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General Introduction 

The administration of cytotoxic agents traditionally represents a significant component of 

pharmacologic approaches for tumor therapy. These compounds induce cell death by 

interfering with fundamental steps of cell growth and replication, but their efficiency as 

anticancer agents is often limited by their non-exclusive activity against tumor cells. This 

drawback typically results in severe side-effects, limiting therapeutic benefits. 

Different approaches to overcome the limitations of conventional chemotherapy have been 

investigated so far, aiming at the selective delivery of cytotoxic agents to cancer cells. 

Among these strategies, promising results have been achieved with the covalent conjugation 

of anticancer drugs to different ligands, capable of binding to proteins or other receptors 

overexpressed on the surface of tumor cells. In the so-called small molecule-drug conjugate 

(SMDC) technology, a variety of natural compounds, but also synthetic peptides and 

peptidomimetics are exploited as drug-targeting vehicles, due to their high affinity for specific 

tumor antigens. 

This PhD thesis describes the synthesis of new SMDCs targeting αvβ3 integrin, a 

heterodimeric transmembrane glycoprotein overexpressed in several tumor cells. These new 

anticancer devices consist of three fundamental components:  

- Ligand - The cyclo[DKP-RGD] peptidomimetic, developed by the Gennari and Piarulli 

group, has been used as integrin-targeting module in all the new SMDCs; 

- Drug - Three different cytotoxic agents (i.e. paclitaxel, daunorubicin and camptothecin) 

have been included as anticancer payloads; 

- Linker - Specific functional groups (i.e. peptides and disulfide bonds) have been used to 

connect the drug and ligand modules, aiming at the selective drug release in the 

intracellular environment.  

These new SMDCs have been subjected to a panel of biochemical and biological assays, for 

the assessment of both their structural features (e.g. stability, kinetics of drug release, etc.) 

and biological activity (e.g. affinity for the purified receptor, selective cytotoxicity against αvβ3-

expressing cells, etc.). 

The structure of the present work is described here. Chapter 1 introduces the tumor-targeting 

research area through a survey of the most relevant and recent literature in the field. Chapter 

2 describes the synthesis of RGD-paclitaxel conjugates bearing peptide linkers and their full 
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biological evaluation in vitro. The results achieved with these first compounds prompted the 

design of a next-generation RGD-paclitaxel conjugate, whose synthesis and preliminary 

biological evaluation is reported in Chapter 3. Moving from the “traditional” concept of SMDC, 

Chapter 4 describes the synthesis of new RGD-drug conjugates bearing fluorescent 

properties, aimed at the direct monitoring of the compounds’ interactions with cancer cells. 

Finally, all the experimental details of synthetic and biological procedures are included in 

Experimental Section, together with spectroscopic data and HPLC profiles of the newly 

synthesized compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Drug Targeting To Tumors 

1.1. Introduction 

Chemotherapy has been one of the main approaches for the treatment of cancer for more 

than half a century and it consists in the administration of drugs which cause the cell death 

by interfering with fundamental steps of cell lifecycle.  

The first cytotoxic compounds to be administered in human patients in late 1940s were the 

nitrogen mustards chlorambucil and cyclophosphamide, which are able to alkylate DNA 

irreversibly. Around the same time, the observation that folic acid stimulated cancer growth 

prompted the development of folate analogues, which could prevent DNA synthesis by 

inhibiting dihydrofolate reductase (DHFR). 

 

Figure 1. Molecular structures, mechanism of action and growth inhibition data of common cytotoxic 
agents, currently used in chemotherapy. [a] average (av.) of IC50 values reported for a variable 
number of human cancer cell lines (in brackets): [b] IC50 values reported for the most sensitive cell line 
(min.); multitarget: additional mechanisms of induction of apoptosis are known.

[1]
 

This early example of rational drug design resulted in the development of methotrexate (Fig. 

1), one of the first drugs to cure a solid tumor in 1950.[2] The elucidation of DNA structure led 

to development of nucleoside analogues (e.g. thioguanine, 5-fluoruracil, gemcitabine) that 
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induce apoptosis by means of blocking the elongation of DNA strands. Later on, the 

serendipitously-discovered cytotoxic effects of cisplatin (Fig. 1), gave rise to the biological 

evaluation of different platinum(II) complexes, which are able to crosslink DNA strands by 

binding to guanine and adenine residues.[3] Besides the use of DNA-interacting agents, 

significant anticancer effects were provided by the administration of inhibitors of repair 

proteins topoisomerase I and II. These proteins are involved in fundamental arrangements of 

the DNA structure, being able to break the single- (topoisomerase I) or double-strand 

(topoisomerase II) and then rejoin the DNA ends.[4] Drugs such as etoposide, teniposide and 

camptothecins (see Fig. 1) are able to stabilize DNA-topoisomerase complexes, thus 

blocking the progression of the replication fork.[5] Among topoisomerase inhibitors, 

anthracyclines (e.g. daunorubicin and doxorubicin) are known to cause cell death by 

additional means (e.g. intercalation into DNA, generation of free radicals, DNA cross linking 

and interference with helicase activity).[6] In addition to DNA and DNA-interacting proteins, 

microtubules represent a validated target in chemotherapy. Vinca alkaloids (e.g. vincristine 

and vinblastine) and their derivatives were initially found to bind tubulin, inhibiting the 

microtubule formation and inducing cell apoptosis.  

 

Figure 2. Molecular structures, mechanism of action and growth inhibition data of two well-known 
tubulin-targeted chemotherapeutics. [a] average (av.) of IC50 values reported for a variable number of 
human cancer cell lines (in brackets): [b] IC50 values reported for the most sensitive cell line (min.).

[7]
 

The isolation of paclitaxel from the pacific yew, Taxus brevifolius in 1971, gave rise to the 

successful use of taxanes for cancer treatment. While vinca alkaloids affect the rates of 

tubulin polymerization, taxanes inhibit microtubule depolymerization (Fig. 2).[8] Due to the 

presence of preferential targets for cancer treatment in both healthy and diseased cells, the 

antitumor efficacy of these conventional chemotherapeutics is limited by their nonspecific 

action against normal cells, especially to rapidly growing cells such as bone marrow, cells of 

hair follicles and mucous membrane cells. As a result, these anticancer agents are 

characterized by a narrow therapeutic window, that is, the quantitative relationship between 

efficacy and safety. Moreover, the ability of low-molecular weight cytotoxic compounds to 

reach cancer cells is often impaired by different physiological barriers (e.g. tumor interstitial 
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pressure, diffusion through the tumor endothelium or extracellular matrix) as well as by 

degradation processes that convert the anticancer drugs into inactive metabolites.[9] Besides, 

the occurrence of drug resistance strongly limits the chemotherapy efficacy: tumor cells can 

be considered as a rapidly changing target because of their heterogeneity, genetic instability, 

and high rate of mutation, resulting in a selection and overgrowth of drug-resistant tumor 

cells. 

 

Figure 3. Molecular structures, mechanism of action and growth inhibition data of some of the most 
potent cytotoxic agents. [a] average (av.) of IC50 values reported for a variable number of human 
cancer cell lines (in brackets): [b] IC50 values reported for the most sensitive cell line (min.); 
multitarget: additional mechanisms of induction of apoptosis are known.

[10]
 

In principle, the treatment efficiency can be improved by increasing the doses, but this 

approach commonly results in severe side-effects. The administration of combinations of 

anticancer drugs with different mechanisms of action and non-overlapping toxicity profiles 
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has been one of the first strategies to improve the efficacy of conventional 

chemotherapeutics: multidrug therapy became a standard modality for the treatment of most 

cancers. Anticancer drugs derived from natural sources became the object of an intense 

research aiming at the discovery of new cytotoxic agents with improved anticancer activity. 

These significant efforts led to the development of a variety of both tubulin-targeted (e.g. 

maytansinoids, tubulysins, dolastatins, cryptophycins) and DNA-interacting agents (e.g. 

derivatives of calicheamicin, pyrrolobenzodiazepines and duocarmycin) with higher 

antiproliferative activity than conventional chemotherapeutics (Fig. 3), besides being worse 

substrates of P-glycoprotein (Pgp, associated with drug resistance). However, the mere 

enhancement of the cell-killing power of cytotoxic drugs did not result in increased 

therapeutic indexes. Indeed, the clinical evaluations of these new cytotoxic agents were 

discontinued immediately, due to the occurrence of severe side-toxicities at low 

administration doses. 

1.2. Targeted Chemotherapy 

These important drawbacks of cytotoxic agents prompted the development of “targeted” 

therapies, which may selectively kill the diseased tissue while sparing healthy cells. Based 

on the understanding of molecular principles of genetic and pathological processes that 

contribute to tumor growth, a large variety of new tumor targeting strategies could be 

developed. For example, it has been found that the altered activity or the overexpression of 

key tyrosine kinase (TK) proteins in tumors result in the abnormal phosphorylation of target 

effectors that activate signaling pathways and drive the cancer growth. Therefore, the use of 

selective kinase inhibitors as “targeted” anticancer agents has gained popularity among the 

pharmaceutical industries. In general, these small molecules interact with the cytoplasmic 

domain of transmembrane receptor TKs and inhibit the activity of the catalytic domain by 

interfering with the binding of ATP.[11] Approved by the FDA in 2001, imatinib (Gleevec™, 

compound 16, Fig. 4) was the first compound of this class to enter the market. This drug is 

indicated for the treatment of chronic myelogenous leukemia patients expressing the BCR-

ABL fusion protein, which is the result of an abnormal gene translocation. While imatinib was 

the 5th best-selling anticancer drug in 2014,[12] at least 20 other receptor TK inhibitors (e.g. 

sunitinib, erlotinib, crizotinib, axitinib and gefitinib) have broken into the market as inhibitors 

of aberrant phosphorilations in various cancers, such as renal cell carcinoma, and non-small-

cell lung cancer (NSCLC).[13] 
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Figure 4. Examples of current FDA-approved multi-targeted as well as selective tyrosine kinase 
inhibitors (TKIs) targeting receptor tyrosine kinases (RTKs).

[11]
 

Besides the active research on inhibitors of receptor tyrosine kinases, a large variety of 

“targeted” pharmacological approaches still relies on the administration of traditional 

cytotoxic agents, which are chemically modified or incorporated in suitable macromolecular 

structures to improve their therapeutic window. For example, anticancer agents have been 

incorporated into nanoparticles (e.g. liposomes, polymers and micelles) to exploit the 

tortuous and poorly differentiated vasculature of several tumor masses. Unlike the 

vasculature in normal tissues, solid tumor vasculature allows the extravasation of these large 

nanomedicines, resulting in a more selective drug accumulation at the tumor site (i.e. the 

enhanced permeability and retention (EPR) effect).  

Among the known hallmarks of cancer, the EPR effect is arguably the most exploited 

strategy to improve the delivery of cytotoxic agents to tumors and, relying on the pathological 

features of the targeted tissue, it is generally classified as a “passive drug targeting” 

approach.[14] Examples of passively-targeted nanomedicines that have been approved for 

clinical use are both PEGylated (Doxil™/Caelyx™) and non-PEGylated (Myocet™/, 

Daunoxome™) liposomal anthracyclines, and albumin-based pacitaxel (Abraxane™). 

Alternatively to “passive drug targeting” approaches, the evidence that tumors often express 

different receptors, enzymes and other proteins in higher amounts than normal tissues, gave 

rise to the so-called “active drug targeting” strategies. Here, recognition of tumor cells is 

made possible by the covalent conjugation of cytotoxic agents to targeting vehicles (e.g. 

monoclonal antibodies, vitamins, peptides and substrate analogues) that bind specific tumor 

antigens. These drug delivery systems (DDS) are designed to release the cytotoxic payload 

only after the ligand binding to the target.  



8 Chapter 1. Drug Targeting To Tumors  
 

 

 

Figure 5. Schematic representation of common strategies used for drug targeting to tumors: while the 
traditional chemotherapeutic agent (a, free drug) is often rapidly cleared from the blood, it accumulates 
at low levels in the tumor and its localization to normal organs and tissues can be relatively high, the 
use of passively targeted drug delivery systems (b) enhances the drug accumulation in tumors by 
means of the EPR effect. Active drug targeting strategies exploit the molecular recognition of specific 
receptors, expressed either on tumor (c) or on the surface of endothelial cells (d).

[14]
 

Depending on the exact localization of the receptor, different “active targeting” approaches 

have been introduced: 

 Active targeting to cancer cells: the target is expressed on the plasma membrane of 

tumor cells. In general, the transmembrane receptor promotes the internalization of the 

drug through receptor-mediated endocytosis (described in the following paragraphs). 

This strategy is particularly useful to improve the cellular uptake of a specific payload; 

 Active targeting to endothelial cells: the target is highly expressed on cells of tumor 

blood vessels (i.e. endothelial cells). This strategy overcomes the need for extravasation 

and penetration into the tumor mass. As a result of the cytotoxic action against 

endothelial cells, the tumor is deprived of oxygen, nutrients and other growth factors, 

which are required for cancer progression. Moreover, upon binding to tumor blood 

vessels, the payload can also diffuse within the tumor vasculature, thus enabling low-

molecular weight drugs to penetrate deeply into the tumor environment.[14] 

A newly-reported strategy, often referred to as “non-internalizing” tumor targeting, must be 

mentioned here. In this approach, the target is either expressed in the tumor extracellular 

matrix (ECM) or is a transmembrane protein that is not efficiently internalized by the tumor 

cell. Ideally, the cytotoxic agent released in the extracellular space diffuses in the immediate 

surroundings and, due to a “bystander effect”, it is able to kill a broad variety of cells (e.g. 

both tumor and endothelial cells).[15,16] 

A variety of drug delivery systems have been successfully developed to treat cancer 

according to these strategies. While some of these devices have already reached the 

market, others can be considered as promising technologies for future oncology.   
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1.3. Antibody-Drug Conjugates 

1.3.1. Monoclonal Antibodies 

Antibodies are the most used devices to target specific antigens that are either 

overexpressed or present in mutated forms in cancer cells. At first, antibodies were obtained 

from immunization of mice with human cancer cells (or with the purified antigens), followed 

by recovery of the final target-specific antibodies in the sera of the animals. This procedure 

afforded in poor yields a mixture of antibodies, as binders of different epitopes of the desired 

antigen. Moreover, these mixtures also encompassed undesired antibodies that bind 

different antigens expressed by the human cancer cells. In 1984, Georges Köhler and César 

Milstein were awarded the Nobel Prize in Medicine for the development of the hybridoma 

technology: here, the synthesis of large amounts of a single-purified antibody, targeting the 

antigen of interest was made possible.[17,18] Mice immunization with a specific antigen is 

followed by the isolation of lymphocytes B from the mice spleen. These antibody-producing 

cells are immortalized by fusion with myeloma cells (i.e. cancerous plasma cells) and diluted 

into multi-well plates to such an extent that only one cell is contained in each well. The 

subsequent screening and in vitro culture of the resulting pure hybridoma cells affords 

monoclonal antibodies (mAbs), which are able to bind a single epitope of the antigen of 

interest.[19] Antibodies can induce cancer cell death by a multitude of mechanisms, which can 

involve a direct action of the antibody towards the tumor cell (e.g. through receptor blockade 

or agonist activity, with induction of apoptosis) or against the tumor vasculature or stroma. 

Moreover, mAbs can promote immune-mediated cell killing mechanisms (e.g. complement-

dependent cytotoxicity, antibody-dependent cellular cytotoxicity and regulation of T cell 

function).[20]  

 

Figure 6. Representation of mouse (green), chimeric, humanized, and human (blue) mAbs. The mAb 
subdomains are reported. Fab: Fragment antigen-binding; Fc: fragment crystallizable region; vH: 
heavy-chain variable; vL: light-chain variable; cH: heavy-chain constant; cL: light-chain constant; CDR: 
complementarity determining regions.

[21]
 

In early 1980s, the first clinical evaluations of antibodies as anticancer agents revealed that 

murine mAbs were easily identified as foreign proteins by the immune system, resulting in 

rapid clearance of the drug from circulation. Advances in recombinant DNA technology made 

possible the modification of the mAb structure, leading to “chimeric” antibodies (Fig. 6): in 



10 Chapter 1. Drug Targeting To Tumors  
 

 

these structures, the protein sequences of the murine mAb were replaced by typical 

sequences of human antibodies, without affecting the specific binding affinity for its target 

antigen. Later on, “humanized” antibodies were developed, in which the number of human 

residues in the mAb were further increased and murine residues were only limited to the 

essential antigen recognition moieties, that is, the complementarity determining regions 

(CDRs). The development of phage display technology and the advent of transgenic mice 

bearing the human repertoire led to “fully human” mAbs, which show prolonged survival in 

the blood stream (T1/2 up to three weeks, compared to the typical 2/3 days half-lives of 

murine analogues). Since the first approval of a mAb for anticancer therapy in 1997, mAbs 

have been successfully used as single agents, to such an extent that mAbs such as 

rituximab (Rituxan™), bevacizumab (Avastin™) and trastuzumab (Herceptin™) were the first 

3 best-selling anticancer drugs in 2014.[12] On the other hand, mAbs approved for solid 

tumors are not sufficiently potent and are typically used in combination with traditional 

chemotherapeutic agents.[21]  

 

Figure 7. Structure and drug delivery mechanism of ADCs. Upon binding to tumor cell surface 
antigens, the ADC-receptor complex is internalized into the cell. This receptor-mediated endocytosis 
leads to drug release in intracellular compartments (e.g. lysosomes). Alternatively, in case of non-
internalizing antigens, the ADC remains bound to the receptor on the cell surface. Here, depending on 
the linker, the anticancer drug may be released in the extracellular environment and enter the cell by 
passive diffusion.

[22]
 

1.3.2. The Success of ADCs 

The concept of antibody-drug conjugate (ADC) originates from the necessity to selectivity 

target a variety of known cytotoxic agents against the diseased cells, by exploiting the cancer 

recognition displayed by mAbs. In the ADC technology, the antibody and the cytotoxic agent 

are connected by a third fundamental moiety, the linker (Fig. 7). In general, the linker-drug 

system is endowed with an electrophilic moiety (e.g. a N-hydroxysuccinimidyl ester or a 

maleimide) which are then coupled to nucleophilic residues of the mAb (e.g. lysine and 

cysteine side chains). The linker is responsible for drug release from the targeting vehicle: 

since cytotoxic drugs are generally active only once released from the mAb, a non-specific 
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linker cleavage would result in side toxicity against healthy tissues. For this reason, the linker 

should be stable in the blood stream and, at the same time, it should be rapidly cleaved once 

the tumor site is reached. In particular, due to the fact that virtually all small-molecule 

anticancer drugs act at the intracellular level (i.e. by binding to tubulin, DNA, etc.), most of 

the ADCs that have been developed so far were designed to be internalized by the cancer 

cell and to release the drug within the intracellular environment. This has been achieved by 

developing mAbs which bind specific proteins widely expressed on the surface of tumor cells 

and known to promote receptor-mediated endocytosis of the ADC. Through this mechanism 

(Fig. 7), the ADC binding to the target protein is followed by folding of the ADC-receptor 

complex into membrane vesicles, that drive to endosomes and lysosomes. The 

environmental conditions typical of these intracellular compartments (e.g. acidic pH, high 

expression of proteases, high concentration of antioxidants) are responsible for the linker 

cleavage. Finally, the released drug is free to enter the cytoplasm and to bind its molecular 

target, resulting in cell cycle arrest and apoptosis.[23]  

 

Figure 8. Molecular structures, mAb/linker adopted and clinical phase reached of first-generation 
ADCs. DAVB: desacetyl vinblastine: DAVBH: desacetyl vinblastine hydrazide.

[21]
 

The first ADCs that were prepared and tested were introduced as an attempt to enhance the 

tumor selectivity of conventional anticancer agents, such as methotrexate, 

desacetylvinblastine and doxorubicin.[21] These cytotoxic agents were linked to chimeric 

mAbs through acid-labile linkers (i.e. esters, hydrazones and amides, Fig. 8).These ADCs 

substantially failed to demonstrate a significant target-selective potency towards cell lines 

expressing different levels of the target antigens. The in vivo evaluation of radiolabeled 
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analogues provided a convincing evidence of the tumor localization of the ADCs, but little 

therapeutic benefit was observed. Moreover, due to the non-human nature of the mAbs, 

ADCs often elicited a strong immune response in patients and, as a result, the clinical 

evaluation of this first-generation ADCs was discontinued before Phase III.  

 

Figure 9. Molecular structures and mAb/linker/drug adopted of ADCs that were approved for cancer 
treatment. DM1: mertansine (i.e. a thiol-bearing maitansinoid); MMAE: monomethyl auristatin E.

[21]
 

An intense research activity in this field highlighted the structural basis for the development 

of efficient ADCs, that can be listed as follows: 

 Humanized mAb: humanized and fully human antibodies were used to reduce or avoid 

immunogenicity; 

 Improved linker system: dipeptides that are recognized and cleaved selectively by 

intracellular proteases were preferred to more labile acid-sensitive linkers, with a 

significant minimization of drug release in the blood stream; 

 Increased drug potency: the anticancer activity of the administered ADC depends on the 

number of compounds that reach the tumor site, to the number of antigens per cell and 

on the internalization process, which may be ineffective. Moreover, the number of 

molecules of a moderately potent cytotoxic agent required to kill a cell can be relatively 

high (e.g. > 106 molecules/cell). For these reasons, cytotoxic agents with potency in the 

picomolar range are required to elicit a significant anticancer activity.  
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These findings allowed the development of second-generation ADCs, which proceeded 

through the clinical steps, until reaching the market: although gemtuzumab ozogamicin 

(Mylotarg™ compound 24) was withdrawn in 2010, due to an inadequate efficacy/side effect 

relationship,[24] ado-trastuzumab emtansine (Kadcyla™ compound 25) is currently indicated 

for the treatment of metastatic breast cancer, while brentuximab vedotin (Adcetris™ 

compound 26) has been approved for the treatment of Hodgkin lymphoma and anaplastic 

large cell lymphoma (Fig. 9). Nowadays, the number of ADCs in clinical trials has climbed to 

more than 30, while between 100 and 150 are in the preclinical stage.[25] 

1.3.3. Limitations of Antibodies 

Despite the increasing interest that ADCs are catching among the pharmaceutical industry, 

this technology is still far from being optimal. Indeed, although mAbs are able to preferentially 

localize at the tumor site in patients, the vast majority of the injected ADC do not end up in 

the tumor. This is due to the big dimensions of the antibody, that lead to a delayed 

extravasation and result in a poor drug accumulation at the tumor site.[26] Moreover, ADCs 

that are synthesized through the traditional thiol-maleimide strategy are heterogeneous 

mixtures of compounds bearing varying numbers of drugs attached at different positions on 

the antibody. In addition to the relatively low stability of the resulting Michael adduct,[27] the 

pharmacokinetic properties of the mixture components may vary significantly. Finally, the 

large-scale assembly of ADCs is a challenging and expensive process, requiring 

manufacturers to simultaneously handle biologic materials in sterile conditions and highly 

potent cytotoxic compounds.[25] 

Owing to these limitations, the research in this field is now seeking to improve the ADC 

technology, mainly through the following strategies: 

 Synthesis of ADCs bearing a smaller mAb portion, which would impart better 

pharmacokinetic properties;[28] 

 Evaluation of extracellular proteins and non-internalizing receptors as targets for ADCs, 

which would avoid the difficulties related to the receptor-mediated endocytosis 

step;[15,29] 

 Development of site-specific conjugation procedures, which would allow the synthesis 

of ADCs as singular entities, with a defined and optimized drug/antibody ratio.[30] 

1.4. Small Molecule-Drug Conjugates 

1.4.1. Advantages and Structure of SMDCs 

Although ADCs are currently at the cutting-edge of “active” tumor-targeting technology, the 

above-mentioned drawbacks prompted the development of smaller devices, which could 
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maintain the tumor-targeting skills of mAbs, while showing better pharmacokinetic 

properties.[31] In particular, smaller targeting vehicles would easily extravasate and penetrate 

deeply in the tumor mass. Moreover, the defined molecular structure of the resulting small 

molecule-drug conjugate (SMDC) would be suitable for hit-to-lead optimizations as well as be 

more sustainable in terms of production costs.[32] SMDCs maintain significant structural 

similarity to ADCs. In both the technologies, linker and drug fragments are attached to a 

targeting vehicle (in the case of SMCs, a small ligand), which binds tumor antigens with high 

affinity. Similarly to the ADC technology, the prodrug nature of the ligand-drug conjugate 

allows the employment of ultrapotent cytotoxic agents, which would result too toxic to be 

given for therapy as free drugs. Finally, the drug release from both mAbs and small ligands 

often requires a proper spacer (see Spacer 2 in Fig. 10) to install suitable functional groups 

for conjugation chemistry and to improve the kinetic of drug release.  

 

Figure 10. Structure of small molecule-drug conjugates (SMDCs). Besides the three fundamental 
modules ligand, linker and drug, additional spacers are often present at both sides of the linker 
(Spacer 1 and Spacer 2), to modify the conjugate’s physicochemical properties (e.g. solubility) or to 
improve the kinetic of drug release. 

Remarkably, due to the lack of large hydrophilic structures (such as the mAb), the ligand and 

linker fragments in SMDCs do not sufficiently solubilize the cytotoxic agent, which is usually 

highly lipophilic. For this reason, the water solubility in SMDCs is often improved by the 

addition of hydrophilic spacers (e.g. PEG chains or short peptide sequences bearing 

hydrophilic residues), which are commonly installed between the ligand and the drug 

modules (see Spacer 1 in Fig. 10).[33,34] In most cases, SMDCs are designed to enter the cell 

by receptor-mediated endocytosis but, as for ADCs, examples of SMDCs that are targeted to 

non-internalizing receptors are now emerging.[35] According to the physiological features of 

the targeted receptors, a variety of linkers have been used to promote drug release from 

SMDCs. These can be grouped as follows:  

 Acid labile linkers: functional groups (e.g. esters and hydrazones, see Scheme 1) that 

are hydrolyzed under the acidic conditions of endosomes (pH 6.0-6.8) and lysosomes 

(pH 4.5-5.5).[36] importantly, tumors are often characterized by a remarkable acidity of 

their extracellular milieu,[16] where the cleavage of these linkers can easily occur. 

Ideally, hydrolysis should be slow enough to allow significant drug accumulation at the 

tumor site and negligible release of the payload into the blood stream; 
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Scheme 1. Examples of acid-labile linkers (ester in compound 27, hydrazone in compound 28) and 
protease-sensitive linker (compound 29) installed in doxorubicin. While the first two release the free 
drug upon hydrolysis, in compound 29 the enzymatic dipeptide cleavage at the C terminus releases 
metabolite 30, which rapidly undergoes 1,6-elimination over an aromatic ring (i.e. mechanism of a 
common a self-immolative spacer). 

 Enzimatically-cleavable linkers: short peptide sequences and sugar moieties that are 

selectively cleaved by specific proteases or glycoside hydrolases. Some known 

dipeptides (e.g. Val-Cit, Phe-Lys, Val-Ala, etc…) have been particularly exploited, due 

to their high stability in plasma and to their fast cleavage in the presence of a variety of 

proteases (e.g. cathepsins, legumain, matrix metalloproteinases, etc…) that are 

expressed in the extracellular tumor milieu or in different intracellular compartments. 

When these linkers are used, a “self-immolative spacer” is often present to reduce the 

steric hindrance around the peptide sequence, thus allowing a more efficient enzymatic 

action (Scheme 1);[37] 
 

 Reducible linkers: functional groups (mainly disulfide bonds, but also metal 

complexes)[38] that take advantage of the highly reducing environment of the 

intracellular compartment (Scheme 2). This is due to an increased expression of 

antioxidants in cancer cells, such as cysteine, reduced glutathione, thioredoxin, 

peroxiredoxins, and nicotinamide adenine dinucleotides.[39,40] 

 Uncleavable linkers: functional groups that are not appreciably cleaved either in plasma 

or at the tumor site (e.g. amides, triazoles, carbamates) are often used to link 

fluorescent dyes to the ligand, for imaging purposes. Although these linkers have found 



16 Chapter 1. Drug Targeting To Tumors  
 

 

limited success in SMDCs, they have been often used in ADCs (e.g. in the form of 

spacers attached to the antibody through a maleimide and to the drug as an amide), 

showing remarkable potency (e.g. in ado-trastuzumab emtansine, 25). It is 

hypothesized that, in the case of ADCs, the entire mAb is proteolytically degraded once 

inside the cell, thus releasing the cytotoxic agent.[26]  

 

Scheme 2. Examples of reduction of a disulfide linker mediated by glutathione (GSH): the free thiol 32 
undergoes cyclization onto an electrophile moiety (in this case, an ester group). This kinetically 
favoured 5-membered ring closure releases the free hydroxyl group of paclitaxel. 

While in the ADC technology it is possible to identify monoclonal antibodies that are specific 

for virtually all proteins of interest, the isolation of low-molecular weight ligands of a specific 

protein is often a troublesome process. So far, traditional approaches to develop tumor-

targeting ligands have focused on naturally-occurring small molecules (i.e. vitamins, 

substrates, hormones, etc.) that are well-known binders of tumor-overexpressed receptors. 

Besides the conjugation of anticancer drugs to the natural ligands as such, synthetic 

analogues can be also created (e.g. by molecular modeling, if the X-ray structure of the 

receptor or related receptors is available), in order to mimic the binding affinity of the natural 

ligand as well as to introduce specific pharmacokinetic properties. Advances in the 

preparation and screening of large combinatorial libraries are now providing powerful tools 

for the development of peptides[41] and other small molecules[42,43] to target an increasing 

number of antigens.  

1.4.2. SMDCs targeting Vitamin Receptors 

Vitamins are often required in large amounts by fast-growing tumors, being essential for 

biosynthesis and nutrient metabolism: this results in the pronounced expression of receptors 

involved in the uptake of these molecules.  

Folic acid is considered the first small molecule to be used as ligand in SMDCs and the 

research activity carried out on folate-drug conjugates represents a milestone in the 

development of tumor-targeting cytotoxic agents. Folate receptor (FR) is expressed at low 

levels in most normal tissues, whereas it is upregulated in several human tumors, including 

cancers of the ovary, lung, breast, kidney, brain, endometrium, colon, and hematopoietic 
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cells of myelogenous origin.[44] Folate-based SMDCs have shown selective cytotoxic 

activities against FR-expressing cell lines. Folate-drug conjugates are known to enter the cell 

by receptor-mediated endocytosis and, during this internalization pathway, the compounds 

are driven to the endosome. Importantly, a significant transition of the internalized 

compounds through lysosomes has never been observed.  

 

Figure 11. Molecular structures and clinical phase reached of two FR-targeted SMDCs. 

This accurate analysis of the endocytic pathway is fundamental for the choice of an efficient 

linker: as a matter of fact, while a variety of linkers showed efficient drug release (e.g. 

hydrazones, disulfide and β-galactosidase sensitive linkers),[45] the lack of lysosomal access 

explains the low-efficacy of lysosomally-cleavable linkers.[33] The intense research activity of 

FR-targeted SMDCs led to the development of EC145 (vintafolide, Vynfinit™ compound 33), 

a folate-desacetylvinblastine hydrazide (DAVBH) conjugate, bearing a disulfide linker (Fig. 

11): this compound was the first folate-based SMDC to enter clinical trials and early-stage 

data in lung and ovarian cancer suggest that vintafolide has the potential for combination 

with other anticancer agents.[46] These results stirred up an increasing interest in this field, to 

such an extent that a large variety of FR-targeted SMDCs are now being developed.[45,47,48,49] 

The conjugation of cytotoxic agents to biotin is being catching increasing interest, due to the 

overexpression of biotin receptors (BR) in tumor cells.[50] Similarly to folate-based SMDCs, 

analogues featuring biotin are internalized into the early endosome through receptor-

mediated endocytosis, even though examples of lysosomal localization of fluorescent-labeled 
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biotin-drug conjugates have been reported.[51] Among the linkers that have been installed on 

these compounds, the use of an acid-labile hydrazone linker in a biotin-doxorubicin 

conjugate has been reported recently.[52] However, the intensive research carried out by the 

Ojima research group strongly promoted the use of disulfide linkers in biotin-based SMDCs. 

A variety of conjugates has been prepared, showing high cytotoxic activities against BR-

expressing cells. Moreover, the use of “theranostic” devices (Fig. 12) provided a real-time 

monitoring of the BR-targeted accumulation and internalization.[53,54,55]  

 

Figure 12. Molecular structures of two recently-reported “theranostic” SMDCs targeting biotin 
receptor. Compound 35: biotin-SN38 conjugate, labeled with fluorescein;

[56]
 compound 36: biotin-

taxoid conjugate, featuring a 
18

F label, for PET imaging.
[55]

   

A recent ex-vivo evaluation of a fluorescein-labeled BR-targeted SN-38 (compound 35) 

showed a preferential accumulation of the conjugate in the tumor, compared to the labeled 

drug alone. However, the administration of 35 to tumor-bearing mice resulted in a modest 

tumor-volume inhibition, confirming that the development of this class of anticancer agents is 

still in its early stages.[56] 

1.4.3. SMDCs Targeting Enzymes 

Small molecules that act as substrate analogues of tumor-expressed enzymes are valuable 

tumor-targeting carriers of cytotoxic agents. A well-established marker of prostate carcinoma 

is the prostate-specific membrane antigen (PSMA), also known as folate hydrolase I or 

glutamate carboxypeptidase II. This transmembrane glycoprotein cleaves glutamate residues 

from biological substrates (e.g. N-acetylaspartyl glutamate) and, upon ligand binding, the 

receptor is internalized into clathrin-coated pits, that are driven to the lysosomes.[57] The 

remarkably higher expression of this enzyme by prostate carcinoma cells, compared to the 

cells of healthy prostate, gave rise to the development of PSMA-targeted anticancer agents. 

A variety of analogues of N-acetylaspartyl glutamate have been prepared and linked to 

cytotoxic agents. In 2009, the ligand 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid 

(DUPA, see Fig. 13) was linked to radiotracers and evaluated in biodistribution studies, 
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showing rapid clearance from blood vessels (tumor/blood ratio = 33:1) and high accumulation 

of the injected dose in the xenografted tumor (11.2% ID g−1). However, the high expression 

of PSMA in murine kidneys resulted in a strong accumulation of the radiolabeled DUPA in 

these organs (28.9% ID g−1).  

 

 

Figure 13. Molecular structures of DUPA-TubH conjugate (37) and effect on the growth of 
subcutaneous LNCaP tumors (mice treated with 1.5 μmol/kg of 37); PMPA: PSMA inhibitor 2-
(phosphonomethyl)-pentanedioic acid.

[58]
 

The ligand was then conjugated to the potent antimitotic agent tubulysin hydrazide through a 

disulfide linker: this DUPA-TubH conjugate (compound 37) showed remarkable tumor 

regression in LNCaP xenografts (Fig. 13) with no observable toxicity in vivo.[58] These results 

prompted the conjugation of a large variety of potent anticancer drugs to DUPA,[59,60] showing 

the high potential of this therapeutic approach. Besides PSMA, other enzymes have been 

recently introduced as suitable targets for SMDCs. For example, the metalloenzyme α-

carbonic anhydrase catalyzes the reversible hydration of carbon dioxide to hydrogen 

carbonate and H+ (CO2 + H2O ↔ H+ + HCO3
−). In humans, this enzyme is expressed in 15 

known isoforms, which are involved in acid-base homeostasis and in the transport of CO2 

and hydrogen carbonate.[61] Among these isoforms, carbonic anhydrase IX (CAIX) is 

considered an excellent tumor antigen, being overexpressed in different tumors (e.g. 

glioblastoma, colorectal and breast cancer) as a marker of hypoxia. Although it is known that 

CAIX-targeting ligands do not enter the cell through receptor-mediated endocytosis, two 

different CAIX-targeted SMDCs bearing disulfide linkers were recently developed, and their 

antitumor properties were evaluated in vivo.[62] In this non-internalizing tumor-targeting 

approach, a strong dependence on the cytotoxic payload was observed: while the SMDC 

bearing a duocarmycin displayed only modest tumor volume inhibition, a maytansinoid-

bearing analogue (compound 38, Fig. 14) showed a potent antitumor effect. The ligand 
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fragment of this compound has been recently improved through an innovative affinity-

maturation experiment, performed through development and screening of encoded self-

assembling chemical (ESAC) libraries. Although biodistribution analysis of this new ligand 

showed an improved accumulation in the tumor, the anticancer properties of an analogue 

SMDC have not been reported yet.[63] 

 

Figure 14. Molecular structures of the CAIX-targeted SMDC 38, bearing a maytansinoid warhead.
[62,58]

 

1.4.4. SMDCs Targeting Hormone Receptors 

Specific hormone receptors are considered suitable targets for anticancer therapy, due to 

their high expression in different cancer cells.  

A variety of synthetic peptides as analogues of hormones such as gonadotropin-releasing 

hormone (GnRH, often referred to as luteinizing hormone-releasing hormone, LH-RH), 

somatostatin and bombesin, have been conjugated to anticancer drugs.[64,65] The resulting 

SMDCs showed promising results in terms of significant tumor volume inhibition and low 

toxicities.[66] GnRH receptor (GnRHR) is expressed in tissues of male and female 

reproductive organs and, to a higher extent, in a variety of human malignancies, such as 

breast, prostate, ovarian, and endometrial cancers.[67] To date, different cytotoxic drugs such 

as doxorubicin,[68] paclitaxel,[69] and gemcitabine[70] have been coupled to GnRHR-targeting 

peptides, showing promising tumor-targeting performances. In particular, a peptide-

doxorubicin conjugate (AN-152, compound 39 in Fig. 15) has been  the first compound of this 

class to enter clinical trials.[26] In this conjugate, the anthracycline is coupled through an ester 

bond to a decapeptide, able to target GnRHR and enter the cell through receptor-mediated 

endocytosis.[64]  
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Figure 15. Molecular structures of two peptide hormone derivatives (39 and 40),
[65]

 coupled to 
anthracycline drugs and of the clinically-evaluated 

68
Ga-labeled bombesin analogue 41.

[76] 

Similarly to GnRHR, receptors of hormone somatostatin (SSTRs, in particular subtypes 2, 3 

and 5) are widely expressed in cancer cells, in particular in neuroendocrine tumors.[71] 

Peptidic somatostatin analogues have been successfully used as tumor-homing devices: 

while a 111In-labeled cyclic peptide is commercially available for cancer imaging,[72] similar 

peptides have been incorporated into SMDCs and evaluated at preclinical levels. For 

instance, somatostatin analogues have been coupled to paclitaxel, showing stronger 

antitumor efficacy and lower systemic toxicity compared to PTX alone.[73,74] Moreover, 

peptidic SSTR ligands have been also used to improve the anticancer efficacy of liposomal 

doxorubicin against SSTR2-expressing tumor model.[75]  

Finally, peptidic analogues of bombesin and gastrin hormones have been coupled to 

anticancer drugs to target cancer cells expressing the gastrin releasing peptide receptor 

(GRPR), the neuromedin B receptor (NMBR), and the bombesin receptor subtype 3 (BRS-

3).[64] In particular, a bombesin analogue endowed with 2-pyrrolinodoxorubicin through an 

ester bond (SMDC: AN-215, compound 40 in Fig. 15),[76] showed remarkable anticancer 
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effects in mice xenografted with human prostate carcinoma cells, as well as being much 

more tolerated than the free drug.[77,78] Similar peptidic bombesin analogues have been 

functionalized with chelating moieties,[79] and the 68Ga-labeled peptide BAY 86-7548 

(compound 41, Fig. 15) is currently running clinical trials for the imaging of GRPR-expressing 

prostate cancers.[80] Non-peptidic ligands of hormone receptors have been often preferred to 

peptide analogues, due to the well-known poor plasma stability of conventional peptide 

sequences. Besides the development of non-peptidic SSTR binders,[81] a synthetic non-

peptidic ligand (CLR, see Fig. 16) of cholecystokinin 2 receptor (CCK2R) has been recently 

developed as tumor-targeting ligand. CCK2R is a g protein-coupled receptor that is 

overexpressed in several cancers (e.g. lung, pancreas, liver, esophagus, colon, and 

gastrointestinal stromal tumors), where it plays important roles in carcinogenesis and tumor 

progression.  

 

 

Figure 16. A) Molecular structures of CLR-L1-TubH conjugate (42).
[83] 

B) Schematic representation of 
the estradiol scaffold (in the square), showing the variety of positions that have been used for 
conjugation chemistry: the black spot indicate low ER-binding affinity, whereas the functionalization of 
the 11-β position (grey spot) led to the development of SMDC 43, which showed selective cytotoxic 
activity in vitro against ER-expressing cells.

[86] 

CCK2R-transfected HEK 293 cells were injected in mice and evaluated as antigen-positive 

control: upon the in vivo biodistribution evaluation of the selected ligand, coupled with a 99Tc-

radiotracer,[82] an analogue tubulysin B-bearing SMDC (SMDC 42, Fig. 16A) showed 
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inhibition of tumor growth, followed by regression to an undetectable level.[83]Receptors of 

steroid hormones have also been studies as targets for SMDCs. For instance, estrogen 

receptors (ERs, in particular the α-subtype) are overexpressed by different breast cancer 

cells. At first, the estrogen estradiol has been derivatized in different positions (i.e. the 17β-, 

17α-, 16α-, and 7α-positions, see Fig. 16B) and endowed with a variety of anticancer 

drugs.[84] These modifications were synthetically accessible through simple transformations 

of estradiol or its derivatives but not suitable for SMDCs, since a poor selective anticancer 

activity towards ER-expressing cells was observed.[84] X-ray analysis of the ligand-receptor 

complexes suggested that modifications in these positions of estradiol strongly affected the 

ligand binding. The 11β-position of estradiol was identified as suitable for the conjugation of 

anticancer drugs, but the installation of uncleavable linkers still resulted in the lack of 

selectivity against ER-expressing cells.[85] Finally, 11β-modified estradiol was linked to the 

anticancer drug doxorubicin through a hydrazone linker: the resulting SMDC (compound 43, 

Fig. 16B) showed remarkable selectivity in vitro towards ER-expressing lines.[86] In a control 

experiment, the observed selectivity was completely abolished by the addition of free-

estradiol, which competes with 43 for the ER-binding site. This experiment confirmed the 

receptor-mediated endocytosis of the SMDC and the high potential of this anticancer 

approach.[86] 
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1.5. αvβ3 Integrin-Targeted Delivery of Chemotherapeutics  

1.5.1. Integrins 

Integrins are heterodimeric transmembrane glycoproteins formed by non-covalently 

associated α- and β- subunits: in vertebrates, the integrin family is composed of 18 α and 8 β 

subunits that can assemble leading to 24 identified heterodimers (Fig. 17). Integrins are 

particularly important in areas where cell adhesion is necessary for function and in those 

involving tissue growth.  

 

Figure 17. Schematic representation of the two integrin subunits and the 24-membered integrin 
family.

[87,88]
 

The primary functions of integrins as cell transmembrane proteins are to mediate cell-cell 

and cell-extracellular matrix (ECM) adhesion, with pivotal roles in the organization and 

remodeling of the cytoskeleton during cell adhesion and migration. 

Moreover, integrins mediate fundamental steps of cell life by transmitting both mechanical 

and chemical signals across the cell membrane: in general, these signaling pathways are 

promoted by specific growth factors and cytokines and mediate the integrin interaction with a 

variety of tyrosine kinase proteins (e.g. focal adhesion kinase and Src kinase family), 

resulting in the control of cell proliferation, activation, migration and homeostasis.[89]  

The complexity of signals in which integrins are involved makes them play vital roles in both 

healthy and diseased tissues. For instance, integrin signaling is important for tumorigenesis 

and progression: since cells that have undergone neoplastic transformation are less 

dependent on ECM adhesion for their survival and proliferation, it has been demonstrated 

that cancer cells enhance the expression of specific integrins that favor their proliferation, 

survival and migration. Among these, αvβ3 integrin has been widely investigated as receptor 

for tumor-targeting strategies.  
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Figure 18. Integrins expressed in tumour cells contribute to tumour progression and metastasis by 
increasing tumour cell migration, invasion, proliferation and survival. 

1.5.2. αvβ3 Integrin as Tumor Antigen  

The interactions of αvβ3 integrin with several receptor tyrosine kinases (RTKs), including the 

receptors for EGF, PDGF, insulin and vascular endothelial growth factor (VEGF) control the 

behavior of endothelial cells.[90,91] The involvement in these complex “cross-talk” networks 

makes αvβ3 integrin a principal marker of angiogenesis, that is the formation of new blood 

vessels in avascular tissues. This latter is a fundamental step not only for physiological 

processes (e.g. embryogenesis, tissue remodeling, female reproductive cycle, and wound 

healing), but also for survival and growth of tumor masses. Moreover, αvβ3 is involved in 

ECM remodeling and degradation, which are key processes for tumor invasion and 

metastasis. For instance, this integrin heterodimer has been shown to facilitate the transition 

from the radial to the vertical phase of cell growth, therefore facilitating the penetration of the 

basement membrane and invasion into the underlying stroma.[92] These special roles of αvβ3 

integrin seem to arise from its ability to recruit and activate specific extracellular proteases 

(i.e. MMP2 and plasmin) which degrade different components of the extracellular and 

interstitial matrixes, thus promoting the migration of cancer cells.[89] As a result of these key 

roles in cell proliferation, survival and migration, αvβ3 integrin is not only upregulated in 

angiogenic endothelial cells, but it is also overexpressed in various tumors, such as 

melanoma, glioblastoma, breast, pancreatic, cervical and prostate carcinomas.[93] 

The evaluation of αvβ3 integrin as pharmacological target for antitumor applications started 

with the understanding of the molecular basis of the adhesion of ECM protein to cells. In 

particular, Ruoslahti and coworkers discovered that cell adhesion of particular domains of 

fibronectin and other ECM proteins takes place by means of an Arg-Gly-Asp (RGD) 

sequence (Fig. 19), which was identified as specific binding motif of certain integrin 

receptors.[94,95] 
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Figure 19. The arginine-glycine-aspartic acid (RGD) peptide sequence.
 

Later on, the development of peptide libraries led to the identification of series of RGD-

bearing compounds, which were able to bind αvβ3 integrin at low-nanomolar concentrations. 

In these peptide ligands, the inclusion of the RGD tripeptide into cyclic sequences impaired 

lower conformational flexibility to the integrin ligands, resulting in a higher affinity for the 

integrin receptor.[96,97,98] An important milestone in this research field is the X-ray analysis of 

the co-crystals obtained from integrin αvβ3 and cilengitide (compound 44, Fig. 20), the well-

known integrin ligand developed by Kessler.[99] In this crystal structure, an extended 

conformation of the RGD sequence in the integrin binding pocket was observed, with a 9-Å 

distance between C-β atoms of the Arg and Asp residues: this arrangement allows the 

interaction of the arginine side chain with two anionic aspartic acid residues in the α-subunit, 

whereas the aspartic acid binds to divalent metal cation in the metal ion-dependent adhesion 

site (MIDAS) region of the β-subunit.[100] The understanding of these structural requirements 

prompted the development of peptidic, peptidomimetic and non-peptidic αvβ3 integrin 

ligands.[101,102,103] These potent integrin binders were originally designed as antiangiogenic 

compounds to be directly used in anticancer therapy. 

 

Figure 20. Molecular structures of integrin-targeting small molecules cilengitide (44, non-selective) 
and MK-0429 (45, αvβ3 selective), that have been evaluated in clinical trials as inhibitors of tumor 
angiogenesis.  

 

In addition to the humanized, αvβ3 integrin-targeted mAb etaracizumab (Abegrin™), the small 

molecules cilengitide and MK-0429 (45) have been evaluated in clinical trials as anticancer 

drugs.[104] Although all of these integrin antagonists were demonstrated to be non-toxic and 

well-tolerated, some doubts have recently emerged concerning their anticancer efficacy. 

Indeed, a paradoxical pro-angiogenic activity of 44 under certain experimental conditions has 
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been reported.[105,106] Moreover, the failure of cilengitide in improving overall survival in 

patients with newly-diagnosed glioblastoma and methylated MGMT promoter status[107] 

stimulated the debate on the feasibility of anticancer treatments based on the administration 

of integrin-targeted antiangiogenic compounds.[108,109,110]  

Nevertheless, owing to the high expression of αvβ3 integrin in cancer cells, several RGD-

bearing peptides and peptidomimetics have been investigated as promising carriers for the 

delivery of lyposomes,[111,112,113] nanoparticles.[114,115] and imaging agents,[116,117,118] which 

were the first RGD-conjugated payloads to enter the clinic.  

1.5.3. RGD Ligands in Tumor Imaging and Therapy  

Small ligands of αvβ3 integrin found widespread applications in positron emission tomography 

(PET) imaging. In particular, [18F]-Galacto-RGD (46, Fig. 21) was the first compound of this 

class to be studied in patients. Later on, due to the short half-life of 18F isotope, novel 

integrin-targeted radiotracers were developed in which the 18F label is rapidly installed by 

“click” reactions (e.g. triazole and oxime formations in compound 47 and 48, respectively). 

These structural modifications allow easy labeling procedures and increase the availability of 

the radiotracer, making these compounds suitable for diagnostic applications. Besides the 

use of RGD ligands in PET imaging, the 99mTc-labeled compound 49 is currently evaluated in 

clinical trials as probe for single photon emission computed tomography (SPECT).[119,120] In 

general, all these targeted imaging agents are well tolerated by patients and their in vivo 

accumulation have shown good correlation with the αvβ3 expression in tumor vasculature as 

well as in integrin-expressing cancer cells. To increase the tumor uptake and reduce side 

accumulation to organs (mainly kidneys and intestine), radiotracers have been coupled to 

dimeric RGD peptides.[121] Such a multivalent approach is known to enhance the ligand 

affinity for a specific receptor:[122] in the field of αvβ3 imaging, it led to the FDA approval for 

clinical evaluation of [18F]-FPPRGD2 ([
18F]-Alfatide, compound 50)[123] and of its more stable 

analogue [18F]-Alfatide II (compound 51).[124] 

The increasing interest in this research area led to the development of a large variety of new-

generation RGD-coupled radiotracers, which are being evaluated at preclinical levels. In 

general, the conjugation to integrin ligands is often shown to induce a pronounced 

accumulation of the imaging agent in the tumor, resulting in some cases in a preferential 

probe localization in the tumor (Fig. 22).[125] This selectivity for the diseased tissue is 

completely abolished by the co-injection of unlabeled integrin ligand, indicating the 

involvement of αvβ3 in the tumor recognition.[126,127,128] 
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Figure 21. Molecular structures of integrin-targeted imaging agents that are currently evaluated in 
clinical trials.

 

While cancer imaging strategies based on the administration of radiolabeled RGD peptides 

are being investigated at the clinical level, the use of these small compounds as ligands in 

SMDCs is still far from being validated for therapy.  

Due to the expression of αvβ3 integrin in angiogenic tumor vasculature, RGD ligands can 

exert anticancer activity by targeting endothelial cells. However, therapeutic approaches 

targeting cancer cells expressing the integrin receptor can also be devised. Integrins are 

commonly considered as internalizing receptors, and a variety of endocytic pathways 

mediated by integrins have been described.[129]   
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Figure 22. Molecular structures of the recently-reported αvβ3-targeted radiotracers 
111

In(DOTA-3P-
RGD2) (52),

[125]
 

111
In(DTPA-3P-RGD2) (53),

[125]
 [

18
F]Mlt-RGD (54),

[126] 99m
Tc-P6G-RGD2 (55)

[126] 
and 

99m
Tc-Galacto-RGD2 (56).

[128]
 Chart: comparison of the 60-min biodistribution data in athymic nude 

mice bearing U87MG human glioma xenografts. 
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Specific proteins (i.e. caveolin and clathrin) are known to interact with the intracellular 

domain of αvβ3 integrin and promote the receptor folding into membrane vesicles that travel 

to early endosomes. Here, αvβ3 integrin can be either driven to intracellular compartments 

responsible for protein degradation (e.g. endosomes and lysosomes), or recycled to the 

plasma membrane. These trafficking pathways are involved in different processes, such as 

cell migration (by detachment of integrins from the extracellular matrix), integrin recycling and 

activation of different receptors (e.g. VEGFR-2, involved in angiogenesis).[130]  

Cleavage type   Linker
[a]

 Drug αvβ3 Ligand Ref.
[b]

 

Hydrolysis N-Mannich base DOX RGD4C [131] 

 ester PTX E[cyclo(RGDyK)]2 [132],[133] 

 ester PTX E[cyclo(RGDfK)]2 [134] 

 ester PTX AbaRGD; AmproRGD [135] 

 ester PTX multimeric AbaRGD [136] 

 amide, hydrazone CPT analogues RGD cyclopentapeptides [137] 

 hydrazone DOX E[cyclo(RGDfK)]2 [138] 

Enzymatic cleavage D-Ala-Phe-Lys DOX RGD4C [139] 

 Pro-Leu-Gly DOX E[cyclo(RGDfK)]2 [140] 

 Pro-Leu-Gly; Val-Cit MMAE cyclo(RGDfC) [141] 

 Ala-Cit NMT RGD cyclopentapeptides [142] 

 Ala-Ala-Asn MMAE Non-peptidic αvβ3 inhibitor [143] 

Reduction Disulfide CPT cyclo(RGDyK) [144] 

 Pt(IV) complex Cisplatin Linear RGD and 
cyclopentapeptides 

[145] 

 Pt(IV) complex Cisplatin, DOX RGD cyclopentapeptide [146] 

Table 1. αvβ3 integrin-targeted SMDCs, grouped by type of linker. [a] specific functional group that is 
cleaved during drug release from SMDCs. [b] Contribution from our group is not reported here. DOX: 
doxorubicin; PTX: paclitaxel; CPT: camptothecin; SMAC: second mitochondrial activator of caspases; 
NMT: ST 1968 (namitecan).  

Doxorubicin was the first anticancer drug to be coupled to an integrin ligand. In 1998, 

Ruoslahti and coworkers injected an RGD-DOX conjugate in mice xenografted with MDA-

MB-435 human cancer cell line: owing to the high expression of αv integrins in this cell line, 

this compound showed enhanced volume inhibition and lower toxicity, compared to the free 

anthracycline drug.[147] Although the conjugate’s mechanism of action was not discussed at 

that time, these findings inspired the conjugation of different anticancer agents to a variety of 

peptidic, peptidomimetic and non-peptidic αvβ3 ligands. Moreover, different drug release 

mechanisms have been investigated through the installation of linkers that are cleaved upon 

hydrolysis, chemical reduction or enzymatic action (an overview of the drug-linker-ligand 

combinations that have been reported in the literature is shown in Table 1).  
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Paclitaxel and doxorubicin are the most common anticancer drugs to be evaluated as 

payloads in αvβ3-targeted SMDCs: the first has been mostly conjugated to integrin ligands by 

esterification of the drug’s 2’-hydroxyl group. Although this drug design was often found to 

improve the efficacy of paclitaxel in vivo,[132,135] the use of this linker-payload combination is 

limited by the poor stability of the ester bond towards hydrolysis.[148] For instance, SMDC 57 

(Fig. 23) showed a half-life of only ∼2 h at 37 °C in glucose phosphate buffer solution at pH 

7. This poor stability had a strong influence on antiproliferation assays against HUVECs: the 

cytotoxic effects of 57 and those of the poor integrin binder RAD-PTX conjugate (compound 

58) were significantly different only within a very short time exposure (i.e. less than 1 hour), 

indicating a swift loss of the integrin-targeting effect.[134] 

 

Figure 23. Molecular structures of the dimeric E[cyclo(RGDfK)]2-PTX conjugate 57 and the control 
compound cyclo(RADfK)-PTX 58, unable to bind αvβ3 integrin.

[134]
  

 

The ketone and amino groups in doxorubicin allowed the conjugation of this anthracycline 

drug to RGD ligands through a wider group of linkers. Similarly to hemisuccinate esters of 

PTX, hydrazone derivatives of doxorubicin have shown a poor stability towards hydrolysis, 

when coupled to integrin ligands.[137,138] On the other hand, the daunosamine moiety of 

doxorubicin was used as anchoring point for enzymatically-cleavable peptide linkers.[139,140] 

Due to their stability, these peptide sequences have been recently used in integrin-targeted 

SMDCs, in which the drug potency is sensibly increased, compared to conventional 

anticancer agents.[141,143] For instance, the Liu and Sinha group conjugated MMAE to a non-

peptidic αvβ3 ligand through the peptide linker Ala-Ala-Asn. This sequence acts as specific 

substrate of legumain, an intracellular protease which was found to co-localize with αvβ3 

integrin in integrin-expressing breast carcinoma MDA-MB-435 cells. Due to its targeting 

properties, the resulting SMDC (compound 59, Fig. 24) was administered to tumor-bearing 
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mice at 30 fold higher dose (11,7 if the different molecular weights of MMAE and SMDC are 

taken into account) than the maximum tolerated dose of free MMAE. This resulted in 

improved tumor response and much lower toxicity compared to the free MMAE (Fig. 24 A 

and B).[143]  

 

 

Figure 24. Molecular structures of the integrin-targeted SMDC 59, reported by Liu and Sinha; A) In 
vivo effect of 59 on MDA-MB-435 carcinoma; B) survival curves of mice bearing MDA-MB-435 tumors 
in control and 59 groups.

[143] 

If the increase in drug’s potency is important to improve the therapeutic effects of the 

conjugate, the development of “theranostic” devices is now facilitating the overall 

understanding of the mechanism of αvβ3-targeted drug delivery. In a recent paper, Liu and 

coworkers reported the synthesis and biological evaluation of a RGD-drug conjugate 

(compound 60, Fig. 25), whose endocytosis in αvβ3-expressing cells is followed by the 

reduction of a Pt(IV) complex, resulting in the release of cisplatin and doxorubicin from a 

fluorescent tetraphenylene (TPE) moiety. In addition to the benefit of the multi-drug 

administration, this conjugate was designed to be analyzed by Fluorescence Resonance 

Energy Transfer (FRET) microscopy. Due to energy transfer to doxorubicin, the TPE 
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fluorescence is quenched before platinum reduction, whereas the separation between the 

two fluorophores leads to an enhanced intensity of the TPE signal.  

 

 

Figure 25. Molecular structure and mechanism of action of tetraphenylene (TPE)-labeled SMDC 60. 
The intracellular Pt(IV)-Pt(II) reduction is exploited to deliver cisplatin (1) and doxorubicin derivative 
61. The separation between TPE and doxorubicin is monitored by FRET imaging owing to the 
enhancement of TPE’s fluorescence. Picture: confocal images of MDA-MB-231 cells after incubation 
with 60 for 1 h, 2 h, and 2 h followed by incubation in fresh medium for additional 4 h. 

This technique allowed a real-time monitoring of both the endocytosis in MDA-MB-231 cells 

and the release of doxorubicin from the vehicle (Fig. 25): by confocal microscopy, the 

migration of DOX from the cytosol to the nuclei was observed over a period of 6 h (i.e. cell 

incubation with SMDC for 2 h, followed by incubation in fresh medium for additional 4 h). On 

the other hand, the initial weak blue fluorescence of TPE increases significantly after 2h 

incubation, indicating the reductive linker cleavage and the separation between the two 



34 Chapter 1. Drug Targeting To Tumors  
 

 

fluorescent dyes. Unlike DOX, the TPE fluorescence is not observed in the nuclei, indicating 

that the RGD-TPE aggregate is not able to diffuse from the endocytic vesicle. Compound 60 

revealed stronger antiproliferative activity, compared to free cisplatin and doxorubicin, 

against αvβ3-expressing cell line MDA-MB-231. Although conjugate 60 was reported to be 

remarkably less potent against cell lines showing low integrin expression (i.e. MCF-7 and 

293T cells), a clear quantification of this integrin-targeting effect was not provided. Other 

“theranostic” RGD-drug conjugates have been reported in the literature and will be 

extensively discussed in the next chapters. 

The development of “theranostic” devices as well as the evaluation of new linker systems for 

the selective drug release from integrin ligands are now providing better understanding of the 

potentialities of αvβ3-targeting SMDCs. 

1.6. Previous Work of Our Research Group in the Field 

1.6.1. Peptidomimetic cyclo[DKP-RGD] ligands 

In 2009, the Gennari and Piarulli group entered this research area with the development of 

new integrin ligands in which the RGD sequence is constrained into a cycle by bifunctional 

2,5-diketopiperazine (DKP) scaffolds. DKPs (Fig. 26) are the smallest cyclic peptides and 

their capability of altering the properties of traditional peptides led medicinal chemists to 

investigate them as important tools for biological target recognitions and drug design. Indeed, 

the DKP ring constrains the nitrogen atom of an α-amino amide: this modification of the two 

peptide bonds results in remarkable alterations of their physical-chemical properties. In 

particular, the 6-membered ring reduces the susceptibility of peptide bonds to metabolic 

cleavage and confers conformational rigidity.  

 

Figure 26. General structure of a 2,5-Diketopiperazine (DKP) and retrosynthetic analysis. 

These changes in structural and physical properties, as well as the presence of functional 

groups that can act as donors (amide proton) and acceptors (carbonyl groups) of hydrogen 

bonds enhance favorable interactions with biological targets. Moreover, DKPs are simple 

heterocyclic scaffolds in which structural diversity can be introduced at up to four positions 

(N1, N4, C3, C6) and their preparation from enantiopure α-amino acids allows to control the 

stereochemical configuration in two positions (C3, C6, Fig. 26).[149] Due to all of these 

features, the Gennari and Piarulli group synthesized eight different diketopiperazines bearing 
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an amino and an acidic group. These scaffold were derived from combination of L- and D-

amino acids, bearing carboxy (i.e. aspartic and glutamic acids) or amino groups in their side 

chains. Furthermore, the amino groups of the DKP ring were differently functionalized with 

benzylic moieties. The Arg-Gly-Asp sequence was coupled to each DKP, resulting in a library 

of 8 peptidomimetics (Fig. 27).[150,151] 

 

Figure 27. Schematic representation of the cyclo[DKP-RGD] library.
[151]

  

The library members were tested in vitro for their ability to compete with fibronectin for the 

binding to the purified αvβ3 and αvβ5 receptors: IC50 values in the 10−10-10−6 molar range 

demonstrated that the DKP ring strongly influences the ligand affinity for the receptor. NMR 

and in silico conformational studies completed the panel of SAR studies, providing the 

structural basis of the affinity observed in vitro. Due to its low-nanomolar affinity for the αvβ3 

receptor and to its synthetic accessibility, the cyclo[DKP-RGD] ligand 64 (i.e. the cyclo[DKP-

3-RGD]) was selected among the library members as hit compound for further biological 

evaluations. While this compound was found to inhibit the capillary network formation in 

human umbilical vein endothelial cells (HUVEC), it did not interfere with the production of 

mRNA for the αv, β3, and  β5 subunits.[152] Moreover, due to its inhibitory effect on integrin-

mediated FAK/Akt transduction pathways and cell infiltration processes, ligand 64 has been 

recently classified as a pure αvβ3, antagonist.[153] These results highlighted the differences 

between the cyclo[DKP-RGD] ligand and the well-known cilengitide (44), whose agonist-like 

activity has been mentioned in Paragraph 1.5.2. 

1.6.2. First-generation cyclo[DKP-RGD]-PTX conjugates 

In order to explore the functionalization of the cyclo[DKP-RGD] ligand with bioactive 

molecules, the DKP scaffold of compound 64 was endowed with a benzylamino moiety. This 

nucleophilic functional group installed on the new cyclo[DKP-RGD]-CH2NH2 ligand 

(compound 70, Fig. 28)[154] has then been used as anchoring point for the conjugation of 

different compounds, such as paclitaxel,[154] a pro-apoptotic SMAC mimetic compound[155] 

and an anti-angiogenic peptide.[156] Despite the increased molecular weight of these 
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conjugates, all new compounds were found to maintain an appreciable binding affinity 

towards αvβ3 integrin (nanomolar IC50 values), proving the feasibility of the ligand 

functionalization in the aromatic portion of the DKP scaffold. Among these compounds, the 

SMDC cyclo[DKP-RGD]-PTX (compound 71, Fig. 28) was endowed with an acid-labile ester 

linker.  

 

 

Figure 28. Molecular structures of the functionalized integrin ligand cyclo[DKP-RGD]-CH2NH2 70 and 
the SMDC cyclo[DKP-RGD]-PTX 71; A) In vivo antitumor activity studies of 71 compared to paclitaxel 
(PTX) on IGROV-1/Pt1 ovarian carcinoma; B) stability of 71 (1.28 mM) in physiological solution; C) 
stability of 71 in murine plasma.

[154] 

The anticancer properties of 71 were tested in vivo against the αvβ3 integrin-expressing 

cancer cells IGROV-1/Pt1 xenografted in nude mice. A remarkable tumor-targeting effect 

was observed: when injected at doses of 15 mg/kg-mouse, compound 71 displayed a higher 

inhibition of tumor growth, compared to the same dose of free PTX (Fig. 28A). Moreover, 

considering the different molecular weights of the SMDC and the free drug, it was possible to 

assert that 71 was more efficient than PTX at minor molar dosages, thus revealing that the 

conjugation with the cyclo[DKP-RGD] ligand improves the antitumor performances of PTX. 

As discussed in Paragraph 1.5.3, the low stability of PTX-hemisuccinate esters has been 

often reported. Although compound 71 revealed to be stable for days in physiological 



 Chapter 1. Drug Targeting To Tumors 37 
 

 

 

solution (Fig. 28B), the ester linker was found to be cleaved in both murine and human 

plasma, with half-lives of 165 and 143 min, respectively (Fig. 28C).[154] These data are 

consistent with the observed antitumor activity: indeed, the stability assays revealed that the 

ester linker is sufficiently stable in plasma to allow a significant accumulation of intact 71 at 

the integrin-expressing tumor mass, where PTX is then released to exert its “targeted” 

cytotoxic activity. On the other hand, the plasma stability of this ester linker was found to be 

too low to exclude a premature drug release in circulation. This limitation of the ester linker 

would have an even stronger impact in the case of the conjugation of more potent cytotoxic 

agents to the cyclo[DKP-RGD] ligand, aimed at the development of highly efficient SMDCs. 

Arguably, the severe side effects derived from partial drug release in plasma would strongly 

restrict the application of this αvβ3-targeted anticancer approach.  

A deep analysis of the linker technology thus appears mandatory for the evaluation of 

cyclo[DKP-RGD]-drug conjugates, in order to develop efficient integrin-targeted prodrugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 



 

 

Second-Generation cyclo[DKP-RGD]-

PTX Conjugates 

Part of the work described in this Chapter was published in the following articles: 

 A. Dal Corso, M. Caruso, L. Belvisi, D. Arosio, U. Piarulli, C. Albanese, F. Gasparri, A. 

Marsiglio,  F. Sola, S. Troiani, B. Valsasina, L. Pignataro, D. Donati, C. Gennari, Chem. 

Eur. J. 2015, 21, 6921-6929; 

 Open Access Review: A. Dal Corso, L. Pignataro, L. Belvisi, C. Gennari, Curr. Top. Med. 

Chem. 2016, 16, 314-329.  

2.1. Introduction 

The biological evaluation of the RGD-PTX conjugate 71 revealed that the peptidomimetic 

ligand cyclo[DKP-RGD] can efficiently promote the accumulation of the cytotoxic payload at 

the tumor site. Besides the variety of integrin-targeting agents that have been reported in the 

literature, different approaches for the release of cytotoxic payloads from integrin ligands 

have been investigated so far. As discussed in Paragraphs 1.3.2 and 1.4.1, these linker 

moieties are fundamental for the SMDC efficacy, which is derived from the correct 

equilibrium between the linker stability in circulation and its fast cleavage at the tumor site. 

Peptide linkers have been extensively used for the release of cytotoxic payloads from 

targeting vehicles (e.g. mAbs and small ligands) and for the activation of anticancer 

prodrugs. The efficiency of peptide linkers is ascribable to their high plasma stability and to 

their selective cleavage at the site of disease, which is the result of their interaction with 

specific proteases. These target enzymes can be either expressed on the surface of tumor 

cells (e.g. MMP-2 and -9) or in the endosomal/lysosomal compartment (e.g. cathepsin B and 

other cysteine proteases).  

We focused on lysosomally-cleavable linkers: this choice was made in order to exploit the 

endocytic pathways of αvβ3 integrin, which make possible the drug release in the intracellular 

environment, thus minimizing the linker cleavage in the extracellular milieu. Importantly, 

these linkers would allow the rapid screening in vitro of the synthesized SMDCs, aiming at 

the evaluation of their cytotoxic activity depending on the targeted αvβ3 receptor. Moreover, in 

2013 Sewald and coworkers analyzed by confocal microscopy the intracellular localization of 
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a fluorescein-labeled RGD-chryptophycin conjugate.[157] This experiment highlighted the 

transition of the RGD-labeled compound through the lysosomal compartment, where the 

compound accedes upon αvβ3-mediated endocytosis. This observation strongly supports the 

feasibility of lysosomally-degradable linkers in RGD-drug conjugates. 

With the aim of designing 2nd-generation cyclo[DKP-RGD]-PTX conjugates, significant 

importance was given to the self-immolative spacer: as discussed in Paragraph 1.4.1, this 

moiety connects the drug to the cleavable linker, reducing steric hindrance and allowing 

better protease activity. Unlike the ester bond in SMDC 71, this spacer module has to be 

connected to the drug through more stable functional groups, in order to allow drug release 

only upon the enzymatic action. We focused on different self-immolative spacers reported in 

the literature for paclitaxel release from peptide moieties in both targeted and non-targeted 

prodrugs.  

 

Figure 29. Molecular structures of the protease-activable paclitaxel prodrug reported by Scheeren and 
coworkers.

[158,159]
 

In particular, Scheeren and coworkers developed a group of protease-activable paclitaxel 

prodrugs, in which a substrate of the serine protease plasmin (i.e. the D-Ala-Phe-Lys peptide) 

was coupled to the drug’s 2’-position through carbamate (compounds 72-75 in Fig. 29) and 

carbonate (compound 76) bonds.[158,159] The carbonate group in compound 76 connects 

directly the drug to the p-aminobenzyl alcohol (green moiety in Fig. 29), which is a well-

known self-immolative spacer, already discussed in Paragraph 1.4.1. On the other hand, the 

formation of carbamate bonds in the other prodrugs has been made by using 

ethylenediamine derivatives (blue moiety in Fig. 29). The two nitrogen atoms are named here 



 Chapter 2. Second-Generation cyclo[DKP-RGD]-PTX Conjugates 41 
 

 

 
 

as N1 and N2 (see compound 72). Upon deprotection of N1, the free amine undergoes 

cyclization onto the carbonyl group of the carbamate bond, releasing the free PTX and a 

cyclic urea. This cyclization mechanism has been reported to be significantly slower than the 

electronic cascade mechanism of self-immolative spacers. In order to improve the kinetic and 

stability of drug release from these cyclization spacers, the presence of substituents on N1 

and N2 atoms have been extensively investigated. For instance, the methylation of the N2 

atom in compound 73 has been devised to avoid the undesired reaction described for 

compound 72, which was found to completely degrade to baccatin III (77, Scheme 

3AScheme ) within 24h under neutral pH conditions. 

 

Scheme 3. A) degradation mechanism of prodrug 72; B) two-step drug release mechanism of prodrug 
75 upon enzymatic cleavage. 

On the other hand, the methyl group on N1 atom has been installed (i.e. in compounds 74 

and 75) in order to achieve a faster PTX release compared to what observed with prodrug 

73. However, no drug release in the presence of plasmin has been observed from prodrug 

74, indicating that the amide bond between methylated N1 and the C terminus of the peptide 

sequence is not recognized by the proteolytic enzyme. We focused on the self-immolative 

spacer of prodrug 75: in this compound, the ethylenediamino moiety bears two methyl 

groups at both N1 and N2 atoms and the enzymatic activity is made possible by the 

elongation of the dimethylethylenediamino chain with a p-aminobenzylcarbamate (PABC) 
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spacer (green moiety in Fig. 29). The two self-immolative spacers are connected through a 

physiologically-stable carbamate bond and the mechanism of drug release is depicted in 

Scheme 3B: the enzymatic cleavage leads to aniline 78, which rapidly releases CO2 and 

paclitaxel metabolite 79. The final PTX release occurs by cyclization of the methylamine 

group onto the 2’-carbamate group and it was indicated as the rate-determining step of the 

release process. From its development in 2001, this two-step self-immolative spacer has 

been widely applied in the field of triggered-drug release from polymers, dendrimers, and 

nano-scale assemblies.[160]  

Inspired by this work, we developed second-generation cyclo[DKP-RGD]-PTX conjugates 

(Fig. 30) in which the self-immolative spacer of prodrug 75 connects the payload to 

lysosomally-cleavable peptide linkers.  

 

Figure 30. Schematic representation of second-generation cyclo[DKP-RGD]-PTX conjugates, bearing 
peptide linkers. 

Among the plethora of dipeptide linkers that are known to be specific substrates of lysosomal 

proteases, we chose the Phe-Lys and the Val-Ala sequences, whose engagement as linkers 

in SMDCs was well documented in the literature.[142,161] Moreover, a di-carboxylate spacer 

(derived from a cyclic anhydride) allowed the connection of the cyclo[DKP-RGD]-CH2NH2 

ligand (70) to the N-terminus of the peptide linker (Fig. 30).    
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2.2. Synthesis of RGD Peptidomimetic-Paclitaxel Conjugates 

bearing Lysosomally Cleavable Linkers 

Three different cyclo[DKP-RGD]-PTX conjugates have been synthesized, and their molecular 

structures are reported in Fig. 31.[162] 

 

Figure 31. Molecular structures of the SMDCs cyclo[DKP-RGD]-Val-Ala-PTX 80, cyclo[DKP-RGD]-
Phe-Lys-PTX 81, and cyclo[DKP-RGD]-uncleavable-PTX 82. 

In addition to the peptide linker-bearing compounds cyclo[DKP-RGD]-Val-Ala-PTX (SMDC 

80) and cyclo[DKP-RGD]-Phe-Lys-PTX (81), a third conjugate (compound 82) was prepared, 

in which the dipeptide moiety is replaced by a tertiary amide bond. This proteolytically-stable 

or “uncleavable” linker was designed in order to use compound 82 as a negative control for 

evaluating the biological performances of conjugates 80 and 81. 

2’-(4-Nitrophenoxycarbonyl)paclitaxel (compound 83 in Scheme 4) and N-(Boc)-N,N’-

dimethylethylenediamine (86) have been synthesized as common intermediates for the 

preparation of SMDCs 80-82. While the diamine spacer was prepared according to a 

previously reported methodology,[163] the reaction of paclitaxel with p-

nitrophenylchloroformate was optimized, resulting in a 69% conversion to carbonate 83 and 
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minimizing the functionalization of the hindered 7-hydroxyl group (i.e. conversion to 

compound 84). 

 

Scheme 4. Synthesis of intermediates 83 and 86. Reagents and conditions: a) p-nitrophenyl 
chloroformate, pyridine, CH2Cl2, -50 °C to -20 °C, 4 h; b) Boc2O, CH2Cl2, 0 °C to RT, overnight.    

SMDCs 80 was obtained through the synthetic pathway shown in Scheme 5. The Fmoc-Val-

Ala-OH (87a) intermediate, synthesized according to a procedure reported by Kratz and 

coworkers,[161] was coupled to 4-aminobenzyl alcohol, affording compound 88a. The 

synthesis of the self-immolative spacer continued with the activation of the benzyl alcohol 

group by conversion into the corresponding 4-nitrophenyl carbonate 89a. The latter was then 

reacted with the mono Boc-protected diamine 86, affording compound 90a. The Fmoc 

protecting group was removed in solution and without purification: after removing DMF and 

piperidine from the reaction mixture, the crude amine was re-dissolved and treated with 

glutaric anhydride. Flash chromatography afforded the resulting hemigluatarate 91a in high 

yields. This carboxylic acid was activated as N-hydroxysuccinimidyl (NHS) ester and coupled 

with the integrin ligand cyclo[DKP-RGD]-CH2NH2 (70). As a well-established procedure from 

our group, this conjugation step was run at controlled pH, since at pH < 7.0 the reaction does 

not proceed, whereas at pH > 7.6 the hydrolysis of the NHS ester competes significantly with 

the desired coupling. The pH was maintained in the 7.3-7.6 range by adding aliquots of 0.2 M 

aq. NaOH to the reaction mixture. Boc cleavage at this stage yielded the free secondary 

amine 92a, as trifluoroacetate salt. This amine was reacted with 2'-(4-nitrophenoxycarbonyl)-

paclitaxel (83) affording the final cyclo[DKP-RGD]-Val-Ala-PTX conjugate (80). This synthetic 

strategy has been also applied to the preparation of compound 81. Unlike the Val-Ala-

bearing analogue 80, the synthesis of SMDC 81 required the protection of the amino group 

on the lysine side chains: the allyloxycarbonyl (Alloc) protecting group was chosen, in order 

to take advantage of its stability under the cleavage conditions of both Boc- and Fmoc-

protecting groups. 
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Scheme 5. Synthesis of SMDCs 80 and 81. Reagents and conditions: a) 4-aminobenzyl alcohol, 
EEDQ, CH2Cl2/MeOH (2:1), overnight (88a); 4-aminobenzyl alcohol, EDC·HCl, HOAt, N-
methylmorpholine, THF, 4 h (88b); b) 4-nitrophenylchloroformate, pyridine, THF, 4 h; c) 86, iPr2NEt, 
THF, overnight; d) [1] piperidine, DMF, 2 h; [2] glutaric anhydride, DMAP, iPr2NEt, DMF, overnight; e) 
[1] DIC, NHS, DMF, overnight (92a); EDC·HCl, NHS, DMF, overnight (92b); [2] cyclo[DKP-RGD]-
CH2NH2 (70), CH3CN/PBS (1:1; pH 7.5), overnight; [3]. TFA/CH2Cl2 (1:2), 45 min; f) 83, iPr2NEt, DMF, 
24 h; g) [Pd(PPh3)4], Bu3SnH, AcOH, DMF, RT, overnight. 

The final Alloc-deprotection of compound 93 was carried out on a 10-mg scale, affording the 

final cyclo[DKP-RGD]-Phe-Lys-PTX conjugate (81) in 87% yield. This was achieved after an 

optimization of the relative stoichiometric amounts of the Pd(0) complex and the scavenger 

of the π-allyl Pd(II) complex (i.e. Bu3SnH), which avoids the irreversible allylation reactions of 

the deprotected amine.  

The synthesis of the RGD-paclitaxel conjugate featuring the “uncleavable” linker (82) is 

reported in Scheme 6. In this case, glutaric anhydride was reacted with the mono-protected 

diamine 86. The Boc group was removed at this stage, and the resulting secondary amine 94 

was reacted with paclitaxel derivative 83 to yield compound 95. Unlike SMDCs 80 and 81, 
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the conjugation of the integrin ligand cyclo[DKP-RGD]-CH2NH2 (70) was performed at the 

end of the synthesis, affording the cyclo[DKP-RGD]-unc.-PTX (82) in 50% yield.  

 

Scheme 6. Synthesis of the “uncleavable” SMDC 82. Reagents and conditions: a) [1] Glutaric 
anhydride, iPr2NEt, DMF, 6 h; [2] TFA/CH2Cl2 1:2, 45 min; b) 83, iPr2NEt, DMF, 24 h; c) [1] DIC, NHS, 
DMF, overnight; [2] 2, 1:1 CH3CN/PBS (pH 7.5), overnight. 

The final compounds 80-82 were all purified by semi-preparative HPLC and lyophilized 

before being subjected to biological assays. 

2.3. In vitro Biological Evaluation 

2.3.1. Integrin Receptor Competitive Binding Assays 

The functionalization of the cyclo[DKP-RGD] ligand with linker and drug modules resulted in 

an over-3-fold increase of the final molecular weight. In order to assess the effects of this 

increased steric hindrance on the ligand’s affinity for the receptor, cyclo[DKP-RGD]-PTX 

conjugates 80-82 were examined in vitro for their ability to inhibit biotinylated vitronectin 

binding to the purified αvβ3 and αvβ5 receptors. The calculated IC50 values are listed in Table 

2, together with the previous data relative to the free-ligand 64.  

 IC50 (nM)
[a]

 

Structure αvβ3  αvβ5 

cyclo[DKP-RGD]-Val-Ala-PTX (80) 13.3 ± 3.6 924 ± 290 

cyclo[DKP-RGD]-Phe-Lys-PTX (81) 52.4 ± 14.4 n.d. 

cyclo[DKP-RGD]-unc.-PTX (82) 10.8 ± 1.7 1050 ± 270 

cyclo[DKP-RGD] (64)
[151]

 4.5 ± 1.1 149 ± 25 

Table 2. Inhibition of biotinylated vitronectin binding to isolated αvβ3 and αvβ5 receptors. [a] IC50 values 
relative to compounds 80-82 were calculated as the concentration of compound required for 50% 
inhibition of biotinylated vitronectin binding as estimated by GraphPad Prism software. All values are 
the arithmetic mean ± the standard deviation (SD) of triplicate determinations. n.d.: not determined. 

Screening assays were carried out through incubation of the immobilized integrin receptors 

with solutions of the tested compounds at different concentrations (10−12-10−5 M) in the 

presence of biotinylated vitronectin (1 μg/mL), and measuring the concentration of bound 
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vitronectin. The results showed that despite their remarkable steric bulk, the conjugates’ 

affinity for the purified αvβ3 receptor is comparable to that of the free ligand 64. Indeed, low-

nanomolar IC50 values were obtained throughout the series. Moreover, SMDCs 80-82 

showed micromolar IC50 values for the binding to the αvβ5 receptor, indicating their selectivity 

towards the αvβ3 heterodimer. This selectivity has been also observed with other derivatives 

of cyclo[DKP-RGD] previously developed by our group.[154−156] Notably, besides showing the 

highest IC50 binding values in the series towards integrin αvβ3, the RGD-PTX conjugate 81 

did not allow to obtain reproducible binding curves to αvβ5 integrin. This unusual behavior is 

possibly due to the poor solubility of conjugate 81 in the aqueous medium, that might 

interfere with the binding process, especially at the highest concentration (10−5 M). 

2.3.2. Stability Assays and Lysosome Extract Digestion 

The stability of the different linker systems installed in cyclo[DKP-RGD]-PTX conjugates 80-

82 was assessed under different conditions. At first, the compounds were dissolved in 

neutral (pH 7.4) and acidic (pH 5.5) buffers. After 4 h exposure, HPLC-MS analysis revealed 

the perfect stability of the three SMDCs under the different pH conditions. 

To evaluate the effective cleavage of the peptide linkers and the subsequent paclitaxel 

release in the presence intracellular proteases, conjugates 80-82 were treated with lysosome 

extract, and metabolites were detected by HPLC-MS analysis. The enzymatic cleavage of 

the peptide linkers in compounds 80 and 81 was observed over a 2 h period. In particular, 

the metabolite analysis of these two compounds revealed the presence of N,N’-

dimethylethylenediamine spacer-bearing paclitaxel (i.e. compound 79, reported in Scheme 

3B, pag. 41) as the main product.  

 

Figure 32. Analysis of lysosomal extract digestion of SMDCs 80 and 81 in the presence of cathepsin 
B specific inhibitor (CA-074-Me), cysteine proteases inhibitor (E-64) and inactivated lysosomal extract 
(negative control). Signal detected for m/z 968.4 (attributed to compound 79) expressed in percentage 
relative to that obtained with lysosomal extract (set to 100%). 

This is consistent with the drug release mechanism described by Scheeren for prodrug 75 

(Scheme 3B), in which the cyclization of the diamine spacer was claimed as the rate-limiting 
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step of the drug release. On the other hand, the exposure of the cyclo[DKP-RGD]-unc.-PTX 

conjugate (82) to lysosome extract did not lead to any drug release, due to the absence of 

peptide linkers. In order to analyze more in detail the selectivity of the linker cleavage, 

SMDCs 80 and 81 were treated with lysosome extract in the presence of a cathepsin B 

specific inhibitor (CA-074-Me) and of a broader-scope cysteine protease inhibitor (E-64). The 

effect of protease inhibition, evaluated by HPLC-MS, is shown in Fig. 32. The digestion of the 

two RGD-PTX conjugates was impaired by both CA-074-Me and E-64 compounds, with the 

latter being more effective than the catepsin B-specific inhibitor. However, the lysosome 

digestion was not completely abolished by treatment with these inhibitors. This data indicate 

that the cleavage of the Val-Ala and Phe-Lys linkers is not exclusively ascribable to the 

enzymatic action of cysteine proteases, but it can rather occur in the presence of other 

lysosomal proteases. 

2.3.3. Cell Proliferation Analysis 

With the aim of verifying the ability of the synthesized compounds to selectively target αvβ3 

integrin in human cancer cells, two isogenic cell lines were selected, expressing the integrin 

receptor at different levels: the acute lymphoblastic leukemia cell line CCRF-CEM (αvβ3 −) 

and its subclone CCRF-CEM αvβ3 (αvβ3 +). This latter antigen-positive cancer cell line was 

generated by transfection of the antigen-negative CCRF-CEM with a DNA vector, resulting in 

the stable expression of the αvβ3 integrin receptor. The different αvβ3 expressions on the cell 

membrane of the two cell lines was confirmed by treatment the cells with a fluorescein-

labeled αvβ3-selective mAb, followed by cell immunofluorescence analysis and flow 

cytometry. 

 

Figure 33. Confocal microscopy (A) and immunofluorescence (B) analyses of integrin expressions on 

the two isogenic leukemia cell lines CCRF-CEM (αvβ3 ) and subclone CCRF-CEM αvβ3 (αvβ3 +). 

The two isogenic cell lines were incubated with increasing doses of free PTX and SMDCs 

80-82. After 144 hours, the cell viability was analyzed by CellTiter-GLO™ luciferase-based 

ATP detection assay. Under these conditions, “cleavable” conjugates 80 and 81 showed no 
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significant targeting towards CCRF-CEM αvβ3, as compared with CCRF-CEM. These results 

were interpreted in terms of an undesired linker cleavage in the extracellular environment, 

which may take place over the long period of time. A modified antiproliferative assay was 

devised, consisting in a short-time exposure of tumor cells (6 h) to the tested compounds, 

followed by cell washout and incubation in fresh medium for additional 138 hours. As 

previously reported in the SMDC field,[58,60,143] this experiment aimed at mimicking the in vivo 

conditions, characterized by a rapid clearance of the administered drug from the tumor 

extracellular environment. With this procedure, the fraction of cyclo[DKP-RGD]-PTX 

conjugates unbound to the integrin receptors was removed from the medium. This led to a 

minimization of the extracellular release of paclitaxel, thus maximizing the cytotoxic activity of 

PTX through the integrin-mediated endocytosis of the SMDCs. 

The calculated IC50 values are shown in Table 3. 

Table 3. Antiproliferative activity of PTX and conjugates 80-82 in CCRF-CEM and CCRF-CEM αvβ3 
after 6 hour-treatment followed by compound washout and 138 hour-long growth in fresh medium. [a] 
IC50 values were calculated as the concentration of compound required for 50% inhibition of cell 
viability in culture, based on quantitation of the ATP present as estimated by CellTiter-GLO™; cells 
were treated for 6 h in U-bottomed 96-well plates, then washed and incubated for 138 h in compound-
free medium in 96-well flat-bottomed plates. [b] Selectivity (S): IC50(αvβ3 −)/IC50(αvβ3 +). [c] Targeting 
index (T.I.): selectivity/selectivity observed with free paclitaxel. 

While the ability of free PTX to inhibit the proliferation of CCRF-CEM αvβ3 cells was found to 

be 7.4-fold higher than its activity against the CCRF-CEM line, the presence of the RGD 

ligand in conjugates 80 and 81 increased this ratio. In particular, the selectivity (S) towards 

CCRF-CEM αvβ3 cells increased to 66.9 with cyclo[DKP-RGD]-Val-Ala-PTX 80 and to 15.7 

with cyclo[DKP-RGD]-Phe-Lys-PTX 81. In order to take into account the remarkable 

difference in cytotoxic activity shown by the free drug against the two cell lines, we 

introduced a new parameter, the Targeting Index (T.I.), which provided a direct quantification 

of the αvβ3-targeting potency of the developed SMDCs. These parameters were calculated 

by correcting the αvβ3-selectivity of compounds 80 and 81 with the intrinsic selectivity of PTX 

(S = 7.4), resulting in Targeting Indexes of 9.0 and 2.1, respectively (see Table 3). Finally, 

the “uncleavable” RGD-PTX conjugate 82 proved completely inactive towards both cell lines 

CCRF-CEM and CCRF-CEM αvβ3 even after the 144 hour-treatment in continuo. This 

 IC50 (nM)
[a]

   

Structure CCRF-CEM (αvβ3 −) CCRF-CEM αvβ3 (αvβ3 +) S
[b] 

T.I.
[c]

 

Paclitaxel (PTX, 7) 155 ± 55 21 ± 2 7.4 1 

RGD-Val-Ala-PTX (80) 5153 ± 977 77 ± 20 66.9 9.0 

RGD-Phe-Lys-PTX (81) 535 ± 70 34 ± 2 15.7 2.1 

RGD-unc.-PTX (82) > 10000 > 10000 n.d. n.d. 
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observation is consistent with the outcome of lysosome digestion experiments, and indicates 

that the linker cleavage is necessary for RGD-PTX conjugates to inhibit cell proliferation. 

2.4. Results and Discussion 

These results demonstrate that conjugate 80 and, to a lesser extent, SMDC 81 are able to 

target the αvβ3-expressing tumor cells. Moreover, the linker in these anticancer devices 

turned out to play a fundamental role for both drug activity (i.e. the linker must be “cleavable”) 

as well as for the targeting performances in vitro of the whole conjugate (i.e. modifications of 

the dipeptide linker result in different selectivities). The evaluation of the antiproliferative 

activity against tumor cell lines expressing the target receptor at different levels is a well-

established procedure to screen the targeting properties of both SMDCs and ADCs. This 

analysis is commonly carried out in parallel with the free drug, whose cytotoxic activity may 

vary significantly from one tested cancer cell line to the other. In some cases, the selectivity 

ratios shown by the free payloads are much lower than the ones displayed by the “targeted” 

analogues against the antigen-positive cells. This is the case of ADCs: as an explanatory 

example, Table 4A shows the highly selective antiproliferative activity (S = 4633.3) of the 

PSMA-targeted ADC 96 against the PSMA-expressing cancer cell line MDA PCa2b.[164] On 

the other hand, small ligands are commonly described as weaker binders than mAbs, and 

this lower binding affinity reflects in the in vitro selectivity displayed by the corresponding 

SMDCs. For instance, the selectivity values of two SMDCs targeting folate (compound 97, S 

= 813.5)[45] and biotin receptors (compound 98, S = 35.9)[55] are reported in Table 4A and 4B, 

respectively. Unlike in the ADC technology, the differences between the selectivity of SMDCs 

and the one displayed by the free payload decrease significantly. For this reason, we 

introduced the Targeting Index to provide a “clean” quantification of the observed integrin-

targeting effect. While the cyclo[DKP-RGD]-Val-Ala-PTX (80) showed a T.I. = 9.0, the 

research area of integrin-targeted SMDCs lacks of a “previous best” lead compound. In a 

recent review, we surveyed the literature in this field, describing the evolution of this 

technology and, on the other hand, highlighting the in vitro evaluation of the antitumor 

properties of the SMDCs developed so far.[165] It is worth noting that some fundamental data 

have been reported rarely in these in vitro analyses, such as: 

 SMDC activity against antigen-negative cells (αvβ3 −); 

 Activity of the free drug against the αvβ3+/αvβ3– cellular model. 

Nevertheless, Fei and coworkers reported in 2014 the synthesis and biological evaluation of 

a panel of linear and cyclic RGD peptides, conjugated to a membrane-disrupting cationic 

peptide (Lys-Leu-Ala-Lys-Leu-Ala)2 peptide (KLA).[166] 
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Table 4. Antiproliferative activity of the PSMA-targeted ADC 96 (A)
[164]

, folate receptor-targeted SMDC 
97 (B)

[45]
 and biotin receptor-targeted SMDC 98 (C)

[55]
 against cancer cell lines with different 

expressions of PSMA, FR and BR, respectively. [a] Selectivity (S): IC50(receptor −)/IC50(receptor +); [b] 
Targeting index (T.I.): selectivity/selectivity observed with free drug. 

  

Structure IC50 (nM) S
[a] 

T.I.
[b]

 

A PC3 (PSMA −) MDA PCa2b (PSMA +)   

Monomethyl auristatin E (MMAE, 10) 0.970 0.363 2.7 1 

mAb(PSMA)-Val-Cit-MMAE (96) 83.4 0.018 4633.3 1716 

B A549 (FR −) KB (FR +)   

Monomethyl auristatin E (MMAE, 10) 0.872 0.240 3.6 1 

Folate-MMAE (97) 195.2 0.240 813.5 226 

C L1210 (BR −) L1210FR (BR +)   

Taxoid 7.05 4.2 1.8 1 

Biotin-Taxoid (98) 481 13.4 35.9 20 
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 LC50 (µM)  

Structure MCFF (αvβ3 −) A549 (αvβ3 +) S[a]
 T.I.[b]

 

KLA peptide > 250 164.8 > 1.5 1 

Cyclic Ir-HRGDH-KLA (99) 37.7 4.5 8.4 < 5.6 

Table 5. Antiproliferative activity of the integrin αvβ3-targeted cyclic Ir-HRGDH-KLA (99) against MCFF 
(αvβ3 −) and A549 (αvβ3 +) cancer cells. [a] Selectivity (S): LC50(receptor −)/LC50(receptor +); [b] 
Targeting index (T.I.): selectivity of 99/selectivity observed with free KLA peptide.

[166]
 

Although a non-classical cytotoxic agent was used, the group evaluated the cytotoxic activity 

of the conjugates and the free KLA peptide against MCFF (αvβ3 −) and A549 (αvβ3 +) cells. 

The LC50 values reported for the KLA peptide and for the most active conjugate in the series 

(compound 99) are shown in Table 5: a T.I. < 5.6 can be calculated by taking into account 

the undefined activity of the free KLA peptide against MCFF cells (LC50 > 250 µM). 

These literature survey indicates that cyclo[DKP-RGD]-Val-Ala-PTX 80 and the experiments 

performed for its biological evaluation can be considered as a valuable reference in the field 

of αvβ3-targeted chemotherapeutics. The possibility to improve the selectivity for αvβ3-

expressing cells and the detection of the cell internalization pathways of cyclo[DKP-RGD]-

drug conjugates represent two fundamental aspects for the validation of the cyclo[DKP-RGD] 

peptidomimetic as a drug-targeting device for cancer therapy. 

  



Third-Generation cyclo[DKP-RGD]-PTX 

Conjugates 

3.1. Introduction 

The promising results shown by the cyclo[DKP-RGD]-Val-Ala-PTX 80 indicated the feasibility 

of the conjugation of an integrin-binding peptidomimetic to the Val-Ala-PTX linker-drug 

combination. As discussed in Paragraph 2.4, a quantification of the selectivity of RGD-based 

SMDCs towards αvβ3-expressing cells has been rarely reported in the literature, and the 

Targeting Index of 9.0 obtained with 80 is significantly lower than the data reported for other 

anticancer devices, targeting more traditional receptors. 

A possible strategy to increase the selectivity of a SMDC is to improve the binding affinity of 

the ligand module for the receptor. The formation of multivalent interactions between ligand 

and target protein is the most common approach to increase this binding strength.[122]  

 

Figure 34. Molecular structures of the dimeric SMDC [cyclo(DKP-RGD)]2Val-Ala-PTX 100. 

As discussed in Paragraph 1.5.3, a variety of radiotracers for tumor imaging have been 

conjugated to dimeric RGD peptides, showing increased tumor uptake and reduced side 

accumulation to other organs. Besides the applications for tumor imaging in vivo, which have 
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reached the clinic, the advantages of the multimeric ligand presentation have been also 

demonstrated in vitro. In particular, multimeric αvβ3-targeting systems exhibit higher binding 

affinity to the receptor compared to the monomeric analogues, which reflects in a higher cell 

adhesion and in a more efficient receptor-mediated endocytosis.[167,168] We therefore 

designed the dimeric [cyclo(DKP-RGD)]2Val-Ala-PTX (compound 100 in Fig. 34), aiming at 

improving the selectivity towards αvβ3-expressing cells shown by the monomeric analogue 

80. In order to allow an easy and general synthetic preparation, a symmetric, alkyne-bearing 

aromatic scaffold was connected to the N-terminus of the Val-Ala linker. The two terminal 

alkyne moieties of the paclitaxel prodrug (compound 101, Scheme 7) were used as 

anchoring point for the double installation of the cyclo[DKP-RGD] integrin ligand, through Cu-

catalyzed azide-alkyne cycloaddition (CuAAC). A derivative of the RGD peptidomimetic 

bearing an azido-tetraethylene glycol spacer (compound 102) was developed to be coupled 

to 101 in the final conjugation reaction. This flexible layout was chosen to help the SMDC to 

adapt to the target αvβ3 integrin.[169] Moreover, besides improving solubility in aqueous media 

to the SMDC, short PEG spacers are known to minimize the formation of bulky loops, that 

can interfere with the ligand binding to the receptor.[142] 

 

 

Scheme 7. Retrosynthetic analysis of SMDC 100: fragmentation into bis-alkyne 101 and azide 102. 
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3.2. Synthesis of Third-Generation cyclo[DKP-RGD]-PTX Conjugates 

According to the retrosynthetic approach depicted in Scheme 7, the synthesis of fragments 

101 and 102 converged to the final isolation of dimeric [cyclo(DKP-RGD)]2Val-Ala-PTX 100. 

The synthesis of paclitaxel derivative 101 is shown in Scheme 8. 

 

Scheme 8. Synthesis of paclitaxel derivative 101. Reagents and conditions: a) propargyl bromide, 
K2CO3, acetone, RT, 72 h; b) LiOH·H2O, THF/H2O (2:1), 0 °C, 1.5 h; c) [1] piperidine, DMF, RT, 2 h; 
[2] 105, HATU, HOAt, iPr2NEt, DMF, RT, overnight; d) [1] TFA/CH2Cl2 (1:2), 45 min; [2] 2’-(4-
nitrophenoxycarbonyl)paclitaxel (83), iPr2NEt, DMF, 24 h. 

The bis-alkyne scaffold was synthesized starting from commercially available methyl 3,5-

dihydroxyphenyl acetate (103), which was reacted with propargyl bromide and then 

saponified, affording carboxylic acid 105. The Val-Ala linker 90a, whose synthesis is reported 

in Scheme 5 (pag 45), was deprotected at its N terminus and coupled to acid 105. The 

resulting amide 106 was treated with trifluoroacetic acid for Boc removal and reacted with 2’-

(4-nitrophenoxycarbonyl)paclitaxel (83) under basic conditions, affording carbamate 101.  

 

Scheme 9. Synthesis of azide 102. Reagents and conditions: a) [1] Tosyl-Cl, Et3N, THF, 0 °C to RT 
overnight; [2] NaN3, EtOH, reflux, 24 h; b) NaH, bromoacetic acid, THF, RT 24 h; c) EDC·HCl, NHS, 
CH2Cl2, RT overnight; d) cyclo[DKP-RGD]-CH2NH2 (70), CH3CN/PBS (1:1; pH 7.5), RT, overnight.  

The synthesis of the integrin ligand functionalized with the azido-tetraethylene glycol spacer 

(102) is reported in Scheme 9. Azido-acid 109 was synthesized according to a previously 

reported methodology,[170] starting from commercially available tetraethylene glycol (107). 

Azido-acid 109 was transformed into the corresponding N-hydroxysuccinimidyl ester (110), 



56 Chapter 3. Third-Generation cyclo[DKP-RGD]-PTX Conjugates   
 
 

which was purified by flash chromatography. The pure electrophile 110 was then reacted 

with the cyclo[DKP-RGD]-CH2NH2 ligand (70), affording the final azide 102 in 77% yields.  

 

Scheme 10. Copper(I)-catalyzed azide-alkyne cycloaddition for the synthesis of dimeric SMDC 
[cyclo(DKP-RGD)]2Val-Ala-PTX (100) and monomeric [cyclo(DKP-RGD)]1Val-Ala-PTX (111). 
Reagents and conditions: a) 101 (1 eq), 102 (3 eq), CuSO4·5H2O (0.5 eq), sodium ascorbate (0.6 eq), 
DMF/H2O (1:1) RT, overnight; b) 101 (4 eq), 102 (1 eq), CuSO4·5H2O (1 eq), sodium ascorbate (1.2 
eq), DMF/H2O (1:1) RT, overnight. 

Two copper(I)-catalyzed azide-alkyne cycloaddition were performed by varying the relative 

stoichiometric amounts of bis-alkyne 101 and azide 102 (Scheme 10): the [cyclo(DKP-

RGD)]2Val-Ala-PTX (100) was obtained by reacting 101 with an excess of 102, whereas the 

use of the latter as limiting agent led to the monomeric [cyclo(DKP-RGD)]1Val-Ala-PTX 111. 

This SMDC was prepared to compare the αvβ3-targeting properties of the dimeric 

[cyclo(DKP-RGD)]2Val-Ala-PTX (100) over a monomeric analogue. As reported in Scheme 

10, while the dimeric compound 100 was obtained quantitatively after HPLC purification, 

SMDC 111 was obtained in lower yields (33%, non-optimized), due to the poor solubility of 

bis-alkyne 101 in aqueous buffer solution. 

3.3. In vitro Biological Evaluation 

Analogously to previous cyclo[DKP-RGD]-PTX conjugates, the newly synthesized dimeric 

[cyclo(DKP-RGD)]2Val-Ala-PTX 100 and monomeric [cyclo(DKP-RGD)]1Val-Ala-PTX 111 

were evaluated in vitro for their ability to compete with biotinylated vitronectin for the binding 

to the purified αvβ3 integrin. The IC50 values obtained are listed in Table 6. As expected, the 

dimeric compound 100 showed higher binding affinity than the monomeric analogues 80 and 

111. In particular, the IC50 obtained for dimeric SMDC 100 was identical to the one reported 

for the free ligand 64 (i.e. 4.0 and 4.5 nM, respectively). On the other hand, the monomeric 

[cyclo(DKP-RGD)]1Val-Ala-PTX conjugate 111 showed a 10-fold decrease in binding affinity, 
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as compared to the reference compound cyclo(DKP-RGD)-Val-Ala-PTX 80 (i.e. 189 and 13.3 

nM, respectively). 

 

Structure IC50 (nM) αvβ3  

[cyclo(DKP-RGD)]2Val-Ala-PTX (100) 4.0 ± 0.1 

[cyclo(DKP-RGD)]1Val-Ala-PTX (111) 189 ± 12 

cyclo[DKP-RGD]-Val-Ala-PTX (80)
[162]

 13.3 ± 3.6 

cyclo[DKP-RGD] (64)
[151]

 4.5 ± 1.1 

AbaRGD-PTX (112)
[136]

 220.0 ± 13.2 

Table 6. Inhibition of biotinylated vitronectin binding to purified integrin αvβ3. The molecular structure of 
the Aba-RGD-PTX conjugate 112, developed by Manzoni and coworkers,

[136]
 is reported above. 

This unusual behavior has been recently reported for a similar compound (i.e. the AbaRGD-

PTX conjugate 112), bearing a short polyethylene glycol spacer and an ester linker.[136] 

Notably, a similar conjugate developed by our group (i.e. SMDC 113, introduced in 

Paragraph 4.2.1), bearing a PEG spacer and a different cytotoxic payload (daunorubicin, 

DNR), showed low-nanomolar IC50 values. Therefore, the poor binding potency shown by 

SMDCs 111 and 112 seems ascribable to specific interactions between paclitaxel and the 

PEG spacer taking place in the RGD-PTX monomeric presentation, which eventually affect 

the SMDC binding to the receptor. 

This preliminary evaluation of third-generation cyclo[DKP-RGD]-PTX conjugates clearly 

indicates that the dimeric ligand presentation in this class of SMDCs confers enhanced 

binding strength towards αvβ3 integrin. Importantly, SMDC 100 shows a good water solubility, 

which represents an important improvement of the solubility profile shown by previous 

cyclo[DKP-RGD]-PTX conjugates. Moreover, the Val-Ala linker in SMDC 100 showed the 

same properties described for compound 80 in Paragraph 2.3.2 (i.e. high stability under 

different pH conditions drug release in the presence of lysosome extract). 
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Cell antiproliferative assays are now in progress, aimed at evaluating the effects of the 

dimeric ligand presentation on the selective anticancer activity of 100 against αvβ3-

expressing tumor cell lines. 

  



Theranostic cyclo[DKP-RGD]-Drug 

Conjugates 

4.1. Introduction 

The focus of our group on αvβ3-targeted paclitaxel prodrugs has consisted in the 

development of cyclo[DKP-RGD]-PTX conjugates, showing interesting results in terms of 

synthetic accessibility, affinity for αvβ3 integrin, stability and solubility properties. However, the 

biological evaluation of the cyclo[DKP-RGD]-Val-Ala-PTX (80) highlighted some important 

weaknesses of this compound. As discussed in Chapter 3, the relatively low Targeting Index 

(T.I. = 9.0, Table 3 on page 49) observed in comparative antiproliferative assays against 

αvβ3+/αvβ3− cells, prompted the development of the dimeric [cyclo(DKP-RGD)]2Val-Ala-PTX 

(100). Although the cell-antiproliferative properties of SMDC 100 are still under investigation, 

the integrin-mediated endocytosis of these classes of RGD-PTX conjugates can only be 

inferred from the particular experimental conditions adopted for this assay (i.e. cell washout 

after incubation with the SMDCs for 6 h, see page 49). Indeed, further evidences of the 

internalization of these compounds into cancer cells are still missing. Moreover, the analysis 

of protease activity in the presence of cathepsin inhibitors (Fig. 32 on page 47) showed that 

the Val-Ala linker is recognized and cleaved by a variety of proteases. The partial expression 

of these proteolytic enzymes in the extracellular environment could explain the significant 

cytotoxic activity of compound 80 against CCRF-CEM (αvβ3−) cells, which resulted in a 

decrease of the Targeting Index. 

For these reasons, the design of new cyclo[DKP-RGD]-drug conjugates was aimed at both 

the specific drug release in the intracellular environment and the cellular localization of the 

conjugate. While the intracellular release of the payload results from the installation of a 

proper linker, the SMDC localization in a specific cellular compartment (e.g. membrane, 

lysosomes, endoplasmic reticulum, etc.) is made possible by the installation of a fluorescent 

probe, which is analyzed by fluorescence microscopy. Installation of a variety of imaging 

dyes onto drugs or therapeutic delivery vehicles (i.e. the so-called theranostic devices), 

aiming at merging therapeutic and diagnostic applications in a single administration, has 

been gaining popularity among researchers.[171] In addition to the use of payloads featuring 
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florescent properties (i.e. anthracyclines), we also investigated this approach through the 

installation of specific probes in the SMDC, according to other theranostic RGD-drug 

conjugates already reported in the literature. 

4.2. Cyclo[DKP-RGD]-Daunorubicin Conjugate 

4.2.1. Synthesis of the cyclo[DKP-RGD]-Val-Cit-DNR Conjugate 

The cyclo[DKP-RGD] peptidomimetic was linked to the DNA-intercalating agent daunorubicin 

(DNR), leading to SMDC 113 (Fig. 35). The fluorescence properties of this anthracycline 

drug were exploited to provide an in-depth analysis of the conjugate’s mechanism of action. 

Moreover, in order to minimize the drug release in the extracellular environment, the valine-

citrulline (Val-Cit) dipeptide was selected as linker. This well-known sequence is a specific 

substrate of cathepsin B, a cysteine protease expressed in the lysosomes.[172]  

 

Figure 35. Molecular structures of the SMDC cyclo[DKP-RGD]-Val-Cit-DNR 113. 

The daunosamine moiety of the anthracycline drug was used as anchoring point for the 

linker: this choice resulted in the formation of a stable carbamate bond between the drug and 

a p-aminobenzyl alcohol self-immolative spacer (green moiety in Fig. 35). Unlike the PTX 

conjugates described in the previous Chapters, this layout allows the release of DNR upon a 

single and fast 1,6-elimination step (the detailed mechanism is depicted in Scheme 1 on 

Page 15). To overcome the low water solubility of the Val-Cit dipeptide, the cyclo[DKP-RGD] 

ligand was connected to the linker’s N terminus through a tetraethylene glycol spacer. 

Similarly to the dimeric RGD-PTX conjugate described in Chapter 3, the formation of a 

triazole ring between the linker-drug module and the ligand was chosen as the last 

conjugation step: in general, this versatile methodology does not require specific protecting 

groups at the amino acid side chains and it is adaptable to several linker-drug combinations. 

The synthesis of the cyclo[DKP-RGD]-Val-Cit-DNR 113 is shown in Scheme 11. Similarly to 

what described in Chapter 2 for SMDCs 80 and 81, the Val-Cit dipeptide was coupled to p-
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aminobenzyl alcohol and then activated as 4-nitrophenyl carbonate (Scheme 11, compound 

117). Daunorubicin hydrochloride was attached to the linker by reaction of its daunosamine 

moiety with electrophile 117, leading to carbamate 118. A fast deprotection of the valine 

residue followed by coupling with 4-pentynoic acid afforded the terminal alkyne-

functionalized compound 119. The final compound was obtained after copper-catalyzed 

azide-alkyne cycloaddition (CuAAC) between alkyne 119 and cyclo[DKP-RGD]-azide 102, 

whose synthesis is described in Chapter 3 (Scheme 9 on page 55). The final SMDC 113 was 

then purified by semi-preparative HPLC and lyophilized before being subjected to biological 

assays. 

 

Scheme 11. Synthesis of RGD-DNR conjugate 113. Reagents and conditions: a) [1] DCC, NHS, THF, 
overnight; [2] L-Citrulline, NaHCO3, H2O/DME/THF 2:2:1, 24 h; b) 4-aminobenzyl alcohol, EEDQ, 
CH2Cl2/MeOH 2:1, overnight; c) Bis(4-nitrophenyl) carbonate, iPr2NEt, DMF, 0 °C, 1 h; d) 
Daunorubicin hydrochloride, iPr2NEt, DMF overnight; e) 20% piperidine in DMF, 0° C, 3’; f) 4-
pentynoic acid, HATU, HOAt, iPr2NEt, DMF, 0 °C to RT overnight; g) CuSO4·5H2O, sodium ascorbate, 
H2O/tBuOH/DMF, overnight. 
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4.2.2. In vitro Biological Evaluation of cyclo[DKP-RGD]-Val-Cit-DNR 

Conjugate 

Analogously to all the SMDCs described so far, the newly synthesized cyclo[DKP-RGD]-Val-

Cit-DNR 113 was evaluated with biotinylated vitronectin in competitive assays for the binding 

to the purified αvβ3 and αvβ5 integrins. The IC50 values obtained are shown in Table 7. The 

micromolar IC50 value relative the αvβ5 receptor further confirms the low affinity of cyclo[DKP-

RGD] conjugates for this specific integrin. Remarkably, the high observed affinity towards the 

αvβ3 receptor (IC50 = 6.9 nM), demonstrates that the use of a tetraethylene glycol spacer in 

the presence of the daunorubicin payload does not impair the binding to the integrin receptor, 

unlike what observed with paclitaxel conjugates 111 and 112 featuring this kind of spacer 

(see Table 6 in Paragraph 3.3). 

 IC50 (nM)
[a]

 

Structure αvβ3  αvβ5 

cyclo[DKP-RGD]-Val-Cit-DNR (113) 6.9 ± 0.7 1270 ± 70 

cyclo[DKP-RGD]-Val-Ala-PTX (80)
[162]

 13.3 ± 3.6 924 ± 290 

cyclo[DKP-RGD] (64)
[151]

 4.5 ± 1.1 149 ± 25 

Table 7. Inhibition of biotinylated vitronectin binding to isolated αvβ3 and αvβ5 receptors. 

Dissolution of SMDC 113 in neutral (pH = 7.4) and acidic (pH = 5.5) buffers and subsequent 

HPLC-MS analysis after 4 h exposure revealed the high stability of the compound at the 

tested pH values, as demonstrated with the cyclo[DKP-RGD]-PTX family.  

 

Figure 36. Analysis of lysosomal extract digestion of cyclo[DKP-RGD]-Val-Cit-DNR conjugate 113 in 
the presence of cathepsin B specific inhibitor (CA-074-Me), cysteine proteases inhibitor (E-64) and 
inactivated lysosomal extract (negative control). Signal detected for m/z 528.1 (attributed to free 
daunorubicin) expressed in percentage relative to that obtained with lysosomal extract (set to 100%). 

Lysosomal digestion of the cyclo[DKP-RGD]-Val-Cit-DNR conjugate confirmed the high 

enzyme specificity of the Val-Cit linker. In particular, the release of daunorubicin from the 

conjugate was completely abolished by both cathepsin B inhibitor CA-074-Me and broader-
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scope cysteine proteases inhibitor E-64 (see Fig. 36). Unlike what observed with the Val-Ala 

and Phe-Lys linkers (Fig. 32 on page 47), this result indicates that the cleavage of the Val-Cit 

sequence is mainly due to the enzymatic activity of the cysteine protease cathepsin B. 

4.2.3. Cell Antiproliferative Assays and Fluorescence Microscopy Analysis 

The cyclo[DKP-RGD]-Val-Cit-DNR conjugate 113 was tested in vitro for its ability to inhibit 

the proliferation of human leukemia cell lines CCRF-CEM αvβ3 (αvβ3 +) and CCRF-CEM (αvβ3 

−), in order to evaluate the impact of the cathepsin B-specific linker on the selectivity towards 

αvβ3 integrin. As described for compounds 80-82 in Chapter 2, these antiproliferative assays 

were carried out under two experimental conditions (i.e. cells incubation with 113 for 144 

hours in continuo and incubation for 6 hours, followed by cell washout and cell incubation in 

fresh medium for 138 hours). 

 

Figure 37. Dose-response curves corresponding to antiproliferative activities of free DNR and SMDC 
113 against CCRF-CEM and CCRF-CEM αvβ3 under two experimental conditions: 144 h in continuo 
and 6 h incubation + cell washout and cell incubation for 138 h with fresh medium.  

As shown by dose-response curves in Figure 37, the free daunorubicin was found to be 

significantly more efficient against CCRF-CEM (αvβ3 −) over the 144 hour-period (IC50 = 

0.015 nM and 0.55 nM against αvβ3– and αvβ3+, respectively), whereas it showed comparable 

activity under the 6 hours + washout conditions (IC50 = 108.7 nM and 70.8 nM against αvβ3– 

and αvβ3+, respectively). On the other hand, SMDC 113 did not show any cytotoxic activity 

against the two cell lines (IC50 > 2000 nM) under both experimental conditions. In order to 

investigate this result, the interactions of compound 113 with CCRF-CEM αvβ3 and CCRF-

CEM cells were evaluated by fluorescence microscopy analysis (Fig. 38). Daunorubicin 

incubation with the two cell lines over a 24-hour period resulted in a strong intracellular 

fluorescence. On the other hand, cancer cells incubation with 113 followed by cell washout 

did not reveal the presence of the SMDC in the intracellular environment, nor on the cell 

surface. This result indicated not only that the SMDC was not internalized by the cancer 

cells, but also that 113 was not able to significantly adhere to the cell membrane. 
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Figure 38. Fluorescence microscopy 100X analysis of 5 µM solutions of daunorubicin and cyclo[DKP-
RGD]-Val-Cit-DNR conjugate 113, over 24 h treatment and 2 medium replacements. 

Taken together, these data indicated that although compound 113 is able to inhibit the 

vitronectin binding to the purified αvβ3 receptor at low nanomolar concentrations, it does not 

efficiently bind to the cell-expressed integrin, and the lack of receptor-mediated 

internalization prevents the cleavage of the Val-Cit linker by means of the intracellular 

protease cathepsin B. For these reasons, whereas the lack of cytotoxic activity was in 

agreement with the absence of the SMDC in the intracellular milieu, the competitive binding 

assay against the purified integrin receptor did not give the whole picture of the compound’s 

behaviors in the presence of integrin-expressing cells. 

4.3. Cyclo[DKP-RGD]-Camptotecin Conjugates 

4.3.1. Theranostic RGD-CPT Conjugates: A Case Study 

The cyclo[DKP-RGD]-Val-Cit-DNR conjugate 113 demonstrated that the cellular 

internalization of RGD-drug conjugates through receptor-mediated endocytosis should not be 

assumed as a generally-occurring mechanism. However, as discussed in Paragraph 1.5.3, a 

variety of analyses have been carried out in this field to demonstrate the endocytic pathways 

of different compounds of this class. The synthesis and biological evaluation of one of these 

previously reported theranostic compounds was devised, in order to evaluate the 

discrepancy between our cyclo[DKP-RGD]-drug conjugates and the available literature data. 

In particular, we focused on a camptothecin prodrug (compound 120, Scheme 12A) 

developed by Kim and coworkers, featuring a disulfide trigger (blue moiety in Scheme 12) 
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and a fluorescent naphtalimide dye (red structure).[144] Prodrug 120 treatment with glutathione 

(GSH) was found to result in CPT release and in a strong, red-shifted fluorescence signal of 

the naphthalimide moiety (i.e. the emission band at 473 nm of carbamate 120 shifts to 535 

nm in amine 125, as described in Scheme 12B). 

 

Scheme 12. A) Molecular structures of the fluorescent camptothecin prodrug bearing a disulfide linker 
(120) and the analogue integrin-targeted SMDC 121; B) Mechanism of drug release from prodrug 120 
and correlated fluorescence emission variation upon treatment with glutathione.

[144]
 

After the assessment of the outcomes of this reductive cleavage, prodrug 120 was linked to 

the integrin ligand cyclo(RGDyK), resulting in the SMDC 121 (Scheme 12). The Authors 

designed this compound to provide a real-time monitoring of the SMDC internalization and 

intracellular drug release. Indeed, as discussed in Paragraph 1.4.1, disulfide linkers have 

been extensively used to exploit the high expression of antioxidants in the intracellular 

environment. The change in fluorescent emission of the naphtalimide moiety in SMDC 121 

was thus correlated to the amount of CPT released after disulfide bond cleavage. A variety of 

suitable in vitro control experiments were performed, confirming the hypothesized biological 

activity of the synthesized compound. In particular, the Authors tested SMDC 121 for its 

ability to penetrate into two cancer cell lines with different αvβ3 expression: U87 (human 

glioblastoma, αvβ3+) and C6 (rat glioma, αvβ3−). This compound was found to efficiently 
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recognize αvβ3-expressing cell lines: a strong increase in the fluorescence intensity at 535 

nm (ascribable to the cleaved linker and thus to the CPT released) was observed in the case 

of the U87 cells, whereas in the case of the C6 cells only a weak fluorescence signal was 

revealed (see Figure 39A). 

 

Figure 39. A) Confocal microscopy images of U87 and C6 cancer cells, incubated with SMDC 121; B) 
Confocal microscopy images of U87 cells, incubated with SMDC 121 and prodrug 120, in the 
presence of different concentrations of endocytosis inhibitor okadaic acid. 

To provide further evidence for the endocytic process in U87 cells, the cellular uptake of 

compound 121 was found to be inhibited by the presence of an endocytosis inhibitor, such as 

okadaic acid. Moreover, the cellular uptake of prodrug 120 resulted not dependent on 

okadaic acid, indicating different mechanisms of cell penetration displayed by the two 

compounds. The different biological activities of compounds 120 and 121 were further 

analyzed by co-localization studies and cell viability assays against U87 cells: the presence 

or absence of the RGD ligand was found to result in a different intracellular transition of the 

compound (i.e. 120 was localized in the mitochondria, whereas SMDC 121 showed a 

transition through the endoplasmic reticulum) as well as in a different dose-response profile 

in cell viability. Overall, these sets of control experiments demonstrated that RGD-CPT 

conjugate 121 selectively penetrated into αvβ3-expressing tumor cells through integrin-

mediated endocytosis. This internalization was followed by cleavage of the disulfide linker in 

the endoplasmic reticulum upon exposure to intracellular antioxidants, resulting in a 

fluorescence on-off signal response. However, although the recognition of αvβ3-expressing 

cells was extensively investigated through fluorescence analyses, the antiproliferative activity 

of compound 121 against the two cell lines (αvβ3+/αvβ3−) was not evaluated.  
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Figure 40. Molecular structures of the four synthesized SMDCs: the cyclo(RGDyK)-Naph-SS-CPT 
121, developed by Kim and coworkers,

[144]
 the analogue cyclo[DKP-RGD]-Naph-SS-CPT 126, the 

naphtalimide-free cyclo[DKP-RGD]-SS-CPT 127 and the “uncleavable” cyclo[DKP-RGD]-unc.-CPT 
128.  

As discussed in the previous chapters, the quantification of the cell-dependent cytotoxic 

activity of SMDCs was indicated by our group as one of the key requirements for the 

calculation of the Targeting Index. Therefore, in addition to reference compound 121, we 

synthesized new cyclo[DKP-RGD]-CPT conjugates, in order to reproduce the biological 

activity reported by Kim and coworkers as well as to investigate the application of the 

disulfide linker-camptothecin modules to our integrin ligand. 
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4.3.2. Synthesis of cyclo[DKP-RGD]-CPT Conjugates 

This project consisted in the synthesis of four RGD-CPT conjugates, shown in Fig. 40. 

Besides the reference compound 121 and the analogue cyclo[DKP-RGD]-Naph-SS-CPT 

(compound 126), which differed from the first for the integrin ligand, two new naphtalimide-

free conjugates were prepared. Compound 127 was endowed with the same disulfide linker 

of the previous two SMDCs, resulting in a “traditional” small molecule-drug conjugate. On the 

other hand, a fourth compound (SMDC 128), in which the tertiary alcohol is linked to the 

RGD ligand through a stable ester bond, was synthesized as an “uncleavable” compound. 

This SMDC was designed to be less prone to either enzymatic or reductive cleavage, even 

though undesired hydrolysis of the tertiary ester should not be excluded. SMDCs 121, 126-

128 have been thus synthesized as a comprehensive panel of compounds, in order to 

perform a SAR analysis of the targeting features of RGD-CPT conjugates.  

 

Scheme 13. Synthesis of RGD-CPT conjugates 121 and 126. Reagent and conditions: a) p-
nitrophenyl chloroformate, DMAP, CH2Cl2, 0 °C, 4h; b) β-Alanine tert-butyl ester hydrochloride, Et3N, 
EtOH reflux, 3h; c) SnCl2, EtOH, RT, 1h; d) [1] triphosgene, iPr2NEt, toluene, RT, 2h; [2] 2,2’-
dithiodiethanol, THF/CH2Cl2 1:1, RT, overnight; e) DMAP, CH2Cl2, RT, overnight; f) TFA/CH2Cl2 (1:2), 
RT, 45 min; g) [1] DIC, NHS, DMF, overnight; [2] cyclo(RGDyK), CH3CN/PBS/DMF (1:1:0.5; pH 7.5), 
overnight (121); cyclo[DKP-RGD]-CH2NH2 (70), CH3CN/PBS/DMF (1:1:0.5; pH 7.5), overnight (126). 

The two compounds were obtained through the synthetic strategy shown in Scheme 13. The 

original synthetic route of SMDC 121 was optimized, and all the intermediates were fully 

characterized by NMR spectroscopy. While the free camptothecin 129 was transformed into 

the corresponding 4-nitrophenyl carbonate (compound 130) according to a previously 

reported procedure,[173] commercially available 4-nitro-1,8-naphthalic anhydride 131 was 
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reacted with β-alanine tert-butyl ester under basic conditions, affording naphtalimide 132. At 

this stage, Kim and coworkers reported the reduction of the nitro group by catalytic 

hydrogenation:[144,174] all our attempts to follow the reported methodology led to a significant 

formation of byproducts. Reduction with iron powder was also unsuccessful. Finally, the use 

of an excess of tin(II) chloride afforded clean amine 125 quantitatively, after filtration over 

silica gel. The amine was transformed into carbamate 133 by treatment with triphosgene and 

subsequent reaction with an excess of  2,2’-dithiodiethanol. The reaction with CPT derivative 

130 yielded prodrug 120. The tert-butyl ester protecting group was then removed and the 

free carboxylic acid was finally coupled with both cyclo(RGDyK) and cyclo[DKP-RGD]-

CH2NH2 (70), affording SMDCs 121 and 126, respectively. We ascribed the low yields of 

these last conjugation steps (non-optimized) to the poor solubility of carboxylic acid 134 in 

the aqueous solvent mixture, which was slightly improved by the addition of DMF. 

 

Scheme 14. Synthesis of cyclo[DKP-RGD]-SS-CPT conjugate 127. Reagent and conditions: a) [1] p-
nitrophenyl chloroformate, iPr2NEt, CH2Cl2, RT, overnight; [2] β-alanine tert-butyl ester hydrochloride, 
iPr2NEt, CH2Cl2, RT, overnight; b) 130, DMAP, CH2Cl2, RT, overnight; c) TFA/CH2Cl2 (1:2), RT, 45 
min; d) [1] DIC, NHS, DMF, overnight; [2] cyclo[DKP-RGD]-CH2NH2 (70), DMF/PBS (1:1; pH 7.5), 
overnight. 

The synthesis of cyclo[DKP-RGD]-SS-CPT conjugate (127) is reported in Scheme 14. 2,2’-

dithiodiethanol (compound 135) was reacted with a sub-stoichiometric amount of p-

nitrophenyl chloroformate. β-Alanine tert-butyl ester was subsequently added to the reaction 

mixture, avoiding the isolation of carbonate 136 and yielding carbamate 137. The latter was 

reacted with (4-nitrophenoxycarbonyl)-camptothecin (compound 130), affording carbonate 

138 after flash chromatography. The tert-butyl ester protecting group was then removed and 

the free carboxylic acid 139 was coupled to the cyclo[DKP-RGD]-CH2NH2 peptidomimetic 

(70). Finally, the synthesis of the RGD-CPT conjugate bearing the “uncleavable” linker (128) 

is reported in Scheme 15. The hemiglutarate derivative of camptothecin 140 was prepared 

according to a previously reported methodology, consisting in the elongation of a CPT-

glycinate with glutaric anhidride.[175] The corresponding N-hydroxysuccinimidyl ester 141 was 
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isolated and reacted with the integrin ligand cyclo[DKP-RGD]-CH2NH2 (70), affording the final 

compound 128 in 85% yield.  

 

Scheme 15. Synthesis of cyclo[DKP-RGD]-unc.-CPT conjugate 128. Reagent and conditions: a) DIC, 
NHS, 5:1 THF/CH3CN, RT, overnight; b) cyclo[DKP-RGD]-CH2NH2 (70), CH3CN/PBS (1:1; pH 7.5), 
overnight. 

The RGD-CPT conjugates 121, 126-128 were all purified by semipreparative HPLC and 

lyophilized before being subjected to biological assays. 

4.3.2. In vitro Biological Evaluation 

As described for the previous cyclo[DKP-RGD]-drug conjugates, the affinity of compounds 

121, 126-128 to the purified αvβ3 integrin was evaluated in competitive assays in vitro, by 

measuring the displacement of biotinylated vitronectin from the αvβ3 binding site. The 

obtained IC50 values are listed in Table 8.  

 

Structure IC50 (nM) αvβ3  

cyclo(RGDyK)-Naph-SS-CPT (121) 5.3 ± 0.5 

cyclo[DKP-RGD]-Naph-SS-CPT (126) 21.4 ± 2.3 

cyclo[DKP-RGD]-SS-CPT (127) 15.4 ± 0.8 

cyclo[DKP-RGD]-unc.-CPT (128) 7.4 ± 1.1 

cyclo[DKP-RGD]-Val-Ala-PTX (80)
[162]

 13.3 ± 3.6 

cyclo[DKP-RGD] (64)
[151]

 4.5 ± 1.1 

Table 8. Inhibition of biotinylated vitronectin binding to purified integrin αvβ3. 

As indicated by the low-nanomolar IC50 values, all tested compounds exhibited high binding 

affinity for the integrin receptor. In particular, the cyclo(RGDyK) ligand (i.e. the RGD 

ciclopeptide in SMDC 121) was found to be a slightly better integrin binder than the 

cyclo[DKP-RGD] peptidomimetic. Indeed, while the conjugation of prodrug 120 to the 

cyclo(RGDyK) ligand resulted in the SMDC 121, showing the lowest IC50 value of the series 

(IC50 = 5.3 nM), the analogous conjugate 126 showed the highest IC50 value of the group (IC50 

= 21.4 nM). 
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The stability of the disulfide linker was evaluated: a 10 mM solution of prodrug 120 in DMSO 

was treated with dithiothreitol (DTT) at 30 °C. Complete disulfide cleavage was observed 

over a 10-minute period and the release of free camptothecin (124) and amine 125 (see 

Scheme 12B, on page 65) was observed by analytical HPLC. Moreover, prodrug 120 was 

found to be stable in cell medium (RPMI + 10% PBS, 1% DMSO at 4 °C), indicating that free 

camptothecin should be only released in the presence of cancer cells, presumably upon 

endocytosis. 

Fluorescence microscopy assays are currently in progress, aimed at evaluating the selective 

accumulation and internalization of theranostic SMDCs 121 and 126 in αvβ3-expressing cells, 

with respect to antigen-negative cancer cell lines. This experiment will give an immediate 

feedback about the different activity of the two RGD ligands cyclo(RGDyK) and cyclo[DKP-

RGD] in terms of cell adhesion and receptor-mediated endocytosis. This qualitative analysis 

will be supported by cell antiproliferative assays against the  αvβ3 +/αvβ3 − cellular model, as 

reported in Chapter 2. Compounds 127 and 128 will be also subjected to this assay, in order 

to validate the use of disulfide linkers in these drug delivery systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 



Conclusions and Perspectives 

The research described in this work of thesis highlighted potentialities of the peptidomimetic 

cyclo[DKP-RGD] as targeting moiety, for specific release of cytotoxic agents into integrin-

expressing cancer cells. The chemical features of this peptidomimetic allowed its covalent 

connection to a wide range of chemical compounds and the final products of these 

conjugation reactions showed better water solubility compared to highly lipophilic anticancer 

drugs and linkers. The conjugation of cyclo[DKP-RGD] to anticancer drugs through peptide 

linkers, responsible for drug release upon enzymatic cleavage, is a core topic of the present 

work. In general, attachment of the RGD peptidomimetic to the N termini of these dipeptides 

does not affect either the affinity of the RGD moiety for the purified αvβ3 receptor and the 

enzymatic cleavage at the linkers’ C termini. A significant contribution of the work herein 

described to the tumor targeting field is the quantification of the ability of cyclo[DKP-RGD]-

drug conjugates to selectively kill αvβ3-expressing cancer cells in vitro. We subjected our new 

compounds to cell viability assays against two isogenic cell lines: human leukemia cancer 

cells CCRF-CEM were selected as antigen-negative (αvβ3 −) model and were transfected 

with an integrin-coding DNA vector, giving birth to an αvβ3-expressing subclone (αvβ3 +), 

namely, CCRF-CEM αvβ3. The actual difference in αvβ3 expression is evaluated through cell 

incubation with a fluorescein-labeled anti-αvβ3 monoclonal antibody and subsequent flow 

cytometry or immunofluorescence analysis. Among our new compounds, the cyclo[DKP-

RGD]-Val-Ala-PTX conjugate (80) showed a 66.9-fold higher cytotoxic activity against (αvβ3 

+) cells, compared to antigen-negative cells. Unexpectedly, the remarkable selectivity of the 

free PTX against the two isogenic cell lines (S: 7.4) prompted us to introduce Targeting Index 

(T.I. = 9.0 shown by 80) as a parameter to evaluate the real gain in selectivity provided by 

the RGD targeting moiety. Although we indicated compound 80 as one of the most selective 

αvβ3-targeting SMDCs ever reported, the selectivity observed is far from the targeting skills 

shown by other compounds of this class, targeting different and more established 

transmembrane receptors (e.g. folate and biotin receptors, PSMA, etc.). In general, different 

factors can contribute to the shrink of selectivity displayed in vitro by a ligand-drug conjugate, 

such as little differences in receptor expression between the two cell lines, SMDC 

endocytosis through receptor-independent pathways or extracellular linker cleavage. 

Although our studies on RGD-paclitaxel conjugates highlighted the effects of linker variation 
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on the observed in vitro selectivity, the αvβ3-mediated endocytosis of these compounds was 

only inferred. Our next efforts focused on the development of dimeric RGD-PTX conjugates 

and theranostic SMDCs. The first project was devised to evaluate whether multimeric RGD 

presentation would strengthen the SMDC interactions with αvβ3 receptors on cancer cells, 

possibly resulting in a better selectivity for αvβ3-overexpressing cell lines. Furthermore, RGD-

drug conjugates featuring fluorescence properties were designed and synthesized, in order 

to unambiguously evaluate the compounds’ interactions with cancer cells and the 

subsequent αvβ3-mediated endocytosis. Although the biological evaluation of these latter 

compounds is still in progress, some interesting aspects emerged from the in vitro 

investigation of cyclo[DKP-RGD]-DNR conjugate 113. Lysosome digestion experiments 

showed that, unlike Val-Ala and Phe-Lys dipeptides, the Val-Cit linker is selectively cleaved 

by intracellular cysteine protease cathepsin B. Importantly, compound 113 did not show any 

cytotoxic activity against the two cell lines, indicating that the Val-Cit linker remains intact 

under the test conditions. A rationale was provided by fluorescence microscopy analysis, 

which indicated that the lack of cytotoxic activity is due to an inefficient SMDC internalization 

into cancer cells. The contrast between the low-nanomolar affinity of SMDC 113 for purified 

αvβ3 receptor and its weak adhesion to αvβ3-expressing cancer cells also emerged as an 

important aspect, to be taken into account for future developments. The reproduction of 

literature cases of intracellular fluorescence activity or the screening of different cyclo[DKP-

RGD]-dye conjugates or “theranostic” SMDCs would provide an extensive SAR analysis of 

the compounds’ interactions with both αvβ3-positive and αvβ3-negative cancer cells. 

Moreover, the understanding of the effects of multimeric ligand presentations on both cell 

adhesion and integrin-mediated endocytosis would definitely validate the cyclo[DKP-RGD] 

peptidomimetic as powerful tool in tumor targeting. This analysis, together with an exhaustive 

linker screening, would hopefully lead to a significant increase of the Targeting Index. Finally, 

following the new trends in both ADC and SMDC technology, the conjugation of the 

cyclo[DKP-RGD] integrin ligand to picomolar cytotoxic agents will represent an important 

upgrade for future in vivo evaluations. 



Experimental Section 

 

General Remarks and Procedures 

Materials and Methods 

All manipulations requiring anhydrous conditions were carried out in flame-dried glassware, 

with magnetic stirring and under a nitrogen atmosphere. All commercially available reagents 

were used as received. Anhydrous solvents were purchased from commercial sources and 

withdrawn from the container by syringe, under a slight positive pressure of nitrogen. 

cyclo[DKP-RGD]-CH2NH2 (70),[154] N-(Boc)-N,N’-dimethylethylenediamine (86),[163] Fmoc-Val-

Ala-N-[4-(hydroxymethyl)-phenyl] (88a),[161] azido-tetraethylene glycol-acid (109),[170] (4-

Nitrophenoxycarbonyl)camptothecin (130)[173] and (hemiglutarate)glycino-camptothecin 

(140)[175] were prepared according to literature procedures, and their analytical data were in 

agreement with those already published. Reactions were monitored by analytical thin-layer 

chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm thickness). 

Visualization was accomplished by irradiation with a UV lamp and/or staining with a 

potassium permanganate alkaline solution or ninhydrin. Flash column chromatography was 

performed according to the method of Still and co-workers[176] using Chromagel 60 ACC (40-

63 µm) silica gel. Automated chromatography was performed with Grace Reveleris 

instrument. Proton chemical shifts are reported in ppm (δ) with the solvent reference relative 

to tetramethylsilane (TMS) employed as the internal standard (CDCl3 δ = 7.26 ppm; CD2Cl2, 

δ = 5.32 ppm; CD3OD, δ = 3.31 ppm, D2O, δ = 4.79 ppm; DMSO-d6, δ = 2.50 ppm; THF-d8, δ 

= 3.58 ppm, 1.72 ppm).[177] The following abbreviations are used to describe spin multiplicity: 

s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal, dd = doublet 

of doublet, ddd = doublet of doublet of doublet, ddt = doublet of doublet of triplet. Carbon 

NMR spectra were recorded on a spectrometer operating at 100.63 MHz, with complete 

proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the 

respective solvent resonance as the internal standard (CDCl3, δ = 77.16 ppm; CD2Cl2, δ = 

54.00 ppm; DMSO-d6, δ = 39.51 ppm; CD3OD, δ = 49.05 ppm; THF-d8 δ = 67.57 ppm, 25.37 

ppm). HPLC purifications and HPLC traces of final products were performed on Dionex 

Ultimate 3000 equipped with Dionex RS Variable Wavelenght Detector (column: Atlantis 
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Prep T3 OBDTM 5 µm 19  100 mm; flow 15 mL min−1 unless stated otherwise). High 

resolution mass spectra (HRMS) were recorded on Waters LCT Premier XE instrument. Low 

resolution mass spectra (MS) were recorded on Thermo Finnigan LCQ Advantage (ESI 

source), Micro Waters Q-Tof(ESI source) and Bruker Daltonics Microflex LT (MALDI source) 

instruments. 

General Procedures 

GENERAL PROCEDURE FOR Boc DEPROTECTION REACTIONS: 

GP1: To a 0.03 M CH2Cl2 solution of the N-Boc-protected compound half volume of TFA was 

added, and the reaction was stirred at r.t. for 1 h. The solvent was evaporated and then for 

two times CH2Cl2 was added to the residue followed by evaporation under vacuum, to afford 

the amine TFA salt. 

GENERAL PROCEDURE FOR Fmoc DEPROTECTION REACTIONS: 

GP2: A 0.01 M solution of the N-Fmoc-protected compound (1 eq) in DMF was cooled to 0 

°C under nitrogen atmosphere. Piperidine (5 eq) was added and the reaction was stirred at 

room temperature for 2 h. The mixture was diluted with AcOEt (20  volume of DMF) and 

washed twice with a saturated aqueous solution of NaHCO3. The organic phase was dried 

over Na2SO4 and concentrated at rotavapor. CH2Cl2 was added to the residue and 

evaporated to afford a yellow solid. The crude was left under vacuum for 2 h and then used 

as starting material for the subsequent step. 

Biological Assays 

SOLID-PHASE RECEPTOR BINDING ASSAY: 

Purified αvβ3 and αvβ5 receptors (Chemicon International, Inc., Temecula, CA) were diluted to 

0.5 µg mL−1 in coating buffer containing 20 mmol L−1 tris(hydroxymethyl) amino methane–HCl 

(Tris-HCl; pH 7.4), 150 mmol L−1 NaCl, 1 mmol L−1 MnCl2, 2 mmol L−1 CaCl2, and 1 mmol L−1 

MgCl2. An aliquot of diluted receptors (100 mL well−1) was added to 96-well microtiter plates 

(NUNC MW 96F MEDISORP STRAIGHT) and incubated overnight at 4 °C. The plates were 

then incubated with blocking solution (coating buffer plus 1% bovine serum albumin) for 

additional 2 h at room temperature to block nonspecific binding; this was followed by a 3 h 

incubation at room temperature with various concentrations (10−12 − 10−12 
M) of test 

compounds in the presence of 1 µg mL−1 vitronectin biotinylated by using an EZ-Link Sulfo-

NHS-Biotinylation kit (Pierce, Rockford, IL). After being washed, the plates were incubated 

for 1 h at room temperature with streptavidin biotinylated peroxidase complex (Amersham 

Biosciences, Uppsala, Sweden) and then for 30 min with Substrate Reagent Solution (100 

mL; R&D Systems, Minneapolis, MN), before the reaction was stopped by addition of 2 N 
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H2SO4 (50 mL). The absorbance at 415 nm was read in a Synergy HT Multi-Detection 

Microplate Reader (BioTek Instruments, Inc.). Each data point is the result of the average of 

triplicate wells and was analyzed by nonlinear regression analysis with the Prism GraphPad 

program. Each experiment was repeated in triplicate. 

STABILITY TEST: 

The stability of compounds 80, 81, 82 and 113 was determined by ultraperformance liquid 

chromatography (UPLC) on a Waters Acquity UPLC BEH C18 column (2.1  50 mm, 1.7 µm) 

by using a Waters Acquity UPLC system equipped with a 2996 Aquity photodiode array 

detector and a Micromass ZQ 2000 single-quadrupole mass spectrometer, equipped with an 

electrospray ion source (ESI). Mobile phase A was composed of 0.05% TFA in water, and 

mobile phase B was 0.05% TFA in CH3CN. The following conditions were used: a gradient 

from 20% to 100% B in 3.5 min and held at 100% B for 1 min; spectral analysis from 210– 

400 nm; a flow rate of 0.6 mL min−1; an injection volume of 10 mL; full scan, mass range from 

200-2000 amu. In a control analysis, compounds 80, 81, 82 and 113 were diluted at 0.2 mM 

in 0.05% TFA aqueous solution containing 20% CH3CN (compound 80) or in 0.05% TFA 

aqueous solution (compounds 81 and 82). Compounds 80, 81, 82 and 113 (0.2 mM each) 

were incubated under neutral or acidic conditions for 4 h at 25 °C. The neutral buffer was 

composed of 100 mM Tris-HCl (pH 7.4), whereas the acidic buffer was composed of 200 mM 

sodium acetate (pH 5.5)/1 mM ethylenediaminetetraacetate (EDTA); for compound 80, the 

buffers were supplemented with 20% CH3CN and for compound 113 buffers were 

supplemented with 20% EtOH. 

Compound 120 was subjected to stability assay in RPMI cellular medium containing 10% 

fetal bovine serum, 1% DMSO, incubated 16 h at 4 °C. As a positive control for the cleavage, 

2 pmol of 120 were incubated with 10 mM DTT for 10 min at 30 °C. 2 pmol of the compound 

from each condition were then analyzed by HPLC Waters Alliance 2695 with XTerra 3.5 mm 

5 cm C18 column with 2475 Multy l Fluorescence Detector. 120 was detected by measuring 

the fluorescence intensity with excitation wavelength set at 370 nm and emission wavelength 

set at 454 nm. Cleavage product was detected at excitation wavelength 430nm and emission 

wavelength set at 535 nm. 

DIGESTION WITH LYSOSOMAL ENRICHED EXTRACT 

0.2 mM solutions of the compounds of interest were digested in 200 mM sodium acetate (pH 

5.5)/1 mM EDTA containing 1 mM cysteine at 37 °C for 2 h with 0.5 mg mL−1 of lysosomal 

enriched extract (prepared from a rat liver as previously described in the literature) in the 

presence or absence of 20 µm CA-074 Me or E-64 protease inhibitors (Enzo Life Sciences). 

Control samples were prepared by diluting the compounds in the same reaction mixture 



78 Experimental Section   
 
 

acidified with TFA to inactivate the lysosomal enzymes. All samples were analyzed by ESI-

LC/MS on a PLRP-S column (Agilent Technologies; 2.1  150 mm, 8 µm, 1000 Å) with an 

Agilent 1100 HPLC system equipped with a diode array detectorwith an electrospray ion 

source. Mobile phaseA was composed of 0.05% TFA in water, and mobile phase B was 

0.05% TFA in CH3CN. Samples (45 µm) were eluted at 0.25 mL min−1 by using a gradient 

from 20 to 50% B in 22 min, raised to 80% B and held at 80% B for 5 min; the UV signal was 

recorded at 220 and 280 nm, and MS detection was set in full-scan mode from 300–2000 

amu. 

EVALUATION OF αvβ3 EXPRESSION BY FLOW CYTOMETRY: 

Cells were collected, washed with PBS and counted. For each sample, 5  105 cells were 

resuspended in 100 µl of 1% BSA-PBS containing (or not in the case of  the negative control) 

the anti-αvβ3 antibody (clone LM609-Millipore MAB 1976) at 1:50 dilution. After incubation for 

30 min at 4 °C, samples were washed with PBS and incubated with the secondary antibody 

(CF488A-goat anti-mouse IgG, Biotium 20011) diluted 1:300 for 30 min at 4 °C. After 

washing, samples were acquired by a Facscalibur (Becton Dickinson) cytometer and 

analyzed by CellQuest software (Fig. 33A). 

EVALUATION OF αvβ3 EXPRESSION BY IMMUNOFLUORESCENCE: 

Cells were cytospinned (1000 rpm for 5 min) on glass slides and fixed for 20 min with 

formaldehyde 3.7% (v/v) solution. After washing with PBS, cells were saturated for 30 min 

with a blocking solution containing 1% (w/v) BSA and 0.3% (v/v) Triton X-100 in PBS and 

incubated with the primary anti-αvβ3 antibody (clone LM609-Millipore MAB 1976) diluted 1:50 

in blocking solution. The primary antibody was removed and cells washed with PBS, followed 

by immunostaining with the secondary antibody diluted 1:500 (CF488A-goat anti-mouse IgG, 

Biotium 20011) and counterstaining with Hoechst (Sigma-Aldrich), according to 

manufacturer’s protocols. Samples were washed with PBS and mounted with Mowiol and 

cover slips. Cell photomicrographs (Fig. 33B) were acquired the blue channel (Hoechst) and 

in the green channel (anti-αvβ3) using a Zeiss fluorescence microscope. 

CELL PROLIFERATION ASSAY: 

Cells were seeded in 96-well plates with the appropriate complete medium (RPMI 1640 

medium with 2 mM L-glutamine, 10% fetal calf serum, 10 mM 2-[4-(2-hydroxyethyl)-1-

piperazinyl]ethanesulfonic acid, and 1 mM sodium pyruvate). 48 h after seeding, the medium 

was replaced with medium containing serial dilutions of the test compounds. [CELL 

WASHOUT EXPERIMENT = The cells were incubated for 6 h at 37 °C, then washed and 

reincubated in fresh medium for additional 138 h at 37 °C]. Cell viability was assessed with 

the CellTiter-Glo luciferase-based ATP detection assay (Promega) by following 
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manufacturer’s instructions. Growth inhibitory activity was evaluated at the end of incubation 

by using GraphPad Prism software. Experimental data were normalized versus untreated 

control samples and interpolated by nonlinear regression analysis with GraphPad Prism 

software to generate dose-response curves. IC50 values were calculated by using sigmoidal 

interpolation curve fitting. 

Synthesis of cyclo[DKP-RGD]-Drug Conjugates 

cyclo[DKP-RGD]-Val-Ala-PTX (80) 

2’-(4-Nitrophenoxycarbonyl)paclitaxel (83)  

 

Paclitaxel (200 mg, 0.23 mmol, 1 eq) was dissolved in dry CH2Cl2 (2.5 mL) under a nitrogen 

atmosphere. Pyridine (55 mL, 0.70 mmol, 3 eq) was added dropwise, and the mixture was 

cooled to −50 °C. A solution of 4-nitrophenylchloroformate (71 mg, 0.35 mmol, 1.5 eq) in dry 

CH2Cl2 (1 mL) was then added under a nitrogen atmosphere. The mixture was warmed to 

−20 °C and stirred until no unreacted paclitaxel was observable by TLC (approximately 4 h; 

eluent: 4:6 hexane/AcOEt). The mixture was then diluted with AcOEt (100 mL) and washed 

with a 1M aqueous solution of KHSO4 (10 mL) and brine (10 mL). The organic phase was 

dried over Na2SO4 and concentrated. The crude residue was purified by a Grace Reveleris 

system (column: Reveleris Silica 12 g; dry load; flow rate: 36 mL min−1; ramp: from 100% 

hexane to 100% AcOEt in 15 min) to afford 2’-(4-nitrophenoxycarbonyl)paclitaxel (83) as a 

white foam (165 mg, 69% yield). 

Rf=0.26 (4:6 hexane/AcOEt); 1H NMR (400 MHz, CD2Cl2): δ = 8.25 (d, J = 9.2 Hz, 2H), 8.16 

(d, J = 7.1 Hz, 2H), 7.76 (d, J = 7.1 Hz, 2H), 7.63 (m, 1H), 7.57-7.51 (m, 3H), 7.51-7.46 (m, 

4H), 7.47-7.40 (m, 3H), 7.36 (d, J = 9.2 Hz, 2H), 6.98 (d, J = 9.3 Hz, 1H), 6.31 (m, 1H), 6.27 

(s, 1H), 6.09 (dd, J = 9.3, 2.8 Hz, 1H), 5.67 (d, J = 7.1 Hz, 1H), 5.56 (d, J = 2.8 Hz, 1H), 4.97 

(dd, J = 14.7, 7.0 Hz, 1H), 4.42 (ddd, J = 10.9, 6.5, 4.4 Hz, 1H), 4.30 (d, J = 8.3 Hz, 1H), 4.17 

(d, J = 8.3 Hz, 1H), 3.81 (d, J = 7.1 Hz, 1H), 2.53 (m, 1H), 2.49 (s, 3H), 2.44 (m, 1H), 2.24 

(dd, J = 15.5, 8.9 Hz, 1H), 2.20 (s, 3H), 1.94 (s, 1H), 1.91 (s, 3H), 1.81 (m, 1H), 1.70 (s, 1H), 

1.64 (s, 3H), 1.24 (s, J = 4.6 Hz, 3H), 1.13 ppm (s, 3H); 13C NMR (101 MHz, CD2Cl2): δ = 
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204.1, 171.7, 170.4, 167.9, 167.5, 167.2, 155.4, 152.2, 146.2, 142.7, 136.8, 134.1, 134.0, 

133.5, 132.5, 130.6, 129.8, 129.6, 129.1, 127.5, 127.1, 125.8, 122.1, 84.7, 81.4, 79.5, 78.4, 

76.7, 75.9, 75.5, 73.0, 72.5, 58.8, 53.2, 46.1, 43.6, 36.1, 36.0, 27.0, 23.1, 22.4, 21.0, 15.0, 

9.8 ppm; MS (ESI): m/z calcd for [C54H54N2O18Na]+: 1041.33 [M+Na]+; found: 1042.0; m/z 

calcd for [C54H54N2O18K]+: 1057.30 [M+K]+; found: 1057.8. 

Fmoc-Val-Ala-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (89a) 

 

Compound 88a (285 mg, 0.552 mmol, 1 eq) was dissolved in dry THF (15 mL) under 

nitrogen atmosphere. Pyridine (111 µL, 1.382 mmol, 2.5 eq) was added, and the solution 

was cooled at 0 °C. 4-Nitrophenyl chloroformate (222 mg, 1.105 mmol, 2 eq) was added and 

the stirred reaction was allowed to reach room temperature. The reaction was monitored by 

TLC (eluent: 4:6 hexane/AcOEt). After 1.5 h the mixture was diluted with AcOEt (100 mL), 

washed with a 1 M aqueous solution of KHSO4 (2  20 mL) and brine (2  20 mL). The 

organic phase was dried over Na2SO4 and concentrated. The crude was purified by a Grace 

Reveleris system (column: Reveleris Silica 4 g, dry load, flow rate: 22 mL min−1, ramp from 

100% hexane to 100% AcOEt in 20 min) to afford  89a (330 mg, 88% yield).  

Rf = 0.42 (Hex/AcOEt, 4:6); 1H NMR (400 MHz, THF-d8) δ 9.36 (s, 1H), 8.26 (d, J = 8.9 Hz, 

2H), 7.82 (d, J = 7.2 Hz, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.71-7.61 (m, 4H), 7.45 (d, J = 8.9 Hz, 

2H), 7.40-7.30 (m, 4H), 7.25 (t, J = 7.4 Hz, 2H), 6.82 (d, J = 8.6 Hz, 1H), 5.21 (s, 2H), 4.57 

(dq, J1 =J2 = 6.5 Hz, 1H), 4.40 (dd, J = 10.2, 7.3 Hz, 1H), 4.29 (m, 1H), 4.20 (t, J = 6.8 Hz, 

1H), 4.03 (t, J = 7.5 Hz, 1H), 2.05 (dq, J = 13.3, 6.6 Hz, 1H), 1.36 (d, J = 7.0 Hz, 3H), 0.94 (d, 

J = 6.2 Hz, 3H), 0.92 ppm (d, J = 6.2 Hz, 3H); 13C NMR (101 MHz, THF-d8) δ 172.1, 171.4, 

157.2, 156.7, 153.1, 146.3, 145.1, 142.1, 140.7, 130.5, 130.0, 128.1, 127.5, 125.8, 125.7, 

122.6, 120.4, 119.8, 71.0, 67.1 (overlapped with solvent signal), 61.1, 50.0, 48.1, 32.0, 19.5, 

18.4, 17.9 ppm. 
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Fmoc-Val-Ala-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (90a) 

 

A solution of N-(Boc)-N,N’-dimethylethylenediamine (86) (130 mg, 0.53 mmol, 2 eq) in dry 

THF (1 mL) and iPr2NEt (113 µL, 0.66 mmol, 2.5 eq) were added under nitrogen atmosphere 

to a solution of  89a (180 mg, 0.26 mmol, 1 eq) in dry THF (11 mL) kept at 0 °C. The mixture 

was allowed to reach r.t. and stirred overnight, then the solvent was removed at rotavapor. 

AcOEt (70 mL) was added and the solution was washed with a 1 M aqueous solution of 

KHSO4 (2  15 mL) and a saturated aqueous solution of NaHCO3 (3  15 mL). The organic 

phase was dried over Na2SO4 and concentrated. The crude was purified over a pad of silica 

(gradient: 100% CH2Cl2 to 4% MeOH / 96% CH2Cl2), affording 90a (212 mg, 91% yield). 

Rf = 0.25 (3:7 hexane/AcOEt); 1H NMR (400 MHz, CD3OD) δ 7.78 (d, J = 7.5 Hz, 2H), 7.65 

(dd, J = 7.1, 4.4 Hz, 2H), 7.58 (dd, J = 6.8, 4.1 Hz, 2H), 7.41-7.34 (m, 2H), 7.34-7.26 (m, 4H), 

5.04 (s, 2H), 4.50 (q, J = 7.0 Hz, 1H), 4.44-4.32 (m, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.95 (d, J = 

6.9 Hz, 1H), 3.47-3.32 (m, 4H), 2.93 (s, rotamer A + B, 3H), 2.84 (s, rotamer A, 3H), 2.72 (s, 

rotamer B, 3H), 2.08 (dq, J = 13.4, 6.6 Hz, 1H), 1.43 (d, J = 7.5 Hz, 3H), 1.41 (s, 9H), 0.98 (d, 

J = 6.7 Hz, 3H), 0.95 ppm (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CD3OD) δ 174.1, 172.9, 

158.9, 158.0 (rotamer A), 157.5 (rotamer B), 145.3, 145.2, 142.6, 139.7 (rotamer A), 139.6 

(rotamer B), 133.8 (rotamer A), 133.6 (rotamer B), 130.0 (rotamer A), 129.7 (rotamer B), 

128.8, 128.2, 126.2, 121.2, 120.9, 81.2 (rotamer A), 80.9 (rotamer B), 68.2, 68.0, 62.3, 51.0, 

48.4, 48.0, 47.6, 35.6 (rotamer A), 35.2 (rotamer B), 35.1 (rotamer A), 34.6 (rotamer B), 31.9, 

28.7, 19.7, 18.7, 18.0 ppm. 

(Hemiglutarate)-Val-Ala-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (91a) 

 

Compound 90a (167 mg, 0.23 mmol, 1 eq) was deprotected following  General Procedure 

GP2. The crude free amine was dissolved in dry DMF (3 mL) and cooled at 0 °C under 

nitrogen atmosphere. Glutaric anhydride (65 mg, 0.57 mmol, 2.5 eq), DMAP (7 mg, 0.12 

mmol, 0.25 eq) and iPr2NEt (147 µL, 0.86 mmol, 3.75 eq) were added. The mixture was 

allowed to reach room temperature and stirred overnight. Half of the DMF volume was 
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removed under high vacuum, then the mixture was diluted with AcOEt (70 mL), washed with 

a 1 M aqueous solution of KHSO4 (2  10 mL) and brine (1  10 mL). The organic phase was 

dried and concentrated, then the crude was purified by flash chromatography [gradient: 1% 

(MeOH + 0.1% CH3COOH) / 99% (CH2Cl2 + 0.1% CH3COOH) to 10% (MeOH + 0.1% 

CH3COOH) / 90% (CH2Cl2 + 0.1% CH3COOH)] affording 91a (109 mg, 77% yield).  

1H NMR (400 MHz, CD3OD) δ 7.59 (dd, J = 7.5, 4.6 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.05 (s, 

2H), 4.49 (q, J = 7.1 Hz, 1H), 4.21 (d, J = 7.1 Hz, 1H), 3.49-3.33 (m, 4H), 2.93 (bs, rotamer A 

+ B, 3H), 2.85 (s, rotamer A, 3H), 2.74 (s, rotamer B, 3H), 2.40-2.28 (m, 4H), 2.09 (dq, J = 

13.7, 6.8 Hz, 6H), 1.96-1.84 (m, 2H), 1.47-1.39 (m, 12H), 0.98 (d, J = 6.7 Hz, 3H), 0.96 ppm 

(d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, CD3OD) δ 177.2, 175.7, 173.7, 173.0, 158.0, 157.4, 

139.7 (rotamer A), 139.5 (rotamer B), 133.8 (rotamer A), 133.6 (rotamer B), 130.0 (rotamer 

A), 129.6 (rotamer B), 121.1, 81.2 (rotamer A), 80.9 (rotamer B), 68.2 (rotamer A), 67.9 

(rotamer B), 60.3, 51.1, 47.9, 47.6, 35.8, 35.6 (rotamer A), 35.3 (rotamer B), 35.2 (rotamer 

A), 34.6 (rotamer B),  34.4, 31.8, 28.7, 22.3, 19.7, 18.7, 18.0 ppm. 

cyclo[DKP-RGD]-Val-Ala-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (Boc-92a) 

 

DIC (7.7 µL, 4.9  10−2 mmol, 2.2 eq) and NHS (3 mg, 2.6  10−2 mmol, 1.4 eq) were added 

to a solution of 90a (28 mg, 4.5  10−2 mmol, 2 eq) in dry DMF (1 mL). The resulting solution 

was stirred overnight under nitrogen. Volatiles were then removed in vacuo to give an off-

white solid, which was re-dissolved in CH3CN (1 mL) and cooled at 0 °C. A solution of 70 (19 

mg, 2.3  10−2 mmol, 1 eq) in pH 7.5 phosphate buffer (1 mL) was then added to the CH3CN 

solution, and the pH was adjusted to 7.3-7.6 with NaOH (0.2 M). The resulting solution was 

warmed to room temperature and stirred overnight. During the first 5 hours the pH value was 

kept near 7.3 adding 0.2 M aqueous NaOH when necessary. The solution was concentrated 

and the crude was purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 cm 

column, gradient: 90% (H2O + 0.1% CH3COOH) / 10% (CH3CN + 0.1% CH3COOH) to 47% 

(H2O + 0.1% CH3COOH) / 53% (CH3CN + 0.1% CH3COOH) in 9 min; tR (product): 8.5 min]. 
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The purified product was then freeze-dried to give Boc-92a as a white solid (14 mg, 48% 

yield over two steps).  

1H NMR (400 MHz, CD3OD) δ 7.58 (dd, J = 7.9, 4.8 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.26 

(d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 5.13 (d, J = 15.0 Hz, 1H), 5.05 (s, 2H), 4.95 (dd, 

J = 8.7, 5.8 Hz, 1H), 4.58 (dd, J = 9.9, 3.7 Hz, 1H), 4.47 (q, J = 7.0 Hz, 1H), 4.44 (d, J = 17.8 

Hz, 1H), 4.36 (d, J = 15.2 Hz, 1H), 4.31 (d, J = 15.2 Hz, 1H), 4.17 (d, J = 6.9 Hz, 1H), 3.97 

(dd, J = 14.8, 4.9 Hz, 1H), 3.96 (d, J = 15.0 Hz, 1H), 3.93-3.86 (m, 2H), 3.52 (d, J = 17.8 Hz, 

1H), 3.50 (dd, J = 14.8, 7.8 Hz, 1H), 3.45-3.35 (m, 4H), 3.22 (t, J = 7.1 Hz, 2H), 2.97 (m, 1H), 

2.94 (bs, rotamer A + B, 3H), 2.77 (m, 1H), 2.85 (rotamer A, 3H), 2.74 (rotamer B, 3H) 2.56 

(dd, J = 16.9, 5.8 Hz, 1H), 2.51 (dd, J = 12.9, 3.7 Hz, 1H), 2.33 (t, J = 7.3 Hz, 2H), 2.27 (t, J = 

7.3 Hz, 2H), 2.21-2.05 (m, 3H), 1.94 (m, 1H), 1.75-1.56 (m, 2H), 1.43 (d, J = 7.0 Hz, 3H), 

1.42 (s, 9H), 0.99 (d, J = 6.8 Hz, 3H), 0.96 ppm (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, 

CD3OD) δ 175.8, 175.3, 173.8, 173.8, 173.5, 173.1, 172.1, 171.6, 171.0, 158.6, 158.0, 157.5 

(rotamer A), 157.4 (rotamer B), 140.2, 139.6 (rotamer A), 139.5 (rotamer B), 135.8, 133.9 

(rotamer A), 133.7 (rotamer B), 130.0 (rotamer A), 129.7 (rotamer B), 129.4, 129.2, 121.2, 

81.2 (rotamer A), 81.1 (rotamer B), 68.2 (rotamer A), 67.9 (rotamer B) , 60.5, 60.2, 56.0, 

53.1, 51.1, 50.2, 48.2, 47.6, 47.6, 43.7, 43.6, 42.2, 39.7, 38.6, 36.09, 35.8, 35.6, 35.3, 34.7, 

31.7, 28.7, 27.4, 27.1, 23.1, 19.7, 18.7, 18.0 ppm. MS (ESI) m/z calcd. for [C57H84N15O16]
+: 

1234.62 [M+H]+, found: 1234.64. 

cyclo[DKP-RGD]-Val-Ala-PTX (80) 

 

Boc-92a (14 mg) was deprotected following General Procedure GP1 and lyophilized 

overnight. The corresponding trifluoroacetate salt (92a, 12 mg, 8.8  10−3 mmol, 1 eq) was 

dissolved in dry DMF (100 µL) under nitrogen atmosphere and cooled at 0 °C. Compound 83 

(27 mg, 26.5  10−3 mmol, 3 eq) was dissolved in dry DMF (900 µL) and added to the 

substrate solution, followed by iPr2NEt (8 µL, 44.1  10−3 mmol, 5 eq). The mixture was 

allowed to reach room temperature and stirred overnight. The solvent was removed under 
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vacuum and the crude was purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 

cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 

100% (CH3CN + 0.1% CF3COOH) in 11 min; tR (product): 7.1 min]. The purified product was 

then freeze-dried to give the desired compound 80 as a white solid (14 mg, 78% yield over 

two steps).  

1H NMR (400 MHz, CD3OD) δ 8.27-8.02 (m, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.67 (m, 1H), 

7.63-7.33 (m, 10H), 7.33-7.26 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 7.15 

(d, J = 8.3 Hz, 1H), 6.46 (d, J = 4.6 Hz, 1H), 6.11 (m, 1H), 5.99 (d, J = 4.6 Hz, 1H), 5.81 (d, J 

= 6.2 Hz, 1H), 5.64 (m, 1H), 5.46 (d, J = 4.7 Hz, 1H), 5.33 (m, 1H), 5.12 (d, J = 14.9 Hz, 1H), 

5.06-4.93 (m, 2H), 4.98-4.83 (m, 2H), 4.82-4.71 (m, 2H), 4.57 (dd, J = 9.9, 3.6 Hz, 1H), 4.50-

4.40 (m, 2H), 4.39-4.28 (m, 3H), 4.23-4.14 (m, 2H), 4.16 (d, J = 6.7 Hz, 1H), 3.97 (m, 1H), 

3.90 (d, J = 6.5 Hz, 1H), 3.88-3.79 (m, 2H), 3.69 (m, 1H), 3.61-3.42 (m, 3H), 3.22 (t, J = 6.9 

Hz, 2H), 3.31-3.17 (m, 2H), 2.97 (dd, J = 15.6, 7.4 Hz, 1H), 2.93-2.77 (NMe rotamers, 6H), 

2.76 (m, 1H), 2.55 (dd, J = 16.8, 5.6 Hz, 1H), 2.52 (m, 1H), 2.49 (s, rotamer A, 3H), 2.38 (s, 

rotamer B, 3H), 2.37-2.30 (m, 2H), 2.26 (t, J = 7.4 Hz, 2H), 2.15 (s, rotamer A, 3H), 2.11 (s, 

rotamer B, 3H), 2.19-2.07 (m, 2H), 2.02-1.89 (m, 6H), 1.81 (m, 1H), 1.66 (s, rotamer A, 3H), 

1.73-1.59 (m, 2H), 1.64 (s, rotamer B, 3H), 1.43 (d, J = 7.1 Hz, 3H), 1.13 (bs, 6H), 1.01-0.92 

ppm (m, 6H); 13C NMR (101 MHz, CD3OD) δ 205.3, 175.9, 175.3, 173.8, 173.7, 173.5, 173.4, 

173.0, 172.1, 171.6, 171.6, 171.1, 170.9, 167.7, 167.7, 158.6, 157.9, 156.6, 140.2, 139.5, 

138.4, 135.8, 134.9, 134.0, 133.8, 132.9, 131.4, 131.2, 130.1, 130.1, 130.0, 129.7, 129.6, 

129.5, 129.4, 129.2, 128.9, 128.8, 128.6, 128.2, 121.3, 121.2, 85.9, 82.2, 79.1, 77.5, 77.0, 

76.9, 76.3, 72.9, 72.4, 68.2, 67.0, 60.6, 60.2, 59.2, 56.0, 55.1, 53.1, 51.1, 50.2, 48.2, 47.9, 

44.6, 43.7, 43.6, 39.6, 38.6, 37.5, 36.1, 35.7, 35.6, 35.4, 35.1, 31.6, 27.4, 27.1, 27.0, 23.3, 

23.1, 22.5, 20.8, 19.7, 18.7, 18.0, 15.2, 10.5 ppm. MS (ESI) m/z calcd. for [C100H126N16O29]
2+: 

1007.45 [M+2H]2+, found: 1007.57; MS (ESI) m/z calcd. for [C100H125N16O29Na]2+: 1018.44 

[M+H+Na]2+, found: 1018.56; MS (MALDI) m/z calcd. for [C100H125N16O29]
+: 2015.14 a.m.u. 

[M+H]+; found: 2014.4 (HCCA matrix), 2015.7 (SIN matrix). HRMS (ESI+): m/z calcd. for 

[C100H125N16O29]
+: 2013.8793 [M+H]+; found: 2013.8818; HRMS (ESI+): m/z calcd. for 

[C100H126N16O29]
2+: 1007.4433 [M+2H]2+; found: 1007.4435. 
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cyclo[DKP-RGD]-Phe-Lys-PTX (81) 

Fmoc-Phe-Lys(Alloc)-OH (87b) 

 

Fmoc-Phe-OH (500 g, 1.29 mmol, 1.5 eq) was dissolved in dry THF (7.5 mL) under nitrogen 

atmosphere. NHS (163 mg, 1.42 mmol, 1.7 eq) and DCC (103 mg, 1.42 mmol, 1.7 eq) were 

added, and the mixture was stirred overnight at room temperature. The solution was filtered 

through cotton and concentrated to afford Fmoc-Phe-OSu as a white foam. H-Lys(Alloc)-OH 

(200 mg, 0.858 mmol, 1 eq) was dissolved in H2O (7 mL) and NaHCO3 (144 mg, 1.716 mmol, 

2 eq) was added. Fmoc-Phe-OSu (623 mg, 1.287 mmol, 1.5 eq) was dissolved in THF (7 

mL) and added to the stirred solution of H-Lys(Alloc)-OH. The mixture was stirred for 24 h at 

room temperature, followed by addition of a 1 M aqueous solution of KHSO4 (40 mL). The 

suspension was extracted with CH2Cl2 (4  20 mL), then the collected organic phases were 

dried and concentrated. The crude was purified by flash chromatography [eluent: 5:5:1 

AcOEt/Hex/MeOH + 0,1% AcOH] affording 87b (440 mg, 86% yield). 

1H NMR (400 MHz, DMSO-d6) δ 8.20 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.69-7.54 

(m, 3H), 7.40 (td, J = 7.4, 2.7 Hz, 2H), 7.36-7.22 (m, 5H), 7.20-7.15 (m, 2H), 5.87 (ddt, J = 

17.2, 10.5, 5.3 Hz, 1H), 5.24 (dd, J = 17.2, 1.6 Hz, 1H), 5.13 (dd, J = 10.5, 1.6 Hz, 1H), 4.43 

(d, J = 5.3 Hz, 2H), 4.31 (m, 1H), 4.23-4.05 (m, 4H), 3.03 (dd, J = 13.7, 3.1 Hz, 1H), 2.99-

2.93 (m, 2H), 2.78 (dd, J = 13.7, 11.3 Hz, 1H), 1.75 (m, 1H), 1.60 (m, 1H), 1.49-1.26 ppm (m, 

5H); 13C NMR (101 MHz, DMSO-d6) δ 173.6, 171.6, 155.9, 155.8, 143.8, 143.7, 140.7, 138.2, 

133.9, 129.3, 128.0, 127.6, 127.0, 126.2, 125.3, 120.1, 116.8, 65.7, 64.1, 56.0, 52.1, 46.6, 

39.1, 37.5, 30.9, 29.1, 25.2, 22.7 ppm. 
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Fmoc-Phe-Lys(Alloc)-N-[4-(hydroxymethyl)phenyl] (88b)  

 

Compound 87b (415 mg, 0.69 mmol, 1 eq) was dissolved in dry THF. N-Methylmorpholine 

(152 µL, 1.38 mmol, 2 eq) was added and the mixture was cooled at 0 °C. After the addition 

of EDC hydrochloride (146 mg, 0.76 mmol, 1.1 eq), HOAt (113 mg, 0.83 mmol, 1.2 eq) and 

4-aminobenzyl alcohol (170 mg, 1.38 mmol, 2 eq), the mixture was allowed to reach room 

temperature and stirred 4 h under nitrogen atmosphere. The mixture was diluted with a 1 M 

KHSO4 aqueous solution (100 mL) and extracted with CH2Cl2 (3  20 mL). The combined 

organic phases were dried and concentrated to afford a red solid. The crude was treated with 

a 2:1 mixture of Et2O/CH2Cl2, sonicated and filtered over Büchner funnel. The solid was 

purified by flash chromatography [gradient: from 1% MeOH / 99% CH2Cl2 to 10% MeOH / 

90% CH2Cl2] to afford 88b as a solid (350 mg, 71% yield). 

Rf = 0.44 (9:1 CH2Cl2/MeOH); 1H NMR (400 MHz, DMSO-d6) δ 9.99 (s, 1H), 8.20 (d, J = 7.8 

Hz, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.68-7.51 (m, 5H), 7.40 (t, J = 7.5 Hz, 2H), 7.35-7.20 (m, 

8H), 7.20-7.13 (m, 2H), 5.86 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.23 (dd, J = 17.2, 1.4 Hz, 1H), 

5.18-5.04 (m, 2H), 4.51-4.37 (m, 4H), 4.33 (m, 1H), 4.25-4.08 (m, 4H), 3.04 (dd, J = 13.5, 3.5 

Hz, 1H), 2.97 (dd, J = 12.6, 6.4 Hz, 2H), 2.79 (dd, J = 13.5, 10.9 Hz, 1H), 1.73 (m, 1H), 1.65 

(m, 1H), 1.49-1.21 ppm (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 171.6, 170.4, 155.9, 

155.8, 143.7, 140.7, 138.1, 137.5, 137.5, 133.8, 129.2, 128.0, 127.6, 127.0, 126.9, 126.2, 

125.2, 120.1, 119.0, 116.8, 65.6, 64.1, 62.6, 56.0, 53.4, 46.6, 40.2 (overlapped with solvent 

signal), 37.4, 32.0, 29.2, 22.7 ppm. 

Fmoc-Phe-Lys(Alloc)-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (89b)  

 

A solution of compound 88b (170 mg, 0.24 mmol, 1 eq) in a mixture of dry THF (13 mL) and 

dry DMF (1 mL) under nitrogen atmosphere was cooled to 0 °C. Pyridine (50 µL, 0.60 mmol, 

2.5 eq) and 4-nitrophenylchloroformate (97 mg, 0.48 mmol, 2 eq) were added, then the 
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mixture was allowed to reach room temperature and stirred for 2 h. AcOEt (140 mL) was 

added and the solution was washed with a 1 M aqueous solution of KHSO4 (3  20 mL) and 

brine (20 mL). The organic phase was dried and concentrated, then the crude was purified 

by a Grace Reveleris system (column: Reveleris Silica 4 g, dry load, flow rate: 36 mL min−1, 

ramp from 100% CH2Cl2 to 100% AcOEt in 18 min) to afford 89b as a solid (185 mg, 88% 

yield). 

Rf = 0.78 (93:7 CH2Cl2/MeOH); 1H NMR (400 MHz, THF-d8) δ 9.31 (s, 1H), 8.27 (d, J = 9.1 

Hz, 2H), 8.27 (m, 1H), 7.77 (d, J = 7.5 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.60 (t, J = 8.2 Hz, 

2H), 7.46 (d, J = 9.1 Hz, 2H), 7.42-7.30 (m, 4H), 7.26 (t, J = 7.4 Hz, 2H), 7.21-7.02 (m, 5H), 

6.86 (m, 1H), 6.31 (s, 1H), 5.86 (ddt, J = 22.0, 10.6, 5.5 Hz, 1H), 5.24 (s, 2H), 5.21 (bd, J = 

22.0 Hz, 1H), 5.06 (bd, J = 10.6 Hz, 1H), 4.43 (d, J = 5.5 Hz, 2H), 4.53-4.34 (m, 3H), 4.24 

(dd, J = 9.9, 7.4 Hz, 1H), 4.17 (t, J = 7.4 Hz, 1H), 3.16-3.01 (m, 3H), 2.91 (dd, J = 13.8, 7.6 

Hz, 1H), 1.90 (m, 1H), 1.63 (m, 1H), 1.53-1.43 (m, 2H), 1.43-1.33 ppm (m, 2H); 13C NMR 

(101 MHz, THF-d8) δ 171.9, 170.7, 156.8, 156.7, 153.1, 145.1, 142.1, 140.6, 138.3, 134.8, 

130.6, 130.0, 128.7, 128.1, 127.6, 126.9, 125.9, 125.8, 125.7, 122.6, 120.4, 120.0, 116.4, 

71.1, 67.0 (overlapped with solvent signal), 56.9, 54.3, 48.1, 41.1, 38.9, 32.5, 30.5, 23.6 

ppm. MS (ESI) m/z calcd. for [C48H47N5NaO11]
+: 892.32 [M+Na]+, found: 892.50. 

Fmoc-Phe-Lys(Alloc)-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (90b)  

 

A solution of N-(Boc)-N,N′-dimethylethylenediamine 86 (97 mg, 0.52 mmol, 2.5 eq) in dry 

THF (1 mL) and iPr2NEt (106 µL, 0.76 mmol, 3 eq) were added under nitrogen atmosphere 

to a solution of  89b (180 mg, 0.21 mmol, 1 eq) in dry THF (9 mL) kept at 0 °C. The mixture 

was stirred overnight at room temperature, then the solvent was removed at rotavapor. 

AcOEt (100 mL) was added and the solution was washed with a 1 M aqueous solution of 

KHSO4 (3  20 mL), a saturated aqueous solution of NaHCO3 (2  20 mL) and brine (20 mL). 

The organic phase was dried and concentrated. The crude was purified over a pad of silica 

(gradient: 100% CH2Cl2 to 5% MeOH  / 95% CH2Cl2), affording 90b (140 mg, 75% yield).  

Rf = 0.34 (95:5 CH2Cl2/MeOH); 1H NMR (400 MHz, CD2Cl2) δ 8.61 (s, 1H), 7.76 (d, J = 7.5 

Hz, 2H), 7.53 (dd, J = 14.8, 7.6 Hz, 4H), 7.39 (t, J = 7.5 Hz, 2H), 7.33-7.24 (m, 4H), 7.18 (d, J 

= 8.5 Hz, 5H), 6.90 (s, 1H), 5.86 (ddt, J = 17.0, 10.3, 5.8 Hz, 1H), 5.64 (s, 1H), 5.24 (d, J = 
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17.0 Hz, 1H), 5.14 (d, J = 10.3 Hz, 1H), 5.12-5.07 (m, J = 5.9 Hz, 1H), 5.04 (s, 2H), 4.58-4.46 

(m, 4H), 4.42 (dd, J = 10.4, 6.8 Hz, 1H), 4.32 (dd, J = 10.4, 4.9 Hz, 1H), 4.16 (dd, J1 = J2 = 

6.8 Hz, 1H), 3.43-3.26 (m, 4H), 3.20-3.07 (m, 3H), 3.02 (m, 1H), 2.91 (s, rotamer A + B, 3H), 

2.84 (s, rotamer A, 3H), 2.74 (s, rotamer B, 3H), 1.93 (m, 1H), 1.68 (m, 1H), 1.53-1.44 (m, 

2H), 1.42 (s, 9H), 1.39-1.29 ppm (m, 2H); 13C NMR (101 MHz, CD2Cl2) δ 172.1, 169.9, 157.0, 

156.9, 156.7, 156.3 (rotamer A), 155.7 (rotamer B), 144.2 (rotamer A), 144.1 (rotamer B), 

141.7, 138.2, 136.6, 133.6, 133.3, 129.6, 129.1, 128.9, 128.1, 127.5, 125.4, 125.3, 120.3, 

120.2, 117.4, 79.6 (rotamer A + B), 67.5, 67.0 (rotamer A), 66.7 (rotamer B), 65.8, 56.9, 54.3, 

47.5, 47.0 (rotamer A + B), 46.8 (rotamer A + B), 40.49, 38.44, 35.5 (rotamer A + B), 35.1 

(rotamer A), 34.7 (rotamer B), 31.2, 29.8, 28.5, 22.8 ppm. MS (ESI) m/z calcd. for 

[C51H62N6NaO10]
+: 941.44 [M+Na]+, found: 941.70. 

(Hemiglutarate)-Phe-Lys(Alloc)-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (91b)  

 

Compound 90b (135 mg, 0.15 mmol, 1 eq) was deprotected following the General Procedure 

GP2. The crude free amine was dissolved in dry DMF (2 mL) and cooled at 0 °C under 

nitrogen atmosphere. Glutaric anhydride (42 mg, 0.36 mmol, 2.5 eq), DMAP (5 mg, 0.04 

mmol, 0.25 eq) and iPr2NEt (95 µL, 0.55 mmol, 3.75 eq) were added. The mixture was 

allowed to reach room temperature and stirred overnight. The solution was diluted with 

AcOEt (70 mL), washed with a 1 M aqueous solution of KHSO4 (3  8 mL) and then with 

brine (8 mL). The organic phase was dried and concentrated, then the crude was purified by 

flash chromatography [gradient: 3% (MeOH + 0.2% CH3COOH) / 97% (CH2Cl2 + 0.2% 

CH3COOH) to 7% (MeOH + 0.2% CH3COOH) / 93% (CH2Cl2 + 0.2% CH3COOH)] affording 

91b (120 mg, quantitative yield). 

1H NMR (400 MHz, CD3OD) δ 7.64-7.57 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.30-7.19 (m, 4H), 

7.15 (t, J = 6.9 Hz, 1H), 6.96 (t, J = 5.2 Hz, 1H), 5.92 (ddt, J = 17.3., 10.4, 5.3 Hz, 1H), 5.29 

(dd, J = 17.3, 1.5 Hz, 1H), 5.17 (d, J = 10.4 Hz, 1H), 5.09 (s, 2H), 4.67 (dd, J = 9.2, 5.6 Hz, 

1H), 4.51 (d, J = 5.3 Hz, 2H), 4.45 (dd, J = 8.7, 5.4 Hz, 1H), 3.48-3.37 (m, 4H), 3.18 (dd, J = 

14.0, 5.6 Hz, 1H), 3.16-3.10 (m, 2H), 2.97 (s, rotamer A, 3H), 2.96 (s, rotamer B, 3H), 2.93 

(dd, J = 14.0, 9.2 Hz, 1H), 2.88 (s, rotamer A, 3H), 2.78 (s, rotamer B, 3H), 2.26 (t, J = 7.2 

Hz, 2H), 2.21 (t, J = 7.4 Hz, 2H), 1.93-1.74 (m, 2H), 1.86-1.77 (m, 2H), 1.60-1.50 (m, 2H), 
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1.45 (s, 9H), 1.48-1.41 ppm (m, 2H); 13C NMR (101 MHz, CD3OD) δ 176.8, 175.2, 173.6, 

172.1, 158.6, 158.0 (rotamer A), 157.8 (rotamer B), 157.4 (rotamer A), 157.3 (rotamer B), 

139.4 (rotamer A), 139.2 (rotamer B), 138.1, 134.3, 133.7, 133.6, 130.2, 129.9, 129.6, 129.3, 

127.7, 121.2, 117.4, 81.1 (rotamer A), 80.9 (rotamer B), 68.1 (rotamer A), 67.9 (rotamer B), 

66.2, 55.9, 55.2, 47.9 (rotamer A), 47.5 (rotamer B), 47.3 (rotamer A), 46.8 (rotamer B), 41.3, 

38.7, 35.7 (rotamer A), 35.4 (rotamer B), 34.9 (rotamer A), 34.7 (rotamer B), 34.0, 32.7, 30.3, 

28.7, 23.9, 22.0 ppm. 

(N-hydroxysuccinimidylglutarate)-Phe-Lys(Alloc)-N-[4-[[[(N-(Boc)-N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (91b-OSu)  

 

A stock solution of NHS (solution A, 25 mg in 1 mL dry DMF) and one of EDC.HCl (solution 

B, 25 mg in 1 mL dry DMF) were prepared under nitrogen atmosphere. Compound 91b (25 

mg, 3.1  10−2 mmol, 1 eq) was dissolved in dry DMF (508 µL) and cooled at 0 °C under 

nitrogen atmosphere. Solution A (184 µL, 1.3 eq) and solution B (308 µL, 1.3 eq) were added 

to the substrate solution. The mixture was allowed to reach room temperature and stirred 

overnight. The solution was diluted with AcOEt (70 mL) and washed with water (3  10 mL). 

The organic phase was dried and concentrated, then the crude was purified by flash 

chromatography (eluent: 100% AcOEt), affording 91b-OSu (26 mg, 93% yield).  

Rf = 0.67 (9:1 CH2Cl2/MeOH); MS (ESI) m/z calcd. for [C45H61N7NaO13]
+: 930.42 [M+Na]+, 

found: 930.51. 
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cyclo[DKP-RGD]-Phe-Lys(Alloc)-N-[4-[[[(N,N′-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (92b)  

 

cyclo[DKP-RGD]-CH2NH2 70 (17 mg, 2.1  10−2 mmol, 1 eq) was dissolved in pH 7.5 

phosphate buffer solution (1,5 mL). The pH was adjusted to 7.5 with a 0.2 M NaOH solution 

(a few drops) and the solution was then cooled to 0 °C. Compound 91b-OSu (23 mg, 2.1  

10−2 mmol, 1.2 eq) was dissolved in CH3CN (2 mL) and added to the substrate solution. The 

mixture was warmed to room temperature and stirred overnight. During the first 3 h the pH 

value was kept near 7.3 adding 0.2 M aqueous NaOH when necessary. After 4 h a white 

precipitate was observed. The solvent was removed, then the crude was treated with H2O + 

0.1% CH3COOH and centrifuged. This procedure was repeated three times, in order to 

remove the hydrophilic fraction from the crude. The Boc protecting group was then removed 

following General Procedure GP1 and the crude was purified by semipreparative-HPLC 

[Waters Atlantis 21 mm  10 cm column, gradient: 100% (H2O + 0.1% CF3COOH) to 50% 

(H2O + 0.1% CF3COOH) / 50% (CH3CN + 0.1% CF3COOH) in 8 min; tR (product): 6.3 min]. 

The purified product was then freeze dried to give the desired compound 92b as a white 

solid (18 mg, 55% yield over two steps). 

1H NMR (400 MHz, CD3OD) δ 7.58 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.30-7.16 

(m, 7H), 7.16-7.10 (m, 2H), 5.89 (ddt, J = 22.4, 10.6, 5.4 Hz, 1H), 5.26 (d, J = 17.3 Hz, 1H), 

5.19-5.11 (m, 2H), 5.11 (s, 2H), 4.93 (m, 1H), 4.63 (dd, J = 9.3, 5.5 Hz, 1H), 4.59 (dd, J = 

9.7, 3.8 Hz, 1H), 4.48 (d, J = 5.2 Hz, 2H), 4.45-4.41 (m, 2H), 4.34 (d, J = 15.2 Hz, 1H), 4.29 

(d, J = 15.2 Hz, 1H), 3.97 (d, J = 14.3 Hz, 1H), 3.96 (d, J = 14.9 Hz, 1H), 3.93-3.87 (m, 2H), 

3.62 (t, J = 5.8 Hz, 2H), 3.52 (d, J = 17.2 Hz, 1H), 3.49 (dd, J = 15.6, 6.0 Hz, 1H), 3.26-3.13 

(m, 5H), 3.09 (t, J = 6.7 Hz, 2H), 2.97 (s, 3H), 2.96 (dd, J = 16.9, 10.4 Hz, 1H), 2.91 (m, 1H), 

2.82-2.65 (m, 4H), 2.57 (dd, J = 16.9, 5.8 Hz, 1H), 2.51 (dd, J = 13.5, 3.8 Hz, 1H), 2.22 (t, J = 

6.8 Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 2.12 (m, 1H), 1.97 (m, 1H), 1.89-1.80 (m, 3H), 1.80-1.58 

(m, 3H), 1.56-1.47 (m, 2H), 1.45-1.32 ppm (m, 2H); 13C NMR (101 MHz, CD3OD) δ 175.5, 

175.3, 173.9, 173.5, 172.4, 172.0, 171.6, 170.9, 161.3, 158.8, 158.7, 140.2, 138.4, 135.8, 
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134.6, 133.7, 130.3, 129.8, 129.5, 129.2, 127.8, 121.4, 117.4, 68.5, 66.3, 60.3, 56.3, 56.0, 

55.4, 53.2, 50.3, 48.7 (overlapped with solvent signal), 48.2, 46.8, 43.7, 43.6, 42.2, 41.5, 

39.7, 38.9, 38.6, 36.0, 35.8, 35.6, 34.9, 34.0, 32.8, 30.5, 27.4, 27.1, 24.1, 23.0 ppm. MS 

(ESI) m/z calcd. for [C63H87N15O16]
+: 1323.65 [M+H]+, found: 1324.7, MS (ESI) m/z calcd. for 

[C63H88N15O16]
2+: 662.33 [M+2H]2+, found: 662.6. 

cyclo[DKP-RGD]-Phe-Lys(Alloc)-PTX (93)  

 

Compound 92b (10 mg, 6.5  10−3 mmol, 1 eq) was dissolved in dry DMF (100 µl) under 

nitrogen atmosphere the obtained solution was cooled to 0 °C. 2'-(4-nitrophenoxycarbonyl)-

paclitaxel 83 (20 mg, 19.4  10−3 mmol, 3 eq) was dissolved in dry DMF (900 µL) and added 

to the substrate solution, followed by iPr2NEt (6 µL, 32.1  10−3 mmol, 5 eq). The mixture was 

allowed to reach room temperature and stirred overnight. The solution was diluted with Et2O 

and the obtained white solid was recovered by centrifugation. This procedure was repeated 

three times, then the crude was purified by semipreparative-HPLC [Waters Atlantis 21 mm  

10 cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 

100% (CH3CN + 0.1% CF3COOH) in 11 min; tR (product): 7 min]. The purified product was 

then freeze dried to give the desired compound 93 as a white solid (12 mg, 80% yield). 

1H NMR (400 MHz, CD3OD) δ 8.15 (dt, J = 15.2, 8.4 Hz, 2H), 7.88-7.77 (m, 2H), 7.66 (m, 

1H), 7.62-7.47 (m, 6H), 7.39 (ddd, J = 24.1, 15.4, 7.8 Hz, 6H), 7.29-7.07 (m, 11H), 6.46 (d, J 

= 2.8 Hz, 1H), 6.11 (m, 1H), 5.99 (d, J = 4.7 Hz, 1H), 5.88 (ddt, J = 22.4, 10.6, 5.3 Hz, 1H), 

5.81 (d, J = 6.7 Hz, 1H), 5.64 (m, 1H), 5.46 (d, J = 4.8 Hz, 1H), 5.34 (m, 1H), 5.25 (d, J = 

17.1 Hz, 1H), 5.18-5.09 (m, 2H), 5.07-4.96 (m, 3H), 4.95 (dd, J = 8.7, 5.7 Hz, 1H), 4.80 (d, J 

= 13.0 Hz, 1H), 4.76 (d, J = 12.7 Hz, 1H), 4.64 (dd, J = 8.6, 5.7 Hz, 1H), 4.58 (dd, J = 9.9, 3.5 

Hz, 1H), 4.52-4.39 (m, 4H), 4.33 (m, 1H), 4.20 (s, rotamer A, 2H), 4.18 (s, rotamer B, 2H), 

4.06-3.84 (m, 4H), 3.83 (dd, J = 17.6, 7.6 Hz, 1H), 3.71 (m, 1H), 3.57-3.44 (m, 2H), 3.21 (t, J 

= 7.0 Hz, 2H), 3.16 (dd, J = 13.8, 4.9 Hz, 1H), 3.12 (m, 1H), 3.08 (t, J = 5.8 Hz, 2H), 2.98 (m, 
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1H), 2.98-2.79 (NMe rotamers, 6H), 2.88-2.72 (m, 2H), 2.61-2.52 (m, 3H), 2.49 (s, rotamer A, 

3H), 2.38 (s, rotamer B, 3H), 2.24-2.08 (m, 8H), 2.02-1.93 (m, 4H), 1.88-1.76 (m, 4H), 1.74-

1.67 (m, 3H), 1.65 (d, J = 6.8 Hz, 3H), 1.55-1.45 (m, 2H), 1.43-1.31 (m, 2H), 1.29 (bs, J = 9.0 

Hz, 2H), 1.13 ppm (bs, 6H); 13C NMR (101 MHz, CD3OD) δ 205.3, 175.5, 175.2, 173.9, 

173.5, 172.3, 172.1, 171.6, 171.4, 171.0, 170.8, 167.7, 161.5, 161.2, 158.6, 158.3, 157.9, 

156.6, 142.9, 142.5, 140.2, 139.3, 138.4, 135.8, 134.6, 132.9, 131.4, 131.2, 130.3, 130.1, 

129.7, 129.6, 129.5, 129.3, 128.9, 128.8, 128.6, 128.2, 127.8, 121.3, 117.4, 85.9, 82.2, 79.1, 

77.5, 77.0, 76.8, 76.3, 72.9, 72.4, 66.3, 60.2, 59.2, 56.2, 56.0, 55.3, 53.1, 50.2, 48.2 

(overlapped with solvent signal), 47.7, 44.6, 43.7, 43.6, 42.2, 41.5, 39.6, 38.7, 38.6, 37.5, 

36.0, 35.8, 35.6, 35.4, 34.9, 34.8, 32.9, 30.7, 30.5, 27.4, 27.1, 27.0, 24.1, 23.3, 23.0, 22.4, 

20.9, 15.2, 10.5 ppm. MS (ESI) m/z calcd. for [C111H137N17O31]
2+: 1101.99 [M+2H]2+, found: 

1102.05; MS (ESI) m/z calcd. for [C111H136N17NaO31]
2+: 1112.95 [M+H+Na]2+, found: 1113.04. 

cyclo[DKP-RGD]-Phe-Lys-PTX (81)  

 

A cleavage cocktail composed by Bu3SnH (88 µl) and CH3COOH (44 µL) in dry DMF (5 mL) 

was prepared in a flame-dried flask, equipped with 4 Å molecular sieves. Compound 93 (5 

mg, 2.2  10−3 mmol, 1 eq) was dissolved with 500 µL of the cleavage cocktail under nitrogen 

atmosphere, then Pd(PPh3)4 (0.5 mg, 4.3  10−4 mmol, 0.2 eq) was added. The mixture was 

stirred overnight at room temperature, then it was diluted with Et2O (5 mL), and the white 

solid was recovered by centrifugation. This procedure was repeated three times, then the 

obtained white solid was purified by semipreparative-HPLC [multistep gradient: from 0 min to 

1 min 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH); ramp to 100% 

(CH3CN + 0.1% CF3COOH) in 10 min; tR (product): 6.7 min]. The purified product was then 

freeze-dried to give the desired compound 81 as a white solid (4,4 mg, 87% yield). 

MS (ESI) m/z calcd. for [C107H133N17O29]
2+: 1059.97 [M+2H]2+; found: 1060.18; MS (ESI) m/z 

calcd. [C107H132N17NaO29]
2+: 1070.97 [M+H+Na]2+; found: 1071.20; MS (MALDI) m/z calcd for 
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[C107H132N17O29]
+: 2120.29 a.m.u. [M+H]+; found: 2120.2 (HCCA matrix), 2120.2 (SIN matrix). 

HRMS (ESI+): m/z calcd. for [C107H132N17O29]
+: 2118.9371 [M+H]+; found: 2118.9368; m/z 

calcd. for [C107H133N17O29]
2+: 1059.9722 [M+H]+; found: 1059.9729. 

“uncleavable” cyclo[DKP-RGD]-PTX (82) 

N-(Boc)-N’-(glutaryl)-N,N′-dimethylethylenediamine (Boc-94)  

 

A solution of glutaric anhydride (80 mg, 0.70 mmol, 1 eq) in DMF (2 mL) was cooled to 0 °C, 

then a solution of N-(Boc)-N,N′-dimethylethylenediamine (86, 198 mg, 1.05 mmol, 1.5 eq) in 

DMF (1 mL) and iPr2NEt (240 μL, 1.40 mmol, 2 eq) were added. The mixture was allowed to 

reach room temperature and stirred for 6 h. The mixture was diluted with AcOEt (70 mL), 

washed with a 1 M aqueous solution of KHSO4 (4  10 mL) and brine (10 mL). The organic 

phase was dried and concentrated under vacuum affording Boc-94 as a pale-yellow oil (207 

mg, quantitative yield). 

1H NMR (400 MHz, CD3OD) δ 3.53 (t, J = 5.8 Hz, 2H), 3.44-3.35 (m, 2H), 3.06 (s, NMe1 

rotamer A, 3H), 2.94 (s, NMe1 rotamer B 3H), 2.87 (bs, NMe2 3H), 2.43 (t, J = 7.4 Hz, 2H), 

2.36 (dt, J = 7.2, 2.5 Hz, 2H), 1.94-1.83 (m, 2H), 1.46 ppm (s, 9H); 13C NMR (101 MHz, 

CD3OD) δ 176.9, 175.0 (rotamer A), 174.8 (rotamer B), 157.5 (rotamer A), 157.3 (rotamer B), 

81.2 (rotamer A), 80.9 (rotamer B), 48.8 (overlapped with solvent signal), 48.5 (overlapped 

with solvent signal), 48.2, 47.8, 47.3, 46.8, 46.7, 46.25 (8 CH2 rotamers), 36.9, 36.6, 36.3, 

35.9, 35.1, 34.8, 34.6, 34.3 (8 NMe rotamers), 34.1 (rotamer A), 34.0 (rotamer B), 33.5 

(rotamer A), 32.6 (rotamer B), 28.7, 21.8 (rotamer A), 21.5 ppm (rotamer B). 

N-[carbonyl(2’-paclitaxel)]-N’-(glutaryl)-N,N′-dimethylethylenediamine (95) 

 

Compound Boc-94 (75 mg, 0.25 mmol, 3 eq) was deprotected following the General 

Procedure GP1. The obtained oily product was dissolved in dry DMF (1 mL) and added 

dropwise under nitrogen atmosphere to a  solution of 2'-(4-nitrophenoxycarbonyl)-paclitaxel 

(83, 84 mg, 0.08 mmol, 1 eq) in dry DMF (2 mL), previously cooled to 0 °C. The mixture was 
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allowed to reach room temperature and it was stirred overnight under nitrogen atmosphere. 

The solution was diluted with AcOEt (100 mL), washed with a 1 M aqueous solution of 

KHSO4 (2  10 mL) and brine (10 mL). The organic phase was dried and concentrated. The 

crude was purified by flash chromatography (eluent: CH2Cl2/MeOH, 94:6 + 0,1% formic acid) 

affording compound 95 as a white foam (73 mg, 82% yield). 

1H NMR (400 MHz, CD2Cl2) δ 8.90 (d, J = 9.7 Hz, 1H), 8.17 (d, J = 7.2 Hz, rotamer A, 2H), 

8.11 (d, J = 7.2 Hz, rotamer B, 2H), 7.82 (d, J = 7.4 Hz, rotamer A, 2H), 7.76 (d, J = 7.4 Hz, 

rotamer B, 2H), 7.62 (m, 1H), 7.52 (m, 4H), 7.46-7.35 (m, 3H), 7.33-7.25 (m, 3H), 6.28 (s, 

1H), 6.24 (m, 1H), 6.16 (dd, J = 9.7, 2.9 Hz, 1H), 5.66 (d, J = 7.1 Hz, 1H), 5.40 (d, J = 2.9 Hz, 

1H), 5.00 (m, 1H), 4.45 (dd, J = 10.9, 6.7 Hz, 1H), 4.29 (d, J = 8.3 Hz, 1H), 4.20 (d, J = 8.3 

Hz, 1H), 3.94 (m, 1H), 3.82 (d, J = 7.1 Hz, 1H), 3.52 (m, 1H), 3.38 (m, 1H), 3.01 (m, 1H), 

2.95 (s, rotamer A 3H), 2.92 (s, rotamer B, 3H), 2.89 (s, rotamer B, 1H), 2.88 (s, rotamer A, 

3H), 2.58 (s, 3H), 2.49 (m, 1H), 2.35-2.12 (m, 6H), 2.20 (s, 3H), 1.94 (s, J = 10.5 Hz, 3H), 

1.90-1.74 (m, 2H), 1.64 (s, 3H), 1.63 (m, 1H), 1.64 (s, rotamer A, 3H), 1.62 (s, rotamer B, 

3H), 1.21 (s, 3H), 1.11 ppm (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 204.4, 176.6, 173.0, 

171.8, 170.5, 169.4, 169.0, 167.1, 155.3, 143.6, 138.1, 134.7, 133.9, 133.0, 131.7, 130.6, 

130.0, 129.1, 129.0, 128.4, 128.3, 127.3, 84.7, 81.3, 79.3, 76.7, 76.1, 76.1, 75.6, 72.6, 71.8, 

58.8, 53.2, 46.8, 46.1, 46.1, 43.6, 36.9 (rotamer A), 36.7 (rotamer B), 36.1, 36.0, 35.8 

(rotamer A), 34.8 (rotamer B), 33.1, 32.6, 27.0, 23.1, 22.5, 21.1, 20.3, 14.9, 9.9 ppm.  

cyclo[DKP-RGD]-unc.-PTX (82) 

 

DIC (3.8 µl, 2.4  10−2 mmol, 1.3 eq) and NHS (3 mg, 2.6  10−2 mmol, 1.4 eq) were added to 

a solution of compound 95 (24 mg, 2.2  10−2 mmol, 1.2 eq) in dry DMF (1 mL). The resulting 

mixture was stirred overnight under nitrogen. Volatiles were removed in vacuo to give an off-

white solid, which was re-dissolved in acetonitrile (1 mL) and cooled to 0 °C. A solution of 

cyclo[DKP-RGD]-CH2NH2 70 (16 mg, 1.9  10−2 mmol, 1 eq) in pH 7.5 PBS (1 mL) was then 
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added to the acetonitrile solution. The resulting solution was warmed to room temperature 

and stirred overnight. During the first 5 hours the pH value was kept within the range 7.3-7.6 

adding 0.2 M aqueous NaOH, when necessary. The solution was concentrated and the crude 

was purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 cm column, gradient: 

90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 25% (H2O + 0.1% 

CF3COOH) / 75% (CH3CN + 0.1% CF3COOH) in 12 min; tR (product): 8.8 min]. The purified 

product was then freeze dried to give the desired compound 82 as a white solid (17 mg, 50% 

yield). 

1H NMR (400 MHz, CD3OD) δ 8.18-8.07 (m, 2H), 7.83 (d, J = 7.2 Hz, 1H), 7.78 (d, J = 7.5 

Hz, 1H), 7.67 (m, 1H), 7.64-7.36 (m, 9H), 7.35-7.20 (m, 5H), 6.44 (d, J = 8.7 Hz, 1H), 6.08 

(m, 1H), 5.94 (d, J = 5.5 Hz, 1H), 5.80 (t, J = 7.7 Hz, 1H), 5.64 (m, 1H), 5.42 (d, J = 5.6 Hz, 

1H), 5.31 (d, J = 7.2 Hz, 1H), 5.13 (dd, J = 15.0, 8.1 Hz, 1H), 5.00 (t, J = 9.3 Hz, 1H), 4.92 

(m, 1H), 4.57 (d, J = 9.6 Hz, 1H), 4.48-4.29 (m, 3H), 4.24-4.12 (m, 3H), 4.01-3.86 (m, 4H), 

3.81 (dd, J = 18.2, 7.4 Hz, 1H), 3.74-3.63 (m, 2H), 3.66 (s, 2H), 3.62-3.42 (m, 6H), 3.22 (t, J 

= 7.0 Hz, 2H), 3.01-2.84 (m, 6H), 2.72 (m, 1H), 2.56 (dd, J = 17.2, 5.7 Hz, 1H), 2.53-2.44 (m, 

2H), 2.46 (s, rotamer A, 3H), 2.36 (s, rotamer A, 3H), 2.34-2.17 (m, 4H), 2.16 (s, rotamer A, 

3H), 2.14 (s, rotamer B, 3H), 2.14 (m, 1H), 1.98 (m, 1H), 1.96 (s, rotamer A, 3H), 1.94 (s, 

rotamer B, 3H), 1.89-1.68 (m, 6H), 1.66 (s, rotamer A, 3H), 1.65 (s, rotamer B, 3H), 1.13 (s, 

rotamer A, 3H), 1.11 ppm (s, rotamer B, 3H); 13C NMR (101 MHz, CD3OD) δ 205.3, 175.4, 

175.3, 174.9, 173.9, 173.8, 173.4, 172.0, 171.6, 171.6, 171.4, 171.0, 167.7, 158.7, 156.7, 

156.4, 142.6, 140.4, 138.5, 135.8, 134.8, 134.8, 134.6, 132.9, 131.4, 131.2, 130.1, 129.7, 

129.6, 129.5, 129.3, 128.9, 128.8, 128.6, 128.4, 85.9, 82.2, 79.1, 77.5, 77.1, 76.9, 76.3, 72.9, 

72.8, 72.4, 60.2, 56.0, 53.1, 50.2, 48.2, 47.9, 47.0, 44.6, 43.7, 43.6, 42.2, 39.6, 38.6, 37.6, 

36.7, 36.2, 35.7, 35.6, 34.8, 33.4, 27.5, 27.1, 27.0, 23.3, 22.5, 22.4, 20.8, 15.2, 15.0, 10.5 

ppm. MS (ESI) m/z calcd. for [C84H104N13O25]
+: 1694.73 [M+H]+; found: 1695.48; MS (ESI) 

m/z calcd. for [C84H105N13O25]
2+: 847.87 [M+2H]2+; found: 848.23. HRMS (ESI+): m/z calcd. 

for [C84H104N13O25]
+: 1694.7261 [M+H]+; found: 1694.7302; m/z calcd. for [C84H105N13O25]

2+: 

847.8667 [M+2H]2+; found: 847.8676. 
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[cyclo(DKP-RGD)]2Val-Ala-PTX (100) 

methyl 3,5-bis(propynyloxy)phenyl acetate (104) 

 

Methyl 3,5-hydroxyphenyl acetate (250 mg, 1.37 mmol, 1 eq) was dissolved in dry acetone 

(11 mL) under nitrogen atmosphere. The solution was cooled in an ice bath. Propargyl 

bromide (945 μL, 11.0 mmol, 8 eq) and K2CO3 (1.5 g, 11.0 mmol, 8 eq) were added, and the 

mixture was stirred at room temperature 72 h. The mixture was concentrated, then the crude 

was dissolved in AcOEt (70 mL) and washed with water (3  10 mL). The organic phase was 

dried over Na2SO4 and concentrated. The crude residue was purified by a Grace Reveleris 

system (column: Reveleris Silica 12 g; dry load; flow rate: 30 mL min−1; ramp: from 100% 

hexane to 100% AcOEt in 18 min) to afford 104 as a white solid (356 mg, yield: quantitative). 

Rf = 0.58 (1:1 hexane/AcOEt); 1H NMR (400 MHz, CDCl3) δ 6.53 (bs, 3H), 4.65 (d, J = 2.4 

Hz, 4H), 3.68 (s, 3H), 3.56 (s, 2H), 2.53 ppm (t, J = 2.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) 

δ 171.6, 158.7, 136.2, 109.1, 101.0, 78.4, 75.8, 55.9, 52.2, 41.4 ppm. 

3,5-bis(propynyloxy)phenyl acetic acid (105) 

 

Compound 104 (165 mg, 0.64 mmol, 1 eq) was dissolved in THF (20 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C, then a solution of LiOH∙H2O (67 mg, 1.6 mmol, 

2.5 eq) in H2O (10 mL) was added. The mixture was stirred 1,5 h at 0 °C. The mixture was 

acidified to ca. pH = 2 with a 1 M KHSO4 aqueous solution and extracted with CH2Cl2 (4  20 

mL). The organic phase was dried over Na2SO4 and concentrated, affording 105 as a white 

solid (158 mg, quantitative yield). 

Rf = 0.36 (1:1 hexane/AcOEt); 1H NMR (400 MHz, MeOD) δ 6.59-6.51 (m, 3H), 4.70 (d, J = 

2.4 Hz, 4H), 3.54 (s, 2H), 2.92 ppm (t, J = 2.4 Hz, 2H). 
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 [3,5-bis(propynyloxy)phenylacetyl]-Val–Ala-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine) carbonyl]oxy]methyl]phenyl] (106)  

 

N-Fmoc-protected compound 90a (160 mg, 0.219 mmol, 1 eq) was dissolved in DMF under a 

nitrogen atmosphere. The solution was cooled to 0 °C and piperidine (108 μL, 1.1 mmol, 5 

eq) was added. The reaction was stirred at room temperature for 2 h. The mixture was 

diluted with AcOEt (20  volume of DMF) and washed twice with a saturated aqueous 

solution of NaHCO3. The organic phase was dried over Na2SO4 and concentrated at 

rotavapor. CH2Cl2 was added to the residue and evaporated to afford a yellow solid. The 

crude was filtered over silica gel [gradient: from 1:1 AcOEt/hexane to 9:1 CH2Cl2/MeOH; Rf = 

0.2 (9:1 CH2Cl2/MeOH)] affording 90a-NH as a solid. A solution of acid 105 (68 mg, 0.28 

mmol, 1.5 eq) in dry DMF (2.3 mL) was cooled to 0 °C under a nitrogen atmosphere. HATU 

(114 mg, 0.3 mmol, 1.6 eq), HOAT (41 mg, 0.3 mmol, 1.6 eq) and iPr2NEt (100 µL, 0.57 

mmol, 3 eq) were added and the mixture was stirred for 20 min at 0 °C. A solution of 90a-NH 

(96 mg, 0.19 mmol, 1 eq) in dry DMF (2.3 mL) was added to the stirred mixture. The reaction 

was allowed to slowly reach room temperature and stirred overnight. The mixture was diluted 

with a 4:1 AcOEt/CH2Cl2 mixture (100 mL) and washed with 1 M aqueous solution of KHSO4 

(2  15 mL), a saturated aqueous solution of NaHCO3 (1  15 mL) and brine (1  20 mL). 

The organic phase was dried over Na2SO4 and concentrated. The solid was suspended in 

Et2O. The product was collected by centrifugation and purified by flash chromatography 

[gradient: from 99:1 CH2Cl2/MeOH to 97:3 CH2Cl2/MeOH] to afford amide 106 as a white 

solid (101 mg, 58% o.t.s.). 

Rf = 0.3 (100 % AcOEt); 1H NMR (400 MHz, MeOD + DMSO-d6) δ 7.57 (m, 2H), 7.32 (m, 

2H), 6.60 (d, J = 2.2 Hz, 2H), 6.53 (t, J = 2.2 Hz, 1H), 5.06 (s, 2H), 4.70 (d, J = 2.4 Hz, 4H), 

4.46 (q, J = 7.1 Hz, 1H), 4.20 (d, J = 7.2 Hz, 1H), 3.56 (s, 1H), 3.41 (m, 4H), 3.03 (t, J = 2.4 

Hz, 2H), 2.95 (m, rotamer A+B, 3H), 2.85 (bs, rotamer A, 3H), 2.75 (bs, rotamer B, 3H), 2.11 

(m, 1H), 1.42 (m, 12H), 0.99 (d, J = 7.0 Hz, 3H), 0.96 ppm (d, J = 6.9 Hz, 3H); 13C NMR (101 

MHz, MeOD + DMSO-d6) δ 173.6, 173.3, 172.9, 160.2, 139.3, 130.0, 129.7, 121.0, 110.0, 

101.8, 79.9, 77.2, 68.1, 67.9, 60.4, 56.7, 51.0, 43.6, 35.6, 35.3, 34.7, 31.9, 28.8, 19.8, 18.7, 

18.1 ppm. 
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[3,5-bis(propynyloxy)phenylacetyl]-Val-Ala-PTX (101) 

 

Compound 106 (75 mg, 0.1 mmol, 1 eq) was deprotected following the General Procedure 

GP1. The corresponding trifluoroacetate salt was dissolved in dry DMF (2 mL) and iPr2NEt 

(52 µL, 0.3 mmol, 3 eq). The resulting solution was added at 0 °C to a stirred solution of 83 

(204 mg, 0.2 mmol, 2 eq) in dry DMF (1 mL), under a nitrogen atmosphere. The reaction was 

then allowed to reach room temperature and stirred overnight. AcOEt (100 mL) was added 

and the solution was washed with a 1 M aqueous solution of KHSO4 (2  10 mL) and brine (1 

 15 mL). The organic phase was dried over Na2SO4 and concentrated, then the crude was 

purified by a Grace Reveleris system (column: Reveleris Silica HP 12 g, dry load, flow rate: 

25 mL min−1, ramp from 0% to 15% of MeOH in CH2Cl2 in 15 min) to afford carbamate 101 

as a white solid (116 mg, 77% yield). 

Rf = 0.22 (100 % AcOEt); 1H NMR (500 MHz, DMSO-d6) δ 9.94 (s, 1H), 9.20 (d, J = 8.8 Hz, 

rotamer A, 1H), 9.13 (d, J = 8.7 Hz, rotamer B, 1H), 8.23 (d, J = 6.7 Hz, 1H), 8.07 (d, J = 8.7 

Hz, 1H), 7.98 (m, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.78 – 7.69 (m, 1H), 7.65 (m, 2H), 7.60 – 

7.52 (m, 3H), 7.52 – 7.40 (m, 6H), 7.29 – 7.15 (m, 3H), 6.54 (d, J = 2.2 Hz, 2H), 6.49 (t, J = 

2.2 Hz, 1H), 6.31 (s, 1H), 5.86 (m, rotamer A, 1H), 5.61 (m, rotamer B, 1H), 5.42 (d, J = 6.9 

Hz, 1H), 5.27 (m, rotamer A, 1H), 5.17 (m, rotamer B,1H), 5.02 – 4.81 (m, 4H), 4.73 (d, J = 

2.3 Hz, 4H), 4.60 (m, 1H), 4.40 (m, 1H), 4.21 (m, 1H), 4.11 (m, 1H), 4.07 – 3.97 (m, 2H), 3.59 

(d, J = 4.3 Hz, 1H), 3.54 (t, J = 2.3 Hz, 1H), 3.45 (dd, J = 40.6, 13.8 Hz, 3H), 3.19 (m, 1H), 

2.77 (m, 6H), 2.38 – 2.21 (m, 4H), 2.14 – 2.02 (m, 3H), 1.98 (dq, J = 13.5, 6.8 Hz, 1H), 1.89 – 

1.77 (m, 4H), 1.63 (t, J = 11.7 Hz, 1H), 1.50 (s, 4H), 1.30 (d, J = 7.0 Hz, 3H), 1.24 (s, 1H), 

1.08 – 0.98 (m, 6H), 0.85 ppm (dd, J = 15.8, 6.7 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 

202.3, 171.0, 170.8, 169.8, 169.5, 168.7, 166.5, 166.3, 165.2, 158.1, 155.5, 155.2, 154.6, 

154.6, 139.9, 139.7, 138.8, 138.6, 137.3, 134.4, 134.2, 133.4, 133.2, 133.1, 131.5, 131.4, 

130.0, 129.7, 129.5, 128.6, 128.2, 128.1, 127.7, 127.3, 119.0, 108.7, 99.9, 83.6, 80.2, 79.1, 

78.1, 76.8, 76.7, 75.5, 75.2, 74.7, 74.5, 70.5, 70.3, 66.0, 57.5, 57.3, 55.4, 54.0, 49.0, 46.3, 

46.0, 42.9, 42.2, 36.5, 35.4, 34.8, 34.4, 33.9, 33.8, 30.6, 26.3, 22.4, 21.4, 20.6, 19.1, 18.1, 
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17.8, 13.8, 9.7 ppm; MS (ESI+) m/z calcd for [C82H92N6NaO22]
+: 1535.62 (M+Na)+; found: 

1535.89. 

azido-tetraethylene glycol-N-hydroxysuccinimidyl ester (110):  

 

Carboxylic acid 109 (77 mg, 0.28 mmol, 1 eq) was dissolved in dry THF and cooled to 0 °C 

under a nitrogen atmosphere. EDC∙HCl (69 mg, 0.36 mmol, 1.3 eq) and NHS (41 mg, 0.36 

mmol, 1.3 eq) were added and the mixture was allowed to reach room temperature and 

stirred overnight. The solvent was removed and the crude was purified over a pad of silica 

[eluent: 8:2 AcOEt/hexane] affording NHS-ester 110 (67 mg, 64% yield).  

Rf = 0.43 (9:1 CH2Cl2/MeOH). MS (ESI+): m/z calcd for [C14H22N4NaO8]
+: 397.13, [M+Na]+; 

found 397.19. 

cyclo[DKP-RGD]-tetraethylene glycol-azide (102):  

 

Ester 110 (17 mg, 4.5  10−2 mmol, 1.3 eq) was dissolved in acetonitrile (2 mL) under a 

nitrogen atmosphere and cooled to 0 °C. A solution of 70 (30 mg, 3.5  10−2  mmol, 1 eq) in 

PBS (1.5 mL; pH 7.5) was added to the acetonitrile solution, and the pH value was adjusted 

to 7.3-7.6 with NaOH (0.2 M). The resulting solution was warmed to room temperature and 

stirred overnight. During the first 5 h, the pH value was kept near to 7.3 by adding 0.2 M 

aqueous NaOH if necessary. The solution was concentrated, and the crude residue was 

purified by semipreparative HPLC [Waters Atlantis 21 mm  10 cm column, flow: 9 mL min−1, 

gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 55% (H2O + 

0.1% CF3COOH) / 45% (CH3CN + 0.1% CF3COOH) in 10 min; tR (product): 8.3 min]. The 

purified product was then freeze dried to give azide 102 as a white solid (27 mg, 77% yield).  
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1H NMR (400 MHz, D2O) δ 7.36 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 5.12 (d, J = 15.4 

Hz, 1H), 4.90 (t, J = 7.1 Hz, 1H), 4.59 (dd, J = 7.9, 5.4 Hz, 1H), 4.48 (s, 2H), 4.34 (d, J = 17.1 

Hz, 1H), 4.22 (dd, J = 9.6, 5.2 Hz, 1H), 4.19-4.11 (m, 4H), 4.01 (d, J = 14.6 Hz, 1H), 3.80-

3.75 (m, 3H), 3.75-3.69 (m, 3H), 3.69–3.59 (m, 10H), 3.47-3.43 (m, 2H), 3.25 (t, J = 6.8 Hz, 

2H), 3.01-2.88 (m, 2H), 2.81 (dd, J = 16.9, 7.1 Hz, 1H), 2.67 (dd, J = 14.0, 5.4 Hz, 1H), 2.08-

1.97 (m, 1H), 1.90-1.78 (m, 1H), 1.77-1.60 ppm (m, 2H); 13C NMR (101 MHz, D2O) δ 174.1, 

173.9, 173.1, 172.8, 172.7, 170.9, 170.1, 168.6, 156.8, 137.8, 134.1, 128.1, 127.8, 70.5, 

69.5, 69.2, 59.3, 54.0, 52.1, 50.1, 49.4, 47.6, 42.5, 42.2, 40.6, 39.2, 38.0, 34.6, 25.8, 24.7 

ppm; MS (ESI+) m/z calcd for [C37H56N13O13]
+: 890.41 [M+H]+; found: 890.47; m/z calcd 

[C37H55N13NaO13]
+: 912.39 [M+Na]+; found: 912.45. 

[cyclo(DKP-RGD)]2Val-Ala-PTX (100) 

 

bis-alkyne 101 (5 mg, 33.2  10−3 mmol, 1 eq) and azide 102 (10 mg, 9.96  10−3 mmol, 3 

eq) were dissolved in a degased 1:1 mixture of H2O/DMF (400 μL) under a nitrogen 

atmosphere. Degased aqueous solutions of CuSO4·5H2O (0.017 M, 96 μL, 0.5 eq) and 

sodium ascorbate (0.03 M, 96 μL, 0.6 eq) were added in the darkness at room temperature 

and the mixture was stirred overnight. The solvent was removed under vacuum, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm  10 cm 

column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% CF3COOH) to 100% 

(CH3CN+0.1% CF3COOH) in 17 min; tR (product) = 15.8 min]. The purified product was then 

freeze-dried to give the desired compound 100 as a white solid (11 mg, quantitative yield).  
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MS (ESI+): m/z calcd for [C156H204N32O48]
2+: 1646.73, [M+2H]2+; found 1647.02; MS (ESI+): 

m/z calcd for [C156H203N32NaO48]
2+: 1657.72, [M+H+Na]2+; found 1658.01; MS (MALDI): m/z 

calcd for [C156H203N32O48]
+: 3294,47 [M+H]+; found: 3291 (HCCA matrix), 3294 (SIN matrix); 

HRMS (ESI+): m/z calcd for [C156H204N32O48]
2+: 1646.7248, [M+2H]2+; found 1646.7260; m/z 

calcd for [C156H205N32O48]
3+ 1098.1523, [M+3H]3+ found 1098.1475. 

[cyclo(DKP-RGD)]1Val-Ala-PTX (111) 

 

Bis-alkyne 101 (50 mg, 33.0  10−3 mmol, 4 eq) and azide 102 (10 mg, 9.9  10−3 mmol, 1 

eq) were dissolved in a degased 2:1 H2O/DMF mixture (3 mL) under a nitrogen atmosphere. 

CuSO4·5H2O (2.93 mg, 9.96  10−3 mmol, 1 eq) and sodium ascorbate (2.37 mg, 11.95  

10−3 mmol, 1.2 eq) were added in the darkness at room temperature and the mixture was 

stirred overnight. The solvent was removed under vacuum, and the crude was treated with a 

1:1 H2O/CH3CN mixture. The white solid residue (excess of alkyne 101) was removed by 

centrifugation. The solution was concentrated and the crude was purified by semipreparative 

HPLC [Waters Atlantis 21 mm  10 cm column, flow: 10 mL min−1, gradient: 90% (H2O + 

0.1% CH3COOH)/10% (CH3CN + 0.1% CH3COOH) to 100% (CH3CN + 0.1% CH3COOH) in 

17 min; tR (product): 11.1 min]. The purified product was then freeze dried to give conjugate 

111 as a white solid (8.1 mg, 33% yield). 

MS (ESI+) m/z calcd for [C119H148N19NaO35]
2+: 1213.02 (M+H+Na)2+; found: 1213.32; m/z 

calcd for [C119H147N19Na2O35]
2+: 1224.01 (M+2Na)2+; found: 1224.34; MS (MALDI): m/z calcd 

for [C119H148N19O35]
+: 2404.55 [M+H]+; found: 2404.2 (HCCA matrix), 2405.6 (SIN matrix); 

HRMS (ESI+): m/z calcd for [C119H148N19O35]
+: 2403.0380 [M+H]+; found: 2403.0361; m/z 

calcd for [C119H149N19O35]
2+: 1202.0227 [M+2H]2+; found: 1202.0223.  
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cyclo[DKP-RGD]-Val-Cit-DNR (113) 

Fmoc-Val-Cit-OH (115) 

 

Fmoc-Val-OH (1,5 g, 4.4 mmol 1.1 eq) and NHS (560 mg, 4.9 mmol, 1.1 eq) were dissolved 

in dry THF (16 mL) under nitrogen atmosphere. The mixture was cooled to 0°C then DCC 

(3.08 g, 14.9 mmol) was added and the mixture was stirred at room temperature overnight. 

The solution was filtered over a cotton septum and it was concentrated at rotavapor affording 

Fmoc-Val-OSu as a white foam. The latter was suspended in DME (13 mL) and added to a 

13 mL aqueous solution of H-Cit-OH (850 mg, 4.9 mmol, 1.1 eq) and NaHCO3 (410 mg, 4.9 

mmol, 1.1 eq). THF (5 mL) was added and the mixture was stirred at room temperature 

overnight. The mixture was diluted with 15% aqueous citric acid (20 mL), and the organic 

layer was extracted with a 10% isopropanol/ethyl acetate (3  30 mL) mixture. The combined 

organic layers were washed with water (3  20 mL), and brine (1  20 mL). The organic 

phase was dried and concentrated. The crude was treated with Et2O (50 mL), filtered over a 

Büchner funnel and washed with ether, affording compound 115 (1.7 g, 75% yield). 

1H NMR (400 MHz, DMSO-d6) δ 12.52 (s, 1H), 8.16 (d, J = 7.3 Hz, 1H), 7.89 (d, J = 7.5 Hz, 

2H), 7.75 (t, J = 7.1 Hz, 2H), 7.49-7.27 (m, 5H), 5.93 (t, J = 5.6 Hz, 1H), 5.37 (s, 2H), 4.36-

4.19 (m, 3H), 4.15 (m, 1H), 3.92 (dd, J = 8.9, 7.3 Hz, 1H), 2.95 (m, 2H), 1.99 (m, 1H), 1.69 

(m, 1H), 1.57 (m, 1H), 1.40 (m, 2H), 1.52-1.28 (m, 2H), 0.89 (d, J = 6.9 Hz, 3H), 0.86 ppm (d, 

J = 6.7 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 173.4, 171.2, 158.7, 156.0, 143.9, 143.8, 

140.7, 127.6, 127.0, 125.3, 120.0, 65.6, 59.8, 51.8, 46.7, 38.7 (overlapped with solvent 

signal), 30.5, 28.4, 26.6, 19.1, 18.1 ppm. 

Fmoc-Val-Cit-N-[4-(hydroxymethyl)phenyl] (116) 

 

Fmoc-Val-Cit-OH (115, 800 mg, 1.6 mmol, 1 eq) was dissolved in a 22 mL of dry CH2Cl2 / dry 

MeOH 2:1 mixture under nitrogen atmosphere. EEDQ (800 mg, 3.2 mmol, 2 eq) and 4-



 Experimental Section 103 
 

 

 
 

aminobenzyl alcohol (390 mg, 3.2 mmol, 2 eq) were added and the mixture was stirred 

overnight at room temperature. After solvent removal, the crude was treated with Et2O (40 

mL), sonicated, filtered over a Büchner funnel and washed with ether, affording compound 

116 (800 mg, 82% yield).   

1H NMR (400 MHz, DMSO-d6) δ 9.98 (t, 1H), 8.11 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 7.5 Hz, 

2H), 7.74 (t, J = 7.8 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.50-7.37 (m, 3H), 7.32 (t, J = 7.2 Hz, 

2H), 7.23 (d, J = 8.4 Hz, 2H), 5.97 (t, J = 5.5 Hz, 1H), 5.41 (s, 2H), 5.10 (t, J = 5.6 Hz, 1H), 

4.47-4.37 (m, 3H), 4.36-4.18 (m, 3H), 3.93 (dd, J = 8.7, 7.2 Hz, 1H), 3.10-2.87 (m, 2H), 1.99 

(m, 1H), 1.71 (m, 1H), 1.59 (m, 1H), 1.52-1.28 (m, 2H), 0.88 (d, J = 6.8 Hz, 3H), 0.85 ppm (d, 

J = 6.8 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 171.3, 170.4, 158.9, 156.1, 143.9, 143.8, 

140.7, 137.5, 137.5, 127.7, 127.1, 126.9, 125.4, 120.1, 118.9, 65.7, 62.6, 60.1, 53.1, 46.7, 

38.6 (overlapped with solvent signal), 30.5, 29.6, 26.8, 19.2, 18.3 ppm. 

Fmoc-Val-Cit-N-[4-[[[(4-nitrophenoxy)carbonyl]oxy]methyl]phenyl] (117)

 

A solution of 116 (350 mg, 0.6 mmol, 1 eq) in dry DMF (3 mL) was sonicated and cooled at 0 

°C under nitrogen atmosphere. iPr2NEt (298 μL, 1.7 mmol, 3 eq) and bis(4-nitrophenyl) 

carbonate (530 mg, 1.7 mmol, 3 eq) were added, then the mixture was allowed to reach r.t. 

and stirred for 1 hour. The mixture was diluted with Et2O (70 mL), sonicated and filtered over 

a Büchner funnel. The solid was re-suspended in Et2O and the filtration was repeated, 

affording carbonate 117 (365 mg, 81% yield).   

1H NMR (400 MHz, DMSO-d6) δ 10.14 (s, 2H), 8.31 (d, J = 9.2 Hz, 2H), 8.14 (d, J = 7.4 Hz, 

1H), 7.89 (d, J = 7.5 Hz, 3H), 7.74 (t, J = 7.7 Hz, 3H), 7.65 (d, J = 8.5 Hz, 3H), 7.57 (d, J = 

9.2 Hz, 2H), 7.42 (t, J = 9.5 Hz, 4H), 7.32 (t, J = 7.4 Hz, 2H), 5.98 (t, J = 5.3 Hz, 1H), 5.41 (s, 

2H), 5.24 (s, 2H), 4.42 (m, 1H), 4.35-4.17 (m, 3H), 3.93 (dd, J = 8.8, 7.2 Hz, 1H), 3.09-2.88 

(m, 2H), 1.99 (m, 1H), 1.79-1.54 (m, 2H), 1.42 (d, J = 27.0 Hz, 2H), 0.89 (d, J = 6.7 Hz, 3H), 

0.86 ppm (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 171.3, 170.8, 158.9, 156.1, 

155.3, 152.0, 145.2, 143.9, 143.8, 140.7, 139.4, 129.5, 129.3, 127.7, 127.1, 125.4, 122.6, 

120.1, 119.0, 70.3, 65.7, 60.1, 53.1, 46.7, 38.9 (overlapped with solvent signal), 30.5, 29.4, 

26.8, 19.2, 18.3 ppm. 
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Fmoc-Val-Cit-N-[4-[[[(daunorubicin)carbonyl]oxy]methyl]phenyl] (118)  

 

Compound 117 (51 mg, 0.07 mmol, 1,5 eq) was dissolved in dry DMF (1 mL) under nitrogen 

atmosphere and cooled at 0 °C. A solution of Daunorubicin hydrochloride (25 mg, 0.05 mmol, 

1 eq) in dry DMF (1 mL) and iPr2NEt (15 μL, 0.9 mmol, 2 eq) were added to the cooled 

solution and the mixture was stirred at r.t. overnight. AcOEt (70 mL) was added, and the 

solution was washed with a 1 M aqueous solution of KHSO4 (2  10 mL), saturated aqueous 

NaHCO3 (2  10 mL) and brine (1  10 mL). The organic phase was dried and concentrated. 

The crude was suspended in a 9:1 mixture of CH2Cl2 / MeOH and centrifuged. The liquid 

fraction was concentrated and purified by flash chromatography (eluents: AcOEt/Hex/MeOH 

7:2:1, then CH2Cl2/MeOH 9:1), affording compound 118 (39 mg, 75% yield). 

Rf = 0.35 (CH2Cl2/MeOH, 9:1); 1H NMR (400 MHz, DMSO-d6) δ 14.02 (s, 1H), 13.27 (s, 1H), 

10.03 (s, 1H), 8.10 (d, J = 7.4 Hz, 1H), 7.95-7.81 (m, 3H), 7.73 (t, J = 7.9 Hz, 2H), 7.69 (m, 

1H), 7.54 (d, J = 8.4 Hz, 2H), 7.41 (dd, J = 14.1, 7.9 Hz, 2H), 7.36-7.27 (m, 2H), 7.24 (d, J = 

8.4 Hz, 2H), 6.84 (d, J = 8.0 Hz, 1H), 5.97 (t, J = 5.4 Hz, 1H), 5.54 (s, 1H), 5.40 (s, 2H), 5.22 

(m, 1H), 4.94 (m, 1H), 4.89 (s, 2H), 4.71 (d, J = 5.7 Hz, 1H), 4.40 (dd, J = 13.2, 7.6 Hz, 2H), 

4.35-4.13 (m, 4H), 3.97 (s, 3H), 3.91 (dd, J = 8.8, 7.1 Hz, 1H), 3.73 (m, 1H), 3.45 (m, 1H), 

3.06-2.86 (m, 4H), 2.27 (s, 3H), 2.21 (dd, J = 11.9, 2.8 Hz, 1H), 2.09 (dd, J = 14.1, 5.4 Hz, 

1H), 1.98 (m, 1H), 1.84 (dd, J = 12.6, 9.6 Hz, 1H), 1.68 (m, 1H), 1.58 (m, 1H), 1.48 (dd, J = 

12.4, 3.7 Hz, 1H), 1.44-1.30 (m, 2H), 1.13 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H), 0.84 

ppm (d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 211.8, 186.5, 171.3, 170.5, 160.8, 

158.9, 156.2, 155.3, 154.5, 143.9, 143.8, 140.7, 138.5, 136.2, 135.7, 134.7, 134.5, 131.9, 

128.5, 127.6, 127.1, 125.4, 120.1, 119.7, 118.9, 110.8, 110.7, 100.2, 75.2, 70.1, 68.0, 66.7, 

65.7, 64.9, 60.1, 56.6, 53.1, 47.2, 46.7, 38.6, 36.2, 31.6, 30.4, 29.9, 29.5, 29.0, 26.8, 24.1, 

19.2, 18.3, 17.0 ppm. MS (ESI) m/z calcd for [C61H66N6NaO17]
+: 1177.44 [M+Na]+; found: 

1177.6; MS (ESI) m/z calcd [C61H65N6O17]
-: 1153.44 [M-H]−; found: 1153.8. 
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4-pentynoic amide-N-[4-[[[(daunorubicin)carbonyl]oxy]methyl]phenyl] (119)  

 

Compound 118 was deprotected following GP2 (reaction time: 3 min) and purified by 

semipreparative-HPLC [Water's Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% 

CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 11 

min; product peak at 5.7 min]. The corresponding mono-acetate salt (NH-118) was freeze 

dried and used in the following step. 4-pentynoic acid (4 mg, 3.9  10−2 mmol, 1.5 eq) was 

dissolved in dry DMF (500 μL) under nitrogen atmosphere and cooled at 0 °C. HATU (16 mg, 

4.2  10−2 mmol, 1.6 eq), HOAt (6 mg, 4.2  10−2 mmol, 1.6 eq) and iPr2NEt (13 μL, 7.8  

10−2 mmol, 3 eq) were added and the mixture was stirred at 0 °C for 15 min. NH-118 (26 mg, 

2.6  10−2 mmol, 1 eq) and iPr2NEt (5 μL, 2.6  10−2 mmol, 1 eq) were dissolved in dry DMF 

(1 mL) and added to the cooled solution. The mixture was stirred overnight at r.t under 

nitrogen atmosphere. The solvent was removed under high-vacuum and the crude was 

purified by flash chromatography (gradient from CH2Cl2 / MeOH 9:1 to CH2Cl2 / MeOH 

88:12), affording amide 119 (22 mg, 83% yield). 

Rf = 0.76 (CH2Cl2/MeOH, 8:2); 1H NMR (400 MHz, DMSO-d6) δ 14.03 (s, 1H), 13.29 (s, 1H), 

9.95 (s, 1H), 8.11 (d, J = 7.5 Hz, 1H), 7.96-7.85 (m, 3H), 7.65 (t, J = 4.8 Hz, 1H), 7.55 (d, J = 

8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 7.9 Hz, 1H), 5.99 (t, J = 5.7 Hz, 1H), 5.54 

(bs, 1H), 5.40 (bs, 2H), 5.22 (s, 1H), 4.99-4.91 (m, 1H), 4.91-4.82 (m, 2H), 4.70 (bs, 1H), 

4.35 (dd, J = 13.4, 7.5 Hz, 1H), 4.26-4.12 (m, 2H), 3.98 (s, 3H), 3.70 (m, 1H), 3.44 (s, 1H), 

3.04-2.88 (m, 4H), 2.74 (s, 1H), 2.46-2.31 (m, 4H), 2.26 (s, 3H), 2.20 (m, 1H), 2.10 (dd, J = 

14.1, 5.5 Hz, 1H), 1.96 (m, 1H), 1.84 (m, 1H), 1.67 (s, 1H), 1.57 (m, 1H), 1.47 (dd, J = 12.3, 

3.3 Hz, 1H), 1.44-1.29 (m, 2H), 1.12 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.82 ppm 

(d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 211.9, 186.5, 186.4, 171.2, 170.6, 

160.8, 158.9, 156.2, 155.3, 154.5, 138.6, 136.2, 135.7, 134.6, 134.5, 131.8, 128.5, 120.0, 

119.7, 118.9, 110.7, 110.6, 100.3, 83.8, 75.2, 71.3, 70.1, 68.0, 66.7, 64.9, 57.6, 56.6, 53.1, 

47.2, 41.6, 38.6, 36.2, 34.0, 33.0, 31.6, 30.5, 29.9, 29.2, 29.0, 26.8, 24.1, 19.2, 18.2, 17.0, 

14.3, 13.9 ppm.  
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cyclo[DKP-RGD]-Val-Cit-DNR (113) 

 

To a suspention of compound 102 (10 mg, 9.9  10−3 mmol, 1 eq) and 119 (16 mg, 14.9  

10−3 mmol, 1.5 eq) in tBuOH (200 μL) and H2O (22 μL) were added a 0.05 M aqueous 

solution of CuSO4 (120 μL, 0.6 eq) and a 0.05 M aqueous solution of sodium ascorbate (179 

μL, 0.8 eq). Dry DMF (50 μL) was added to help the dissolution, then the mixture was 

sonicated under nitrogen atmosphere for 2 min and stirred at r.t. overnight. The mixture was 

concentrated and purified by semipreparative-HPLC [Water's Atlantis 21 mm  10 cm 

column, gradient: 85% (H2O + 0.1% CH3COOH) / 15% (CH3CN + 0.1% CH3COOH) to 30% 

(H2O + 0.1% CH3COOH) / 70% (CH3CN + 0.1% CH3COOH) in 14 min; product peak at 8.5 

min]. The pure fractions were partially concentrated at rotavapor to remove CH3CN, then the 

aqueous solution was freeze dried to yield the desired compound 113 as a flurry red solid (6 

mg, 31% yield).    

MS (ESI) m/z calcd for [C88H116N19O29]
+: 1902.82 [M+H]+; found: 1902.79; MS (ESI) m/z calcd 

for [C88H117N19O29]
2+: 951.91 [M+2H]2+; found: 951.97; m/z calcd [C88H116N19NaO29]

2+: 962.90 

[M+H+Na]2+; found: 962.91; MS (MALDI) m/z calcd for [C88H116N19O29]
+: 1903.97 a.m.u. 

[M+H]+; found: 1903.7 (HCCA matrix), 1904.5 (SIN matrix). HRMS (ESI+): m/z calcd for 

[C88H116N19O29]
+: 1902.8181 [M+H]+; found: 1902.8181; m/z calcd for [C88H117N19O29]

2+: 

951.9127 [M+2H]2+; found: 951.9123. 
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RGD-Naph-SS-CPT (121, 126) 

tert-butyl 3-(4-nitro-1,8-naphthalimide)propanoate (132) 

 

A solution of β-alanine tert-butyl ester hydrochloride (217 mg, 1.2 mmol, 1.5 eq), 4-nitro-1,8-

naphthalic anhydride (200 mg, 0.8 mmol, 1 eq) and Et3N (0.176 mL, 1.28 mmol, 1.6 eq) in 

dry EtOH (4 mL) was heated to reflux and stirred for 3 h under a nitrogen atmosphere. The 

reaction mixture was diluted with AcOEt (100 mL) and washed with a 1 M aqueous solution of 

KHSO4 (3  20 mL) and brine (1  20 mL). The organic phase was dried and concentrated. 

The crude was purified by flash chromatography on silica gel (0.5% MeOH in CH2Cl2) 

affording imide 132, as a yellow solid (260 mg, 90% yield). 

Rf= 0.33 (0.2% MeOH in CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 8.83 (dd, J = 8.8, 1.1 Hz, 1H), 

8.73 (dd, J = 7.3, 1.0 Hz, 1H), 8.69 (d, J = 8.0 Hz, 1H), 8.40 (d, J = 8.0 Hz, 1H), 7.98 (dd, J = 

8.7, 7.3 Hz, 1H), 4.46 (d, J = 15.0 Hz, 2H), 2.72-2.66 (m, 2H), 1.42 ppm (s, 9H); 13C NMR 

(101 MHz, CDCl3) δ 170.3, 163.1, 162.3, 149.7, 132.6, 130.0, 129.9, 129.5, 129.1, 126.9, 

124.0, 123.7, 122.9, 81.1 ppm. 

tert-butyl 3-(4-amino-1,8-naphthalimide)propanoate (125)  

 

To a suspension of 132 (100 mg, 0.27 mmol, 1 eq) in dry EtOH (3 mL), SnCl2 (213 mg, 1.12 

mmol, 4.2 eq) was added portionwise over a period of 1 h under a nitrogen atmosphere at 

room temperature. The color of the reaction mixture changed from yellow to red and as the 

reaction progresses and it slowly turned limpid. The solution was diluted with AcOEt (100 

mL) and a saturated aqueous solution of NaHCO3 (20 mL) was added. The white precipitate 

was filtered over cotton, then the two layers were separated. The organic phase was further 

washed with a saturated aqueous solution of NaHCO3 (2  20 mL) and brine (1  25 mL). 

The organic phase was dried and concentrated. The crude was purified over a pad of silica 

(eluent: 4:6 hexane/AcOEt), affording amine 125, as a red solid (90 mg, quantitative yield). 
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Rf= 0.27 (6:4 AcOEt/hexane); 1H NMR (400 MHz, MeOD) δ 8.52 (dd, J = 7.3, 1.0 Hz, 1H), 

8.43 (d, J = 8.4 Hz, 1H), 8.32 (dd, J = 8.4, 1.0 Hz, 1H), 7.66 (dd, J = 8.4, 7.3 Hz, 1H), 7.34 (d, 

J = 8.4 Hz, 1H), 4.38 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 1.37 ppm (s, 9H); 13C NMR 

(101 MHz, MeOD) δ 172.6, 165.9, 165.4, 154.5, 135.4, 132.1, 130.5, 129.1, 125.9, 123.3, 

120.1, 112.1, 106.6, 82.0, 37.1, 35.1, 28.2 ppm. 

tert-butyl 3-[4-(2-hydroxyethyl-SS)-1,8-naphthalimide]propanoate (133)  

 

Triphosgene (130 mg, 0.441 mmol, 3 eq) was added to a solution of amine 125 (50 mg, 

0.147 mmol, 1 eq) in dry toluene (1 mL) under a nitrogen atmosphere. The reaction mixture 

was cooled to 0 °C and iPr2NEt (75 µL, 0.441 mmol, 3 eq) was added dropwise. The mixture 

was allowed to reach room temperature and stirred for 2 h. A solution of 2,2’-dithioethanol 

(89 µL, 0.735 mmol, 5 eq) in a 1:1 CH2Cl2/THF mixture (1 mL) was added and the reaction 

was stirred overnight at room temperature. AcOEt (100 mL) was added and the solution was 

washed with a 1 M aqueous solution of KHSO4 (1  20 mL). The organic phase was dried 

and concentrated, then the crude was purified by a Grace Reveleris system (column: 

Reveleris Silica HP 12 g, dry load, flow rate: 27 mL min−1, ramp from 100% hexane to 70% 

AcOEt in 15 min) affording carbamate 133, as a yellow solid (29 mg, 38% yield). 

Rf= 0.27 (6:4 AcOEt/hexane); 1H NMR (400 MHz, MeOD) δ 8.44-8.39 (m, 2H), 8.33 (d, J = 

8.3 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.69 (dd, J = 8.6, 7.3 Hz, 1H), 4.53 (t, J = 6.5 Hz, 2H), 

4.32 (t, J = 7.4 Hz, 2H), 3.83 (t, J = 6.4 Hz, 2H), 3.10 (t, J = 6.5 Hz, 2H), 2.91 (t, J = 6.4 Hz, 

2H), 2.62 (t, J = 7.4 Hz, 2H), 1.39 ppm (s, 9H); 13C NMR (101 MHz, MeOD) δ 172.5, 165.3, 

164.8, 155.6, 142.1, 133.1, 132.2, 129.9, 129.6, 127.5, 125.1, 123.7, 118.9, 118.4, 82.1, 

64.8, 61.3, 42.3, 38.4, 37.2, 34.9, 28.2 ppm. MS (ESI): m/z calcd for [C24H28N2NaO7S2]
+: 

543.12 [M+Na]+; found: 543.2. 
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Camptothecin-SS-naphthalimide(tert-butyl 3-aminopropanoate) (120) 

 

A solution of alcohol 133 (33 mg, 0.063 mmol, 1.5 eq) in dry CH2Cl2 (3 mL) was cooled to 0 

°C under a nitrogen atmosphere, then (4-nitrophenoxycarbonyl)-camptothecin (130, 22 mg, 

0.042 mmol, 1eq) and DMAP (10 mg, 0.084 mmol, 2 eq) were added. The mixture was 

allowed to reach room temperature and stirred overnight. The reaction mixture was diluted 

with AcOEt (70 mL) and washed with a 1 M aqueous solution of KHSO4 (3  20 mL) and 

brine (1  20 mL). The organic phase was dried and concentrated, the crude was then 

purified by a Grace Reveleris system (column: Reveleris Silica HP 12 g, dry load, flow rate: 

25 mL min−1, ramp from 100% hexane to 100% AcOEt in 20 min) to afford carbonate 120 as 

a yellow solid (22 mg, 58% yield). 

Rf= 0.32 (9:1 AcOEt/hexane); 1H NMR (400 MHz, CD2Cl2) δ 8.51 (d, J = 7.2 Hz, 1H), 8.42 (t, 

J = 6.3 Hz, 1H), 8.33 (d, J = 14.3 Hz, 1H), 8.29 (d, J = 8.5 Hz, 1H), 8.12 (dd, J = 19.5, 11.9 

Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.5 Hz, 1H), 7.65 (dt, J = 9.9, 7.7 Hz, 2H), 7.27 

(s, 1H), 5.43-5.18 (m, 2H), 5.07 (dd, J = 48.3, 19.0 Hz, 2H)., 4.54 (m, 1H), 4.47-4.23 (m, 5H), 

3.02 (dt, J = 17.3, 5.9 Hz, 3H), 2.62 (dd, J = 16.4, 8.9 Hz, 2H), 2.25-2.01 (m, 2H), 1.40 (d, J = 

4.4 Hz, 9H), 0.96 ppm (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CD2Cl2) δ 170.9, 167.7, 164.2, 

163.7, 157.4, 154.2, 153.3, 152.7, 149.2, 147.0, 145.9, 139.9, 132.4, 131.6, 131.4, 131.0, 

129.8, 129.2, 129.1, 128.7, 128.7, 128.4, 127.2, 126.8, 123.5, 123.4, 120.3, 118.0, 116.8, 

96.0, 81.0, 78.8, 67.3, 66.9, 63.6, 50.4, 38.1, 37.2, 36.5, 34.2, 32.0, 30.1, 28.2, 7.8 ppm. MS 

(ESI): m/z calcd for [C45H43N4O12S2]
+: 895.23 [M+H]+; found: 895.5. 
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Camptothecin-SS-naphthalimide(3-aminopropionic acid) (134)  

 

A solution of tert-butyl ester 120 (35 mg, 0.04 mmol) in dry CH2Cl2 (2 mL) was cooled to 0 °C 

under a nitrogen atmosphere and TFA (1 mL) was added. The mixture was allowed to reach 

room temperature and stirred for 45 min. The crude was purified by flash chromatography on 

silica gel (gradient from 1% MeOH to 10% MeOH + 1% HCOOH in CH2Cl2) affording 

carboxylic acid 134, as a yellow solid (16 mg, 45% yield). 

Rf= 0.46 (9:1 CH2Cl2/MeOH); 1H NMR (400 MHz, DMSO-d6) δ 8.59 (t, J = 7.0 Hz, 2H), 8.43 

(m, 1H), 8.37 (dd, J = 8.0, 5.9 Hz, 1H), 8.14-8.00 (m, 3H), 7.77 (ddd, J = 34.1, 17.7, 9.5 Hz, 

2H), 7.65 (dd, J = 10.0, 5.0 Hz, 1H), 7.07 (m, 1H), 5.74 (t, J = 2.1 Hz, 1H), 5.51 (s, 2H), 5.28-

5.13 (m, 2H), 4.46-4.30 (m, 4H), 4.29-4.18 (m, 2H), 3.07 (dd, J = 13.1, 7.1 Hz, 3H), 2.24-2.10 

(m, 2H), 0.96-0.87 ppm (m, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.1, 163.4, 162.8, 

156.5, 153.7, 152.8, 152.1, 147.8, 146.2, 144.8, 140.5, 131.5, 130.8, 130.4, 129.6, 129.3, 

129.0, 128.5, 128.2, 128.0, 127.7, 126.2, 123.9, 122.2, 119.2, 118.4, 117.1, 94.5, 78.0, 66.4, 

62.8, 50.2, 36.8, 36.4, 33.8, 30.3, 29.0, 7.5 ppm. MS (ESI): m/z calcd for [C41H35N4O12S2]
+: 

839.17 [M+H]+; found: 839.3. 

cyclo[RGDyK]-Naph-SS-CPT (121)  

 

To a solution of carboxylic acid 134 (11.3 mg, 13.5  10−3 mmol, 1.5 eq) in dry DMF (500 µL) 

under a nitrogen atmosphere, NHS (2.1 mg, 18.0  10−3 mmol, 2 eq) was added and the 

reaction mixture was cooled to 0 °C. DIC (2.79 µL, 18.0  10−3 mmol, 2 eq) was added to the 

solution and the mixture was then stirred overnight at room temperature. Approximately half 

of the solvent was removed under high vacuum. CH3CN (600 µL) and a solution of 
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cyclo(RGDyK) (FutureChem Co., Ltd., 7.6 mg, 9.0  10−3 mmol, 1 eq) in pH 7.5 PBS (600 µL) 

were then added. The reaction mixture was stirred overnight at room temperature; during the 

first 3 h the pH value was kept near 7.3-7.5 adding 0.2 M aqueous NaOH when necessary. 

The crude was then purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 cm 

column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 15% 

(H2O + 0.1% CF3COOH) / 85% (CH3CN + 0.1% CF3COOH) in 10 min; tR (product): 7.25 min]. 

The purified product was then freeze dried to give 121 as a yellow solid (5 mg, 34% yield). 

MS (ESI): m/z calcd for [C68H74N13O19S2]
+: 1440.47 [M+H]+; found: 1440.6; MS (MALDI): m/z 

calcd for [C68H74N13O19S2]
+: 1441.52 [M+H]+; found: 1441.1 (HCCA matrix). 

cyclo[DKP-RGD]-Naph-SS-CPT (126) 

 

To a solution of carboxylic acid 134 (10 mg, 11.9  10−3 mmol, 1 eq) in dry DMF (600 µL) 

under a nitrogen atmosphere, NHS (1.8 mg, 15.5  10−3 mmol, 1.3 eq) was added and the 

reaction mixture was cooled to 0 °C. DIC (2.4 µL, 15.5  10−3 mmol, 1.3 eq) was added to the 

solution and the mixture was then stirred overnight at room temperature. Approximately half 

of the solvent was removed under high vacuum. Then CH3CN (700 µL) and a solution of 

cyclo[DKP-RGD]-CH2NH2 (70, 11 mg, 13.1  10−3 mmol, 1.1 eq) in pH 7.5 PBS (700 µL) 

were added. The reaction mixture was stirred overnight at room temperature; during the first 

3 h the pH value was kept near 7.3-7.5 adding 0.2 M aqueous NaOH when necessary. The 

crude was then purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 cm column, 

gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 15% (H2O + 

0.1% CF3COOH) / 85% (CH3CN + 0.1% CF3COOH) in 10 min; tR (product): 7.1 min]. The 

purified product was then freeze dried to give 126 as a yellow solid (5.5 mg, 25% yield). 

MS (ESI): m/z calcd for [C68H71N14O19S2]
+: 1451.45 [M+H]+; found: 1451.5; MS (MALDI): m/z 

calcd for [C68H71N14O19S2]
+: 1452.50 [M+H]+; found: 1452.2 (HCCA matrix); HRMS (ESI+): 

m/z calcd for [C68H71N14O19S]+: 1451.4456 [M+H]+; found 1451.4458; m/z calcd for 

[C68H72N14O19S2]
2+: 726.2265 [M+2H]2+; found 726.2243.  
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cyclo[DKP-RGD]-SS-CPT (127) 

2-hydroxyethyl-SS-(tert-butyl 3-aminopropanoate) (137) 

 

To a solution of 2,2’-dithioethanol (135, 139 mg, 0.9 mmol, 3 eq) in CH2Cl2 (15 mL), iPr2NEt 

(56 µL, 0.33 mmol, 1.1 eq) was added. 4-nitrophenyl chloroformate (60 mg, 0.3 mmol, 1 eq) 

was added at 0 °C and the reaction mixture was stirred overnight at room temperature. A 

solution of β-alanine tert-butyl ester hydrochloride (120 mg, 0.66 mmol, 2.2 eq) and iPr2NEt 

(133 µL, 0.78 mmol, 2.6 eq) in CH2Cl2 (12 mL) was then added and the reaction was stirred 

overnight at room temperature. AcOEt (100 mL) was added and the solution was washed 

with a 1 M aqueous solution of KHSO4 (1  20 mL). The organic phase was dried over 

Na2SO4 and concentrated. The crude was purified by a Grace Reveleris system (column: 

Reveleris Silica 12 g, dry load, flow rate: 30 mL min−1; ramp from 100% hexane to 100% 

AcOEt in 20 min) to afford 2-hydroxyethyl-SS-(tert-buthyl 3-aminopropanoate (137) as a pale 

yellow solid (62 mg, 63% yield).  

Rf: 0.29 (6:4 AcOEt/hexane); 1H NMR (400 MHz, MeOD) δ 4.29 (t, J = 6.5 Hz, 2H), 3.80 (t, J 

= 6.5 Hz, 2H), 3.34 (t, J = 6.8 Hz, 2H), 2.95 (t, J = 6.5 Hz, 2H), 2.87 (t, J = 6.5 Hz, 2H), 2.45 

(t, J = 6.8 Hz, 2H), 1.47 ppm (s, 9H); 13C NMR (101 MHz, MeOD) δ 172.8, 158.5, 81.9, 63.9, 

61.2, 42.2, 38.6, 37.8, 36.6, 28.4 ppm. 

Camptothecin-SS-(tert-butyl 3-aminopropanoate) (138)  

 

To a solution of CPT derivative 130 (56 mg, 0.11 mmol, 1 eq) in dry CH2Cl2 (8 mL) under a 

nitrogen atmosphere, alcohol 137 (81 mg, 0.25 mmol, 2.2 eq) and DMAP (47 mg, 0.385 

mmol, 3.5 eq) were added at 0 °C and the mixture was stirred overnight at room 

temperature. The reaction mixture was diluted with AcOEt (75 mL) and washed with a 1 M 

aqueous solution of KHSO4 (2  20 mL) and brine (1  25 mL). The organic phase was dried 

over Na2SO4 and concentrated. The crude was purified by a Grace Reveleris system 

(column: Reveleris Silica HP 12 g, dry load, flow rate: 25 mL min−1, ramp from 100% hexane 
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to 100% AcOEt in 20 min) to afford compound carbonate 138 as a pale yellow solid (45 mg, 

58% yield).  

Rf= 0.31 (100% AcOEt); 1H NMR (400 MHz, CD2Cl2) δ 8.42 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 

7.97 (d, J = 7.5 Hz, 1H), 7.84 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.68 (ddd, J = 7.5, 6.9, 1.4 Hz, 

1H), 7.28 (s, 1H), 5.65 (d, J = 17.1 Hz, 1H), 5.36 (d, J = 17.1 Hz, 1H), 5.28 (bs, 2H), 4.37 (t, J 

= 6.5 Hz, 2H), 4.18 (dt, J = 6.3 Hz, 2H), 3.32 (dt, J = 6.3 Hz, 2H), 2.94 (t, J = 6.5 Hz, 2H), 

2.88 (t, J = 6.3 Hz, 2H), 2.39 (t, J = 6.3 Hz, 2H), 2.25 (dq, J = 15, 7.5 Hz, 1H), 2.15 (dq, J = 

15, 7.5 Hz, 1H), 1.42 (s, 9H), 1.00 ppm (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CD2Cl2) δ 

171.8, 167.7, 157.6, 153.8, 152.9, 149.2, 147.0, 145.8, 131.6, 130.9, 129.9, 129.2, 128.7, 

128.7, 128.3, 120.4, 95.9, 81.1, 78.5, 67.5, 66.9, 62.8, 50.4, 38.3, 37.2, 37.1, 35.9, 32.1, 

30.1, 28.2, 7.8 ppm. MS (ESI): m/z calcd for [C33H37N3NaO10S2]
+: 722.18 [M+Na]+; found: 

722.31. 

Camptothecin-SS-(3-aminopropanoic acid) (139)  

 

A solution of tert-butyl ester 138 (45 mg, 0.064 mmol) in dry CH2Cl2 (3.5 mL) was cooled to 0 

°C under a nitrogen atmosphere and TFA (1.75 mL) was added. The mixture was then 

allowed to reach room temperature and stirred for 90 min. The crude was purified by flash 

chromatography on silica gel (gradient from 1% MeOH to 10% MeOH + 1% HCCOH in 

CH2Cl2) affording carboxylic acid 139, as a pale yellow solid (30 mg, 75% yield).  

Rf= 0.40 (9:1 CH2Cl2/MeOH). MS (ESI): m/z calcd for [C29H29N3NaO10S2]
+: 666.12 [M+Na]+; 

found: 666.40; m/z calcd for [C29H28N3Na2O10S2]
+: 688.10 [M+Na−H]+; found: 688.39. 
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cyclo[DKP-RGD]-SS-CPT (127)  

 

DIC (8 µL, 5.2  10−2 mmol, 4 eq) and NHS (6 mg, 5.2  10−2 mmol, 4 eq) were added to a 

solution of carboxylic acid 139 (30 mg, 4.7  10−2 mmol, 3.5 eq) in dry DMF (1 mL). The 

resulting solution was stirred overnight under a nitrogen atmosphere. Approximately half of 

the solvent was removed under high vacuum. Then acetonitrile (600 µL) was added and the 

mixture was cooled to 0 °C. A solution of cyclo[DKP-RGD]-CH2NH2 (70, 11 mg, 1.3  10−2 

mmol, 1 eq) in PBS (600 µL; pH 7.5) was then added to the acetonitrile solution, and the pH 

value was adjusted to 7.3-7.6 with NaOH aq. (0.2 M). The resulting solution was warmed to 

room temperature and stirred overnight. During the first 5 h, the pH value was kept near to 

7.3 by adding 0.2 M aqueous NaOH if necessary. The solution was concentrated, and the 

crude residue was purified by semipreparative HPLC [Waters Atlantis 21 mm  10 cm 

column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 0.1% CF3COOH) to 100% 

(CH3CN + 0.1% CF3COOH) in 13 min; tR (product): 7.3 min]. The purified product was then 

freeze dried to give 127 as a yellow solid (7 mg, 43% yield). 

1H NMR (500 MHz, DMSO-d6 + D2O) δ 8.67 (s, 1H), 8.14 (d, J = 8.7 Hz, 1H), 8.10 (d, J = 7.0 

Hz, 1H), 7.86 (ddd, J = 8.7, 7.0, 1.1 Hz, 1H), 7.71 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.19 (d, J = 

8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.12 (s, 1H), 5.50 (s, 2H), 5.29 (s, 2H), 4.98 (d, J = 15.1 

Hz, 1H), 4.79 (dd, J = 9.2, 5.8 Hz, 1H), 4.37 (m, 1H), 4.34-4.27 (m, 2H), 4.22 (d, J = 17.1 Hz, 

1H), 4.20 (s, 2H), 4.12-4.03 (m, 2H), 3.85 (d, J = 15.1 Hz, 1H), 3.80-3.75 (m, 2H), 3.72 (d, J 

= 13.7 Hz, 1H), 3.47 (dd, J = 14.5, 7.1 Hz, 1H), 3.35 (d, J = 17.1 Hz, 1H), 3.16 (t, J = 7.2 Hz, 

2H), 3.10 (dt, J = 6.9, 1.9 Hz, 2H), 2.97 (dt, J = 6.0, 1.9 Hz, 2H), 2.86 (t, J = 6.2 Hz, 2H), 2.79 

(dd, J = 16.6, 9.3 Hz, 1H), 2.58 (dd, J = 13.5, 9.9 Hz, 1H), 2.43 (dd, J = 13.5, 3.7 Hz, 1H), 

2.35 (dd, J = 16.6, 5.7 Hz, 1H), 2.28 (t, J = 7.2 Hz, 2H), 2.15 (dq, J = 14.7, 7.2 Hz, 1H), 2.15 

(dq, J = 14.7, 7.2 Hz, 1H), 1.97 (m, 1H), 1.69 (m, 1H), 1.54-1.39 (m, 2H), 0.90 ppm (t, J = 7.4 

Hz, 3H); 13C NMR (126 MHz, DMSO-d6 + D2O) δ 171.7, 171.6, 171.3, 171.1, 170.8, 169.6, 

169.6, 169.1, 167.5, 157.0, 156.7, 156.1, 153.2, 152.4, 148.2, 146.5, 145.3, 139.1, 134.8, 
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132.1, 130.9, 130.0, 129.2, 128.9, 128.4, 128.2, 128.1, 128.0, 119.4, 95.1, 78.3, 66.7, 66.6, 

62.0, 58.8, 53.9, 51.2, 50.7, 48.4, 46.7, 42.4, 42.0, 40.7, 38.3, 37.6, 37.4, 37.2, 36.6, 35.7, 

35.4, 30.6, 26.3, 26.0, 7.8 ppm. MS (ESI): m/z calcd for [C56H66N13O17S2]
+: 1256.41 [M+H]+; 

found: 1256.61; m/z calcd for [C56H65N13NaO17S2]
+: 1278.40 [M+Na]+; found: 1278.59; m/z 

calcd for [C56H67N13O17S2]
2+: 628.71 [M+2H]2+; found: 628.80; HRMS (ESI+): m/z calcd for 

[C56H66N13O17S2]
+: 1256.4136 [M+H]+; found 1256.4139; m/z calcd for [C56H67N13O17S2]

2+: 

628.7105 [M+2H]2+; found 628.7082. 

“uncleavable” cyclo[DKP-RGD]-CPT (128) 

 (N-hydroxysuccinimidyl-glutarate)glycino-Camptothecin (141) 

 

DIC (24 µL, 0.154 mmol, 2 eq) and NHS (18 mg, 0.154 mmol, 2 eq) were added to a solution 

of 140 (40 mg, 0.077 mmol, 1 eq) in a 5:1 mixture dry THF/CH3CN (1.8 mL). The mixture was 

stirred overnight at room temperature and the white solid formed was filtered off. Evaporation 

of the filtrate and crystallization with isopropyl alcohol afforded 141 as a white solid (30 mg, 

63% yield). 

1H NMR (499.7 MHz, DMSO-d6) δ 8.71 (s, 1 H), 8.45 (t, J = 5.8 Hz, 1 H), 8.18 (d, J = 8.4 Hz, 

1 H), 8.14 (d, J = 8.4 Hz, 1 H), 7.87 (m, 1 H), 7.73 (m, 1 H), 7.17 (s, 1 H), 5.50 (s, 2 H), 5.29-

5.32 (m, 2 H), 4.16 (dd, J = 18.0, 6.0 Hz, 1 H), 2.78 (m, 4H), 2.66-2.70 (m, 2H), 2.21-2.28 (m, 

2H), 2.08-2.18 (m, 2H), 1.80-1.88 (m, 2H), 0.91 ppm (t, J = 7.3 Hz, 3H). HRMS (ESI): m/z 

calcd for [C31H29N4O10]
+: 617.1878 [M+H]+; found: 617.1879. 
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cyclo[DKP-RGD]-unc.-CPT (128)  

 

Compound 141 (8.6 mg, 14.0  10−2 mmol, 1.2 eq) was dissolved in CH3CN (1 mL) and a 

solution of cyclo[DKP-RGD]-CH2NH2 (70, 20 mg, 11.7  10−2 mmol, 1 eq) in pH 7.5 PBS (1 

mL) was added. The reaction mixture was stirred overnight at room temperature; during the 

first 3 h the pH value was kept near 7.3-7.5 adding 0.2 M aqueous NaOH when necessary. 

The crude was then purified by semipreparative-HPLC [Waters Atlantis 21 mm  10 cm 

column, multistep gradient: from 0 min to 1 min 80% (H2O + 0.1% CF3COOH) / 20% (CH3CN 

+ 0.1% CF3COOH); ramp to 29% (H2O + 0.1% CF3COOH) / 71% (CH3CN + 0.1% 

CF3COOH) in 6.5 min; tR (product): 7.2 min]. The purified product was then freeze dried to 

give the desired compound 128 as a yellow solid (13 mg, 85% yield). 

1H NMR (400 MHz, D2O + CD3CN) δ 8.35 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.90-7.76 (m, 

2H), 7.60 (m, 1H), 7.44 (s, 1H), 7.23 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 5.83 (d, J = 

16.4 Hz, 1H), 5.66 (d, J = 16.4 Hz, 1H), 5.13 (d, J = 15.1 Hz, 1H), 5.04 (t, J = 7.0 Hz, 1H), 

4.69 (dd, J = 8.4, 5.2 Hz, 2H), 4.62 (d, J = 18.2 Hz, 1H), 4.51 (d, J = 14.7 Hz, 1H), 4.47 (d, J 

= 15.6 Hz, 1H), 4.32 (dd, J = 9.7, 4.9 Hz, 1H), 4.27 (s, 2H), 4.16-4.06 (m, 3H), 3.79 (d, J = 

17.1 Hz, 1H), 3.67 (dd, J = 14.0, 5.4 Hz, 1H), 3.40 (t, J = 6.8 Hz, 2H), 3.15-2.89 (m, 4H), 2.79 

(dd, J = 14.0, 4.7 Hz, 1H), 2.59-2.51 (m, 2H), 2.45 (d, J = 0.9 Hz, 3H), 2.44-2.34 (m, 2H), 

2.19 (m, 1H), 2.14-2.04 (m, 2H), 2.00 (m, 1H), 1.90-1.76 (m, 2H), 1.24 ppm (t, J = 7.3 Hz, 

3H); 13C NMR (101 MHz, D2O + CD3CN) δ 174.9, 174.0, 172.9, 172.6, 172.0, 171.7, 169.9, 

169.3, 169.2, 168.5, 167.8, 156.6, 155.9, 149.8, 146.1, 144.6, 137.2, 133.1, 131.6, 130.2, 

127.6, 127.4, 127.1, 126.8, 96.6, 76.6, 65.8, 58.3, 53.2, 51.1, 49.3, 48.4, 48.1, 46.4, 41.7, 

41.5, 40.2, 39.9, 38.2, 37.1, 34.0, 33.8, 33.7, 29.9, 25.0, 24.0, 21.0, 6.4 ppm. MS (ESI): m/z 

calcd for [C54H62N13O15]
+: 1132.45 [M+H]+; found: 1132.70; MS (MALDI): m/z calcd for 

[C54H62N13O15]
+: 1133.15 [M+H]+; found: 1133.7 (HCCA matrix). 
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HPLC Traces of the Final Products 

cyclo[DKP-RGD]-Val-Ala-PTX (80) 

Waters Atlantis 21 mm  10 cm column, gradient from  90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 11 min. 

 

cyclo[DKP-RGD]-Phe-Lys-PTX (81) 

Waters Atlantis 21 mm  10 cm column, multistep gradient: from 0 min to 1 min 90% (H2O + 0.1% 

CF3COOH) / 10% (CH3CN + 0.1% CF3COOH); ramp to 100% (CH3CN + 0.1% CF3COOH) in 10 min. 

 

cyclo[DKP-RGD]-unc.-PTX (82) 

Waters Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 25% (H2O + 0.1% CF3COOH) / 75% (CH3CN + 0.1% CF3COOH) in 12 min. 

 

[cyclo(DKP-RGD)]2Val-Ala-PTX (100) 

Waters Atlantis 21 mm  10 cm column; gradient: 90% (H2O+0.1% CF3COOH)/10% (CH3CN+0.1% 

CF3COOH) to 100% (CH3CN+0.1% CF3COOH) in 17 min. 
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[cyclo(DKP-RGD)]1Val-Ala-PTX (111) 

Waters Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% CH3COOH)/10% (CH3CN + 0.1% 

CH3COOH) to 100% (CH3CN + 0.1% CH3COOH) in 17 min. 

 

cyclo[DKP-RGD]-Val-Cit-DNR (113) 

Water's Atlantis 21 mm  10 cm column, gradient: 85% (H2O + 0.1% CH3COOH) / 15% (CH3CN + 

0.1% CH3COOH) to 30% (H2O + 0.1% CH3COOH) / 70% (CH3CN + 0.1% CH3COOH) in 14 min. 

 

cyclo[RGDyK]-Naph-SS-CPT (121)  

Waters Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 15% (H2O + 0.1% CF3COOH) / 85% (CH3CN + 0.1% CF3COOH) in 10 min.

 

cyclo[DKP-RGD]-Naph-SS-CPT (126) 

Waters Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 15% (H2O + 0.1% CF3COOH) / 85% (CH3CN + 0.1% CF3COOH) in 10 min.  
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cyclo[DKP-RGD]-SS-CPT (127)  

Waters Atlantis 21 mm  10 cm column, gradient: 90% (H2O + 0.1% CF3COOH) / 10% (CH3CN + 

0.1% CF3COOH) to 100% (CH3CN + 0.1% CF3COOH) in 13 min. 

 

cyclo[DKP-RGD]-unc.-CPT (128)  

Waters Atlantis 21 mm  10 cm column, multistep gradient: from 0 min to 1 min 80% (H2O + 0.1% 

CF3COOH) / 20% (CH3CN + 0.1% CF3COOH); ramp to 29% (H2O + 0.1% CF3COOH) / 71% (CH3CN 

+ 0.1% CF3COOH) in 6.5 min. 
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Compound 80 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 82 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 83 

1H NMR (400 MHz, CD2Cl2) 

 
13C NMR (101 MHz, CD2Cl2) 
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Compound 87b 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 88b 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 89a 

1H NMR (400 MHz, THF-d8) 

 
13C NMR (101 MHz, THF-d8) 
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Compound 89b 

1H NMR (400 MHz, THF-d8) 

 
13C NMR (101 MHz, THF-d8) 
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Compound 90a 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 90b 

1H NMR (400 MHz, CD2Cl2) 

 
13C NMR (101 MHz, CD2Cl2) 
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Compound 91a 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 91b 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound Boc-92a 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 92b 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 93 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound Boc-94 

1H NMR (400 MHz, CD3OD) 

 
13C NMR (101 MHz, CD3OD) 
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Compound 95 

1H NMR (400 MHz, CD2Cl2) 

 
13C NMR (101 MHz, CD2Cl2) 
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Compound 101 

1H NMR (500 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 

 



140 Appendix of NMR Data  
 
 

Compound 102 

1H NMR (400 MHz, D2O) 

 
13C NMR (101 MHz, D2O) 
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Compound 104 

1H NMR (400 MHz, CDCl3) 

 
13C NMR (101 MHz, CDCl3) 
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Compound 106 

1H NMR (400 MHz, MeOD + DMSO-d6) 

 
13C NMR (101 MHz, MeOD + DMSO-d6) 
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Compound 115 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 116 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 117 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 118 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 119 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 120 

1H NMR (400 MHz, CD2Cl2) 

 
13C NMR (101 MHz, CD2Cl2) 
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Compound 125 

1H NMR (400 MHz, MeOD) 

 
13C NMR (101 MHz, MeOD) 
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Compound 127 

1H NMR (500 MHz, DMSO-d6 + D2O) 

 
13C NMR (126 MHz, DMSO-d6 + D2O) 
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Compound 128 

1H NMR (400 MHz, D2O + CD3CN) 

 
13C NMR (101 MHz, D2O + CD3CN) 

 



152 Appendix of NMR Data  
 
 

Compound 132 

1H NMR (400 MHz, CDCl3) 

 
13C NMR (101 MHz, CDCl3) 
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Compound 133 

1H NMR (400 MHz, MeOD) 

 
13C NMR (101 MHz, MeOD) 
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Compound 134 

1H NMR (400 MHz, DMSO-d6) 

 
13C NMR (101 MHz, DMSO-d6) 
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Compound 137 

1H NMR (400 MHz, MeOD) 

 
13C NMR (101 MHz, MeOD) 
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Compound 138 

1H NMR (400 MHz, CD2Cl2) 

 
13C NMR (101 MHz, CD2Cl2) 
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