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I. 1 ARTERIAL AND VENOUS THROMBOSIS 

Arterial atherothrombotic disease (acute myocardial infarction, ischemic stroke and 

peripheral artery disease) and venous thromboembolism (deep venous thrombosis and 

pulmonary embolism) are usually considered as distinct entities from mechanistic and 

clinical points of view (Andrei MC, 2014). However, at the base of both diseases there is 

thrombosis, a disease process that consists in the formation of blood clots within the 

blood vessels, which affect or prevent the normal circulation of the blood (Heit JA, 2002). 

The pathophysiology of arterial thrombosis differs from that of venous thrombosis, as 

reflected by the different ways in which they are treated. Traditional medical teaching 

stressed the differences between arterial thrombosis and venous thrombosis. Thrombi 

are composed of platelets and fibrin. However, arterial thrombi tend to occur at sites of 

arterial plaque rupture where shear rates are high, and are predominantly platelet-rich, 

so called ‘white thrombi’. In contrast, venous thrombi tend to occur at sites where the 

vein wall is often normal, but blood flow and shear rates are low, resulting in red cell-rich, 

and they are called ‘red thrombi’ (Fig. 1) (Franchini M, 2008) (Mackman N, 2008). 

Mackman N., Nature, 2008. 

Fig. 1: Arterial and venous thrombus. (a) Artery: the primary trigger of arterial thrombosis is rupture of an 

atherosclerotic plaque. This involves disruption of the endothelium and release of constituents of the 

plaque into the lumen of the blood vessel. (b) Vein: by contrast, in venous thrombosis, the endothelium 

remains intact but can be converted from a surface with anticoagulant properties to one with procoagulant 

properties.  

 

 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848509_nihms181526f1.jpg
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I. 1.1 Venous Thromboembolism (VTE): Deep Vein Thrombosis (DVT) and 

Pulmonary Embolism (PE)  

Deep vein thrombosis (DVT) and pulmonary embolism (PE) are collectively referred to as 

venous thromboembolism (VTE), which is the third leading cause of cardiovascular-

associated death, after myocardial infarction (MI) and stroke.   

DVT occurs frequently with an estimated annual incidence of one per 1000 person in 

adult population (White RH, 2003) (Silverstein MD, 1998), creating considerable 

morbidity. Complications include post-phlebitic syndrome and chronic thromboembolic 

pulmonary hypertension.  

VTE is predominantly a disease of older age (Klatsky AL, 2000) (Hooper WC, 2002); only 

rarely events occurred among young patients. Incidence rates increased markedly with 

age for both men and women and for both DVT and PE (Klatsky AL, 2000) (Hooper WC, 

2002). As the average population age increases, the absolute number of VTE events will 

probably increase, and an increasing proportion of these events will be manifest as PE 

with its associated poor survival. These findings have serious implications for the future. 

DVT is an important complication of several inherited and acquired disorders, but may 

also occur spontaneously. Prevention of recurrent VTE, DVT and PE, is the main reason 

for accurate diagnosis and adequate treatment.  

The pathophysiology of vein thrombosis involves three interrelated factors (“Virchow's 

triad”): damage to the vessel wall, slowing down of the blood flow, and increase in blood 

coagulability (Lensing WA, 1999). The first two components of Virchow's triad represent 

acquired conditions; in contrast, blood hypercoagulability has both intrinsic and extrinsic 

causes. Acquired risk factors for VTE include cancer, obesity and major surgery 

(Weinmenn EE, 1994). Other risk factors for vein thrombosis include age, immobilization, 

fractures, puerperium, paralysis, use of oral contraceptives, and the antiphospholipid 

syndrome (Salzman EW, 1993) (Carson JL, 1992) (Prandoni P, 1996) (Triplett DA, 1995) 

(WHO collaborative study of cardioscular, 1995).  

Deep venous valve pockets are naturally susceptible to periods of blood stasis and 

constitute the primary location of thrombus formation in veins (Brooks EG, 2008). Venous 

valve pockets assist blood return to the right atrium of the heart by preventing backflow 
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of blood in response to gravity. Muscular contractions in the leg and thigh facilitate blood 

return to the heart by compressing the deep veins. In the absence of activity (e.g., 

immobility or bed rest), there are reduced blood flow and stasis in the deep valve pockets. 

Thus, an alteration in blood flow can result in the accumulation of numerous pro-

thrombotic agents (Hamer JD, 1981). These states not only predispose apparently healthy 

people to thrombosis, but also are likely to trigger thrombosis in people with inherited 

thrombophilic abnormalities. Inherited thrombophilia is a genetically determined 

tendency to VTE. The well-established inherited pro-thrombotic abnormalities are 

deficiencies of antithrombin, protein C, protein S (Hirsh J, 1993) (Heijboer H, 1990), and 

FV Leiden, a mutation in coagulation FV (Arg 506→Gln), that results in resistance to 

activated protein C (Bertina RM, 1994) (Simioni P, 1997). Hyperhomocysteinaemia is also 

associated with the occurrence of vein thrombosis and may be the consequence of a 

hereditary defect in the enzymes involved in methionine metabolism or deficiencies of 

vitamins, such as cobalamin, folate, or pyridoxine (den Heijer M, 1996) (den Heijer M, 

1992). Other less well established causes include dysfibrinogenemia, and abnormalities 

of the fibrinolytic system (Hirsh J, 1993) (Heijboer H, 1990). A mutation in coagulation FII 

(prothrombin 20210A) and increased levels of coagulation FVIII have also been 

recognised as risk factors of thrombophilic syndromes (Poort SR, 1996) (Koster T, 

1995). One or more of these thromobophilic abnormalities can be found in 40–60% of 

patients with a first episode of vein thrombosis. Increased amounts of circulating tissue 

factor (TF), the initiator of the coagulation cascade, are recurrently considered the major 

trigger of venous thrombosis (Prandoni P, 1993) (Hirsh J, 1993) (Mackman N, 2008) 

(Tesselaar M, 2007). 
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I. 2. HEMOSTASIS AND THROMBOSIS 

I. 2.1 Thrombus formation 

Host defense mechanism that maintains the circulatory system at high pressure and 

prevents blood loss after vessel wall injury is hemostasis. Under physiological conditions, 

basal endothelial wall displays anti-adhesive and anti-thrombotic properties that prevent 

activation of the hemostatic system. At steady state, endothelial cells (ECs) express 

molecules such as the ecto-nucleotidase CD39 (apyrase), prostaglandin I2 (PGI2) or nitric 

oxide (NO) that prevent platelet activation and aggregation (Costa AF, 2004) (Radomsky 

MW, 1987). ECs can also express inhibitors of the coagulation cascade such as 

thrombomodulin (TM), tissue factor pathway inhibitor (TFPI) (Camerer E, 1996) (Østerud 

B, 1995) (Broze Jr GJ, 2003) and anti-thrombin III (AT III) (Jesty J, 1996). Disruption of the 

integrity of the vessel wall by mechanical or functional trauma allows circulating platelets 

to come in contact with the subendothelial matrix. This process involves the endothelial 

wall, circulating blood components such as red blood cells, platelets themselves, 

leukocytes, microparticles and circulating blood molecules, including blood coagulation 

proteins (Furie B, 1992). Hemostatic system is activated after a vascular injury, leading 

rapidly to thrombus formation generated by the aggregation of platelets (Furie B, 2008) 

and consequent activation of coagulation cascade (Fig.2). 

Fig. 2: Response to vascular 

injury. Collagen and tissue factor (TF) 

associated with the vessel wall provide 

a hemostatic barrier to maintain the 

high-pressure circulatory system. 

Collagen (yellow arrows), located in the 

subendothelial matrix beneath the 

endothelium, is not exposed to flowing 

blood under normal conditions. TF 

(blue arrows), located in the medial 

(smooth muscle) and adventitial layers of the vessel wall, is exposed to flowing blood when the vessel is 

disrupted or punctured. Both collagen and thrombin initiate thrombus formation. Collagen is a first line of 

defense, and TF a second line of defense. 
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I. 2.1.1 Role of platelets in thrombosis 

Mammalian platelets are fragments of cytoplasm released into circulating blood by 

megakaryocytes, a precursor hematopoietic cell residing in the bone marrow (Shulze H, 

2007). Without a nucleus, platelets have no control on gene expression but possess a 

translational machinery that can direct protein synthesis (Weirich AS, 2004). The 

physiological role of platelets consist in a fundamental contribution to hemostasis (Weiss 

HJ, 1975); indeed, platelets are central both to normal hemostasis, to limiting blood loss 

after injury, but act also in pathological conditions, such as DVT and arterial thrombosis 

(Denis CV, 2007).  

Hemostasis and thrombosis are related aspects of the response to vascular injury, but the 

former protects from bleeding after trauma while the latter is a disease mechanism. 

Platelets and the hemostatic system, however, cannot discriminate between alterations 

of the vessel wall caused by traumatic wounds and those resulting from pathologic 

processes. Consequently, chronic vascular diseases can acutely induce massive platelet 

responses, usually initiated by the occurrence of destabilizing events such as the sudden 

rupture of an atherosclerotic plaque, which lead to the formation of intravascular 

occluding aggregates and fibrin clots, thrombi (Ruggeri ZM, 2002). A key functional aspect 

of platelets is their ability to circulate in a quiescent state surveying the integrity of the 

inner vascular surface, coupled to a prompt reaction wherever alterations are detected. 

In either situation, adhesive interactions mediated by specific membrane receptors 

support the initial attachment of single platelets to cellular and extracellular matrix 

constituents of the vessel wall and tissues. After injury, adherent platelets can rapidly 

recruit additional platelets to the site of injury, necessary to achieve hemostasis, or 

different types of leukocytes, which set off host defense responses. This selective 

recruitment is orchestrated by activation pathways (Petrich BG, 2007) stimulated by the 

initial adhesive interactions and by soluble agonists released or generated locally, that 

lead to the exposure on the platelet surface of different molecules capable to attract 

circulating cells. In many respects, therefore, platelet adhesion to vascular wall 

structures, to one another or to other blood cells are facets of the same fundamental 

biological process (Ruggeri ZM, 2009). To initiate thrombus formation at the site of vessel 
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wall damage, platelets need to be captured from the flowing blood onto the exposed sub-

endothelium. Platelets are activated upon contact with sub-endothelial matrix proteins, 

including von Willebrand factor (VWF), collagen, and fibronectin (Broos K, 2011). Their 

activation leads to exposure of cell surface anionic phospholipids, which serve as a nidus 

for the assembly of procoagulant proteins.  

 

I. 2.1.1.1 Platelets Receptors involved in thrombosis process 

I. 2.1.1.1.1. Adhesion Receptor: GPIb-IX-V complex and Von Willebrand Factor 

The thrombosis event is mediated by a major platelet receptor that is constitutively active 

and expressed on resting platelets: the glycoprotein (platelet glycoprotein [GP]) Ib-IX-V 

complex (Bermeier W, 2000) (Berndt MC, 2001) (Fig. 3). Four different genes encode this 

adhesion receptor: the α- and β-subunits of GPIb, GPIX, and GPV. Deletion of the 

individual subunits has helped to define their roles in the hemostatic/thrombotic 

response (Lopez JA, 1998) (Ware J, 2004). In particular, blocking GPIbα and particularly 

its ligand-binding site resulted in a virtual absence of single-platelet adhesion in a ligation-

induced injury model of the carotid artery (Massberg S, 2003). In addition, recent studies 

in transgenic mice expressing a fusion protein made of the cytoplasmic and 

transmembrane portions of human GPIbα (to rescue platelet generation) linked to the 

interleukin-4 receptor α-chain (Kanaji T, 2002) support the absolute requirement for 

GPIbα in the process of platelet tethering and consequently in thrombosis (Bergmeier W, 

2006) (Kostantinides S, 2006) (Denis CV, 2007).  

Von Willebrand factor (VWF) is the main ligand of GPIbα. VWF is a large, multimeric 

plasma protein that undergoes a conformational change when bound to matrix or under 

high-shear conditions; this conformational change allows its binding to GPIbα (Ruggeri 

ZM, 2003). VWF is also stored in platelet α-granules and is released after platelet 

activation. The GPIbα-VWF interaction is able to withstand very high shear rate conditions 

and is characterized by fast association and dissociation rates, allowing slow platelet 

translocation on the vessel wall (Savage B, 1998). VWF deficient mice (VWF−/−) exhibited 

delayed platelet adhesion and reduced thrombus formation after vascular ferric chloride 
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application (Denis CV, 1998) (Ni H, 2000). However, platelets in these mice can still 

adhere and form thrombi, suggested that VWF deficiency appeared less severe than the 

lack of functional GPIbα. Under high-shear conditions, as arterial compartment, GPIbα 

was required to initiate platelet adhesion (Chauhan AK, 2006). Similarly, under low-shear 

condition as venous thrombi, transgenic platelets lacking the extracellular domain VWF 

receptor GPIbα showed decreased adhesion to injured veins (Chauhan AK, 2006).  The 

absence of VWF prevented thrombus growth and subsequent occlusion of the vessel (Ni 

H, 2000) (Denis CV, 2007), suggesting that VWF plays an essential role in occlusive 

thrombi formation at both venous (Chauhan AK, 2006) and arterial (Ni H, 2000) shear 

rates. 

After the initial tethering and translocation of platelets on the exposed sub-endothelium, 

a number of agonists can initiate signaling events that will lead to platelet activation, 

followed by firm adhesion. A very important aspect of platelet activation is the transition 

of a low-affinity binding state of platelet integrin’s to a high-affinity state. 

 

I. 2.1.1.1.2 Collagen Receptors: Integrin α2β1 and GPVI  

Two collagen receptors have been identified on the platelet surface: the α2β1 integrin and 

a member of the immunoglobulin superfamily, GPVI (Clemetson KJ, 2001) (Fig. 

3). Defining the respective roles of these two receptors generated intense debate, and 

mice deficient in these receptors helped to clarify the issues.  

To define the role of the α2β1 integrin in vivo, a genetically engineered mouse in which 

expression of the α2β1 integrin was completely delated, α2 –deficient mice (α2
-/-) was 

generated (Chen J, 2002) (Holtkotter O, 2002). The α2
-/- mice reported the formation of 

occlusive thrombi in thrombosis models (Gruner S, 2003) (He L, 2003), although occlusion 

time was delayed in one of those studies (Gruner S, 2003) (He L, 2003). Platelets from α2
-

/- mice failed to adhere to type I collagen under shear stress (Chen J, 2002) and showed 

decreased rate of aggregation (Holtkotter O, 2002). Although, in some cases, such as 

platelets and mammary epithelial cells, the null phenotype was consistent with 

predictions based on the expression pattern of the integrin and with the in vitro data. In 
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other instances, the in vivo findings suggest alternative mechanisms for biological 

processes, such as wound healing and reject the proposed obligatory role for the α2β1 

integrin (Chen J, 2002). Indeed, Gruner S. et al. (Gruner S, 2003), demonstrated that there 

were other receptors that mediate shear-resistant adhesion in the absence of α2β1 

functional and α2β3 receptor. In particular, He L. et al., using a model of endothelial injury 

to the carotid artery, provided evidence that the α2β1 integrin played a critical role in 

vascular thrombosis at the blood-vessel wall interface under flow conditions. In contrast, 

the α2β1 integrin was not required for the formation of thrombi and pulmonary emboli 

following intravascular injection of collagen. This result was in accordance with the 

observation that α2
-/- mice display normal bleeding times and supports the notion that 

α2β1 was not required for platelet adhesion in vivo.  

The second collagen receptor, GPVI, is associated with the signaling adapter Fc receptor-

γ (FcRγ) chain. For a long time, GPVI was considered a very attractive target for the 

development of new antithrombotic drugs (Nieswandt B, 2003). A dramatic reduction of 

platelet tethering, translocation, and firm adhesion as well as a delay in occlusion time 

was observed using GPVI-deficient mice (GPVI-/-) in ferric chloride–induced or mechanical 

vascular injury (Massberg S, 2003). GPVI-/- mice exhibited a very variable phenotype, with 

some mice behaving like their wild-type littermates while others presented a markedly 

abnormal thrombotic response (Kostantinides S, 2006). The explanation for this 

difference was not completely understood. However, it could be related to the extent of 

vascular injury and whether another activation pathway could compensate for the loss of 

GPVI. In fact, mice deficient in FcRγ and GPVI-/- displayed an abnormal thrombotic 

response only when an important collagen exposure was induced, such as ferric chloride 

injury model. However, GPVI-/- mice displayed slightly prolonged bleeding times. These 

observations suggest that GPVI plays a major role in pathological arterial thrombosis but 

not in physiological hemostasis (Kostantinides S, 2006). Nevertheless, the role of GPVI as 

an adhesion receptor is under debate. However, “seven single-nucleotide 

polymorphisms” (SNPs) of the GP6 gene, that encodes for the GPVI, showed a significant 

association with VTE (Kotulicova D, 2013). The GP6 polymorphisms were robustly 

identified as additional VTE-associated locus by genome-wide association studies (GWAS) 
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and a large-scale association study, focusing mainly on non-synonymous polymorphisms. 

It may supported the idea that variability of the GP6 gene may be associated with an 

increased risk of VTE in SNPs. However, few data exist about the correlation between this 

receptor -and its ligand- and VTE. 

 

I. 2.1.1.1.3 G-protein-coupled Receptor: PAR family 

In addition to GPVI, a number of other important activation receptors are present on the 

surface of platelets, such as members of the protease-activated receptor (PAR) family, the 

thrombin receptors.  An important role for PARs in hemostasis and thrombosis is 

established in animal models, and studies in knockout mice and non-human primates 

raise the question of whether PAR inhibition might offer an appealing new approach to 

the prevention and treatment of thrombosis. In particular, PARs have been most 

intensely studied in the context of efforts to understand thrombin signaling.  

Thrombin, most potent platelet activator, is rapidly generated at the site of vascular injury 

and leads to shape change, integrin activation, and granule secretion. Thrombin inhibition 

reduces thrombus formation in animal models (Dubois C, 2006) (Mangin P, 2006) 

(Coughlin SR, 2005) (Ni H, 2001). Indeed, studies of inhibitors of PAR function in human 

platelets and studies in PAR knockout mice suggested that PARs were necessary for 

platelet activation by thrombin (Coughlin SR, 2005). Such studies also revealed interesting 

species differences that were important to consider in attempting to extrapolate findings 

in mouse to human. While human platelets utilize PAR1 and PAR4 to respond to 

thrombin, mouse platelets utilize PAR3 and PAR4 (Kahn ML, 1998). PAR1 agonists, that 

are fully active on human, and mouse PAR1 in heterologous expression systems (Connolly 

AJ, 1996) activate human but not mouse platelets (Connolly TM, 1994) (Derian CK, 1996), 

and knockout of PAR1 had no effect on thrombin signaling in mouse platelets but did 

ablate thrombin signaling in mouse fibroblasts (Connolly AJ, 1996). It was these 

observations that triggered a search for other thrombin receptors in mouse platelets and 

led to identification of PAR3 (Ishihara H, 1997). Thus, mouse PAR3 appeared to be a good 

candidate for the ‘missing’ mouse platelet thrombin receptor. Indeed, knockout mouse 

studies revealed that PAR3 was necessary for activation of mouse platelets at low but not 
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high concentrations of thrombin (Kahn ML, 1998). Despite this, it seemed that mouse 

PAR3 was not itself mediator for transmembrane signaling, but instead worked as a 

cofactor that localizes thrombin to the surface of the mouse platelet to promote cleavage 

and activation of mouse PAR4 at low thrombin concentrations.  The PAR4-deficient mice 

(PAR4-/-) were protected against thromboplastin-induced pulmonary embolism and ferric 

chloride-induced thrombosis of mesenteric arterioles (Sambrano GR, 2001) (Weiss EJ, 

2003). 

 

I. 2.1.1.1.4 ADP Receptors: P2X1, P2Y1 and P2Y12  

Hollopeter et al. (Hollopeter G, 2001) identified another important class of platelet 

receptors in 2001. Upon vascular injury, platelets are activated, leading to the formation 

of a platelet plug. This activation involves processes such as shape change, aggregation, 

secretion of granule contents, including adenosine diphosphate (ADP) and adenosine 

triphosphate (ATP), and generation of lipid mediators, such as Thromboxane A2 (TXA2) 

(Swamiinathan M, 2004). The receptors involved in this process are P2X1, P2Y1 and P2Y12 

receptor, a G Protein Coupled Receptor (GPCR). The P2X1 receptor is a ligand-gated 

adenosine triphosphate (ATP) receptor that was originally mistaken for an ADP receptor. 

This calcium-influx-causing receptor mediates platelet shape change and plays an 

important role in thrombus formation in small arterioles (Swaminathan M, 2004). The 

P2Y1 receptor, through activation of Gq and phospholipase C, is required for ADP-induced 

platelet shape change, fibrinogen receptor activation, and TXA2 generation 

(Swaminathan M, 2004). The Gi-coupled P2Y12 receptor plays an important role in platelet 

aggregation, potentiation of dense granule release, and TXA2 generation (Swaminathan 

M, 2004). Each of these receptors has a specific function during platelet activation and 

aggregation, which has implications for their involvement in thrombosis. ADP is released 

from platelet dense granules and binding to P2Y1 and P2Y12 receptors on the platelet 

surface (Gachet C, 2006). ATP and a wide range of its triphosphate analogues behave as 

antagonists (Gachet C, 2005) (Kauffenstein G, 2004). ADP plays crucial roles in the 

physiological process of hemostasis and in the development and extension of arterial 
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thrombosis (Born GV, 1985) (Jones S, 2011). Extracellular Ca2+ modulates ADP-evoked 

aggregation through altered agonist degradation: implications for conditions used to 

study P2Y receptor activation (Jones S, 2011) and its action is mediated by P2Y1 and P2Y12 

(Gachet C, 2006) (Hechler B, 2011). ADP is the best important molecular target of the 

antiplatelet drugs, such as clopidogrel and prasugrel of which the active metabolites 

formed in the liver covalently bind to the receptor (Savi P, 2006) (Algaier I, 2008). The 

pharmacological importance of this receptor in hemostasis and thrombosis was well 

recognized. Indeed, bleeding tendencies in patients with storage pool deficiencies or 

defective ADP receptors demonstrate the important role of ADP in the platelet activation 

processes. This is further substantiated by the clinical efficacy of ADP receptor 

antagonists in preventing and/or treating thrombotic conditions. 

 

I. 2.1.1.1.5 Thromboxane Receptor: TP  

Thromboxane A2 (TXA2) in human stimulates two subtypes of G protein-coupled TP 

receptor, TPα and TPβ, but its effects in platelets are mediated predominantly through α 

isoform (Swaminathan M, 2004). The two isoforms are known to differentially modulate 

the adenyl cyclase activity as the TPα isoform activates it, while the TPβ isoform inhibits 

it (Davì G, 1997). Generated TXA2 amplifies the agonist-induced platelet activation by 

signaling via its surface receptor, activating and recruiting the surrounding platelets to 

the site of the growing thrombus (Roberts CK, 2002) (Riccioni G, 2007). Data obtained in 

mice lacking the TP receptor showed prolonged bleeding times and resistance to 

thromboembolism as compared with wild-type littermates mice (Myung SK, 2013). 

Treatment with SQ 29,548, a TP receptor antagonist, also resulted in prolongation of the 

bleeding time in wild-type mice (Myung SK, 2013). Furthermore, platelets from TP 

receptor-deficient mice (TP-/-) showed impaired aggregation responses to TP receptor 

agonist, U46619 (Myung SK, 2013). These findings demonstrate the critical role of TXA2 

and the TP receptor in hemostasis. 
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Denis CV and Wagner D, Arteriosclerosis Thrombosis and Vascular Biology, 2007 

Fig. 3: Major adhesion receptors expressed at the surface of resting platelets.  

 

 

 

 

 

 

 

 

 

 

 

 

 



- 17 - 
 

I. 2.1.2 Activation of coagulation cascade 

The traditional description of coagulation pathway involved a cascade model of a 

stepwise sequence of proteolytic reactions of the coagulation factors, usually divided in 

the extrinsic pathway, or tissue factor (TF)-dependent pathway and the intrinsic pathway 

or a contact factor-dependent pathway (Rumbaut RE, 2010) (Fig. 4). As platelets, 

coagulation factors play essential roles in not only hemostasis but also thrombosis. The 

coagulation cascade represent a pathway that culminate in the activation of thrombin 

with consequent formation of fibrin. The newly synthesized mediators involved in 

coagulation cascade are synthesized when needed, and include the metabolites of 

arachidonic acid (AA), platelet-activating factor (PAF), reactive oxygen species (ROS), 

nitric oxide (NO) and cytokines.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Coagulation cascade include two different pathway: intrinsic pathway (or contact factor-dependent) 

and extrinsic pathway (or tissue factor (TF)-dependent pathway). 
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The traditional regulation of blood coagulation view set the extrinsic pathway as triggers 

of the initiation phase, whereas amplification requires the intrinsic pathway (Mackman 

N, 2007).  

Damage to blood vessel walls exposes Tissue Factor (TF)-containing cells from underlying 

cell layers to the bloodstream.  Indeed, a low level of activity of the TF pathway probably 

occurs at all times in the extravascular space. The coagulation proteins leave the 

vasculature, percolate through the tissues, and are found in the lymph roughly in 

proportion to their molecular size (Le D, 1998) (Miller GJ, 2000). TF is then able to bind, 

in presence of calcium, Factor VII (FVII), which circulates at low levels in the bloodstream. 

The calcium forms a bridge between TF and FVII.  In hemostasis models, fibrin formation 

at a wound site is triggered primarily, if not exclusively, by the FVIIa-TF complex (Baglia 

FA, 1998) (Oliver JA, 2002) (Li X, 1997) (Gailani D, 2007). The TF-FVIIa complex is 

traditionally referred to as the extrinsic pathway and is proposed to be the primary 

activator of the coagulation protease cascade in vivo. This sets off an extracellular cascade 

involving sequential serine protease activations and the propagation of the thrombus 

involves recruitment of additional platelets and amplification of the coagulation cascade 

by the intrinsic pathway of blood coagulation (Mackman N, 2007). 

 

The intrinsic pathway is typically painted as a sequence of proteolytic reactions 

culminating in Factor IX (FIX) activation. The correctly functionality of FIX is crucial: 

deficiency of FIX or its cofactor, Factor VIII (FVIII), cause hemophilia B and hemophilia A, 

respectively, the severe forms of which are associated with crippling hemorrhage into 

joints and muscles, and soft tissue bleeding that can be life threatening (Lozier JN, 2005) 

(Gailani D, 2007). In this scenario, Factor XII (FXII), belonging to the intrinsic pathway, is 

not required for fibrin formation (Mackman N, 2007) (Morrissej JH, 1987) (Rapaport SI, 

1964). In fact, FXII deficient mice (FXII−/−) have a normal hemostatic capacity. However, 

thrombus formation in FXII−/− mice is defective in arterial thrombosis, stroke models, 

venous stasis and PE models (Renné T, 2012) (Renné T, 2005) (Cheng Q, 2010) (Muller F, 

2009). In particular, FXII seems to be important for thrombus stability.  
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Although the relative contributions of the FVII-TF complex and FXII for FIX activation are 

uncertain. In many circumstances, activation of FIX by FVIIa-TF is the more important 

mechanism. In particular, FVII-TF complex is activated by auto-cleavage to FVIIa-TF that 

activates small amounts of FIX and Factor X (FX). Association between FXa and FactorV 

(FVa) leads to prothrombinase complexes on the TF-bearing cells (stromal fibroblasts and 

leukocytes) (Monroe DM, 1996). Indeed, FXa then associates with FVa, converts FII 

(prothrombin) to Factor II (FIIa) (thrombin), which converts fibrinogen to fibrin, leading 

to fibrin deposition and the activation of platelets to form blood clots (the activation of  

Factor XIII (FXIII) to FXIIIa stabilizes the fibrin clot by cross-linking it). The procoagulant 

Factor VIII (FVIII) plays an important role in the activation of thrombin and at last in the 

formation of a fibrin-rich thrombus (Gouse BM, 2014). The small amount of thrombin 

generated on TF-bearing cells has several functions. Thrombin is the final protease 

generated in the coagulation cascade, and it is the only factor capable of cleaving soluble 

fibrinogen into insoluble fibrin then promoting clot formation. Once generated from its 

inactive precursor prothrombin (FII) by prothrombinase complex (FXa-FVa-Ca2+-

membrane phospholipids), it can diffuse freely to encounter a large number of potential 

substrates both procoagulant and anticoagulant. Thrombin activates platelets through 

the cleavage of two protease platelet receptors, promoting platelets aggregation 

(Coughlin SR, 2005). Although platelets have already adhered at the site of injury and 

become partially activated, thrombin can induce a higher level of procoagulant activity 

than adhesive interactions alone (Alberio L, 1999). For instance, thrombin promotes 

positive feedback amplification of the coagulation pathway, leading to its own generation 

by proteolitically converting FXI to FXIa (a serine protease of the intrinsic pathway), as 

well as FVIII and FV (cofactors in the generation of FXa and thrombin, respectively) (Davie 

EW, 2006) (Baglia FA, 1998) (Oliver JA, 2002). The predisposition to VTE among subjects 

with FV Leiden (a congenital FV resistance to cleavage by activated protein C) or with the 

gain-of-function G20210A variant in the prothrombin gene (Dahlback B, 1997) (Mannucci 

PM, 2000), suggests that a fully functional system of vascular and blood-borne thrombo-

resistance is important for venous patency.  
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Thrombin stimulates activation of ECs, including cell surface expression and secretion of 

cellular adhesion molecules as well as the production of growth factors and cytokines. 

Indeed, thrombin promotes cytokine elaboration by smooth muscle cells and stimulates 

the proliferation of both smooth muscle cells and fibroblasts. By the end of the 

amplification phase, the stage is set for large-scale thrombin generation in the 

propagation phase.  

Elevated levels of different coagulation factors such as TF, FVIII and prothrombin have 

been linked to an increased thrombotic risk. In particular, the relationship between FVIII 

activity, platelet activity, and DVT is well described in adults with spinal cord injury 

(Faustino EV, 2015). In fact, risk factors for poor outcomes after a thrombotic event have 

been well defined in adults. Indeed, ipsilateral recurrent thrombosis has been associated 

with subsequent development of the post-thrombotic syndrome (Faustino EV, 2015), and 

multiple clinical and laboratory abnormalities, including elevated levels of FVIII (Kyrle PA, 

2000) and D-dimer (Palareti G, 2002) (Eichinger S, 2003), increase the risk of recurrent 

thromboembolism. 

 

I. 2.1.2.1 Tissue Factor: the first protein involved in a blood coagulation cascade  

Tissue factor (TF) is a 47-kDa transmembrane glycoprotein that is the primary initiator of 

coagulation in vivo (Manly DA, 2011); it initiates coagulation following contact with 

FVII/FVIIa, as previously described.  Recent experimental evidence, in particular from 

animal models, suggests an important role for circulating TF in thrombosis, but only few 

studies had investigated its role in venous thrombosis (Manly DA, 2011). TF is 

constitutively expressed in perivascular cells, in most non-vascular cells (Nemerson Y, 

1988) (Mackman N, 2007) (Østerud B, 2006), in whole blood and in cell-free plasma, 

where functionally active TF is carried on cell-derived microparticles (Key NS, 2010), and 

it is essential for hemostasis.  

Morawitz, in the early 20th century, in his classic four-component theory of blood 

coagulation, described that a tissue component, known as thrombokinase or Factor III 

(FIII), could lead to fibrinogen cleavage in the presence of calcium and prothrombin 
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(Boulton F, 2006). This tissue component, subsequently named Tissue Factor, is a 

transmembrane receptor for FVII/FVIIa. For several decades, the prevailing opinion was 

that TF is expressed exclusively in the extravascular space in healthy subjects and forms 

a hemostatic envelope around blood vessels (Drake TA, 1989). Actually, we know that TF 

is localized predominantly to the tunica media and tunica adventitia in blood vessels, 

which prevents inappropriate activation of coagulation in the absence of vascular injury. 

In addition, TF is expressed in the parenchyma of highly vascularized organs such as the 

placenta, brain, heart, kidneys, and lungs and protects these organs from excessive 

hemorrhage (Fleck RA, 1990) (Bouchard BA, 1997). In physiological condition, cells in 

direct contact with blood do not express TF (e.g. ECs) or express it at very low levels (e.g. 

subset of CD14-positive monocytes) (Egorina EM, 2005) (Fig. 5). However, in vivo 

endothelium is an important source of TF after injury, contributing to thrombosis in 

various diseases, and in vitro ECs express TF after stimulation (Parry GC, 1995) (Bevilacqua 

MP, 1986) (Colucci M, 1983). In addition, Drake and colleagues (Drake TA, 1991) using a 

highly sensitive immunohistochemical procedure showed that TF was present on ECs of 

the microvasculature of the spleen but not on ECs in other tissues. Moreover, more 

recently, TF protein was observed on ECs at branch points in the aorta of septic baboons 

(Lupu C, 2005). Nevertheless, TF antigen has also been observed on circulating ECs in 

patients with sickle cell disease and on ECs of the pulmonary vein in a mouse model of 

sickle cell disease (Solovey A, 1998) (Solovey A, 2004).  Finally, TF was detected on ECs of 

cardiac vessels in rat models of angiotensin II-induced cardiac vasculopathy and cardiac 

allograft vasculopathy (Muller D, 2000) (Holschermann H, 1999). 

In addition, expression of TF increased in peripheral blood monocytes in various disease 

states. For instance, exposure of monocytes to bacterial lipopolysaccharide (LPS) induces 

TF expression (Steinemann S, 1994) (Morrissey JH, 1987) (Virga GD, 1990) (Rapaport SI, 

1964) (Chirwing JM, 1979) as a result of the transcriptional activation of the TF gene 

(Østerud B, 1998). Conversely, LPS does not induce TF expression in lymphocytes (Drake 

TA, 1989).  Under debate is whether neutrophils express TF (Østerud B, 2004) (Nakamura 

S, 2004). Several studies demonstrated robust TF expression by neutrophils in different 

disease states (Higure A, 1996) (Todoroky H, 2000) (Maugeri N, 2006) (Ritis K, 2006), and 
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upon activation. TF expression has also been observed in human eosinophils (Moosbauer 

C, 2007). However, human and animal studies indicated that TF expression by leukocytes 

played an important role in thrombosis associated with a variety of diseases (Gailani D, 

2007). Hathcock and Nemerson provided evidence that circulating TF was necessary for 

the propagation of the clotting reaction (Hathcock JJ, 2004). Indeed, TF was observed 

only at the edges of a hemostatic clot, whereas it was found throughout a thrombotic 

clot (Boles J, 2010). Circulating TF or blood-borne TF can contribute to thrombus 

formation in vivo (Giensen PL, 1999). In particular, circulating TF enhances the 

propagation of a thrombus triggered by vessel wall TF through its ability to sustain 

thrombin production at the clot surface. The majority of circulating TF is in the form of 

microparticles (MPs). These are small (<1-μM) membrane vesicles released from 

activated or apoptotic cells (Morel O, 2006). Monocytes, ECs, vascular smooth muscle 

cells, tumor cells, and possibly platelets (Mackman N, 2007) generate TF-positive MPs. 

Remarkable, elevated levels of TF-positive MPs have been observed in patients with a 

variety of diseases, including cancer, cardiovascular disease, sickle cell disease, and 

endotoxemia and VTE (Misumi K, 1998) (Tesselaar M, 2007) (Shet AS, 2003) (Aras O, 

2004). In addition, hematopoietic cell–derived TF-positive MP were shown to play a 

central role in fibrin generation within a microvascular thrombus formed in response to 

laser injury (Chou J, 2004). TF-positive MPs are incorporated into a nascent thrombus; 

nevertheless, it is not provide that this TF is functional. In addition, it is very difficult to 

distinguish a role for circulating TF from the known role of the intrinsic pathway in the 

propagation of clotting in vivo. It has showed that an increase in MP restored hemostasis 

in a mouse model of hemophilia A, although the role of TF was not directly analyzed 

(Hrachovinovà I, 2003). In this study, the major challenge on circulating TF measurement 

in healthy individuals and in animal models is that this protein is present only in small 

amounts. However, some controversy remains regarding the role of blood-borne TF in 

hemostasis. Indeed, its measurement is a formidable challenge, and in murine models, 

the absolute requirement for blood-borne TF -as opposed to vessel wall TF- appears to 

be dependent on the model of vascular injury, as well as the size of the vessel that has 

been injured (Chou J, 2004) (Day SM, 2005) (Wang L, 2009) (Kretz CA, 2010). 
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Fig. 5: Model for tissue-specific hemostasis. It is proposed that the extrinsic pathway mediates hemostasis 

in tissues that express high levels of tissue factor (TF), whereas the intrinsic pathway mediates hemostasis 

in tissues that express low levels of TF. 

 

The concept that platelets, after simulation, express TF is still under debate. An early 

study by Engelmann and colleagues (Zillmann A, 2001) showed that platelets isolated 

from collagen-stimulated whole blood contained functional TF. This group also detected 

TF in α-granules of resting platelets that was exposed on the cell surface after platelet 

activation (Muller I, 2003). Another study found that TF associated with the platelet 

surface was inactive, but then released, TF was functionally active (Siddiqui FA, 2002). In 

contrast, Butenas and colleagues (Butenas S, 2005) founded no detectable TF antigen or 

activity on quiescent or ionophore-stimulated platelets. Similarly, Østerud and colleagues 

(Østerud B, 2006) failed to detect TF activity in collagen-activated platelets. Recent 

studies have helped to resolve the controversy of whether or not platelets express TF. 

These studies showed that platelets have the capacity to bind TF-positive MPs, stored TF 

in α-granules, and to synthesized TF de novo (Fig. 6). The fact that platelets can expressed 

TF dramatically changes our view of the regulation of blood coagulation, suggesting that 
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TF may contributed to both initiation and amplification of the clotting cascade. Recently, 

platelets were shown to express TF pre-mRNA, which can be spliced into mature mRNA 

on platelet activation, leading to the production of bioactive TF protein (Gould WR, 

2005). However, the role of this platelet-derived TF in thrombus formation still needs to 

be addressed in vivo and further studies are needed to determine its physiological role in 

hemostasis and thrombosis. 

 

 

Schwertz H, Journal of Experimental Medicine, 2006 

 

Fig. 6: Proposed model by which platelet-derived tissue factor contributes to propagation and stabilization 

of a thrombus. 

 

 

I. 2.1.3 Relevance of neutrophils in venous thrombosis 
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in guinea pig mesentery using intravital microscopy in 1882 (Darbousset R, 2014). In 
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recently, von Brühl et al. showed, in a DVT model, that neutrophils are essential in the 

early phase of venous thrombosis (von Brühl ML, 2012). Neutrophils depletion with Ly6-

G or Gr-1  antibodies significantly decreases both thrombus formation and fibrin 

generation, suggesting that neutrophils contain molecules required to support the onset 

of the coagulation cascade (Darbousset R, 2014) (von Brühl ML, 2012). 

Neutrophils are the most abundant white blood cells in mammals. They represent 10 to 

20% in mice, while represent 50 to 80% of circulating cells in adult humans. These cells, 

together with basophils and eosinophils, represent the polymorphonuclear cell family. 

Neutrophils are generated in the bone marrow (Rankin SM, 2010) where they also 

undergo maturation over approximately 14 days (Orkin SH, 2008) (Seely AJE, 2003). At 

steady state in humans, approximately 109 neutrophils per kilogram of body weight are 

formed each day (Dancey JT, 1976) and only 1% is released into the circulating 

blood (Semerad CL, 2002) while the others remain in the bone marrow for 4 to 6 days 

and constitute the neutrophil reserve pool. During infection or disease, the number of 

circulating neutrophils is drastically increased. In blood, the half-life of mature 

neutrophils is approximately 6–8 hours, and then these cells are cleared in the spleen, 

liver or bone marrow (Rankin SM, 2010). Neutrophils are also characterized by surface 

antigen expression of specific proteins. In humans, the key neutrophil marker is CD16, 

whereas in mouse they are Ly-6G and Ly-6C. Circulating neutrophils exist in several states: 

inactivated, resting, primed, and activated. Inactivated neutrophils are difficult to activate 

in comparison to primed neutrophils. Priming is a process in which the neutrophil 

response to an activating stimulus and is enhanced by prior exposure to small non-

activating concentrations of this stimulus or other stimuli (Guthrie LA, 1984), including 

ATP (Naum CC, 1991), tumor necrosis factor alpha (TNF-alpha) (Onnmein K, 2008), 

interleukin 8 (IL-8) (Guichard C, 2005) and LPS (Bylund J, 2002). Upon activation, several 

changes occur in neutrophils, including an increase in intracellular calcium 

concentration (Carrillo C, 2011) (Shaff UY, 2010), changes in the expression of surface 

receptors (Videm V, 2004), exocytosis of granule contents (Lacy P, 2006), and 

modification in shape and F-actin reorganization (Howard TH, 1990). In association with 

these changes, two major processes result from neutrophil activation. Activated 
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neutrophils produce a large amount of reactive oxygen species following the activation 

of the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase 

system (Sheppard FR, 2005); moreover, upon stimulation, neutrophils are able to 

produce a web-like trap containing DNA/histones and material present in neutrophil 

granules such as anti-microbial peptides (Brinkmann V, 2004). This process is called 

NETosis (Brinkmann V, 2004). In brief, enzymes from granules translocate to the nucleus 

and facilitate chromatin decondensation (e.g., by the action of peptidylarginine 

deiminase 4 [PADI4] (Li P, 2010) (Alias S, 2013), internal break down membranes, and 

cytolysis, contributing to NET release. NETs are intact chromatin fibers containing 

histones and other proteins that form scaffolds, which can retain large quantities of 

microbes. The direct contact with antimicrobial proteins leads to fast elimination of 

infection (Brinkmann V, 2004) (Fuchs TA, 2012) (Fuchs TA, 2007). NETs are large 

structures that can contribute to thrombus formation and promote thrombus stability (Ni 

H, 2000) (Fig. 7 and 8). They are abundant in experimental deep-vein thrombi in baboons 

(Fuchs TA, 2010) and mice (von Brühl ML, 2012) (Brill A, 2012), where co-localize with 

vWF and fibrin (Brill A, 2012) (Fuchs TA, 2010).  NETs cause platelet adhesion, activation, 

and aggregation, and are able to bind red blood cells (RBCs). RBCs may promote 

coagulation by exposing phosphatidylserine (PS) and altering blood viscosity (Andrews 

DA, 1999). In vitro, NETs stimulate the extrinsic pathway by cleaving TF pathway inhibitor 

(Fuchs TA, 2010) and stimulate the intrinsic coagulation pathway by binding FXII 

(Massberg S, 2010), thus promoting fibrin formation. In addition, NETs provide a tissue-

type plasminogen activator (t-PA)–thrombolysis-resistant scaffold for blood clots (Fuchs 

TA, 2010). Recalcified blood was incubated with NETs releasing neutrophils. Only when 

blood was treated with the combination of t-PA, ADAMTS-13, and DNase complete clot 

lysis may occur. DNase- or t-PA-lysis alone led to partial thrombolysis of the blood clot. 

Blood clots treated with t-PA lacked fibrin but were held together by a scaffold of 

extracellular DNA (Fuchs TA, 2012). Treatment of mice with DNase1 (von Brühl ML, 2012) 

(Brill A, 2012) cleaved the NET scaffold and prevented thrombus formation underscoring 

the importance of NETs in DVT (Fuchs TA, 2010). 
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Fuchs T.A. et al., Artheriosclerosis Thrombosis and Vascular Biology, 2012 

 

Fig 7: Neutrophil extracellular trap (NET) in the timeline of DVT. A: DVT is initiated by local hypoxia and 

activation of endothelial cells (EC) as a result of flow restriction/disturbances. Activated endothelium 

several factors (such as vWF and P-selectin) which mediate platelet and neutrophil adhesion. Activated 

platelets recruit TF containing MPs that enhance thrombin generation in the growing thrombus. B: 

Activated platelets and endothelium or other stimulus induce NET formation in adherent neutrophils. NETs 

provide an additional scaffold for platelet and RBCs adhesion, promote fibrin formation, and exacerbate 

platelet and endothelial activation. C: Plasmin, ADAMTS13 and DNase mediate thrombolysis by degrading 

fibrin, VWF and DNA, respectively. Monocytes/macrophages (MØ) release an additional source of DNase 

and generate plasmin and promote restoration of blood flow. 

 

Fuchs T.A. et al., Artheriosclerosis, Thrombosis and Vascular Biology, 2012 

 

Fig. 8: NET formation and function. Scheme of NET formation (NETosis). Enzymes from granules (red) 

translocate to the nucleus (blue) and facilitate chromatin decondensation. Internal membranes break 

down, and cytolysis releases NETs. 
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Despite the debate regarding the presence of TF in neutrophils, it is now clear that these 

cells express TF upon activation. Indeed, Maugeri et al. showed that, upon stimulation 

with P-selectin or N-formyl-methionyl-leucyl-Phenylalanine (fMLP), human neutrophils 

contain and express active TF on their surface (Maugeri N, 2006). Moreover, neutrophils 

stimulated with serum from patients with antiphospholipid syndrome (APS) express 

functionally active TF and TF mRNA (Ritis K, 2006). In this condition, the activation of C5a 

Receptor-Tissue Factor (C5a) attracts neutrophils to the site of inflammation and 

increases TF expression (Ritis K, 2006). More recently, Darbousset et al., showed that 

purified mouse neutrophils may express TF (Darbousset R, 2012). In their study, they used 

a specific antibody to show that TF accumulated over time at the site of vascular damage. 

TF accumulation was strongly decreased by inhibiting neutrophil binding to vascular 

endothelium, suggesting that neutrophils represent the main source of TF in their laser-

injury in vivo model. Moreover, in a chemically induced injury model, Massberg et al. 

showed that the neutrophil-derived proteases, such as Neutrophil Elastase and Cathepsin 

G, are required for thrombus formation. Indeed, these two enzymes play a crucial role in 

proteolytic inactivation of tissue factor pathway inhibitors, thereby promoting initiation 

of the coagulation cascade (Massberg S, 2010). 

 

 

I. 2.1.4 Relevance of monocytes/macrophages in venous thrombosis 

It is generally thought that the accumulation of macrophages is dependent on the 

recruitment of circulating monocytes, and direct visualization of these cells entering the 

thrombus has recently been shown. Circulating monocyte subsets can be distinguished 

based on their expression of surface receptors (Auffray C, 2009). Circulating 

inflammatory monocytes express Ly6C in the mouse and are recruited into tissue, where 

they undergo activation in a pathogen-dependent response (Auffray C, 2009) (Serbina 

NV, 2008). When monocytes migrate through tissue, they differentiate into macrophages 

(van Furth R, 1968) (Fig. 9). The contribution of Ly6C+ monocytes in the formation and 

resolution of venous thrombosis has recently been shown. Indeed is known that 

monocytes are recruited in large numbers into maturing human and experimental 
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venous thrombi (McGuinness CL, 2001), and thrombus resolution does not occur 

if their recruitment is restricted.  

 

Fig. 9: Monocyte differentiation into dendritic cell 

(DCs) and tissue macrophages. Macrophage-DC 

progenitors (MDPs) give rise to Ly6C+ bone 

marrow monocytes, which exit the bone marrow, 

in part guided by CCR2-dependent signals. Black 

arrows indicate differentiation steps into tissue 

DCs and macrophages that occur under 

homeostatic conditions. Red arrows indicate 

differentiation steps that occur under 

inflammatory conditions. Dashed arrows 

represent steps that remain uncertain. 

Serbina V., Immunology, 2007 

 

In thrombus formation process, the initial neutrophil infiltrate is replaced by monocyte-

derived macrophages (Astrup T, 1967) (McGuinness CL, 2001) (Wakefiled TW, 1999) that 

have the capacity to express a host of chemotactic agents, proteases, and growth factors 

that orchestrate tissue remodeling and revascularization (Knighton DR, 1989). Evidence 

suggests that monocyte chemo-attractants, such as the cysteine-cysteine (CC) 

chemokine, monocyte chemotactic protein-1 (MCP1), are also expressed in the thrombus 

as it organizes, and treatment with exogenous MCP1 enhances resolution (Humphries J, 

1999) (Waltham M, 2000). In particular, impaired resolution occurs in CC chemokine 

receptor type 2 (CCr2) knockout mice (CCr2−/−) (Henke PK, 2006) (Ali T, 2006), indicating 

that CCr2 is required for the exit of Ly6C+ monocytes from bone marrow (Serbina NV, 

2006) (Fig. 9).  

McGuinness et al. (McGuinness CL, 2001) provided evidence about the relevance of 

monocytes in venous thrombus resolution. They showed that endogenous and 

injected monocytes migrated into the thrombus during natural resolution, 

probably via the vein wall. Increasing the numbers of macrophages by direct injection 
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of fibrinolytically active peritoneal cells into the thrombus resulted in a large reduction in 

thrombus size and an increase in recanalization (Tahir A, 2006). These data suggest that 

increasing monocyte recruitment into the thrombus might improve its resolution and 

support the concept that the monocyte/macrophage are key mediator of venous 

thrombus resolution (McGuinness CL, 2001) (Singh I, 2003), supporting the evidence that 

the CC chemokine family and their receptors have an important role in the complex 

process that regulates monocytes/macrophages recruitment.  

As previously described, the first step in venous thrombosis is activation of the 

endothelium and expression of the adhesion receptors P-selectin and E-selectin, as well 

as vWF. The activated endothelium then captures circulating leukocytes, TF-positive 

microvescicles (MVs), and platelets. Finally, induction of TF expressed by the bound 

leukocytes together with TF on MVs triggers thrombosis (Mackman N, 2012).  

Activated monocytes and tumor cells are the primary sources of TF-positive MVs in the 

circulation (Owens AP, 2011) and data suggest that TF expression by leukocytes and 

possibly leukocyte-derived MVs initiated thrombosis in DVT mouse model (Von Brühl ML, 

2012).  Von Brühl et al. demonstrated that particularly monocytes contribute to TF-driven 

coagulation during mouse DVT. Indeed, TF expression by Ly6G+ neutrophils was weak 

compared with monocytes, that revealed a strong TF signal (Von Brühl ML, 2012).  
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I. 2.2. Thrombus Stabilization 

Many factors, including local calcium concentration, pH, and platelet numbers, affect clot 

stability (Celi A, 2003). In the last few years, it has become apparent that the primary 

activation and aggregation step is followed by a second wave of activation signals meant 

to prevent platelet aggregates from falling apart. Clot retraction is also an illustration of 

this process. Indeed, platelet-mediated clot retraction is necessary for the consolidation 

of a platelet thrombus by making it less susceptible to fibrinolysis. This event is virtually 

absent in patients or in mice lacking αIIbβ3, suggesting a major role for this receptor in 

stabilization of the thrombus, as previously described. The defect in stabilization of 

platelet thrombi in CD40L-deficient mice (CD40L-/-) is a good example of the importance 

of stabilization process (Andre P, 2002) (Prasad KS, 2003). The thrombi formed in the 

arterioles of these mice looked lacelike rather than compacted, as seen in wild-type mice 

(Andre P, 2002). CD40L is a part of an autocrine loop, and it is released when primary 

platelet agonists activate platelets and it then further enhances platelet 

activation. Transmembrane proteins interacting with αIIbβ3 have also been implicated in 

thrombus stabilization (Lau LM, 2004) (Goschnick MW, 2006). The tetraspanin family 

members, CD151 (Lau LM, 2004) and TSSC6 (Goschnic MW, 2006), are able to regulate 

the outside-in αIIbβ3 signaling. TSSC6-deficient mice (TSSC6-/-) display increased 

embolization and impaired thrombus stabilization after ferric chloride–induced injury 

(Goschnic MW, 2006). 

The final pathway contributing to thrombus stability is the formation of the fibrin network 

deriving from the coagulation cascade. In a laser-injury thrombosis model, normal fibrin 

formation is dependent on the recruitment of blood-borne MPs TF to the thrombus, with 

a minimal contribution of vessel wall TF (Chou J, 2004).  Mice deficient in either P-selectin 

or P-selectin glycoprotein ligand-1 (PSGL-1) develop platelet thrombi containing small 

amount of TF or of fibrin. This result complements the observation that high levels of 

soluble P-selectin are associated with a procoagulant state (Andre P, 2000).  Finally, the 

hematopoietic cell–derived TF should help to promote thrombus stability until healing is 

completed.  
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For the preservation and the stability of clot more important is the role of Fibrinogen. 

Fibrinogen is a soluble 340-kDa protein that circulates in whole blood (Wolberg AS, 2007). 

It consists of two sets of three distinct disulfide-linked polypeptide chains (Aα, Bβ, and γ), 

whose synthetic programs are directed by three separate genes on chromosome 4. The 

major molecular target of fibrinogen is thrombin, which convert fibrinogen to fibrin 

monomers as thrombin removes N-terminal fibrinopeptides A and B. The resulting 

monomer is a disulfide-linked trinodular protein whose N- and C-termini converge at the 

E- and D-nodules, respectively. Assembly of fibrin fibers then proceeds in a stepwise 

fashion. After an initial lag phase, release of fibrinopeptide A encourages protofibril 

formation by the lateral aggregation of fibrin fibers, wherein the E domain of one 

homodimer interacts with the D domain of a second to generate a half-staggered, 

overlapping fibrillar pattern within the developing thrombus (Wolberg AS, 2007). Fibrin 

is cross-linked at lysine residues by FXIIIa and forms fibrillar aggregates, which, together 

with platelets and RBCs, provide structural integrity to the growing thrombus (Aleman 

NN, 2014). Turbidity and circulatory flow assist in fibrin polymerization and protofibril 

assembly by orienting the fibers as the growing thrombus forms (Gersch KC, 2010), 

(Campbell RA, 2010), (Neeves KB, 2010), (Blomback B, 1994), (Wolberg AS, 2002). 

Differences in the molecular structure of fibrin are believed to contribute to vascular 

thrombus persistence (Miniati M, 2010). Stability is also based partly found on fibrin fiber 

diameter, and the geometry of the fibrin network. The variables that affect fiber 

architecture are ultimately important for fibrinolysis, since both fiber size and 

arrangement impact tissue plasminogen activator (tPA) binding and rates of 

fibrinolysis (Carr ME, 1995), (Gabriel DA, 1992), (Longstaff C, 2011), (Collett JP, 2003). 

Local thrombin concentration also affects this process. Indeed, clot structure, as higher 

thrombin concentrations generate more stable clots (Wolberg AS, 2007), (Blomback B, 

1994) (Wolberg AS, 2003). 

Fragile clots are more susceptible to fibrinolysis and bleeding, whereas firm clots are 

more resistant, but may promote thrombosis (Undas A, 2011), (Cilia AL, 2011) (Ariens RA, 

2013). Thrombus formation depends upon not only the total fibrinogen concentration, 

but also the isoform composition of the fibrinogen pool. Clot structure, therefore, reflects 
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the complex interplay of many factors ranging from polymorphisms in fibrinogen itself, 

to the efficiency of thrombin generation, the reactivity of associated cells, such as 

platelets, and the biochemical milieu (Rijken DC, 2009).  

 

 

I. 2.3. Fibrinolysis 

Fibrinolysis is a highly regulated enzymatic process that prevents unnecessary 

accumulation of intravascular fibrin and enables the removal of thrombi. Fibrin surfaces 

are key activation sites for fibrinolysis (Cesarman-Mau G, 2005). Activation of the 

fibrinolytic system is dependent on the conversion of the plasma zymogen, plasminogen, 

to the trypsin-like serine protease plasmin by the physiological activators urokinase-type 

plasminogen activator (uPA) or tissue-type plasminogen activator (tPA). Because both 

fibrin and fibrinogen increase conversion of plasminogen to plasmin, they facilitate their 

own destruction (Doolittle RF, 2008) (Thorsen S, 1992). Plasminogen, the inactive 

precursor of the plasmin, is synthetized primary in the liver (Bohmfalck JF, 1980) (Saito H, 

1983); however, other sources have been identified that include adrenal glands, kidney, 

brain, testis, heart, lung, uterus, spleen, thymus, and gut (Zhang L, 2002). When 

plasminogen (PG) becomes activated and is converted to plasmin, it unfolds a potent 

enzymatic domain that dissolves the fibrinogen fibers. These fibrinogen fibers entangle 

the blood cells in a blood clot. This process is called fibrinolysis. PG’s relevance in the 

fibrinolysis process was identified also in in vivo experiments: mice with a total deficiency 

in PG (PG-/-; homozygous-deficient mice) were utilized. PG-/- mice was not lethal and these 

mice survived well into adulthood. Pulmonary clot lysis in PG-/- mice was determined by 

measuring the spontaneous lysis of a radiolabeled plasma clot after its injection into the 

jugular vein. Relative to wild type mice, clot lysis was severely compromised in PG-/- mice, 

with an intermediate reduction of fibrinolytic capacity in PG+/- mice (heterozygous-

deficient). When i.v. bolus of PG were administered to PG-/- mice, normal clot lysis and 

dissolution of spontaneous fibrin deposits in the liver were observed, indicating that in 

vivo clot lysis is dependent on the presence of PG. Additional studies have indicated that 
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polymorphonuclear leukocytes may compensate for a lack of PG in the degradation of 

fibrin(ogen) (Zhang B, 2002). 

tPA and uPA are two primary serine proteases that activated  from plasminogen to 

plasmin, the primary fibrinolysis. tPA is synthesized and released by ECs, and uPA is 

produced by monocytes, macrophages, and urinary epithelium. Binding of t-PA to ECs 

promotes their fibrinolytic activity and stimulates cell proliferation (Barnathan ES, 1988) 

(Welling TH, 1996). Both activators have exceedingly short half-lives in circulation (4–

8 minutes) due to the presence of high concentrations of specific inhibitors, such as PAI-

1. Compared to tPA, uPA has lower affinity for plasminogen, does not require fibrin as a 

cofactor, and, under normal conditions, appears to act mainly in extravascular locations. 

Both tPA and uPA are cleared by the liver after forming complexes with a low density 

lipoprotein (LDL)-receptor-like protein (Bu G, 1994). Because plasmin increases activator 

activity by converting single-chain tPA and uPA to their two-chain counterparts, 

plasminogen exerts positive feedback on its own activation (Cesarman-Maus G, 2005), 

(Hoylaerts M, 1982) (Tate KM, 1987). 

Serine protease inhibitors or serpins neutralize circulating plasmin and plasminogen 

activators, which are present in excess concentrations (Travis J, 1983). Serpins form 

covalent complexes with their unique target enzymes that are subsequently cleared from 

the circulation. The three serpins most important in fibrinolysis are plasminogen activator 

inhibitor-1 and 2 (PAI-1 and PAI-2), and α2-antiplasmin (A2AP). Other non-serpin plasmin 

inhibitors include α2-macroglobulin, C1-esterase inhibitor, and members of the contact 

pathway of the coagulation cascade, which also play minor roles in plasmin inhibition. 

PAI-1 is released into the circulation from ECs, platelets, and other cells (Sprengers ED, 

1987). It is associated primarily with the extracellular matrix, resulting in stabilization of 

its activity (Levin EG, 1987), and it is upregulated by a large number of proinflammatory 

cytokines (Hajjar HA, 2014). Quiescent ECs express low or no PAI-1 (Cines DB, 1998), but 

after exposure to thrombin and inflammatory stimuli, the expression of PAI-1 is highly 

upregulated, which results in impaired fibrinolytic function (Loskutoff DJ, 1989) (Sawdey 

MS, 1991). 
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PAI-2 is more important in pregnancy, and its concentrations increase as the pregnancy 

progresses. Deficiencies in PAI-2 have been associated with adverse pregnancy outcomes 

(Cesarman-Maus G, 2006) (Coolman M, 2012). 

Plasmin and A2AP bind with 1:1 stoichiometry, whereupon both become inactive. 

Plasmin is protected from inhibition by A2AP upon binding to fibrin, while initially fibrin-

bound A2AP protects the clot from fibrinolysis (Plow EF, 1981) (Ichinose A, 1983) (Kimura 

S, 1986) (Schneider M, 2004). Binding of thrombin to thrombomodulin (TM) accelerates 

activation of thrombin-activatable fibrinolysis inhibitor (TAFI). Thrombomodulin is 

protein cofactor expressed on ECs that modifies the substrate specificity of thrombin, 

apparently by an allosteric mechanism (Sadler JE, 1997).  By regulating the expression of 

TM, ECs decrease or increased the rate of intravascular fibrinolysis (Cines DB, 1998).  

TAFI is a non-serpin fibrinolysis inhibitor that is activated by thrombomodulin-associated 

thrombin, and it is important to prevent excess unregulated plasmin or plasminogen 

activator activity. TAFI is a carboxypeptidase that removes C-terminal lysine and arginine 

residues on fibrin, thereby decreasing the number of available plasminogen binding sites, 

slowing plasmin generation, and stabilizing clots (Broze GJ, 1996) (Mosnier MO, 2001). 

The contribution of ECs to fibrinolysis differs with their metabolic status (i.e., quiescent 

or activated), their vascular derivation, and the concentration of other hemostatically 

active molecules in the local plasma milieu (Cines DB, 1998). In a resting state, the ECs 

surface is profibrinolytic and helps maintain blood in its fluid state (Cines DB, 1998).   

Annexin A2 (ANXA2), an important component of cell-based fibrinolysis, is a member of 

the annexin family of calcium-binding proteins that fulfill diverse physiologic 

functions (Rescher U, 2008) (Gerke V, 2005) (Fatimathas L, 2010) (Rescher U, 2004). The 

annexins represent a >50-member family of calcium-dependent, phospholipid-binding 

proteins of largely unknown functions (Gerke V, 2002) (Fig. 10). The canonical annexin 

“fold” allows these proteins to shuttle intracellularly between aqueous and membrane 

compartments in response to fluctuations in calcium concentration. ANXA2 is a 36-kDa 

protein produced by ECs, monocytes, macrophages, trophoblast cells, and some tumor 

cells. It exists both free in the cytoplasm and in association with intracellular and plasma 

membrane surfaces (Gerke V, 2002) (Gerke V, 2005). When ANXA2 is membrane 
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associated, the tightly packed, alpha-helical 33-kDa core domain forms a disk whose 

convex face is associated with membrane phospholipid and whose concave face is 

oriented away from the membrane. Membrane binding is mediated by at least two 

potential Ca2+ binding “annexin” repeats, features common to all annexin family proteins 

(Gerke V, 2002). The core specifies membrane-binding capability, whereas the tail 

possesses an invariant tyrosine 23, the pp60-c-src phosphorylation target (Isacke CM, 

1986).  

On the surface of ECs and monocytes, ANXA2 forms a heterotetrameric complex with 

another protein, S100A10 (also known as p11). As a member of the S100 family of 

proteins, S100A10 contains Ca2+-binding helix-loop-helix motifs and confers increased 

phospholipid binding affinity on ANXA2 (Hajjar KA, 1990). The C-terminal region of 

S100A10, particularly its hydrophobic residues within the C-terminal extension, 

contributes critical contact points for binding to ANXA2 (Réty S, 1999).  

The ANXA2-S100A10 complex strongly promotes the tPA-dependent activation of plasmin 

independently of fibrin (Rescher U, 2008) (Waisman DM, 1995) (Flood EC, 2011). In 

particular, ANXA2 is a co-receptor for the plasma-derived fibrinolytic zymogen, 

plasminogen, and tPA (Hajjar KA, 1996) (Hajjar KA, 1993) (Dassah M, 2009) (Flood EC, 

2011) (Kwon M, 2005) (Madureira PA, 2011).  Upon binding, the ANXA2 tail peptide 

assumes α-helical conformation that presents key hydrophobic residues.  

Translocation of ANXA2 to the outer leaflet of the plasma membrane of the EC is a key 

regulatory step governing vascular fibrinolysis (Dassah M, 2009) (Flood EC, 2011), and it 

is initiated by several factors including heat stress, thrombin stimulation, and hypoxia 

(Peterson EA, 2003) (Deora AB, 2004) (Huang B, 2011). ANXA2 translocation in ECs occurs 

within minutes, and requires the presence of adequate S100A10. Indeed, in the ECs, 

S100A10 is stabilized by ANXA2, which, upon binding, masks a critical “degron,” or 

polyubiquitination site on S100A10. In the absence of sufficient ANXA2, S100A10 is 

polyubiquitinated and targeted to the proteasome for degradation (He KL, 2008). 

Recently, fibrinolysis was assessed in S100A10-null mice (S100A10-/-), which displayed 

increased vascular fibrin, reduced clearance of thrombi, and impaired neovascularization 

of Matrigel thrombi (Surette AP, 2011).  
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Inhibition of the ANXA2 complex's function may increase thrombosis risk by impairing 

fibrinolysis. Mouse deficient in ANXA2 (ANXA2
-/-) display normal development, fertility, 

and lifespan; fibrin accumulation is evident in both intravascular and extravascular 

locations within the lungs, spleen, small intestine, liver, and kidney (Ling Q, 2004). 

Microvascular ECs isolated from ANXA2
-/- mice, moreover, lack the ability to support tPA-

dependent plasmin generation in vitro, and arterial injury in vivo leads to an increased 

rate and severity of vascular occlusion in the ANXA2
-/- mouse. In addition, ANXA2

-/- mice 

display fibrin accumulation within blood vessels and impaired clearance of injury induced 

thrombi (D. AB 2004). High-titer antibodies directed against ANXA2 have been observed 

with increased frequency in patients with antiphospholipid syndrome and a history of 

thrombosis, and in a cohort of patients with cerebral venous thrombosis (Cesarman-Mau 

G, 2006) (Cesarman-Mau G, 2011). Polymorphisms in ANXA2 have also been associated 

with vascular occlusion in patients with sickle cell disease (Cesarman-Mau G, 2006) 

(Flanagan JM, 2011). Conversely, high levels of ANXA2 are expressed by blast cells in acute 

promyelocytic leukemia (APL) and seem to contribute to increased fibrinolysis and 

bleeding (Menell JS, 1999) (Stein E, 2009). On APL cells, ANXA2 may increases fibrinolysis 

in concert with protein S100A10, which is also upregulated in an autonomous APL cell 

line (O’Connell PA, 2011). In human subjects, overexpression of ANXA2 in acute 

promyelocytic leukemia leads to a hyperfibrinolytic bleeding diathesis reflective of 

excessive cell surface ANXA2-dependent generation of plasmin (Menell JS, 1999). 

Thus, surface expression of ANXA2 may represent a crucial cellular defense mechanism 

against intravascular thrombosis following vascular injury or stress. 
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        Fig. 10: Domain structure of 

annexinA2 (ANXA2). 

AnnexinA2 is composed to 

two domains—the amino-

terminal domain and 

carboxyl-terminal domain. 

The S100A10 binding site is 

an amphipathic α-helix, 

with the hydrophobic 

residues, Val-3, Ile-6, Leu-7 

and Leu-10 making 

contacts with S100A10. 

Bharadwaj A. et al., International Journal of Molecular Science, 2013 

 

Fibrin degradation products (FDPs) begin to form as plasminogen is activated and plasmin 

begins to degrade the thrombus. Multiple FDPs, including fibrinopeptide B and other 

fibrin degradation monomers and dimers are released (Baley K, 1951) (Baley K, 1955) 

(Latallo ZS, 1962). When fibrin polymers are cleaved by plasmin at the D fragment site, 

the resulting D-dimer fragment reflects the degree of thrombosis and plasmin activity. D-

dimer assays have found predictive and prognostic value in a number of disease states, 

including disseminated intravascular coagulation (DIC), pulmonary embolism, DVT, and 

cancer-associated thrombosis (Khalafallah A, 2014) (van der Hulle T, 2013) (Gomes M, 

2014). Individual FDPs may have immunomodulatory effects (Jennewein C, 2011). 

Fibrinopeptide B can serve as a chemoattractant for neutrophils, monocytes and 

macrophages (Senior RM, 1986) (Richardson DL, 1976). Some FDPs appear to have 

thromboregulatory properties in animal models. For example, synthetic peptides based 

on the degradation product fibrin B knob have been shown to impair fibrinolysis (Pandi 

L, 2009). Addition of FDPs to arterial canine blood or plasma ex vivo prolongs clot 

formation as assayed by multiple coagulation tests (Mischke R, 2004) (Mischke R, 2000). 

The mechanism of the anticoagulant effect of FDPs remains unclear (Ittyerah TR, 1979). 

 

ANXA2 
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I. 3 CYCLOOXYGENASE AND PROSTANOIDS  

In humans, arachidonic acid is metabolized into many potent bioactive compounds, such 

as prostaglandins (PGs) and thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs) 

(Demetz E, 2014) (Smith WL, 2000). 

Arachidonic acid (AA or cis-,cis-,cis-,cis-5,8,11,14-eicosatetraenoic acid), an essential 

polyunsaturated fatty acid to 20 carbon atoms, is the main precursor of eicosanoids, 

biologically active lipids that have been implicated in cellular signaling cascades of 

physiological and pathophysiological relevance (Wang D, 2010). 

The first step in the AA cascade is cleavage and release of AA from the phospholipid-

bound form. It is suggested that this may be achieved with the assistance of at least one 

of the three different enzymes, namely phospholipase A2 (PLA2), phospholipase C (PLC) 

and phospholipase D (PLD) (Farooqui AA, 2005). Mammalian cells contain several 

isoforms of the enzyme PLA2 (Murakami M, 1999), which receive their stimulatory signals 

from a vast range of inflammatory signals, cytokines, growth factors and hormones. The 

majority of AA metabolites can act both as pro- and anti-inflammatory mediators (Cabral 

GA, 2005), modulating gene expression, cytokine signaling and other immune regulatory 

factors. 

AA, once released, is metabolized through three major pathway: 1) the way of 

prostaglandin H synthase (PGH synthase), called also cyclooxygenase way (COX pathway), 

which leads to the formation of prostanoids; 2) the way of lipoxygenase (5-, 12- and 15-

lipoxygenase), that leads to the formation of hidroxyicosatetraenoic acid (HETE); 3) the 

way of leukotrienes (LOX pathway) (McMahon B, 2004) (Serhan CN, 2007). The metabolic 

pathways that have greater pharmacological interest in the context of cardiovascular 

disease is the COX pathway, from which are obtained prostaglandins, prostacyclins and 

thromboxanes. 
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I. 3.1 The COX pathway 

In the early 90's it was discovered the existence of two principal isoforms of 

cyclooxygenase enzymes: cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), but 

to date, another cyclooxygenase have been identified, cyclooxygenase-3 (COX-3) (Fig. 

11).   

 

Bhandary A.K. et al., Journal of Pain Research, 2010 

Fig. 11: The cyclooxygenase (COX) pathway. 

 

Although they differ in their pattern of expression and tissue distribution in human cells 

(Williams CS, 1999) (Chandrasekharan NV, 2002), collectively they are responsible for the 

stepwise conversion of AA to the three classes of prostanoids. COX-1 and COX-2 are 

present in different districts of the organism, are regulated in different manner and 

performing distinct biological functions.  

The COX-1 enzyme (Fig. 12), also known as Prostaglandin H2 Synthase 1 (PTGS1), is a 

protein constitutively expressed by almost every cells in the human body, including 

platelets; it is involved in intercellular communication and tissue homeostasis; it is also 

responsible for the production of prostaglandins involved in gastric protection and in self-

regulation of renal blood flow. The COX-1 gene is part of the house-keeping genes that 
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express a homodimeric protein integrated in cell membranes. The COX-1 is constituted 

by 599 amino acids and has a molecular weight of 72Kda, intervenes in the synthesis of 

prostanoids instant that occurs within a few minutes by stimulation with calcium. 

Actually, the COX-3 enzyme is a protein that derived from a different splicing of mRNA of 

COX-1 in which intron 1 is not deleted. It is an enzymatic protein present mainly in the 

central nervous system.  

The COX-2 enzyme (Fig. 12), or PTGS2, is an inducible protein produced by macrophages, 

fibroblasts and ECs. It is normally absent from most cells but is highly induced by a variety 

of stimuli associated with inflammatory responses, such as cytokines at sites of 

inflammation and during tumor progression (Dubois RN, 1998) (Morita I, 2002) 

(Patrignani P, 2005). The production of prostanoids, which contributes to the 

vasodilation, edema and hyperalgesia characteristics of inflammatory processes, is 

mainly a result of the local induction of expression of COX-2 in inflammatory cells. COX-2 

is an “immediate-early response gene” and its mRNA is highly induced in response to 

cellular transformation. The human COX-2 is a protein of 604 amino acids, which has been 

identified and cloned in 1991 (Ferreri NR, 1999). Near the C-terminus contains an insert 

of 18 amino acids that are not present in the COX-1, while, all the essential residues that 

form the channel hydrophobic binder the substrate (Yagamata K, 1993), the catalytic sites 

and residues immediately adjacent to it, are highly conserved in two isoforms. Although 

COX-1 and COX-2 have the same three-dimensional protein folds and share over 60% 

amino acid sequence identity, COX-2 displays a branched substrate-binding site, whereas 

COX-1 has a non-branched substrate-binding site and has conformational less flexible 

structure (Luong C, 1996) (Picot D, 1994). The crystallographic structure of COX-2 reveals 

a homodimer with each monodimer containing three structural domains, the Epidermal 

Growth Factor (EGF)-like, the membrane-binding and the catalytic domain (CD). The CD 

contains the active sites of both the cyclooxygenase and peroxidase activity. The 

cyclooxygenase active site is located at the end of a long hydrophobic channel, formed 

by residues Tyr385, Phe381, Phe518, Leu384 and Trp387. Substrate-binding requires 

hydrophobic interactions and hydrogen bonds to Arg120 and Tyr335 as well as a salt-

bridge formation between residues Arg120 and Glu524 (Selinsky BS, 2001). Catalytic 
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activity is exerted by residue Tyr385, which, upon binding of AA, removes its 13-pro-S 

hydrogen to initiate Prostaglandin G2 (PGG2) formation (Rowlinson SW, 2003). The 

presence of the hydrophobic pocket in the COX-2 side increases the volume of the 

catalytic site of about 25%, making it capable of accommodation of bulky molecules, 

relevant in pharmacological treatment.  

 

 

 

 

 

 

Fig. 12: Structure of COX-1 (a) and COX-2 (b) enzymes 

 

The first step in the COX metabolic pathway, which leads to the formation of prostanoids, 

is oxygenation of AA by its cyclooxygenase activity to give PGG2, followed by rapid 

conversion of PGG2 by its peroxidase activity into Prostaglandin H2 (PGH2, the parent 

compound). PGH2 is an unstable endoperoxide, catalyzed by a number of cell-specific 

isomerases that lead to the formation of the prostaglandins (PGs) prostacyclin D2 (PGD2), 

prostacyclin E2 (PGE2), prostacyclin PGF2α (PGF2α), prostacyclin I2 (PGI2) and thromboxane 

A2 (TXA2) (Urade Y, 1995).  

Prostaglandins (PGD2, PGE2, PGF2α) are produced by leukocytes, platelets and ECs. They 

are of biogenic amines that exert a biological effect in an autocrine or paracrine manner 

by binding to their cell surface receptors, which belong to the G protein-coupled receptor 

(GPCR) family. These receptors are designated DP (also known as PTGDR) and GPR44 for 

prostaglandin D2 (PGD2); EP1, EP2, EP3 and EP4 (also known as PTGER1, PTGER2, PTGER2 

and PTGER4, respectively) for PGE2; FP (also known as PTGFR) for PGF2α; IP (also known 

as PTGIR) for PGI2; and TP (also known as TBXA2R) for TXA2 (Wang D, 2010). However, 

a b 
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prostaglandins and their metabolites can also bind nuclear receptors such as PPARs. For 

example, 15-deoxy-Δ12,14-PGJ2 (15dPGJ2), is a natural ligand for PPARγ. PGE2 can also 

indirectly activate PPARδ in some contexts (Wang D, 2004). The prostaglandins act in 

different tissues (eg. intestinal, bronchial, uterine and stomach); more important function 

is developed by PGE2 that protect the mucosa of the gastrointestinal lining: PGE2 inhibits 

the production of HCl in the stomach and favors the production of mucus and 

bicarbonate secretion, which counteracts the gastric acidity. Moreover, prostaglandins 

stimulate platelet in maintaining normal homeostasis, preserving the resistance to 

thrombotic process acting on the surface of vascular ECs. In addition, they are involved 

in pain and fever.  

Prostacyclin or prostaglandin I, PGI2, is a major product of COX-2 catalyzed metabolism of 

AA in the endothelium. PGI2 is generated by prostacyclin synthase enzyme mainly in the 

intima and other layers of the vessel wall (Moncada S, 1977). It is a potent vasodilator, 

and inhibitor of platelets aggregation (Higgs GA, 1977) (Bayer BL, 1979) (Bourgain RH, 

1979) (Gryglewski RJ, 1978), and for these characteristics, is considered the physiological 

antagonist of thromboxane.  PGI2 protects against atherothrombosis (Arehart E, 2007) 

and myocardial ischemia (Ogletree ML, 1979) (Jugdutt B, 1979). These and other studies 

have support the hypothesis that PGI2 may have clinical value in the management of 

specific cardiovascular diseases. Moreover, PGI2 knockout mice (PGI2-/-) exhibit increased 

atherosclerosis, enhanced thrombosis (Wang D, 2005) (Psaty BM, 2005) and greater 

proliferative response to carotid vascular injury with increased intima to media ratios 

(Arehart E, 2007).  

Recently, it has been shown that PGI2 activates PPARδ and NAD+-dependent class III 

histone deacetylase sirtuin-1 (SIRT1), and decreased TF expression and activity, whereas 

inhibition of COX-2 has the opposite effect (Ghosh M, 2007) (Barbieri SS, 2012).  In 

particular, in our publication, we show that PGIS may regulate SIRT1 and TF expression 

via both the IP receptor and PPARδ activation (Barbieri SS, 2012). Indeed, PGIS inhibition 

suppresses PPARδ activity (Ghosh M, 2007) and PPARδ plays a role in transcriptional 

regulation of SIRT1 (Okazaki M, 2010) and TF. These findings provide a potential 

mechanism for the increased thrombosis associated with COX-2 inhibition.  
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 Thromboxane is produced mainly in platelets by the thromboxane synthase; is the main 

AA metabolite in human platelets and exhibits two major activities: stimulation of platelet 

function, including secretion of platelet-derived storage products, and vasoconstriction 

(Schror K, 1992).  Once formed, thromboxane which has a very short half-life as 

thromboxane A2 (TXA2), is rapidly broken down by hydrolysis to the inactive thromboxane 

B2 (TXB2) (Katugampola SD, 2009) (Reilly M, 1993) (Sachinidis A, 1995). Thromboxane is 

produced locally by platelets, macrophages (Reilly M, 1993), vascular smooth muscle cells 

of arteries and veins (Serneri N, 1983), ECs (Mehta JL, 1983) (Sung C, 1989) and human 

cardiac atrial tissue (Mehta JL, 1985). The distinguishing feature of thromboxane is a 6-

membered ether-containing ring. TXA2 is a potent vasoconstrictor and promotes platelet 

aggregation. Moreover, it act also as stimulator of vascular smooth muscle cell growth 

(Sachinidis A, 1995) and is a positive inotropic mediator in the heart (Sakuma I, 1989). It 

is in homeostatic balance in the circulatory system with prostacyclin, a related 

compound. Increased production (approximately 10 ng ml−1, compared with 1 – 2pg ml−1 

in normal healthy plasma) of thromboxane has been implicated in cardiac pathology, 

including ischaemic heart disease (Serneri N, 1981), pulmonary hypertension (Fuse S, 

1994) and heart failure (Gresele P, 1991). Additionally, increased production of 

thromboxane is also associated in vascular pathology, particularly with atherosclerosis of 

coronary artery disease, and accelerated atherosclerosis of saphenous vein graft (Mehta 

JL, 1988). The human thromboxane receptor is TP (Narumiya S, 1999). Molecular biology 

and pharmacological studies have identified mRNA encoding the TP receptor and TP 

receptor protein in animal and human tissues in culture (Haluscka PV, 1989). In humans, 

TP receptor exists in two isoforms, TPα and TPβ, which arise from alternative splicing after 

the seventh transmembrane domain and have different intracellular C-terminal 

intracytoplasmic edges (Narumiya S, 1999) (Ting HJ, 2012). Both TP receptor mRNA 

isoforms have been identified in several cells and tissues (Miggin SM, 1998), but TPα is 

the dominant isoform translated in platelets (Habib A, 1999) and vascular smooth muscle 

cells (SMCs), whereas the TPβ isoform is present in ECs (Kent KC, 1993) and vascular 

SMCs (Wikstrom K, 2008). In particular, radio-ligand binding studies have characterized 
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TP receptor protein in human kidney (Brown GP, 1999) and human SMCs in culture 

(Morinelli TA, 1990). However, TP receptor distribution and density in native human 

cardiovascular tissue has not been determined and it is unknown if receptor density is 

altered with cardiovascular disease in native human tissue.  

Under normal conditions, TP receptor, activated by endothelium-derived vasoactive 

factors, participates to the control of vascular tone. The inflammatory response is 

initiated by the adhesion and migration of monocytes into the vascular adventitia 

promoted by ECs-TP receptor activation (Cayatte AJ, 2000) (Wilson SJ, 

2009). Subsequently, the activation of TP receptor on platelets, 

monocytes/macrophages, ECs, and SMCs plays an important role in regulating platelet 

activation and vascular tone and in the pathogenesis of thrombosis and vascular 

inflammation. Indeed, TP receptor that mediates these functions, have a key role and 

particular relevance in cardiovascular diseases, in which TP receptor expression and 

TXA2 are elevated (Katugampola SD, 2001). In particular, activation of the platelet TP 

receptor triggers platelet activation, secretion, and aggregation, which play important 

roles in the formation of both hemostatic plugs and pathological thrombi, particularly at 

high arterial wall shear rate (Roald HE, 1994). A normal response to TP receptor activation 

supports normal hemostasis. However, increased platelet TP receptor activation is 

frequently observed in platelet hyper-reactivity states, particularly in patients with type 

2 diabetes mellitus (DM) and acute coronary syndromes (ACS) (Eto K, 1998) (Ferroni P, 

2004). This may be at least in part due to the increased formation of prostanoids and 

isoprostanes, which increases the risk of atherothrombosis and promotes vascular 

inflammation through TP receptor activation (Davì G, 1999) (Szuldrzynski K, 2010). In 

addition, SMC-TP receptor activation triggers vasoconstriction, increasing the arterial 

blood pressure, which is one of the major risk factors for atherothrombosis (Capra V, 

2014). 

  



- 46 - 
 

4. PHARMACOLOGICAL TREATMENT OF VENOUS THROMBOSIS: 

Antithrombotic drugs 

The available antithrombotic drugs are effective at reducing arterial thrombosis and 

venous thrombosis in patients with cardiovascular disease. This should be considered 

when evaluating -and discussing with the patient- secondary prevention with 

antithrombotic therapies. Antithrombotic are used to treat a wide variety of conditions 

that involve arterial or venous thrombosis, including prevention of VTE and long-term 

prevention of ischemic stroke in patients with atrial fibrillation.  

The goal of prophylactic therapy in patients with risk factors for DVT is to prevent both 

its occurrence and its consequences, PE and the post-phlebitic syndrome. Of the patients 

who will eventually die of PE, two thirds survive less than 30 minutes after the event, not 

long enough for most forms of treatment to be effective (Donaldson GA, 1963). 

Preventing DVT in patients at risk is clearly preferable to treating the condition after it 

has appeared, a view that is supported by cost-effectiveness analysis (Salzman EW, 

1980) (Hull RD, 1982) (Bergqvist D, 1990) (Paiement GD, 1991). The presence of clinical 

risk factors identifies patients with the most to gain from prophylactic measures (Kakkar 

VV, 1990), as well as patients who should receive antithrombotic prophylaxis during 

periods of increased susceptibility, such as post-operatively or post-partum. The blood 

concentration of certain hemostatic elements (e.g., platelets, AT III, protein C, protein S, 

vWF, and d-dimer) and other features such as age and euglobulin lysis time have been 

correlated with the subsequent development of DVT and have provided the basis for a 

predictive index. However, reliance on laboratory tests to select patients for 

antithrombotic prophylaxis has not been more accurate and certainly is not more 

economical than the use of clinically defined risk factors for this purpose. 

In the pharmacological treatment for the prevention of DVT, are included a number of 

antithrombotic agents with important differences in efficacy and in the gravity and 

frequency of their principal side effect, bleeding.  
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Anticoagulants drugs are an important class of antithrombotic drugs. Anticoagulants slow 

down clotting, thereby reducing fibrin formation and preventing clots from forming and 

growing. Which targets are best for anticoagulant therapy and whether the anticoagulant 

drugs under development will have better therapeutic windows than the existing drugs 

are topics of intense debate (Weitz JI, 2007) (Hirsh J, 2007). 

The two main classes of anticoagulant drug are vitamin K antagonists and heparins, which 

target multiple proteases in the coagulation cascade (Fig. 13).  

Although sometimes eschewed because of fear of hemorrhagic side effects, the vitamin 

K antagonists, such as warfarin, remain valuable, especially in high-risk patients 

(Landefeld CS, 1989), such as those with malignant disease. An advantage of warfarin is 

that the dose recommended to prevent DVT is adequate to treat an established but 

undetected thrombus, which is not uncommon in such patients (Hyers TM, 1992) (Hirsh 

J, 1992). Extending treatment with vitamin K antagonists reduces the risk of recurrence 

while treatment continues (Prandoni P, 2007) (Boutitie F, 2011) (Agnelli G, 2001) (Kearon 

C, 1999) (Heit JA, 2000) (Agnelli G, 2003) (Eikelboom JW, 2007), but is associated with an 

increased risk of bleeding and the inconvenience of laboratory monitoring and dose 

adjustment (Linkins LA, 2003). Several studies have evaluated the efficacy of new oral 

anticoagulants, such as dabigatran and rivaroxaban, for the prevention of recurrent VTE 

as part of initial or extended treatment (Investigators, 2010) (Schulman S, 2009) 

(Schulman S, 2013) (Agnelli G, 2013). They have been shown to be effective alternatives 

to warfarin, but still carry a risk of bleeding and are more expensive. 

In the initial VTE treatment, is requires therapeutic dosages of unfractionated heparin 

(intravenous, subcutaneous monitored, or subcutaneous fixed dose) and low-molecular-

weight heparin (LMWH) (Kearon C, 2012) (Buller HR, 2012). Small subcutaneous doses of 

heparin prevent DVT in patients at moderate risk as a result of general, mainly abdominal, 

surgery (Collins R, 1988) (Clagett GP, 1988). Experiments in animals suggested that 

heparin species below 7kDa have fewer hemorrhagic side effects than conventional 

heparin (Carter CJ, 1982), thus providing the impetus for the interest in preparations of 

LMWH that are less active against platelets (Salzman EW, 1980). Another important side 

effect of heparin is an allergic thrombocytopenia, “heparin-induced thrombocytopenia”, 
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which is sometimes complicated by thromboembolism (King DJ, 1984). Boshkov et al., in 

1993, demonstrated a highly significant association between concomitant cardiovascular 

complications and the occurrence of an arterial thrombosis and with postoperative 

venous thrombosis in patients with heparin-induced thrombocytopenia (Boshkov LK, 

1993). Heparin-induced thrombocytopenia has recently been reviewed critically (Schmitt 

BP, 1993). The combination of heparin with a purified concentrate of AT III results more 

efficient in preventing DVT after orthopedic operations than heparin alone (Francis CW, 

1989). In particular, the combination could compensate for the decline in plasma 

concentrations of AT III that has been observed after hip arthroplasty and other major 

operations. Data from the RECORD (REgulation of Coagulation in ORthopedic Surgery to 

Prevent Deep Venous Thrombosis and Pulmonary Embolism) clinical trial show that the 

anticoagulant “Rivaroxaban” holds promise. When targeting factors in the coagulation 

cascade, it is important to consider that the sequential activation of factors by proteolytic 

cleavage results in an amplification of each step. Despite the possibility that the risk of 

bleeding is lower after inhibition of components of the intrinsic pathway than of the 

common coagulation pathway, most pharmaceutical companies have chosen to focus on 

inhibition of FXa (FXa, a component of the coagulation cascade) (Weitz JI, 2002) (Turpie 

A, 2007). The inhibition of the intrinsic pathway is expected to have less impact on 

ongoing thrombosis than would inhibition of the downstream proteases. Rivaroxaban is 

an orally available inhibitor of activated FX, and it reduced the incidence of VTE events in 

patients undergoing total hip replacement of 70% without an increase in bleeding. The 

reduction is from 3.7% in those administered a LMWH (enoxaparin) to 1.1% (Eriksson B, 

2007). Although this, LMWH is effective and easily administered, making it the preferred 

anticoagulant irrespective of VTE treatment in the outpatient or inpatient setting.  

Since the usual venous thrombus is a fibrin-rich clot formed within the circulation in dead 

waters, recirculating eddies, valve sinuses, and other areas of relative stasis (Sevitt S, 

1974) it is not surprising that inhibition of thrombin generation and fibrin formation can 

prevent DVT. Platelets might also be involved, especially if there is direct trauma to the 

vein (Stamatakis JD, 1977). The different role played by platelets and fibrin in arterial and 

venous thrombosis contributes to the concept of these diseases as distinct entities.  
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However, venous thrombosis and PE remain an important cause of morbidity and 

mortality both in surgical patients and in immobilized medical patients (Dalen JE, 1986) 

(Thromboembolic Risk Factors (THRIFT) Consensus Group, 1992) (European Consesus 

Statement, 1992). Various thromboprophylactic treatments have therefore been devised 

to prevent or limit VTE 

(Statement, European 

Consensus, 1992) 

(Thromboembolic Risk Factors 

(THRIFT) Consensus Group, 

1992) (Consensus 

Development Conference 

Report, 1986) (Kakkar V, 1990) 

(Clagett GP, 1988).  

In particular the treatment 

with antiplatelet drugs was 

been reconsidered.  

Mackman N., Nature 2010   

Fig 13: Targets of anticoagulant drugs 
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Antiplatelet drugs prevent platelets from clumping and prevent clots from forming and 

growing. Likewise, it is still stated that antiplatelet agents are more effective in arterial 

thrombosis and anticoagulants in venous thrombosis. In broad terms, arterial thrombosis 

is treated with drugs that target platelets (Fig. 14), and venous thrombosis is normally 

treated with drugs that target proteins of the coagulation cascade. Indeed, in inherited 

venous thrombotic disease, there can be increased activity or abundance of proteins that 

promote coagulation and/or decreased abundance of proteins that inhibit coagulation 

(i.e. Factor V Leiden, Haemophilia A and B, prothrombin mutations, etc).  

Currently, the role of antiplatelet agents, in particular of COX-inhibitors, in venous 

thrombus initiation or propagation, is still discussed. Recent studies highlight a possible 

link between arterial diseases and venous thrombosis (Prandoni P, 2003): new 

perspectives exist for the role of antiplatelet drugs in the management of VTE.  

It had previously been hypothesized that antiplatelet therapy did not influence VTE, and 

many surgeons and physicians do not use it routinely for thromboprophylaxis, even for 

patients who are at substantial risk of DVT or PE. Some previously direct randomized 

comparisons were available between the effects of aspirin and another antiplatelet 

regimen, or between one dose of aspirin and another, on DVT or PE, but these trials were 

generally too small to be reliable. In these direct comparisons, aspirin plus dipyridamole 

appeared to be more effective than aspirin alone at preventing DVT.  

An overview of randomized trials of perioperative subcutaneous heparin (Collins R, 

1988) showed that among surgical patients such treatment can roughly halve the risk not 

only of DVT but, more importantly, of PE. Subcutaneous heparin is now widely 

recommended for surgical or medical patients at high risk of venous occlusion, but 

antiplatelet therapy still is not (Thromboembolic Risk Factors (THRIFT) Consensus Group, 

1992) (European Consesus Statement, 1992) (Consensus Development Conference 

Report, 1986) (Clagett GP, 1988) (Goldhaber SZ, 1992).  
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The “Collaborative overview of randomized trials of antiplatelet therapy” (Collaborative 

overview of randomised trials of antiplatelet therapy – III, 1994) provides an overview of 

the results of the randomized trials of antiplatelet therapy in which DVT was to be 

assessed systematically. Most such trials entailed a few weeks of perioperative treatment 

in general or orthopaedic surgery, but some entailed a few months of treatment for long 

stay medical patients at high risk of VTE (for example, those immobilized by a stroke or 

myocardial infarction or 

who suffer recurrent 

venous thrombosis). 

This study indicates that 

antiplatelet therapy - 

either alone or, for 

greater effect, in 

addition to other proved 

forms of 

thromboprophylaxis 

(such as subcutaneous 

heparin) - should be 

considered to reduce 

DVT and PE. 

 

Mackman N., Nature 2010 

Fig 14: Targets of antiplatelet drugs 
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I. 5. COX inhibitors in VTE 

In the past decade, more progress has been made in understanding the role of 

cyclooxygenase enzymes (COXs) in biology and disease than at any other time in history. 

Two cyclooxygenase isoforms have been identified and are referred to as 

cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Under many circumstances the 

COX-1 enzyme is produced constitutively (i.e., gastric mucosa) whereas COX-2 is inducible 

(i.e., sites of inflammation). Nonsteroidal anti-inflammatory drugs (NSAIDs) are active on 

both enzymes.  

COX-1 inhibitors: Aspirin (acetylsalicylic acid or ASA) is probably the best studied NSAIDs. 

It is used by millions of people worldwide to reduce, in particular, pain and inflammation. 

On a molecular level, aspirin exert its pharmacologic effect by inhibiting the COXs 

enzymes. It inhibits the COX activity of prostaglandin (PG) G/H synthases (PGHS), by 

acetylating serine 529 in COX-1 (Cannon CP, 2012) (Cheng Y, 2002). Aspirin first binds to 

arginine 120 and blocks the access of arachidonic acid (AA) through a narrow 

hydrophobic channel to the catalytic site at tyrosine 385, leading to suppression of the 

generation of the precursor of thromboxane A2 (TXA2), that is PGH2 (Bombardier C, 

2000). Aspirin inhibits COX-2 by acetylating serine 516; however, the affinity of COX-2 is 

170 times lower than that of COX-1 (Patrono C, 2004).  

Aspirin is actually used in the treatment of acute myocardial infarction (MI) and in the 

secondary prevention of cardiovascular disease (CVD) among both men and women 

(Antithrombotic Trial Collaboration, 2002). To date, five randomized trials have evaluated 

aspirin in the primary prevention of CVD (Physician Health Group, 1989) (No authors, 

1998) (Hansson L, 1998). These trials indicate that, as compared with placebo, aspirin 

therapy was associated with a significant reduction in the risk of MI (32%), but the data 

on the risk of stroke and death from CVD remain inconclusive (Eidelmen RS, 2003). 

Experts believe that the protective benefits of aspirin for cardiovascular disease and 

cancer occur at doses of 75 to 100 milligrams a day. The same dose of 100 milligrams is 

use in patients that were followed up for recurrent VTE, arterial ischemic events (MI and 

stroke), bleeding, once daily. Indeed, patients with unprovoked VTE remain at high risk of 

recurrence following discontinuation of vitamin K antagonist therapy, with about a 10% 
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risk within the first year and 5% per year thereafter (Prandoni P, 2007) (Boutitie F, 2011) 

(Agnelli G, 2001) (Kearon C, 1999) (Heit JA, 2000) (Agnelli G, 2003). Aspirin has been 

studied extensively as prophylaxis against DVT, and its use has given rise to intense 

controversy (Clagett G, 1992) (Patrono C, 1994). In a large meta-analysis (Antiplatelet 

Trialist Collaboration, 1994), prophylactic aspirin reduced both proximal and distal DVT 

by 30 to 40 percent and PE by 60 percent in patients undergoing general surgical, 

orthopedic, and medical procedures. The physician's familiarity with the drug is an asset, 

but aspirin appears to provide less protection than can be achieved safely with more 

modern programs of anticoagulation.  

Subsequently, aspirin treatment has been evaluated in the WARFASA (The Warfarin and 

Aspirin trial) and ASPIRE (Aspirin to prevent recurrent venous thromboembolism) trials 

(Becattini C, 2012) (Brighton TA, 2012), where it reduced the risk of the second event of 

VTE. The ASPIRE and WARFASA studies were designed to examine the efficacy and safety 

of low-dose aspirin in the extended treatment of VTE. Eligible patients in these trials were 

those with a first episode of unprovoked VTE, defined as proximal DVT or PE, who had 

completed initial treatment with heparin and warfarin or an equivalent anticoagulant 

regimen. During the follow-up period, VTE occurred in 18.4% patients assigned to placebo 

13.1% assigned to aspirin. This was a 32% relative reduction in VTE. Aspirin reduced the 

rate of recurrent DVT without symptomatic PE by 34% and PE with or without 

symptomatic DVT by 34% (Simes J, 2015). The rate of bleeding was low and did not differ 

significantly between the aspirin and placebo groups. The net clinical benefit 

(symptomatic VTE, MI, stroke, all-cause mortality and major bleeding) was improved with 

aspirin by 33% (Simes J, 2015). 

 

COX-2 inhibitors: The inhibition by NSAIDs, however, can be harmful when the reduced 

synthesis of PGs causes a deterioration of the normal function of the gastrointestinal 

mucosa, with formation of more or less serious injuries. Therefore, it was tried to produce 

anti-inflammatory drugs that would act only on COX-2, in order to block the pain and 

inflammation, leaving intact the PGs in the stomach, useful for its protection. It seems 

obvious, that cardiovascular safety and gastrointestinal risks are undoubtedly connected 
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by an interaction with PGs (Chen Y, 2002), as a result of the varying mechanisms of action 

of different COX-inhibiting drugs. 

Thus were born the so-called COX2-selective drugs (which block the COX-2 but not the 

COX-1), known as COXIBs. The COXIBs, introduced into clinical practice in United States 

in late 1998, were considered such as a pharmacological alternative approach to NSAIDs. 

They were developed as NSAIDs with an improved gastrointestinal side effect profile 

(Laine L, 2002) (Hunt RH, 2003). COX-2 inhibitors not only lacked the antiplatelet effects 

of aspirin; by inhibiting the production of prostacyclin (also called prostaglandin I2 or 

PGI2), they were also disable one of the primary defenses of the endothelium against 

platelet aggregation, hypertension, and atherosclerosis. COX-2 inhibitors also promoted 

an imbalance in favor of vasoconstriction. The first COXIB put on the market was 

celecoxib, commercially CELEBREX (all drugs in this category end up precisely with the 

word COXIB). A short distance away was the rofecoxib (VIOXX commercially) and 

gradually others such as valdecoxib and etoricoxib (ARCOXIA commercially). 

However, approximately six years later the COXIBs were approved for use in the US, the 

results of three randomized, placebo-controlled trials provided new evidence about the 

cardiovascular risks of rofecoxib, celecoxib, and valdecoxib (Bresalier RS, 2005) (Solomon 

SD, 2005) (Nussmeier NA, 2005). These results have prompted the need for subsequent 

investigations, such as the APPROVe (Adenomatous Polyp Prevention on Vioxx) trial 

(Bresalier RS, 2005), which have resulted in the withdrawal of rofecoxib from the global 

market in September 2004. Indeed, APPROVe trial includes patients with a history of 

colorectal adenomas, where treatment was stopped early because rofecoxib doubled the 

risk of major cardiovascular events (Psaty BM, 2005). These findings confirmed the 

increased risk of MI previously seen in 1999 in the VIGOR (Vioxx Gastrointestinal 

Outcomes Research) trial (Bombardier C, 2000): in November 1999, 79 patients out of 

4,000 taking Vioxx had serious heart problems or have died, compared with 41 patients 

taking naproxen, a NSAIDs. These results, prompted scientists to review the 

cardiovascular-safety results of a similar trial, the APC (Adenoma Prevention with 

Celecoxib) study (Solomon SD, 2005). At either 200 or 400 mg twice a day, celecoxib in 

the APC trial was associated with a tripling of the risk of cardiovascular events. Moreover, 
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the effect of COX-2 inhibitor reported in some trial (Nusmeier NA, 2005) showed that the 

short-term use of valdecoxib and its prodrug parecoxib was associated with increased 

cardiovascular risk in patients undergoing coronary bypass surgery. The APC trials, taken 

together with data from the APPROVe trial (McAdam BF, 1999) and various observational 

studies (Villalba ML, 2005) (Tergum SL, 2001), suggested that cardiovascular risks seen 

with celecoxib may also extend to other NSAIDs and COXIBs (e.g., etoricoxib and 

diclofenac). Indeed, not all studies had found just selective COX-2 inhibitors to be 

associated with greater cardiovascular risk (Solomon SD, 2004) (Arber N, 2006), which 

has resulted in the current controversy around the safety profile and application of COX-

targeting drugs for the treatment of inflammatory conditions. CLASS trial (Celecoxib Long-

term Arthritis Safety Study) involved a comparison of celecoxib with two traditional 

NSAIDs, diclofenac and ibuprofen. A year later its publication (Silverstein FE, 2000), the 

FDA posted the data on its website in the process of considering an appeal for labeling 

that would distinguish celebrex from other traditional NSAIDs.  

The recently raised COX-2-dependent cardiovascular effects seem to depend on a 

number of variables such as dosing, half-life and dosing intervals.  

Few data are available on the clinical association between COXIBs and VTE. Schmidt et al. 

(Schmidt M, 2011) hypothesized that prothrombotic drugs such as non-aspirin NSAIDs 

increase the risk of VTE. They conducted their study on population that take on non-

aspirin NSAIDs (ibuprofen, naproxen, ketoprofen, dexibuprofen, piroxicam, tolfenamic 

acid, and indomethacin), “older” COXIBs, introduced into clinical practice in 1998, and 

were developed as NSAIDs with an improved gastrointestinal side effect profile (Laine L, 

2002), and “newer” COXIBs (Capone ML, 2007). They found that the use of non-selective 

NSAIDs or COXIBs was associated with an increased risk of VTE. This study was one of the 

first to examine the association between COXIBs and VTE: case reports had previously 

associated celecoxib with DVT (Chan AL, 2005) and valdecoxib with PE (Westgate EJ, 

2005). In a murine model, rofecoxib has also been associated with VTE (Nagai N, 2008) 

and the risk increase was related to both DVT and PE (Huerta C, 2007).  In their study, 

they found an association for both new and long-term use of non-selective NSAIDs, older 

COXIBs, and newer COXIBs (Huerta C, 2007). 
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Venous thrombosis is one of the major cause of mortality and morbidity in developed 

countries, more than one per 1000 persons each year in Western populations (Heit JA, 

2004) (Kyrle PA, 2005). Venous thrombosis occurs mainly in the deep vessels of the lower 

limbs and is associated with serious complications such as pulmonary embolism (PE), 

deep vein thrombosis (DVT) and post-thrombotic syndrome (PTS) (Heit JA, 2006) (Kyrle 

PA, 2005).  

A venous thrombus occurs when blood clots within the vein. Arterial thrombi usually 

occur when endothelium damaged lead to the activation of the coagulation cascade 

(López JA, 2009), in contrast, most of venous thrombi occur where vessel wall is intact 

(Martinelli I, 2010), but blood flow and shear rates are low. In these conditions, tissue 

factor (TF) triggers the clotting cascade, leading to fibrin generation/deposition (Bovill EG, 

2011) that entraps red blood cells and leukocytes (Martinelli I, 2010).  

Classical pharmacological treatment of VTE are anticoagulant drugs and, recently, 

thrombolytic agents. However, the use of these drugs has several limitations: wide 

variability dose/response relationship between patients and in the same patient, multiple 

interactions with other drugs/foods, variability of daily doses, need of periodic 

withdrawals of blood during therapy, problems of overdosing (Konstantinides S, 2014) 

(Klok FA, 2014) (Levy JH, 2014).  

Anticoagulant therapy is the mainstay for the treatment of VTE, but recent studies 

suggested that antiplatelet therapy provided some protection against VTE. Indeed, it has 

been suggested that Aspirin may be useful in the prevention of VTE (Antiplatelet Trialists’ 

Collaboration, 1994). Aspirin inhibits the COX-activity of prostaglandin (PG) G/H 

synthases (PGHS), acetylating serine 529 in COX-1 (Patrono C, 2009) (Patrono C, 2004), 

with consequent suppression of the generation of prostanoids including thromboxane A2 

(TXA2), that is PGH2 (Patrono C, 2004). Aspirin inhibits also the isoform COX-2; however, 

the affinity of COX-2 is 170 times lower than that of COX-1 (Patrono C, 2004).  

Specific cyclooxygenase-2-selective inhibitors (COXIBs) aimed to directly targets COX-2, 

enzyme responsible of inflammation and pain (Pedersen AK, 1984), were developed. Few 
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data are available about the effect of COX-2 inhibitors in venous thrombosis, nevertheless 

their clinical use seem associated with increased risk of venous thrombosis (Armstrong 

PC, 2011).  

The aim of this study was to highlight the different implication of COX-1 and COX-2 

enzymes in venous thrombosis and to identify the molecular mechanisms responsible for 

this effect, in order to developed new therapeutic strategies to prevent venous 

thrombosis. In particular, we focused on the impact of inhibition of COX-pathway on 

leukocyte activation, important regulators of formation and propagation of venous 

thrombus.  

To reach these goals, venous thrombosis was induced in WT mice treated with Aspirin 

and in COX-2 knockout (COX-2KO) by inferior vena cava (IVC) ligation and thrombi 

characterized 48 hours after surgery. Remarkable, human venous thrombi are very 

similar in terms of composition and structure to those obtained with the experimental 

muse model here used.  
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III. 1 Effect of deletion of COX-1 enzyme in a venous thrombosis mouse model 

III. 1.1 ASA administration reduces urinary levels of Thromboxane A2 in IVC mouse model 

To investigate the effects of the inhibition of cyclooxygenase-1 (COX-1) enzyme on venous 

thrombosis, wild type (WT) mice were treated with ASA (Aspirin, Acetylsalicylic acid, 3mg/Kg) or 

with vehicle (ethanol) once a day for 3 days. After 24 hours of treatment, mice were subjected to 

ligation of inferior vena cava (IVC) to induce venous thrombosis. Urine has been collected at 

baseline and once every day throughout the study to measure 2,3-dinor Thromboxane B2 (TXB-

M), stable metabolite of Thromboxane A2 (TXA2). In WT control mice, IVC ligation, markedly 

affected the levels of urinary excretion of TXB-M (Fig. 1A). In particular, 24 hours post ligation, 

urinary TXB-M levels were significantly higher in control operated mice (16.30 ± 2.27 ng/mg 

creatinine) compare to the levels of TXB-M before IVC ligation and compare to baseline (8.14 ± 

0.84 ng/mg creatinine and 6.0 ± 1.16 ng/mg creatinine, respectively). TXB-M levels slightly, but 

not significantly, decreased at 48 hours after stenosis in control mice (12.67 ± 0.97 ng/mg 

creatinine, p<0.05) (Fig. 1A). Administration of ASA, as expected (Lopez LR, 2014), reduced urinary 

TXB-M levels in ASA-treated mice compared to vehicle-treated mice (5.40 ± 0.35 ng/mg 

creatinine), and prevented the excretion of TXB-M induced by IVC ligation both at 24 and 48 hours 

(6.96 ± 0.45 ng/mg creatinine and 6.98 ± 0.73 ng/mg creatinine, respectively; Fig. 1A).  

 

III. 1.2 Thrombus weight results decrease after ASA and SQ 29,548 treatment 

Fourth-eight hours after IVC ligation, mice were sacrificed, and thrombi were dissected and 

measured. In ASA treated-mice, thrombus weight was significantly reduced by about 28% 

compare to control mice (control: 8.59±0.63 mg/thrombus; ASA: 6.17±0.71 mg/thrombus) (Fig. 

1B). Moreover, a positive correlation between thrombus size and TXB-M levels in urine was found 

at 48 hours after IVC ligation (Y = 0.9301*X + 3.459; r2: 0.5013; p<0.001) (Fig. 1C).  

To investigate the involvement of TXB2/TP pathway in this contest, another group of mice was 

treated with SQ 29,548 (1 mg/Kg), a selective thromboxane receptor antagonist, or with vehicle. 

SQ 29,548 reduced thrombus weight compare to control mice (control: 11.5±1.07 mg/thrombus; 

SQ 29,548: 7.06±0.81 mg/thrombus). In particular, thrombus size was reduced by about 38% in 

SQ 29,548 treated-mice (Fig. 1D). 
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Fig. 1: Effect of ASA and SQ 29,548 on urinary levels of 2,3-dinor Thromboxane B2 (TXB-M) and thrombus size after IVC 

ligation. Mice were treated with vehicle, ASA (A-C) or with SQ 29,548 (D) before IVC ligation. (A) Kinetics of urinary 

TXB-M levels and (B) thrombus weight 48 hours after ligation of IVC in ASA-treated mice. (C) Correlation between 

urinary TXB-M levels and thrombus weight at 48 hours after ligation of IVC. (D) Thrombus weight at 48 hours after 

ligation of IVC in SQ 29,548-treated mice (* p<0.05; ** p<0.01; *** p<0.001 versus control; n= 8 mice/group). Data 

shown are mean ± SEM. 
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III. 1.3 ASA and SQ 29,548 treatment affect thrombus composition 

The effects of ASA and SQ 29,548 administration on thrombus composition were examined using 

histological analysis (Fig. 2). In particular, Picro-Mallory staining on progressive section of thrombi 

was used to visualize fibrin content within the thrombus. Treatment with ASA or with SQ 29,548 

significantly decrease of total fibrin infiltration compare to control mice (control: 40.50 ± 5.18% 

fibrin/thrombus; ASA: 32.87 ± 2.72% fibrin/thrombus, p<0.5; SQ 29,548: 30.38 ± 2.97% 

fibrin/thrombus, p<0.5) (Fig. 2A, B).   

Comparable results were obtained using Martius Scarlet and Blue staining, that recognize three 

different stages of fibrin maturation: yellow-orange for fresh fibrin, red for mature fibrin and blue 

for old fibrin. In particular, thrombi from control mice showed 35.30 ± 1.01% of old fibrin 

infiltration (blue), whereas the percentage of old fibrin decrease in thrombi from ASA and SQ 

29,548-treated mice at 20.91 ± 1 .23% and 29.15 ± 1.62% (p<0.001; p<0.01 respectively) (Fig. 2C, 

D), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Fibrin content in thrombi at 48 hours after ligation of IVC. Representative images of (A) Picro-Mallory staining and 

(C) Martius Scarlet Blue staining (MSB). (B), (D): representative sections of thrombi from control, ASA and SQ 29,548-

treated mice; (B) percentage of total fibrin infiltration (red stain); (D) percentage of old fibrin within the thrombus 

(*p<0.05; **<p0.01; ***p<0.001 versus control; n= 8 mice/group). Data shown are mean ± SEM.  
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Then, the number of nucleated cells infiltrated in the thrombi was analyzed. Hematoxylin/eosin 

(H/E) staining showed that both ASA and SQ 29,548 treatment decreased by about 20% the 

number of nucleated cells infiltrated within the thrombi compared to control animals group 

(control: 167.7±2.38 cells/field, ASA: 137.8±9.9 cells/field, SQ 29,548: 142.98±5.17 cells/field. Fig. 

3A). Immunohistochemical analyses were performed to identify the type of cells present in the 

thrombi. The cells recruited in the venous thrombi of control mice were almost exclusively 

represented by leukocytes. Indeed, about 99% were CD45 positive (CD45+) cells, as previously 

showed by von Brühl et al. (von Brühl ML, 2012). In addition, as expected, neutrophils (Lys6G+ 

cells) were about 70% of total leukocytes, while monocytes (F4/80+ cells) were the remaining cells 

(Fig. 3C, D). ASA and SQ 29,548 treatment significantly decreased infiltration of CD45+ cells 

compare to control (control: 145.80±1.81 CD45+ cells/field, ASA: 111.28±3.36 CD45+ cells/field, 

SQ 29,548: 105.18±1.05 CD45+ cells/field) (Fig. 3B). In particular, both the number of Lys6G+ cells 

and of F4/80+ cells in thrombi were significantly reduced by both pharmacological treatment 

(control: 111.34±5.02 Lys6G+ cells/field, ASA: 108.4±5.18 Lys6G+ cells/field, SQ 29,548: 

77.64±0.60 Lys6G+ cells/field; control: 42.8±1.28 F4/80+ cells/field, ASA: 25.5±1.78 F4/80+ 

cells/field, SQ 29,548: 27.5±1.44 F4/80+ cells/field) (Fig. 3C,D).  
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Fig. 3: Characterization of venous thrombi isolated at 48 hours after IVC ligation showed different cellular infiltration in 

control mice compare to ASA or SQ 29,548-treated mice. Nucleated cells infiltration results significantly decrease after 

ASA and SQ 29,548 administration. Leukocytes resulted affect by ASA and SQ 29,548 administration, and in particular, 

neutrophils (Lys6G positive cells) and monocytes/macrophages (F4/80 positive cells) results decrease after treatment. 

(A i) hematoxylin/eosin staining and quantification of panels (A ii) expressed as nucleated cells per field. 

Immunohistological analysis of CD45 (B i), Lys6G (C i), F4/80 (D i). (A i), (B i), (C i) and (D i) expressed as positive cells per 

field (20X magnification). (A ii), (B ii), (C ii), (D ii): quantification of panels (*p<0.05; **p<0.01; ***p<0.001 versus 

control; n=6 mice/group). Data shown are mean ± SEM.  
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III. 1.3.1 ASA and SQ 29,548 reduced NETs formation in vivo  

Recently, the emerging role of Neutrophil Extracellular Traps (NETs) in thrombosis was shown. 

NETs bind erythrocytes and platelets (Fuchs TA et al., 2010) and promote coagulation by 

degradation of Tissue Factor Pathway Inhibitor (TFPI) (Massberg S et al., 2010). 

Hematoxylin/eosin staining on sections of control thrombi developed after 48 hours of stenosis 

showed a dotted nuclear staining and a diffuse extracellular DNA (hematoxylin staining; Fig. 4A; 

black arrow). In contrast, both ASA and SQ 29,548 thrombi (Fig. 4B; red arrow) had dense nuclei. 

In addition, lower levels of citrullinated histone H3 (H3Cit), a NET marker that recognized residues 

2, 8 and 17, were found thrombi from ASA and SQ 29,548-treated mice compared to control (Fig. 

4C). 
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Fig. 4: Effect of ASA and SQ 29,548 treatment on NETs formation in 48 hours venous thrombi. (A i) Hematoxylin/eosin 

(20X magnification), (A ii) (40X magnification) showed normal NETs formation in control venous thrombi. (B i) (20X 

magnification), (B ii) (40X magnification) demonstrated a significantly inhibition of NETs formation after ASA and SQ 

29,548 treatment.  (C): Immunofluorescence staining of hypercitrullinated  histone H3 (H3Cit, green) and Hoechst 

(nuclear marker, blue), as NETs marker confirmed these data (40X magnification). 
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III. 1.3.2 ASA and SQ 29,548 affects Tissue Factor activity and expression 

Recent studies suggested that Thromboxane A2 (TXA2) could be added into the list of stimuli that 

induce TF expression in different type of cells, including monocytes (Eligini S, 2006; Del Turco S, 

2014). 

IVC ligation increased TF-positive MPs (MP-TF) (Figure 5A), as previously showed in a different 

animal model (Himber J, 2003). Administration of both ASA and SQ 29,548 markedly reduced MP-

TF activity compare to control group, bringing it back to basal level (Fig. 5A). Similarly, TF 

immunohistochemical staining on section of thrombi showed that pharmacological treatments 

decreased the number of TF-positive cells (control: 106.59±6.95 TF+ cells/field; ASA: 76.03±3.71 

TF+ cells/field; SQ 29,548: 90.76±5.19 TF+ cells/field) (Fig. 5B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: ASA and SQ 29,548 treatment decreased 

Microparticles (MPs)-Tissue Factor (TF) activity 

induced by IVC ligation. (A) TF activity in plasma 

MPs; (B i) histological analyses of TF expression on 

section of thrombus (representative images; 20X 

magnification) and (B ii) its quantification 

expressed as positive cells per field (*p<0.05; 

***p<0.001 versus control; n=6 mice/group). 

Data shown are mean ± SEM.  
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III. 1.4 Key role of TP-non-platelet-receptor in venous thrombosis 

To investigate the possible redundant role of TP-receptor activation on platelet in a venous 

thrombosis contest, experiments of platelets transfusion were performed. WT mice were 

selectively depleted of platelets and then treated with SQ 29,548 or with vehicle. Twenty-four 

hours later, platelet-deficient mice were transfused with fresh platelets isolated from untreated 

WT mice, and immediately underwent to ligation of IVC to induce venous thrombosis. Forty-

height hours after ligation mice were sacrificed and thrombi were collected. Remarkably, despite 

the infusion of fresh platelets, SQ 29,548 treatment significantly reduced thrombus weight 

compare to control (control: 8.4±0.66 mg/thrombus; SQ 29,548: 1.58±1.78 mg/thrombus). 

 

  

 

 

 

 

 

 

Fig. 6: Reinfusion of new platelets in WT mice with a depletion of platelets and treated with SQ 29,548 caused a 

reduction in thrombus weight at 48 hours after IVC ligation compare to control. (**p<0.01 versus control; n=6 

mice/group). Data shown are mean ± SEM.  
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III. 1.5 Inhibition of TXA2/TP receptor pathway prevents NETs formation in peritoneal 

neutrophils stimulated by supernatant of activated platelets (APS) in vitro  

To assess the ability of TXA2 to induce NETs formation, neutrophils were treated for 2 hours with 

medium alone, with medium plus collagen, with supernatant of platelet incubated with or 

without collagen (stimulated – APS- and un-stimulated platelets –N/APS-, respectively) under 

stirring for 10 minutes, or with I-BOP (2μM). When incubated in medium alone, medium plus 

collagen or with supernatant of stirred platelets, neutrophils did not spontaneously extrude 

extracellular traps, as showed by the absence of staining for extracellular DNA and Histone H3 

(H3Cit) (Fig. 7A; Fig. 8). In contrast, supernatant of stimulated platelets (APS) or I-BOP induced 

extracellular traps formation, as showed by release of Hoechst-positive strand-like material and 

by staining for H3Cit in neutrophils (Fig. 7B, C; Fig. 8). Interesting, incubation of neutrophils with 

SQ 29,548 (10μM) significantly decreased NETs formation induced by both APS and I-BOP (Fig.7D; 

Fig. 8). 
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Fig. 7: Immunofluorescence of neutrophils NETs (H3Cit) formation after incubation for 2 hours with. (A i) medium alone; 

(A ii) medium plus collagen; (A iii) supernatant of un-stimulated (N/APS); (B) stimulated platelets (APS); (C) I-BOP; (D) 

APS plus SQ 29,548, as indicated. Representative image of 6 independent experiments. Data shown are mean ± SEM.  
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Fig. 8: Quantization of Neutrophils NETs (H3Cit) formation after incubation for 2 hours with medium alone, medium 

with collagen, supernatant of un-stimulated and stimulated platelets (N/APS, APS), and I-BOP with or without SQ 29,548 

as indicated.  (n=6 independent experiment; **p<0.01 versus medium alone; ##p<0.01 versus medium plus APS; 

$$p<0.01 versus medium plus I-BOP). Data shown are mean ± SEM.  
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III. 1.6 TF activity and expression was modulated after SQ 29,548 incubation: ex vivo 

and in vitro experiments 

To sustain the hypothesis of ability of TxA2 platelet-released to modulated expression/activation 

of TF in neutrophils and monocyte/macrophages, in vitro experiments were carried out.  

In particular, neutrophils and mouse peritoneal macrophages (MPMs) were incubated for 4 hours 

with medium alone (control cells), medium plus collagen (data not shown), I-BOP (2μM) or 

supernatant of un-stimulated and stimulated platelets (N/APS, APS), in presence or absence of 

SQ 29,548 (10μM). Then TF expression and/or activity was analysed. The incubation of 

neutrophils and MPMs with I-BOP or with APS induced a significantly increased of TF activity 

compared to control cells (Fig. 9A, B). The treatment with SQ 29,548 completely prevented TF 

activity induced by APS (Fig. 9A, B) in both neutrophils and monocytes/macrophages.  In addition, 

western blot analysis in monocytes/macrophages showed that incubation of MPMs with SQ 

29,548 completely inhibited TF expression induced by APS (Fig. 9C).  

 

Fig. 9 TXA2 released from stimulated platelets increased activity and expression of Tissue Factor (TF) in neutrophils and 

macrophages. Neutrophils (A) and mouse peritoneal macrophages (B) were incubated for 4 hours with medium alone, 

medium plus collagen (data not shown), supernatant of un-stimulated (N/APS) and stimulated platelets (APS), with or 

without (not shown) SQ 29,548 plus APS and with I-BOP, as indicated.  Activity (B) and expression (C i) (C ii) of TF was 

assessed in peritoneal macrophages (*p<0.05; **p<0.01; ***p<0.001). Data shown are mean ± SEM.  
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III.2  Results 
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III. 2 Effect of deletion of COX-2 enzyme in a venous thrombosis mouse model 

III. 2.1 COX-2 deletion affected venous thrombus formation 

To assess whether COX-2 deletion might concur to venous thrombosis, wild type (WT) and COX-

2 knockout (COX-2KO) males’ mice of 10-12 weeks were subjected to ligation of inferior vena 

cava (IVC) and 48 hours post ligation mice were subjected to vascular ultrasonography analysis 

(US). Through the use of this technique we can monitor thrombus formation and propagation 

every day throughout the experiment (Fig. 1, 2).  

Both at 24 hours and 48 hours after ligation, COX-2KO mice developed bigger thrombi than WT 

mice (24 hours: WT: 0.4±0.14 mm2/thrombus; COX-2KO: 1.34±0.28 mm2/thrombus; p<0.05. Fig. 

1A, B; 48 hours: WT: 1.26±0.29 mm2/thrombus; COX-2KO: 2.47±0.74 mm2/thrombus; p<0.05. Fig. 

2A, B). In particular, at 48 hours after ligation, thrombi from COX-2KO mice were bigger compared 

to those measured in both groups of animals at 24 hours (Fig. 3).  
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Fig. 1: Vascular ultrasonography (US) imaging of thrombus formation in WT and COX-2KO mice 24 hours after IVC ligation. 

Representative image of longitudinal vision of (A) WT and (B) COX-2KO inferior vena cava (IVC) with or without color-

doppler function (A i) (A ii) (B i) (B ii). White arrows indicated the presence of thrombi. n=7-8 mice/group. 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Vascular ultrasonography (US) imaging of thrombus formation in WT and COX-2KO mice 48 hours after IVC ligation. 

Representative image of longitudinal vision of (A) WT and (B) COX-2KO inferior vena cava (IVC) with or without color-

doppler function (A i) (A ii) (B i) (B ii). White arrows indicated the presence of thrombi. n=7-8 mice/group. 
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Fig. 3: Deletion of COX-2 enzyme significantly increased thrombus size. Measurement of thrombus area obtained with 

vascular ultrasonography (US): 24 hours after IVC ligation (t=1) and 48 hours after IVC ligation (t=2) versus basal (t=0) 

(*p<0.05 WT vs basal at 24 hours after IVC ligation; **p<0.001 WT and COX-2KO vs basal at 24 and 48 hours after IVC 

ligation; ##p<0.01 vs WT at 24 and 48 hours after IVC ligation; n=7-8 mice/group). Data shown are mean ± SEM.  

 

Thrombus measurements obtained pathologically at sacrifice of animals confirmed the data 

obtained by US. In particular, COX-2KO thrombus weight, during acute thrombogenesis (48 hours 

after IVC ligation), increased of 1.3 fold compared to thrombus detected in WT mice (WT: 11.54 

± 2.67 mg/thrombus; COX-2KO: 22.42 ± 2.13 mg/thrombus) (Fig. 4).  

 

 

 

 

 

 

 

 

 

Fig. 4: COX-2 deletion increased thrombus weight induced after IVC ligation compared to WT mice. (A) Forty-eight hours 

after IVC ligation thrombi from WT mice (open circles) and COX-2KO mice (black triangle) were removed and weighed 

(***p<0.001 vs WT mice; n=7-8 mice/group). (B) Macroscopic appearance of venous thrombi of WT and COX-2KO mice 

after IVC ligation. Representative results are shown here.  Data shown are mean ± SEM.  
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III. 2.2 COX-2KO deletion affects thrombus composition 

Composition of WT and COX-2KO trombi were examined in terms of fibrin content and infiltrated 

cell types. Deletion of COX-2 caused a greater fibrin deposition compare to WT (WT: 43% 

fibrin/thrombus section; COX-2KO: 68% fibrin/thrombus section; p<0.05), detected with Picro-

Mallory stain (Fig. 5). In particular, an increased in old fibrin content was detected with Martius 

Scarlet Blue stain in thrombi from COX-2KO mice than from WT mice (WT: 36 % old 

fibrin/thrombus section; COX-2KO: 58 % old fibrin/thrombus section; p<0.05) (Fig. 6). 

 

 

Fig. 5: Picro-Mallory stain on progressive section of WT and COX-2KO thrombus: (A) fibrin infiltration (red stain; 10X 

magnification) within the thrombus 48 hours after ligation of IVC in WT mice and COX-2KO mice and (B) their 

quantization (*p<0.05 vs WT; n=6 mice/group). Data shown are mean ± SEM.  

 

 

 

 

 

 

 

 

Fig. 6: COX-2KO mice, through Martius Scarlet Blue stain (MSB), showed an increased in old fibrin. (A) Old fibrin infiltration 

(blue= old fibrin; 10X magnification) within the thrombus 48 hours after ligation of IVC in WT mice and COX-2KO mice 

and (B) their quantization (*p<0.05 vs WT; n=6 mice/group). Data shown are mean ± SEM.  
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In addition, the number of nucleated cells infiltrated in venous thrombi was significantly reduced 

in COX-2KO thrombi than in WT thrombi (WT: 170.76±21.52 nucleated cells/field; COX-2KO: 

128.5±8.96 nucleated cells/field; p<0.05) (Fig. 7A). In particular, the total number of leukocytes, 

identified as CD45 positive cells (Fig. 7B), was significantly decreased in COX-2KO thrombi 

compare to WT (WT: 129.5±2.34 CD45+ cells/field; COX-2KO: 119.06±1.08 CD45+ cells/field; 

p<0.01) (Fig. 7B). Neutrophils, identified as Lys6G positive cells (Fig. 7C), and monocytes, as F4/80 

positive cells (Fig. 7D), were then analyzed. COX-2KO mice showed a slightly reduction in the total 

number of neutrophils compare to WT mice (WT: 130.53±5.89 Lys6G+ cells/field; COX-2KO: 

109.47±3.42 Lys6G+ cells/field; p<0.05) (Fig. 7C). However, the percentage of neutrophils 

compared to total cell number infiltrated in thrombi was similar in two groups (WT: 78 % Lys6G+; 

COX-2KO: 75 % Lys6G+; p=ns) (Fig. 7C). In contrast, total number of monocytes resulted slightly 

increased in COX-2KO thrombi (WT: 64.70±0.3 F4/80+ cells/field; COX-2KO: 71.73±1.88 F4/80+ 

cells/field; p<0.05) (Fig. 7D), whereas the percentage was significantly increased than WT thrombi 

(WT: 40 % F4/80+; COX-2KO: 51 % F4/80+; p<0.01) (Fig. 7D). 
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Fig. 7: Immunohistochemical analysis on sections of WT and COX-2KO thrombi showed different cellular infiltration within the thrombi. 

(A i) (A ii) Hematoxylin/eosin showed reduction in cellular infiltration within the COX-2KO thrombi than WT, and (B i) (B ii) histological 

analyses showed that also leukocytes infiltration (CD45), (C i) (C ii) neutrophils infiltration (Lys6G) and (D i) (D ii) 

monocytes/macrophages infiltration (F4/80) were significantly decreased in COX-2KO thrombi. (A iii) (B iii) (C iii) (D iii) represented 

percentage quantization of cellular infiltration expressed as positive cells per field (20X magnification) (*p<0.05; **p<0.01 vs WT; n=6 

mice/group). Data shown are mean ± SEM.  
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III. 2.3 COX-2 deletion affects Tissue Factor (TF), AnnexinA2 (ANXA2) and S100A10 

expression in thrombi 

Tissue Factor (TF) expressed by vessel wall or by circulating cells plays a key role in both arterial 

and venous thrombosis (Furie B, 2007) (Manly DA, 2011) (von Brühl ML, 2012). We previously 

showed that TF activity was substantially increased in circulating plasma microparticles and in 

total leukocytes from COX-2KO mice compared to WT mice (Barbieri SS, 2012). Here we showed 

that thrombi from COX-2KO mice have a greater number of TF-positive cells compare to thrombi 

obtained from WT mice (WT: 52.20±6.27 TF+ cells/field; COX-2KO: 82.75±5.10 TF+ cells/field; 

p<0.01) (Fig. 8).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: COX-2 deletion caused a significantly decrease of Tissue Factor expression in venous thrombi. (A) Histological 

analyses of TF expression on section of thrombus from WT and COX-2KO mice 48 hours IVC ligation (20X magnification) 

and (B) quantization of positive cells per field. (**p<0.01 vs WT; n=6 mice/group). Data shown are mean ± SEM.  
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In addition, in view of their potential role in the fibrinolytic process and in the TF modulation 

(Laumonnier Y, 2006), immunohistochemistry analysis of AnnexinA2 (ANXA2) and of its ligand 

S100A10 have been performed on sections of WT and COX-2KO thrombi. Remarkably, a higher 

number of ANXA2-positive cells (Fig. 9) concomitantly with a lower number of S100A10-positive 

cells (Fig. 10) were detected in thrombi from COX-2KO than WT mice (WT: 64.23±11.11 ANXA2+ 

cells/field and COX-2KO: 113.81±3.21 ANXA2+ cells/field; p<0.05; WT: 55.72±1.86 S100A10+ 

cells/field and COX-2KO: 34.63±4.31 S100A10+ cells/field; p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: ANXA2 expression in venous thrombi was increased in COX-2KO mice. (A) Representative images of 

immunohistochemical analysis (20X magnification), and (B) quantization of ANXA2 in WT and COX-2KO thrombi 

expressed as positive cells per field (*p<0.05 vs WT; n=6 mice/group). Data shown are mean ± SEM.  
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Fig. 10: S100A10 expression in venous thrombi was decreased in COX-2KO mice. (A) Representative images of 

immunohistochemical analysis (20X magnification), and (B) quantization of S100A10 in WT and COX-2KO thrombi 

expressed as positive cells per field (***p<0.001 vs WT; n=6 mice/group). Data shown are mean ± SEM.  
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III. 2.3.1 Inhibition of COX-2 increased TF via ANXA2  

In vitro studies were performed to assess the potential relationship between COX-2, TF, ANXA2 

and S100A10.  

Peritoneal macrophages from COX-2KO mice showed greater levels of TF and in ANXA2 

expression, and lower levels of S100A10 than WT (Fig. 11). Similar results about ANXA2 expression 

were obtained when RAW 264.7 cells, a mouse leukemic monocyte macrophage cell line, were 

transfected with specific COX-2 siRNA and compared to cells transfected with non-specific siRNA 

(Fig. 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Peritoneal macrophages from COX-2KO mice showed (A i) greater levels of expression of TF, (B i) ANXA2 and (C 

i) S100A10 than WT cells. (A i) (B i) (C i) representative images of Western Blot; (A ii) (B ii) (C ii) protein content 

normalized to actin expression of TF, ANXA2 and S100A10 (*p<0.05; **p<0.01 vs WT cells). Data shown are mean ± 

SEM of 6 independent experiments. 
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Fig. 12: Silencing of COX-2-enzyme increased ANXA2 expression in RAW 267.4 cells. Immunohistochemical analysis of 

ANXA2 was performed on RAW 267.4 cells transfected with siRNA control cells or siRNA COX-2 cells (A). ANXA2 (Bi) (Bii) 

was analyzed also by western blotting analyses. Representative images of 4 independent experiments. 
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Localization of ANXA2 in peritoneal monocytes/macrophages collected from WT and COX-2KO 

mice, analyzed with western blot analysis of total lysed and of cytosol, membrane and nuclear 

fractions, showed that ANXA2 mainly localized at the nuclear level in COX-2KO mice, while at the 

membranes levels in WT mice (Fig. 13).  

 

 

 

 

 

 

Fig.13: ANXA2 localized in different manner in COX-2KO peritoneal macrophages cells. Western blot of ANXA2 on 

fractions (cytosol, membrane and nucleus) of peritoneal macrophages cells from WT and COX-2KO mice (n=6 

mice/group). Data shown are mean ± SEM of 6 independent experiments. 
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IV.1  Discussion 
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IV. 1 Role of COX-1 in venous thrombosis 

In this study, we provide evidence that the inhibition of cyclooxygenase-1 (COX-1) is 

responsible for a significantly decrease in venous thrombus size in mice. Indeed, low-dose 

of aspirin is sufficient to decrease TF activity in plasma microparticles (MP-TF), through a 

TXA2/TP-receptor mechanism. In particular, we showed that thromboxane platelet-

produced induces monocytes/macrophages and neutrophils activation with consequent 

increased of TF expression and neutrophil extracellular traps (NETs) formation, factors 

that cooperate in the occurrence of venous thrombus formation. 

The increased levels of TXB-M and the higher circulating levels of DNA, as surrogate 

marker of NETs, have been observed in pathological conditions including DVT and/or VTE 

(Diaz JA, 2013) (Klotz TA, 1984) (Patrignani P, 2008). In contrast, while the relevance of 

TF in venous thrombus formation is mostly accepted (von Brühl ML, 2012), contradicting 

results have been obtained about the circulating levels of TF in the DVT (Kooiman J, 2015) 

(Thaler J, 2014) (Walenga JM, 2014) (Ye R, 2012). Accordingly with our data, TF activity 

on MPs increased in mice that developed venous thrombi after IVC ligation (Ramacciotti 

E, 2009). This suggests that MP-TF activity might represent an early circulating marker of 

venous thrombus formation, and sustains the concept of the important role of MP-TF in 

venous thrombus amplification. Indeed, the correlation observed between TF and the 

number of MPs,  associate with the higher venous thrombus weight in mice injected with 

MPs or TF+ microvescicles than mice exposed only to IVC ligation (Ramacciotti E, 2009) 

(Geddings JE, 2015), well supports our data concerning the correlation of TF activity on 

MPs and thrombus weight. In addition, ASA treatment, affecting both MP-TF activity and 

thrombus size induced by IVC ligation, strengthen this concept. 

ASA, producing an irreversible acetylation of cyclooxygenase (COX), leads to suppression 

of prostaglandin H2 generation, a precursor of TXA2. Low-dose ASA, sufficient to 

completely inhibit platelet COX-1 activity, is traditionally used in primary and secondary 

prevention of artery diseases (Ganjehei L, 2014), and now emerging data suggests that it 

reduces also the risk of second event of VTE (Becattini C, 2012) (Bringhton TA, 2012).  

Many molecular mechanisms by which ASA affect venous thrombosis have been 

hypothesised, focusing on its effect on platelet inhibition. Indeed, the interaction 
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between platelets, leukocytes and vascular endothelium is a critical step in the 

development of venous thrombus (Fuchs TA, 2012). Recently, von Brühl et al. founded 

that platelets, via glycoprotein Ib, contribute to DVT progression by promoting leukocytes 

recruitment and stimulating TF coagulation pathway (von Brühl ML, 2012). Here, we 

showed that platelets support venous thrombus formation also by TXA2 production. 

Indeed, the inhibition of TXA2 /TP pathway by ASA and SQ 29,548 treatment, reduced the 

presence of neutrophils and monocytes/macrophages as well as NETs and TF in venous 

thrombi, and prevented thrombus growing. 

It was established that both neutrophils and monocytes/macrophages expressed TF in 

venous thrombi. In particular, monocytes/macrophages, but not vessel wall, are the 

major contributor of TF expression during venous thrombosis in undamaged vessel wall 

condition (von Brühl ML, 2012). All monocytes/macrophages present in venous thrombus 

strongly express TF whether only a subset of neutrophils is TF+ (von Brühl ML, 2012). 

Although the critical role of neutrophils in venous thrombus formation is well 

documented (Fuchs TA, 2012),  with an inhibition of thrombus growth after neutrophils 

depletion (von Brühl ML, 2012), the question whether the subset of TF+ neutrophils 

produces also NETs remains to be elucidated. Nevertheless, it is plausible to believe that 

inhibition of TXA2 signalling pathway improving vessel wall rheology leads to reduction in 

the thrombus growth. The experiments of platelets transplantation allow to exclude a 

redundant effect of TXA2 platelet-produced on platelet activation and to emphasize the 

impact of TXA2 on leukocyte activation in the development of DVT.  Indeed, we showed 

that fresh platelets infused in mice treated with SQ 29,548 were unable to restore the 

thrombus size detected in control mice or in vehicle-treated mice. However, platelets 

activation was required for venous thrombus development. In fact, depletion or 

inactivation of platelet by clopidogrel completely prevented venous thrombus formation 

(data not shown) (von Brühl ML, 2012) (Geddings JE, 2015).  

Our hypothesis was strongly supported by in vitro data. In fact, activation of platelet with 

PAR-1 induces NETosis, and inhibition of TP receptor prevents this process (Caudrillier A, 

2012). Moreover, activation of TP receptor contributes to induce TF expression and 

activity in monocytes and endothelial cells (Del Turco S, 2014) (Eligini S, 2006). In addition, 
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we found that neutrophils and/or monocytes exposed to supernatant of stimulated 

platelet (ASP) with collagen or to IBOP, a stable analogue of TXA2, were equally efficient 

to promote NETs formation and TF activity, respectively. Again, SQ 29,548 decreased 

NETs formation and TF activity induced by ASP, providing the critical role of TXA2 in this 

context. 

Of note, ASA-induced acetylation of fibrinogen increases clot permeability favouring 

fibrinolysis (He S, 2009) (Williams S, 1995). However, the similar results obtained with 

ASA and with the selective TP receptor antagonist suggest that the reduced amount of 

fibrin detected in the thrombi is marginally linked to direct effect of ASA on fibrin 

structure and stability. 

In conclusion, these results provide a new link between thromboxane platelet-produced 

and the occurrence of venous thrombosis. However, it will be to evaluate whether the 

treatment with TP receptor antagonists prevents venous thrombus development and VTE 

also in human.  
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IV.2  Discussion 
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IV. 2 Role of COX-2 in venous thrombosis 

The use of both “old and new” COXIBs were associated with a two-fold or more risk of 

VTE (Schmidt M, 2011). However, the molecular mechanisms by which COX-2 inhibition 

affects VTE are not fully understood. 

We showed that deletion of COX-2 increased expression and activity of TF and altered 

distribution of Annexin-A2 (ANXA2) in monocytes/macrophages, events that could 

predispose to earlier venous thrombus formation here described.  In particular, take 

advantage of vascular ultrasonography analysis (US) that allow to monitor the 

development of venous thrombus from the early stages of thrombus formation (6-24 

hours) to maximum amplification (48 hours) of thrombi, we  provide evidence that COX-

2KO mice developed venous thrombi faster than WT mice and that these thrombi were 

also bigger. 

The enhanced platelet reactivity, the higher level of TXA2, associated with the increased 

of TF activity in plasma microparticles (MP-TF) and in vessel wall, previously observed in 

COX-2KO mice by our group (Barbieri SS, 2012) (Barbieri SS, 2015), can alone explain the 

propensity of COX-2KO mice to develop venous thrombi. 

In particular, platelets play a key role in DVT propagation, supporting accumulation of 

leukocytes and promoting NETs formation. NETs produced by leukocytes provide an 

additional scaffold for platelet and red blood cells adhesion, promote fibrin formation, 

and exacerbate platelet and endothelial activation. In addition, activated platelets recruit 

MPs-TF that enhance thrombin generation in the growing thrombus (Ramacciotti E, 

2009), as previously extensively explained (discussion 1, page 92). In agreement with this 

concept, in the first part of thesis, we showed that inhibition of TXA2 platelet-produced 

suffices to reduce venous thrombus development.  The major cell sources of TF, 

responsible of generation and propagation of venous thrombus, is under debate. Some 

studies suggest that thrombus formation in the venous vasculature is primarily driven by 

TF from the vessel wall (Day SM, 2005) (Zhou J, 2009). In contrast, recently von Brühl et 

al. (von Brühl ML, 2012) provide evidence that leukocytes and not vessel wall are the 

major contributor to TF production. In particular, these authors showed that neutrophils 

and monocytes are the first cells recruited after the reduction of blood flow.  
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Recruited leukocytes start fibrin formation via blood cell-derived TF, which is the final 

trigger of massive fibrin deposition, the major characteristic of DVT (von Brühl ML, 2012). 

Indeed, is known that monocytes, and to a lesser extent neutrophils, expressed TF in 

venous thrombi, suggesting that both subsets, particularly monocytes, contribute to TF-

driven coagulation during mouse DVT (von Brühl ML, 2012).  

Interestingly, COX-2KO mice have a lower number of total leukocytes but a higher 

number of monocytes and of TF positive cells, associated with higher levels of old fibrin 

in the venous thrombi compared to WT mice.  

Many studies have implicated leukocytes not only in thrombus formation, but also in DVT 

resolution. In particular, the role of neutrophils in the process of formation/growth of the 

venous thrombus is complex. The impact of neutrophils reduction on venous thrombus 

size is unclear. Indeed, the absence of neutrophils leads to the formation of largest 

thrombi in rat, (Varma MR, 2003), in contrast, prevent venous thrombus formation in 

mouse (Saha P, 2011) (von Brühl ML, 2012).  

Similarly, monocytes/macrophages contribute to TF production and release an additional 

source of DNase, to generate plasmin and promote restoration of blood flow. 

 Despite this, the role of leukocytes in DVT development and the precise contribution of 

different leukocytes subsets to DVT induction/resolution is unclear. In addition, the 

heterogeneity of neutrophil/monocyte population makes it difficult to interpret their 

presence in the venous thrombus. It is possible that while a population of 

neutrophil/monocyte contribute to thrombus formation, another plays a more important 

role in its resolution.  

The imbalance in the subset of neutrophils and/or monocytes may support the early 

thrombus growth and impair venous thrombus resolution observed in COX-2KO mice. In 

particular, higher PAI-1 levels (Riehl TE, 2011) associated with lower tPA levels 

(unpublished data) may result in the reduced fibrinolysis in these mice. 

Remarkably, ANXA2, which orchestrates different biological processes including 

ffibrinolysis (Dassah M, 2009), was over-expressed in COX-2KO venous thrombi. 

However, the different distribution of ANXA2, preferentially at membrane levels in WT 

and in the cytosol/nucleus in COX-2KO macrophages, associated with a reduced levels of 
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its binding partner S100A10, may explain the reduced fibrinolysis and the increased of 

fibrin deposition observed in knockout mice. Unfortunately, no information are available 

about the distribution/function of ANXA2 in COX-2KO endothelial cells. 

Indeed, ANXA2 translocation on the cells surface, which is dependent on both expression 

of S100A10 protein and tyrosine phosphorylation of ANXA2, is a key regulatory step 

governing vascular fibrinolysis (Dassah M, 2009) (Flood EC, 2011), increasing plasmin 

generation (Deora AB, 2004). The inhibition/alteration of the ANXA2-S100A10 complex's 

function may increase thrombosis risk by impairing fibrinolysis (Hedhli N, 2012). 

Moreover, fibrinolysis assessed in S100A10-null mice (S100A10-/-), which displayed 

increased vascular fibrin, reduced clearance of thrombi, and impaired neovascularization 

of Matrigel thrombi, confirmed the relevance of this protein in thrombotic disorders 

(Surette AP, 2011).  

In contrast, the role of ANXA2 in the nucleus is not well understood. However, it is 

recently showed that intracellular ANXA2 regulates NF-kB signaling faciliting nuclear 

translocation of p50 subunit (Jung H, 2015), suggesting that ANXA2 can promote the 

transcription of different gene including also TF. In accordance to Zhou H et al., (Zhou H, 

2009), we showed that deletion of ANXA2 by specific siRNA reduced expression and 

activity of TF in monocytes/macrophages. All these findings support our hypothesis that 

the increased expression of ANXA2 and its accumulation into the nucleus can up-regulate 

TF expression in monocytes and promote thrombus growth in COX-2KO mice.   

Nevertheless, future study will be performed to investigate the contribution of vessel wall 

in this context. In effect, COX-2KO mice had increased plasma levels of asymmetric 

dimethylarginine (ADMA) and reduced endothelial nitric oxide responses (Ahmetaj-Shala 

B, 2015), factors that may affect venous (Wang G, 2013). 

In conclusion, we can hypothesize a new possible mechanism ANXA2-dependent in DVT 

induction/resolution. An alteration in the balance of ANXA2 and S100A10, accompanied 

with a different localization of ANXA2 in cells, can influences the fibrinolysis process and 

TF expression. This new described mechanism can be useful in the prevention of DVT, 

however additional studies need to be performed. 
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V. Conclusion 
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Data here obtained show that the inhibition of cyclooxygenase-1 (COX-1) and 

cyclooxygenase-2 (COX-2) in a venous thrombosis mouse model could lead to opposite 

effect on the thrombus development, stabilization and resolution.  

In particular, COX-1 inhibition is responsible of an impairment development and growth 

of venous thrombus, with a mechanism most likely dependent of TXA2 /TP pathway.  

In contrast, COX-2 inhibition caused an increased in thrombus development, growing 

accompanied with reduction in the thrombus resolution. These finding seem linked to 

the abnormal ANXA2 accumulation into the cytosol and the nucleus in cells from COX-

2KO mice.  

 

All data obtained support evidences that both COX-1 and COX-2 play a key role in DVT, 

opening the way to novel therapeutic approaches. 
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VI.  Materials & Methods 
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VI. 1 Animal model and in vivo procedures 

COX-2 heterozygote mice, obtained from The Jackson Laboratory (Bar Harbor, ME) on a hybrid 

C57BL/6:129 strain background (B6,129-Ptgs2tm1Jed/J), and were crossed with FVB/J wild-type 

mice for 10 generations to introduce the targeted Cox-2 allele onto an FVB background. FVB-Cox-

2 null mice were healthier than those on the original B6:129 background, with less morbidity and 

increased life spans. For the other experiments, wild type (WT) mice were used. 

All animals were kept in isolators under standard ambient conditions (temperature of 22-25 ° C, 

humidity 40-70%) with photoperiodic cycle light/dark 12/12h. Food and water were provided ad 

libitum. COX-2 wild type mice (WT), and COX-2 knockout (COX-2KO) were generated by the 

coupling of heterozygous mice and offspring, weaned at about 3 weeks of age, were genotyped 

by PCR analysis of DNA genomic obtained by caudal biopsy. 

This study was carried out in strict accordance with the recommendations in the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health. All experiments were 

approved by the Animal Care and Committee on Ethics of the University of Milan (No. 12/2009). 

All surgery was performed under anesthesia, and all efforts were made to minimize suffering of 

animals. 

VI. 1.1 DNA extraction and genotyping of animals: Genotypes were determined by PCR 

analysis of genomic DNA prepared from tail tips. The DNA concentration was measured. Mice 

were genotyped by PCR amplification using the following primers:  

Mouse 546 5’-ATCTCAGCACTGCATCCTGC-3’ 

Mouse 547 5’-CACCATAGAATCCAGTCCGG-3’ 

Mouse 013 5’-CCTGGGTGGAGAGGCTATTC-3’ 

VI. 1.2 Animal model of venous thrombosis: Inferior Vena Cava Ligation (IVC): WT and COX-

2KO mice, weighing 20 to 30 gr and between 12 to 14 weeks in age, were used. WT and COX-2KO 

mice, subjected or not to pharmacological treatment with vehicle, ASA or SQ 29,548, were 

subjected to surgery. Before surgery, mice underwent general anesthesia by injection of 

ketamine hydrochloride (75 mg/kg; Intervet) and medetomidine (1 mg/kg; Virbac). A ventral 

midline incision (2 cm) was made through the skin and abdominal wall exposing the abdomen. A 

sterile PBS1X soaked 2x2 in gauze was used to reflect the intestines to the animal’s left side 
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allowing the visualization of the inferior vena cava (IVC). The IVC was exposed and separated from 

the aorta at the level of the renal veins. 4-0 polypropylene was used to ligated IVC below the renal 

veins. Control animals from each experimental group undergo the above dissection used for the 

surgical approach, except the IVC was not ligated (sham animals).  After inducing thrombosis, the 

abdomen was closed. Mice were then recovered in an individual mouse cage, observed post-

operatively (45 minutes to 2 hours) under a heating lamp, then returned to their original housing 

units. Mice subjected to the above thrombosis-induction models were sacrificed at 48 hours after 

ligation under anesthesia. IVCs were dissected and excised. Thrombi were collected, weighted, 

washed in 10% phosphate-buffered saline (PBS 10%), and soaked overnight in 4% 

paraformaldehyde.   

VI. 1.3 Pharmacological treatment of animals: WT mice were subjected to pharmacological 

treatment and randomized in different groups: treated with vehicle (ethanol/physiological 

solution, gavage/i.p.; n= 8), with ASA (3 mg/Kg, gavage; n= 8) once a day for 3 days, and with SQ 

29,548 (1 mg/Kg, i.p.; n= 8) for 1 day. Twenty-four hours after the first treatment with vehicle, 

mice treated with ASA and SQ 29,548 underwent to surgery for the ligation of inferior vena cava. 

Forty-height hours after ligation, all animals were sacrificed and thrombi were collected. 

VI. 1.4 Ultrasonography analysis (US): Ultrasonography imaging was performed at 24 and 48 

hours after ligation of IVC, in WT and COX-2KO mice to monitor thrombus formation and growth. 

All IVC images were acquired with a Vevo2100 micro imaging system (Visualsonics, Toronto, 

Canada) equipped with high resolution a 256 elements linear probe of center frequency of 30 

MHz. Two different image modes were used for this study:  the so-called “B mode” is a grayscale 

image of eco-density useful precise for anatomic localization of IVC; the “color Doppler mode”, 

which is able to detect blood flow provided that flow direction is not perpendicular to the probe 

axis. Therefore, during acquisition, particular care has been taken to the direction of the IVC 

relative to the probe in order to exclude this eventuality. The flow is color-coded: red means 

blood flowing toward the probe, blue blood flowing away from probe. The transducer was able 

to acquire images 15.36 x 12 mm either for the B mode either for color Doppler images. In all 

experiments anesthesia was induced with 2% Isoflurane in 100% O2, then, when the animal was 

deeply sedated, the Isoflurane was reduced to 1%. Heart rate of the animal was monitored and 

kept at 500 beats per minutes. Temperature was controlled using a heating pad to 37±0.5°C. The 

abdomen of the mouse was shaved and warm ultrasound transmission gel was applied to enable 

visualization and optimize image quality. The IVC was searched at first on an axial B mode image, 
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then the probe was rotated by 90 degrees to a sagittal view where the clot was visible then the 

instrument was switched to color Doppler mode to confirm the absence of blood flow after the 

ligation point. Finally, again in B mode, the image was frozen on an optimal view and clot cross-

sectional area measurement were recorded using the VEVO software  

VI. 1.5 Urine collection: During the experiments, WT mice were housed in metabolic cages and 

fed mouse chow ad libitum to assess urinary excretion of fluid and to measured TXB2 levels after 

pharmacological treatment. Urine collections (24 and 48 hours pool) were performed during an 

adaptation period of 3 days on a standard diet. Urine were collected and were stored at -20°C. 

 

VI. 1.6 Platelets depletion and repletion: 

VI. 1.6.1 In vivo Carboplatinum depletion of platelets: To deplete platelets, a 150-μl volume 

of Carboplatinum (Pfizer, 150mg/15ml), a chemotherapeutic agent that causes 

thrombocytopenia, at the nonlethal dose of 125 mg/kg. It was intraperitoneal injected in WT 

mice 7 days before SQ 29,548 treatment (Barbieri SS, 2012). Platelets depletion was measured 

in the peripheral blood by cell count, and the procedure resulted in a > 90 percentage depletion 

of platelets. 

 

VI. 1.6.2 Platelet sorting and repletion into pls-/- mice:  Washed platelets obtained from 

platelet rich plasma (PRP) of WT mice were counted and ≈1×109 washed platelets per animal 

were intravenously reinfused. Immediately after platelets injection, mice underwent to ligation 

of IVC as previously described. 

 

VI. 2. Blood collection 

VI. 2.1 Measurement of Tissue Factor activity in plasma samples: For plasma preparation, 

blood samples were collected into 3.8% sodium citrate (1 part sodium citrate/ 9 blood) by cardiac 

venipuncture from anesthesized (ketamine chlorhydrate 75 mg/Kg / medetomidine 1 mg/Kg in 

physiologic water) WT and COX-2KO mice. Blood was centrifugated at 3000 rpm for 20 minutes 

at 4°C and immediately stored at -80°C until further analysis. Microparticle-associated TF (MP-TF) 

activity in plasma was measured using MP-TF kits from Hyphen BioMed according to the 

manufacturer's instructions. 
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VI. 2.2 Platelets-poor plasma (PPP) collection: Blood samples were diluted 1:1 with Hepes-

Tyrode’s buffer and centrifuged at 100 g for 10 minutes. Platelet rich plasma (PRP) was gently 

removed with a plastic pipette. Platelet-poor plasma (PPP) was obtained by centrifugation of the 

remaining blood at 2000 g for 20 minutes.  

VI. 2.3 Washed platelets (WPs): washed platelets were obtained by serial centrifugations of PRP 

with addiction of 1.2 µM PGI2 and 0.01 mg/L apyrase. Washed platelets were subsequently 

stimulated with collagen 1µg/ml for 10 minutes at 37°C under stirring and used subsequently.  

 

VI. 3. Ex vivo procedures  

VI. 3.1 Urine collection for 2, 3-dinor-TXB2 measurement: the determination of urinary 2,3-dinor-

TXB2 was performed using a  modified LC-MS/MS method previously described (Cavalca V, 2010).  

Briefly, mice urine (1 mL) were acidified with 3% formic acid (500 µL) before being loaded onto 

SPE cartridges (Oasis HLB 1cc, 30 mg, Waters, Milford, MA, USA) that were conditioned with 

methanol and water. Cartridges were then washed with 1% formic acid, 5% acetonitrile, hexane 

and the analyte was eluted with 100% acetonitrile. 

The eluted fractions were evaporated to dryness using a vacuum centrifuge at room temperature 

(SpeedVac Savant SC210, Thermo Scientific, MA, USA) and reconstituted with 100 µL of 10% 

acetonitrile before the LC-MS/MS analysis. 

We used an Accela HPLC System (Thermo Fisher Scientific, San Jose, CA, USA) coupled to a triple 

quadrupole mass spectrometer TSQ Quantum Access (Thermo Fisher Scientific) outfitted with 

electrospray ionization (ESI) source. The Xcalibur® software, version 2.0 (Thermo Fisher Scientific) 

was used for system control, data acquisition and processing. 

The chromatographic separation was performed using an XBridge C18 column (100 mm x 2,1 mm, 

3.5 µm; Waters Milford, MA, USA) and the mobile phase was composed by two solvents: solvent 

A (Water with 0.1% ammonium hydroxide) and solvent B (Methanol:Acetonitrile 50:50 v/v with 

0.1% ammonium hydroxide). The selected reaction-monitoring (SRM) was performed in negative 

mode by monitoring the transitions m/z 341.1  m/z 141.02+166.93. 

 

VI. 3.2 Collection, processing and inclusion of thrombi: Forty-eight hours after the IVC 

ligation, the mice were euthanized and gently perfused with PBS and 4% paraformaldehyde 
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(PFA). Inferior vena cava was dissected and the thrombi collected were immediately measured 

and weighed, and then fixed over-night in 4% PFA. 

The following day the thrombi were washed twice in PBS 1X buffer solution for one hour at room 

temperature and dehydrated in solutions of increasing alcohols (from 50% Ethanol to 100% 

Ethanol). For a complete dehydration of the samples, the thrombi were placed in xylene and 

subsequently embedded in paraffin. Sections about 3μm were mounted on SuperFrost Plus 

microscope slides, and thrombi were visualized with different staining. 

 

VI. 3.2.1 Histopathology and immunohistochemical analysis:  

VI. 3.2.1.1 Hematoxylin and eosin: The sections of thrombi were first deparaffinated and 

subsequently rehydrated through a decreasing scale of alcohols. Then, sections were immersed 

in a hematoxylin solution for nuclear counterstaining and in eosin solution for cytoplasmic 

staining. Then, sections were washed in H2O for a few seconds and subjected to a dehydration 

process by steps in increasing alcohol solutions and a last step in xylene. The slides were finally 

mounted with specific mounting (Fast Drying Mounting Medium, Bio-Optica) to be subsequently 

photographed by light microscopy. 

The images for cell counts were obtained by "ZEUS" camera and analyzed with ImageJ software. 

For each thrombus were analyzed 5 sections and for each of them were taken 5 random pictures 

of different areas (20X). The total of images obtained for each sample is 25. 

VI. 3.2.1.2 Picro-Mallory stain: The sections of thrombi were first deparaffinated and 

subsequently rehydrated through a decreasing scale of alcohols. Slides were rinsed in distillated 

water and then were incubated for 10 minutes at room temperature with mix solution to stain 

nuclei with an acid resistant nuclear stain (Weigert’s iron hematoxylin), washed in  distillated 

water and subsequently in fontis water for 10 minutes. Sections were placed in yellow mordant 

(Picric acid, saturated in 80% ethanol, Orange G, Lissamine yellow) for 2-3 minutes, washed in 

distilled water until only erythrocytes are yellow. Then, were placed in the red stain (Acid fuchsin, 

glacial acetic acid, distillated water) for 5-10 minutes, rinsed with 1% aqueous acetic acid and 

differentiate with the red differentiator (Stock differentiator, ethanol 95%, distillated water) until 

fibrin is prominent microscopically. Subsequently samples were rinsed well in distilled water and 

placed in the blue stain (Methyl blue, glacial acetic acid, distillated water) for 5 minutes. Then 

were rinsed briefly with 1% aqueous acetic acid, placed in the blue differentiator (Stock 

differentiator, distillated water) for 1-2 minutes and rinsed with 1% aqueous acetic acid. Finally, 
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sections were dehydrated with ethanol, cleared with xylene and mount with a resinous medium. 

With ZEUS  camera, all section of each thrombus were analyzed with ImageJ software to identify 

collagen component within the thrombi. 

VI. 3.2.1.3 Martius Scarlet and Blue stain (MSB): The sections of thrombi were first 

deparaffinated and subsequently rehydrated through a decreasing scale of alcohols. Sections 

were incubated for 1 hour at 60°C in Bouin’s Solution and incubated with Harris’ hematoxylin,  

differentiated in acid alcohol (1% hydrochloric acid plus 70% alcohol), rinsed in 95% alcohol and 

excess of alcohol was shacked from the slides, stained in Martius Yellow solution (0.5 gr of Martius 

Yellow, 100 ml alcohol 95%, 2 gr of phosphotungstinic acid) for 3 minutes. Slides were rinsed in 

distillated water, and incubated with Crystal Ponceau solution (1% Crystal Ponceau 6R in 2% 

acetic acid). After rinsing in distillated water, sections were differentiated in 1% phosphotungstic 

acid,  washed in distillated water, stained in methyl blue solution (0.5% methyl blue in 1% acetic 

acid), rinsed in distillated water, dehydrated, cleared and mounted with specific mounting. With 

ZEUS  camera, all section of each thrombus were analyzed with ImageJ software to identify 

collagen component within the thrombi. 

VI. 3.2.1.4 Immunohistological analysis:  

VI. 3.2.1.4.1 Immunohistochemical analysis: were performed according to the standard 

StreptAvidin Biotin method. Briefly, tissue sections were deparaffinated, then rehydrated in a 

graded series of ethanol as previously described.  Inhibition of endogenous peroxidases was 

performed in 3% H2O2 for 10 min and antigen retrieval was recovered by use of bathwater. 

Sections were heated (95–98°C) in 0.01M sodium citrate buffer at pH 6.0 for 15 min or EDTA 

buffer (0,25mM or 1mM) pH8 for 15 or 30 minutes in according to the antibody used. PBS-triton 

1% washing buffer was used for permeabilization, and aspecific sites are blocked in 1% Bovine 

Serum Albumin for 30 min at room temperature. Then, sections were incubated overnight with 

the primary antibody at 4°C. After incubation with corresponding biotinylated secondary 

antibody (Polyclonal Goat Anti-Rabbit Immunoglobulins/Biotinylated Code E0432; Polyclonal 

Rabbit Anti-Goat Immunoglobulins/Biotinylated Code E0466, Dako California; Polyclonal Goat 

Anti-Rat Immunoglobulins/Biotinylated, serotec), sections were incubated with 

streptavidin/HRP (code P0397; Dako California) and then stained with 3,3′-diaminobenzidine 

tetrahydrochloride (DAB). Nuclear counterstaining was performed using Carazzi’ Hematoxylin. 

Sections were rehydrated as previously described, and mounted. For negative controls, sections 

were incubated in the absence of primary antibodies. We obtained 10 visual field images from 
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every section for optical microscopy. The image for cellular count of positive cells for each 

antibody in each visual field images were obtained with Zeus camera. For each thrombus were 

analyzed five sections 20x and for each section was calculated the number of cells in 5 random 

field/section.  

 

 

Primary Antibody Isotype Dilution 
Antigen 

retrieval 

Anti-CD45 BD Pharmingen™ 

Clone  OX-1 (RUO) 

 

Rat-polyclonal 1:50 
30 min EDTA 

buffer pH8 

Anti-F4/80 antibody [CI:A3-1] Rat monoclonal  1:100 
15 min EDTA 

buffer pH8 

Biotin anti-mouse Ly-6 (clone 1A8) Rat-polyclonal  1:1000 
30 min citrate 

buffer pH6 

Anti-AnnexinA2 antibody Rabbit polyclonal  1:2000 
15 min citrate 

buffer pH6 

Anti-Tissue Factor [EPR8986] 

 
Rabbit monoclonal  1: 200 

15 min citrate 

buffer pH6 

Anti-S100A10 (11250-1-AP) Rabbit polyclonal  1:100 
15 min citrate 

buffer pH6 
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VI. 3.2.1.4.2 Immunofluorescence of HistoneH3 on formalin-fixed-paraffin-embedded 

(FFPE) sections of thrombi: For immunofluorescence staining, sections of 3µm thickness of 

thrombi were used. Sections were deparaffinated and rehydrated.  Antigen retrieval was 

performed in according to the antibodies used. Sections were washed in PBS, permeabilized in 

PBS-TRITON 0.1% and blocked with PBS+BSA 5% + TRITON 0.1% for 3 hours at room 

temperature. Then, were incubated with primary antibodies (Anti-Histone H3 antibody citrulline 

R2 + R8 + R17) diluted in PBS+BSA 5% + TRITON 0.1% overnight at 4°C. Subsequently, were 

washed in PBS and next, Alexa Fluor secondary antibody (Alexa Fluor anti-Rabbit 488) was used 

for detection. DNA was stained with 1µg/ml Hoechst 33342 (Invitrogen), and a coverslip was 

placed by fluorescence mounting medium. Images were acquired using a fluorescence 

microscope with an AxioCam and processed by AxioVision 4.6 software.  

 

Primary Antibody Isotype Dilution 
Secondary 

Antibody 

Anti-Histone H3 

(citrulline R2 + R8 + 

R17) antibody - 

ChIP Grade 

(ab5103) 

 

Rabbit polyclonal 1:250 
Anti-rabbit Alexa 

Fluor 488 1:500 

 

VI. 3.2.1.4.3 Immunofluorescence of HistoneH3 on neutrophils cells: For 

immunofluorescence staining, plated cells were washed in PBS 1X, fixed in PFA 4%, 

permeabilized in PBS-TRITON 0,1% and blocked with PBS+BSA5% + TRITON 0,1% for 3 hours at 

room temperature. Then, were incubated with primary antibodies (Anti-Histone H3 antibody 

citrulline R2 + R8 + R17) diluted in PBS+BSA 5% + TRITON 0.1% overnight at 4°C. Subsequently, 

were washed in PBS and next, Alexa Fluor secondary antibody (Alexa Fluor anti-Rabbit 488) was 

used for detection. DNA was stained with 1µg/ml Hoechst 33342 (Invitrogen), and a coverslip 

was placed by fluorescence mounting medium. Images were acquired using a fluorescence 

microscope with an AxioCam and processed by AxioVision 4.6 software.  
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VI. 3.2.1.5 NETs immunofluorescence quantification: For quantification of NETs, serial cross 

sections were stained with Hoechst and the number of NETs was counted with a 40X objective 

in four fields of view (176 × 131 µm). The sections of thrombi originated from the proximal, 

middle, and distal part of the IVC.  

 

VI. 3.2.1.6 Double Immunofluorescence of F4/80 and TF on formalin-fixed-paraffin-

embedded (FFPE) sections of thrombi: For double immunofluorescence staining, sections of 

3µm thickness of thrombi were used. Sections were deparaffinated, rehydrated and 

permeabilized with PBS-TWEEN 0.1%.  Antigen retrieval was performed in according to the 

antibodies used. Sections were washed in PBS, and the first blocking step with PBS1X/GOAT 

SERUM 3%/TWEEN 0.1% for 1 hours at room temperature was performed. Then, were incubated 

with the first primary antibody (Anti-F4/80; clone BM8, 1:100) diluted in PBS1X/GOAT SERUM 

3%/TWEEN 0.1% overnight at 4°C. Subsequently, decanted the first primary antibody solution, 

sections were washed in PBS 1X and then were incubated with secondary biotinylated antibody.  

Alexa Fluor streptavidin (Alexa Fluor 555) was used for detection of signal. For TF detection, a 

second blocking step with PBS1X/GOAT SERUM 10%/TWEEN 0.1% for 1 hours at room 

temperature was performed. Then sections were incubated with the second primary antibody 

(Anti-Tissue Factor; ab151748, 1:100) overnight at 4°C. Next day, sections were rinsed and 

incubated with secondary biotinylated antibody. Alexa Fluor streptavidin (Alexa Fluor 488) was 

used to the detection of TF signal. DNA was counterstaining with 1µg/ml Hoechst 33342 

(Invitrogen), and a coverslip was placed by fluorescence mounting medium. Images were 

acquired using a fluorescence microscope with an AxioCam and processed by AxioVision 4.6 

software.  

 

 

VI. 4. In vitro experiments: cell studies 

VI. 4.1 Peritoneal macrophages isolation: Peritoneal macrophages were isolated from WT mice 

as Zhang et al. protocol [14]. In particular, Mice were injected intraperitoneally with 3 ml of 4% 

thioglycollate medium (Sigma-Aldrich). After 72 hours of injection, the mice were sacrificed by 

CO2 inhalation and the macrophages were harvested by peritoneal lavage recovered by injecting 

5 ml of PBS with a syringe needle 20-G. The exudate thus obtained was centrifuged and pellet 

suspended in a solution of ACK for lysate the red blood cells potentially present. After a new 
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centrifugation, the pellet was suspended in Dulbecco's modified Eagle's medium containing 10% 

serum and plated in this same medium. The cells thus obtained were counted and plated in the 

same medium for 2 hours. Adherent cells were treated in serum free medium with or without 

stimuli. 

 

VI. 4.1.1 Measurement of Tissue Factor activity: the adherent peritoneal macrophages  were 

incubated with different stimulus, as supernatants of activated platelets (sPLTs) for 6 hours in 

the ratio 20:1 with macrophages, with I-BOP (2μM, Cayman Chemical, Ann Arbor MI USA) that 

was a stable TXB2 analogue, and with SQ 29,548 (10μM, Cayman Chemical, Ann Arbor MI USA), 

a selective thromboxane receptor antagonist. Macrophages cells were incubated for 4 hours 

with the stimulus. Subsequently, TF activity was determined on these lysed cells by one-stage 

plasma recalcification assay. Samples were lysed with 15 mmol/L n-Octyl-B-D-glucopyranoside 

lysis, and total protein concentrations were determined. Each sample was mixed with citrated 

pooled WT mouse plasma and CaCl2, and procoagulant activity was quantified by a 1-stage 

plasma recalcification time assay. 

 

VI. 4.1.1.1 Procoagulant Activity (PCA) assay: Procoagulant activity was measured by 

recalcification time test of citrated mouse plasma pool at 37°C. To 40μl of sample, pre-incubated 

at 37°C in temperature bath for 1 minute, were added 40μl of PPP and 40μl of CaCl2 15mM. 

recalcification times were converted in arbitrary units of tissue factor (TF) by using a calibration 

curve of thromboplatin extracted from human placenta (Behring). 

 

VI. 4.2 Peritoneal neutrophils isolation: Peritoneal neutrophils were isolated from WT mice. 

Mice were injected intraperitoneally with 3 ml of 4% thioglycollate medium (Sigma-Aldrich). After 

4 hours of injection, mice were sacrificed by CO2 inhalation and neutrophils were harvested by 

peritoneal lavage recovered by injecting 5 ml of PBS with a syringe needle 20-G. The exudate thus 

obtained was centrifuged and pellet suspended in a solution of ACK for lysate the red blood cells 

potentially present. After a new centrifugation, the pellet was suspended in Dulbecco's modified 

Eagle's medium containing 10% serum and plated in this same medium. The cells thus obtained 

were counted and plated in the same medium for 2 hours. Adherent cells were treated in serum 

free medium with or without stimuli [IBOP (Cayman Chemical), supernatant of stimulated 

platelets (APS)]. 
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VI. 4.3 Cell culture of RAW 264.7 cells: Mouse leukemic monocyte macrophage cell line (RAW 

264.7 cells) were cultured in a sterile flask and maintained in DMEM + GlutaMAX medium 

(Invitrogen) supplemented with HEPES (1mM, Invitrogen), 100 U/ml penicillin (Gibco), 100 µg/ml 

streptomycin (Gibco) and 10% FBS , at 37°C in 5% CO2/95% air atmosphere. RAW 264.7 cells 

were stimulated with IBOP (2µM) for 4 hours vs control cells.  

 

VI. 5. Protein preparation, assay and immunoblotting: Peritoneal macrophages were 

used for immunoblotting analysis, to verify the expression of TF protein. After incubation with 

different stimulus, the cells were lysed in cold RIPA buffer (25mM TRIS HCL, 100Mm NaCl, 2.5Mm 

EDTA, 1% Triton-X-100, 0,1% SDS, 1Mm Na3VO4, 1mM PMSF, 10mM Na-pyrophosphate, 10mM 

NaF pH 8.0 and protease inhibitor cocktail). The total protein in cell lysates were quantified by 

the Micro BCA protein assay kit (Thermo Scientific).  

For separation of membrane/cytosol/ nucleus, cells were suspended in hypotonic buffer A 

(10mmol/l HEPES, pH 7.6, 10mmol/l KCl, 0.1mmol/l MgCl2, 0.1mmol/l DTT, 0.1mmol/l EDTA, 

0.5mmol/l PMSF, and 1mmol/l each of pepstatin, aprotinin, and leupeptin) for 10 min in ice and 

vortexed every 10 seconds. After centrifugation, supernatants were removed as 

“cytosol/membrane fraction” and pellets, containing nuclei, were washed with buffer A before 

suspension in buffer C (10mmol/l HEPES, pH 7.6, 400mmol/l NaCl, 1.5mmol/l MgCl2, 0.1mmol/l 

EDTA, 0.1mmol/l DTT, 0.5mmol/l PMSF, and 1mmol/l pepstatin, aprotinin, and leupeptin and 5% 

glycerol) for 30 minutes in ice. The supernatants, designed “nuclear fraction”, was collected by 

centrifugation at 12.000 g for 20 minutes. Cytosol/membrane fraction was then 

ultracentrifugated (105 g for 30 min at 4°C), the supernatants were removed as “cytosol fraction” 

and membranes were washed in buffer A and then dissolved in Laemmli sample buffer. 

The protein concentration was obtained by interpolation of a standard curve obtained with 

increasing concentrations of albumin. Thirty μg samples were prepared with Laemmli method, 

and equivalent amounts of protein were separated on 12 or 15% SDS-PAGE gels, transferred to 

nitrocellulose membrane and bands of interest detected using antibodies anti- TF (rabbit anti-

Tissue Factor, 1:1000, ab151748, Abcam), anti-Annexi2 (rabbit anti-Annexin-2, 1:1000, ab41803, 

Abcam), anti-S100A10 (rabbit anti-S100A10, 1:1000, Proteintech) and anti-tubulin (1:10000; 

Sigma Aldrich) as a loading control. The membranes were then incubated with the peroxidase-

conjugated secondary antibody and the band of interest was captured and analyzed by the 

system ODYSSEY Fc (LI-COR). 
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VI. 6. Statistical Analysis 

Statistical analyses were performed with GraphPad Prism6.0. Data were analyzed by the Mann-

Whitney test, Dunn’s test or ANOVA with repeated measures for main effects of treatment and 

time, followed by a Bonferroni post hoc analysis as appropriate. The Spearman coefficient (r) was 

calculated to quantify correlation between variables. Linear regression analysis was performed. 

Values of p<0.05 were considered statistically significant. Data are expressed as mean ± SEM. 
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