from a 

modelling perspective is the representation of the pathways that bacteria 

may take and the ascertainment of  the fate of the microbial cells along 

the way. Thus, the complexity of a QMRA model is related to the question 

that the model aims to answer, and the main challenge for risk assessors 

is to capture the complexity of reality with the available scientific 

evidence and data. In this work, we focused on two aspects that, if 

included in QMRA models, can enhance their ability to capture the 

complexity of real food safety scenarios: differences in pathogenicity 

between strains and consumer behaviour at household level. Several 

studies have revealed a remarkable degree of diversity on the pathogenic 
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potential across different strains of food-related pathogens such as 

Campylobacter jejuni (19, 43) Listeria monocytogenes (7, 10, 22) 

Escherichia coli (6, 27) or Staphylococcus aureus (12, 15, 24) 

The first aspect we considered was the uncertainty and variability in 

pathogenic potential at bacteria level. 

The second aspect relates to consumer behavior at household level. The 

estimation of the changes in bacteria concentration along the steps of the 

food chain is a cardinal point in any QMRA model; usually, because of 

environmental conditions regulating bacterial growth and death, it is an 

intricate problem. 

The inclusion in a QMRA model of consumer behavior at household level 

is usually dealt with by including a ‘consumer phase module’ (CPM) which 

is often characterized by a large variation in consumer habits and limited 

data availability (32). 

Following these considerations, the objectives of this study were (i) to 

develop a QMRA model with a multiple strain approach and (ii) to develop 

a CPM using uncertainty distributions fitted from field data. 

A probabilistic assessment of exposure to staphylococcal enterotoxin ‘A’ 

in raw milk from automatic vending machines (AVMs) in Lombardy (Italy) 

was performed. The toxin-mediated virulence of the bacteria required a 

specific module describing the production of the staphylococcal 

enterotoxin. 

The model, outlined as a flowchart in Figure 1, is described in detail to 
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illustrate the inclusion of the multiple strain approach and a CPM in a 

QMRA. 

Figure 1 Flowchart of the exposure assessment model showing the steps involved 
in the multiple strain approach (dotted line), the consumer phase module and the 
enterotoxin production module (both shown with grey background) 
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2. MATERIAL AND METHODS 

2.1. Staphylococcus aureus in AVMs. 

In Italy, raw milk sold in an AVM comes directly from the bulk tank of a 

single dairy farm, as  farms are not allowed to mix their milk with that of 

any other farm into the AVMs (37). In Lombardy, similarly to all other 

regions, the veterinary services regularly test milk samples from all the 

AVMs. The legal requirement for pathogens such as Listeria 

monocytogenes, Campylobacter jejuni or verocytotoxigenic Escherichia 

coli in drinking raw milk is ‘absence in 25ml’ established by means of 

highly sensitive tests such as PCR. In contrast, the legal requirement for 

S.aureus is quantitative: ‘<100 CFU/ml’ (37). Therefore, the first step in 

this study was to estimate the level of contamination in purchased raw 

milk. To this end, assuming independency between herd size, volume of 

milk sold through AMVs and level of contamination, data from the 

regional monitoring program for raw drinking milk were used. The final 

dataset consisted of 3382 official samples collected from 420 different 

AVMs in the region between 2011 and 2014. Samples were analysed by 

the twelve agencies of the Experimental Zooprophylactic Institute of 

Lombardy and Emilia Romagna (IZSLER) on the territory, each agency 

analysed the samples of AVMs located in its area of competence. 

Quantitative data of S.aureus in the dataset were reported as ‘x CFU/ml’ 

with x being the number of counted colonies (based on the dilution that 

was applied) or ‘<n CFU/ml’ with n being the threshold of the detection 

limit. Results were not homogeneous with respect to the sensitivity 

(different thresholds were reported) reflecting differences in the method 
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or dilution applied by the labs during the years. To parameterize the 

distribution describing the uncertainty in mean log CFU/ml, taking into 

consideration the proportions of samples analysed with different 

detection limits, the maximum likelihood estimation (MLE) method for a 

Gamma distribution with left censored data was used (40). Assuming that 

a given set of data can be described by a certain distribution (e.g. 

Gamma), the method of maximum likelihood is aimed to provide an 

estimation of the distribution’s parameter(s) so that the joint probability 

of the observed data under the resulting distribution is maximized: 

logL(X|α)=∑ log(f(xi,α)) +∑(nti * log(F(Ti,α)))    (Eq.1) 

Where α represents the parameter(s) of the distribution of the likelihood 

function ( and  of the Gamma distribution), logL(X|α)=∑log(f(xi, α)) is 

the likelihood of observing the n observations recorded given α, and 

logL(X<T|α) =nti*log(F(Ti, α)) is the likelihood that nti observations fall 

below each minimum threshold Ti given α. The gamma distribution was 

chosen because data are continuous and its parameters  (shape) and  

(scale) allow great flexibility making possible for the distribution to 

assume a range of different shapes. 

2.2. Prevalence of S. aureus with ‘enterotoxin A’ gene (sea) in AVM, the 

multiple strain approach. 

 The multiple strain approach was aimed to take into account the 

variability and the uncertainty at bacteria level, therefore, the prevalence 

of S. aureus harbouring the staphylococcal enterotoxin ‘A’ gene 

(S.aureussea+) was estimated in the model by combining multiplicatively 
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the frequency of the different genotypes, with the probability of 

detecting the gene in each genotype. 

Geographical differences in the prevalence of some S.aureus strains have 

been observed in previous studies (21, 38), therefore, results from an 

extensive regional survey funded by the Italian Ministry of Health, and 

published by IZSLER in 2014 were used to estimate the frequency of S. 

aureus genetic clusters in Lombardy (8). This made the model specific for 

the geographical area of interest. In that study, 1099 S.aureus isolates 

were analysed and 471 different strains distributed in 44 genotypes were 

recognised. The uncertainty about the true proportion of each genetic 

cluster pGi was modelled by the Dirichlet distribution: 

(pG1, pG2, pGk) = Dirichlet (sG1+1; sG2+1; … ;sGK+1)   (Eq.2) 

The Dirichlet distribution was selected because it is the conjugate to the 

multinomial process. sGi were the number of strains recorded in each of 

the genetic clusters. 

In a recent study, S. aureus strains isolated from cow milk samples in 10 

European countries were genotyped and the virulence genes 

(enterotoxin genes, polymorphisms of coa, lukE) analysed(9), the results 

from this study were used to estimate the probability of sea gene being 

present in each genotype. 

A total of 393 strains were included in this study; of them there were 51 

strains positive for sea whereby 47 observations resulted from strains 

positive for GTB, 2 from GTAM-, 1 from GTE-, and 1 from GTAH-. 
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For each combination genotype - sea+, a Beta distribution was used to 

include the uncertainty: 

pGi
sea+=Beta (ssea+ + 1; nGi – ssea+ + 1)    (Eq.3) 

Where ssea+ was the number of genotype i isolates positives to sea and nGi 

was the total number of genotype i isolates. 

Both, the study conducted in Italy (8), and the European study (9) 

genotyped the samples using the same RS-PCR protocol (12), therefore, 

results were comparable and for each cluster, the probability for each ith 

genotype to be sea+ was estimated by the  joint probability: 

pGi
+ = pGi ∩ pGi

sea+       (Eq.4) 

Consequently, the overall probability to find S.aureus isolates with sea 

gene (S.aureussea+) in Lombardy was estimated as: 

psea
+ = p+

G1 ∪ P+
G2 ∪ … ∪ p+

Gk     (Eq.5) 

Since psea
+ depends on several uncertainty distributions (Fig.2), a second 

order plot was used to separate the uncertainty from the randomness of 

the system and evaluate the impact on the model output (see next). 
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Figure 2 Uncertainty distributions describing the probability of harbouring the 
sea gene in genotypes S, AA and AE. The shape of the distributions reflect the lack 
of knowledge about the presence of the gene on certain genotypes. Where no 
information was available, the uninformative prior Beta(1; 1) was assumed, that 
was the case, for example, in genotype AE. 

 

2.3. sea gene expression. 

Previous studies support the existence of a good correspondence 

between the presence of sea and production of enterotoxin ‘A’(21, 26). 

The uncertainty in this correlation was assessed by including the results 

of an Italian study (30). In that study, a non-correspondence between the 

presence of sea and the enterotoxin ‘A’ was observed in 4 out 32 raw milk 

samples with S.aureussea+ isolates. 

A Beta distribution was used to take into account the probability of there 

being no correspondence between the presence of the gene and 
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enterotoxin production: 

pSEA
+ = Beta(sSEA+ +1; n - sSEA+ +1)     (Eq.6) 

Where sSEA+ was the number of samples showing enterotoxin production 

(sSEA+=28) and n was the total number of samples harbouring the sea gene 

(n=32). 

Because of previous considerations, consumers were expected to 

purchase raw milk from a random AVM in Lombardy with at least one S. 

aureussea+; SEA+
 according to: 

Bernoulli(psea
+ *pSEA

+)      (Eq.7) 

2.4. Consumer Phase Module. 

 From October 2013 to November 2014, a questionnaire aimed to assess 

the habits of raw milk consumers was used to gather information from 

301 raw milk consumers interviewed while they were purchasing raw milk 

at vending machines. 

Respondents were asked about their habits related to the raw milk they 

purchase from AVMs. Results for selected key variables of relevance for 

QMRA modelling (position of the milk in the refrigerator, storage time, 

litres purchased weekly, whether the milk was boiled before consumption 

or not, estimated transport time and utilization of thermal bags) were 

summarized in the form of probability distributions and associations 

between pairs of variables assessed by means of chi-squared tests of 

association. 
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One important information in the CPM is the position of the milk in 

domestic refrigerators; in fact, the usual area where milk is kept (area) is 

important because the mean temperature may vary considerably across 

different areas. Interviewees were asked to choose between: Upper shelf 

(u), Middle shelf (m), Lower shelf (l), Door shelf (d) or Do not 

know/indifferent (x). The Dirichlet distribution was selected to include the 

uncertainty surrounding the chances that a milk bottle is kept in a given 

refrigerator area: 

(pu, pm, pl, pd, px) = Dirichlet (su+1; sm+1; sl+1 sd+1; sx+1)  (Eq.8) 

Where su, sm, sl, sd, and sx were the number of observations recorded in 

each area, therefore, In each iteration, the position of the milk in the 

refrigerator was modelled with a Multinomial process: 

area=Multinomial (1 ;{pu, pm, pl, pd, px})    (Eq.9) 

When position x was sampled, it was redistributed in one of the other 

categories according to the Discrete distribution: Discrete(u,m,l,d; 

pu,pm,pl,pd,) with pu, pm, pl and pd being the point estimated prevalences 

observed in the survey. 

Respondents were asked to say how many days the milk is usually kept in 

the refrigerator. Answers were converted to hours and MLE for a Gamma 

distribution with interval-censored data was used to estimate the 

uncertainty in the mean of storage time per bottle (St). 

logL(X|α)=∑ ni * log(F(h, α)-F(l, α))     (Eq.10) 

Where logL(X|α) is the likelihood of randomly observing the n 
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observations recorded between the I intervals, given the parameter 

and log(F(h, α)-F(l, α)) is the difference between the cumulative 

distributions of the high (h) and low (l) intervals. A truncation limit of 120h 

was assumed considering that the shelf life for raw milk in Italy is legally 

three days (72h) and none of the interviewees reported keeping the milk 

more than five days (120h). A Poisson(λ*t) with λ = St and t = 1, was then 

used to take inter-variability into account. 

The ‘usage of thermal bag’ was modelled by a Dirichlet and Multinomial 

process (eq. 8-9) with possible outcome: ‘Always’ (sa), ‘Only in summer-

hot days’ (ss) and ‘Never’ (sn), and, similarly to St, MLE for a Gamma 

distribution with interval-censored data (Eq.10) was used to model the 

transport time (Tt). A truncation limit to 60 minutes was assumed in this 

case. 

Boiling the milk before consumption to prevent intoxication by heat-

sensible pathogens like Listeria monocytogenes, Salmonella, 

Campylobacter jejuni is strongly suggested and visible specific warning 

labels are a legal requirement on every AVM (28). However, out of 301 

interviewed consumers, 203 declared to boil the milk before 

consumption, the remaining 98 stated to drink the milk raw or heated but 

without reaching the boiling point. A Beta distribution was assumed to 

describe the true prevalence of consumers who boil milk before 

consumption: 

Pboil=Beta(sb+1; n-sb+1)      (Eq.11) 

Where sb is the number consumers who declared to boil the milk (sb=203) 
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and n is the total number of consumers interviewed (n=301). 

Like the storage time, the temperature at which the milk is kept at 

household level is an important parameter to estimate the microbial 

growth. To date, no official estimation of domestic refrigerator 

temperatures in Italy has been published to our knowledge. 

Distributions describing the mean temperature in different refrigerator 

areas (Tl, Tm, Td, Tu) were obtained from the opinion of seventeen 

professional refrigerator repair services operating in Lombardy. 

Specialists were asked to provide their best estimations about the 

minimum (MIN), maximum (MAX), and most probable (MLIKE) mean 

temperatures that people had in each area of their refrigerators. For each 

estimation, interviewees were also asked to give a score ranging from 1 

(not sure) to 4 (sure) to describe how confident they were with their own 

estimates. Results were then included into a discrete distribution: 

Discrete({xi};{pi}) where the {xi} are the Pert distributions and {pi} are the 

weights given to each opinion according to their own confidence level. In 

this way, each Pert distribution has a chance to be sampled proportional 

to its score. 

Tarea =Discrete(Pert1, Pert2… Pert17; Score1, Score2… Score17)  (Eq.12) 

Where Perti represents the estimation of the ith interviewee, and Scorei is 

the level of confidence of the ith interviewee with their own estimation. 
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2.5. Growth parameters: Specific growth rate, Lag phase. 

 In the model, the growth of Staphylococcus aureus in milk was estimated 

as follows: 

Ct1=Cto    for St≤ λ;   (Eq.13) 

Ct1=Cto+[(µ*( St – λ)]  for λ <St<Tmax and  (Eq.14) 

Ct1=Cmax    for St≥Tmax  (Eq.15) 

where Ct1 (log CFU/ml) is the population density at time St; Cto (log 

CFU/ml) is the initial population density; Cmax (log CFU/ml) is the 

maximum population density; Tmax is the time at which the maximum 

population density is reached (h); µ=μmax/ln (10) with μmax (log CFU/ml*h-

1) being the maximum specific growth rate and λ is the lag phase (h). 

Growth rates at different temperatures (Tarea) were estimated by the 

square root model described by Ratkowsky (36): 

µmax
0.5=b(T- Tmin)       (Eq.16) 

where b and Tmin were regression parameters. 

Those parameters were obtained by plotting experimental µmax values 

against temperature. Briefly: Eight S.aureus strains were inoculated in 

eight whole fresh milk cartons after purification at a concentration of 2 

log CFU/ml. Cartons were kept in isothermal conditions at 10°, 12° and 

16°C for seven days. Samples were taken from each carton at each 

temperature three times a day and S.aureus enumerations according to 

ISO 6888:1983 were recorded. Experimental µmax values were obtained 
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analysing the resulting growth curves with DMfit software. 

The parametric bootstrap was used to include uncertainty in the 

regression parameters and consider the growth variability among 

different S.aureus strains. Lag phase values at different temperatures 

were estimated by using the parameter expressing the physiological state 

of the cells (α0). This parameter is a dimensionless number ranging from 

0 to 1 expressing the idea that λ is inversely proportional to µrate and 

depends on the physiological state of the inoculum as well as on the 

actual environment (3, 5): 

λ =[-ln(α0)/µmax]       (Eq.17) 

In order to take into account the variability in α0, a survey on forty S. 

aureus strains was carried out in 2014 by IZSLER (Bergamo section) and 

experimental data were included into a Cumulative(0;1{xi},{pi}) 

distribution where {xi} and  {pi} represented the vectors of the forty α0 

values and the respective probabilities on cumulative scale respectively. 

Briefly: forty S. aureussea+ strains, isolated from raw milk, were selected 

and supplied by IZSLER (Lodi section). For each strain, a well-isolated 

colony was transferred in 10ml of BHI and incubated at 37°C for 24h and 

pure cultures were obtained. Appropriate dilutions were calculated and 

fresh pasteurized whole milk cartons (commercial product) were 

inoculated to obtain a target level of 2 log CFU/ml. Assuming 

independency of α0 from the temperature if pre-inoculation history of 

cultures is identical (4, 35), cartons were stored under controlled 

isothermal conditions at 12°C for practical reasons. Duplicate samples 
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were taken at appropriate time intervals to allow an efficient kinetic 

analysis of microbial growth parameters. Growth curves and kinetic 

parameters were estimated using the curve-fitting program DMfit based 

on (4) and α0 values were calculated by the inverse formula of Equation 

17. 

A maximum population density of Cmax=8.7 log CFU/ml was assumed 

because it was the higher density observed amongst the forty S.aureus in 

milk in the trial (result not shown). 

2.6. SEA production model. 

Several conditions were required and assumed in the model to enable 

SEA production: 

1. S. aureus density must be >6.5 log CFU/ml (13). 

2. St must be greater than λ to let S. aureus growth if Ct0<6.5 log 

CFU/ml; 

3. The difference: St - λ has to be large enough to allow the quorum 

density achievement if Ct0<6.5 log CFU/ml, and St >λ. 

4. Once the quorum density is achieved, the remaining time during 

which SEA may be produced (tsea) is equal to: 

tsea = (St – λ) - [(6.5- Ct0)/ µrate]    (Eq.18) 

where the second term represents the required time to reach the 

quorum density.  
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Even if the conditions above are met, the temperature must be greater 

than 14.95° C (13). 

2.7. Enterotoxin A production model. 

According to (13), the SEA production rate in the model (ng/ml*h-1) 

increased linearly at temperatures between 14.95° and 32°C.  The 

regression line in this temperature range was described as: 

p = 0.0376*T°- 0.599      (Eq.19) 

Therefore, in our model, the amount of enterotoxin produced (ng/ml) in 

the available time (tSEA) was calculated as: 

p = (0.0376*Tarea- 0.599)*tSEA     (Eq.20) 

In that study, highly virulent strains were used; this makes our model 

conservative. 

2.8. Number of raw milk servings. 

To our knowledge, no official estimates exist for the total number of raw 

milk consumers and/or the total amount of raw milk sold in Lombardy 

from AVMs. Considering that from the survey, 96% of consumers 

reported buying at least 1L per week, and assuming a mean of 30 L of raw 

milk sold daily (Personal communication from Local Health Authority, 

Lombardy Region) from each of the 338 AVMs registered in Lombardy in 

2015, a total conservative number (Npop) of 2.55x107 servings/year in 

Lombardy was estimated. 

Since herd size is not necessarily correlated to volume of milk sold 
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through AVMs, in the exposure assessment, it was assumed that the 

relative contribution of the farm to the exposure is independent of the 

herd size. 

2.9. Serving size. 

No specific information about raw milk consumption (ml/person per day) 

in Italy has been published to our knowledge. Assuming a daily 

consumption comparable to that of pasteurized milk, data from the 

National Institute for Food and Nutrition Research were used (34) to 

estimate the serving size (Sz).  

It was assumed that data from the age category 0-2 years came from 

breast milk consumption or reconstituted milk for babies and the 

contribution of this category was excluded. Sz was thus modelled as: 

Normal[145; 104(truncate (0)] ml     (Eq.21) 

2.10. Risk Output. 

The limited dose-response information available for humans did not allow 

the development of a complete dose-response model. Therefore, the 

output of the model was an estimate of the probability (pexp) of a serving 

carrying the minimal dose of SEA deemed sufficient to be harmful to 

humans. 

The conservative threshold of 20ng/serving was chosen (1) and the total 

amount of enterotoxin per serving was obtained by multiplying the 

amount of enterotoxins produced in one ml (Eq.20) by the serving size 

(Eq.21). 
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2.11. Simulation. 

Because of the large number of inputs and distributions included, the 

output risk was estimated as a mean of 1,000,000 Monte Carlo iterations. 

The software @Risk (Palisade Corporation, Version 6.3 for Excel) and 

STATA/SE 14 were used. The flowchart of the baseline model was shown 

in Figure 1. Input distributions and functions are presented in Table 1. 

To better assess the impact of the exposure in the target population, the 

estimated probability was used to obtain the distribution of the number 

of servings carrying a dose ≥ 20ng/ml yearly in Lombardy p(Nexp): 

p(Nexp)=Poisson(Npop*pexp)     (Eq.22) 

In order to assess the impact of the uncertainty distributions included in 

the model with the multiple strain approach, and the CPM, two stressed 

scenarios were compared to the baseline model. In the first (Scenario1) 

all the uncertainty distributions pGi
sea+ were fixed to the 95th percentile. In 

the second (Scenario2) St and Tarea  were both fixed to 95th percentile. 

To better evaluate the effect of the uncertainty in the multinomial 

process, Scenario2 was used as a baseline and two additional scenarios 

with all the uncertainty distributions pGi
sea+ fixed to the 5th (Scenario2a) 

and 95th (Scenario2b) percentile respectively were compared. 
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Table 1 Baseline model input description, unit and data source 
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3. RESULTS 

3.1.  S.aureus concentration in purchased raw milk. 

Following the estimation of the parameters obtained by the MLE (Eq.1), 

the Gamma distribution describing Ct0 resulted: 

Ct0=Gamma(0.10; 4.52) log CFU/ml    (Eq.23) 

Thus, estimated levels of S.aureus in purchased raw milk showed a mean 

of Ct0=0.39 log CFU/ml and 93.8% of simulated results below 2 log 

CFU/ml. 

3.2. Prevalences. 

After simulation psea
+ ranged from a minimum sampled value of 14.28% 

to a maximum of 38.73% with µ=25.17% 5th and 95th percentile of 26% 

and 36% respectively. The second order plot for psea
+ (Fig.3), showed the 

contribution of the uncertainty component. 

This uncertainty could be explained by the lack of knowledge surrounding 

both the occurrence of different genotypes (Eq.2) and the uncertainty 

surrounding the incidence of sea in each of them (Eq.3). In fact, identified 

genetic clusters showed high diversity with respect to the presence of the 

gene; three representative uncertainty distribution for pGi
sea+ were 

reported (Fig.2). The uninformative distribution Beta(1;1) was used to 

describe pGi
sea+ in genotypes where the presence of sea was never tested. 

pSEA
+ ranged from a minimum sampled value of 45.24% to a maximum of 

99.42%. Because of the few samples showing a non-correspondence 

between the presence of S.aureussea+
 and the detection of SEA, the 
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uncertainty distribution for pSEA
+ resulted skewed to the left with mean 

and mode 85.29% and 87.23% respectively. 

Figure 3 Second order plot for psea+. The graph shows how the uncertainty in the 
presence of sea in considered genetic clusters affects the cumulative distribution 
expressing the overall probability for S.aureus isolates to be S.aureussea+. Over 50 
simulated scenarios in which each of the beta distributions describing PGisea+ 
were fixed to randomly sampled percentiles; a difference of more than 10 percent 
points was recorded at its widest. On the 95th percentile psea+ ranged from 
27.52% to 39.46%. 

 

3.3. Growth model. 

The cumulative distribution describing the variability in α0 is reported in 

Figure 4, the inclusion of the parametric bootstrap in the square root 

model (Eq.16) resulted in a variation of predicted µmax and λ at each 

sampled temperature at each iteration; in fact, λ depends directly on µmax 

and α0 (Eq.17). 
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Figure 4 Cumulative distribution for the dimensionless physiological state 
parameter α0 estimated from experimental data. 90 % of the observations ranged 
from 0 to 0.36 

 

3.4. Consumer Phase Module results. 

Answers concerning the area where the milk is usually kept (Eq.8-9), 

storage and transport time (Eq.10), proportion of consumer who boil the 

milk before consumption (Eq.11) and the usage of thermal bags, were 

reported although not all these information were used in the model. 

Results recovered for su, sm, sl, sd, sx were 15, 16, 60, 182 and 28 

respectively; point estimate for Pboil was 67,4% and answers recovered for 

sa, ss, sn were 177, 82 and 42. 

The result of Chi-squared tests did not shown evidence of associations 

between the frequencies of pairs of risky behaviours (results not shown). 

The Gamma distributions describing the uncertainty in St (Fig.5) and Tt 
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resulted respectively in: 

St = [Gamma(4.85; 8.89); truncate(120)] h   (Eq.25) 

Tt = [Gamma(1.82; 8.19);truncate(60)] min   (Eq.26) 

Figure 5. Distribution describing the uncertainty in St (h). Assumed truncation limit 
(120h), expiration date (72h) and location parameter mean and mode are shown. 

 

3.5. Temperature distributions. 

After the simulation, as expected, the highest temperature was assigned 

to the door (µ=9.8, 95th =13.28) followed by the upper shelf (µ=7.3, 95th 

=10.16), the middle (µ=6.3, 95th=9.2) and the lower shelf (µ=5.5, 

95th=8.3). 
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3.6. Risk output. 

 After simulation, in the baseline model, the estimated risk of 

Pexp≥20ng/serving resulted in 1.9x10-5 indicating that the 99.99th 

percentile of servings are not likely to contain 20ng or more of 

staphylococcal enterotoxin ‘A’. 

After 1,000,000 simulations, Over 2.55x107 servings sold in Lombardy per 

year, the median of p(Nexp) was 485 servings/year; the maximum 

estimated value for Nexp resulted 589. 

In Scenario1, Pexp≥20ng/serving resulted 2.9x10-5 indicating that the 

99.99th percentile of servings are not likely to contain 20ng or more of 

staphylococcal enterotoxin ‘A’. The median of p(Nexp) resulted in 740 

servings/year; the maximum simulated value for Nexp was 890.  

In Scenario2, Pexp≥20ng/serving was 3.1x10-3 indicating that the 99.69th 

percentile of servings would not likely contain 20ng or more of 

staphylococcal enterotoxin ‘A’, while the median value recovered for 

p(Nexp) was 79,127 servings/year; the maximum estimated value for Nexp 

was 80,660. 

Results of estimated Pexp for the computed scenarios together with 

corresponding values of p(Nexp) at 50th , 95th and 99th percentile are 

summarized in Table 2 and Figure 6. 
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Table II Baseline, Scenario1 and Scenario2 model outputs: Pexp≥20ng/serving and 
values at 50th, 95th and 99th percentile of p(Nexp) are reported. 

SCENARIO Pexp p(Nexp) 

  Median 95th 99th 

BASELINE MODEL 1.9 x10-5 485 522 537 

SCENARIO 1 2.9 x10-5 740 785 804 

SCENARIO 2 3.1 x10-3 79,127 79,590 79,782 

 

Figure 6 Cumulative distributions describing Nexp after simulation. Results for the 
baseline (solid black), Scenario1 (long-dash line) and Scenario2 (dotted line) are 
reported. Because of the different scales of the scenario outputs, an additional x 
axis was used at the top to represent the cumulative distribution of Nexp for 
scenario2. 

 

When all the uncertainty distributions pGi
sea+ were fixed at the 95th 

percentile (Scenario1), the risk increased by approximately 1.5 times, 
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while when the second stressed scenario was simulated, the risk 

increased by approximately 160 times compared to the baseline. Results 

from scenario2a-2b represented the potential contribution of the 

uncertainty at bacteria level. The median of p(Nexp) resulted 35,709 and 

128,186 servings/year in Scenario2a and 2b respectively; that is, about -

55% and +62% of the median of p(Nexp) in Scenario2 (79,127). 

4. DISCUSSION 

The multiple strain approach, implemented as a multinomial process, 

allowed us to include in the model the variability and the uncertainty in 

pathogenic potential at bacteria level. The same approach can be easily 

applied to other pathogens or food matrices without substantial 

modifications. 

In fact, the occurrence of the pathogenic factor of interest in the food 

matrix under consideration is fully determined in the simulation by the 

uncertainty distribution describing the occurrence of each genetic cluster 

in the population (Eq.2) and the uncertainty distributions describing the 

occurrence of the pathogenic factor in each of them (Eq.3). 

Consequently, considering the increasing understanding of virulence 

factors at genetic level, our approach may be used to: (i) account for the 

fact that different genotypes may represent different magnitude of public 

health risk and (ii) assess specific scenarios in which the frequencies of 

particular genotype increase (or decrease) across the geographic area of 

interest. 

In the CPM, the inclusion of consumers’ habits as uncertainty 
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distributions fitted to data allowed extension beyond the evaluation of 

the worst or “what if” scenarios, including every possible scenario in the 

output (baseline). 

As expected, the average value for St was around 2 days (43.4h). Despite 

the requirement that the expiry date of 72h must be clearly shown on all 

the AVMs (11), it appears that 9.5% of respondent still kept the milk up 

to 120h.  

To our knowledge, the first QMRA related to raw milk consumption in 

Italy involving information on consumers’ habits (obtained from 100 

interviewee) is the one published by Giacometti et al. in 2012 (8). Some 

of their results differ substantially from our findings and data were 

elaborated differently. (i) the proportion of consumers who did not boil 

the milk before consumption resulted 33% in our study, Giacometti et al. 

estimated 43%; (ii) variability in refrigerators’ temperature and storage 

area were not considered in that study; (iii) Giacometti et al. described 

the ‘storage time’ by a triangular distribution, we used the MLE to fit a 

distribution to data. The difference is not in the distribution’s means, 

which differ by less than 2 hours, but in distribution’s shapes. In fact, 

31.4% of simulated values are included between 60 and 120h in the 

triangular distribution while, for the same range, the gamma distribution 

included 17.8% of observation (results not shown). The results differ 

substantially and the discrepancy in the distributions’ shapes is likely to 

have a significant effect on an output obtained by means of Monte Carlo 

simulation. Moreover, considering that: (i) the variables included in a 

generic CPM of a raw milk-related QMRA (storage time and temperature, 
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heat treatment) are usually critic for microbial growth and/or survival and 

(ii) health authorities have no practical options to control these factors at 

household level; the distributions included in the CPM has a crucial effect 

on the final output and should be described accurately. 

By using uncertainty distributions, the lack of knowledge that 

characterizes these parameters can easily be shown to decision makers 

by means of second order plots or, alternatively, by comparing the results 

of the best and worst scenarios with the baseline. As an example, results 

of Scenario2, clearly showed the extreme impact that the variability and 

uncertainty surrounding the data that generated the distributions in the 

CPM may have on the outcome. 

Modelling the risk related to staphylococcal enterotoxin ‘A’ in raw milk 

gave us the opportunity to develop a QMRA model able to operate with 

a considerable number of biological variables and to model them from a 

probabilistic point of view. Moreover, in contrast to other pathogens, the 

risk related to S.aureus in raw milk was linked to its ability to produce 

enterotoxins; therefore, the model required additional steps beyond the 

microbial growth. This made our model a manageable, adaptable and 

useful tool that can be used to assess the risk related to other pathogens 

in raw milk as well as other staphylococcal enterotoxins. 

Predicted Nexp in the baseline model was in agreement with the fact that 

no strong evidence of, or suspected S.aureus intoxication related to raw 

milk consumption have been reported in Lombardy since the sale of raw 

milk was allowed in 2004.  
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In addition to the previous considerations, some others should be 

recognised. First, the scope of the model was limited to assessment of 

exposure. Second, the requirements for enterotoxin ‘A’ production in raw 

milk were very restrictive. Third, the result found for pexp was low, despite 

the conservative assumption underlying the model. Fourth, information 

about S.aureus intoxications reveal that the disease is usually self-limiting 

and typically resolves within 24–48 h after onset (1, 12). 

As for the model output, we concluded that estimated pexp can be 

considered negligible. In fact, even though raw milk is known to be an 

excellent medium for S.aureus growth, an enterotoxin production 

sufficient to warrant a threshold of concern was linked to very unlikely St-

T° combinations only. Even when the worst storage conditions were 

simulated in scenario2 (with the distributions involved in the CPM fixed 

to 95th percentile); Pexp ≥20ng/serving was found only above the 99th 

percentile. 

However, great care should be taken to extend our findings to other dairy 

products or fluid milk. Staphylococcal enterotoxins are thermostable, the 

estimation of the public health risk due to SEA in industrial products with 

extended shelf life or intended to be used as ingredient for other products 

would require consideration of other pathways. That was the case of the 

skim milk powder, which was the raw material for the reconstituted milk 

that caused the outbreak in Osaka (20) or the chocolate milk that caused 

an outbreak in United States (11). 

The apparent rarity of the scenarios that generate at least 20ng/serving, 

together with the predominant effect that the variables St and T° have on 
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these as previously discussed; could be the reasons why the contribution 

of the uncertainty on p(Nexp) due to the multiple strain approach becomes 

appreciable only when Scenario2a-2b were compared to Scenario2 used 

as baseline. 

A similar QMRA for staphylococcus aureus and staphylococcal 

enterotoxin ‘A’ in milk was developed in the United States (17); although 

our results did not differ substantially, there are some important 

structural differences between the two models. 

(i) In our model we estimated the probability of enterotoxigenic 

isolates from field data obtained within a region (Lombardy); 

Heidinger et al. used a Pert distribution estimating the 

distribution’s parameters by using four different studies from 

several countries (Brazil, Italy, France and United States). 

(ii) Our model admits the possibility that the gene is not expressed, 

Heidinger et al. implicitly assumed a probability of enterotoxin 

expression equal to 100%. 

(iii) The storage practices of consumers of raw milk were inferred from 

storage practices of consumers of pasteurized milk in the United 

States with a storage time up to one week. 

4.1. Main Assumptions and limitations. 

Results of the regional survey gave exhaustive information about the 

genotypes established in the area, with 7 out of 44 genotypes accounting 

for most identified isolates (66.6%); unobserved genetic clusters were not 

included in equation 2. In fact, the proposed approach finds its 
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application only if representative data about the genetic clusters 

established in the area of interest are available. However, in the Dirichlet 

distribution, the probabilities assigned to each outcome (genotype) are 

inter-related and must add to 1, therefore, if variations in genotype 

proportions or the establishment/eradication of a particular genetic 

cluster is of interest, this can be assessed by including the frequency of 

the genotype of interest in the equation evaluating specific scenarios. The 

inclusion of an unobserved genotype (sG1=0) can also be assessed. 

The model estimates the probability of an AVM being contaminated with 

a generic S. aureussea+;SEA+ regardless of the genotype (Eq.5); thus, it is 

assumed that S. aureussea+  from different genotypes are equally virulent 

with respect to SEA and independent with respect to pSEA+. 

Another assumption underlying the model’s structure is that 

contamination is due to S.aureus isolates attributable to a single 

genotype. However, contamination of individual AVMs by different 

genetic clusters could be addressed by attributing quotes of Ct0 to the 

genotypes according to their proportions and run n parallel models (with 

n being the number of considered genotypes) summing up the outputs in 

the final step. 

We have modelled pSEA+ by using data from a study in which S.aureussea+ 

strains were incubated in optimal conditions; enterotoxin production 

ratio under sub-optimal and in-field conditions are unknown but likely to 

be lower, this made our estimated pSEA+ conservative. 

The lack of official estimation of the number of raw milk consumers or 
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any other data useful to estimate this parameter forced the estimation of 

the number of servings from informed opinion and data on consumption 

of pasteurized commercial milk, moreover, p(Nexp) is highly influenced by 

the number of AVMs in Lombardy which has steadily decreased in recent 

years (9). Furthermore, with respect to Nexp it should be noted that 

because of the independency assumption between the size of a herd and 

the amount of milk originating in this herd and purchased by consumers 

through AVMs, the model does not allow for large herd to result in a 

cluster of events as a result of a larger volume from this herd being sold 

through AVMs.  

The temperature distributions at household level were based on 

informed specialists’ opinion. Despite the attempt to take into account 

the uncertainty in their estimations with the score methods, that 

parameter remained an important data gap, and further specific research 

on this is strongly advised. 

Fujikawa et al. using the strain n°12057 (isolated from a staphylococcal 

food poisoning outbreak in Tokyo) experimentally observed the threshold 

used in this study. The process for toxin ‘A’ production is known to not be 

regulated by the quorum sensor ‘agr system’ like some other 

staphylococcal enterotoxins (2, 33, 39), consequently, the model assumes 

that once it is established that the milk is contaminated by a sea+ strain 

(Eq.7) the threshold refers to that strain only. No other experiments have 

been carried out with respect to enterotoxin ‘A’ production in milk, 

different strains may show different thresholds and results are highly 

sensitive to this value, decreasing the threshold by 1 log would increase 
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pexp 1.5 times in the baseline model. 
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Chapter 3. 

Consumers’ behaviour in quantitative microbial risk assessment for 

pathogens in raw milk: incorporation of the likelihood of consumption as a 

function of storage time and temperature 

General introduction 

The sale of raw milk for human consumption is currently a hotly debated 

issue worldwide. The demand for raw milk has increased in recent year 

as groups of consumers in Europe and North America claim a variety of 

health benefits attributable to untreated dairy products. However, there 

are food-safety concerns and on May 2015, the EFSA panel on biological 

hazards (BIOHAZ) released the last scientific opinion on the public health 

risks related to the consumption of raw drinking milk. Public health 

concerns have been the motivation for a number of probabilistic models 

aimed to assess the risk of human illness from different pathogens 

related to raw milk consumption but none of these models has 

considered that under certain extreme storage conditions at household 

level, the product is likely to deteriorate becoming clearly unfit for 

consumption. Failure to identify as unrealistic these extreme scenarios 

may have result in an overestimation of the risk. In this work, this issue 

has been assessed. 

A sensorial analysis to evaluate the organoleptic characteristics of raw 

milk conserved at different storage conditions at household level was 

carried out and an equation describing the changes in the probability of 
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milk of being perceived as spoiled as function of the time-temperature of 

storage was obtained. 

In order to test the impact of this relationship, two recently published 

models aimed to assess food safety risk related to raw milk consumption 

were reproduced: (i) as they were published and (ii) with our equation 

included. Model outputs changed significantly, suggesting that results 

published so far are likely to have overestimated risk due to the inclusion 

of scenarios that, in practice, would not occur. 

This study provides, for the first time, a concrete and objective tool to 

model the time-temperature relationship in quantitative risk assessment 

models related to raw milk and shows that this relationship should be 

taken into account in the future when assessing the risk related to raw 

milk. 

The results are also relevant for other studies of the public health risk 

associated with the consumption of other food products subjected to fast 

deterioration if not stored properly. 
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ABSTRACT 

Foodborne disease as a result of raw milk consumption is an increasing 

concern in Western countries. Quantitative Microbial Risk Assessment 

(QMRA) models have been used to estimate the risk of illness due to 

different pathogens in raw milk. In these models, the duration and 

temperature of storage before consumption have a critical influence in 

the final outcome of the simulations and are usually described and 

modelled as independent distributions in the Consumer Phase Module 

(CPM). We hypothesize that this assumption can result in the 

computation, during simulations, of extreme scenarios that ultimately 

lead to an overestimation of the risk. In this study, a sensorial analysis was 

conducted to replicate consumers’ behaviour. The results of the analysis 

were used to establish, by means of a logistic model, the relationship 

between time-temperature combinations and the probability that a 

serving of raw milk is actually consumed. To assess our hypothesis, two 

recently published QMRA models quantifying the risks of listeriosis and 

salmonellosis related to the consumption of raw milk were implemented. 

Firstly, the default settings described in the publications were kept, 

secondly, the likelihood of consumption as a function of the length and 

temperature of storage was included. When results were compared, the 

density of computed extreme scenarios decreased significantly in the 

modified model, consequently, the probability of illness and the expected 

number of cases per year also decreased. Reductions of 11.6% and 12.7% 

in the proportion of computed scenarios in which a contaminated milk 

serving was consumed were observed for the first and the second study 
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respectively. Our results confirm that overlooking the time-temperature 

dependency may yield to an important overestimation of the risk. 

Furthermore, we provide estimates of this dependency that could easily 

be implemented in future QMRA models of raw milk pathogens. 

1. INTRODUCTION 

Probabilistic modelling is becoming established as one of the main tools 

to inform risk management decisions with regard to foodborne hazards. 

Quantitative Microbial Risk Assessment models (QMRAs) are increasingly 

applied to scenarios involving established and emerging food safety 

hazards as risk analysis becomes standard practice to manage food safety  

and ensure that regulatory decisions about foods are science-based and 

transparent (5, 19).  

One of the most significant examples from the public health perspective 

in recent years has been the use of QMRAs to estimate risks associated 

with the consumption of unpasteurized milk. Growing interest on raw 

milk consumption by some groups of consumers and an increasing 

number of foodborne incidents in which raw milk has been identified as 

the source, have lead agencies such as the UK Food Standards Agency 

(FSA), the European Food Safety Authority (EFSA) or the US Centres for 

Disease Control (CDC) to conduct consultations and issue scientific 

opinions on the risk posed by milk-borne hazards (1, 2, 6). 

The public health risk related to consumption of raw milk is a particularly 

relevant (and debated) topic. Raw milk can contain human pathogens 
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which can be inactivated by appropriate heat treatment (pasteurization 

or sterilization). However, the perception of raw milk as a "more natural" 

product has led to a number of consumers opting for raw as opposed to 

heat-treated milk. In light of this trend, models have been developed in 

recent years to assess probability of exposure or infection by pathogens 

such as Salmonella, Listeria monocytogenes, Campylobacter jejuni, E. coli 

O157 or Staphylococcus aureus as a result of raw milk consumption (8-

10, 13). 

QMRA models aimed at assessing the risk from farm-to-table include a 

consumer phase module (CPM), a stage of the model that occurs at 

household level, where the food is no longer controlled by professionals 

and where control of storage conditions or application of sufficient heat 

treatments cannot be enforced by legislation (15). In QMRAs related both 

to unpasteurized or pasteurized (12) milk, the time and temperature of 

storage in the CPMs are usually described and modelled as independent 

distributions. Time and temperature are the most important parameters 

that regulate microbial growth in milk and are regularly identified in 

sensitivity analysis as the factors with greatest effect on the model output 

(12, 13). 

When both, storage time and temperature, are modelled as independent 

probability distributions (most often Triangular or Pert) there will be 

instances during simulations in which values from the tails of the 

distributions are sampled together yielding scenarios with high bacteria 

concentration at the time of consumption. An implicit assumption 

underlying the cited models is that 100% of the computed scenarios will 
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result in milk being consumed, whatever the time-temperature 

combination is. However, in reality some time-temperature 

combinations are unlikely to result in milk being consumed as it would be 

perceived by the consumer as unsuitable (raw milk stored at high 

temperature for extended periods might be spoiled and thus not actually 

consumed). Therefore, given that in microbial Dose-Response models the 

probability of illness is directly dependent to the number of bacteria 

ingested per serving (i.e. each bacteria has the same probability to 

generate infection), the amount of simulated scenarios under extreme 

conditions may have a significant impact on the final output. 

This limitation was already highlighted by Latorre et al. (13) who noted 

that some correlation between these variables may exist and that 

without any restriction, the model cannot take into account that some 

extreme scenarios may not occur or end with milk not being consumed. 

However, to our knowledge, this limitation and the effect that this 

assumption may have on model output have never been formally 

assessed.  

Following these considerations, the objectives of this work were to (i) 

model the dependencies between time and temperature in order to 

express the likelihood for a raw milk serving to be actually consumed for 

any computed storage time-temperature combination and (ii) assess the 

extent to which this dependency would affect the output of a QMRA 

model. 

To this end, results of a simplified sensorial analysis on raw milk stored 
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for five days at different temperatures were used to estimate the 

probability that at given time-temperature combinations, the milk is 

spoiled, recognized as such, and thus not consumed. The potential effect 

of the estimated time-temperature relationship on model output was 

than evaluated by its inclusion in two recently published QMRAs of raw 

milk consumption and comparing published results with those of the 

modified model. 

2. MATERIAL AND METHODS 

2.1 Raw milk sample collection for sensorial analysis 

One litre and an half of raw milk was collected from thirty automatic 

vending machines (AVMs) in Lombardy by the public veterinary services, 

univocally coded, placed in cold boxes at 5°C±3 and taken to the 

laboratory within 30 min. Upon arrival, five aliquots of 200 mL were 

obtained from each sample and kept in different isothermal conditions 

at 3°C, 5°C, 8°C, 12°C, and 16°C for five days (temperatures were chosen 

in order to reflect the range of temperatures at which the domestic 

refrigerators can be expected to operate). 

500 mL from each sample were used to test the samples for: pH, somatic 

cell count (SCC), Lactic Acid Bacteria (LAB) Total Mesophilic Flora (TBC), 

enterobacteriacee (EB) and the major pathogens to ensure operator’s 

safety. An instrument with automatic temperature compensation 

(HANNA instrument HI9321) was used for pH measurement; SCC was 

determined by an Optofluorimetric accredited internal method 

MP02/063 (Fossomatic, Foss Electric, Hilleroed, DK); the ISO standards 

ISO4833-2, ISO21528-2 and ISO16649-2; were used for surface plate 
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enumeration of TBC, EB and E. coli, while the standards AFNOR BRD 

07/10 and AFNOR BRD 07/06 were used for PCR REAL-TIME detection of 

L. monocytogenes and Salmonella. Enumeration of LAB was performed 

by the accredited internal method MP01/048 (decimal dilution and 

plating in MRSA agar plate incubated under microaerophilic condition at 

37±2°C for 72±2h and decimal dilution and plating on M17 agar plate at 

37±2°C for 48±2h for enumeration of Mesophilic Lactic Flora and 

Lactococci respectively. The accredited internal method (MP 09/135) was 

used to test the samples for the presence of Campylobacter jejuni by PCR 

REAL-TIME (Campylobacter Kit (Bio-Rad)). 

2.2 Sensorial analysis 

In order to replicate consumers’ behaviour, a simplified descriptive 

sensorial analysis of the milk samples stored at different temperatures 

was performed. The evaluation was carried out independently by two 

internal panellists experienced with sensory evaluation of milk2. 

Descriptors used in the evaluation sessions were selected following 

consultation with the panellists and based on their experience and the 

scope of the analysis (Table I). 

Panellist were asked to evaluate all the milk samples every day at the 

same hour for five days. 

Each raw milk sample required the judgment of five subsamples per 

session (one sample for each temperature), thus, for practical reason, no 

                                                           
2 Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna 
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more than five samples/week were processed and a total of six weeks 

were necessary to complete the experiment. 

Table I Descriptors used in the sensorial analysis of raw milk samples stored at 
different time/temperature combinations. 

 Description Score 

A
ro

m
a 

None 1 

Acid aroma perceived when poured from the bottle 2 

Acid aroma perceived immediately at the opening of the bottle 3 

Te
xt

u
re

 

Milk appears homogeneous when observed through the bottle. 
When poured from the bottle, milk appears smooth without any 
visible flake or residual on the bottle surface. 

1 

Milk appears homogeneous when observed through the bottle. 
Small flakes are observed on the surface. Small flakes adhered to 
the bottle are clearly visible when milk is poured 

2 

Milk in advanced coagulation phase, clear phase separation is 
observable through the bottle 

3 

 

All the milk samples were presented in transparent plastic bottles and 

panellist were asked to spill the milk into glasses in order to simulate 

consumers’ behaviour. As reference, a 500mL of fresh raw milk was also 

taken to the lab every day from the nearest AVM and presented to the 

panellists prior to each evaluation. 

Samples were presented in random order and panellists were asked to 

give their scores independently. 
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2.3  Data analysis 

Following a conservative approach, the time at which a sample kept at a 

given temperature was considered ‘spoiled’ was the moment when at 

least one descriptor was scored as 3 or both the descriptors were scored 

as 2 or more. 

Results from the panellists were analysed separately by means of 

binomial multiple logistic regression with time (h) and temperature (T°) 

as covariates: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑛 (
𝑝𝑖

1−𝑝𝑖
) = 𝛼 + 𝛽1𝑇° + 𝛽2ℎ   (Eq.1) 

𝑙𝑜𝑔𝑖𝑡−1(𝑝𝑖) =
𝑒𝛼+𝛽1𝑇°+𝛽2ℎ

1−𝑒𝛼+𝛽1𝑇°+𝛽2ℎ     (Eq.2) 

With logit-1(pi) being the probabilities of the outcome events (i.e. the milk 

is considered spoiled and not to be drunk by consumers). 

The potential interaction between time and temperature was tested by 

comparing models with interaction term with those without the 

interaction term by means of the Likelihood Ratio Test. 

The Cohen’s Kappa statistic for agreement was used to estimate the 

index of interrater agreement between the two panellists. 

For inclusion in the QMRA model, the most conservative equation (i.e. 

the one that implies later detection of spoilage) was chosen; Statistical 

analysis was performed in R 3.1.2 (16) using packages ‘lmtest’ (11) and 

‘irr’ (7). 
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2.4  Implementation of QMRAs 

In order to evaluate the effect of including our estimates of association 

between time-temperature combinations and likelihood of milk being 

spoiled (and as a result not consumed), the two most recently published 

QMRAs related to raw milk and indexed in PubMed were identified and 

reproduced by using the Excel tool @Risk 6.3 (Palisade Corp.). 

The query: ‘Quantitative Risk Assessment Raw Milk’, with the filter: 

‘published in the last 5 years’ was used and 9 items were found (search 

date April 2015). The two more recently published studies (from different 

authors) including a formal QMRA were selected. 

The more recently published studies were used without further 

consideration of their specific formulation. Use of the most recently 

published studies rather than purposively selected QMRAs was 

considered the more transparent and sound approach to illustrate the 

potential impact and highlight the relevance and timeliness of our 

proposal of incorporating time-temperature dependency in future 

QMRAs. 

In the first work(13), the risk of listeriosis due to raw milk consumption in 

the United States was estimated for different scenarios and different 

susceptible population groups (Intermediate-age, Perinatal/Pregnant 

woman, Elderly), the scenario related to raw milk purchased at retail 

stores was chosen.  

In the second (8), the risk of salmonellosis linked to consumption of raw 
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milk sold in vending machines in Italy was estimated for the best and 

worst storage conditions. 

The ‘worst conditions’ scenario was selected (none heat treatment 

before consumption and worst storage conditions). 

Both models were reproduced as described by the authors, and results 

(Baseline1, Baseline2) were compared with the ones obtained by the 

modified models (Model1, Model2) in which the probability that the milk 

is actually consumed given the sampled values for the time-temperature 

pair, was considered by including Eq. 2 (Figure1). 

In the first study, the probability of infection per serving (pill) was 

calculated assuming an exponential dose response model (18) and 

combining multiplicatively the probability of illness given the dose with 

the assumed overall prevalence of L.monocytogenes in raw milk: 

𝑃 = 1 − 𝑒(−𝑟𝐷)      (Eq.3) 

𝑝𝑖𝑙𝑙 = 𝑃 ∗ 𝑝𝑟𝑒𝑣       (Eq.4) 

Where P is the probability of illness, D is the dose per serving (CFU per 

serving) and r is the parameter describing the probability that one 

L.monocytogenes cell causes illness (18). Pill is the probability of illness 

per serving and prev is the assumed prevalence of L.monocytogenes in 

raw milk (proportion of raw milk positive servings). 
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Figure 1 Distributions describing the storage time and temperature assumed by 
Latorre et al. in QMRA related to risk of listeriosis due to raw milk in US. (A) in the 
original model all time-temperature combinations can yield a serving that could 
be consumed; (B) inclusion of eq. 2 implies that at any time-temperature 
combination the milk has a certain probability (pi) to be recognised as spoiled by 
the consumer and thus not actually consumed. 

 

Thus, in Model1, pill was estimated as: 

𝑝𝑖𝑙𝑙 = 𝑃 ∗ 𝑝𝑟𝑒𝑣 ∗ (1 − 𝑝𝑖)     (Eq.5) 

Where the correction factor (1-pi) expresses the probability that the 

serving is actually consumed according to time and temperature. 

In the second QMRA, the beta-Poisson relationship proposed by 

WHO/FAO (17) was used to calculate pill for the ingested dose: 

𝑝𝑖𝑙𝑙 = 1 −  (1 + 𝑑𝑜𝑠𝑒/𝑏)−𝑎     (Eq.6) 

Where dose is the ingested dose (CFU per serving), a and b are two 
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coefficients described by triangular distributions with parameters 

(minimum, most likely and maximum) 0.0763, 0.1324, 0.2274 and 38.49, 

51.45, 57.96, respectively. In Model2, pill was estimated by shifting the 

sampled dose to 0 according to: 

𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝑝𝑖)       (Eq.7) 

In this way, rejected scenarios are not considered ‘at risk scenarios’ by 

the model. For both models, as described by the authors, the number of 

expected cases per year (Nexp) were estimated by multiplying pill by the 

number of servings per year. 
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3 RESULTS 

3.1 Analytical results 

The initial (Time 0) values for: pH, SCC, TBC, LB, and EB are presented in 

Table II. 

No pathogen were found in any sample and no inhibitory substances 

were detected. According to regional regulation (14), the microbiological 

and chemical quality of the samples was on average good. 

Table II Analytical results (mean, standard deviation, minimum and maximum) of 
microbiological and chemical tests (pH, SCC, TBC, LAB and EB) of raw milk samples 
collected from automatic vending machines in Lombardy (n=30) for purpose of 
sensorial analysis; tests carried upon arrival to the laboratory. 

Parameter Unit MIN MAX Mean Std. Dev 

pH -log [H(+)] 6.69 7.7 6.9 0.28 

SCC1 cells*ml-1 2,000 371,000 176,367 100,438 

TBC2 log CFU/ml 3.38 5.04 4.24 0.48 

LAB3 log CFU/ml 1.3 4.2 2.88 0.62 

EB4 log CFU/ml 1 4.3 2.61 0.92 

1Somatic Cell Count 2Total bacteria count 3Lactic Acid Bacteria 4Enterobacteriaceae 
 

3.2 Sensorial analysis results 

Results of the binomial multiple logistic regression analysis are reported 

in Table III. Only the results of the models without interaction are 

presented as the inclusion of an interaction term did not significantly 
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improved the models. 

With an overall interrater agreement of 99.44%, the K coefficient for 

agreement resulted 0.98 confirming an excellent strength of agreement 

between the panellists. As expected, the model predicted that when the 

storage time and/or the storage temperature increases, the probability 

for the milk to spoil and being recognized by the consumer as expired 

also increases (Figure.2). 

Table III Coefficients of multiple logistic regression models for the association 
between the probability of raw milk being recognised as spoiled and the storage 
time-temperature combination. The regression curves were fitted to data from the 
evaluation of 30 samples of milk stored at different time-temperature 
combinations by two panellists. Results of each panellist (A and B) are reported 
independently. * indicates the equation coefficients selected to be included in 
QMRAs. 

Equation Independent variable Coefficient 2.5% 97.5% 

A* 

Constant -12.273 14.150 10.395 

Time (h) 0.4883 0.403 0.573 

Temperature (°C) 0.0661 0.054 0.078 

B 

Constant -13.004 15.025 10.983 

Time (h) 0.5161 0.426 0.606 

Temperature (°C) 0.0718 0.058 0.085 
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Figure 2 Graphical representation of the modelled relationship between storage 
time and temperature on probability of milk being perceived as spoiled (pi) 

 

 

3.3  Implementation of QMRAs 

After 500,000 simulation of the first study (Baseline1) and according to 

an assumed prevalence of L. monocytogenes of 2.1%, 10,445 iterations 

(2.1%) yielded scenarios in which contaminated raw milk servings are 

ultimately drank by consumers, for the same study, 9,232 scenarios 

(1.8%) were predicted when the correction was applied (Model1). An 

overall reduction of about 11.6% of scenarios ending with consumption 

of a contaminated serving was observed. 
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The same approach applied to the second study (Baseline2 Vs Model2), 

generated a similar difference (12.7%). 

The effect of this dependency is immediately evident when the densities 

of the sampled time-temperature pair combinations are compared 

between Baseline 1 and Model 1 (Figure 3) and between Baseline 2 and 

Model 2 (Figure 4). 

Figure 3 Retrospective density plot representing the density of the time-
temperature pair combinations behind the computed scenarios characterized by 
presence of L.monocytogenes in raw milk servings. In Baseline1 the time-
temperature dependency is not modelled, thus, the occurrence of Time-
Temperature combinations only depends on the individual  Time and Temperature 
distributions; In Model1, each sampled combination generates a specific 
probability of milk being recognized as spoiled and, ultimately, not consumed. A 
decrease in the intensity of the extreme scenarios in the Model1 with respect to 
Baseline1 (upper right corner) is evident. 

 

 



 

80 
 

Figure 4 Retrospective violin density plot representing the density of the time–
temperature (temperature was fixed to 12°C in this study) pair combinations 
behind the computed scenarios characterized by presence of Salmonella in a raw 
milk serving. In Baseline 2 the time–temperature dependency is not modelled. In 
Model 2, each sampled combination generates a specific probability of milk being 
recognized as spoiled and, ultimately, not consumed. A decrease in the intensity 
of extreme scenarios can be observed in Model 2 with respect to Baseline 2 
approaching the apexes of the violins. 

 

As expected, the most evident effects are noticed when the extreme 

time-temperature combinations are computed. 

As a consequence, considering that: (i) the probability of illness per 

serving depends on the dose of the pathogen at the time of consumption 

(Eq.3, 6); (ii) the dose at the time of consumption depends on microbial 
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growth and (iii) microbial growth is regulated by time and temperature; 

if extreme time and/or temperature scenarios are unlikely to result in 

consumption, (Figure.2) there is a direct effect of including Time-

Temperature dependency on the number of expected cases Nexp (Table 

IV). 

Table IV Probability of illness per serving and number of cases per year associated 
with consumption of raw milk. Results from two published QMRAs with time and 
temperature as independent distributions (Baseline1, Baseline2) and with 
inclusion of time-temperature relationship (Model1, Model2). The effect on the 
shape of the output distributions is mainly shown from the values at 95th 
percentile. 

Model Probability of illness per serving 
Median (95th %ile) 

Number of expected cases 
Median; (95th %ile) 

Baseline11   

Intermediate 1.4 x 10-13 (3.9 x 10-8) 4.1 x 10-5 (14) 

Perinatal 8.0 x 10-12 (2.3 x 10-6) 2.0 x 10-5 (6) 

Elderly  1.3 x 10-12 (8.8 x 10-7) 1.0 x 10-4 (29) 

Model1   

Intermediate 1.3 x 10-13 (1.1 x 10-8) 4.5 x 10-5 (4) 

Perinatal 7.4 x 10-12 (6.6 x 10-7) 1.9 x 10-5 (2) 

Elderly  1.2 x 10-12 (1.1 x 10-7) 9.3 x 10-5 (8) 

Baseline22 2.6 x 10-4 (1.4 x 10-2) 28,558 (28,838) 

Model2 1.5 x 10-4 (1.0 x 10-2) 16,243 (16,455) 

 

The effect of explicitly including in the model the probability of 

consumption (1-pi) as a function of the storage time and temperature on 
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pill and Nexp was evident in Model1 at 95th percentile where: pill was 

reduced by about 3.5 times for the categories ‘intermediate’ and 

‘perinatal’ and up to 8 times for the category ‘elderly’; Nexp resulted 3.5, 

3 and 3.6 times smaller with respect to Baseline1 for the categories 

‘Intermediate’, ‘Perinatal’ and ‘Elderly’ respectively. 

In Model2 the effect of modelling the time-temperature relationship was 

evident even on the median values were a reduction of 1.7 times with 

respect to results from Baseline2 were observed for both pill and Nexp. 

4 DISCUSSION 

Raw milk spoilage is a natural phenomenon and the time at which it 

occurs depends on several factors like the type and initial load of 

microbial contaminant(s), pH, enzymes and time temperature 

conditions. 

The processes leading to modification of organoleptics properties of milk 

are time temperature dependent, therefore, as for the majority of the 

fresh products, the spoilage occurs more rapidly if the products is not 

stored at low temperatures. Ignoring spoilage of raw milk in QMRA 

models and therefore assuming that milk will always be consumed 

regardless of its organoleptic modifications during storage is not realistic 

and can have a significant impact on model outputs. 

In this study we have demonstrated that overlooking the time-

temperature relationship may result in those scenarios in which 

contaminated raw milk servings are consumed being significantly 
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overestimated (by approximately 11.6 and 12.7% in the case studies we 

selected). 

Coping with all the possible dynamics that might influence raw milk's 

spoilage, would require such level of complexity that analytical solutions 

might not be possible. An alternative would be the incorporation of a 

dependency such as the one described in our logistic model. Our 

equation simplifies the complex dynamics that ultimately determine the 

spoilage of milk considering only the relationship between storage time 

and temperature on likelihood of spoilage (and of consumption being 

adverted). It provides, for the first time, a concrete and objective basis to 

explicitly include the logical relationship between storage time-

temperature combinations and likelihood of milk being consumed, that 

is: ‘As the storage conditions became extreme the likelihood of raw milk 

being perceived as spoiled increases’. 

For practical reasons, it will always be difficult to gather accurate 

information about storage conditions at household level or about 

consumers’ behaviour; however, the proposed approach will mitigate the 

effect of too conservative assumed distributions. In fact, with the 

incorporation of the proposed equation, if very conservative storage time 

and/or temperature distributions are used (i.e. more extreme values are 

allowed), when high values are sampled, the predicted likelihood of milk 

being perceived as spoiled will be high (Figure 2) and the amount of 

rejected scenarios will increase consequently, mitigating the effect of 

conservative distributions. Conversely, if this dependency is ignored, the 

effect of too conservative distributions might lead to alarming but poorly 
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representative risk estimates. With the inclusion of this equation, QMRAs 

for hazards in raw milk would be more realistic and their outputs would 

not be inflated by ignoring the correlation between storage conditions 

that favour microbial growth and likelihood of milk being perceived as 

deteriorated and thus not consumed. 

The probabilistic modelling of exposure to hazards present in raw milk 

should explicitly include this relationship and in the absence of more 

extensive empirical data on the relationship between storage conditions 

and perception of spoilage in milk from other sensorial evaluations, it is 

reasonable for future studies to make use of the estimates provided in 

this study.  

Considering that the main objective of probabilistic risk modelling in food 

safety is to represent what happens in the real world in order to provide 

science-based information to decision makers, our equation improves 

the current level of understanding, making it closer to reality by excluding 

consumption scenarios that would not occur in practice. Inclusion of the 

logistic equation presented in this study would be a simple, transparent 

and sound approach and an improvement with respect to previously 

used QMRAs of raw milk. 

In many European countries raw milk can be sold at the farm directly to 

the consumer (2) and according to the European legislation EU 

Regulation 852/2004, 853/2004 (3, 4), direct sale of milk is regulated by 

the national law of the member states and, in some cases, additional 

regulations at subnational level. Although some differences may exist in 
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national or sub-national regulations, farms allowed to sell raw milk for 

human consumption are asked to comply with strict criteria and operate 

with high quality standards. Consequently, a substantial homogeneity in 

the microbiological and biochemical quality of raw milk for human 

consumption from different regions with similar regulations might be 

assumed, making the results presented in this paper more directly 

applicable to future QMRA models aimed to assess the risk for human 

health related to consumption of raw milk in different European 

countries. 

However, if the raw milk characteristics, hygienic practices or regulations 

are likely to be significantly different or subjected to high variability, the 

coefficients estimated in this study might not be appropriate (e.g. milk 

produced in systems and geographic regions where the initial bacterial 

count can be expected to be considerably higher). Furthermore, 

considering that the equation is aimed to predict consumers’ behaviour 

through a sensorial evaluation, the social context of the country where 

the QMRA is to be implemented plays a critical role. In fact, the 

perception of ‘suitability’ might be different due to a number of 

traditional and social factors; therefore, even the parameters used to 

score the organoleptic characteristics should be revised accordingly. 

Besides raw milk, our approach can be applied to other food products for 

which the storage conditions at household level are critical: raw meat and 

fish, eggs, vegetables, soft cheese, and fresh products in general which 

are all subjected to a fast deterioration if not conserved properly. 
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Chapther 4 

Quantitative Risk Assessment of Campylobacter in broiler chicken - 

assessing interventions to reduce the level of contamination at the end of 

the rearing period 

General introduction 

Campylobacter is a long standing problem in the poultry industry 

worldwide and according to several publications and a number of 

dedicated reports published by the EFSA it is generally accepted that 

controlling the contamination at farm level would result in greater benefit 

(with respect to public health) than acting on the further steps of the food 

chain. 

In this context, the Royal Veterinary College (UK) conducted an 

epidemiological study in supports of the activities of the Food and 

Standard Agency (FSA) and the Joint Working Group on Campylobacter 

(JWG) aimed at reducing levels of Campylobacter spp. colonisation in 

poultry at farm level in the UK. The study estimated the relative risks of 

contamination associated to a number of management activities with 

particular focus on the practice of thinning and the adoption of 

biosecurity measures. 

In this work, the dynamics describing the campylobacter infection in 

broiler flocks were reproduced and a baseline model was used to: (i) show 

how epidemiological results can be integrated in quantitative models (ii) 
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explore the potential effects that different mitigation strategies or 

management options have on the level of contamination at slaughter (iii) 

provide information about the relative effects of the model inputs on the 

outcome. 
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ABSTRACT 

The European Food Safety Authority (EFSA) has estimated that a 

proportion ranging from 20% to 30% of campylobacteriosis in humans 

may be attributed to the consumption of broiler meat and a reduction in 

the numbers of Campylobacter in the intestines of infected birds at 

slaughter by 3 log units would reduce the public health risk by at least 

90%. In this study, a stochastic model aimed reproduce the dynamics of 

Campylobacter transmission in broiler flocks was developed and the 

effects of several management conditions and/or on-farm mitigation 

strategies on the level of contamination of infected flocks at slaughter 

were explored. Results were expressed as ‘proportion of highly 

contaminated flocks’ and quantified as a function of: (i) the proportion of 

infected birds in the flock the day of final depopulation and (ii) the 

individual level of contamination in infected birds. The potential effects of 

the mitigation strategies were modelled assuming that the effects are 

explicated on the distribution describing the bacterial load in infected 

birds whereas the impact of management conditions such as the adoption 

of enhanced biosecurity measures and/or partial depopulation during the 

production cycle were quantified by using results of an extensive 

epidemiological study conducted in UK. A standard broiler flock was 

reproduced in the baseline scenario but the model was developed to be 

flexible, easily reproducible and updatable so to be adapted to several 

baseline scenarios. The main assumptions underlying the transmission 

model were tested and shown with a sensitivity analysis and the major 

sources of uncertainty together with the impact that the baseline 
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information might have on the outcome were discussed. 

1. INTRODUCTION 

Campylobacter is one of the major agent of foodborne disease worldwide 

and it continues to be one of the most commonly reported 

gastrointestinal pathogen in humans In European Union (EU) (4). At 

European level, the pathogen is believed to be responsible for about nine 

million cases per year with an impact for the public health systems and to 

lost productivity estimated by EFSA to be around EUR 2.4 billion a year. In 

this context, the chicken meat is a well-known source of many cases of 

campylobacteriosis, in 2010 EFSA estimated that a proportion ranging 

from 20% to 30% of the total cases is to be attributed to chicken and 

chicken meat (1). 

Considering the impact of the poultry industry on the risk posed by 

Campylobacter in human health, the European Commission required the 

Panel on Biological Hazards a scientific opinion about the control options 

and performance objectives and/or targets at different stages of the food 

chain with respect to Campylobacter in broiler meat production. The 

major conclusions reported by EFSA (2) were: (i) there is a linear 

relationship between prevalence of Campylobacter in broiler flocks and 

public health risk and (ii) reducing the numbers of Campylobacter in the 

intestines at slaughter by 3 log units would reduce the health risk by at 

least 90%. Hence, the opinion indicates that the public health benefits of 

controlling Campylobacter in primary broiler production are expected to 

be greater than control later in the food chain. 

Following these considerations, the aim of this study was to quantify the 
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effect that different management conditions and/or ‘on-farm’ mitigation 

strategies have on the level of contamination of infected flocks at 

slaughter. 

With respect to the options explored, two categories can be 

distinguished: (i) management conditions affecting the introduction of 

pathogen or the spread of the infection (enhanced biosecurity, partial 

depopulation) and (ii) interventions aimed to reduce the pathogen’s load 

in the caecal contents of infected birds (vaccine, bacteriophage therapy 

and treatment with organic acids). 

The assessment was made by developing a baseline probabilistic model 

aimed to reproduce the dynamics of the within flock transmission of 

Campylobacter into a broiler chicken flock at farm level and comparing 

the baseline output with the ones obtained when different scenarios 

were tested. 

The baseline model was aimed to estimate the level of contamination in 

infected flock at slaughter with the outcame assumed to be directly 

related to two main factors: (i) the within flock prevalence (WFP) 

expressing the proportion of infected birds at the end of the rearing 

period and (ii) the individual level of contamination (logCFU/g) in infected 

birds. 

The baseline model was implemented with the available information 

and/or data included in studies related to broiler chicken raised in 

intensive system. 
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The assessment of the management conditions affecting the introduction 

of the pathogen was made by using the results of a comprehensive 

epidemiological study conducted in supports of the activities of the Food 

and Standard Agency (FSA) and the Joint Working Group on 

Campylobacter (JWG) aimed at reducing the levels of Campylobacter spp. 

colonisation in poultry at farm level in the UK (15). 

The assessment of the mitigation strategy affecting the pathogen’s load 

in the caecal contents of infected birds was made by adopting the overall 

effects of the interventions already summarized by EFSA (3). 

2. MATERIAL AND METHOD 

The baseline model and subsequently the effects that different on-farm 

mitigation strategies and/or management conditions have on the 

probability for infected flock of being highly contaminated at slaughter 

were quantified through the model outlined as a flowchart in Figure 1. 

One of the main factors driving the model outcame is the WFP which can 

be expressed as the ratio between the number of birds colonized with 

Campylobacter over the total population in a positive flock. 

This value is calculated at the day of the final depopulation (dpday) and it 

is assumed to be dependent on two main factors: 

1. The age at which the flock became infected  

2. The spread of the infection within the flock 
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Figure 1 Flowchart of the model implemented to assessment the probability for 
infected flock of being included in the category ‘Highly contaminated’ at slaughter. 
The steps describe the baseline scenario in which simulated flocks are raised under 
a standard biosecurity regime and not partially depopulated during the production 
cycle (B-T-). Additional scenarios involving the partial depopulation (T+) and/or the 
application of biosecurity measures (B+) were assessed operating on the baseline 
estimation. 

 

Intuitively, the first day of infection defines the moment at which the 

spread starts and the spread of the infection, implemented with a logistic 

growth model, is in turn dependent on a number of biological variables 

such as: the mortality rate (d_rate), the total number of birds in the flock 

(Nb) and the number of infected birds at t0 (It0). 
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2.1. The age at which the flock became infected. 

In our model, we assume the start of the growth model the first day at 

which infected feces are detected in the environment; in fact, broilers are 

coprophagic and when birds consume contaminated droppings, they 

become infected themselves. 

The dynamics describing the broiler infection by Campylobacter and the 

time at which this occurs is generally unknown, however, In-field studies 

reported that Campylobacter is rarely detected in the flock form 10 to 14 

days after the beginning of the production cycle (1, 5, 12). On the basis of 

this evidence, under a modelling prospective and in absence of further 

information, the first day at which the flock become colonized has been 

proposed to be modelled as a uniform random variable between fourteen 

days and the day of depopulation (6, 11). 

Although the assumption related to the minimum age infection may be 

acceptable, the one that each day of the cycle has the same chance to be 

the day of infection conflict with in-field evidences. 

In this work, results from three longitudinal (1, 5, 20) and two left-

censored (16, 24) studies were combined to estimate the day at which a 

broiler flock become infected (Iday+). 

In the longitudinal studies, results were reported as ‘range’ of days in 

which a flock or n flocks were firstly detected infected; therefore, five 

ranges (0-28; 29-35; 36-42; 43-49; >50) were identified from the first 

study and the data were combined to estimate the overall probability of 
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the flock becoming infected in each ith range (p+
rgi). In order to incorporate 

the knowledge from the left-censored datasets, a Bayesian approach was 

adopted with the distributions of p+
rgi used as informative priors and the 

left-censored datasets used for the likelihood function of a binomial 

process describing the likelihood of having observed si positive flocks on 

range i given p+
rgi . The posteriors (i.e. revised) estimates of p+

rgi were 

finally calculated by multiplying the prior and the likelihood function. 

2.1.1. Longitudinal studies. 

The first longitudinal study (5), consisted in a total of 100 broiler flocks 

(N1t0) monitored for the presence of Campylobacter at weekly intervals 

(the weekly testing schedule meant that it was only known that infection 

occurred within a specific time interval). Sixteen birds were swabbed on 

each sampling time (four birds from each quarter of each broiler house) 

and a flock was defined infected if the presence of Campylobacter was 

detected in at least one bird. 

The second work (1), consisted in a longitudinal study conducted on 10 

(N2t0) broiler flocks. From 10 to 14 individual fresh feces or cloacal 

droppings were collected at least weekly from the broiler houses. This 

study was characterized by a leak of two days between every sampling 

period; those days were conservatively included in our estimation as 

possible day of infection (i.e. if a flock was negative on day n but positive 

on day n+3, the days n+1 and n+2 were considered as possible days of 

infection). 

In the third study (20), 15 broiler flocks (N3t0) were followed in one farm 
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and visited three times during the production cycle. Fifty-eight 

environmental samples were collected in each visit and the last sampling 

time coincided with the flock clearance. In this work, the days at which 

the flocks were visited were univocally recorded, therefore, the range of 

days in which each flock has become infected was estimated from the day 

at which the flock was found positive back until the last day at which the 

flock was tested negative (A*-Q* in Figure 2). 

Figure 2 Black lines represent the estimated ranges of day in which the flocks could 
have become infected. Results from the second (A-L) and third (*A-*Q) 
longitudinal studies are shown. Solid lines with circle represent the flocks who 
could have become infected because of thinning. Vertical dotted lines delimiting 
the identified ranges are shown. 

 

Five flocks from the second study and two from the third were partially 

depopulated at some point of the growing cycle. In order to exclude from 

the baseline probabilities the flocks that could have become infected 
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because of thinning, those flocks were not included in the total number 

of exposed flocks (Niti) from the ith range in which the thinning was 

practiced. 

None of the surveys reported evidences of positive samples in the first 

two weeks of the cycle, according to several studies indicating that 

Campylobacter is not usually detected in the flock environment form 10 

to 14 days after the beginning of the cycle (3, 7, 8); it was assumed that 

the flocks do not become infected before the fourteenth day. 

For each ith range, p+
rgi was estimated by using the conjugate formula for 

the beta distribution: 

p+
rgi =Beta (α; β)       (Eq.1) 

Where:  

α = s1rgi+s2rgi+s3rgi+1 

β = [(N1t0rgi +N2t0rgi +N3t0rgi)-(s1rgi+s2rgi+s3rgi) +1] 

With s1rgi s2rgi s3rgi being the total number of positive flocks that could 

have become infected in the ith range in study 1, 2 and 3; and N1t0rgi N2t0rgi 

N3t0rgi the total numbers of considered flocks at t0 for the ith range. 

2.1.2. Left-censored studies.  

The Bayes’ theorem is a method for revising belief about the parameter 

of interest after observing data. The posterior distributions of p+
rgi for 

each ith range were estimated by using two left censored datasets. 
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The first study (24) involved 291 broiler flocks from 134 broiler farms 

while the second (16), 389 broiler flocks from 88 farms. Authors kindly 

provided their original dataset for our estimations. 

The posterior distributions of p+
rgi for each range was estimated as follow: 

𝑓(𝜃rg𝑖|𝑠rg𝑖) ∝ 𝜋(𝜃rg𝑖) ∗ 𝐿(𝑠rg𝑖|𝜃rg𝑖)   (Eq.2) 

Where π(θrgi) is the density function of the prior belief about the 

parameter value θrgi and L(srgi |θrgi) is the likelihood function for a binomial 

process expressing the calculated probability of observing srgi infected 

flocks given ni and a given value of θrgi. In the formula, f(θi│si) is the 

posterior distribution of p+
rgi describing the state of knowledge of p+

rgi 

after having observed si positive flocks on range i and given our prior 

information about the value of the parameter before si was observed. 

As the data from the left-censored datasets were informative about the 

probability of being infected in a given range, the probabilities of the 

binomial process of the likelihood function were modified as follow (the 

example for rg2 is reported): 

 𝜃rg2 = [ 𝜃rg1 + ((1 −  𝜃rg1) ∗  𝜃rg2)]   (Eq.3) 

So that f(θrg2│srg2 ) in equation 2 defines the actual state of knowledge 

about the probability of the flock becoming infected in the range 29-35 

after having observed srg2 positive flocks and given the prior information 

about the probability of the flock being (θrg1) and becoming ((1- θrg1)* θrg2) 

infected in the range 29-35 before srg2 was observed. 
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Once the posterior probabilities were obtained, results were normalized 

for modelling purpose. Furthermore, it was assumed that within each ith 

range, each ith day has the same chance to be the day of infection: 

 P+
dayi_rgi ⋃ P+

dayi+1_rgi ⋃…⋃ P+
dayn_rgi = p+

rgi   (Eq.4) 

Therefore, Iday+ is modelled as: 

𝐼𝑑𝑎𝑦+ = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(14, . . , 𝑑𝑝𝑑𝑎𝑦; 𝑝14
+ , … , 𝑝𝑑𝑝𝑑𝑎𝑦

+ )  (Eq.5) 

Where dpday is the day of final depopulation and p+
14

 … p+
dpday are the 

estimated probabilities according to (Eq.4). 

2.2. Spread of infection.  

Once the flock became infected on Iday+, the infection quickly spread 

through the flock and the horizontal spread describing the transmission 

of Campylobacter within the flock was parameterized by fitting the results 

of two experiments (26) to a logistic growth curve: 

𝐼𝑏𝑡 =
𝐾 𝑁𝑏 𝐼𝑏0

𝐼𝑏0+(𝑘𝑁𝑏−𝐼𝑏0)𝑒−𝑟𝑡     (Eq.6) 

Where Ibt is the number of infected birds at time t, Nb is the flock size, K 

the carrying capacity of the environment (assumed equal to 1) and r is the 

coefficient representing the growth rate (rate) of infected birds in the 

total population. 

In both the experiments, 400 broiler chicks were housed on fresh litter in 

a density of 20 chicks/m2 and 4 chicks per group were orally challenged 
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at the age of 2 days. The colonisation of chicks was determined at fixed 

time points by sampling 50 random birds. When all samples appeared to 

be Campylobacter positive, the sample size was reduced to 10 chicks per 

group in both the experiments. 

The parameterization of logistic function was already used in a previous 

work (13) where r was estimated extrapolating from the original work the 

actual number of infected birds in the population at each data point. 

Using the original dataset, we used the hypergeometric process in order 

to include the uncertainty surrounding the number of infected birds 

detected in each sampling time given the sample size. Hence, given that 

at different sampling time, samples of size ni were collected from a finite 

population M, we parameterized the total number of infected Di(θ) in the 

population at each time point i, given that si positive samples were 

observed. Assuming the uninformative prior for the parameter (π(θ)=1), 

the Likelihood of observing si infected for a given value of θ was estimated 

with the hypergeometric probability mass function: 

𝐿(𝑠𝑖|𝑛, 𝜃, 𝑀) =
( 𝜃

𝑠𝑖
)(𝑀−𝜃

𝑛−𝑠𝑖
)

(𝑀
𝑛 )

     (Eq.7) 

Therefore, for each sampling time, the posterior distribution describing 

the actual state of knowledge about θ was estimated as: 

𝑓(𝜃|𝑥)𝑖 ∝  𝜋(𝜃) ∗ 𝐿(𝑠𝑖|𝑛, 𝜃, 𝑀)    (Eq.8) 

Indicating that the posterior distribution describing the expected number 

of infected birds in the population at each ith sampling point (x) is 
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proportional to: (i) the prior believe about the parameter (π) and (ii) the 

likelihood function for a hypergeometric process expressing the 

calculated probability of observing si infected birds given n, M, and a given 

value of θ. 

The distribution describing the number of infected birds allowed the 

simulation of alternative outcomes for each ith sampling point: ten 

thousand simulated dataset were fitted to the logistic growth function 

(Eq.6) and as many values for rate were obtained. The values were used 

to parameterize the distribution describing the uncertainty in rate, to this 

end, the maximum likelihood estimation (MLE) method for a Gamma 

distribution was used (27). Assuming that a given set of data can be 

described by a certain distribution (e.g. Gamma), the method of 

maximum likelihood provides an estimation of the distribution’s 

parameter(s) so that the joint probability of the observed data under the 

resulting distribution is maximized: 

logL(X|)=∑log(f(xi,))      (Eq.9) 

Where  represents the parameter(s) of the distribution of the likelihood 

function ( and  of the Gamma distribution) and logL(X|)=∑log(f(xi,)) 

is the likelihood of observing the n observations recorded given α. The 

gamma distribution was chosen because data are continuous and its 

parameters  (shape) and  (scale) allow great flexibility making possible 

for the distribution to assume a range of different shapes. 
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2.3. Within flock prevalence estimation. 

In each simulated scenario, the WFP was defined as the predicted 

proportion of infected birds on dpday. 

The probability distribution describing the WFP was obtained through the 

simulation of 100,000 production cycles in which Iday+ was randomly 

sampled according to Equation 5, and the spread of the infection 

modelled by fitting a logistic growth model in which the coefficient rate 

was sampled from its uncertainty distribution. 

2.4. Infected birds in infected flock at slaughter. 

The actual number of infected birds in the flock N(Ib) was estimated after 

each iteration by Binomial distribution: 

𝑁(𝐼𝑏)𝑖 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁𝑏; 𝑊𝐹𝑃𝐼)    (Eq.10) 

Were Nb is the number of birds in the flock and WFPi is the estimated 

within flock prevalence in the flock after iteration ith. 

2.5. Level of contamination of the flock. 

The level of contamination of the flock is generally estimated by 

bacteriological count of a number of pooled caeca (Nc) randomly sampled 

from the slaughter line, therefore, the final result is a function of: (i) the 

number of contaminated caeca sampled and (ii) the level of 

contamination in positive sample. 

 



 

106 
 

2.5.1. Number of contaminated caeca samples. 

The Hypergeometric process was used to estimate number of 

contaminated caecal sampled (Nc
+) as a function of Nb, Nc and N(Ib)i: 

𝑁𝑐
+ = 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (𝑁𝑏; 𝑁(𝐼𝑏)𝑖; 𝑁𝑐)   (Eq.11) 

2.5.2. Level of contamination in caeca. 

The ability of Campylobacter in reaching high level in caecal contents after 

infection has been widely reported and according to several works (17, 

23, 25). The Intestinal carriage of Campylobacter in contaminated chicken 

carcasses at slaughter (Cc) was estimated from a previous study (22) and 

described by the normal distribution: 

𝐶𝑐 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑐; 𝜎𝑐)     (Eq.12) 

With parameters μc and σc equal to 7.63 and 1.02 logCFU/g respectively 

(22). The final level of contamination of the flock (Fl) was inferred from 

the estimated level of contamination of a standard pooled sample of 10 

caeca samples/batch: 

𝐹𝑙 =  
𝑁𝑜𝑟𝑚𝑎𝑙((𝜇𝑐∗𝑁𝑐

+);(√𝑁𝑐
+∗𝜎𝑐))

𝑁𝑐
    (Eq.13) 

Where the numerator represents the central limit theorem applied on the 

positive caeca samples taken (i.e. it is assumed that the level of 

contamination in each positive sample can be described by the same 

distribution), and the denominator the total number of caeca samples. A 

test sensitivity close to 100% is assumed. 
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2.6. The baseline model. 

In the baseline model, 100,000 infected flocks coming from a standard 

broiler house with 20,000 birds (Nb), raised under a standard biosecurity 

management (B-), with a mortality rate (d_rate) of 5% assumed to be 

equally distributed along the cycle and not partially depopulated (T-) 

were simulated. 

The simulation was initiated assuming that the infection was due to one 

initially colonized chicken –shedder- (Ib0=1) and according to the industry 

dataset (15), the thirty-eighth day of the cycle was selected as the most 

likely day of clearance (dpday) in not partially depopulated flocks. 

2.7. Risk outputs. 

At the end of the simulation, the cumulative probability distribution 

obtained for Fl was used to estimate the expected proportion of highly 

colonized batches at slaughter. According to (15) the threshold level for 

the classification of the batches as ‘highly colonised’ was set to 5.09 

logCFU/g ≈ 123,000 CFU/g. once the baseline output was obtained, 

different management conditions and/or mitigation strategies were 

tested and results compared to the baseline scenario. Moreover, in order 

to assess the relative effects on the output of the distributions included 

as model inputs (Iday+; Cc; r), a sensitivity analysis was performed. 

2.7.1. Enhanced biosecurity. 

The hypothesis that enhanced farm biosecurity contributes to a decrease 
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in the risk of Campylobacter colonisation was tested in a dedicated 

epidemiological study (15) where the adjusted Relative Risk (RRa) 

expressing the ratio of the probability of an event occurring in an exposed 

group versus non-exposed was estimated. Results from that study 

indicate that batches raised under standard biosecurity are significantly 

more likely to be colonised at high level than batches raised under 

enhanced biosecurity. In fact, the estimated RRa for the effect of standard 

biosecurity at depopulation resulted 1.30 (CI 1.05 – 1.48). 

Since the baseline model assumed a standard level of biosecurity (B-), the 

effect of enhanced biosecurity on the proportion of highly contaminated 

flocks at slaughter was obtained using the RRa as multiplicative 

coefficient as follow:  

(B+T-)= (B-T-)*1/RRa(B-)      (Eq.14) 

Where, (B-T-) is the proportion of highly contaminated flocks obtained 

from in the baseline model. In this case, the scenario (B+T-) estimates the 

proportion of highly contaminated flock at slaughter if all the infected 

flocks were grown under enhanced biosecurity management. 

 

2.7.2. Thinning. 

 Similarly to the biosecurity, the estimated RRa for the factor of thinning 

(T+) resulted 1.55 (CI 1.18-1.87) for the flocks grown under enhanced 

biosecurity management. In the baseline model the partial depopulation 

was not practiced, therefore, the effect of thinning on the proportion of 
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highly contaminated flocks was estimated through the scenario (B-T+) in 

which 100% of the flocks are partially depopulated before the end of the 

production cycle:  

(B-T+)= (B-T-)*RRa(T+)      (Eq.15) 

An additional scenario (B+T+) in which the flocks are all assumed to be 

partially depopulated and raised under enhanced biosecurity measures 

was also assessed. 

(B+T+)= (B-T-)* RRa(T+)*1/RRa(B-)     (Eq.16) 

2.7.3. Vaccine, bacteriophage therapy and treatment with organic 

acids. 

The Interventions aimed to reduce the bacterial load in infected birds 

have been recognized as important on-farm mitigation strategies to 

reduce the proportion of high-contaminated flocks at slaughter (3) and 

the available options such as Vaccination, Bacteriophage therapy, 

Bacteriocins or anti-Campylobacter additives in feed or drinking water 

have been recently reviewed (3, 21). As the efficacy of those interventions 

depends on a number of biological and technical factors their effect is 

difficult to estimate quantitatively, in fact, vaccines are still in the 

development phase and the other options are characterized by variable 

results and/or limited in vivo experiments. However, a generic modelling 

approach to evaluate the reduction of highly contaminated flock at 

slaughter due to a reduction in the number of Campylobacter in bird’s 

intestines was performed to assess the potential benefit of interventions 
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with this general aim. The estimated effects on Campylobacter reduction 

for the interventions are summarized in table 1. 

Table 1 Overall summary of the effects of the interventions aimed to reduce the 
bacteria load in Broiler chicken intestine. 

Intervention Effect Reference 

Vaccination  2 logCFU/g reduction in caecal contents 

(3) 
Bacteriocins 

Uniform(5.1;5.9) logCFU/g reduction in caecal 
contents 

Bacteriophages 3 logCFU/g reduction in caecal contents 

organic acids 
Uniform (0.5;2) logCFU/g reduction in caecal 
contents 

 

All the mitigation strategies affecting the level of contamination in 

infected birds are assumed to act on the μc (Eq.12). 

2.8. Uncertainty in the baseline scenario. 

The effects of the interventions under investigation on the proportion of 

highly contaminated flocks were estimated by comparing the outputs of 

the different scenarios obtained by means of Monte Carlo Simulations 

with that of the baseline. 

The effects were estimated using a standard broiler flock as baseline; a 

number of initial information were assumed and despite the fact that the 

production process of broiler chickens is highly standardized, in reality, 

some inputs like Nb, d_rate or dpday might be different amongst the 

farms. The same goes for the initial number of infected, where the 

possible sources of Campylobacter infection and their effects on It0 are 
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unknown and hard to quantify. Those inputs are expected to have an 

impact on the WFP and consequently on Fl (Figure 1), therefore, the 

baseline values were replaced by distributions (Table 2) describing the 

variability and the uncertainty surrounding the parameters and a 

sensitivity analysis was performed in order to assess the effect that each 

input has on outcame. 

The distributions describing Nb and d_rate were obtained assuming a 

conservative discrepancy of ±100% from the baseline information while 

the effect of the uncertainty surrounding the initial number of shedders 

was tested assuming that It0 may ranges from 0.05% (It0=1) to 5% 

(It0=1000) of the total population.  

The day of final depopulation depends on several biological, economical 

and practical factors; industry data were used to estimate the parameters 

(Minimum; Most Likely; Maximum) of the Pert distribution describing the 

uncertainty in dpday. 

Table 2 distributions used to evaluate the impact of the input on the model output. 

Input Unit  Distribution Assumption 

Nb Unit Uniform(5000;40000)1 

±100% discrepancy 
 from the baseline 

 

d_rate % Uniform(1;10)1 

±100% discrepancy 
 from the baseline 

 

It0 % Uniform (0.5;5) 
+100% discrepancy 
 from the baseline 

 

dpday Unit Pert (36;38;50) Industry data 

1The minimum values of 5000 and 1% were maintained for the uncertainty distribution 

representing Nb and d_rate respectively. 



 

112 
 

The output of the model obtained with those inputs was used to perform 

a sensitivity analisys and tornado charts were used to represent the 

inputs ranked by effect on the output mean. 

3. RESULTS 

Following the flowchart reported in Figure 1, the results of the steps 

driving to the proportion of highly contaminated flocks in the baseline 

model are reported. 

3.1. Baseline model - the age at which the flock became infected. 

 The risk analysis software @Risk 6.3 (Palisade Corporation) was used to 

simulate 10,000 values from each prior distribution (Eq.1) and to store 

results of computed posteriors (Fig.3). 

Figure 3 Normalized posterior distributions for p+
rgi. The median values together 

with the 5th and 95th percentiles are shown. 
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Figure 4 Cumulative probability describing the day of infection in positive flocks at 
slaughter. For the infected flocks, the cumulative probability of being infected 
before day 28 was 47.5%. This rose to 69.2%, 86.9% and 94.% for times of infection 
before days 35, 42 and 49, respectively 

The cumulative probability distribution representing the chances that 

each day has to be the day of infection is reported in Figure 4. 

 

3.2. Spread of infection. 

 Following the estimation of the parameters obtained by the MLE (Eq.9), 

the Gamma distribution describing the r resulted: 

𝑟 = 𝐺𝑎𝑚𝑚𝑎(652.2; 0.0010)     (Eq.17) 

The distribution shown a mean of 0.698 with a standard deviation of 

0.027. The effect of the uncertainty surrounding the parameter when the 



 

114 
 

logistic growth model was adapted to the baseline scenario, (Nb=20,000 

chicken broilers with one initial infected at t0) is reported in Figure 5. 

Figure 5 The effect of the uncertainty in the coefficient ‘r’ on the horizontal spread. 
If the infection starts at day 0, the day at which the flock reaches a WFP of 95% 
ranges from day 15 to day 20 because of the uncertainty surrounding the 
parameter. 

 

For the effect of the variability and the uncertainty, it takes from two to 

three weeks from the day of infection before the WFP reaches the 100%. 

3.3. Baseline model - within flock prevalence. 

Over 100,000 simulated flocks, the WFP at slaughter in contaminated 

flocks resulted equal to 46.35% on average. The cumulative distribution 

together with the probability density was reported in Figure 6. 
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Figure 6 Cumulative distribution and overlapped frequency of the WFP at 
slaughter in contaminated flocks. The probability density is reported on the y-axis 
on the left and the cumulative distribution on the y axis on the right. 

 

The WFP resulted below 50% in 53.6% of simulated scenarios but close to 

90% at 65th percentile.  

3.3.1. Baseline model - level of contamination. 

As for the WFP, the cumulative distribution describing Fl (Eq.14) is 

reported (Figure 7). In the baseline model, the average value recovered 

for Fl in infected flocks was 3.51 logCFU/g, with a standard deviation of 

3.43logCFU/g. The value at 95th percentile was 8.66 log CFU/g with 42.3% 

of infected flocks showing a contamination greater to 5.09log CFU/g. 
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Figure 7 cumulative distribution of Fl, the reference line indicating the threshold 
for the ‘highly contaminated flocks’ is reported  

 

The result of the sensitivity analysis outlined as tornado chart with the 

inputs ranked by effect on the output mean is reported in Figure 8. 

Considering that Fl is calculated from the estimated level of 

contamination of a pooled sample (Eq.13), this value is directly dependent 

on the number of infected birds in the flock (Eq.10‐11). In fact, the 

tornado chart clearly shown that the Iday+ (and thus the WFP) is the input 

with the greater influence on the output mean when all the other inputs 

are fixed to the baseline values. The effect of Cc is also important, being 

able to move the average from 2.62 logCFU/g to 4.33logCFU/ml while the 

distribution describing r has a minimal impact on the outcome, being able 

of moving the average by 0.7 logCFU/g only. 
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Figure 8 Tornado chart representing the model inputs ranked by effect on the 
output (Fl) mean. Each bar represents how much the respective input is able to 
move the mean of Fl when all the other ones are fixed to the baseline value.  

 

3.4 Alternative scenarios 

For each on‐farm mitigation strategy explored (Table 1), the distributions 

describing Fl (mean, 5th and 95th percentile) and the proportion of highly 

contaminated flocks at slaughter were reported in Table 3. 

The estimated proportion of highly contaminated flocks for the scenarios 

in which the enhanced biosecurity (B+T‐), the partial depopulation (B‐T+) 

or both the management option were enabled (B+T+), are reported in 

Table 4. The confidence limits associated to the RRa of the factors under 

investigation were used in Eq.15‐17 so that the ‘best’ and the ‘worst' 

scenarios reflecting the uncertainty surrounding the estimates were 

reported. 
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Table 3 results obtained for Fl and proportion of flocks included in the category 
‘>5.09 logCFU/g’ at slaughter when the effect of interventions aimed to reduce the 
bacteria load in infected birds were simulated. Numbers in brackets represent the 
±deviation from the baseline output in percentage. 

  Fl  (logCFU/g) Flocks >5.09 logCFU/g* (%) 

  Output (mean) 5th p.ile 95th p.ile Output 

Baseline (B-T-) 3.52 0.00 8.65 42.3% 

VACCINE 2.59 0.00 6.67 31.17% (-26.31%) 

BACTERIOCINES 0.97 0.00 3.26 0% (-100%) 

ORGANIC ACIDS 2.92 0.00 7.51 37.1% (-12.29%) 

BACTERIOPHAGE 2.13 0.00 5.69 1.92% (-95.46%) 

*proportion over 100,000 simulated flocks 

 

Table 4 resulting proportion of flocks included in the category ‘>5.09 logCFU/ml’ 
at slaughter when the effect of management conditions affecting the introduction 
of pathogen and/or the spread of the infection (enhanced biosecurity, thinning) 
were simulated. Numbers in brackets represent the ±deviation from the baseline 
output in percentage. 

 Flocks >5.09 logCFU/g* (%) 

Scenario Output BEST SCENARIO WORST SCENARIO 

Baseline (B-T-) 42.30% // // 

B+T- 32.54% (-22.96%) 28.58% (-32.39%) 40.29% (-4.49%) 

B-T+ 65.6% (+55.08%) 49.91% (+17.99%) 79.10% (+87.00%) 

B+T+ 50.43% (+19.22%) 33.73% (-20.26%) 75.33% (+78.09%) 

*proportion over 100,000 simulated flocks 

 

As expected, the application of biosecurity measures reduced the 

predicted proportion of flocks included into the category ‘>5.09 logCFU/g’. 

Conversely, the thinning practice had a negative impact. Interestingly, 

when both, the biosecurity measures and the thinning practice were 
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adopted, the combined effect of the factors was not conclusive, in fact, 

the uncertainty surrounding the effects led to a reduced and increased 

proportion of highly contaminated flocks when the best and the worst 

scenarios respectively were assessed. 

3.5 Uncertainty in the baseline scenario. 

 In order to evaluate the effect that the fixed inputs have on the model 

output, the baseline values were replaced by the distributions reported in 

Table 2 and a sensitivity analysis was performed (Fig. 9). 

Figure 9 Tornado chart representing the model inputs ranked by effect on the 
output (Fl) mean. 

 

In this case, Iday+ remained the input with the greater effect on the output 

mean, while all the newly introduced distribution (with the exception of 
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d_rate), replaced Cc and r in the upper positions suggesting that the 

uncertainty and variability underling those inputs, are likely to have a 

significant effect on Fl. 

4. CONCLUSIONS AND DISCUSSION 

The development of a probabilistic model for the transmission of 

Campylobacter infection in broiler flocks and the consequent estimation 

of the chances for a flock of being contaminated at high level as a function 

of the WFP and Cc (and related baseline inputs) provided a useful tool of 

practical use. 

In fact, the model can be used to quantify: (i) the effect of mitigation 

strategies of which the effect and the specific point of action in the model 

is known and (ii) the effects of factors of which the specific point(s) of 

actions are not directly identifiable but the overall effect on the output is 

known. 

When different mitigation strategies were tested, results clearly indicated 

that the potential effects of treatment with Bacteriocins and 

bacteriophages were significantly higher than vaccination or integration 

with organic acids. However, great care should be taken in considering 

these estimations; as previously stated, the effects of those mitigation 

strategies were estimated by using not definitive results. Nevertheless, 

researches on measures to combat the survival of Campylobacter in 

broilers seem to be promising (21), and the simple approach proposed to 

quantify those effects might be easily utilized as soon as new evidences 

will be available. 
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Conversely, the coefficients used to correct the baseline estimation as a 

function of the adoption of enhanced biosecurity measures or/and the 

partial depopulation practice, were obtained from an exhaustive 

epidemiological study conducted in UK in 2014; therefore, these effects 

can be considered a sound representation of the reality. At this respect, it 

should be noted that the results recovered for the scenarios under 

investigation (B‐T‐; B+T‐; B‐T+ and B+T+) were obtained assuming that all 

the simulated flocks operated at the same conditions. However, if the 

actual proportions of the flocks operating under each management 

condition in the population are known, those fractions might be used to 

weight the results and obtain an estimation of the overall prevalence of 

highly contaminated flocks in the whole population. 

The on-farm model, although relatively simple, provided an exhaustive 

understanding of the dynamics leading to the WFP and the Fl in infected 

flocks and the related biological factors involved (i.e. Nb, It0, rate, and Cc). 

The data used to parameterize the model inputs were collected from 

epidemiological studies related to commercial broiler chicken grown in 

intensive system and experiments in which the intensive conditions were 

reproduced; therefore, we believe the model is not likely to be inflated 

by sources of information that could have biased the estimation of the 

parameters. 

With respect to the cumulative distribution describing Iday+, our 

estimation differed slightly from those reported in a previous study (9). 

This could be explained by the fact that in that study, different longitudinal 

studies were collated and the final dataset included information from 
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broiler chicken grown under different management system (free range or 

organic). Moreover, left censored data (i.e. flocks that were positive at the 

first sampling point) were excluded from the analysis. 

For the transmission of Campylobacter within the flock, the logistic 

growth model proposed by Katsma et al. (13) was adopted, with the only 

difference that with the Bayesian approach applied on the original 

datasets we included in the model a distribution for r instead of a fixed 

value. This gave us the opportunity to formerly consider the uncertainty 

and the variability underlying this input and assess its influence on the 

outcome with the sensitivity analysis. 

The on‐farm model was developed not only with the intent of being a 

flexible and easily reproducible tool for the assessment of the mitigation 

strategies at farm level, but also for the quantification of the impact that 

variations in the baseline characteristics of a broiler flock might have on 

the output. In fact, a number of baseline information (Nb, d_rate, It0 and 

dpday) were included in the model as initiative inputs (Eq.6, WFP) and the 

potential impact on the outcome as a function of a variation in those 

values should be taken into account. In fact, the sensitivity analysis 

reported in Figure 9, clearly shown how variations in those information 

might lead to significant consequences. As a practical example, if dpday is 

anticipated by two days or Nb decrease of 5000 units, the baseline 

proportion of highly contaminated flocks at slaughter decreased by 13.7% 

and increased by 3.8% respectively from the baseline (result not shown). 

Consequently, one of the practical value of this model is that its flexibility 

lends itself to be adapted to very specific baseline scenarios besides the 
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standard condition assumed in this study.   

4.1. Main assumptions and limitations. 

As in any model aimed to describe the complexity of the real world, some 

assumptions and limitation are recognized.  

The first assumption is related to Iday+ where the baseline model assumes 

that the transmission never starts before the fourteenth day of the cycle. 

The sensitivity analysis (Figure 8-9) highlighted the importance of this 

inputs, but the threshold assumed by the model finds its justification from 

in-field studies and multiple biological factors (14, 18). However if new 

evidences and data become available, the model can be easily updated 

operating on Equation 4 and 5. 

Another assumption is that the simplified transmission model do not 

admits that infected birds can recover. Even tough cases of self-limitation 

of the infection have been occasionally reported (8), considering the 

chicken broiler reared in intensive system and the length of the 

production cycle (usually less than 40 days), It is generally accepted that 

once a bird is infected the infection persists until clearance. 

An important limitation highlighted by the sensitivity analysis in figure 9, 

concerned the effect of the uncertainty related to It0 . Our transmission 

model, was initiated assuming one initial infected bird but in reality, the 

initial number of shedders is likely to be strictly related to the source of 

contamination (i.e. if the source of contamination is the drinking water 

rather than feces of wild animals, the number of infected birds at t0 is 
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likely to be very different). The identification of the on‐farm risk factors 

for the introduction of Campylobacter has been assessed in several 

studies by risk factor‐based surveys using structured questionnaires (5, 7, 

10, 19) but the relationship: source of contamination‐number of infected 

birds at t0 has never formerly investigated, however, even this information 

can be easily included once available. Given the potential impact of this 

factor, further researches focused on this relationship are strongly 

needed. 
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Chapter 5 

Qualitative risk assessment of introduction of Anisakidae nematodes in 

Atlantic salmon (salmo salar) farms and commercialization of fishery 

products infested by vital larvae  

General introduction 

The presence of alive parasites in fish with special reference to 

nematodes of genus Anisakis spp. is a worldwide food-safety concern and 

on April 2010, the EFSA Panel on Biological Hazards released a scientific 

opinion concerning the assessment of parasite in fishery products in 

response of a specific request of the European Commission. On the basis 

of that opinion, the Regulation (EC) No 1276/2011, allows food business 

operator to not apply freezing treatment on fishery products if 

procedures approved by the competent authority are used to verify that 

the product do not represent a health hazard with respect to viable 

parasites. 

In this study, we adapted the general approach recommended by the OIE 

for the assessment of the risk posed by the importation of live animal to 

formally assess the risk of introduction and establishment of Anisakids 

nematode in Atlantic salmon farms and consequently, the 

commercialization of infested fishery products. We explored several 

plausible biological pathways beside the ‘feed’ (the only route considered 

by EFSA) and all the key steps along each route of introduction were 

identified and assessed by reviewing the most recent 
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evidences/information concerning the parasite, its primary and paratenic 

hosts and the farming practices. The overall probabilities of introduction 

along each route were qualitatively assessed taking into account the 

uncertainty surrounding all the available information; therefore, we 

believe our approach is of critical interest for both food business operator 

and researchers. 

Our study provides, for the first time, a formal and transparent qualitative 

assessment of the risk of introduction and establishment of live 

nematodes of genus Anisakis in farmed Atlantic salmon and 

commercialization of infested animals, therefore, the general model is 

easily adaptable to different production companies making the model of 

immediate practical use. Furthermore, the framework can be adapted to 

assess the risk related to commercialization of infested aquaculture 

fishery products beside the Atlantic salmon.  
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ABSTRACT 

A qualitative risk assessment was adopted to formally assess the 

likelihood of introduction of anisakids larvae in farmed Atlantic salmons 

(Salmo salar) and the commercialization animals infested by at least one 

vital parasite. Several plausible pathways were identified and the most 

recent information concerning the parasite, its primary and paratenic 

hosts and the farming practices were reviewed and used to assess the 

likelihoods of each key step. A matrix for the conditional probabilities was 

adopted to combine the qualitative estimations and obtain an objective 

and transparent overall risk of introduction along each route. In order to 

avoid misinterpretation and the overconfidence of the outcome, the 

uncertainties surrounding the estimations were qualitatively assessed and 

associated to each estimation. The likelihood of parasite being introduced 

into a generic Atlantic salmon farm resulted higher than ‘negligible’ only 

when the pathway outlining the introduction of the parasite through the 

ingestion of infested hosts who have penetrated the harvesting cages was 

assessed. In that pathway, the overall risk resulted ‘very low’ with a high 

degree of uncertainty; the uncertainty resulted ‘high’ because of the 

scarcity of information in some of the key steps of the pathway; however, 

the scientific evidences in support of the overall estimation suggest that 

the availability of additional data would be unlikely to change the final 

estimation upward. The proposed qualitative approach is an objective and 

transparent method to assess the risk when data and information are 

scarce, it can be easily adapted to other species besides farmed Atlantic 

salmons and other parasite besides Anisakids. 
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1. INTRODUCTION 

Fish-borne parasite zoonosis represent a global emergent threat, among 

these, anisakidosis is showing a generalised increase in the last two 

decades (7). The family Anisakidae includes zoonotic parasitic nematodes 

among which, the species belonging to the genera Anisakis and 

Pseudoterranova are the most commonly associated with infestations in 

human due to consumption of raw or undercooked fishery products.  

The effects of anisakids in terms of decreasing the commercial value of 

fishery products and the impact on human health have resulted in these 

parasites becoming both an economic and a public health concern 

worldwide (4, 5, 14, 56). 

The life cycle of Anisakidae of zoonotic interest, is developed in seawaters 

and involves marine mammals (cetaceans and pinnipeds) and piscivorous 

birds as definitive hosts. In natural conditions, the predation of infested 

fishes lead to bioaccumulation along the predation chain resulting in 

certain fish species being characterized by higher chance to be infested 

(64) and thus, represent a risk for human health. 

In order to prevent and control transmission of fishery product-borne 

parasites, the Section VIII of Annex III to Regulation (EC) No 853/2004 lays 

down provisions for fishery products to be consumed raw or almost raw. 

The Regulation indicates that fishery products intended to be eaten after 

a process that is not sufficient to destroy nematode larvae must be frozen 

at a temperature of not more than -20°C in all parts of the product for not 

less than 24 hours. 
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In April 2010, the European Food Safety Authority published a scientific 

opinion on risk assessment of parasite in fishery products (14) providing 

criteria for determining the conditions under which fishery products from 

aquaculture can be recognized as being free of viable parasite and  that 

may represent an hazard for human health. With particular reference to 

farmed Atlantic salmon (salmo salar), the Opinion concluded that farmed 

Atlantic salmons reared in floating cages or onshore tanks and fed 

compound feedstuffs are unlikely to contain live parasite, however, the 

Panel on Biological Hazards did not considered routes of infection other 

than the feed and the risk was never assessed formally. 

Following that Opinion, in 2011, the Regulation (EC) No 1276/2011 

modified the requirements set out in Annex III, Section VIII, Chapter III, 

Part D of Regulation (EC) No 853/2004 allowing food business operators 

to not apply freezing treatment if procedures approved by the competent 

authority are used to verify that the product do not represent a health 

hazard with respect to viable parasites. 

In the present study, the general approach recommended by the World 

Organization for Animal Health (OIE) for the assessment of the risk posed 

by the importation of live animal and animal products (43) was adapted 

to formally investigate the potential for live zoonotic nematodes to 

represent a risk for human health in farmed Atlantic salmon (35). 

2. MATERIAL AND METHOD 

The likelihood of the commercialization of a farmed Atlantic salmon 

(salmo salar) infested by at least one vital anisakids larva was qualitatively 



Qualitative Modelling 

137 
 

assessed. In the approach proposed by the OIE, the hazard identification 

precedes the risk assessment, which is composed of three components: 

(i) Release assessment, (ii) Exposure assessment and (iii) Consequence 

assessment. Generally, the final risk estimate is the result of the 

integration the steps but because of the purpose of this study, the 

consequences of the parasite’s establishment are not considered. 

Several pathways outlining the sequence of sufficient and necessary 

events leading to the introduction of the parasite into a general fish farm 

were identified and the likelihoods of introduction assessed for each 

pathway considering the farming practices of the Atlantic salmon. The 

qualitative risk assessment models foresee the use of subjective risk 

levels to describe the likelihood of unwanted events; in this work, the 

qualitative terms proposed by Kahn et al. (25, 26) were adopted (Table1). 

The biological and epidemiological characteristics of the parasite, its 

primary and accidental hosts together with the biosecurity technologies 

and measures applied in the Atlantic salmon’s farms were reviewed and 

discussed to assign the likelihood at each step of each identified pathway. 

Table 1 Definition of the likelihood terms 

Likelihood Decription 

High (H) Expected to occur 

Moderate (M) Occurrence less than 50% probability 

Low (L) Unlikely to occur 

Very low (VL) Rarely occur 

Extremely low (EL) Very rarely occur 

Negligible (N) Chance of occurrence so small that can be ignored 
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In each pathway, the likelihoods assigned at each event were combined 

to derive the overall risk estimate the introduction and establishment of 

the parasite in farmed salmon. 

The risk estimates were expressed as cumulative likelihoods obtained 

combining the qualitative estimates of the inputs according to the matrix 

for the conditional probabilities (Table II) previously applied by EFSA and 

other qualitative risk assessment (13, 47). 

This matrix defines a likelihood estimate for any binary combination of 

conditional events and in order to avoid an overconfidence of the 

outcomes and prevent misinterpretation, an assessment of the 

uncertainty surrounding each estimation was also reported (Table 3), and 

expressed as: High, (H) Moderate (M) or Low (L). 

Table 2 Combination matrix used for the estimation of the conditional likelihoods. 
The product of two probabilities is always less than the lowest probability and is 
sometimes given as a range (e.g. N-EL). However, as explained in the EFSA report, 
since qualitative term covers a wide range of likelihoods the combined estimate is 
in some case equal to the lower estimate (e.g. a step ‘n’ with an estimate of VL 
with a step ‘n+1’ with an estimate of EL produces and an overall estimate of N-EL). 

Likelihood  
step 'n+1' 

Conditional Likelihood 
 step ‘n’ 

 N EL VL L M H 

H N EL VL L M M 

M N EL VL VL L M 

L N EL EL VL VL L 

VL N N-VL EL EL VL VL 

EL N N N-EL EL EL EL 

N N N N N N N 
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Table 3 Definition of uncertainties 

Uncertainty Interpretation 

Low (L) 
The estimation  is strongly supported by data-evidences, 

Agreement by different authors 

Medium (M) 

The estimation is supported by few or Incomplete data.  

Some authors report conclusions slightly different  

from some other 

High (H) 

The estimation is supported only by scarce data or it is 

based on Hypothesis.  

Strong disagreement from different authors 

 

If two or more independent risk factors contributed to the likelihood 

estimation for a single step, the likelihoods for each factors were 

estimated and the same matrix for the conditional probabilities was used 

to outline the overall likelihood for the step. With respect to the 

uncertainties, the worst estimate was conservatively considered among 

the risk factors and along the steps of the pathways; in this way, a high 

uncertainty in one level is enough to lead to a high uncertainty in the 

overall outcame. An exception was made if the occurrence of the event 

in step n+1 is Negligible with Low uncertainty. 

2.1 Hazard identification and Characterization.  

The different species belonging to genus Anisakis spp. and 

Pseudoterranova spp. are not reliably distinguishable morphologically but 

several species were identified at molecular level (38, 39, 44, 45). The 

morphospecies most commonly associated to human infection are: 

(i) Anisakis simplex, worm-like parasite, usually 1 to 3cm length, 
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thin, characterized by a pinkish-white colour and that usually appear 

rolled up on itself. Larvae are usually localized in the viscera where are 

generally easily visible but can migrate into the muscle or the abdominal 

wall where the parasite is more difficult to identify, especially in the white 

fish (13); 

(ii)  Pseudoterranova decipiens, worm-like parasite, usually of 1 to 

4cm length and characterized by a reddish-brown colour it tends to 

present a large-rolled coil. In infested specimens it is usually located at 

muscular level (40). 

The life cycle of the species belonging to genus Anisakis takes place in 

seawater and proceeds in several steps. In the first step, larvae at the first 

stage (L1), are released in seawater with the feces of the definitive hosts 

(mainly cetaceans such as whales, dolphins and porpoises); in marine 

environment they develop to L1-L3 stage in the eggs after which, larvae 

are released in seawater (29, 40, 60). 

Newly hatched larvae can survive in marine environment for weeks and 

be eaten by a wide range of different primary hosts (crustaceans and 

molluscs). When fish or cephalopods eat primary infested hosts, the 

parasite migrates to the coelomic cavity of the predator, which act as 

paratenic (i.e. intermediate) host. In paratenic hosts, the number of 

parasites is regulated by bioaccumulation along the predation chain; 

consequently, big and/or old fishes may host even thousands of 

nematodes (60). Humans are act as accidental hosts when they eat 

undercooked infected fish or squid. 

The larval stages and the biological cycle of Pseudoterranova spp. do not 
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differ from the ones described for Anisakis spp. even though the definitive 

hosts are usually pinnipeds like sea lions or wales instead of cetaceans. 

Moreover, larvae of Pseudoterranova.spp, lack of cuticular sheaths with 

lateral extremities that increase the buoyancy, thus, conversely to larvae 

of Anisakis spp., are not able to swim (46). 

Although the dynamics underlying the geographical distributions of the 

most important primary and intermediate hosts of Anisakis spp. and 

Pseudoterranova spp. are complex and still largely unknown (14), 

considering the differences in the habitat of the hosts involved; it is 

generally recognized that Anisakis spp. has an essentially pelagic life-

cycle, whereas Pseudoterranova spp. has a more benthic habit. 

Consequently, with particular reference to the Atlantic salmon, parasites 

belonging to the genus Anisakis spp. represent a greater concern than 

Pseudoterranova spp.(69). 

Following these considerations, nematodes of genus Anisakis spp. were 

formally identified as the hazard of interest while Pseudoterranova spp. is 

not considered further. 

2.1.2. Hazard characterization Anisakis spp. – prevalences.  

The prevalences of the parasite in different wild fishes and data related 

to the occurrence of the different species of Anisakis in infected fish 

shown high variability according to both geographical region and the 

hosts species (14, 41, 48, 50). The complexity of the dynamics leading to 

different proportions of the parasite’s species in different hosts and in 

different areas led to the cautionary conclusion that none of the fishing 

area worldwide should be considered as Anisakis-free, and thus, all the 
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wild saltwater fishery products must be considered potentially infested 

(14). 

2.1.3.  Hazard characterization Anisakis spp. – Pathogenesis. 

In humans, the accidental ingestion of live nematodes belonging to the 

family of Anisakidae, causes parasitic zoonosis known as anisakidiosi or 

anisakisiasi, described for the first time in 1960 by Van Thiel (4). The 

minimum infectious dose is a single nematode (11, 16) and after 

ingestion, vital larvae may be excreted up to 48 hours with feces, or turns 

to the acute form of anisakidiosi, the most frequently observed form and 

characterized by violent abdominal pain, nausea and vomiting, 

sometimes with the presence of the larvae (2, 52, 65). The acute form 

might degenerate into chronic if misdiagnosed or untreated. In the 

chronic form, the larvae penetrate the gastrointestinal mucosa, causing 

the formation of abscesses and granulomas with eosinophilic infiltrate. 

Granulomas and the inflammation process remain even after the death 

of the worm that in human body usually happen after 3 weeks after 

ingestion. Complications are rarely reported in literature, few episodes 

involved intestinal obstruction (53), colic intussusception (21, 70) and 

pneumoperitoneum (24). Moreover, the consumption of fishes 

harbouring dead Anisakis spp. larvae has been reported to be potentially 

dangerous because of potential allergenic reactions (3). 

2.2. Release and Exposure assessment for the Introduction of Anisakis spp 

into a generic Atlantic salmon farms 

The risk of the introduction of Anisakis spp. into a generic Atlantic salmon 
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farm was assessed considering five pathways.  

1. Capture and harvest of wild Atlantic salmon 

2. Presence of Anisakis spp. in feed  

3. Accidental introduction of wild salmon in the floating cages 

4. Re-introduction of escaped salmon that have been infested offshore 

5. Ingestion of infected intermediate/paratenic hosts 

For each pathway the sequence of sufficient and necessary events leading 

to the release of the parasite into a general farm were identified and 

reported (Figure 2-5). 

2.2.1 Pathway 1: Capture and Harvest of wild Atlantic salmon 

The occurrence of Anisakis in wild salmon is known to be high and above 

70% (14, 17), therefore, the harvest of wild animals would represent an 

important pathway for the commercialization of risky products. However, 

unlike the farming methods applied for other species (i.e. Cod or Eels), 

the production cycle of Atlantic salmon is totally closed and neither the 

capture of juvenile form is required. This pathway was not further 

explored. 

2.2.2 Presence of Anisakis spp. in feed  

The likelihood of the introduction and establishment of the parasite into 

a generic farm trough the feed depends on: (i) the source and the nature 

of the raw material and (ii) the thermal/physical treatments to which raw 

material has been subjected. 

The scenario trees outlined in Figure 1 represent the pathways leading to 
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the introduction of the parasite into a generic farm by feed. Both the use 

of live food (A) and treated feed (B) were considered. 

Figure 1 Pathways outlining the required steps for the introduction of Anisakis spp. 
into a generic farm through feed. Both live food (pathway A) and feed were 
considered (pathway B). 

 

 

The use of live food would lead to an evident risk of introduction of the 

parasite (68), however, the farming of the Atlantic salmon foresees the 

use of treated feed only; therefore, the pathway A was not considered. 

Moreover, since farmed salmon are fed with composite feed which 

includes wild species like herring (Clupea harengus), capelin (Mallotus 

villosus), Chilean anchovies (Engraulis ringens) etc., the first step of the 

pathways B was considered as an event that always occur, and its 

likelihood was not included in the assessment. 
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Step 2 

Considering the wide range of intermediate/paratenic hosts species at 

which Anisakis have adapted (14, 28), together with the variability and 

the uncertainty underlying the presence of the parasite in wild species 

(Section 2.2.1); the likelihood of Anisakis spp. being present in wild 

species used as raw material for the farmed salmon feed is considered 

High with Low uncertainty. 

Step 3 

Farmed salmon are fed with dry pellet produced by extrusion and 

temperature above 150°C. The likelihood of parasite surviving the 

treatment is Negligible with Low uncertainty. 

2.2.3 Accidental introduction of wild salmon in the farm 

The pathway leading to the introduction of Anisakis spp. by the accidental 

introduction of wild salmons in floating cages is outlined in Figure 2. 
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Figure 2 Pathway outlining the required steps for the introduction of Anisakis spp. 
into a generic farm by accidental introduction of wild salmon in floating cages. 

 

Step 1 

As mentioned in section 2.2.1. The occurrence of Anisakis in wild salmon 

is known to be high; however, although the presence of wild salmons in 

the areas surrounding the salmon farms cannot be excluded, a low 

density of wild salmon is usually recorded in the areas bordering the 

mariculture implants (18, 20). From these evidences, the estimated 

likelihood of wild salmons being present in the area surrounding the farm 

is Low whilst the likelihood of wild salmon being infected is Medium; 

consequently, the combined likelihood for the presence of infected wild 

salmons in the area surrounding the farms is Very Low.  

The level of uncertainty was considered Medium for the first condition 

and Low for the second one leading to an overall conservative Medium 

level of uncertainty for this step. 
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Step 2 

Atlantic salmons are grown to marketable size in floating nets offshore; 

the possibility for a wild salmon to penetrate the harvesting nets and to 

mingle with the reared salmons is linked to the presence of a hole in the 

floating cages. However, the firsts consequences of a hole in a floating 

net would be the escape of the raised fish, with sensible economical loss 

and huge environmental consequences (10, 19, 22, 66); consequently, it 

is of industry interest to apply all the biosecurity measures aimed to 

prevent/avoid the escape of the reared fishes, and indirectly, the 

introduction of wild animals. At this respect, the major food business 

operators in salmon harvesting invest many resources to pursue the so-

called ‘zero escape’ objective and public reports shown how the efforts 

resulted in a steadily decreasing occurrence of incidents leading to 

‘escape’ events (30-32, 34-36). 

Moreover, incidents resulted in an escapes should not be interpreted as 

events favouring at the same time the introduction of wild individuals. In 

fact, all the reported incidents were one-way oriented in determining the 

‘escape’ without favouring the ‘introduction’ in any way. 

It can be surmised that only a so limited breakage in nets as to prevent a 

massive escape of reared might not be immediately noticed by the 

operators through the underwater cameras surveillance can be the 

opportunity for wild animals to penetrate the floating cages; but even 

then, the wild salmon should penetrate exactly from that specific point.  

Following these considerations, the estimated likelihood of the wild 
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salmon accidentally penetrating the floating cage is Negligible with Low 

uncertainty. 

Step 3 

At this stage, the combined likelihood of the parasite migrating (intra-

vitam and/or post-mortem) from the coelomic cavity to edible muscles, 

and not being removed during the process of threading is assessed. 

The intra-vitam migration of the parasite is not a certain event and the 

frequency distributions of Anisakis third stage larvae in hosts’ tissues are 

believed to be affected by a number of conditions encountered within the 

hosts themselves (62) among which, the lipid contents is believed to play 

an important role (61, 63). 

Several recent studies reported the presence of Anisakis nematodes in 

muscles surrounding the body cavity of freshly caught salmonids (27, 54, 

55, 67) or sibling species (51) indicating that the intra-vitam migration of 

the parasite is an event that it is likely to occur in salmonids. Following 

these considerations, the estimated likelihood of parasite intra-vitam 

migration from the coelomic cavity is High, with Low uncertainty. 

The post-mortem migration of the parasite from the viscera to flesh is still 

a debated topic, the scientific opinion from the Panel Biological Hazards 

(14) reported: “… based on scientific evidence it is not clear when, under 

what conditions and in which fish species, post-mortem migration of 

Anisakis simplex larvae occurs …”. However, factors stimulating the 

migration of the parasite after host death are presumably related to 

physio-chemical changes in viscera (59) and time-temperature storage 
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conditions (8,9). At this respect, it should be considered that opposite to 

wild salmons, reared fishes are processed immediately after collection 

from the floating cages; consequently, the likelihood of post-mortem 

migration in farmed Atlantic salmon is Negligible with Low uncertainty. 

The worst scenario (intra-vitam migration) was conservatively considered 

in this step 

2.2.4 Re-introduction of escaped salmon that have been infested 

offshore 

Although the ‘escape’ events are rare (Section 2.2.3), the likelihood of the 

re-introduction of escaped salmon that have been infested offshore is 

assessed (Figure 3). 

Figure 3 Pathway outlining the required steps for the introduction of Anisakis spp. 
into a generic farm by Re-introduction of escaped salmon that have been infested 
offshore. 
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Step 1 

From consideration in Section 2.2.3. (Step 2), the estimated likelihood of 

farmed Atlantic salmons escaping in seawaters is Low with Low 

uncertainty. 

Step 2 

Anisakis spp. larvae can survive in seawaters for extended period and be 

eaten by a wide variety of different hosts. Although the parasite mainly 

uses euphausiids (krill) living in deeper water offshore as first 

intermediate host (58), the parasite is able to select host species 

depending on the locality (28). Therefore, the estimated likelihood for the 

presence of infested hosts in the areas bordering the implants is High, 

with a Low . 

Since escaped salmons are forced to prey to survive, the estimated 

likelihood of escaped salmons preying infested hosts is High with Low 

uncertainty. 

Step 3 - 4 

Estimated likelihoods and uncertainties for these steps are identical to 

the ones reported in pathway 3. 

2.2.5 Ingestion of infected intermediate/paratenic hosts 

The pathway leading to the introduction of Anisakis spp. by ingestion of 

infected intermediate/paratenic hosts is outlined in Figure 4. 
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Figure 4 Pathway outlining the required steps for the introduction of Anisakis spp. 
into a generic farm by ingestion of infected hosts. 

 

Step 1 

Following considerations in Section 2.2.4. (Step 2), the estimated 

likelihood of infested hosts being present in areas bordering the implants 

is High with Low uncertainty. 

Step 2 

The access for infested hosts into the floating cages is strictly dependent 

by the size of the hosts themselves. In fact, while the introduction of large 

hosts like is physically prevented by the meshes’ size, none barriers are 

applicable to hosts smaller than the meshes. Thus, the estimated 

likelihood for this step is Medium, with a High level of uncertainty due to 

the lack of information about the occurrence of the different host species 
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(with particular interest in host size) in the area bordering the implants. 

Step 3 

In this step, the ingestion of Anisakis spp. is linked to the predation of the 

hosts.  

Even though farmed salmon are fed with dry pellet, results of two recent 

studies (37, 42) reported the presence of Anisakis larvae in runts of 

farmed Atlantic salmon (Fishes with clear signs of poor performance 

and/or abnormal appearance, emaciated and not suitable to be marketed 

for human consumption); suggesting that farmed salmonids in open 

cages may feed even on live food. 

However, it is important to emphasize that the nematodes were found 

only in discarded animals and not in harvested quality salmons. The 

authors explained their findings hypnotizing that in floating cages weak 

animals undergo competition phenomena that limit their access to feed 

and thus, runts must feed with ‘anything’ that can be eaten in order to 

survive. It is assumed that the likelihood of high quality salmons preying 

live food to supply their feed intake is Low with High uncertainty  

Step 4 

As discussed in Section 2.2.3 (Step 4), the presence of the parasite in 

infested salmons represents a risk for human health only if it is not 

physically removed during the process of threading. According to 

previous estimations, the likelihood for the event is Low with Low 

uncertainty. 
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3. RESULTS 

Results of estimated likelihoods and uncertainties, together with the 

cumulative likelihoods (in parenthesis) were reported for each 

considered pathways (Table 4-7). 

Table 4 summary of risk estimates for the Introduction of Anisakis by feed (H=High, 
M=Medium, L=low, VL=Very Low, EL= Extremely Low N=Negligible). 

Step Description 
Likelihood 

(conditional) 
Uncertainty 

Release assessment 

2 Infested hosts were used as raw 

material for the feed 
H L 

3 The parasite survive the treatment 

in feed mill 
N (N) L (L) 

 

Exposure and establishment assessment 
 

4 
Survived larvae are ingested // // 

 

 

Table 5 summary of risk estimates for the Introduction of Anisakis by accidental 
introduction of infested wild salmons in floating cages. 

Step Description 
Likelihood 

(conditional) 
Uncertainty 

Release assessment 

1 
Wild infested salmons are present in 

the area surrounding the farm 
VL M 

 

Exposure and establishment assessment 

2 
The wild salmons penetrate the 

floating cage 
N (N) L (M) 

3 
The parasite is not removed during 

the process of threading  
// // 

 



Chapter 5 

154 
 

Table 6 summary of risk estimates for the Introduction of Anisakis by the Re-
introduction of escaped salmons who have been infested in open waters. 

Step Description Likelihood 

(conditional) 

Uncertainty 

Release assessment 

1 Escape of farmed salmons L L 

2 Escaped salmons prey infested hosts H (L) L (L) 

 

Exposure and establishment assessment 

3 
Escaped salmons get infested and re-

enter the floating cages 
N (N) L (L) 

4 
The parasite is not removed during 

the process of threading 
// // 

 

 

Table 7 summary of risk estimates for the Introduction of Anisakis by ingestion of 
infested hosts. 

Step Description Likelihood 

(conditional) 

Uncertainty 

Release assessment 

1 
Infested hosts are present in the area 

surrounding the farm  
H L 

2 
The infected hosts penetrate the 

floating cages.  
M (L) H (H) 

 

Exposure and establishment assessment 

3 

Infected hosts in floating cages are 

eaten by high quality harvested 

salmons 

L (VL) H (H) 

4 
The parasite is not removed during 

the process of threading 
H (VL) L (H) 

4. DISCUSSION 

In our study, the estimated cumulative likelihoods defined the risk of 

introduction of Anisakis spp. into Atlantic salmon farms (and 
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commercialization of infested products) as Negligible or Very Low 

depending on the considered pathway. Our formal qualitative 

estimations agreed with the available scientific evidences (1,14,33,57,69) 

who generally considered the presence of vital Anisakids in farmed 

salmon as a very unlikely event. 

With respect to the second pathway, our estimation coincides with the 

conclusions reported by EFSA, (14) and the outcome was characterized 

by a Low level of uncertainty, indicating strong evidences in support of 

the result. In fact, to date, there are no evidences or reported cases 

indicating that nematodes of genus Anisakis spp. are able to survive the 

processes at which the raw materials are subjected (1, 6, 23, 33). 

Recently, some proteins attributable to Anisakis simplex have been found 

in processed fish products (15), but the risk related to allergic reactions 

due to the presence of heat-resistant proteins (12, 49), was beyond the 

scope of this study. 

The cumulative likelihood obtained for the pathway 3 and 4 led to a 

Negligible risk of introduction and the estimation would not changes 

neither in presence of further evidences moving the likelihood for the first 

step of pathway 3, (characterized by Medium uncertainty), to High. 

The cumulative likelihood of the pathway 4 resulted Very Low but this 

outcame was characterized by High uncertainty. 

The route of introduction by ingestion of infested hosts, although 

characterized by high uncertainty, was the only pathway leading to an 

overall estimation of the risk greater than ‘Negligible’. Our formal findings 
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seem to support the hypothesis of the authors who recovered larvae of 

Anisakis simplex from farmed salmons (37, 42). Although characterized 

by a high level of uncertainty (because of the uncertainty in step 2 and 3), 

it is unlikely that the overall estimate is not representing the real risk, 

otherwise very different evidences would be reported in literature. 

Consequently, it can be hypothesized the high uncertainties in step 2 and 

3 are the result of a lack of data who is likely to do not have the potential 

to move the overall estimation upward (i.e. greater than ‘Very Low’). 

4.1. Main assumptions and limitations. 

As outlined by the hazard identification, the assessment was made 

considering nematodes belonging to Anisakis spp. without distinguishing 

between the different species, thus, similar properties amongst the 

species of genus Anisakis were assumed. 

Moreover, it should be noted that because of the differences in the 

typical habitat between Anisakis spp. and Pseudoterranova spp. results 

obtained for Anisakis spp. could be extended to Pseudoterranova spp. 

In the study, only plausible routes of introduction were considered in the 

release and exposure assessment; nevertheless, since science cannot 

prove that a particular pathway does not exist there will always be a 

degree of uncertainty. 
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General conclusions 

Risk analysis is an internationally recognised process adopted by the food 

regulatory bodies worldwide, under the premises that the process is 

conducted according to the principles of ‘good policy’, the purpose of the 

risk analysis in food safety is to provide a systematic procedure to 

examine and assess public health and safety risks associated with food. 

Following the definition that the CAC provides for the ‘risk management’: 

“The process, distinct from risk assessment, of weighing policy 

alternatives in consultation with all interested parties, considering risk 

assessment and other factors relevant for the health protection of 

consumers and for the promotion of fair trade practices, and, if needed, 

selecting appropriate prevention and control measure” it is clear that the 

appropriate decisions are ultimately the result of a risk-benefit 

assessment in which the impact of managerial factors outside the 

scientific context might be determinant. 

In this system, the role of the probabilistic modelling (and the figure of 

the ‘risk assessor’ or ‘risk modeler’), is crucial and explicated in the risk 

assessment module where a transparent representation of the biological 

dynamics of the real world are reproduced and used to estimate the risks, 

and eventually, the effects of mitigation strategies or control measures. 

The studies reported in chapter 4 and 5, although very different in the 

approach, are both clear and complete examples of how those models 

find their practical application in the field of the food safety management 
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systems. 

In fact, those models, not only provided scientific-based information to 

take practical decisions, but also gave to decision-maker the possibility to 

consider both the relative weight of the factors involved and the impact 

that the variability and the uncertainty surrounding each of them has on 

the final estimate. This second opportunity is particularly relevant even 

for the scientific community; in fact, the identification of the inputs 

characterized by the major ‘lack of knowledge’ might be helpful to drive 

the efforts on targeted objectives. 

With particular reference to the model’s structure, qualitative and 

quantitative models are at their basis, a simplified description of the 

complexity of the biological dynamics and the role of the modeller is to 

integrate the information from different field into a mathematical model 

with the main objective to represent what happens in reality as correctly 

as possible. 

Intricate dynamics are a characteristic of the biological systems and the 

attempt to translate them into equations might easily lead to very 

complicate models; it should be considered that the level of complexity 

of a model is not necessarily proportional to the quality of the results. 

Analysis that are so complex that transparency is lost, or make wide use 

of vague or implicit assumptions are clearly not any better than simple 

models. As demonstrated by the study in chapter 3, an implicit 

assumption in a single step is enough to lead to misleading results or 

alarmistic scenarios. Therefore, is important for a model to be simple (but 
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not simplistic). 

Usually, the extent and the depth of the risk assessment model depends 

on a number of factors such as the time constraints on responding to the 

issue and the availability of resources and data. At this respect, beside the 

practical value of the methodological approaches proposed, the study 

reported in chapter 2 is an example of how, the availability of data, time 

and resources can lead to extremely deep and detailed models. 

Moreover, as a quantitative model covering the whole food chain, this 

study also points out how important is the collaboration among experts 

from different field of research. That work required the inclusion of so 

many biological aspects that the model could not have been 

implemented without the contribution of co-authors with different 

expertise (i.e. microbiologist, epidemiologist, and geneticists). 
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