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Abstract

Finding multiple models (or structures) that fit data corrupted by noise and outliers
is an omnipresent problem in empirical sciences, including Computer Vision, where
organizing unstructured visual data in higher level geometric structures is a necessary
and basic step to derive better descriptions and understanding of a scene.
This challenging problem has a chicken-and-egg pattern: in order to estimate models
one needs to first segment the data, and in order to segment the data it is necessary
to know which structure points belong to. Most of the multi-model fitting techniques
proposed in the literature can be divided in two classes, according to which horn of
the chicken-egg-dilemma is addressed first, namely consensus and preference analysis.
Consensus-based methods put the emphasis on the estimation part of the problem and
focus on models that describe has many points as possible. On the other side, prefer-
ence analysis concentrates on the segmentation side in order to find a proper partition
of the data, from which model estimation follows.

The research conducted in this thesis attempts to provide theoretical footing to the
preference approach and to elaborate it in term of performances and robustness. In
particular, we derive a conceptual space in which preference analysis is robustly per-
formed thanks to three different formulations of multiple structures recovery, i.e. link-
age clustering, spectral analysis and set coverage. In this way we are able to propose
new and effective strategies to link together consensus and preferences based criteria
to overcome the limitation of both. In order to validate our researches, we have ap-
plied our methodologies to some significant Computer Vision tasks including: geomet-
ric primitive fitting (e.g. line fitting; circle fitting; 3D plane fitting), multi-body segmen-
tation, plane segmentation, and video motion segmentation.





1

The challenges of multiple structures estimation

Computer Vision ultimately aims to mimic and emulate human visual abilities, starting
from perception up to understanding and decision-making processes. Although this
ambitious goal has inspired research efforts towards the design of automatic systems
that can effectively analyze and extract information from the visual environment under
almost any operating condition, there is still an unfulfilled need for compact, abstract
representations of the visual content in order to bridge the semantic gap that separates
automatic perception from human comprehension.

A first step towards this direction is represented by geometric multi-model fitting, a
stream of research aimed at recovering geometric models from unstructured data for
the purpose of organizing and aggregating visual content in adequate higher-level geo-
metric structures.

To set a general context, let µ be a model – e.g. lines or other geometric primitives –
and X = {x1, . . . , xn} be a finite set of n points, possibly corrupted by noise and outlier.
The problem of multiple model recovery consists in extractingκ instances ofµ – termed
structured – from the data, defining, at the same time, κ subsets Ci ⊂ X , i = 1, . . . ,κ,
such that all points described by θi are aggregated in Ci . Often the models considered
are parametric, i.e. the structures can be represented as vectors in a proper parameter
spaceΘ.

This ubiquitous task can be encountered in many Computer Vision applications.
A typical example of this problem can be found in 3D reconstruction, where multi-
model fitting is employed either to estimate multiple rigid moving objects and hence
to initialize multi-body Structure from Motion [35, 73], or to produce intermediate ge-
ometric interpretations of reconstructed 3D point cloud by fitting planar patches and
geometric primitives [17, 44, 98]. Other scenarios in which the estimation of multiple
geometric structure plays a primary role include face clustering, body-pose estimation,
augmented reality, image stitching and video motion segmentation, just to name a few.
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In all these cases the information of interest can be extracted from the observed data
and organized in semantical significant structure by estimating some underlying geo-
metric parametric models, e.g. planar patches, homographic transformations, funda-
mental matrices or linear subspaces.

Due to the huge volume of visual data involved in Computer Vision applications,
parameter estimation techniques are typically heavily overconstrained, and model fit-
ting problems ought to be solved by least squares methods or, more generally, maxi-
mum likelihood estimation techniques. Nonetheless, the peculiar nature of visual data
– which are typically affected by arbitrarily large gross measurement errors– impedes
the adoption of classical statistical estimators, which are fragile and sensitive to out-
liers. For these reasons, robust estimators are required. The presence of multiple struc-
tures hinders also robust estimation, which, in addition to gross outliers and noise, has
to cope with pseudo-outliers, a concept introduced by Stewart [91] for describing those
points that do not match a model of interest because they are inliers of a different struc-
ture.

Many other issues are afoot, making the multi-model fitting problem a challenging
and demanding task. For example, the estimation and the segmentation tasks are two
closely entangled aspects that give rise to a “chicken-and-egg” dilemma: points should
be segmented based on their geometric proximity to structure whose unknown param-
eters must be estimated at the very same time. In other words, in order to estimate
models one needs to first segment the data, but conversely in order to segment the data
it is necessary to know the structures associated with each data point.

In addition the problem of multi-model fitting, is inherently ill-posed, since many
different interpretations of the same dataset are possible. Making the problem tractable
requires a regularization strategy that constrains the solution using prior information,
usually in the form of one or more parameter, such as the number κ of sought struc-
tures. Unfortunately estimating this quantity turns to be a thorny problem. Following
the spirit of Occam’s razor – that one should not presume more things than the required
minimum – κ should be kept as low as possible, but finding a correct tradeoff between
data fidelity and model complexity (a.k.a. bias-variance dilemma) is an intricate model
selection task.

1.1 Consensus and preferences

Among the wide variety of algorithms proposed in Computer Vision to address these
challenges, the analysis of consensus together with its dual counterpart, the analysis
of preferences, can be traced as a fil rouge connecting the extensive literature on multi
model geometric fitting.
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Fig. 1.1: Consensus and preference sets

In order to define these pivotal concepts, it is necessary to introduce a goodness-of-
fit measure that evaluates how adequately a point is described by a given structure. To
this end two notions, particularly important in statistics, come to play a relevant role:
the definition of the residual and the knowledge of the scale. Residuals can be regarded
as the deviations from an estimated structure and are modeled by an error function

errµ : X ×Θ→R+ (1.1)

that associates to every point-model pair (x,θ) ∈ X ×Θ the corresponding residual er-
ror errµ(x,θ). As the scale is concerned, a threshold ε ∈ R+, commonly known as inlier
threshold, is actually used to assess the noise variance. A point x is said to belong to a
given structure θ if

errµ(x,θ) ≤ ε. (1.2)

Thus, the consensus set of a model is simply defined as the set of points that fits the
model within a certain inlier threshold ε:

CSµ,ε(θ) = {x ∈ X : errµ(x,θ) ≤ ε}. (1.3)

Dually, the preference set of a point is the set of models having that point as an inlier:

PSµ,ε(x) = {x ∈ X : errµ(x,θ) ≤ ε}. (1.4)

Most of the multi-model fitting techniques proposed in the literature can be ascribed
to one of these two concepts, according to which part of the chicken-egg-dilemma is
addressed first. Consensus-based algorithms put the emphasis on the estimation part
and the focus is on models that have to describe has much points as possible. On the
other hand, preference approaches concentrate on the segmentation side of the prob-
lem, and are aimed at finding a proper partition of the data, hence estimation follows
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as a consequence. In the next section we attempt to retrace the path that, starting from
consensus throughout preference analysis, have been followed to address the challeng-
ing issues presented by multiple structures recovery.

1.2 Consensus analysis

Consensus analysis stands out as one of the first attempts to address robust model es-
timation. The methods belonging to this category follow a common paradigm. At first
the space Θ of all the feasible structures is approximated as a suitable finite hypothesis
space H in different ways. Then a voting procedure elects the structures in H that best
explain the data in terms of consensus set.

Random Sample Consensus

The idea of exploiting consensus is at the core of the celebrated RANSAC (Random Sam-
ple Consensus), a method, firstly introduced by Fischler and Bolles [34], aimed at esti-
mating the parameters of a single model in the presence of large amounts of outliers.
The goal of minimizing squared residuals, typical of Least Square method, is replaced
in RANSAC with the objective of maximizing the size of the consensus set of a structure,
provided the inlier threshold as input. RANSAC approximately maximizes this criterion
by searching through a pool of putative structures determined by randomly sampling.
In particular at each iteration a Minimum Sample Set (MSS) – composed by the mini-
mum number, say ζ, of points necessary to instantiate the free parameters of a structure
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– is drawn. In this way the estimation problem in the continuous domainΘ is converted
into a selection problem in a finite discretized subset H ⊂Θ.

For each estimated model the corresponding consensus set is computed counting
the residuals below the inlier threshold. This procedure is repeated until a structure
having enough supporting inliers is discovered among the data. A number of efforts
have been made to improve the RANSAC paradigm. For example, MSAC (M-estimator
Sample Consensus) and MLESAC (Maximum Likelihood Estimation Sample Consen-
sus) [100] propose to increase the robustness of the RANSAC paradigm incorporating
the use of M-estimator techniques. A lot of other refinements in terms of both accu-
racy and efficiency have been made [57], for example different sampling strategies have
been proposed in the literature to reduce the number of iterations necessary to recov-
ery an inlier structure. A nice survey on all these advancements can be found in [21] or
in the more comprehensive overview of recent researches presented in [81] where USAC

(Universal Framework for Random Sample Consensus) is derived.

Sequential RANSAC & Multi-RANSAC

The RANSAC strategy has been adapted to estimate multiple structures. Its most straight-
forward generalization is embodied by Sequential RANSAC, an iterative algorithm that
executes RANSAC many times and removes the found inliers from the data as each struc-
ture is detected. Zuliani et al. [122] noticed some drawbacks of this greedy esitmate-
and-remove approach, which in fact may happen to be sub-optimal since the quality of
the attained solution can be affected by inaccurate estimation of the initial structures.

In order to correct this behavior Zuliani et al. introduced Multi-RANSAC. Remaining
tied to the idea of maximizing the consensus set, Multi-RANSAC replaces the sequential
scheme with a parallel approach. Rather than looking for a single structure having the
largest consensus, κ models having maximal support are searched simultaneously at
each iteration. This is done by updating iteratively a collection of κ models with κ new
sampled structures using a fusion procedure that enforces explicitly the disjointness
of the obtained consensus sets. However as demonstrated experimentally in [96], this
method may yields poor results in presence of intersecting structures.

Hough Transform

The popular Hough transform and its randomized version (Randomize Hough Trans-
form [111]) can be regarded as well as consensus-oriented algorithms. In these ap-
proaches the parameter spaceΘ is approximated as a quotient space H =Θ/∼ in which
models are represented as equivalence classes of similar structures. The space H is
hence employed to build an accumulator collecting data votes: every point adds a vote
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to the bins representing the structures it belongs to. After voting is complete, the accu-
mulator is analyzed to locate the maxima that individuate the desired structures. Differ-
ently from RANSAC, where H is a discrete sampled version ofΘ, in Hough transform the
elements of the hypothesis space provide an exhaustive representation of the parame-
ter space, and tentative models are all considered simultaneously. This however comes
at the cost of defining a proper quantization of the space, which rapidly becomes in-
tractable as the degrees of freedom of the models increase. Randomized Hough Trans-
form instead of considering the votes of all the points, exploits random sampling to
approximate the accumulator for votes, reducing the computational load.

This strategy can be considered as an instance of a more general approach, that con-
sists in finding modes directly in Θ [93]. In this way the difficulties of the quantization
step, are alleviated by mapping the data into the parameter space through random sam-
pling and then by seeking the modes of the distribution with mean-shift [26] .

In all these consensus based methods, alongside the voting phase, the approxima-
tion ofΘ is a recurring theme and a very delicate step. The key point is that, when mul-
tiple structures are hidden in the data, consensus oriented algorithms have to disam-
biguate between genuine structures and redundant ones, i.e. multiple instance of the
same model with slightly different parameter. This crucial difficulty is hence addressed
by enforcing several disjointedness criteria implicitly implemented in the different ap-
proximations of the solution space.

For instance, Hough transform attempts to handle redundancy by capturing similar
structures in the same equivalence class via the problematic quantization of Θ. Along
the same line, the bandwidth used in mean shift can be thought as a way to localize
and aggregate redundant models. As suggested in [36] also both Sequential RANSAC and
Multi-RANSAC enforce disjointedness by avoiding to sample similar models. As regards
Sequential-RANSAC, this idea can be individuated in the iterative removal of the discov-
ered inliers and in the subsequent sampling of the hypotheses on the remaining data.
In Multi-RANSAC this is more evident, since this algorithm explicitly includes in its par-
allel approach a disjointedness constraint by directly searching for the best collection
of κ disjoint models.

In practice, however, using consensus as the only criterion seems short-sighted, as,
in many cases, ground truth models can have mutual intersection grater than redun-
dant ones, as shown in Figure 1.3 and, consequently, the rough consensus fails in dis-
cerning authentic structures.
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Fig. 1.3: Redundant structures (left) may happen to have smaller intersecting points
than genuine intersecting ones (right)

1.3 Preference analysis

In order to overcome the difficulties inherent of consensus methods, it has been pro-
posed to tackle the problem from a different point of view. Instead of exploiting con-
sensus of structures, the role of data and models are reverted: rather than representing
models and inspecting which points match them, the preference sets of individual data
points are examined.

Residual Histogram Analyisis

This idea can be traced back to Residual Histogram Analysis [119] where the residuals
distributions of points, with respect to a set of putative structures randomly sampled,
is taken in consideration. In particular, an histogram analysis of the residuals is used
to reveal the most significant structures as peaks in the histograms. In addition, the
number of models is automatically determined by the median number of modes found
over all data points. Even if, in practice, the mode-finding step of this strategy suffers
of low accuracy and depends critically on the bin size adopted, this method has the
merit to reformulate the model-estimation task in an alternative space where points
are described by their residuals.

J-Linkage

J-Linkage algorithm [96] embodies the spirit of preference analysis exploiting a prefer-
ence based representation of data in order to discover groups of points belonging to the
same structures as cluster in a conceptual space.



8 1 The challenges of multiple structures estimation

In particular, at high-level, a two steps first-represent-then-clusterize scheme is im-
plemented: at first, data are represented by the votes they grant to a set of model hy-
potheses, then a greedy agglomerative clustering is performed to obtain a partition of
the data. Several trends in common with previous methods can be recognized: an inlier
threshold ε needs to be provided in advance as in RANSAC and the idea of cast points’
votes echoes Randomize Hough Transform. Yet J-Linkage does not work in a quantize
space, which is at the root of the shortcoming of Hough Transform, nor in the residual
space, which leads to the difficulties of modes estimation, but explicitly introduces a
conceptual space where points are portrayed by the preferences they have accorded to
random provisional models. The changes of perspective entailed by preference analy-
sis results in a different approach to the chicken-&-egg dilemma. Structures are recog-
nized as groups of neighboring points in the conceptual space therefore the emphasis
is shifted from the estimation to the segmentation part of the problem. More in details
J-Linkage can be described in the following way:

Conceptual representation: The method starts generating a space model hypothesis
H = {h1, . . . ,hm} by drawing m minimal sets of data points necessary to estimate
the model; A n ×m matrix P is build whose (i , j )-th entry is defined as

P (i , j ) =
{

1 if xi is explained by the j -th model

0 otherwise
(1.5)

Each row Pi can be easily identified with the characteristic function of the prefer-
ence set PSµ,ε(xi ) of a given point xi , i.e. indicates which models a point has given
consensus to. In turn xi is depicted vector wise in the conceptual space {0,1}m . The
key idea is that points belonging to the same structure will have similar preference
set, in other words, they will cluster in the conceptual space.
The preference representation is extended in a straightforward manner to subsets of
data. Let U ⊆ X , U is portrayed as the Preference Set of all the common preferences
among all the data belonging to it:

PSµ,ε(U ) = ⋂
x∈U

PSµ,ε(x). (1.6)

Clustering: The clustering algorithm proceeds in a bottom-up manner. At first every
data is put in its own cluster. The distance between clusters is computed as the Jac-
card distance [48] between the respective conceptual representations. The Jaccard
distance between two sets A,B is defined as

J (A,B) = 1− |A∩B |
|A∪B | (1.7)



1.3 Preference analysis 9

and measures the degree of agreement between the votes of two clusters and ranges
from 0 (identical votes) to 1 (disjoint preference sets).
Starting from singletons, each sweep of the algorithm merges the two clusters with
the smallest Jaccard distance. The cut off value is 1. The clustering procedure can be
summarized as follows:

1. Put each datum in its own cluster.
2. Define the conceptual representation of a cluster using (1.6).
3. Among all current clusters, pick the two clusters with the smallest Jaccard dis-

tance.
4. Replace these two clusters with the union of the original ones.
5. Repeat from step (3) while the smallest Jaccard distance is lower than 1.

The outcome of this procedure is a segmentation of the data in disjoint clusters Ci

such that X =⋃
i Ci and, if i 6= j , Ci ∩C j =;. Clusters enjoy the following two properties:

1. for each cluster there exists at least one model that is in the preference set of all its
points.

2. one model cannot be in the preference sets of all the points of two distinct clusters.

The parameters of the returned structures θi are estimated by least squares fitting on
each cluster of points Ci . It is worth noting that, if outliers are not present in the data,
the number of clusters is automatically detected by this algorithm. This is certainly a
remarkable propriety, because the majority of other multi model fitting techniques re-
quires this information as input parameter. Moreover this preference approach is ro-
bust to outliers, that can be recognized as observations whose preferences deviate sig-
nificantly from the rest of the data, and tend to emerge as small clusters.

This method has demonstrated to be very effective in practice, and has been exten-
sively exploited in the literature in many multi-model fitting problems1, as the some-
how unexpected application to cryptography reported in Chapter 6. Nonetheless, the
theoretical footing of J-Linkage is still very little explored, and its greedy behaviour
is not completely satisfactory (e.g. J-Linkage has been reported to be biased toward
under-segmentation [37]), and robustness is gained only a posteriori by an ad hoc out-
lier rejection strategy.

Kernel methods

Along the same line of J-Linkage, Kernel Fitting [18] exploits preferences to derive a ker-
nel matrix that encapsulate the order in which models are preferred, (i.e., the order of
their residuals). The rationale is that points belonging to the same ground-truth models

1 For a list of applications of J-linkage see http://www.diegm.uniud.it/fusiello/demo/jlk/j-parade.html

http://www.diegm.uniud.it/fusiello/demo/jlk/j-parade.html
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should have similar orders of preferred models. Exploiting this information, a transfor-
mation is applied to the data points into a space which permits the detection of outliers.
The removal of outliers yields to a reduced kernel matrix that, in turn, is used to over-
segment the remaining inliers. Finally a merging scheme is used to reassemble these
models into the final model estimates.

RCMSA (Random Cluster Model Simulated Annealing) [77] as well takes advantage
of the same idea representing data points as permutations on a set of tentative mod-
els constructed iteratively, using subsets larger than minimal. Point preferences are or-
ganized in a weighted graph and the multi-model fitting task is stated as a graph cut
problem which is solved efficiently in an annealing framework.

Higher order clustering

A stream of investigations focused on higher order clustering [1, 41, 49, 117] implicitly
adopts a preference based approach. In these works higher order similarity tensors are
defined between n-tuple of points as the probability that these points are clustered to-
gether exploiting the residual error of the n points with respect to provisional models. In
this way preferences give rise to a hypergraph whose hyperedges encode the existence
of a structure able to explain the incident vertices. The problem of multi-model fitting
is hence reduced to find highly connected component in this preference hypergrpah.
In practice, the similarity tensor is properly reduced to pairwise similarity and fed to
spectral clustering-like segmentation algorithms.

In summary different perspectives on the multi-model fitting problem have been
adopted. Consensus oriented method look at the problem considering some kind of
accumulation space – either consisting in individual models, as in RANSAC, or in equiv-
alence classes of structures as in Hough transform – in which votes of points are
collected. Structures are hence estimated maximizing consensus. This paradigm has
demonstrated to be successful in single model estimation, but it is less effective if mul-
tiple structures are present in the data, because consensus does not allow to distinguish
clearly between genuine models and redundant ones. When multiple structures recov-
ery is viewed through the lens of preference analysis the attention is shifted to the seg-
mentation part of the problem. Data are represented as points in a high dimensional
space or as vertices in hypergraph and clustered together using ad hoc techniques.

It goes without saying that the state-of-the art on multi-model fitting can be also de-
scribed along other dimensions. For example multiple structures recovery can be seen
by an optimization perspective as the minimization of a global energy functional com-
posed by two terms: a modeling error which can be interpreted as a likelihood term, and
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a penalty term encoding model complexity mimicking classical MAP-MRF objectives.
A survey of multi-model fitting methods form this point of view can be found in [47].
Optimization routines have also been tailored to specific instances of multi-model fit-
ting: a relevant case is subspace segmentation where the use of low-rank and sparsity
analysis has produce a solid literature, accurately illustrated for example in [116].

1.4 Outline and contributions

The starting point of this thesis is preference analysis. In particular, in Chapter 2, the
first step is to enhance the conceptual representation proposed in J-Linkage by exploit-
ing the use of M-estimators to robustly depict points preferences. In this way we obtain
a continuos space, termed Tanimoto space, that is on the basis of three formulations
of the multi-model fitting problem: hierarchical clustering, spectral clustering and set
cover.
Hierarchical clustering is employed in Chapter 3 where it is used to address two major
issues related to J-Linkage: robustness to outliers and scale estimation.
In Chapter 4, we present a robust version of spectral clustering for preference analysis
that takes advantage of considerations rooted in consensus. In particular we attempt to
disentangle the chicken-and-egg recursive nature of multiple structure recovery reduc-
ing it to many single robust model estimation problems.
Finally the perspective is somehow reversed in Chapter 5, when we depart from the
clustering preferences and we return back to a discrete formulation mainly focused on
consensus. In this framework, based on the notion of cover set, we are able to revisit
many classical algorithm in a common framework. Moreover, complementing cover-
ages with preference analysis as side information, we derive a method to deal with in-
tersecting multiple structures and outliers in a principled manner.





2

A lift to Tanimoto space

The binary preference analysis implemented by J-Linkage suffers of the same poor lo-
cal robustness of RANSAC with respect to MSAC, therefore we propose to enhance it by
relaxing the notion of preference set. To this end we borrow from robust statistics the
weighting functions adopted by M-estimators and use them as voting function to ex-
press robustly point preferences. As a result, we alleviate the influence of outliers and
mitigate the truncating effect of the inlier threshold. We hence conceive a continuous
conceptual space in which the Jaccard distance is generalized by the Tanimoto distance
in order to handle the continuous representations of points.

2.1 Building on the preference trick: the Tanimoto space

In pattern recognition a theoretical framework for conceptual representation was set-
tled by Pekalska and Duin in [74]:

Definition 2.1 (Conceptual representation). Given two arbitrary sets A and B, letφ be a
non negative function, expected to capture the notion of closeness between pair of points
in A ×B, e.g. a similarity or a dissimilarity measure. A conceptual representation of a
point a ∈ A is a set of similarities/dissimilarities between a and the elements of B ex-
pressed as a vector

a 7→ [
φ(a,b1),φ(a,b2), . . . ,φ(a,bm)

] ∈Rm (2.1)

B is called representation set.

The function φ might be non-metric. This definition is very flexible. In the case A = B
the conceptual representation is a standard similarity or dissimilarity measure between
pair of objects. Allowing B to be an arbitrary set of prototypes [72], several generaliza-
tions, recently applied for classification purposes, can be derived. For example [8] ex-
ploits hidden markov model to construct a conceptual space for clustering sequential
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data, whereas [55] relies on one class support vector machine to represent and aggre-
gate semantically similar images.

The representation step adopted by J-Linkage can be mapped in this framework set-
ting A = X , B = H ⊆Θ, the pool of sampled structure is regarded as the representation
set, and choosing as φ the similarity measure defined as

φ(xi ,h j ) =
{

1 if errµ(xi ,h j ) ≤ ε
0 otherwise.

(2.2)

In practice φ assess the fitness to xi with respect to the structure h j . Note that the im-
age φ(X , H) is exactly the J-Linkage consensus/preference matrix presented in Equa-
tion (1.5). Columns correspond to consensus sets and rows correspond to preference
sets. As noted in [74], this construction can be interpreted in statistical sense as the
posterior probabilities of the point x with respect to the m classes determined by the
consensus set of the putative structures:[

Prob
(
x|CSµ,ε(h1)

)
, . . . ,Prob

(
x|CSµ,ε(hm)

)] ∈Rm (2.3)

Seen in this way, this conceptual representation is linked with the stream of research
on higher-order clustering where probability are used to defined higher-order affinity
between points.

We introduce a continuous relaxation of the binary preference set exploiting the
weighting function adopted in the M-Estimator framework (reported in Appendix A).
This can be done by defining the similarity φ : X ×H → [0,1] as

φ(xi ,h j ) = wc

(
errµ(xi ,h j )

τσn

)
, (2.4)

here wc can indicate any of the weighting functions whose images are contained in
the interval [0,1], namely the Huber, Cauchy, Geman, Welsh and Tukey weighting func-
tions reported in Table A.1. The constant c in the expression of wc in practice plays the
same role of the inlier threshold and can be tuned either using this parameter or, under
the assumption of gaussian noise, as c = τσn where σn is an estimate of the standard
deviation of the residuals and τ is chosen to ensure a predefined level of asymptotic ef-
ficiency on the standard normal distribution for the specific M-estimator selected. It is
straightforward to embed data points from their ambient space to the conceptual one
using the vectorial mapping φH : X → [0,1]m , simply defined as

x 7→ [
φ(x,h1), . . . ,φ(x,hm)

]
. (2.5)
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Every point x is robustly represented as a m-dimensional preference vector in the con-
ceptual space whose entries are the robust weights, giving rise to a soft version of prefer-
ence set. By the preference analysis perspective, the rationale beyond this construction
is that the i -th component of this vector expresses with a soft vote in [0,1] the preference
granted by x to the tentative structures hi . Please note how this parallels the difference
between RANSAC and MSAC, if consensus sets are considered.

The next step is to introduce in the unitary cube [0,1]m a suitable metric that gener-
alizes the Jaccard distance. This is accomplished by the Tanimoto distance [95], defined
as

dT (p, q) = 1− 〈p, q〉
‖p‖2 +‖q‖2 −〈p, q〉 (2.6)

for every p, q ∈ [0,1]m . This distance ranges in [0,1] and equals 0 for preference vectors
sharing the same preferences whereas reaches 1 if points have orthogonal preferences,
i.e. it does not exist any model in H that can explain both the points p and q . We de-
note as T = ([0,1]m ,dT ) the metric space endowed with the Tanimoto distance [62].
Please observe that if we confine ourselves to the space {0,1}m the Tanimoto distance
coincides with the Jaccard one. The agreement between the preferences of two points
in the conceptual space reveals the multiple structures hidden in the data: points shar-
ing the same preferences are likely to belong to the same structures as points matching
the same collection of models are likely to belong to the same ground truth model.

In short, echoing the celebrated “kernel trick", which lifts a non linear problem in
an higher dimension space in which it becomes easier, this conceptual representation,
shifts the data points from their ambient space to the Tanimoto one, revealing the mul-
tiple structures hidden in the data as groups of neighboring points.

Clustering can be thought as the discrete and statistical counterpart of the continu-
ous and geometric problem of finding connected components. With this idea as guide, a
geometric analysis of the Tanimoto space can confirm the intuition that points sharing
the same preference are grouped together in the conceptual space. To illustrate qual-
itatively this properties we consider the multi model fitting problem reported in Fig-
ure 2.1a, taken from [109]. In this dataset three objects move independently each giving
rise to a set of points correspondences in two uncalibrated images: points belonging to
the same object are described by a specific fundamental matrix. Outlying correspon-
dences are also present.

A visualization of the distribution of points in the Tanimoto space can be obtained
through multi-dimensional scaling. As can be appreciated from Figure 2.1b, in Tani-
moto space points belonging to the same structures are tightly clustered in high density
regions. On the contrary outliers, whose votes are underweighted, occupy a region with
low density.
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(a) Ground-truth segmentation (b) Points in T (with MDS)
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Fig. 2.1: Insights on the geometry of Tanimoto space. (a) one frame of the biscuitbook-
box sequence. Model membership is color coded; black crosses (x) are outliers. (b) con-
ceptual representation of the data in Tanimoto space are projected in the plane using
Multi-Dimensional Scaling for visualization purposes. Outliers (x) are recognized as the
most separated points. (c) Tanimoto neighbourhoods with the same radius in [0,1]2

have smaller Euclidean diameter if the center lies near the origin. (d) The reachabil-
ity plot shows the reachability distance of ordered points (model membership is color
coded according to the ground truth).

Some insight into the geometrical sparseness of outliers can be reached considering a
system of neighbourhoods: Fixed some η ∈ (0,1) and some p ∈ T the Tanimoto ball of
radius η and center p is denoted by Nη(p). As illustrated in Figure 2.1c, the Euclidean
diameter of Nη changes accordingly to the position of the center p. In particular this
quantity tends to be smaller for points lying near the origin of T , that corresponds to
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the region of T prevalently occupied by outlying points. In fact outliers grant their pref-
erences to very few sampled hypotheses, they have small Euclidean norm and conse-
quently tend to lie near the origin. Hence the probability that two outliers live in the
same ball of radius η is significant lower than the probability that two inliers (with
higher Euclidean norm) are contained in a ball with the same radius. For this reason
outliers can be recognized as the most separated points in T .

2.2 Density analysis

With this perspective as guide, we can examine our conceptual representation through
the lens of density based analysis in order to make more explicit these aspects of Tan-
imoto space. In particular we adopt the multi-scale approach offered by OPTICS (Or-
dering Points to Identify the Clustering Structure) [3]. OPTICS is a density-based tech-
nique which frame the geometry of the data in a reachability plot thanks to the notion of
reachability distance. To start with, we tailor the definition of density-connected com-
ponent proposed in [31] to Tanimoto space:

Definition 2.2. Given p, q ∈T , the cardinality ζ of MSS and η ∈ (0,1)

− p is said a core point if |Nη(p)| > ζ;
− p is directly density-reachable from q with respect to η if p ∈ Nη

(
q
)

and q is a core
point;

− p is density reachable from q with respect to η if there is a chain of points p1, . . . , p`
s.t. p1 = p, p` = q and pi+1 is directly density reachable from pi ;

− p is density-connected to point q with respect to η if there is a point o such that both
p and q are density reachable from o.

− a density-connected component is a maximal set of density-connected points.

An illustration of these concepts is depicted in Figure 2.2. Density-connectivity is
an equivalence relation hence all the points reachable from core points can be factor-
ized into maximal density-connected components yielding the desired segmentation.
A crucial advantage of this definition is that it deals directly with outliers which can be
recognized as points not connected to any core point. In topological words, outliers can
be identified as isolated points, whereas inliers are either internal or boundary points of
a density-connected component. A key merit of this notion is that density-connected
components may have arbitrary shape. Note that, by definition, a density-connected
component must contain at least ζ+1 points; this is coherent with the fact that at least
ζ+1 points are needed to instantiate a non-trivial model (ζpoints always define a model
by definition of MSS).
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p

q
o

p

q

Fig. 2.2: Illustration of reachability. Reachability is not a symmetric relation: in the ex-
ample on the left p is density reachable from q, but q is not density reachable from p.
On the right p and q are density-connected to each other with respect to o.

Definition 2.3. Given the cardinality ζ of MSS,

− if p is a core point, the core-distance of p refers to the distance between p and its
w-nearest neighbor.

− if p is a core point, the reachability-distance of a point p with respect to a point q is
the maximum between the core distance of p and the distance dT (p, q).

After the data have been ordered so that consecutive points have minimum reachability
distance, OPTICS produces a special kind of dendrogram, called reachability plot, which
consists of the reachability values on the y-axis of all the ordered points on the x-axis.
The valleys of this plot represent the density-connected regions: the deeper the valley,
the denser the cluster. Figure 2.1d, where the biscuitbookbox reachability plot is shown,
illustrates this. Outliers have high reachability values, on the contrary genuine clusters
appear as low reachability valley and hence are density-connected components in T .
Other examples of reachability plots are reported in Figure 2.3.

2.3 Biased Random Sampling in Tanimoto space.

The exploration of the parameter space of models Θ by random sampling straddles all
the methods based on either consensus or preferences. Indeed the designing of the pool
of tentative models H has a pivotal role as the quality of the embedding φH is strictly
linked to the ability of the sampled space H to adequately representΘ. In this section we
propose a straightforward method to enhance the generation of tentative hypotheses
capitalizing the geometric information embodied in the Tanimoto space.

The cues to which models points are likely to belong are somehow latent in the data,
for this reason in principle also a simple uniform sampling strategy can capture the
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Fig. 2.3: Examples of reachability plots (bottom row). Ground truth segmentation (top
row),

hidden multi-modality of a multi-model fitting problem. However this comes at the
cost of extensive sampling and increased computational burden, since a large num-
ber of trials is required for reaching a reasonable probability of hitting at least a pure
(i.e., outlier free) MSS per model. The number of required minimal sample sets can
be significantly reduced when information about the distribution of the data points
is available. This information can be either provided by the user, or can be extracted
from the data itself through an auxiliary estimation process. Many strategies have been
proposed along this line in order to guide sampling towards promising models both in
the case of single-model [22, 23, 71], and in the multiple models scenario [19]. GROUP-
SAC [71] for example relies on the observation that inliers are often more “similar” to
each other, therefore data points are separated into a number of groups that are similar
according to some criterion, and intra-group MSS are favorited. A popular choice is the
use of Kanazawa sampling [50], neighboring points in the data space are selected with
higher probability, thereby reducing the number of hypotheses that have to be gener-
ated. However, depending on the application, introducing a local bias in the ambient
space of data can be difficult as different structures may obey different spatial distribu-
tions of data in the ambient space. Think for example to motion segmentation where
different moving objects could have very different shapes or very different sizes due to
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perspective effects. Moreover one of the shortcomings of these strategies is that enforc-
ing the spatial proximity requirement can make the estimation prone to degeneracies,
and actually specific techniques [120, 121] have been proposed to enforce the opposite
condition, i.e. that samples are prevented from incorporating data points that are too
close to each other.

In order to overcome this difficulty we propose to sample the hypotheses directly in
the conceptual space. This can be easily done in three steps: at first a preliminary uni-
form sampling of hypotheses is performed, then data are represented in the Tanimoto
space according to these putative models, finally a biased sampling in T is performed.
In particular if a point x has already been selected, then a point y such that x 6= y has
the following probability of being drawn:

Prob(x|y) = 1

Z
exp

dT

(
φH (x),φH (y)

)2

β2
. (2.7)

where Z is a normalization constant and β controls the local bias. Tanimoto distances
can be then updated on the fly based on the hypotheses already sampled.

We illustrate the effectiveness of this sampling strategy on the biscuitbookbox se-
quence. In Figure 2.4 we compare our biased sampling in Tanimoto space with respect
to uniform sampling, localized sampling, and Multi-GS a method proposed in [19],
which exploits the intersection kernel proposed in Kernel Fitting. All these methods
can be lead back to the conditional sampling scheme presented here, substituting dT

in (2.7) with an appropriate distance function: dU ≡ 1 for uniform sampling, dL = ‖ · ‖
for localized sampling and the intersection kernel dGS. We run these methods with dif-
ferent values of β; in particular we set β=βq as the q-th quantile of all these distances,
varying q ∈ [0.1,1]. The experiments demonstrate that our biased sampling provides re-
sults comparable with localized sampling for more values of β (Fig. 2.4a) and produces
many pure MSS per model (Fig. 2.4b).

This behavior can be motivated in a probabilistic setting considering the lower den-
sity of outliers in the Tanimoto space with respect to the inlier distribution. The number
m of MSS to be drawn is related to the percentage of outlier and must be large enough
so that a certain number (at least) of outlier-free MSS are obtained with a given proba-
bility for all the models. As explained in [96], if ni is the number of inliers of the smaller
structure contained in the data, the probability p of drawing a MSS of cardinality ζ com-
posed only of inliers is given by the product

p = Prob(E1)Prob(E2|E1) · · ·Prob(Eζ|E1,E2...Eζ−1) (2.8)

where E j is the event “extract an inlier at the j -th drawing”. It is worth noting that
this probability exponentially decrease as ζ increases, therefore, even if in principle
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Fig. 2.4: Comparison of guided sampling methods on biscuitbookbox sequence. (a) re-
ports the percentage of pure MSS with respect to the local bias parameter β. (b) the
number of pure MSS per structures in the data. It is worth observing that uniform sam-
pling struggle in finding genuine MSS.

the spaceΘ can be explored by instantiating structure on subset with cardinality larger
than the minimum as proposed in [80], in practice it is better to keep ζ as low as pos-
sible and, if a consensus set can be defined, reestimate the structure via least square or
robust technique on its supporting points.

In the case of uniform sampling we have

Prob(E j |E1,E2...E j−1) = ni − j +1

n − j +1
. (2.9)

In our case we can assume that the first point is sampled with uniform probability,
hence Prob(E1) = ni /n, while the others are sampled with the probability function (2.7),
therefore, after expanding the normalization constant Z , the conditional probability for
every j = 2, . . . ,ζ can be approximated as

Prob(E j |E1,E2...E j−1) =
(i − j +1)exp

(
−α2

β2

)
(n −ni − j +1)exp

(
−ω2

β2

)
+ (ni − j +1)exp

(
−α2

β2

) . (2.10)

Assuming that the cardinality of MSS is smaller with respect to the number of inliers,
ni À ζ, we have
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p ≈ δ
 δexp

(
−α2

β2

)
(1−δ)exp

(
−ω2

β2

)
+δexp

(
−α2

β2

)
ζ−1

. (2.11)

where α represents the average inlier-inlier distance, and ω is the average inlier-outlier
distance. Since inlier determine compact cluster with respect to outliers, we have
shown that this sampling strategy increases the probability of extracting a pure outlier-
free MSS. In order to complete the picture on hypothesis generation, we can observe,
following [119], that the probability of drawing at least k outlier-free MSS out of m with
a given level of confidence ρ is obtained as:

ρ = 1−
k−1∑
j=0

(
m

j

)
p j (1−p)m− j . (2.12)

The better quality of the sampling can be converted into either less samples or into an
increase of the quality of the sampled structures (while preserving the same number of
MSS).

Said that, drawing of MSS is not more than a computational procedure for approx-
imating the parameter space Θ: any information that can be profitably introduce to
make the approximation more accurate can be easily integrated in this step. For exam-
ple various model verification tests can be adopted in order to enforce desired prop-
erties on the sampled structures. A notable example consists in ensuring geometrical
non-degeneracy of MSS. A configurations of points is termed degenerate with respect
to a model if it does not admit a unique solution with respect to that model [102], e.g.
collinear triplet of point in case of plane estimation. For instance, in the case of fun-
damental matrix estimation, a set of correspondence is deemed as degenerate if five or
more points lie on the same plane in the scene [25], therefore a specific test aimed to
identify MSS where five or more correspondences are related by a homography can be
used to prune H from ambiguous structure estimate. Other more general constraints
on H depending on the problem at hand can be imposed, for example with respect to
fundamental matrix estimation in practice only points in front of the camera are visible,
therefore it is possible to enforce chirality constraints via a model checking stage [24].
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Preference analysis: linkage formulation

In this chapter we investigate how the robust preference trick, introduced in the previ-
ous chapter, can be exploited to enhance J-Linkage approach. In particular we tailor the
agglomerative linkage clustering to handle continuous representations in the Tanimoto
space, so that structures can be recovered as clusters of preferences in the conceptual
space. In this setting outliers can be recognized as micro-clusters happened by chance
and are filtered out relying on a probabilistic framework. This formulation has the merit
to automatically detect the number of models in the data. The only input parameter
is the inlier threshold, that can be properly tuned thanks to a scale selection strategy
based on consensus clustering.

3.1 Hierarchical clustering

The luxuriant literature on clustering1 has been organized in different sensible tax-
onomies according to several criteria; here the distinction that is most relevant to our
work is the dichotomy between partitional and hierarchical clustering. In a nutshell,
partitional methods directly divides data points in a predetermined number of clus-
ters. On the contrary, hierarchical clustering, rather than defining a static partitioning
of the data, aggregates points into a sequence of nested partitions, and exploits the at-
tained hierarchy of subsets to infer the hidden structure of the data. This process can
be performed along two directions, namely bottom-up or top-down. In the first case,
starting from singleton, a cluster including all the data points is produce by successive
merging, vice versa in the latter case the data are sequentially split in several groups. For
a data set with n elements, the top-down scheme would start by considering 2n−1 −1

1 For a short survey on the subject the interest reader is referred to [112]
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possible splits of the data , which is computationally expensive, therefore, in practice,
bottom-up approaches are usually preferred.

The hierarchy of nested groups is encapsulated in a dendrogram, which depicts the
formation of a cluster together with the similarity levels it has been created by merge
or split moves. The final segmentation of the data is obtained by cutting the dendro-
gram at the desired similarity level. Several manners to compute the similarity measure
between clusters – called linkage functions – have been proposed in the literature; the
most common and popular being:

− Single linkage: where the distance between a pair of clusters is determined by the two
closest elements to the different clusters. This procedure tends to generate elongated
clusters, which causes the so called chaining effect.

− Complete linkage: In contrast to single linkage, the farthest distance of a pair of ob-
jects is used to define inter-cluster distance.

− Average linkage: The distance between two clusters is defined as the average of the
distances between all pairs of data points, each of which comes from a different
group.

In the next sections we show how hierarchical agglomerative clustering can be tai-
lored to Tanimoto space.

3.2 T-Linkage

In first instance we have to choose a robust estimator in order to frame robustly point
preferences by its weighting function. We have seen that J-Linkage uses the step voting
function defined as

wstep(u) =
{

1 if |u| ≤ 1

0 otherwise,
(3.1)

with the purpose of emulating its behavior, we pick the Tukey bisquare weighting func-
tion because it has a finite minimum rejection points.

wtukey(u) =
{

(1−u2)2 if |u| ≤ 1

0 otherwise.
(3.2)

Thus, provided a pool of m tentative structures H , we can define a conceptual embed-
ding φH in [0,1]m using Equation (2.4) by which every point x ∈ X is depicted as

x 7→
[

wtukey

(
errµ(x,h1)

τσn

)
, . . . , wtukey

(
errµ(x,hm)

τσn

)]
∈ [0,1]m . (3.3)
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The tuning constant used to normalize residuals is fixed such that τσn = ε, in this way
the rejection point of wtukey corresponds exactly to the one used in J-Linkage. The seg-
mentation step follows closely the one of J-Linkage: clustering proceeds in a bottom-up
manner. For this purpose we need to define a suitable soft conceptual representation
for clusters, extending the preference trick to subset of the data S ⊆ X . This is easily
done, with a little abuse of notation generalizing φH from X to the power set P(X ), by
defining

φH (S) = min
x∈S

φH (x). (3.4)

More precisely a subset S of X is represented as a vector in [0,1]m whose j -th compo-
nent expresses the minimum votes granted to h j among all the points in S, formally:

[φH (S)] j = min
x∈S

φ(x,h j ). (3.5)

If we confine ourselves to the binary space {0,1}m we obtain exactly the linkage scheme
proposed in J-Linkage. Starting from all singletons, each sweep of the algorithm merges
the two clusters with the higher similarity, Tanimoto distances are hence updated and
clusters are aggregated until all the distances equals 1. This means that the algorithm
will only link together elements whose preference representations are not orthogonal,
i.e. as long as there exists in H a structure that received a positive vote from two clus-
ters, they will be merged. This fact explains why we rely on hard descenders and why
we adopt the Tukey voting function. Soft descenders indeed are not well suited to fixed
cutoff as small preferences, accorded to outlying structures, cause the union of all the
points in a unique cluster. On the contrary having set to zero the votes of outliers allows
the use of the natural predetermined clustering-cutoff proposed in J-Linkage. More-
over, as a byproduct,

− for each cluster there exists at least one model for which all the points have expressed
a positive preference (i.e., a model that fits all the points of the cluster)

− it is not possible that two distinct clusters grant a positive preference to the same
model (otherwise they would have been linked).

Each cluster of points defines (at least) one model. If more models fit all the points of
a cluster they must be very similar. As a consequence, in principle, it is sufficient to
sample every genuine structure once.

The main differences between the conceptual space adopted by T-Linkage and J-
Linkage are summarized in Table 3.1.

T-Linkage, as any agglomerative clustering algorithms, fits all the data: bad models
must be filtered out a posteriori (this aspect will be discussed in the next Section 3.3).
Finally, the model for each cluster of points is estimated by least squares fitting.
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T-Linkage J-Linkage

Voting Tukey Hard

Space [0,1]m {0,1}m

Cluster minφH
⋂

PS

Similarity Tanimoto Jaccard

Table 3.1: The differences between T-Linkage and J-Linkage

As noted in Section 1, the problem of multiple fitting can be regarded from two al-
ternative points of view usually coexisting: we want to faithfully segment the data and
at the same time to obtain an accurate estimate of the underlying models. Each of these
two tasks can not be undertaken without the other. T-Linkage is a pure preference based
method and concentrates on the first task segmenting the data in the conceptual space
and extracting model only at the end via least-squares fitting. However once models
have been obtained, optionally it is possible to perform an additional refinement step:
points are reassigned to their nearest model – if it has distance smaller than ε – and fi-
nally structures are re-estimated according to this new segmentation. In this way not
only the segmentation and the model estimation step can take advantages from each
other, but we also gain the benefit of mitigating the greedy behavior of T-Linkage since
the final clustering depends less critically on the order in which points were merged
together. Under the assumption of gaussian noise, this step can also be viewed as a
maximum likelihood estimation, since minimizing the distance of points from the fit-
ted model is equivalent to maximizing their likelihood.

A simple experiment on simulated data with intersecting structures is here con-
ducted in order to characterize the performances of T-linkage with respect to J-Linkage
and confirms the benefits of working with continuous values rather than operating with
binary preferences. We compare the performances of J-Linkage and T-linkage on fitting
lines to the Star5 data (Figure 3.1c) using the misclassification error (ME), defined as
follows:

ME = # misclassified points

# points
. (3.6)

where a point is misclassified when it is assigned to the wrong model, according to the
ground-truth.

The results can be appreciated in Figure 3.1 where the corresponding ME is reported
as a function of threshold parameters for both J-Linkage and T-linkage on synthetic
datasets. The advantages of T-linkage over J-linkage are twofold. On the one hand T-
linkage reaches a lower ME, thereby obtaining a more refined clustering. On the other
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(a) Star5
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(b) ME vs. ε

(c) Circle4
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(d) ME vs. ε

Fig. 3.1: T-Linkage attenuates the sensitivity of ε. Left column: segmentations attained
by T-Linkage, point membership is color coded. Right column: the ME committed by
J-Linkage and T-Linkage on Star5 (top) and Circle4 (bottom) datasets is reported as a
function of their corresponding inlier threshold parameters. T-Linkage depends less
critically on the choice of the inlier threshold.

hand, the threshold parameter integrated in the weighting function is less critical com-
pared to J-Linkage: the error function for T-linkage presents a larger plateau, i.e. a large
interval of ε the algorithm obtains values near the optimum.

The better result of T-linkage is due to the more expressive representation provided
by the continuous conceptual space in proximity of models intersections, since resid-
ual information allows to disambiguate more accurately between disputed points. J-
Linkage on the contrary has no information to decide to which structure a point in the
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intersection of two inlier band has to be assigned. In this perspective we have made
a little step toward the solution of intersecting models which caused the poor perfor-
mances of Multi-RANSAC.

3.3 Dealing with outliers

Despite countless efforts spent by the scientific community, there is no universally ac-
cepted definition able to capture the elusive nature of outliers. Nevertheless a multitude
of approaches have been suggested to characterize outliers; among them we can single
out some of the most common assumptions [114]:

− Probability-based : Outliers are a set of small-probability samples with respect to a
reference probability distribution.

− Influence-based: Outliers are data that have relatively large influence on the esti-
mated model parameters. The influence of a sample is normally the difference be-
tween the model estimated with and without the sample.

− Consensus-based: Outliers are points that are not consistent with the structure in-
ferred from the remainder of the data.

T-linkage is agnostic about the outliers rejection strategy that comes after; depend-
ing on the application, different rejection criteria can be adopted. Since the output of
T-Linkage is a partition of data points in consensus sets of the estimated structures, a
viable solution is to integrate together the approaches based on probability and con-
sensus by analyzing the cardinality of the attained clusters in a probabilistic framework
in order to distinguish between good fits from random ones. This solution can be traced
back to MINPRAN [90] and PLUNDER [102]. More generally this idea is supported by a
stream of research rooted in gestalt theory [30, 67] that provides a formal probabilistic
method for testing if a model is likely to happen at random or not. The rationale is the
Helmholtz principle [6] which asserts that a strong deviation from a background model
is valuable information. In our case the background model is determined by outliers,
whereas structures of inliers are regarded as unlikely structure of interest.

First of all we can safely start rejecting all those clusters that have less than ζ+ 1
elements since they can be deemed as spurious.

Under the mild assumption that outliers are independently distributed [90], it is pos-
sible to easily estimate the probability that a cluster is entirely composed by outliers
according to its cardinality and the model it defines. Consequently we retain only the
groups with high confidence of being inliers and discard those structures that “happen
by chance" and do not reflect an authentic structure in the data.
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(a) T-Linkage output (b) Outlier rejection
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(c) Cluster cardinality

Fig. 3.2: Accuracy: 99.22% False number rate: 0%

In practice, following MINPRAN, at first, the probability p that an outlier belongs to
the consensus set of an estimated structure is computed by Monte-Carlo simulation.
The value of p can be estimated either in advance for a generic structure, or for ev-
ery specific model attained by T-Linkage at the end of the clustering. The latter option
takes into account the fact that in general models are not all equiprobable and avoids
to consider a fixed minimum cardinality. Then the probability that k points belong to
the same given model is computed as

α(k) = 1−F(k,n, p), (3.7)

where n is the total number of data points, and F is the binomial cumulative distribu-
tion function:

F(k,n, p) =
k∑

i=0

(
n

i

)
p i (1−p)n−i . (3.8)

For each structure we compute kmin =α−1(0.01) the minimum cardinality necessary to
be not considered mere coincidence. If the considered model is supported by less than
kmin points is rejected as outlier.

Alternatively, based on the observation that large clusters of outliers are very un-
likely, if the number κ of structures is known beforehand, it is sufficient to keep the
largest κ clusters as inlier.

In short T-Linkage can be recap as outlined in Algorithm 1.

3.4 Scale estimation by consensus clustering

T-linkage does not have any scale selection strategy and the inlier threshold ε has to be
manually specified by the user, as in RANSAC. If prior knowledge about the noise in the
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Algorithm 1 T-Linkage

Input: the set of data points X , the inlier threshold ε
Output: clusters of points belonging to the same structure, and

Conceptual representation step:

Generate by sampling a poll of hypotheses model H = {h1, . . . ,hm } (uniform sampling and/or guided sampling
in T )
Embed each point x in the Tanimoto space, expressing point preferences using the Tukey weighting function as
prescribed in Equation (3.3)

Clustering in conceptual space:

Define the preferences of a cluster S ⊂ X as

φH (S) = min
x∈S

φH (x),

Put each point in its own cluster and compute their conceptual representation
while all the Tanimoto distances are lower than 1 do

Find among the current clusters
arg min

S1,S2
dT (φH (S1),φH (S2))

Replace these two clusters with the union of the two original ones and compute the conceptual representation
of this new cluster;
end while
Fit structures to cluster.
Outliers rejection.
(Optionally refine estimated structures)

data is available, ε can be easily tuned, otherwise the scale turns out to be a sensible
free parameter even if the use of a soft weighting function mitigates its criticality.

In this section we develop a method for estimating the scale which results in a novel
model selection technique avoiding the classical model selection trade-off of two terms
in favor of a single term criterion. In particular, we borrow from the Consensus Cluster-
ing technique [68] the idea originally outlined in the context of micro-array data, that
the stability of the clustering suffices in disambiguating the correct estimate of models.
The rationale behind this method is that the “best” partition of the data is the one most
stable with respect to input randomization. We translate this principle in the context of
geometric fitting, tailoring the Consensus Clustering strategy to T-Linkage.

3.4.1 Choosing the scale in T-Linkage: a model selection problem.

It is important to observe that ε plays a crucial role in both the two steps of T-Linkage.
At first, in conceptual representation step, the inlier threshold ε explicitly defines which
points belong to which model (a point belongs to a model if its distance is less than ε).
If the scale is underestimated the models do not fit all their inliers; on the contrary, if
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the scale is overestimated, the models are affected by outliers or pseudo outliers. With
respect to the clustering step, points are linked together by T-Linkage until their vecto-
rial representations are orthogonal. Here again, as ε controls the orthogonality between
these vectors, also the final number of models depends on this parameter.

Given a genuine model, if the true noise variance is known, it is always possible to
compute a region containing certain fraction of the inliers. For example, under the typ-
ical assumption that the noise for inliers is Gaussian, with zero mean and variance σ2,
the squared point-model errors between an inlier and the uncontaminated model can
be represented as chi-square distribution with d degrees of freedom since it is a sum of
d squared Gaussian variables, where d is the codimension of the model. For this reason,
in order to recover a fraction ρ of inliers, an appropriate threshold ερ can be computed
as

ε2
ρ =χ−1

d

(
ρ
)
σ2, (3.9)

where χ−1
d is the inverse cumulative chi-square distribution, hence it is possible to de-

rive the value of the inlier threshold with a certain level of confidence ρ. Many robust
estimators of the noise variance have been proposed, two of the most popular ones
are the sample median and the so called MAD (Median Absolute Deviation) which is
defined as

MAD = median j |errµ(xi ,θ)−errµ(x j ,θ)|. (3.10)

Even if both these estimators have 50% breakdown points, they are biased for multiple-
mode cases even when the data contains less than 50% outliers.

As a matter of fact, in many real applications selecting the correct scale is a hard
problem. In practice many factors hinder scale estimation: the uncertainty of the esti-
mated models has to be taken into account, the presence of high level of contamination
due to outliers and multiple structures strains robust estimation and the fact that noise
does not always follow gaussian assumption complicates statistical computations. Nev-
ertheless several solutions for automatic scale selection have been proposed. For exam-
ple this problem is addressed in [20, 82] as regard the case of single model estimation,
whereas [32, 66, 107] treat the case of inlier noise estimation for multiple models ex-
ploiting elaborated robust statistic. These techniques rely on the idea of simultaneously
estimating a structure together with its inlier threshold. Unfortunately, this captivating
strategy turns to be impossible of being integrated in T-linkage. As a matter of fact, T-
Linkage merges together clusters as long they have a common structure in their pref-
erences. Therefore a single structure for which ε have been erroneously over-estimated
is sufficient to cause an incorrect aggregation of clusters and to bias the result towards
under segmentation. By way of illustration, one can think to the extreme case where
all the sampled structures are computed with the correct scale value, but a single inlier
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Fig. 3.3: The difficulties inherent to scale estimation for spurious structures. On the left
a contrived multi-line fitting example is presented. Data points are sampled, with dif-
ferent level of noise from three ground truth lines (membership to these lines is color
coded). Four MSS are drawn, three MSS are pure the fourth is mixed. Analysing the
residuals of the corresponding instantiated model (on the left) clearly shows that as re-
gards the pure MSS ordered residuals clearly exhibit the presence of multi-modal pop-
ulation that can be separate by suitable statistical test. On the contrary in the case of the
spurious model (bottom-right) residuals do not present any regularity since there are
not enough inlier points. As a consequence scale estimation can not produce a reliable
result.

threshold is inaccurately over-estimated in a way that the corresponding consensus set
includes all the data point, in this case T-Linkage will return a single cluster.
All the thresholds ought to be estimated accurately in a data dependent fashion. How-
ever reasoning about the distribution of inlier residuals is not a viable solution as
suggested by Figure 3.3. In first instance all the scale estimators that rely on vari-
ants [32, 65] of the MAD, which has a breakdown point of 50%, can not be adopted
because they are prone to over-estimation due to the large number of pseudo-outlier
in common multi-model fitting scenario. Furthermore, the presence of mixed mini-
mal sample sets thwarts all the approaches with a higher breakdown point such as
KOSE [58] and IKOSE [76], which substitute MAD with the k-th ordered absolute resid-
ual. In this case the problem is that spurious structures do not have enough support-
ing points obeying to the statistical assumption made by this kind of estimator. Other
approaches, e.g. [5], avoid to estimate the scale using all the data points and exploit
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a forward search method [4]: starting from MSS the consensus set is expanded until
a statistical test on residual is verified. Also these methods are voted to failure because
structures arisen from impure MSS, produce drifting models and, again, over-estimated
scales. In short while scale estimator can work reliably for structures close to the ground
truth model parameters, the automatic tuning of the inlier threshold of “random” struc-
tures is somehow unfeasible. Unfortunately the ideas presented in Section 3.3 can not
be used in this context to recognize and discard these spurious structure, since ε is re-
quired as an input to measure the randomness of a model.

For these reasons we found profitable to tackle the problem by a different perspec-
tive. The pivotal observation is that in T-linkage the tuning of ε turns to be a typical
model selection problem. If ε is too small, we are stuck in under-segmentation: mul-
tiple similar structures explain the same model in a redundant way. On the contrary,
if ε is too large, we run into the problem of over-segmentation obtaining fewer struc-
tures than necessary that poorly describe the data. We can therefore cast our scale se-
lection problem as a model selection one. The great advantage of this approach is that
by tuning the single free parameter ε we are able to implicitly balance at the same time
between both the complexity of the obtained structures and their fidelity to the data.

Model selection is a thorny pattern recognition problem that appears ubiquitous
in multi-model fitting literature (see e.g. [99]). As a matter of fact, following the spirit
of Occam’s razor, several multi-model fitting methods result in minimizing an appro-
priate cost function composed by two terms: a modeling error and a penalty term
for model complexity. Just to name a few relevant algorithms, this approach is taken
in [28,47,76,77,86] where sophisticated and effective minimization techniques such as
SA-RCM [77], ARJMC [76] have been proposed. Several alternatives have been explored
for encoding model complexity. PEARL [47] for example, optimizes a global energy
function that balances geometric errors and regularity of inlier clusters, also exploit-
ing spatial coherence. In [97], an iterative strategy for estimating the inlier-threshold,
the score function, named J-Silhouette, is composed by a looseness term, dealing with
fidelity, and a separation one, controlling complexity.

Our starting point is STARSAC [20] in which Choi and Medioni demonstrate that
choosing the correct ε enforces the stability of the parameter of the solution in the case
of a single structure. We extend this result to the multiple structures scenario, reason-
ing on segmentation rather than on models parameters. The idea of exploiting stability
appears in the context of clustering validation. In particular in [68] the authors propose
Consensus Clustering, a strategy that succeeds in estimating the number of clusters in
the data with a single term model selection criterion based on stability. The next section
is devoted to present the Consensus Clustering approach.
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(c) k = 10
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(f) k = 10

Fig. 3.4: Clusters estimation. k-mean is run two times (rows) on subsamples of the same
dataset with different values of k (columns). Only for k = 4 the attained segmentation
is the same. This figure is best viewed in color.

3.4.2 Consensus Clustering

In some cases the thorny problem of correctly tradeoff data fidelity for model com-
plexity (a.k.a. bias-variance dilemma) can be bypassed introducing a different model
selection principle based exclusively on the stability of models.

The key idea of this approach is that good models should be found among the ones
that are stable with respect to small perturbations of the data. This very general prin-
ciple with the necessary specifications can be applied in many contexts, and can be
exploited also in the classical segmentation problem.

For instance, consider the situation illustrated in Figure 3.4. In this case the models
to choose are all the possible partitions of points in k disjoint subsets and model selec-
tion is employed for choosing the correct value of k. Running k-means several times on
subsamples of the same data, with different values of k shows that the resulting clus-
terings are stable only when k expresses the nature of the data, otherwise they manifest
lack of stability. This simple example sustains the intuition that the more stable models
represent valid structures in the data.
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In [68] the authors develop this idea and present the Consensus Clustering approach
to determine the correct number of clusters by maximizing the consensus, i.e., the
agreement of clustering after perturbation of the data.

More in detail, the Consensus Clustering approach consists in assuming a cluster-
ing algorithm, for example k-means, and a resampling scheme (e.g. bootstrapping) in
order to perturb the data. Then for each possible cluster number k = 2,3, . . . ,kmax the
data are subsampled several times and processed by the clustering algorithm. The cor-
responding results are described for each k by means of a consensus matrix Mk which
is intended to capture the mutual consensus of attained clusters. The consensus matrix
Mk is defined as follows: the element (Mk )i j stores the number of times points i and
j are assigned to the same cluster divided by the total number of times both items are
selected by the resampling scheme. In other words, the consensus matrix records the
proportion of clustering runs in which the two points i , j have been clustered together.
For this reason (Mk )i j ∈ [0,1] and perfect consensus corresponds to a clean consen-
sus matrix with all the entries equal to either 0 or 12, whereas a deviation from this
case should be explained with lack of stability of the estimated clusters. Exploiting this
observation, the k that yields the cleanest consensus matrices according to an ad hoc
measure is selected as the optimal estimate of number of model.

3.4.3 T-Linkage with Consensus Clustering

In this section we shall concentrate on a method for automatically fitting multiple
models tailoring Consensus Clustering to T-Linkage algorithm without having a pri-
ori knowledge of the scale ε, thereby conceiving a single term model selection criterion
based on consensus stability.

In the case of T-Linkage we do not have to select the number of clusters (that is au-
tomatically determined by T-Linkage clustering) but we shall concentrate on the scale ε
which, as explained in Section 3.4.1, is a sensitive input parameter that implicitly tunes
the balance between the complexity of the obtained clusters and their fidelity to the
data. If ε is too small, we are stuck in under-segmentation: multiple similar structures
explain the same model in a redundant way. On the contrary, if ε is too large, we run
into the problem of over-segmentation obtaining fewer structures than necessary that
poorly describe the data.

The outline of our approach is sketched in Figure 3.5. The estimation of ε is itera-
tively laid out as follows. At first the interval search [εL ,εR ] has to be defined, ensuring
that the correct ε belongs to the interval. For this reason a sound choice of εL is a small

2 If the data points were arranged so that points belonging to the same model are adjacent to each other, perfect
consensus would translate into a block-diagonal matrix
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Fig. 3.5: The proposed method in a nutshell. Different ε values are used for run-
ning multiple times T-Linkage on the perturbed Star5 dataset. In correspondence of
ε1 (which is lower than the ground truth inlier threshold) T-Linkage over-segments the
data producing unstable results, when the threshold is ε2 a reliable and stable cluster-
ing composed by 5 structures is returned, and finally using the over-estimation of the
threshold ε3, data are under-segmented in different ways. The corresponding consen-
sus matrices measure the mutual consensus between the attained segmentations and
define the stability index. The most stable clustering, corresponding to ε2, is selected.
(Best viewed in color)

scale value that surely over-segments the data, whereas εR has to give rise to under-
segmentation (for example it can be estimated fitting a single model to all the data point
and taking the maximum of their residuals). For each ε value belonging to the interval
search, T-Linkage is run t times t = 1, . . . , tmax on the data properly perturbed.

Rather than bootstrapping in advance the raw data as in [68], we perturb their rep-
resentation in the conceptual space inside T-Linkage by bootstrapping the generated
hypothesis. After the data have been processed we obtain tmax clustering outputs for
each ε value. The intuition is that, at the correct scale, there will be consistency between
the partitions produced by T-linkage. For each scale the consistency of the partitions is
hence tabulated via the consensus clustering matrix Mε introduced in Section 3.4.2.

Now we measure the consensus stability of each matrix boiling down each Mε to a
single consensus stability value s per scale. If we were to plot a histogram of the entries
of (Mε)i j , perfect consensus would translate into two bins centered at 0 and 1 and, in
general, a histogram skewed toward 0 and 1 indicates good clustering. With this idea in
mind, consider the following change of variable:



3.5 Experiments 37

F (x) =
{

x if x < 0.5

x −1 if x ≥ 0.5.
(3.11)

F redistributes the entries of Mε from the [0,1] range to the interval [−0.5,0.5]. The ef-
fect is to rearrange the histogram symmetrically around the origin. In this way stable
entries are concentrated around 0 whereas unstable ones are accumulated at the tails
of the histogram. For this reason, measuring how far the entries of F (Mε) are spread out
accounts for the consensus stability of a given scale ε. For this purpose we propose to
employ the variance3 of the vectorized upper triangular part of F (Mε) and to define a
consensus stability index as

s(ε) = var(vech(F (Mε))) , (3.12)

where vech returns the vectorization of the upper triangular matrix it receives in input.
Then, assuming to deal with authentic multiple structures, the scale is selected among
the ε values that segment the data in at least two clusters. Within these ε we retain as
correct the smallest one obtaining the lower score of s:

ε∗ = min

(
arg min

ε : # cluster>1
s(ε)

)
. (3.13)

The most stable solution (the one obtained with ε∗) is then returned.
The procedure can be summarized in Algorithm 2.
With respect to the computational complexity of this method, if c is the execution

time of T-linkage, k1 the threshold values tested and k2 the number of bootstrapping
trials, the total execution time of this method is k1k2c to which the time needed for
computing the consensus matrices has to be added. Even if the number of bootstrap
iterations is small (k2 = 4 in our experiments suffices in providing good results), there
is space for improvement for example by replacing exhaustive search on the interval
[εL ,εR ] with a suitable (direct) minimization strategy reducing the number of scale val-
ues that are evaluated.

3.5 Experiments

This section is devoted to evaluating the proposed method on both simulated and real
data, proving that consensus stability s can be exploited as a single term model selec-
tion criterion for automatically fit multiple structures.

3 We also tested the entropy and other dispersion indices with comparable results.
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Algorithm 2 TLCC
Require: the set of data points X ;

an interval search [εL ,εH ];
Ensure: scale ε∗;

clusters of point belonging to the same model.

Generate hypotheses H ;
for ε ∈ [εL ,εH ] do

for t = 1, . . . , tmax do
H̃ = Bootstrapping(H);

end for
Ct = T-Linkage(X ,ε, H̃);
Probabilistic outlier rejction
Mε= Consensus Matrix(C1, . . . ,Ctmax );
Compute s(ε);

end for
ε∗ = min(argminε : # cluster>1 s);
C∗ = T-Linkage(X ,ε∗, H);

Some synthetic experiments are carried on in order to qualitatively asses the pro-
posed approach. In particular, as shown in Figure 3.6, we address the problem of fitting
circles (Figure 3.6a) and lines (Figures 3.6b, 3.6c) to noisy data contaminated by gross
outlier. Since the number of structures is unknown – actually it is determined by the
parameter ε we want to estimate – we do not rely on this information for rejecting out-
liers. Therefore we employ the outlier rejection strategy described in 3.3 that discards
the structures happened by chance. It is worth to notice that this criterion works prop-
erly filtering out bad models with different percentage of outliers.

We validate our approach – henceforth referred to as TLCC (T-Linkage and Consen-
sus Clustering)– on some real datasets. We test our method on image pairs correspon-
dences taken from the AdelaideRMF dataset [109] on both two view motion segmenta-
tion and plane experiments. The sequences in this dataset consist of matching points
in two uncalibrated images with gross outliers. In the case of plane segmentation the
(static) scene contains several planes, each giving rise to a set of point correspondences
described by a specific homography. The aim is to segment different planes by fitting
homography matrix to subsets of corresponding points. In the second case (motion seg-
mentation) the setup is similar, but the scene is not static, i.e., it contains several objects
moving independently each giving rise to a set of point correspondences described by
a specific fundamental matrix. The aim is to segment the different motions by fitting
fundamental matrices to subsets of corresponding points.

First we compare TLCC with T-linkage∗, where T-linkage∗ has an “oracle” that guesses
always the optimal scale according to the ME, in the interval search:
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(a) Circle6, 50% of outliers

 

 

(b) Stair4, 60% of outliers
 

 

(c) Star5, 75% of outliers

 

 

(d) Estimated models (e) Estimated models
 

 

(f) Estimated models

Fig. 3.6: Synthetic examples: rough data are reported in the first row, extracted models
are shown in the second one. Membership is color coded.

εopt = arg min
ε∈[εL ,εR ]

ME(ε), (3.14)

in other words εopt is the global minimum of ME. For each experiments we compare
the ME(ε∗) achieved by the scale ε∗ estimated by TLCC with the ME(εopt) of the optimal
scale.

Using the data reported in [77] we are able to compare indirectly TLCC with other
state of the art algorithms inspired to the classical two term model selection approach.
For fair comparison with [77], where the parameters of each sequence are individually
tuned and the best outcomes out of several trials have been recorded, we adjust the
localized sampling parameters per each sequence separately.

As regards fundamental matrix fitting, according to Table 3.2, TLCC succeeds in es-
timating the optimal ε in six cases (marked in bold) and misses the global optimum in
two cases, for which we plot the ME and the stability index in Figures 3.8a and 3.8b. It
can be appreciated that the profile of the ME is fairly flat near the optimum, and that
the minimum of the stability index is fairly close to the optimum of ME anyway.
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Fig. 3.7: Sample results of TLCC in two-view motion segmentation (top row) and pla-
nar segmentation (down row). Point membership is color coded, red dots are points
rejected as outliers.

Our conjecture for such a behavior is that the models have mutual intersections (or
close to), and that ME does not measure properly the quality of a clustering. For in-
stance imagine a point P that lies in the intersection of two models, say A and B , and
suppose that, according to the ground truth, it is assigned to A. A clustering that as-
signs P to B is penalized by ME, whereas it should not. A similar argument applies to
points that lie close to two models (without belonging exactly to the intersection): the
penalty for assigning a point to the wrong model should be attenuated in such close-
to-ambiguous situation.

In all but three cases TLCC achieves the best result, and, if the mean ME is consid-
ered, it is the best algorithm. These cases are reported in Figures 3.7a, 3.7b 3.7c where it
can be appreciated that the resulting segmentation is reasonable anyway.

On plane segmentation experiments, in five cases (marked in bold) the proposed
method estimates an optimal scale according to ME.

For the johnsonb image pairs the attained segmentation by TLCC is slightly less ac-
curate than the optimal one, however from Fig. 3.8c, where the ME and the stability
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Table 3.2: ME (%) for two-view motion segmentation.

Two term model selection Stability

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC T-Link∗

biscuitbookbox 4.25 9.27 8.88 8.49 7.04 2.71 0.39

breadcartoychips 5.91 10.55 11.81 10.97 4.81 5.19 5.19

breadcubechips 4.78 9.13 10.00 7.83 7.85 2.17 2.17

breadtoycar 6.63 11.45 10.84 9.64 3.82 4.27 4.27

carchipscube 11.82 7.58 11.52 11.82 11.75 1.22 1.22

cubebreadtoychips 4.89 9.79 11.47 6.42 5.93 4.46 3.50

dinobooks 14.72 19.44 17.64 18.61 8.03 13.86 13.86

toycubecar 9.5 12.5 11.25 15.5 7.32 3.03 3.03

Mean 7.81 11.21 11.68 11.16 7.07 4.62

Table 3.3: ME (%) comparison for plane segmentation.

Two term model selection Stability

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC T-Link∗

johnsona 4.02 18.5 4.16 6.88 5.9 3.12 3.12

johnsonb 18.18 24.65 18.18 21.49 17.95 8.83 8.81

ladysymon 5.49 18.14 5.91 5.91 7.17 6.17 6.17

neem 5.39 31.95 5.39 8.81 5.81 4.78 4.78

oldclassicswing 1.58 13.72 1.85 1.85 2.11 1.65 1.65

sene 0.80 14 0.80 0.80 0.80 0.42 0.42

Mean 5.91 20.16 6.05 7.62 6.62 4.08

index are shown, it can be appreciated that the value achieved by TLCC corresponds to
a plateau of ME. The segmentation produced by TLCC is presented in Figure 3.7f. No-
tice that the actual global optimum of ME can be conditioned by arbitrary tie-breaking
of disputed points between models.

Table 3.3 compares TLCC with state of the art methods (results for all the methods
but TLCC are taken from [77]). Our method achieves in all cases, but one, the best ME



42 3 Preference analysis: linkage formulation

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) biscuitbookbox

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) cubebreadtoychips

0 5 10 14
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) johnsonb

Fig. 3.8: Stability index s (blue) and ME (red) as a function of the scale ε parameter
for some image pairs of the motion segmentation (3.8a, 3.8b) and plane segmentation
experiments (3.8c). The estimated scale is marked with a diamond on the s curve.

and a reasonable segmentation and it scores first on the average. In Figure 3.9 we also
validate TLCC on some plane segmentation experiments taken from the VGG dataset4.

In summary, results show that TLCC, and a fortiori T-Linkage, place in the same
range as the state of the art competing algorithm adopting a classical two-term model
selection strategy, with a free balancing parameter. Experiments show that this method
succeeds in estimating the scale parameter of T-linkage and provides evidence that sta-
bility has a minimum in the “right" spot, ideally the same spot where the misclassifica-
tion error (ME) achieves its minimum.

3.6 Final remarks

In this chapter we have built on the preference trick implemented by J-Linkage, relaxing
the notion of preference set in the Tanimoto space. Cluster analysis is hence performed
through agglomerative clustering. This segmentation techniques manifest two key ad-
vantages. First there is no need to specify the number of sought structures in advance.
Second, outliers emerge as small group of points that can be pruned in a probabilistic
framework where the reliability of a structure is measured in term of its randomness.
The inlier threshold is the only input parameter required by this strategy. The tuning of
the scale is reduced, to less extent, by the use of soft representation. Moreover a model
selection criterion, which fully takes advantage of the linkage output, has been pro-
posed for automatic scale selection. The experimental results are compelling as shown
in the comparison with other methods and demonstrate that by expressing the prefer-

4 available online at http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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Fig. 3.9: Qualitative results of TLCC on stereo images from VGG, Oxford (point mem-
bership is color coded, red dots are points rejected as outliers)

ences of a point integrating more specific information on residuals, we obtain a more
significant representation easing the task of multi model fitting.
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Preference analysis: spectral formulation

The preference trick coupled with random sampling is a very flexible mechanism that
can be applied a wide varieties of scenarios requiring few assumptions on the desired
structures. It is sufficient to have at disposal an error function aimed at measuring resid-
uals and then, by means of M-estimator, the structure recovery problem is shifted in
the conceptual space where it can be addressed using cluster analysis. In the previ-
ous chapter we have seen how hierarchical clustering can be used to recover the latent
structures hidden in the data, here we concentrate on partitional clustering based on
spectral analysis. In particular we borrow some key concepts from state-of-the-art sub-
space clustering techniques.

4.1 Subspace estimation: low rank & sparsity

The problem of subspace estimation is a particular instance of multi-model fitting that
has a relevant place in Computer Vision, since many applications – from image seg-
mentation to motion segmentation, or temporal video segmentation – can be reduced
to fitting a mixture of subspaces to high dimensional data.

A variety of approaches have been proposed. Methods based on matrix factorization
were among the first to be introduced; they can be thought as natural extension of Prin-
cipal Component Analysis (PCA) in which the data matrix X is decomposed as X = LY ,
where L is a low rank matrix and Y is block diagonal and encodes the membership
of points to the same subspace. The algorithms of Boult and Brown [12], Costeira and
Kanade [27] and Gear [38] belong to this category. Many other techniques have been
proposed, for example Local Subspace Affinity [113] is an algebraic method that uses
local information around points in order to fit local subspaces and to cluster points
making use of a pairwise similarities computed using angles between the local sub-
spaces. Agglomerative Lossy Compression [83] is a bottom up clustering algorithm that
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aims at segmenting the data minimizing a coding length needed to fit the points with a
mixture of degenerate Gaussians up to a given distortion.

In the last years an emerging stream of research [63, 89] has been concentrating on
the use of sparse representation and low rank constraints for segmenting high dimen-
sional vectorial data. The notion of sparsity [14] is straightforward: a vector is sparse
if it can be exactly or approximately represented as a linear combination of only a few
vectors selected from a predetermined dictionary. This property is encoded by the `0

“norm” ‖v‖0 = |{k : (v)k 6= 0}|: a vector admits a k-sparse representation with respect
to a dictionary D if it can be written as Dc and ‖c‖0 = k. While the reconstruction of a
signal from its sparse representation is a simple linear transform, the inverse problem

argmin
c

‖c‖0 such that Dc = v, (4.1)

is a non-linear optimization that, in general, is intractable. This fact has motivated the
flourishing of many methods in the compressed sensing literature based on the convex
relaxation of the `0-norm: the `1-norm. `1-norm, defined as the sum of the absolute
values of the entries ‖v‖1 = ∑

k |(v)k |, serves to replace the problem in Equation (4.1)
with the following tractable optimization objective:

argmin
c

‖c‖1 such that Dc = v. (4.2)

At a high level, the effectiveness of sparsity-oriented approaches can be explained view-
ing this property as a useful way of constraining the complexity of a vector representa-
tion, which can be very generally justified by Occam’s razor. Sparse Subspace Cluster-
ing (SSC [89]) exploits this principle to derive a segmentation of high dimensional data.
The main idea of SCC is to take advantage of the “self-expressiveness” of the input: ev-
ery points can be expressed as a linear combination of few other points lying in the
same subspace. A sparse `1 optimization program captures this property by defining a
collection of vectors of coefficients ci using as a dictionary the data itself:

arg min
ci∈RN

‖ci‖1 subject to xi = X ci and (ci )i = 0. (4.3)

The constraint (ci )i = 0 removes the trivial solution that decomposes a point xi as a lin-
ear combination of itself. In this way the sparsest representation of xi would only select
vectors from the subspace in which xi happens to lie. In matrix notation the problem
in Equation (4.3) can be rewritten as

min
C

‖C‖1 such that X = XC>, diag(C ) = 0. (4.4)
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In case of data contaminated by noise and outlier, instead of expressing a data point
as an exact linear combination of other points, it is convenient to introduce a penalty
term:

min
C

‖C‖1 +λ‖E‖2,1 such that X = XC>+E , diag(C ) = 0. (4.5)

The `1,2-norm is defined as ‖E‖2,1 = ∑
j

√∑
i |Ei , j |2. The underlying assumption is that

a data point can be written as xi = X ci +ei where ei is a sparse vector that models gross
outlying entries of xi .

A related approach, termed Low Rank Representation (LRR) [63], derives a similar
convex optimization problem

min
C

‖C‖∗+λ‖E‖1 such that X = DC>+E (4.6)

where D is the dictionary matrix, either constructed in advance or equal to X , and
‖C‖∗ = ∑

σi (C ) is the nuclear norm that equals to the sum of all the singular values
σi (C ) of C .

Both SSC and LRR then use the optimal C to define an affinity matrix. It is quite
natural to define a similarity measure between points as S = |C | + |C |>, because non-
zero elements of ci correspond to points from the same subspace of xi . This similarity
matrix is finally used to feed spectral clustering and a partition of the points is obtained.

The main difference between the two methods is that SSC minimizes the `1-norm
of the representation matrix to induce sparsity while LRR tries to minimize nuclear
norm to promote a low-rank structure. Both method however relies on the same idea:
taking advantage of the intrinsic redundancy of multi-model data to embed the data
point in a discrete metric space to facilitate the segmentation task. Interestingly this
first-represent-then-clusterize approach is evocative of the preference trick philosophy.
If T-Linkage is taken in comparison, the representation matrix C corresponds to the
preference matrix, whereas the similarity S plays the same role of the Tanimoto dis-
tances. Moreover, as sparsity is concerned, outliers can be recognized in practice as
sparse rows of the preference matrix, since the number of sampled structured support-
ing outliers is considerable smaller than the number of structure supporting an inlier
(typically an outlier is explained only by the structures it has happen to generate by
the MSS it belongs to). There are also some deep differences, though. The conceptual
representation proposed in T-Linkage is not limited to vectorial (and affine) subspace.
This comes at the cost of choosing a correct inlier threshold – a parameter that has geo-
metrical meaning but is highly data depended– and of the effectiveness of the sampling
scheme adopted to generate hypotheses. On the other hand, SSC and LRR depends on
the regularization coefficient λ to handle outlier and noisy data. As the segmentation
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is concerned, spectral clustering requires to know in advance the number of models,
whereas the greedy linkage strategy, adopted by T-Linkage, can automatically estimate
this parameter.

The connection with subspace clustering can be extended to general purpose higher
order clustering methods [41, 49] that rely on an implicitly preference based approach
paired with low rank constraints. In this line of work the preference matrix is seen as
a flattened tensor that encapsulates the probability of ζ-tuple of points to be clustered
together. This multi-way order information is properly reduced to a pairwise similar-
ity that, as happen in LRR and SSC, is processed by spectral clustering. In particular
Sparse Grassmann Clustering (SGC) [49] exploits the low rank nature of the multiple
model fitting problem approximating the multi-way similarity tensor as the Gramian
matrix defined by the inner product of points in the preference matrix. It is worth not-
ing that also the Tanimoto distance is defined in terms of inner product of rows of the
preference matrix; the normalization factor, however, differs in order to generalize the
Jaccard distance. At this point, following the spirit of spectral clustering –which works
only with a few eigenvectors of the similarity matrix– the Gramian is projected on its
best low rank approximation in a least square sense. This approximation is obtained
thanks to Grouse [7] an optimization algorithm that operates on the Grassmann man-
ifold – i.e. the variety of all the subspace of given dimension of a projective space – in
order to produce a low rank approximation in the `2 sense of the input matrix that, at
the end, is segmented using k-means.

In summary, starting from the analysis of multiple subspaces estimation throughout
higher order clustering, three main recurring themes have emerged: spectral clustering,
sparsity and low rank requirements. In the following sections we analyze how these in-
gredients can be tailored to our general multi-model fitting problem. We start to pave
the way to this result concentrating on spectral clustering.

4.2 Spectral clustering

The wide landscape of clustering algorithms can be broadly categorized into hierarchi-
cal and partitional methods. In the latter category spectral clustering is among the most
popular techniques thanks to its ability of dealing with clusters of arbitrary shape (as
opposed to k-means, where the clusters are assumed to lie in disjoint convex sets) and
its simplicity: indeed it results in a standard and simple-to-solve linear algebra prob-
lem, that avoids local minima and initialization issues.

In concrete, spectral clustering can be thought as a way to address the discrete
graph-cuts problem in the language of linear algebra: provided a symmetric similarity
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matrix Si j ≥ 0, viewed as the weighted adjacency matrix of a graph, the aim of graph-
cut is to create a segmentation of the data into several groups such that points in the
same group have high similarity values and different segments are dissimilar to each
other (low similarity). In order to avoid trivial solution, this task is pursued by enforcing
limits on the number of desired groups as well as by constraining the relative size of
the segments. According to the constraints imposed, different fashions of graph parti-
tioning problem can be derived: namely mincut, RatioCut and normalized Ncut. The
balance requirements - encoded in the notions of cut – turns graph-cut in an NP-hard
problem, hence spectral clustering is aimed at solving a relaxed version of graph-cut.

In particular if A and B are disjoint subset of the vertices, the quantity c(A,B) is
called cut and measures the weighted connectivity of A with the subgraph B :

c(A,B) = ∑
i∈A, j∈B

Si j . (4.7)

For a given number κ of desired segments, the mincut problem consists in finding a
partition of vertices that minimizes

cut(C1, . . . ,Cκ) = 1

2

κ∑
i=1

c(Ci ,C̄i ). (4.8)

The notation C̄i denotes the complement of the set Ci and the factor 1/2 prevents from
counting each edge twice. Even if mincut problem can be solved in polynomial time
through Max Network Flow, in practice it often does not lead to satisfactory partitions
since, in many cases, it produces unbalanced partitions where single vertices are dis-
connected from the rest of the graph. Two alternatives have been proposed to circum-
vent this issue: the RatioCut formulation [16, 42] in which the number of vertices per
cluster is considered

RatioCut(C1, . . . ,Cκ) = 1

2

κ∑
i=1

c(Ci ,C̄i )

|Ci |
=

κ∑
i=1

cut(Ci ,C̄i )

|Ci |
, (4.9)

and the the Ncut formulation [88]

Ncut(C1, . . . ,Ck ) = 1

2

k∑
i=1

c(Ci ,C̄i )

vol(Ci )
=

k∑
i=1

cut(Ci ,C̄i )

vol(Ci )
. (4.10)

where a balance is introduced thanks to notion of the volume of a set vol(A) =∑
i∈A di ,

i.e. the sum of the degree di = ∑
j si j of the vertex in A. Both these objective functions

promote even partitions because they take a small value if the clusters Ci are not too
small: RatioCut attained its minimum if all the sizes |Ci | coincide, whereas the mini-
mum of Ncut is reached if all vol(Ci ) are equal1. If clusters are well separated, all these

1 This balance requirement is a strong assumption on the distribution of the data per cluster, however as notice in
the first chapter, clustering is an ill-posed problem and requires some kind of regularization.
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three objectives give very similar and accurate segmentations. However when clusters
are marginally separated, Ncut yields accurate results [106].

Normalized spectral clustering [70] solve a relaxed versions of Ncut problem thanks
to the notion of (normalized) Laplacian matrix:

L = D−1/2(D −S)D−1/2 = I −D−1/2SD−1/2, (4.11)

D indicates the degree di matrix collecting on its diagonal the degree of all the vertices.
This matrix enjoys several properties: L is a symmetric and positive semi-definite matrix
and the multiplicity of the eigenvalue 0 equals the number of connected components –
that in ideal noise-free condition is the number of desired clustersκ. Moreover the topκ
eigenvectors corresponding to the zero eigenvalue encapsulate clustering information.

More precisely, if one defines a n ×κ matrix H that collects per columns the κ indi-
cator vectors of clustering

Hi , j =
{

vol(C j )−
1
2 if xi ∈C j

0 otherwise,
(4.12)

it is possible to rewrite the problem of minimizing Ncut presented in Equation (4.10) as

min
C1,...,Cκ

(H>(D −S)H) subject to H>D H = I , (4.13)

exploiting the following three properties of H

H>H = I , H j D H j = 1, H j (D −S)H j = cut(C j ,C̄ j )/vol(C j ). (4.14)

If we relaxing the condition (4.12) by allowing H to assume real entries, through the
substitution U = D1/2H , we finally obtain the problem

min
U∈Rn×κ trace(U>LU ) subject to U>U = I . (4.15)

This is a well known trace minimization problem in the form of the standard Rayleigh-
Ritz theorem, which is solved by the matrix U that contains the first κ eigenvectors of L
as columns. The columns of U can be thought as indicator vectors of the segmentation
that solve the Ncut problem. Alternatively the rows of the eigenvector matrix can be
considered as a new representation of the data points in a κ dimensional space. In the
ideal case of completely separated clusters, points belonging to the same component
have exactly the same representation. Nonteheless, in concrete, a common practice is
to normalize the rows of U and use k-means as last step to extract the final partition. In
this way spectral clustering can be viewed as a projection on the eigenspace spanned
by the first κ eigenvectors of the Laplacian matrix followed by a clustering step.
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4.2.1 T-Spectral

In this section we explore the performance of concatenating the embedding in Tan-
imoto space with spectral clustering on two important applicative scenario: video
motion segmentation and 3D plane fitting. In particular we feed normalized spec-
tral clustering with the similarity measure derived by the Tanimoto distances as Si , j =
1−dT (φH (xi ),φH (x j )) and provide this algorithm, termed T-Spectral, with the number
of inlier structures.

Motion segmentation

In motion segmentation the input data consists in a set of features trajectories across
a video taken by a moving camera, and the problem consist in recovering the different
rigid-body motions contained in the dynamic scene.

Motion segmentation can be seen as a subspace clustering problem under the mod-
eling assumption of affine cameras. In fact it is simple to demonstrate that all feature
trajectories associated with a single moving object lie in a linear subspace of dimension
at most 4 in R2F (where F is the number of video frames). As a matter of fact, the image
coordinates y f i of the i -th point in the f -th frame satisfies

y f i = P f Yi , (4.16)

where P f is a projection matrix and Xi collects the 3D coordinates of the p-th point. If
we form a matrix containing all the F feature trajectories corresponding to a point per
columns, we get 

y11 . . . y1n
...

...

yF 1 . . . yF n

=


P1
...

PF

[
Y1, . . . ,Yn

]
, (4.17)

In brief this can be rewritten as X = MS>, where M is called motion matrix and S is
termed structure matrix. Since rank(M) ≤ 4, rank(S) ≤ 4, it follows that rank(X ) ≤ 4.
For this reason feature trajectories of a dynamic scene containing κ rigid motion lie in
the union of κ low dimensional subspace of R2F and segmentation can be reduced to
clustering data points in a union of subspaces.

We assess the performance of J-Linkage, T-linkage and T-Spectral on the Hopkins
1552 motion dataset [103]. The dataset consists of 155 sequences of two and three mo-
tions, divided into three categories: checkerboard, traffic, and other (articulated/non-
rigid) sequences. The trajectories are inherently corrupted by noise, but no outliers are

2 available online at http://www.vision.jhu.edu/data/hopkins155

http://www.vision.jhu.edu/data/hopkins155
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Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg T-Spec

Checkerboard mean 6.52 2.57 2.56 1.49 1.12 1.73 1.20 1.38

median 1.75 0.72 0.00 0.27 0.00 0.00 0.00 0.00

Traffic mean 2.55 5.43 2.83 1.75 0.02 0.70 0.02 2.36

median 0.21 1.48 0.30 1.51 0.00 0.00 0.00 0.52

Others mean 7.25 4.10 6.90 10.70 0.62 3.49 0.82 0.53

median 2.64 1.22 0.89 0.95 0.00 0.00 0.00 1.22

All mean 5.56 3.45 3.03 2.40 0.82 1.62 0.86 1.82

median 1.18 0.59 0.00 0.43 0.00 0.00 0.00 0.00

Table 4.1: Motion segmentation: ME (%) for video sequences with two motions

Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg T-Spec

Checkerboard mean 25.78 5.80 6.78 5.00 2.97 8.55 7.05 4.35

median 26.02 1.77 0.92 0.66 0.27 4.38 2.46 0.79

Traffic mean 12.83 25.07 4.01 8.86 0.58 0.97 0.48 1.51

median 11.45 23.79 1.35 0.51 0.00 0.00 0.00 1.01

Others mean 21.38 7.25 7.25 21.08 1.42 9.04 7.97 5.45

median 21.38 7.25 7.25 21.08 0.00 9.04 7.97 5.45

All mean 22.94 9.73 6.26 6.69 2.45 7.06 5.78 3.86

median 22.03 2.33 1.02 0.67 0.20 0.73 0.58 0.89

Table 4.2: Motion segmentation: ME (%) for video sequences with three mo-
tions

present. In the comparison we take into account also algorithms tailored to subspace
clustering: SSC [89] Local Subspace Analysis [113] (in LSA 4n data are first projected to a
space of dimension 4 times the number of motions) and Agglomerative Lossy Compres-
sion [83] (ALC 5 projected the data to a space of dimension 5, ALC sp uses a projection
to a space of dimension 4 times the number of motions)

All methods have been tuned separately on each dataset for best performance.
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The average and median misclassification errors are listed in Tables 4.1 and 4.23,
where it can be appreciated that the results of T-Linkage and T-Spectral are somehow
mixed.

On the two-motion sequences T-Linkage, T-spectral and SSC achieves a zero median
error. T-Spectral struggles on the Traffic sequences where T-Linkage, on the contrary,
achieves the best average error. The overall average misclassification error of T-Linkage
is the second best after SSC, and fairly close to it.

On the videos with three moving objects, the advantage of knowing a priori the num-
ber of subspaces is reflected in the better performance of T-Spectral that score second
in overall accuracy. The best performances are yielded by SSC that obtain the lowest
median error in all the experiments, corroborating the advantages of integrating spar-
sity in the formulation of the problem.

3D plane fitting

Multiple structure recovery can be fruitfully employed in the contest of automatic ar-
chitectural and urban modeling from images. In this scenario usually a reconstruction
technique produces arbitrarily dense but unstructured points clouds. Fitting multiple
geometric primitives to these point clouds is a first step in organizing it in a higher in-
formative semantic level. In this section we asses the performance of T-Spectral on this
application, in particular we consider the problem of fitting plane to 3D-point clouds.
Figure 4.1 shows some sample results of T-Spectral on three datasets4.

For the Castelvecchio dataset (Figure 4.1c), composed by points lying on three planes,
we manually computed the ground-truth and hence we are able to compare the perfor-
mance of T-Linkage and T-Spectral with respect to the inlier threshold ε. Providing both
methods with the optimal parameters, we obtain in both cases an accurate segmen-
tation (the ME is 1.06 %). However it is worth to notice that, as shown in Figure 4.1d
for T-linkage the inlier threshold is much more a critical parameter with respect to T-
Spectral.

This is not surprising since the parameter ε in T-Linkage controls the inlier thresh-
old but it also implicitly governs the orthogonality between points represented in the
Tanimoto space, and in practice decides the number of attained models. T-Spectral on
the contrary, using to good advantage the number of models given in input, is able to
split the weighted graph defined by the similarity values in order to obtain the desired
number of models. This ability, typical of partitional clustering, however comes at the
cost of losing robustness. As a matter of fact, the graph cut formulation does not take

3 the figures regarding SSC, LSA, and ALC are taken from the site mentioned above
4 Publicly available from http://www.diegm.uniud.it/fusiello/demo/jlk/

http://www.diegm.uniud.it/fusiello/demo/jlk/
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Fig. 4.1: T-Spectral results on 3D plane fitting. Point membership is color coded.

into account outliers. If gross outliers contaminate the data, they are attached to some
of the segments composed by inliers. In this case, as illustrated in Figure 4.2, the clus-
tering produced by T-Spectral is somehow useless, the naive strategy of increasing the
number of desired segments in order to collect together outliers is of no help. On the
contrary, the presence of outlying data hinders T-Linkage, but the result of hierarchical
clustering can be easily paired with proper outlier rejection strategy

In summary T-Spectral is a valuable alternative to T-Linkage if the data are inliers
and the number of sought structures is known in advance, otherwise its lack of robust-
ness heavily deteriorate its performances. In order to be able to deal with outliers some
criteria of robustness has to be integrated in the spectral clustering framework. In the
next section we will see how the ideas encountered in subspace clustering literature –
namely low rank constraints and sparisty – can be exploited, together with consensus
analysis, to overcome these difficulties.
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(a) T-Spectral (b) T-Linkage (c) T-Spectral output (d) T-Link. & outlier rejec-
tion

Fig. 4.2: Weakness of T-Spectral. T-Spectral is very effective in dealing with pseudo out-
liers (top row, left). However it is not aimed at dealing with outliers. When data are con-
taminated the output of T-Spectral (bottom row, left) can not be easily interpreted for
model fitting purposes, even if an additional cluster is required for collecting outliers.

4.3 Robust Preference Analysis

The main idea, pictorially represented in Figure 4.3, is to build on the preference
analysis exploiting a soft-descender M-estimator and integrating in this approach de-
composition techniques, such as Robust Principal Component Analysis (Robust PCA)
and symmetric Nonnegative Matrix Factorization (symNMF). Loosely speaking, this
method can be thought as a sort of “robust spectral clustering”. We have seen that spec-
tral clustering produces accurate segmentations in two steps: at first data are projected
on the space of the first eigenvectors of the Laplacian matrix and then k-means is ap-
plied. The shortcoming of this approach is that it is not robust to outliers. We propose
to follow the same scheme enforcing robustness: the eigen-decomposition step is re-
placed by Robust PCA on a pairwise affinity matrix, and Symmetric NMF [54] plays the
role of k-means. In this way we are able to reduce the multi-model fitting problem to
many single-fitting problems which are solved by scrutinizing the product between the
matrix produced by Symmetric NMF and the preference matrix, together with the use
of robust statistics.

In the previous experiments on the Castelvecchio dataset we have seen that T-
Spectral is less sensitive to the choice of the inlier threshold, as the segmentation is
affected to less extent by ε, being mainly controlled by the number of desired cluster.
For this reason we propose to take advantage of this ability and instead of using the
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Fig. 4.3: Robust preference analysis in a nutshell: data points are shifted in a conceptual
space where they are framed as a preference matrix P>. A similarity matrix K is defined
exploiting agreement between preferences. Robust PCA and Symmetric NMF are used
to robustly decompose K =UU>+S, where S is a sparse matrix modelling outliers, and
U is a low rank matrix representing the segmentation. Finally, models are extracted in-
specting the product of the preference matrix with thresholded U , mimicking the MSAC
strategy. (Points are ordered by cluster for visualization purposes)

Tukey M-estimator, adopted in T-Linkage, we rely on soft descenders to express point
votes avoiding hard cutoff. In particular we exploit the Cauchy weighting function. The
preference trick consequently becomes:

φH (x) =

 1

1+
(

errµ(x,h1)
τσn

)2 , . . . ,
1

1+
(

errµ(x,hm )
τσn

)2

 . (4.18)

Rather than using directly Tanimoto distances, we rely on the definition of a a posi-
tive semi-definite kernel matrix K ∈ [0,1]n×n on P>:

K (i , j ) = exp
(−τ(i , j )2) where τ(i , j ) = 1−

〈
P>

i ,P>
j

〉
‖P>

i ‖2 +‖P>
j ‖2 −

〈
P>

i ,P>
j

〉 . (4.19)

to measure the agreement between preferences.

4.3.1 Clustering

We shall now describe how the affinity matrix can be exploited to segment the data.
Consider an ideal affinity n×n matrix F which encodes point membership to the same
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segment: Fi , j = 1 if xi and x j are clustered together and Fi , j = 0 otherwise. If data be-
longing to the same segment are arranged as consecutive points, the matrix F exhibits
a block structure and therefore has rank κ equal to the number of clusters in the data.

As described in [117, 118] the problem of partitioning a set of data points in κ seg-
ments starting from a positive semi-definite affinity matrix K is equivalent to approx-
imating K in a least square sense by means of an ideal affinity matrix F . In formulae,
denoting by ‖ ·‖F the Frobenius norm of a matrix, we are interested in:

min
F

‖K −F‖2
F , (4.20)

under conditions on F to be further specified. This problem is usually formulated by in-
troducing a matrix U ∈ Rn×k such that F =UU>, which represents a soft segmentation
of the data: the element Ui j measures the probability that the i -th point belongs to the
j -th segment.

According to the constraints imposed on U , the solution of (4.20) corresponds to
different classical clustering algorithms, such as spectral clustering or k-means. More
precisely Equation (4.20) can be expanded as:

min‖K −UU>‖2
F

⇐⇒ mintrace[(K −UU>)>(K −UU>)]

⇐⇒ mintrace(K >K )−2trace(U>KU )+ trace(I )

⇐⇒ maxtrace(U>KU ).

The last equation becomes the objective of spectral clustering previously encountered
in Equation (4.15) if−K is the Laplacian of a graph and the columns of U are orthogonal.
Since, it has been demonstrated [118] that the Laplacian of a similarity matrix can be
viewed as the closest double stochastic approximation in relative entropy of the similar-
ity matrix K , balanced partition are implicitly promoted. If K is chosen as the Gramian
matrix of the data and if orthogonality, double stochasticity and non negativeness of
U are enforced, the considered trace maximization problem corresponds to k-means.
Finally, for sake of completeness, we recall that in the case in which K = X X > is the
covariance matrix of the data, under orthogonality constraint, solving Equation (4.20)
is tantamount of doing Principal Component Analysis.

In summary the constraints that are usually imposed on U are: U ≥ 0, rank(U ) = κ,
U>U = I and UU> is doubly stochastic. Hard-clustering assignment implies orthog-
onality; being doubly stochastic represents a balancing condition on the sizes of the
clusters; the non negativity of U ensures physical meaning of the entry of U which can
be interpreted as the probability of points to belong to a given segment. The last con-
straint is the most important according to [117, 118], where it is highlighted as the key
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ingredients for solving Problem (4.15) are the low-rank nature of both the affinity matrix
and U (since since k ¿ n), together with the non-negativeness of U .

Symmetric NMF (SymNMF) [54], that recently stands out in the clustering litera-
ture, enforces exactly these two proprieties. The idea at the basis of SymNMF is to
rephrase (4.15) in the equivalent formulation

min
U∈Rn×κ+

‖K −UU>‖2
F (4.21)

and hence to find U minimizing (4.21) using an improved Newton-like algorithm that
exploits the second-order information efficiently.

Interestingly we can interpret the clustering produced by SymNMF as a dimension-
ality reduction result: the columns of U form a basis of a latent space of the data,
whereas the rows collect the coefficients that express the data as linear combinations
of the basis vectors. Since in the preference space the basis over which the points are
represented is determined by the sampled structures, the columns of U can be thought
as the κ ideal structures that well describe the data.

When data are contaminated by gross outliers K has no longer low rank. For this
reason, before applying SymNMF, we search robustly for the lowest-rank matrix L and
the column-sparsest matrix S such that the data matrix can be decomposed as

K = L+S . (4.22)

This Robust PCA step mimics in a outlier-resilient way the projection of data on the
space of κ eigenvectors of the similarity matrix performed in spectral clustering. More-
over it is easy to recognize the formulation of LRR presented in Equation 4.6 when the
dictionary A is chosen as the identity matrix. The decomposition (4.22) can be com-
puted with the Augmented Lagrangian Method (ALM) [61], which solves the problem

argmin‖L‖∗+λ‖S‖1 s.t K = L+S . (4.23)

The parameter λ has a provable optimal value [15] at λ = 1p
n

, where n is the dimen-

sion of the square matrix K . In other words, following the ideas in LRR (Equation (4.6))
we are retaining the low rank part of the similarity matrix, rejecting the sparse part of
K that corresponds to micro-clusters of outlying preferences. Please note that this ap-
proximation differs from the one adopted by SGC [49] where a low rank space is fit to
a Gramian matrix in a least square sense. We depart from this model because a least
squares fit is reliable as long as the sampled hypotheses are pure, but this property can
not be ensured in presence of outliers.

We can now apply the SymNMF machinery to L (instead of K ) in order to find a
completely positive rank-κ factorization L =UU>. A segmentation is obtained from U
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by considering the matrix B with the same dimension of U that has a one in each row
where U achieves its row-maximum, and zero otherwise, i.e. Bi , j = 1 means that point
i belongs to segment j . This last step is similar to the customary k-means that comes at
the end of spectral clustering.

At this point, the matrix B represents a provisional segmentation of the points into κ
segments containing outliers. The goal of the next section is to refine this segmentation
and prune outliers, by solving, within each segment, a robust single model fitting.

4.3.2 Pruning outliers

Model extraction maximizing consensus.

Let us first observe that P>1 (where 1 is a vector of ones) is the sum of the preference
vectors of all the points in P>, so its entries are the votes obtained by each model. Hence
finding the maximal entry of P>1 is equivalent to doing a sort of MSAC (M-estimator
SAmple and Consensus) with the Cauchy weighting function (Eq. 4.18).

We have seen that columns of B = [B 1, . . . ,B k ] can be regarded as indicators of the
segments. Hence P>B i is the sum of the preference vectors of the points in the segment
i , and its maximal entry represents the most preferred model in that segment. There-
fore, the maxima over the columns of P>B are the indices of the models in P> that
achieve maximum consensus in each segment. According to the observation above,
this is equivalent to running a MSAC within each segment i with preference matrix
(P> diag(B i )). The above reasoning can be extended to the matrix U ◦B with entries
in [0,1], that corresponds to a soft segmentation in which outliers are under-weighted
(◦ denotes the component-wise or Hadamard product).

We found beneficial, prior to this step, to augment P> with some pure models by
random sampling and to remove "spurious" ones, according to the segmentation rep-
resented by B . In particular, we relax the concept of "spurious" to those models that
are not contained in a single segment with at least 50% of their points; in other words,
we label the points in P> according to the segmentation given by B and we remove the
columns where no label occurs more than 50% of the times. The new sampling is im-
plemented by drawing random MSS within each segment i with probabilities given by
the non-zero entries of (U ◦B)i .

In summary, the maximal entry in each column of P>(U◦B) corresponds to the index
of the most preferred model by the points of the segment, hence we choose it as the
model that represents the segment. This could be a final result if the goal was to find
the correct models. However, having recognized the entangled nature of model fitting
and segmentation problems, we will unravel it by iterating between refining the model
and updating the segmentation.
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Segmentation.

The models computed from maxcols(P>(U ◦B)) define a new tentative segmentation by
assigning points to the nearest model. Within this segmentation, outliers are singled-
out as points with a residual higher than a threshold T = τ σ̂ where σ̂ is an estimate of
the standard deviation of the residuals of the inliers and τ is the same tuning constant
as in Equation (4.18) (set to 5.0 in our experiments).

The value of σ̂ can be obtained in several ways: it can be user provided (σ̂ = σn) or
can be computed from the residuals themselves, in a robust way. The second solution is
to be preferred, as it leaves the choice of σn a noncritical step and makes the threshold
T data-adaptive. We preferred the Sn estimator proposed in [85]:

Sn = c medi (med j (|ri − r j |)), (4.24)

(where ri , i = 1, . . . ,n denotes the residual between the data xi and the considered
model) as a valid alternative to the more common median absolute deviation (MAD),
which is aimed at symmetric distributions, and has a low (37%) Gaussian efficiency. Sn

instead copes with skewed distributions, has the same breakdown as MAD but a higher
Gaussian efficiency (58%). The efficiency of a robust estimator is defined as the ratio be-
tween the lowest achievable variance in an estimate to the actual variance of a (robust)
estimate, with the minimum possible variance being determined by a target distribu-
tion such as the normal distribution. Asymptotic efficiency is the limit in efficiency as
the number of data points tends to infinity.

The factor c can be set to 1.1926 for consistency with a normal distribution, but other
distributions require different values (see [85] for details). In our experiments it has
been tuned heuristically by analysing the distribution of the residuals of inliers given
by the ground-truth. Values are reported in Table 4.3.

We noticed that in some cases most of the outliers are assigned to a single segment,
resulting in a contamination greater than 50% that inevitably skews Sn . As a guard
against this, Sn is computed only on the residuals smaller than 5.0σn .

The model is then refined with a least-squares fit on the inliers, and the threshold T
is computed again to determine the final segmentation.

4.4 Experimental evaluation

In this section we assess experimentally the effectiveness of our algorithm, henceforth
dubbed RPA. All the code is written in Matlab and is available for download5. We used
the inexact ALM code [2], whereas the SymNMF implementation is taken from [54].

5 http://www.diegm.uniud.it/fusiello/demo/rpa/

http://www.diegm.uniud.it/fusiello/demo/rpa/
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toycubecar (ME=9.43) boardgame (ME=11.65) dinobooks (ME=15.14)

oldclassicswing (ME=25.25) jhonsonb (ME=26.76 ) library (ME=31.29)

Fig. 4.4: Some of the worst results obtained by RPA on motion segmentation (top
row) and planar segmentation (bottom row). Model membership is colour coded, black
crosses (×) are outliers.

To start with, we consider two view motion segmentation and plane segmentation
on the AdelaideRMF [110] dataset . We compared RPA with T-Linkage, which uses pref-
erence analysis and agglomerative clustering, and RCMSA (available at [84]), a robust
method which relies on an efficient graph cut clustering based on a label optimization
framework.

RPA and T-Linkage shared the same biased sampling in the conceptual space: we
drew 3n hypotheses by uniform sampling and we used them to instantiate other 3n
MSSs according to Equation (2.7). In all the experiments β was set to the median of all
the Tanimoto distances between data points.

We provided T-Linkage with the inlier thresholds computed from the ground-truth
segmentation for each single image pair, and we retained as inliers the largestκ clusters,
κ being the correct number of models according to ground-truth. The input parameters
of RCMSA and RPA are reported in Table 4.3 and have been kept fixed and equal for all
the image pairs in each experiment.

Results are reported in Table 4.4, and demonstrate that our method outperforms its
competitors, obtaining the lowest ME in most cases and the best mean and median
results overall.
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Experiment σn c s β

Motion segmentation 0.005 1.53 0.005 100

Planar segmentation 0.013 2.11 0.005 10

Table 4.3: Parameters used in the experiments. σn is the overall standard deviation of
the residuals of the inliers, as computed from ground-truth (units refer to normalized
image coordinates). c is the value in Equation (4.24) that experimentally provides the
best estimate ofσn from Sn . Parameters s and β refer to [78] and the values are the ones
provided by the authors in their implementation.

Some of the worst cases for RPA are reported in Figure 4.4. The top row shows the
results of motion segmentation that achieve the highest ME: the quality of the segmen-
tation is nevertheless acceptable. The situation is different in the bottom row – corre-
sponding to homography fitting – where three defective segmentations are shown, and
the ME is indeed higher.

In jhonsonb the fault is of Symmetric NMF, which fails in finding a correct segmen-
tation of the data, whereas in library and in oldclassicswing it is the value of σn that
is respectively too low (over-segmentation) and too high (under-segmentation). While
there are no remedies for the first case, the last two can be cured by a better choice of
σn : for example, the ME drops to 24.53% for library and to 0.55% for oldclassicswing af-
ter assigning to σn the standard deviation of the residuals of the inliers for that specific
image pair.

We also assess the performance of RPA on subspace clustering. In order to evaluate
the robustness of the method we add to each sequence of Hopkins155 20% of outlying
trajectories which are generated by starting a random walk at a random point in the
image and adding to it increments taken from a trajectory (picked at random in the se-
quence) between consecutive frames (again picked at random). For all the experiments
σn was fixed to 0.0048 and c = 1.51. From the figure reported in Table 4.5 it can be ap-
preciated that our methods is very robust and gives results comparable with SSC which
anyway is specifically designed for subspace recovery.

4.5 Final remarks

In this chapter we argued that preference analysis combined with robust matrix decom-
positions provides a versatile tool for robust geometric fitting which exploit profitably
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κ %out T-lnkg RCMSA RPA

biscuitbookbox 3 37.21 3.10 16.92 3.88

breadcartoychips 4 35.20 14.29 25.69 7.50

breadcubechips 3 35.22 3.48 8.12 5.07

breadtoycar 3 34.15 9.15 18.29 7.52

carchipscube 3 36.59 4.27 18.90 6.50

cubebreadtoychips 4 28.03 9.24 13.27 4.99

dinobooks 3 44.54 20.94 23.50 15.14

toycubecar 3 36.36 15.66 13.81 9.43

biscuit 1 57.68 16.93 14.00 1.15

biscuitbook 2 47.51 3.23 8.41 3.23

boardgame 1 42.48 21.43 19.80 11.65

book 1 44.32 3.24 4.32 2.88

breadcube 2 32.19 19.31 9.87 4.58

breadtoy 2 37.41 5.40 3.96 2.76

cube 1 69.49 7.80 8.14 3.28

cubetoy 2 41.42 3.77 5.86 4.04

game 1 73.48 1.30 5.07 3.62

gamebiscuit 2 51.54 9.26 9.37 2.57

cubechips 2 51.62 6.14 7.70 4.57

mean 9.36 12.37 5.49

median 7.80 9.87 4.57

κ %out T-lnkg RCMSA RPA

unionhouse 5 18.78 48.99 2.64 10.87

bonython 1 75.13 11.92 17.79 15.89

physics 1 46.60 29.13 48.87 0.00

elderhalla 2 60.75 10.75 29.28 0.93

ladysymon 2 33.48 24.67 39.50 24.67

library 2 56.13 24.53 40.72 31.29

nese 2 30.29 7.05 46.34 0.83

sene 2 44.49 7.63 20.20 0.42

napiera 2 64.73 28.08 31.16 9.25

hartley 2 62.22 21.90 37.78 17.78

oldclassicswing 2 32.23 20.66 21.30 25.25

barrsmith 2 69.79 49.79 20.14 36.31

neem 3 37.83 25.65 41.45 19.86

elderhallb 3 49.80 31.02 35.78 17.82

napierb 3 37.13 13.50 29.40 31.22

johnsona 4 21.25 34.28 36.73 10.76

johnsonb 7 12.02 24.04 16.46 26.76

unihouse 5 18.78 33.13 2.56 5.21

bonhall 6 6.43 21.84 19.69 41.67

mean 24.66 28.30 17.20

median 23.38 29.40 17.53

Table 4.4: Misclassification error (ME %) for motion segmentation (left) and planar seg-
mentation (right). κ is the number of ground truth structures and % out is the percent-
age of outliers. All figures are the average of the middle 3 out of 5 runs.

the interplay between consensus and preference. We proposed an approach similar in
spirit to classic spectral clustering, with the advantage of being robust to outliers. Our
strategy was to reduce the multi-model fitting task to many single robust model es-
timation problems attempting to solve the chicken-&-egg dilemma. In particular, we
conceived three levels of protection against outliers. The first one is the adoption of the
Cauchy function to model points preferences. The second level appears in the robust
low rank approximation, where Robust PCA and SymNMF are used to gives rise to a
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2 motions 3 motions

SSC RPA SSC RPA

Checkerboard
mean 8.19 4.53 9.58 6.09

median 0.32 2.72 2.91 3.77

Traffic
mean 9.89 7.16 12.21 7.88

median 1.93 4.80 5.87 4.77

Others
mean 17.97 13.68 22.84 19.15

median 1.07 6.93 22.84 19.15

All
mean 6.33 9.84 10.94 7.24

median 3.65 0.82 3.68 4.38

Table 4.5: Miscalssification error (ME %) in video motion segmentation (20% of out-
liers)

soft segmentation where outliers are under-weighted. Robust extraction of models in a
MSAC-like framework, together with outlier rejection based on robust scale estimates
is our third guard against outliers. The value of σn and the number of models κ are
the only inputs required from the user. Experiments have provided evidence that our
method compares favorably with state of the art competing algorithms.



5

Back to consensus analysis: set cover
formulation

In this chapter we explore a different formulation of the multi-model fitting problem
returning back to a discrete setting mainly focused on consensus. In this way exploiting
the notion of cover set, we are able to deal in a principled manner with intersecting
model and outliers, bypassing some limitations typical of cluster analysis. Moreover,
having recognized the importance of the interplay between consensus and preferences,
we show how it is possible to integrate the information captured by the preference trick
in this formulation.

5.1 Introduction

A common trend in all the preference-oriented techniques is the bias towards the seg-
mentation side of the multi-model fitting problem. If this tendency is not balanced tak-
ing into account the consensus counterpart of the problem – as indeed happens in RPA
where consensus turns to play a crucial role in the final step of the algorithm – solu-
tions produced by working exclusively in the conceptual space risk to inherit some of
the disadvantages typical of clustering approaches. Undubitably the preference trick
has the great advantage of casting specific multi-model fitting problems in a very gen-
eral clustering framework. Nevertheless it has been largely recognized by the research
community that the segmentation/clustering problem is essentially ill-posed, and it is
impossible to decide in favor of a unique general method.

Two theorems corroborate this intuition. The common wisdom that any single clus-
tering method can be optimal only with respect to some specific type of dataset has
been demonstrated in the so called “no free lunch theorem" [108]. In practice the choice
of a clustering scheme remains quite heuristic and mainly depends on the kind of avail-
able assumptions on the data – usually in the form of one or more parameters such
as number of groups, inlier threshold, segments cardinality, etc. . . – that can be used
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to constrain the solution space. A second theorem [53] confirms that clustering tech-
niques are inherently fraught with ambiguities: Kleinberg conceives an axiomatic the-
ory in which he defines three desirable properties that a clustering scheme ought to sat-
isfy, namely scale-invariance, a richness condition that all partitions are achievable, and
a consistency requirement on the shrinking and stretching of distances. In this setting
an “impossibility theorem” is derived, demonstrating that there is no clustering func-
tion satisfying simultaneously all the three properties.

For example, linkage clustering, if a distance based stopping condition is adopted,
enjoys the nice theoretical properties of scale-invariance and richness, but consistency
is missing. It has also been recognized that single-linkage suffers from the so called
chaining effects: since the merging criterion is strictly local, a chain of points can be
extended for long distances without regard to the overall compactness of the emerging
cluster. Furthermore the greediness of linkage affects the segmentation outcomes: for
the sake of illustration a simple example regarding J-Linkage is presented in Figure 5.1.
In this line fitting problem the optimal solution– with respect to Occam’s razor– is given
by two lines supporting three point each, unfortunately during the hierarchical clus-
tering wrong decisions can possibly be made with relatively high probability and the
returned solution can consist in three lines supporting two points.

In addition, two other main issues are not satisfactorily handled by clustering tech-
niques. In first instance, the treatment reserved to outliers is not completely sound. For
estimation purposes, gross outliers ought to fall in a special group of points, but clus-
tering treats all the segments in the same way. This is the reason why the combination
of the preference trick with spectral clustering fails or, more in general, why partitional
clustering is not able to enforce robustness by simply requiring an additional group
with the hope that outliers will be clustered together. Hierarchical methods in practice
are more resilient to outliers, but in principle outliers do not have a specific treatment
during the clustering phase: for example in T-Linkage it is necessary to rely on a poste-
riori specific heuristics to ensure robustness.

In second place, classical segmentation approaches are based on hard clustering (i.e.
partitioning) and are not suitable for dealing explicitly with intersecting structures. We
have seen from Section 1.2 that disjointness of the recovered structures is a delicate
and important issue: It was at the root of the critics to Sequential RANSAC, it has moti-
vated the development of Multi-RANSAC and, since relying solely on consensus leads to
unsatisfactory performance, it promotes the shifting of the problem in the conceptual
space. We have seen how this shifting allows to conceive more accurate methods, but
intersecting models are either ignored or dealt indirectly with ad hoc post processing
refinement on the obtained segmentations.
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Fig. 5.1: A toy example that demonstrates the disadvantages of the greedy behavior
of J-Linkage (best viewed in color). The data configuration captured in the preference
matrix (left) gives rise in the conceptual space to the configuration depicted in the mid-
dle of the first row. The first sweep of J-Linkage starts merging together the two closest
points. Without loss of generality we can assume that one of the chosen points is a. The
second point has to be picked among the closest points to a, namely b,c,d which are
at Jaccard distance 2/3. If the merged point is b –this happens with probability 1/3–
the situation in the preference space becomes the one illustrated in the centre of the
second row: b,c,e,f are the vertices of a “Jaccard square”, whose edges measure 2/3 and
whose diagonals measure 1. If the pairs (b,e) or (c,f) are chosen to be merged together
J-Linkage fails in finding the optimal segmentation and returns three clusters instead
of two. This happens with probability 1/6 assuming that ties are broken randomly with
uniform probability.

In this chapter we outline an alternative strategy to tackle these two problems in
a direct and more principled manner. If RPA can be considered a preference strategy
strictly complemented by consensus considerations, here the situation is reversed. We
return back to a well founded discrete consensus framework in which, however, all the
valuable information captured by preferences are easily integrated, being aware that
the interplay of preference and consensus is the added value to multi-model fitting so-
lutions.
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5.2 Coverages for multi-model fitting

In what follows we will assume a discrete setting in which point votes are expressed by
binary values. Incidentally we observe that if one abstracts for a moment from the sub-
tle differences between the implementations of the various multi-model fitting tech-
niques based on either consensus or preferences, a unified view can be readily achieved
by looking at the consensus/preference matrix P introduced in Equation (1.5).

The binary matrix P can be interpreted in several ways. It can be regarded as the in-
cidence matrix of an hyper graph where rows correspond to vertices and columns rep-
resent hyperedges. We have seen also how rows, identified with preference sets, can be
interpreted as representations in high dimensional spaces. In both these cases multi-
model fitting boils down to cluster analysis. Changing the perspective, if columns are
taken into account we are provided with a collection of consensus sets. RANSAC and Se-
quential RANSAC simply aim at finding the column or the κ columns respectively hav-
ing greatest sums. Multi-RANSAC seeks for the κ “most orthogonal” columns. For sake
of completeness we would like to mention also a further possible interpretation. The
binary preference matrix can be viewed as the biadjacency matrix of a bipartite graph,
where one set of vertices represents points and the other one represents structures, an
edge links two vertices if the corresponding points belong to the consensus set of the
related structures. Maximal bicliques in this graph correspond to biclusters of points
and structures. The problem of finding maximal edge biclique can be relaxed to a con-
tinuous formulation that in turn is solved by NMF [39]. However, strictly speaking in
multi-model fitting we are not interested in maximizing the number of edges of a bi-
clique, as explained in Figure 5.2. Nevertheless this interpretation traces an interesting
connection with RPA which relies also on symNMF, a particular instance of NMF.

Now we concentrate on classical consensus method: RANSAC, Sequential RANSAC

and Multi-RANSAC in practice do not operate on the whole matrix P as we did for pref-
erence analysis. The subtle and decisive difference is that these consensus based tech-
niques estimate the columns of P sequentially to save computational efforts. This prin-
ciple of parsimony has no drawback in case of single model estimation, but in multi-
ple model scenarios it causes the shortcoming of Sequential RANSAC. Once a structure
of inlier is detected, its supporting points are removed and successive hypothesis are
sampled exploiting only the remaining of the data, as a consequence inaccurate de-
tection at early stage of the algorithm can heavily deteriorate the results. In addition,
points in the intersections do not contribute to the sampling of subsequent structures
and this greedy strategy is inherently prone to achieve suboptimal segmentation (see
Figure 5.3). As commented in Section 1.2 this estimate-and-remove approach is tanta-
mount of enforcing disjointness on the attained structures, which is essentially meant
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Fig. 5.2: Biclique interpretation. The binary preference matrix can be interpreted as
a bi-adiacency matrix of a bipartite graph. The maximal edge biclique induces a seg-
mentation of the data in which a unique cluster is determined in correspondence of
the intersection of the two lines. Two points remain unassigned, whereas maximizing
consensus leaves a single point unexplained.
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Fig. 5.3: Shortcomings of greediness on a fitting line example. Data points (on the left):
three lines supporting each 2,4 and 8 points are intersected by two lines collecting half
the total number of points each (7 points). Clearly these two lines suffices at explaining
all the data points, therefore the optimal value for the MC problem is opt = 2, the greedy
algorithm will pick the 3 remaining lines.

to distinguish between genuine structures and redundant ones. Recognized this fact,
the objective of Sequential RANSAC is totally sensible.

For these reasons we decide to rely on the objective of maximizing consensus, but at
the same time relaxing the notion of partition, and exploiting sampling on the totality
of the data. In particular, at first we concentrate on the case in which all the points
are inliers. A natural requirement is to ask that all the points are explained by some
structures, in other words, the structures we are interested in determine, by means of
their consensus sets, a cover of the data, i.e. a family of sets whose union contains X :
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F = {S j : j ∈ J } such that X ⊆ ⋃
j∈J

S j , (5.1)

Note that we are not requiring that the extracted sets are disjoint, so we are not limited
to partitions and we can handle properly the case of intersecting models. By invoking
the Occam’s principle, a straightforward formulation is therefore to ask for a cover con-
sisting of a minimal number of consensus set. In this way we are implicitly discouraging
redundant models. Thus we are naturally led to the following set cover problem.

Definition 5.1 (Set cover problem). Given a ground set X and a cover F = {S1, . . . ,Sm},
the goal of set cover is to find a minimum subfamily in F that also covers X .

In this formulation, X collects the data points and the family F = {S1, . . . ,Sm} is com-
posed by the consensus sets of the sampled models. The property that F is a cover of
X can be easily enforced by requiring that every points of X is sampled at least once.
Set cover can be rephrased rigorously using the matrix P in the constraints formulation
and introducing m binary variables z j ∈ {0,1} for each subset S j . If S j is selected in the
solution then z j = 1, otherwise z j = 0. In this way set cover problem can be rephrased
as an Integer Linear programming:

min
m∑

j=1
z j subject to P z ≥ 1. (5.2)

The constraint can be expanded as∑
j :xi∈S j

z j ≥ 1 ∀xi ∈ X (5.3)

where becomes clear that it is meant to ensures that the solution {S j } j :z j=1 is a cover of
X .

If X is corrupted by gross error measurements, we can integrate outliers in the for-
mulation of the problem at the cost of introducing an additional parameter κ measur-
ing the desired number of segments. Instead of trying to find the smallest number of
sets that cover all elements, we search for the largest number of points that can be cov-
ered by κ sets. This leads to the so called maximum coverage problem (MC)

Definition 5.2 (Maximum coverage). Given a ground set X , a collection of subsets of X
F = {S1, . . . ,Sm} and an integer κ, select from F at most κ subsets that cover the maximum
number of points in X .

Note that in MC formulations the collection F does not have to be necessarily a
cover. Maximum coverage is translated in an Integer Linear program thanks to a col-
lection of auxiliary variables yi , such that yi = 1 if xi belongs to the returned subsets, 0
otherwise:
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max
n∑

i=1
yi (5.4)

subject to

m∑
j=1

z j ≤ k (5.5)∑
j :xi∈S j

z j ≥ yi ∀xi ∈ X (5.6)

0 ≤ yi ≤ 1 (5.7)

z j ∈ {0,1}. (5.8)

Condition (5.5) enforces that no more than κ sets are picked and constraint (5.6) ensure
that if y j ≥ 0 then at least one set S j is selected.

Set cover and maximum coverage are long known to be NP-hard [52]: not surpris-
ingly, since the inherent complexity of multi-model fitting does not disappear by simply
rephrasing it in different terms. Nevertheless these optimization problems are among
the oldest, most studied and widespread ones in the mathematical programming litera-
ture. Therefore we can reap the benefit of the efforts made by the scientific community
in addressing this issues, and enjoy the fruits of several studies focused on approximat-
ing the solution of this problems.

For example, the greedy strategy which keeps choosing the set that covers most
new points, until they all are covered, can be translated straightforward in the greedy-
RANSACOV (Algorithm 3) which embodies the spirit of Sequential RANSAC with the
only differences that the hypothesis space is not sampled iteratively and, instead of
returning a partition, intersecting segments are allowed. It has been demonstrated by
Feige [33] that this greedy strategy is the best possible in terms of approximation ratio.
More precisely an approximation of H(n)1 holds in the case of set cover problem, and
1−1/e for the MC problem. This result applies effortless to greedy-RANSACOV giving a
provable quality measure of the solution.

In practice, a more efficient strategy is to use standard solvers to address the MC
problem, such as Integer Linear programming (Algorithm 4). In order to reduce the
computational load of the algorithm we find beneficial to perform the following pre-
process on the input family of sets. First of all, keeping in mind that our aim is to max-
imize consensus, we refit a structure to each consensus set via least squares, then we
update the structure and its supporting points only if the consensus has increased. The
remaining sets are hence ordered by cardinality S1, . . . ,Sk and a set S j is discarded if

1 here we denote by H(n) the n-th harmonic number
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Algorithm 3 greedy-RANSACOV

Require: data points X , inlier threshold ε, number of structures κ
Ensure: Subsets of X

Generate by random sampling a poll of hypotheses model H = {h1, . . . ,hm }
Instantiate the consensus/preference matrix P
while κ sets are selected or all the points have been covered do

pick in F the set that covers the maximum number of uncovered elements
mark elements in the chosen set as covered

end while

Algorithm 4 ILP-RANSACOV

Require: data points X , inlier threshold ε, number of structures κ
Ensure: Subsets of X

Generate by random sampling a poll of hypotheses model H = {h1, . . . ,hm }
Instantiate the consensus/preference matrix P
Refine the family F of consensus set defined by P

Solve WMC problem with Integer Linear programming

S j ⊆
j−1⋃
i=1

Si , (5.9)

the rationale of this choice is to keep only those structures that explain at least a new
point. Interestingly this step furnished as byproduct assurance on the optimality of the
returned solution. In fact this procedure reduces the maximal frequency of each ele-
ments, i.e. the number of sets that cover a point, and thanks to [105] we are guaranteed
to achieve better solutions, since it has been demonstrated that Linear Programming
succeeds in approximating the optimum of a factor of f , where f is the maximal fre-
quency among all the points.

Finally, to complete the picture we also cast Multi-RANSAC in the framework of maxi-
mal coverage, the resulting method (Multi-MCRANSAC) is presented in Algorithm 5. The
strategy is similar to greedy-RANSACOV, the difference is that, after a set is picked, the
subsequent ones are searched among the ones having maximal Jaccard distance with
the set of currently covered elements. In this way we try to emulate the disjointness
constraint enforced in Multi-Ransac.

5.3 Comparison with Facility Location

The closest methods to our in the literature are those casting multi-model fitting as a Fa-
cility Location problem: provided a set of potential facilities (which corresponds to the
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Algorithm 5 Multi-RANSACOV

Require: X data points, ε inlier threshold, κ number of structures
Ensure: Subsets of X

Generate by random sampling a poll of hypotheses model H = {h1, . . . ,hm }
Instantiate the consensus/preference matrix P
Pick the set S1 that covers the maximum number of uncovered elements
U = S1
while κ sets are selected do

Find the set S j that have maximal Jaccard distance from U
U =U ∪S j

end while

pool of tentative structures), Facility Location selects an optimal subset of facilities and
assigns customers (i.e. data points) to one facility each, so as to minimize the sum of
facility opening costs and the distances between customers to their assigned facilities.
This leads to the optimization of a cost function composed by two terms: a modelling
error – i.e. customers-facility distances – which can be interpreted as a likelihood term,
and a penalty term to encode model complexity – the cost to open the facilities – mim-
icking classical MAP-MRF objectives. Some authors solves it with ILP [56, 59, 87, 101]
while others propose different methods [28, 47, 75, 115].

Although set cover and Facility Location are related (the first is a special case of the
second), and ILP has been used to solve both, our ILP-RANSACOV differs from previous
work based on Facility Location in many respects.

In first instance, Facility Location needs to guess a correct trade-off between data
fidelity and model complexity, in order to strike the correct balance between over and
under fitting. Our MC formulation by contrast, eludes this thorny trade-off: instead of
balancing two incommensurable quantity in the cost function, it explicitly requires the
maximum number of models as a clear, intelligible parameter.

Second, Facility Location minimizes the fitting error on the continuum of residuals,
in the same spirit of MLE estimators, while MC gains resiliency to outliers by using an
inlier threshold and maximizing the consensus, à la RANSAC. The rogue points will be
simply left uncovered, whereas Facility Location copes with outliers by introducing a
special additional model for which a constant fidelity measure is defined.

Finally, Facility Location produces a partition of the data, whereas set cover inher-
ently caters for intersecting solutions.
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5.4 Experiment on synthetic data

The setup of maximum coverage offers the opportunity of comparing ILP-RANSACOV,
greedy-RANSACOV, Multi-RANSACOV, together with J-Linkage and T-Linkage at equal
conditions of sampling. In this section we explore the performance of these algorithms
on some synthetic datasets. In all the experiments each structure consists of 50 inliers
points, contaminated by Gaussian noise and variable outliers percentage. The data sets
consist of segments in several configurations: star (star5, stair4 and star11) and circles
(circle4). We provide J-Linkage and T-Linkage with the correct number of structures,
the κ retrieved structures supporting more points, among the ones produced by the
algorithm, are kept as inliers. We use Matlab’s intlinprog as the Integer Linear pro-
gramming solver. The outcomes on different datasets are collected in Figures from 5.4
to 5.7.

First of all we can notice that in the Stair4 experiment (firstly used in [122] to criti-
cize Sequential RANSAC), greedy-RANSACOV and Multi-RANSACOV perform poorly: the
shortcomings of these greedy strategies explained in Figure 5.3 are here afoot: the in-
correct selection of the first structure compromises the subsequent interpretation of
the data. These two methods attained a suboptimal segmentation also on the circle4
dataset where one of the four structures is oversegmented at the expense of the smaller
circle in the centre. On the star5 sequence all the methods perform quite similarly with
the exception of Multi-RANSACOV which is guided by the principle of finding disjoint
segments and therefore fails in finding one of the lines that has a consistent intersection
with the others inlier structures. The star11 manifests as well this phenomenon in the
results obtained by Multi-RANSACOV and by J-linkage which both miss a ground truth
segment. While Multi-RANSACOV oversegments a structure, for J-Linkage the cause of
this behavior can be ascribed to the fact that, during the merging process, some inliers
are incorrectly aggregated to spurious outlying model, as a consequence the recovered
segment which actually corresponds to a ground truth structure has less points than
the necessary to be in the first κ largest models and is deemed as outlier. In general
the tendency of loosing inliers during the segmentation step affects J-Linkage (and T-
Linkage) also in the other datasets, for example it is particular evident on circle4 even
if on other datasets is less manifest. These artifacts, by the estimation perspective, are
certainly unfavorable since the more inliers support a structure the more the fit will be
accurate, however in these cases the discovered inliers are enough to recover accurately
the corresponding structures. ILP-RANSACOV yields reliable segmentations in all the
experiments, as it can be appreciated by inspecting its ME values reported in Table 5.1,
that are considerable lower than the other algorithms. The reason can be found in the
departure from the partition paradigm: as a matter of fact J-Linkage and T-Linkage are
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(a) Ground truth (b) greedy-RANSACOV (c) Multi-RANSACOV

(d) J-Linkage (e) T-Linkage (f) ILP-RANSACOV

Fig. 5.4: Comparison on stair4 (50% of outliers x)

(a) Ground truth (b) greedy-RANSACOV (c) Multi-RANSACOV

(d) J-Linkage (e) T-Linkage (f) ILP-RANSACOV

Fig. 5.5: Comparison on star5 (60% of outliers x)
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(a) Ground truth (b) greedy-RANSACOV (c) Multi-RANSACOV

(d) J-Linkage (e) T-Linkage (f) ILP-RANSACOV

Fig. 5.6: Comparison on star11 (50% of outliers x)

(a) Ground truth (b) greedy-RANSACOV (c) Multi-RANSACOV

(d) J-Linkage (e) T-Linkage (f) ILP-RANSACOV

Fig. 5.7: Comparison on circle4 (50% of outliers x)
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greedy-RANSACOV Multi-RANSACOV J-Linkage T-Linkage ILP-RANSACOV

Stair4 39.20 54.80 10.20 10.00 12.00

Star5 10.40 24.40 15.20 14.40 3.80

Star11 32.36 39.27 35.00 33.09 25.18

Circle4 30.25 35.00 26.50 23.00 11.25

mean 28.05 38.37 21.73 20.12 13.06

Table 5.1: Misclassification error (ME %) on the experiments from Figures 5.4 to 5.7.

not aimed at dealing with intersecting models. This can be sensed in Stair4, where there
are not intersecting structures and the performance of J-Linkage and T-Linkage are in
the same range of ILP-RANSACOV.

5.5 Experiments on real data

In this section, we demonstrate the performance of ILP-RANSACOV on two classical
Computer Vision applications, namely: vanishing point detection, and video motion
segmentation. In all these scenarios we compare ILP-RANSACOV with J-Linkage, T-
linkage and RPA. In addition, one reference method have been added to the compar-
ison for each specific scenario, namely: MFIPG [75] in the vanishing point experiments,
SSC [89] for video motion segmentation.

Vanishing point detection.

In this experiment we compare the performances of ILP-RANSACOV with MFIPG on
vanishing point detection using the York Urban Line Segment Database [29], or York
Urban DB in short, a collection of 102 images of architectural Manhattan-like envi-
ronments (i.e. scenes dominated by two or three mutually orthogonal vanishing direc-
tions). Annotated line-segments that match with the 3-d orthogonal frame of the urban
scene are provided with the ground-truth, no outliers are present in the data. The aim
is to group the supplied segments in order to recover two or three orthogonal vanishing
points.

MFIPG (Model-Fitting- with-Interacting-Geometric-Priors) is a recently proposed
method that builds on the PEARL [28] algorithm adding high-level geometric priors. In
particular, in this application, an additional term expressing interaction between van-
ishing points is included into the Facility Location formulation, to promote the extrac-
tion of orthogonal vanishing points. The global input parameters recommended in the
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Fig. 5.8: A sample of the worst ILP-RANSACOV results on YorkUrbanDB (vanishing
point detection). Line membership is color-coded.
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Fig. 5.9: Results on YorkUrbanDB. (a) is the cumulative distributions of the errors per
sequence; (b) shows the area above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA MFIGP Grdy-RansaCov ILP-RANSACOV

Mean 2.85 1.44 1.08 3.51 2.38 0.19

Med 1.80 0.00 0.00 0.16 0.00 0.00

Table 5.2: Misclassification error (ME %) on YorkUrbanDB.

original paper have been optimized individually for each single image to enhance the
results.

Figure 5.8 shows three images where ILP-RANSACOV achieved the worst ME, which
are nevertheless qualitatively correct. Figure 5.9(a) reports the cumulative distribution
of the ME per sequence, i.e. the value on the ordinate corresponds to the percentage
number of sequences where the algorithm achieved a ME lower than the abscissa. The
differences among the methods can be better appreciated by plotting the area above
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Fig. 5.10: A sample of the worst ILP-RANSACOV results on Hopkins155 (video motion
segmentation). Point membership is color-coded.
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Fig. 5.11: Results on Hopkins155. (a) is the cumulative distributions of the errors per
sequence; (b) shows the area above the curve (the smaller the better).

the cumulative distribution of ME (Fig. 5.9(b)) or by analysing the average and me-
dian ME, collated in Tab. 5.2. These quantitative results confirms that ILP-RANSACOV

achieves the most accurate performance, followed by RPA. Please note also that greedy-
RANSACOV, a proxy of the vilified Sequential RANSAC, performs better than other so-
phisticated methods, in this task.

In this experiments we use the 51 real video sequences from the Hopkins 155 dataset,
each containing two or three moving objects, with no outliers. Rather than considering
the whole trajectories, following [94] in order to better deal with degenerate motions –
typical of these kind of videos –, we project the data onto an affine 4-dimensional space
where the rigid-body segmentation is translated in a 3-d plane fitting problem.

Figure 5.10 reports some sample results, in particular three sequences belonging to
Traffic 2 and Others 3 subsets, respectively, where ILP-RANSACOV achieves suboptimal
segmentations. Figure 5.11 and Tab. 5.3 provide a comparison of the performances in
terms of ME: ILP-RANSACOV places in the same range of SSC and achieves the best
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J-Lnkg T-Lnkg RPA SSC Grdy-RansaCov ILP-RANSACOV

Traffic 3 Mean 1.58 0.48 0.19 0.76 28.65 0.35

Med 0.34 0.19 0.00 0.00 1.53 0.19

Traffic 2 Mean 1.75 1.31 0.14 0.06 7.48 0.54

Med 0.00 0.00 0.00 0.00 0.00 0.00

Others 3 Mean 6.91 5.32 9.11 2.13 14.89 2.13

Med 6.91 5.32 9.11 2.13 14.89 2.13

others 2 Mean 5.32 6.47 4.41 3.95 8.57 2.40

Med 1.30 2.38 2.44 0.00 0.20 1.30

All Mean 2.70 2.47 1.42 1.08 10.91 0.98

Med 0.00 0.00 0.00 0.00 0.00 0,00

Table 5.3: Misclassification error (ME %) on Hopkins155.

overall results. In this case the advantage of solving the MC problem with a global ap-
proach is afoot, since the greedy strategy of greedy-RANSACOV, sampling being equal,
fails in recovering accurate segmentations.

5.6 Weighted version

The Integer Linear formulation can be straightforward generalized to the weighted
maximum coverage problem (WMC):

Definition 5.3 (Weighted maximum coverage). Given a ground set X , an integer κ and
a collection of subsets F. Non negative weights ci are associated to the elements of X ,
the aim is to select at most κ sets from F so as to maximize the overall weight of covered
points.

The Integer Linear programming formulation of the problem changes accordingly, re-
placing the objective function of MC expressed in Equation (5.4) with the sum of
weights of the covered points:

max
n∑

i=1
ci yi . (5.10)

MC can be derived from WMC defining all the weights equal to one. The weighted ver-
sion allows to take advantage of any kind of available prior information by the speci-
fication of suitable weights in order to promote the coverage of certain points. By the
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perspective of multi-model fitting, this possibility provides a profitable occasion to in-
tegrate in the maximum coverage framework the information furnished by the prefer-
ence analysis we have discussed in the previous chapters, since the results on Tanimoto
space hold in particular for space endowed with the Jaccard distance.

On that account our aim is to exploit the preference trick to discourage the cover-
ing of outliers. Since a distinctive attribute of outliers is their sparsity in the conceptual
space, we decide to rely on this feature to downweight outlying elements, as proposed
in [13]. In Section 2.2 we have introduced the concept of reachability distance (Defi-
nition 2.3) and we have presented OPTICS [3], a technique that encapsulates the local
density of points in a reachability diagram, a sort of dendrogram in which the points
are ordered and scored according to their mutual reachability distance. We recall that
in this context locality is simply given by ζ nearest neighbors, where ζ is the cardinal-
ity of MSS. In practice, a reachability diagram summarizes a wealth of information on
points vicinity, displaying segments of inliers as valleys and outliers as peaks with high
reachability value. Tanimoto distances are bounded in [0,1] so by taking

ci = 1− rd(xi ) ∈ [0,1] (5.11)

we can define a simple and very general measure of “outlier-ness”, where rd(xi ) indi-
cates the reachability distance of the i -th point. More sophisticated measures can be
as well integrated, however this one has proven to be effective as demonstrated by the
following experiments.

5.6.1 Experiments

We validate the weighted version of ILP-RANSACOV on the Adalaide datasets, dealing
with motions and planes segmentation problems. Additionally we compare WMC with
greedy-RANSACOV, Multi-RANSACOV and J-Linkage. All these methods are given the in-
lier threshold computed from the ground truth2. From the figures reported in Table 5.4,
in which T-Linkage and RPA are also reported, we can appreciate that the accuracy
of this method is comparable with RPA on fundamental matrices estimation and im-
proves the overall performances on multi-homography fitting. RPA and ILP-RANSACOV

demonstrate to be the two best methods, corroborating the advantages of the interplay
of consensus and preference. Certainly the departure from the partition paradigm has
beneficial effects on the value of the ME of ILP-RANSACOV. Some mixed results are
reported in Figure 5.12. In Figure 5.12a we present an example of undersegmentation

2 Which indeed is not always very reliable since often the segmentation is biased to be semantic: outliers or pseudo
outliers happen to be closer to inlier to a given model. Recognized that, correcting the ground truths however is a
very delicate and elusive task, therefore we prefer not to alter the ground truth for comparison purposes
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Seq. MCR Multi MCR J-Link. T-Link. RPA WMCR

biscuitbookbox 23,64 31,78 17,05 3,10 3,88 2,33

breadcartoychips 35,93 21,65 14,29 14,29 7,50 9,09

breadcubechips 18,26 34,35 33,91 3,48 5,07 6,52

breadtoycar 29,27 28,66 9,15 9,15 7,52 9,15

carchipscube 38,41 23,17 6,50 4,27 6,50 4,27

cubebreadtoychips 33,76 18,47 8,92 9,24 4,99 16,88

dinobooks 44,84 22,42 23,89 20,94 15,14 13,86

toycubecar 33,33 32,32 30,30 15,66 9,43 3,54

biscuit 1,88 1,88 19,12 16,93 1,15 0,94

biscuitbook 4,99 12,02 26,10 3,23 3,23 4,40

boardgame 40,98 26,69 25,94 21,43 11,65 19,17

book 7,03 7,57 3,24 3,24 2,88 1,62

breadcube 37,34 3,00 49,36 19,31 4,58 3,00

breadtoy 17,99 22,66 3,96 5,40 2,76 5,76

cube 2,03 4,75 9,49 7,80 3,28 2,03

cubetoy 4,60 1,26 6,69 3,77 4,04 1,26

game 1,30 1,74 2,61 1,30 3,62 1,74

gamebiscuit 7,41 24,69 15,43 9,26 2,57 5,86

cubechips 23,10 5,42 6,14 6,14 4,57 3,25

mean 21,37 17,08 16,43 9,37 5,49 6,04

median 23,10 21,65 14,29 7,80 4,57 4,27

Seq. MCR Multi MCR J-Link. T-Link. RPA WMCR

unionhouse 12,95 7,34 33,13 48,99 10,87 7,06

bonython 3,11 2,59 15,03 11,92 15,89 2,59

physics 0,00 0,00 17,48 29,13 0,00 0,00

elderhalla 18,69 0,93 12,62 10,75 0,93 0,93

ladysymon 5,29 19,38 28,63 24,67 24,67 5,29

library 2,36 28,77 30,66 24,53 31,29 1,42

nese 38,17 49,38 24,48 7,05 0,83 3,32

sene 1,27 10,17 14,83 7,63 0,42 0,85

napiera 44,86 16,44 22,95 28,08 9,25 16,10

hartley 5,71 15,56 13,97 21,90 17,78 17,14

oldclassicswing 19,28 22,59 14,60 20,66 25,25 12,67

barrsmith 28,09 31,06 33,62 49,79 36,31 31,06

neem 18,70 42,17 49,79 25,65 19,86 23,04

elderhallb 11,43 39,59 28,16 31,02 17,82 22,86

napierb 32,49 54,01 25,74 13,50 31,22 24,05

johnsona 23,51 37,11 12,46 34,28 10,76 22,95

johnsonb 21,47 31,73 19,23 24,04 26,76 32,37

unihouse 29,96 47,68 33,13 33,13 5,21 12,34

bonhall 32,81 53,59 54,01 21,84 41,67 9,28

mean 18,43 26,85 25,50 24,66 17,20 12,91

median 18,70 28,77 24,48 24,53 17,78 12,34

Table 5.4: Misclassification error (ME %) for motion segmentation (left) and planar seg-
mentation (right).

since a unique fundamental matrix explains both the cube and the toy segments. In Fig-
ure 5.12b the algorithm fails in estimating the homography that describes the second
wall of the building from the left. The reason can be ascribed to the weighting mecha-
nism: there is a perceptible difference in the number of supporting point of this missed
wall and the other ones. This density discrepancy in the data space results first in fewer
sampled hypothesis corresponding to this structure, second in a less dense cluster in
the Jaccard space, third in high reachability values and finally in lower weights. As a
consequence the corresponding structure is not selected. In Figure 5.12c we can appre-
ciate the advantages of dealing with coverage rather than partitions: the points on the
corner of the facade of the building lie near the intersection of two estimated homo-
graphies, multiple-membership takes into account this fact without affecting accuracy.
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(a) cubebreadtoychips (b) unionhouse (c) bonhall

Fig. 5.12: Sample result of Weighted Maximum Coverage applied to the Adelaide
dataset (best viewed in color, outliers are marked as black crosses x)

5.7 Final remarks

In summary the discrete combinatorial setting of ILP-RANSACOV has demonstrated to
be a viable alternative to RPA. In some respects these two methods are orthogonal.
RPA produces a partition of the data, exploits a soft preference analysis harmonized
with consensus based considerations and integrates several levels of protection against
outliers. For obtaining reliable results RPA needs to sample many times genuine mod-
els, but, as a consequence, is less sensitive to the choice of the inlier threshold (the
input values of RPA are fixed per each dataset). On the contrary ILP-RANSACOV en-
joys a much more simple formulation based on consensus, it can deal with intersecting
models and the preference aspects of the problem can be easily added as side infor-
mation. The discrete nature of ILP-RANSACOV guarantees that, in principle, sampling
every genuine structure once is sufficient to retrieve an exact segmentation. The other
side of the coin is that the inlier threshold is a more sensitive parameter, since a single
inaccurate tentative structure in the hypothesis space can heavily affect the final result.
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An unexpected application: a cryptographic
attack

Fault attacks are among the most effective techniques to break real implementations of
cryptographic algorithms. They usually require some kind of knowledge by the attacker
on the effect of the faults on the target device, which in practice turns to be a poorly re-
liable information typically affected by uncertainty. This chapter is devoted to address
this problem by softening the a-priori knowledge on the injection technique needed by
the attacker in the context of Differential Fault Analysis (DFA). We conceive an original
solution, named J-DFA, based on translating the stage of differential cryptanalysis of
DFA attacks into terms of fitting multiple models to data corrupted by outliers. Specif-
ically, we tailor the preference trick implemented by J-Linkage to the fault analysis. In
order to show the effectiveness of J-DFA and its benefits in practical scenarios, we ap-
plied the technique under different attack conditions.

6.1 Differential Fault Analysis

The use of hardware faults to attack a cryptographic system, was originally presented
by Boneh et al. in 1997 [11]. This attack was applied to recover the secret key of an RSA
implementation. Subsequently, the idea of applying faults to attack implementations of
cryptographic algorithms was extended to symmetric ciphers [9]. The main technique
introduced against block ciphers is referred to as Differential Fault Analysis (DFA) and
consists of analyzing the difference between correct and faulty ciphertexts in order to
get information on the secret key. Several DFA attacks have been presented and suc-
cessfully applied against symmetric encryption schemes and in particular against the
AES algorithm [10, 40, 69, 79, 104]. Each one of these attacks relies on a fault model im-
plied by the attacker. Depending on the target cryptosystem and the specific attack, the
a-priori knowledge of the fault model by the attacker can fundamentally impact the
effectiveness of the attack.
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As explained in [60], from the point of view of the information theory, every fault pro-
vides information about the secret key. Such information depends on the precision of
the injection technique but also on the knowledge that the attacker has on the induced
effect. All DFA attacks work when all the specific instances of executed faults perfectly
match the a-priori knowledge of the attacker about the possible effects of the injections.
In practice, however, some more general situations should occur. Firstly, the attacker
can be forced to consider a wider set of possible effects of the fault injections. Due to
this uncertainty, the efficiency of the attack lowers as the information provided by each
fault lowers too. In this case the attack still works, but the number of required faulty
ciphertexts increases. Moreover, it is possible that the effects of some faults fall out of
the considered set of models. In this case the attack either terminates with a wrong key
or with no solution, because of the wrong a-priori hypothesis.

In this chapter we introduce a novel DFA approach, based on the application of J-
Linkage, with the aim of increasing the robustness of the attack and softening the re-
quirements on the a-priori knowledge by the attacker. Originally proposed for geomet-
ric model fitting in Computer Vision, J-Linkage is used here for the first time to derive a
new DFA approach, called J-DFA. Thanks to the inherent properties of J-Linkage, J-DFA
will result in a versatile tool that not only can be easily used to quickly replicate many
classical DFA attacks, but also produces reliable solutions in a wider range of practical
attack scenarios. In order to show the effectiveness of the proposed approach we apply
J-DFA to the specific case of faults injected in the last round of AES and we successfully
compare our results with the classical approach in different attack conditions.

The chapter is organized as follows. In Section 6.2 we briefly illustrate common DFA
attacks against AES with particular attention to the details of a class of them which will
be used as example. In Section 6.3 we describe our J-DFA technique and we explain how
to map a specific known DFA attack on the J-Linkage settings. In Section 6.4 we show
the results of several experiments and we highlight the benefits introduced by the new
approach.

6.2 DFA against last round of AES

The vast majority of fault attacks presented against AES falls within the class of DFA,
and are performed in two steps. The first stage requires to actively perturb the inter-
mediate state of AES by faulting the execution and to collect the corresponding faulty
ciphertext, together with the correct ciphertext (i.e. not-altered). The second stage ap-
plies techniques of differential cryptanalysis in order to derive information on the secret
key from the pair of correct and faulty ciphertexts.
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From an information theoretical point of view, the information about the injected
fault translates in an equivalent amount of information about the secret key. In partic-
ular, the smallest the model is (namely, the smallest the set of possible faults is), the
smallest the set of key candidates is.

As a reference, we describe the family of classical attacks based on the injection
of the fault at the beginning of the last AES round. This class of attacks will be used
throughout the chapter to detail the application of our approach and to compare the
results with well known attacks.

The considered fault model includes any possible alteration of the AES state just be-
fore the SubBytes operation of the last round of AES. Since the MixColumns operation
is not performed in the last round, each byte of the AES state affected by the fault can be
considered independently. For sake of simplicity the following description focuses on
the case where a single byte is affected per injection, without loss of generality. Indeed,
due to the AES structure, it is easy to deduce the number of perturbed bytes by simply
observing the pair of correct and faulty ciphertexts. Therefore, in case of multiple af-
fected bytes, the attacker can either consider separately the bytes in the second stage of
the attack, or just ignore the observations involving more than a single byte.

The first instance of this class of attacks was introduced by Giraud in [40]. In that
case, the specific fault model considered for the injection was a single bit flip in the
AES state at the beginning of the last round of AES. Note however that the same attack
procedure can be trivially extended to different fault models.

According to Giraud’s attack, the attacker can compute the corresponding byte of
the last RoundKey by an exhaustive search in the following way.

Let (C ,C∗) be an experiment, namely a pair of respectively correct and faulty cipher-
texts generated on the same plaintext using the same key. Let us denote by ŝ the byte
where the fault occurs at the beginning of the last round, by c and c∗ the corresponding
bytes in C and C∗ respectively, and by k̂ the corresponding byte of the last RoundKey
K 10.

By definition of AES, we have

c = SubBytes(ŝ)⊕ k̂ (6.1)

and
c∗ = SubBytes(ŝ ⊕ ε̂)⊕ k̂ (6.2)

where ε̂ denotes the injected fault.
In general, ε̂ can belong to any subset of the 255 possible faults that can be induced

on a byte. In the specific case described in [40], ε̂ belongs to the following fault model
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E ={0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80}.

(6.3)

For all possible values k of the key byte, the attacker computes

s = SubBytes−1(c ⊕k)

s∗ = SubBytes−1(c∗⊕k)
(6.4)

and subsequently

s ⊕ s∗ = SubBytes−1(c ⊕k)⊕SubBytes−1(c∗⊕k) = ε. (6.5)

For different experiments, the attacker checks whether ε satisfies the fault model or
not, i.e. if it belongs to the set in Eq. (6.3). If this is the case, the value k is a possible
candidate for k̂, otherwise the specific k is not compatible with the assumed model and
it is discarded. Observe that in a sense, each experiment (C ,C∗) induces relationship
between faults ε and corresponding key values k described by

f(C ,C∗)(k) = SubBytes−1(c ⊕k)⊕SubBytes−1(c∗⊕k). (6.6)

After testing all values, the set of possible key byte candidates is downsized with re-
spect to the initial set of 256 possible elements. In other words, the attack discards all
the candidates of the byte of the key which correspond to a fault that is not included
among the faults considered by the model. The size of the resulting set of candidates
depends on the size of the fault model.

In the case of the model described in [40], on average only 8 candidates are left.
Therefore two experiments on average are enough to univocally identify the correct
value of the byte of the key. Namely, with a second pair of correct and faulty ciphertexts,
with fault induced in the same byte, the attacker obtains another set of candidates for k
and the intersection of this set with the first one contains the correct value for the key.

In general, the procedure must be iterated until only a single candidate for the byte
of the key is left in the intersection. In particular, the more precise the fault injection is,
the less experiments are necessary and vice versa.

This process must be repeated independently for each of the 16 bytes of the key.
Note that the analysis allows to retrieve the last RoundKey and that the secret key can
be obtained by simply applying the inverse KeySchedule operation on it.

It is clear from the description that the knowledge of the fault model by the attacker is
of fundamental importance for the success of the attack. In particular it is worth under-
lining the fact that including all the 255 possible faults in the set E is not a viable option
for the attacker. In fact such model leads in never discarding key candidates and then
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never converging to a solution for the byte of the key. Therefore the attacker is forced
to reduce the set of considered faults, by characterizing the injection technique on the
specific target device, in the same way the choice done in [40] has been motivated. Such
knowledge on the fault model must be obtained a-priori by the attacker and it cannot
be derived from observations involving the unknown secret key.

In practice, the most critical aspect of the classical DFA approach, is the fundamen-
tal need of guaranteeing that all the considered experiments have been generated by
faults belonging to the fault model assumed by the attacker. The presence of few (even
a single) experiments that fall out of the model compromises the overall success of the
attack. This is due to the fact that every single experiment has the power of discarding
the correct candidate for the key, and this condition cannot be recovered by other ex-
periments. In real setups it is hard for the attacker to completely prevent the existence
of such bad experiments.

6.3 J-DFA: J-Linkage for DFA

In this section we describe a novel technique for DFA called J-DFA, with the aim of soft-
ening the requirement on the a-priori knowledge needed by the attacker to exploit the
faults in practice. The main idea of our approach is to map the stage of differential
cryptanalysis of DFA attacks into the problem of fitting multiple models to data cor-
rupted by outliers.

Like all classical DFA attacks, J-DFA is performed in two stages. The first stage con-
sists in actively manipulating the target device in order to corrupt the computations
and collect a set X of experimental data. Each data x ∈ X is an experiment, i.e. a pair of
correct and faulty ciphertexts (C ,C∗) generated on the same plaintext using the same
key. F represents the set of all the possible effects of the fault that may happen as a con-
sequence of the fault injection. In practice, among all the possible faults, only a subset
of them occurs. We denote with E ⊆ F such subset. The faults belonging to E vary de-
pending on the specific technique used for the fault injection (e.g. glitches on clock,
laser beams, ...) and on the target device. This stage works exactly in the same way as
for classical DFA and it may include a step where the meaningful experimental data are
extracted among all the experiments. Of course such a step only allows to extract exper-
iments that produce a peculiar pattern which can be identified by comparing the cor-
rect and faulty ciphertext. For instance, a single affected byte at the beginning of the last
round results in a single faulted byte in the ciphertext. Therefore such data can be eas-
ily distinguished from faults injected in rounds earlier than the last one. Still, this step
does not exclude outliers (as defined, faults not belonging to the model considered by
the attacker) that cannot be identified by simply observing the corrupted ciphertexts.
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The second stage is the application of techniques of differential cryptanalysis in or-
der to translate the information obtained on the ciphertexts into information on (a por-
tion of) the secret key κ. In this second stage the J-Linkage tool is introduced.

In general the DFA is based on the fact that for each possible fault, every experiment
(C ,C∗) is compatible only with a (small) set of values of the involved portion of the key.
In the classical view, this fact is used to remove inconsistent values from the set of the
possible candidates for that portion of the key. The J-DFA approach aims at relaxing
this hypothesis, by replacing the concept of compatible-incompatible key values (with
regards to a specific experiment) with the concept of key values voted by a specific ex-
periment.

In the J-DFA view, each experiment can be represented in a conceptual space as
characteristic function of the pair(s) (fault, key) = (ε,k) preferred by that experiment.
Such pairs (fault, key) = (ε,k) represent putative models for the J-Linkage clustering
technique. The clustering algorithm aggregates together experiments with similar pref-
erences. At the end the experiments are split in clusters, where each cluster refers to
one (or more) specific pairs (ε,k). Highly-populated clusters include experiments with
similar votes, while experiments that are poorly compatible with others are left in lowly-
populated clusters.

In a successful J-DFA the correct candidate for the portion of the key is the one cor-
responding to the most-populated clusters and thus the one that has been voted the
most.

In detail, the J-DFA technique involves a sequence of five distinct steps which are
also represented in Figure 6.1:

− Mapping: Each experiment x = (C ,C∗) induces a relationship associating faults ε
and corresponding key values k ∈ K which we denotes as fx . K represents the set of
all the possible values for the portion of the key involved in the attack (i.e. 256 values
if one byte of the key is involved).

− Space of hypotheses: The attacker selects an hypothesized fault model H ⊆ F includ-
ing only the faults considered likely to occur. This selection is based on the assump-
tion derived from the injection technique and the target device. From the set H , the
whole space of hypotheses is generated, that is H ×K , the Cartesian product between
H and K . The space of the hypotheses includes all the pairs (ε,k) that are consid-
ered possible by the attacker. Such pairs correspond to putative models within the
J-Linkage framework. Please observe here the slightly misleading terminology: the
term model is used to indicate both J-Linkage putative models and DFA fault mod-
els. It is worth noting that most of the classical DFA only consider the case where the
fault model is known a-priori, namely H = E . Instead in J-DFA we are not making
such assumption.
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− J-Linkage conceptual representation: The preferences are built by assuming that a
model (ε,k) is preferred by an experiment x if the particular mapping of x associates
ε and the key k, namely fx(k) = ε. The preference matrix is implemented as a matrix
with m = |H |× |K | columns and n = |X | rows. Recall that each column represents a
model (ε,k) whereas each row indicates for each experiment x which are the pre-
ferred models.

− J-Linkage clustering: Experiments are split in clusters by J-Linkage. Each cluster Ui is
representative of one or more models (ε,k). Experiments belonging to the same clus-
ter means that they have at least one preference (i.e. model) in common. Vice versa
experiments split in different clusters means that they did not have any common
preference. Note that even if the experiments can be split in different clusters rep-
resentative of different pairs (ε,k), still these models can share a common key (but
referring to different faults). More formally we say that a cluster Ui is k-compatible,
if it exists at least one hypothesized fault model ε associated with k by all the experi-
ments in Ui .

− Ranking of keys: The candidates of the key k ∈ K are ranked based on the size of the
clusters Ui obtained from the previous step, by defining for each k a weight

w(k) = ∑
Ui k−compatible

|Ui |. (6.7)

The recovered key κ is the one with highest weight, i.e.

κ= argmax w. (6.8)

Under the correct hypothesis on the fault model, J-DFA guarantees that the correct
key is among the preferences of the most populated clusters. Similarly to classical DFA,
when a sufficient amount of experiments are provided to J-DFA, the most preferred
candidate is the correct key. However, differently from classical DFA, the clustering ap-
proach of J-Linkage makes J-DFA a robust technique and this is the main rationale be-
hind the interest for J-Linkage applied to DFA.

We now explain this concept more in detail. First of all J-DFA is robust against out-
liers. In the context of fault attacks an outlier can be defined as an experiment which
has been produced by a fault that does not belong to the fault model H assumed by
the attacker. The effectiveness of classical DFA is heavily compromised in presence of
outliers, leading to either no solutions or a wrong solution for the key. In classical DFA
the fault model H cannot be simply set equal to F to avoid the presence of any outlier,
because such condition would never converge to a solution. Instead, J-DFA nicely man-
ages the outliers and it leads to the correct solution provided that it is fed with enough
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Fig. 6.1: J-DFA in a nutshell. Data mapping: An experiment x = (C ,C∗) ∈ X defines a
map fx between the possible key values K and the set of possible faults F . E repre-
sents the faults that really occur in the experiments, H consists in the faults hypoth-
esized by the attacker. Conceptual representation: The preference matrix is built, rep-
resenting every datum by the votes (gray cells) it grants to the set of putative models
(ε,k) ∈ H×K . Clustering: J-Linkage segments the preference matrix in clusters Ui ,U j ,U`

(data are arranged such that consecutive data belong to the same cluster for sake of vi-
sualization only). It is hence possible to extract the most preferred models per cluster
(εi ,ki ), (ε j ,ki ), (ε`,k`). Note that the same key may appear as preferred by several clus-
ters. Ranking of the keys: Finally votes are aggregated with respect to keys and the most
preferred one is retained. (Figure best viewed in color)

coherent experiments. Furthermore J-DFA manages the case with H = F (i.e. all the pos-
sible faults are valid) without any special adaptation. In this way, J-DFA is also robust
in the choice of the fault model H . Finally, the linkage formulation does not require to
know in advance the number of models for the faults that the specific injection tech-
nique in place generates. This means that in the extreme case in which the attacker has
no knowledge a-priori, the fault model can simply be assumed to H = F . Even in this
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scenario, which is very interesting in practice, J-DFA successfully leads to the correct
solution. We will detail the benefits of this property of J-DFA in the next section.

6.4 Evaluation results

In this section we show the results of the application of the J-DFA technique under dif-
ferent attack conditions. All the presented attacks focus on faults injected at the be-
ginning of the last round of AES. As explained in section 6.2, for the sake of simplicity
we consider experiments affecting only a single byte at a time. Different conditions for
the attack means that case by case we evaluate different hypothesized fault models H
assumed by the attacker, while keeping fixed the set of actual faults E .

Since J-DFA relies on the same approaches of classical DFA for what regards the in-
jection stage, we focus on the cryptanalysis stage for our evaluation. For this reason,
similarly to many DFA works described in literature, we simply generated the experi-
ments through simulations. Namely, we used a software implementation of an unpro-
tected AES modified in order to be able to induce the desired fault at the beginning of
the last round. In this way we easily collected a large amount of couples (C ,C∗), to feed
J-DFA.

For the same reason we do not consider any countermeasure against faults in our
analysis. In fact most countermeasures aim at making hard for the attacker to success-
fully apply the first stage of the DFA, which consists in collecting the observations. Ex-
amples of such kind of countermeasures are shielding, sensors, redundancy, including
multiple executions of the same operation (see [51]). Still novel DFA attacks are of inter-
est because such countermeasures are not able to cover every possible progress in the
injection techniques. Like many previous works on DFA, we focus only on the differ-
ential cryptanalysis stage and take for granted that the attacker is able to obtain some
observations, since J-DFA applies to the second stage of the attack.

We first show the results of J-DFA applied to the very same conditions described
in [40]. Then we extend the analysis to different practical attack scenarios.

6.4.1 J-DFA with profiling

In order to show in detail how J-DFA can be concretely used, we first apply our approach
in the classical DFA scenario. DFA attacks assume that the attacker has some kind of a-
priori knowledge of the effects produced by the injection technique on the target device.
This translates in the fact that the fault model H considered by the attacker perfectly
matches the set of faults E that occurs in practice, namely H = E .
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Giraud’s Attack

As a running example, the J-DFA technique is applied to Giraud’s DFA against AES us-
ing the same fault model assumed in [40]. In this case the relationship that binds fault
values ε to key values k ∈ K is the same used in [40] and fx coincides with the function
reported in Eq. (6.6). Assuming 8 possible faults in H , the space of hypothesis provided
to J-DFA consists of 8×256 available models, one for each combination of (ε,k), with
ε ∈ H and k ∈ K .

In order to validate the effectiveness of J-DFA, we applied the attack as described
above, by feeding it with one experiment at a time, until a single candidate for the key is
found. We repeated the test 100 times on different experiment datasets, obtaining in all
the cases the correct candidate κ for the key. On average, 2.1 experiments are necessary
to obtain only a single candidate. This result confirms the value provided in [40] and
shows that J-DFA is as effective as classical DFA when applied in the same conditions.

This setup, like for the original DFA, is not really computationally intensive. When
few experiments are used (i.e. < 20), our implementation of J-DFA performs each at-
tack in a negligible time (i.e. < 1 s). Furthermore, when H = E and the number of ex-
periments is comparable with (or lower than) the size of the set H , the attack does not
really benefit of the clustering (since likely each cluster will be populated only by a sin-
gle experiment).

Extended fault models

Although [40] only explicitly considers the fault model described in (6.3), the same at-
tack can be trivially extended to other fault models injected at the beginning of the last
round of AES. In the same way J-DFA applies by simply changing the set of hypothesis H
accordingly to such extended models. Once setup J-DFA, several attacks with different
fault models can be easily performed, since they all share the same mapping function
that binds faults and key values. Indeed such map only depends on the point of injec-
tion of the fault, namely the beginning of the last round. With this regards, J-DFA can be
conveniently used as a tool for the analysis of classical DFA in different conditions. In
order to further validate the J-DFA, we tested it under some representative conditions.

A particular scenario could be case in which the attacker is able to inject always the
fault in a fixed position, for instance a bit flip on the least significant bit. In this case the
attacker has a perfect a-priori knowledge of the fault model, which is H = E = {0x01}.
The hypothesis space consists of the 256 possible values of the key associated with that
single possible fault ε= 0x01. Similarly, different scenarios could consider the attacker
able to fault only a fixed portion of the byte. In case the fault affects only the least sig-
nificant half of the byte, the fault model would include all the 15 possible combinations
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of 4 bits from 0x01 up to 0x0F, where 0x00 is excluded because it represents no-fault.
Otherwise, the case in which the attacker is able to affect by fault all the bits except the
most significant bit, the fault model would comprise all the 127 possible combinations
of 7 bits (again the value 0x00 is excluded). Under even different attack conditions the
injection could either affect a single bit or a couple of bits. In this case the fault model
is represented by all the combinations of 8 bits with Hamming weight equals 1 (i.e. 8
faults, the same assumed by Giraud) or Hamming weight equals 2 (i.e. 28 faults). In to-
tal the fault model would include 36 different faults.

J-DFA has been applied in all the attack conditions listed above, 100 times each. Ta-
ble 6.1 reports how many experiments are needed on average to obtain the correct value
κ as single candidate.

Hypothesized fault model (H = E) AVG number of required experiments

{0x01} 1.9

Giraud’s fault model of Eq. (6.3) 2.1

{0x01,0x02, . . . ,0x0F} 2.3

{0x01,0x02, . . . , . . . ,0x7F} 210.3

HammingWeight(ε) = {1,2} 13.4

Table 6.1: Average number of experiments (over 100 trials) required in order to obtain
the correct key value under different fault models.

It is worth noting that all these tests assume some a-priori knowledge in order to
have H = E , thus J-DFA can be considered as a tool to quickly replicate classical attacks.

6.4.2 J-DFA without profiling

Besides being able to replicate classical DFA, J-DFA becomes particularly interesting
in cases where the a-priori knowledge of the fault model is poor or even completely
absent. Indeed, thanks to the inherent robustness of the J-Linkage clustering technique
introduced in section 1.3, J-DFA can be applied in a wider range of practical conditions
compared to the classical attacks. In particular, the tool converges to the correct key
even if the fault model H does not perfectly match the actual set of injected faults E ,
provided that H ∩E 6= ; and that enough experiments are available.

In order to show the robustness of J-DFA in practice, we performed several attacks
where the set of injected faults is fixed for all the tests while the fault model varies. For
all the tests the injected faults are the 8 single-bit-flip considered in [40], i.e. E is defined
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Hypothesized fault model (H ⊂ E) AVG number of required experiments

{0x01,0x02,0x04,0x08,0x10,0x20,0x40} 2.2

{0x01,0x02,0x04,0x08,0x10,0x20} 2.5

{0x01,0x02,0x04,0x08,0x10} 3.5

{0x01,0x02,0x04,0x08} 3.6

{0x01,0x02,0x04} 4.8

{0x01,0x02} 6.3

{0x01} 9.5

Table 6.2: Average number of experiments (over 100 trials) required in order to obtain
the correct key value under different hypothesized fault models belonging to the case
H ⊂ E .

as in Eq. (6.3). The set of faults assumed by the attacker, namely H , varies starting from a
single fault (i.e. H = {0x01}), up to covering all the possible 255 faults on a single byte. A
total of 255 different conditions are tested, differing each other for the amount of faults
included in the fault model. Note that for the purpose of the tests, the faults in H are
selected in order to maximize the intersection E ∩H .

The setup of the tests just described leads to 3 different kinds of conditions:

(i) H = E . This condition represents the case described in [40] and explored in section
6.4.1. The attacker perfectly knows a-priori the set of possible faults injected in prac-
tice.

(ii) H ⊂ E . This condition represents the case in which the attacker underestimates the
faults that occur in practice and therefore she assumes a fault model that includes
only some of the actual faults, but not all.

(iii) H ⊃ E . This condition represents the case in which the attacker overestimates the
faults that occur in practice and therefore the fault model includes some faults that
never occur in practice.

We do not treat the case H ∩E =; since in this case no meaningful information can
be extracted from the attack and then the method fails. The more general condition
H ∩E 6= ; follows from (ii) or (iii). The first case has already been explored in section
6.4.1. Tables 6.2 and 6.3 show the amount of experiments needed on average to get from
J-DFA the correct key κ as single candidate for different sizes of the hypothesized fault
model H (belonging to the case H ⊂ E or H ⊃ E respectively). Each value is averaged
over 100 trials on different experiment datasets.

The results show that J-DFA converges to the correct solution in all conditions. In
particular it successfully works even in case the whole set of possible faults is assumed
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Hypothesized fault model (H ⊃ E) AVG number of required experiments

{0x01,0x02, . . . ,0x10} 2.5

{0x01,0x02, . . . , . . . ,0x20} 4.1

{0x01,0x02, . . . , . . . , . . . ,0x40} 8.4

{0x01,0x02, . . . , . . . , . . . , . . . ,0x60} 10.7

{0x01,0x02, . . . , . . . , . . . , . . . , . . . ,0x80} 11.5

{0x01,0x02, . . . , . . . , . . . , . . . , . . . , . . . ,0xA0} 13.4

{0x01,0x02, . . . , . . . , . . . , . . . , . . . , . . . , . . . ,0xFF} 16.9

Table 6.3: Average number of experiments (over 100 trials) required in order to obtain
the correct key value under different hypothesized fault models belonging to the case
H ⊃ E .

in the fault model (i.e. H = F , described in the last row of Table 6.3). This case is par-
ticularly interesting in practice because it does not require any a-priori knowledge by
the attacker on the effects of the injection technique. We recall that the classical ap-
proach of DFA cannot manage such condition. In practical scenario the attacker could
successfully attack an AES implementation without the need of any characterization of
the injection technique. She can generate several experiments (couples of correct and
faulty ciphertexts). Then she extracts only the ones involving a single byte of the cipher-
text (where likely the injection technique did affect only a single byte in the last round),
independently from the kind of faults. Finally she applies J-DFA with H = F and obtains
the correct key.

The results of the tests also show that the most efficient (in term of number of ex-
periments) condition for the attacker is the case where she perfectly predicts the set of
faults that can occur. And this is the condition implicitly assumed in most of classical
DFA described in literature.

Another information that the results exhibit is how the efficiency of the attack de-
creases when the model H and the reality E differ. There are two trends:

− When H ⊂ E the amount of needed experiments grows linearly, due to the fact that
among all the experiments provided to J-DFA some of them are generated by faults
not included in H and then they do not provide information about the key. Of course
the more occurring faults do not belong to H , the less experiments are meaningful
among all.

− When H ⊃ E the amount of needed experiments grows sub-linearly, due to the fact
that even if all the experiments do provide some information about the correct key,
such level of information per experiment decreases.
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This means that in practice the best choice for the attacker is to place herself in the
case H = E , but this requires perfect knowledge on the effects of the injection tech-
nique. When the attacker has some uncertainty about the injection, it is preferable to
overestimate H rather than underestimate it. And since in a practical scenario the at-
tacker may not know in advance the number of different occurring faults, a larger H is
a safer choice, up to the point to simply use H = F and do not rely on any prediction on
the fault model.

It is worth noting that, due to its robustness, J-DFA requires different amounts of ex-
periments in different conditions, but always leads to the correct solution. Instead, clas-
sical DFA in case of H ⊂ E tends to produce no solution (i.e. none of the key candidates
are compatible). This effect becomes stronger (i.e. more probable) when the difference
between H and E increases. When H ⊃ E , classical DFA are still able to converge to the
correct key provided that enough experiments are available. But they can suddenly re-
ject the correct value of the key when outliers come into the picture. It is fundamental
for a successful DFA to have the guarantee that none of the experiments falls out of the
assumed fault model H . In practical scenarios it can be hard to ensure such condition,
since often different faults have different probabilities to occur, but rarely the attacker
is completely certain about the effects of the faults. And we recall the fact that these
outliers cannot be discarded by simply observing the couple (C ,C∗). The usual way to
manage such practical condition, besides having a strong a-priori knowledge, is to en-
large the fault model H as much as possible. The concrete issue with this approach in
classical DFA is twofold. First, a wide fault model H requires a number of experiments
that grows with the size of H , which increases the probability to include an outlier. Sec-
ond, if any outlier is present among the experiments, with a wide fault model becomes
more probable to obtain a wrong key candidate rather than just converge to no solu-
tion. And since the attacker can only test the correctness of the whole 16 bytes of the
key and not each byte separately, even few wrong candidates per byte can lead to an
unfeasible search of the correct key. This explains why is so desirable the property of
robustness to the outliers that J-DFA brings in practical attack scenarios.

Besides the most preferred candidates for the key, J-DFA also identifies the most pre-
ferred models (ε,k). This means that it is possible to understand from J-DFA the actual
set of faults E that occurred in the experiments used for the attack. Such information
may be used to enhance the overall efficiency of the attack, for instance by getting E
while attacking the first byte with a wide fault model and then set the refined model (i.e.
H = E) for the other bytes (assuming that the injection technique affects all the bytes
in the same way). Otherwise that property may be exploited to use J-DFA as an analy-
sis tool (rather than for attacks), to characterize the fault models for different injection
techniques.
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Fig. 6.2: Preferences (weights) obtained for each candidate of the key, using 4000 ex-
periments. The correct key κ is dotted in green.

Worst case scenario

Like the classical DFA, also J-DFA becomes ineffective when all the faults occur (i.e.
E = F ) with the same probability. This is due to the fact that the injection of a fault does
not provide any kind of information and consequently the attack is useless.

That said, if there is even a small bias in the effects of the injection technique, for
instance at least one of the faults is slightly less probable than the others, then J-DFA
can be still applied. In this demanding scenario however the computational overload
becomes considerable and even using a large amount of experiments, the results can
still be affected by uncertainty. This because all the experiments are compatible with
high probability with all the faults but one, and consequently the greedy segmentation
used by J-Linkage fails in finding few predominant keys.

As a reference, we applied J-DFA in the case where all the possible effects occur with
the same frequency except one, namely ε= 0xFF never occurs. We set the space of the
hypotheses H = E , then assuming that the attacker knows a-priori which is the fault
that does not occur. Our implementation of J-DFA fed with 4000 experiments, takes
about 23 hours to provide the solution, and it returns 16 candidates for the key that are
compatible with all the experiments. Figure 6.2 shows the preferences obtained for each
candidate of the key. There are 16 peaks, among which the correct key κ, that have sim-
ilar weights (much higher than all the others). The test on 4000 experiments is shown
here to provide an indication about how heavy becomes the computation to converge
to a single solution. With less than 4000 experiments, the compatible candidates are
still much more than 16. Instead we did not tried by further increasing the number of
experiments because we already consider 23 hours of computation a substantial effort.
Rather than pursuing in that way, we look for an alternative approach to tackle this ex-
treme case.
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Fig. 6.3: Preferences (weights) obtained for each candidate of the key using P̃ as prefer-
ence matrix instead of P , using 1000 experiments. The correct key κ is dotted in green.

Therefore in this case, rather than considering the preferences of the experiments, it
is convenient to reverse the point of view and consider the negation of the preference
matrix:

P̃ (i , j ) =
{

0 if xi is explained by the j -th model

1 otherwise.
. (6.9)

The rationale is that by feeding J-Linkage with the negated preferences, the tool will
lead to a wrong set of extracted keys which collects the votes of the majority of data, but
the correct key can be singled out as the one that does not receive any vote. We propose
to apply J-DFA on P̃ and to change Equation (6.8) in

κ= argmin w. (6.10)

It is worth noting that in this complemented case we are using J-Linkage in a non
conventional way, from the perspective of the clustering techniques. In fact it is highly
probable that J-Linkage will not separate data, but rather it will put all the experiments
in a single cluster. Still the procedure is meaningful for the fault attack application, be-
cause the correct key is among the models that are not preferred by any cluster.

We applied J-DFA on P̃ in the same conditions of the previous test: H = E including
all the possible faults with the same frequency except one. In this case we fed J-DFA
with 1000 experiments, which required only 3200 seconds of computation.

Figure 6.3 shows the preferences for each candidate. As explained before, the result
must be interpreted differently; in fact we expect the correct candidate to be among the
least preferred keys. There are 255 candidates with high level of preference and only a
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single candidate which has a much lower level of preference equals to zero. This can-
didate coincides with the correct key κ, suggesting that it is more efficient to derive
information about the secret key by observing models that are not compatible with the
experiments, rather than the preferred ones.

The test reveals that using P̃ is a viable solution to successfully tackle some condi-
tions that are usually hard for the attack.

6.5 Final remarks

In this chapter we have presented J-DFA: a novel approach for DFA which exploits a
robust clustering algorithm tailored to fault analysis. We argue that the benefit yielded
by J-DFA is twofold. First, it is a versatile tool that can be easily used to quickly repli-
cate many classical DFA attacks unified in a common framework. A peculiar result of
J-DFA is that, besides the preferred candidate for the key, it also provides the preferred
models for the fault. This is a quite remarkable ability because it furnishes precious in-
formation which can be used to analyze, compare and characterize different specific
injection techniques on different devices.

The second benefit is that, thanks to its robustness, J-DFA produces reliable solu-
tions in a wider range of practical scenarios, even if the a-priori knowledge of the at-
tacker is poor or completely absent.

Even if we deal only with faults injected in the last round of AES, our approach could
be extended to different positions for the faults (e.g. the attack described in [79]) or
even different algorithms, taking advantage of the generality of the J-Linkage concep-
tual representation. From the theoretical point of view, the only step of the procedure
that requires to be adapted is the mapping, which must represent the different injection
position or the different algorithm. In practice, attacking a different step of AES (e.g. the
second-last round) may lead to a huge amount of models to be considered. One pos-
sibility to tackle this, could be to exploit the fact that J-DFA is able to converge to a
solution even if the fault model does not include all the faults that occur, then inten-
tionally keeping the fault model limited. However it is worth noting that in a practical
scenario, considering an injection point different than the last round (e.g. the second-
last round) is of interest only when the fault cannot be injected in the last round (e.g. a
countermeasure protecting only the last round but not the second-last). Due to the way
we constructed J-DFA and its inherent robustness to outliers, the set of fault models can
even include and mix fault generated by injections in different stages of the execution
(i.e. mixing different mapping), such as faults coming from the last round and from the
second-last round.
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Conclusions

In this thesis we have described several improvements to the current state of the art
in the context of geometric multi-model fitting, making some steps towards the tanta-
lizing prospect of simple and practical methods able to automatically recover the geo-
metric structures hidden in visual data. In particular we elaborated the preference ap-
proach in term of performances and robustness, building on both the representation
and the segmentation steps.

More in details, at first we concentrated on the conceptual representation of data: we
investigated the “preference trick” to propose a continuous relaxation of the binary ap-
proach followed by J-linkage. In this way we lifted the problem of structures recovery in
the Tanimoto space, providing a more general framework, in which we were able to in-
tegrate the use of M-estimators to robustly depict data preferences. Density-based tech-
niques have been employed to analyze the geometry of the Tanimoto space, showing
that points belonging to the same model are clustered in high density region, whereas
outliers can be characterized as the most separated points. We suggested how to ex-
ploit this properties to guide random sampling towards promising tentative structures
and to downweight outliers, which indeed is a delicate task from which it depends the
effectiveness of the conceptual representation.

A related aspect, intrinsically linked to sampling, is the specification of the inlier
threshold. In practice, if a tight estimation of the scale is not available, it is better to rely
on the use of soft-descenders, and to compensate the looseness on the scale putting
more effort on sampling, so that many pure model hypotheses are sampled. RPA can be
used to achieve the desire segmentation of the data in this case. On the contrary, if the
inlier threshold can be easily specified, it is enough to ensure that one single hypothesis
per ground truth model is selected, in this case, ILP-RANSACOV or T-Linkage are able
to accurately recover the models.
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Provided that the solution space is adequately approximated, the preference trick
enjoys an extreme versatility: several kinds of problems – not necessarily coming form
Computer Vision, as the cryptographic application described in the last chapter – can
be fruitfully framed in a common preference analysis framework.
This flexibility furnishes auspicious basis for further advancements. For example, be-
side applying preference analysis to solve the “classical” multi-model fitting problem,
where all structures are instances of the same model, it would be interesting to adven-
ture into the area of hybrid multi-model fitting, in which multiple instances of different
models (e.g. homography vs. fundamental matrix) are sought.

As the segmentation is concerned, three main directions have been explored: hi-
erarchical clustering, spectral analysis and set cover. Having recognized the chicken-
and-egg recursive nature of the multi-model fitting problem, in all these three formula-
tions we attempted to integrate the consensus and preference perspectives, exploiting
as much as possible the strengths of these approaches while trying to overcome the
limitations of both.

In first instance preference analysis was performed through agglomerative cluster-
ing in Tanimoto space. This clustering scheme has the merit of automatically discover
the number of structures hidden in the data, furthermore it treats rogue points as
micro-cluster that, in turn, can be pruned in a probabilistic framework where the re-
liability of a structure is measured in term of its randomness. The resulting algorithm
enjoys a straightforward implementation. In addition only a global scale is required,
therefore, if consensus clustering is integrated in this approach, it is possible to esti-
mate this parameter given a proper interval search. Thank to these features T-Linkage
is ideal for multiple structure recovery “in the wild” when minimal to none prior knowl-
edge of the data is available.

The second line of investigation concentrates on partitional clustering and explicitly
erects the bridge between consensus and preferences approaches. Following the tread
of spectral clustering, we ended up to study the connections of this algorithm with low-
rank and sparse approximation techniques, which recently sprouted out in data mining
literature. In particular we conceive a robust version of spectral clustering, character-
izing outliers as sparse vectors in Tanimoto space and using symmetric Nonnegative
matrix factorization. Interestingly this technique can be interpreted as a dimensional-
ity reduction of the preference space in which the data are projected on the directions
corresponding to the structures that explains better the data. Once these models have
been recovered, the chicken-and-egg dilemma is disentangled and the multi-model fit-
ting problem is reduced to many single-fitting problems that can be solved, with the
help of robust statistics, maximizing consensus. In practice RPA is a more ductile tech-
nique than T-Linkage and can deal with situations where tuning the inlier threshold
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may become a tricky problem or a global scale is not reliable – e.g. structures with dif-
ferent noise levels. This comes at the cost of specifying in advance the number of de-
sired models; it will be interesting to explore in future work if this kind of information
can be derived by exploiting low rank-estimation techniques.

The interplay between consensus and preference reappeared in the coverage for-
mulation, where an orthogonal strategy, rooted in the discrete setup of set-cover, is ex-
plored. Reverting the order followed in RPA, the main focus in this setup is on maximiz-
ing consensus, whereas the local properties of points captured by the Tanimoto embed-
ding are profitably integrated as side information. The main advantage is the departure
from the segmentation paradigm based on partition. In this way it is possible to revisit
in a common unifying framework several classical multi-model fitting algorithms and
to handle intersecting multiple structures and outliers in a sound manner.

All the proposed methods have been validated and compared with other state-of-
the-art techniques on several multi-model fitting problems on both synthetic and real
public datasets – including geometric primitive fitting (e.g. line fitting; circle fitting; 3D
plane fitting), multi-body segmentation, plane segmentation, and video motion seg-
mentation – providing accurate and convincing results.
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M-estimators

This appendix is devoted to briefly sketch out the main ideas at the root of robust M-
estimators. Standard least-squares methods estimate a parametric structure by solving
the following optimization problem

min
θ∈Θ

n∑
i=1

errµ(xi ,θ)2. (A.1)

Since solving (A.1) turns to be unstable if there are gross outliers present in the data,
M-estimators have been proposed [46] attempting to reduce the effect of outliers by
replacing the squared residuals errors in (A.1) by another function of the residuals:

min
θ∈Θ

∑
i
ρ

(
errµ(xi ,θ)

)
. (A.2)

provided that ρ : R→ R is a symmetric, positive-definite subquadratically growing loss
function with a unique minimum at zero. In addition ρ (|u|) should be monotonically
nondecreasing with increasing |u|.

Letψ= ρ′ the derivative of the robust loss function,ψ is called influence function [43]
and intuitively measures the change in an estimate caused by insertion of outlying
point as a function of the distance of the data from the uncorrupted estimate. For in-
stance, the influence function of the least squares estimator is simply proportional to
the distance of the point from the estimate. In real applications the variance of residuals
has to be taken into account. For this reason, instead of working directly with errµ(xi ,θ),
residual are properly rescaled:

ri =
errµ(xi ,θ)

τσn
, (A.3)

σn is an estimate of the standard deviation of the error term and τ is a default tuning
constants which gives coefficient estimates that are approximately 95% as statistically
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efficient as the ordinary least-squares estimates, provided the response has a normal
distribution with no outliers. Decreasing the tuning constant increases the downweight
assigned to large residuals, on the contrary increasing the tuning constant decreases the
downweight assigned to large residuals. Equation (A.2) becomes

min
θ∈Θ

∑
i
ρ(ri ). (A.4)

If θ = (θ1, . . . ,θp )> ∈Rp is a p-dimensional vector, for all j = 1, . . . , p, the solution satisfies

∑
i
ψ (ri )

∂ri

∂θ j
= 0. (A.5)

A more convenient form can be derived introducing a weight function w : R→ R such
that

w(u) = ψ(u)

u
. (A.6)

Thank to w we obtain ∑
i

w (ri )
∂ri

∂θ j
ri = 0. (A.7)

which leads to a system of p equations that can be solved by a process known as iter-
atively reweighted least squares (IRLS) [45]. Given an initial guess of θ, this procedure
alternates between two steps: calculating weights wi = w(ri ,θ/σi ) using the current
estimate of θ and solving (A.7) to approximate a new θ with the weights fixed.

M-estimators can be categorized into three types according to the behavior ofψ(u) =
ρ′(u). Monotone M-estimators have non decreasing, bounded ψ(u) functions which
provide robust estimates when the outliers have low leverage values. Hard descenders
force ψ(u) = 0 for |u| > c (c ∈ R is termed rejection point) and allow the most aggres-
sive rejection of outliers Soft descenders do not have a finite rejection point and force
ψ(u) → 0 as |u| →∞. Several ρ functions have been proposed which reduce the influ-
ence of large residual values on the estimated fit.

As observed by Stewart [92] also RANSAC and Hough transform can be seen as par-
ticular M-estimators. In fact the objective of maximizing consensus can be rephrased
as the equivalent problem of minimizing the number of outliers, which may then be
viewed as a binary robust loss function that is 0 for small absolute residuals, 1 for large
residuals, and has a discontiniuty in correspondence of the inlier threhsold ε.

ρ(u) =
{

0 if |u| ≤ ε
1 otherwise

(A.8)
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loss function influence function weighting function

ρ ψ w

Huber

{
if u ≤ c

if u > c

{
u2/2

c(|u|− c/2)

{
u2/2

c(|u|− c/2)

{
1

c/|u|
Cauchy (c2/2) log(1+ (u/c)2) u

1+(u/c)2
1

1+(u/c)2

Geman-McClure u2/2
1+u2

u
(1+u2)2

1
(1+u2)2

Welsh (c2/2)[1−exp(−(u/c)2)] u exp(−(u/c)2) exp(−(u/c)2)

Tukey

{
if u ≤ c

if u > c

{
c2/6(1− (1− (u/c)2)3)

(c2/6)

{
u[1− (u/c)2]2

0

{
[1− (u/c)2]2

0

Table A.1: M-estimators

This loss function is no longer continuous and does not have a unique minimum. How-
ever interestingly, both RANSAC and Hough transforms, by virtue of the inlier threshold,
in practice tolerate globally more outliers than half of the data. A cost of this is that small
structures happen by chance can also be found, implying that careful post processing
analysis of the discovered structures and outlier rejection heuristic are necessary.

As observed in [64], the use of the binary loss function (A.8) yields very poor local
robustness properties, therefore several variants were introduced in which this zero-
one loss function is replaced by a smooth once. For instance in [100] Torr et al. adopt
the skipped mean

ρ(u) =
{

u if |u| ≤ ε
δ otherwise

(A.9)

in which the inliers are scored according to their fitness to the model, while the outilers
are given a constant penalty weight δ. This approach is called MSAC (M-estimator Sam-
ple and Consensus) and always yields benefits compared to RANSAC with absolutely no
additional computational burden.
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