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Abstract

Goat’s milk is high digestible and useful for a number of human health problems, 
but this product could be further increased in its beneficial effects on immune 
response both at animal and human level through the use of dietary n-3 
polyunsaturated fatty acids (PUFAs) sources in goat diet.

In the last decade, the interest on n-3 PUFAs, in particular eicosapentaenoic acid 
(EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), has increased due to their 
proved positive effects on human health. These two PUFAs must be provided with 
the diet both in human and animals. Anyway EPA and DHA can be successfully 
transferred into milk and thus can be available to human consumption with 
positive related effects on immune response. But what is the best dietary source 
of EPA and DHA in goat diet? The most promising and investigated raw material 
seems to be fish oil, but the interest in alternative n-3 PUFAs-rich sources, such as 
algae, is increasing. The EPA and DHA mechanisms of action, affecting metabolic 
and pathological pathways, must be still elucidated in goats, especially for what 
concern the use of dietary algae. The inclusion of fish oil and algae in the diet of 
dairy goat can increase the healthy properties of milk with consequential health 
benefit in human.
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Abbreviations: UFA: Unsaturated Fatty Acids; PUFA: 
Polyunsaturated Fatty Acids; NEFA: Non Esterified Fatty Acids; 
EPA: Eicosapentaenoic Acid; DHA: Docosahexaenoic Acid; CLA: 
Conjugated Linoleic Acid; DMI: Dry Matter Intake; NRC: National 
Research Council; PGE2: prostaglandin E2; TXB2: Thromboxane 
B2; LTB4: Leukotriene B4; LTE4: Leukotriene E4 ; MUFAs: 
Monounsaturated Fatty Acids; ROS: Reactive Oxygen Species; 
PMN: PolyMorphoNuclear; LPS: LipoPolySaccharide; CLA: 
Conjugated Linoleic Acid

Introduction
High nutritional value of goat’s milk and its higher digestibility 

than cow’s milk due to the smaller fat globules size are evident 
since years [1] and represent a good challenge in resolving a 
number of human health problems [2,3] such as malabsorption 
syndrome [4] or high total and LDL cholesterol levels in human 
blood. Goat’s milk has a low content of polyunsaturated fatty acids 
(PUFAs; 2-6% of fatty acid composition) and a relatively high 
amount of saturated fatty acids (SFAs; 53-72%); the remaining 
part is represented by monounsaturated fatty acids (MUFAs) [5].

The rising question is: how can we further improve this unique 
animal product and contribute to human health beside goat’s milk 
natural properties? 

One of the major chances we have is to increase n-3 PUFAs 
milk content since there is evidence that these fatty acids have 
the potential to improve long-term human health [6]. Moreover 
the western diet is very high in n-6 fatty acids relative to n-3 fatty 
acids [7,8]. The ratio n-6/n-3 PUFAs recommended is less than 
5 [9,10] and today this ratio in animal products is between 10 
and 15 [11]. This is the point, but what kind of n-3 PUFAs do we 
want to increase? And more: what is the most interesting source 

of these fatty acids?

Among all n-3 PUFAs, eicosapentaenoic acid (EPA, C20:5) 
and docosahexaenoic acid (DHA, C22:6), have been shown to be 
essential in mammals species leading to nutritional and health 
beneficial actions [12], often with anti-inflammatory properties 
[13].

If we account for human health, DHA leads to higher neuronal 
development in foetal and early infants [14], but the endogenous 
production of this fatty acid by the mother from α-linoleic acid 
(ALA), as example, is very poor [15] due to the competition with 
linoleic acid (LA, 18:2 n-6) for the same metabolizing enzymes, 
particularly at the first Δ6-desaturation step [16]. In human both 
EPA and DHA must then be introduced with the diet and the 
consumption of milk with increased EPA and DHA content can be 
a good chance. Unfortunately the content of these two fatty acids 
is minimal in traditional ruminant diets and consequently milk 
has a very low amount of them (<0.1% of total fatty acids) [17] 
but improving EPA and DHA content in the diet of dairies could 
lead to an higher available content of these fatty acids in milk for 
human consumption.

What is the best source of EPA and DHA in animal nutrition? 
During years a big interest has been pointed out on fish oil that 
seems the most promising raw material for this purpose due to 
the fact that it mostly contains EPA and DHA among all the other 
n-3 PUFAs. Anyway, fish oil is a costly supplementation of lipids 
compared to other more conventional fatty acid sources and 
there is increasing concern on the sustainability of the use of fish 
products in animal diet [18], which leads to consider alternative 
sources of long-chain n-3 PUFAs [19]. 

One of these alternatives is the use of a source of α-linoleic 
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acid (ALA) as a precursor for EPA and DHA such as linseed, that 
anyway is affected by two main disadvantages: 

a.	 The low digestibility of linseed due to the fact that the 
digestive enzymes cannot penetrate the seed coat, usually 
solved with treatments like extrusion and expansion; 

b.	 The presence of anti nutritional factors, which however can 
be destroyed by thermo-extrusion in some extent [11].

Beside linseed, algae have high content of PUFAs and can be 
considered as an alternative to fish oil [20]. They have several 
advantages: easy to cultivate, relatively low cost, high yielding 
and fast in growth. Moreover these compounds were found to 
have some interesting bioactive components such as antioxidants, 
sulfated polysaccharides, phlorotannins, diterpenes, minerals and 
vitamins, high protein content, valuable nutrients [5,21]. Thus, 
the use of algae as a dietary additive in livestock diets could be 
of great interest [22] especially with the aim of decrease SFAs 
content through an increased content of conjugated linoleic acid 
(CLA) and other PUFAs in the milk of ruminants [23].

It is recognized that algal lipids have a higher PUFAs content 
than terrestrial plants [24] although some differences in the fatty-
acids composition among species and intra-species variations 
occurs also related to environmental and geographical factors 
[25,26], season [27], and algal parts [28].

The use of algae as PUFAs source is a very new topic and the 
scientific investigations on algae in dairy goat nutrition are very 
few, but the interest is continuously increasing thanks to several 
health benefits found in other species through their prebiotic 
functions, antimicrobial activities, improved digestibility, 
antioxidant role and anti-inflammatory and immunomodulatory 
properties [21]. 

Dietary n-3 PUFAs: Milk yield, Milk fatty acid 
composition, EPA and DHA Transfer Efficiency

During years, goat milk yield and composition responses, when 
adding n-3 PUFAs in the diet, often produced contradictory results. 
Some studies [12,29,30] found no effects on milk production when 
feeding fish oil, but the supplementation significantly reduced 
milk fat. Differently Kitessa et al. [31] evidenced a significant milk 
yield decrease without changes in milk fat content in response to 
dietary tuna oil. To the author’s knowledge very few literature is 
available on the effect of dietary algae on production and quality 
of goat milk [5], but generally no differences in milk yield and a 
significant decrease in milk fat content in cow [32] and sheep 
[23,33] was observed.

In this view, one possible mechanism for diet-induced milk 
fat depression in dairy ruminants involves direct inhibition of 
lipid synthesis in the mammary gland in response to fatty acid 
intermediates such as trans-C18:1 and related metabolites, 
formed during partial biohydrogenation of unsaturated fatty 
acids in the rumen [33,34]. The fatty acid composition of milk 
can be seen as the result of both the tissue fatty acid biosynthesis 
and the dietary fatty acid composition of the diet [35] but, if in 
monogastrics animals the relationship between dietary fatty acid 
profile and milk fatty acid content is quite stronger and linear, this 
is not the same for ruminants because rumen microorganisms 
are responsible for the biohydrogenation process of dietary fatty 
acids that leave the rumen and pass in the small intestine, where 

they can be absorbed [20,36,37].

The administration of both fish oil and algae in ruminant are 
reported to strongly affect the fatty acid profile of milk where the 
observed results are a decrease in SFAs with increased PUFAs 
content. More in details, the fatty acid profile of mature goat 
milk was influenced by unprotected fish oil administration with 
a lower average concentration of C18:0 and higher content of 
C16:1, C18:3, and very long-chain n-3 PUFAs EPA and DHA [12].

The use of algae in the diet of dairy goat are reported to 
decrease palmitic acid content in the milk with increased levels 
of oleic, linoleic and linolenic acid and a positive change in 
SFA:MUFA:PUFA with a reduced proportion of SFA and a tendency 
to a positive shift in n-6:n-3PUFA, with increasing proportion of 
n-3 [5]. The observed increase in PUFAs milk content [23,33] in 
dairy sheep when feeding algae is relative to an higher content of 
very-long chain PUFAs and particularly EPA and DHA, according 
with what previously observed in cow [32].

Thus, EPA and DHA content in milk can be significantly 
enhanced through goat nutrition, but what is the extent to which 
these fatty acids are transferred from the diet into small ruminants’ 
milk fat? The question is still debated because it mainly accounts 
for the source of n-3 PUFAs and if a rumen protection is applied 
over these compounds. 

Beside the different dietary sources, the observed discrepancies 
in transfer efficiencies have been explained by the dosage applied, 
the duration of administration, and level/technological methods 
for rumen protection of the dietary fatty acid sources. With regard 
to this last point the transfer efficiency of EPA and DHA from diet 
into milk is however generally low when not rumen protected 
because of the high amount of rumen biohydrogenation together 
with the preferential incorporation into plasma phospholipids 
and cholesterol esters [31].

Anyway, the alternative to introduce “inert” fats in the diet 
rather than the native forms of supplementation to escape or 
bypass fat rumen biohydrogenation is preferable because a 
more stable form can preserve fatty acids form oxidation and the 
inclusion in the diet of even poorly protected fats can reduce the 
negative effects of high levels of unprotected dietary fats on feed 
intake, ruminal fermentation, and milk fat content [38].

At the moment it seems that the transfer efficiency to mature 
goat milk ranges from 7.0% to 14.0% for EPA and from 7.0% to 
8.1% for DHA when a rumen unprotected form of dietary fish 
oil is used [39], although some works found lower EPA transfer 
efficiency ranging from 2.8% to 7.9% [30,31,40,41] and a greater 
variability for DHA rate of passage from 2.8% [30] to 20.3% [40].

Considering algae dietary supplementation, DHA transfer 
efficiency in dairy cow was 8.4% when using an unprotected form 
of algae, and 16.7% when a rumen-protected form was fed [32]. 
Similarly, the DHA transfer rate into sheep’ milk from unprotected 
algae compound was between 5.0% [33] and 8.0%, while 30% to 
60% of dietary EPA was incorporated [23].

Improving Immune Response with EPA and DHA
Fatty acids metabolism plays a significant role in immune cells 

functions, both in humans and in animals [42]. The most powerful 
immunomodulatory effect is achieved by the n-3 PUFAs and, 
among them, by EPA, C20:5(n-3) and DHA C22:6(n-3). 
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Long chain n-3 PUFAs modulate immune functions in several 
ways by replacing, for example, arachidonic acid during the 
eicosanoid signalling cascade [43], thus decreasing the production 
of inflammatory eicosanoids such as of PGE2 [44], TXB2 [45], 
LTB4 [46], 5-hydroxyeicosatetraenoic acid [47] and LTE4 [48]. 
Long chains n-3 PUFAs can also directly interfere with cytokine 
gene expression [49]. Further regulatory pathways include 
regulation of cell surface expression of adhesion molecules [50], 
membrane fluidity and apoptosis rates [51]. In addition, both EPA 
and DHA give rise to family of anti-inflammatory mediators called 
resolvins [52]. Most of these activities directly target leukocyte 
function [53]. 

Monocytes are recognized as major effector cells of the immune 
system, playing a central role in the initiation, development and 
outcome of the innate immune response. Long chain n-3 fatty 
acids may affect monocyte/macrophage defensive functions 
in several ways. For example, both EPA and DHA can increase 
phagocytosis [54] and decrease chemotaxis of human monocytes 
[55,56]. Cytokine expression can be modulated as well, since both 
EPA and DHA can down-regulate the in vitro production of IL-1β, 
IL-6 and TNF-α [49,57,58]. Monocytes/macrophages, together 
with neutrophils, produce high amount of reactive oxygen species 
(ROS), thus contributing to the oxidative stress, a prominent and 
common feature of many disease processes. Generation of ROS 
is of paramount importance for the killing of micro-organism. 
Yet, if not properly regulated, such as in chronic inflammatory 
or immune diseases, ROS become hazardous for the organism by 
causing damage to cellular lipids, proteins and DNA, eventually 
impairing cells function. Long chain PUFAs modulated cellular 
production of ROS in macrophages [59], neutrophils [60] and 
lymphocytes [61], but their activity is still debated, since some 
authors found an increase while others, on the contrary, found a 
decrease in ROS production [62]. 

Regulation of leukocytes apoptosis is another important 
homeostatic mechanism to control the activity of monocytes, 
by reducing or increasing their lifespan during inflammation, 
eventually determining the positive outcome of the inflammatory 
process. There is increasing evidence that PUFAs can cause cell 
death in normal and cancer cells [63,64]. Several cell types, 
including macrophages [62], neutrophils [60] and leukaemia cells 
[61], exhibit morphological features of apoptosis and necrosis 
after exposure to PUFAs at high doses. The mechanisms by which 
PUFAs cause apoptosis vary markedly with cell type and fatty acid 
species, and most of them are still debated. 

As discussed previously, studies carried out in ruminants had 
the prominent aim to evaluate the possible higher EPA and DHA 
content in animal-derived products, but there is the increasing 
evidence from the few available investigations that feeding 
ruminants with n-3 PUFAs may affect fertility [65] and modulate 
immune response, including for example, lipopolysaccharide 
(LPS)-induced hyperthermia [66].

Dietary fish oil in transition dairy goats was found to be 
effective on cell-mediated immune response [67], with modified 
mononuclear and polymorphonuclear (PMN) cells ratio as result. 
Treating cells with DHA exerted [68] in increased PMN phagocytic 
activity and lower reactive oxygen species (ROS) production after 
in vitro challenged with EPA and DHA. A subsequent validation in 
vivo of the obtained results demonstrated that both EPA and DHA 
have beneficial effects on goats health by improving the defensive 

performances of neutrophils [69] avoiding cellular and tissue 
damages by ROS. EPA and DHA affected also goat monocytes 
activities by up-regulating phagocytic activity and ROS production 
[70] and by interfering with the formation of lipid droplets and by 
upregulating proteins belonging to PAT protein family [71].

Conclusion
The transfer of health-promoting PUFAs such EPA and DHA 

can be achieved from dairy goat nutrition to human through 
the milk with positive effects also at animal level. The increased 
EPA and DHA milk content represent a future challenge to better 
characterize an already high-nutritional and health-providing 
product. Among different EPA and DHA sources, at the present 
moment fish oil still represents the preferable source, but 
algae can be an alternative as soon experimental results will be 
consolidated.
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